WorldWideScience

Sample records for deletion analysis revealed

  1. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth

    Directory of Open Access Journals (Sweden)

    Shakhova VV

    2008-05-01

    Full Text Available Abstract Background Bifidobacteria are frequently proposed to be associated with good intestinal health primarily because of their overriding dominance in the feces of breast fed infants. However, clinical feeding studies with exogenous bifidobacteria show they don't remain in the intestine, suggesting they may lose competitive fitness when grown outside the gut. Results To further the understanding of genetic attenuation that may be occurring in bifidobacteria cultures, we obtained the complete genome sequence of an intestinal isolate, Bifidobacterium longum DJO10A that was minimally cultured in the laboratory, and compared it to that of a culture collection strain, B. longum NCC2705. This comparison revealed colinear genomes that exhibited high sequence identity, except for the presence of 17 unique DNA regions in strain DJO10A and six in strain NCC2705. While the majority of these unique regions encoded proteins of diverse function, eight from the DJO10A genome and one from NCC2705, encoded gene clusters predicted to be involved in diverse traits pertinent to the human intestinal environment, specifically oligosaccharide and polyol utilization, arsenic resistance and lantibiotic production. Seven of these unique regions were suggested by a base deviation index analysis to have been precisely deleted from strain NCC2705 and this is substantiated by a DNA remnant from within one of the regions still remaining in the genome of NCC2705 at the same locus. This targeted loss of genomic regions was experimentally validated when growth of the intestinal B. longum in the laboratory for 1,000 generations resulted in two large deletions, one in a lantibiotic encoding region, analogous to a predicted deletion event for NCC2705. A simulated fecal growth study showed a significant reduced competitive ability of this deletion strain against Clostridium difficile and E. coli. The deleted region was between two IS30 elements which were experimentally

  2. Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-based Deletion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming; Sanchez, James F.; Chang, ShuLin; Bruno, Kenneth S.; Wang, Clay C.

    2013-04-15

    Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strains enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.

  3. Deletion analysis of AGD1 reveals domains crucial for plasma membrane recruitment and function in root hair polarity.

    Science.gov (United States)

    Yoo, Cheol-Min; Naramoto, Satoshi; Sparks, J Alan; Khan, Bibi Rafeiza; Nakashima, Jin; Fukuda, Hiroo; Blancaflor, Elison B

    2017-06-23

    AGD1, a plant ACAP-type ADP-ribosylation factor-GTPase activating protein (ARF-GAP), functions in specifying root hair polarity in Arabidopsis thaliana To better understand how AGD1 modulates root hair growth, we generated full-length and domain-deleted AGD1-green fluorescent protein (GFP) constructs, and followed their localization during root hair development. AGD1-GFP localized to the cytoplasm and was recruited to specific regions of the root hair plasma membrane (PM). Distinct PM AGD1-GFP signal was first detected along the site of root hair bulge formation. The construct continued to mark the PM at the root hair apical dome, but only during periods of reduced growth. During rapid tip growth, AGD1-GFP labeled the PM of the lateral flanks and dissipated from the apical-most PM. Deletion analysis and a single domain GFP fusion revealed that the pleckstrin homology (PH) domain is the minimal unit required for recruitment of AGD1 to the PM. Our results indicate that differential recruitment of AGD1 to specific PM domains is an essential component of the membrane trafficking machinery that facilitates root hair developmental phase transitions and responses to changes in the root microenvironment. © 2017. Published by The Company of Biologists Ltd.

  4. Comparative analysis of Phytophthora genes encoding secreted proteins reveals conserved synteny and lineage-specific gene duplications and deletions

    NARCIS (Netherlands)

    Jiang, R.H.Y.; Tyler, B.M.; Govers, F.

    2006-01-01

    Comparative analysis of two Phytophthora genomes revealed overall colinearity in four genomic regions consisting of a 1.5-Mb sequence of Phytophthora sojae and a 0.9-Mb sequence of R ramorum. In these regions with conserved synteny, the gene order is largely similar; however, genome rearrangements a

  5. Analysis of a new homozygous deletion in the tumor suppressor region at 3p12.3 reveals two novel intronic noncoding RNA genes

    NARCIS (Netherlands)

    Angeloni, Debora; ter Elst, Arja; Wei, Ming Hui; van der Veen, Anneke Y.; Braga, Eleonora A.; Klimov, Eugene A.; Timmer, Tineke; Korobeinikova, Luba; Lerman, Michael I.; Buys, Charles H. C. M.

    2006-01-01

    Homozygous deletions or loss of heterozygosity (LOH) at human chromosome band 3p12 are consistent features of lung and other malignancies, suggesting the presence of a tumor suppressor gene(s) (TSG) at this location. Only one gene has been cloned thus far from the overlapping region deleted in lung

  6. Analysis of the genome sequence of the pathogenic Muscovy duck parvovirus strain YY reveals a 14-nucleotide-pair deletion in the inverted terminal repeats.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang

    2016-09-01

    Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.

  7. Analysis of a naturally-occurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses.

    Science.gov (United States)

    Simón, Oihane; Palma, Leopoldo; Williams, Trevor; López-Ferber, Miguel; Caballero, Primitivo

    2012-01-01

    The Nicaraguan population of Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV-NIC, is structured as a mixture of nine genotypes (A-I). Occlusion bodies (OBs) of SfMNPV-C, -D and -G pure genotypes are incapable of oral transmission; a phenotype which in SfMNPV-C and -D is due to the absence of pif1 and pif2 genes. The complete sequence of the SfMNPV-G genome was determined to identify possible factors involved in this phenotype. Deletions of 4860 bp (22,366-27,225) and 60 bp (119,759-119,818) were observed in SfMNPV-G genome compared with that of the predominant complete genotype SfMNPV-B (132,954 bp). However no genes homologous to previously described per os infectivity factors were located within the deleted sequences. Significant differences were detected in the nucleotide sequence in sf58 gene (unknown function) that produced changes in the amino acid sequence and the predicted secondary structure of the corresponding protein. This gene is conserved only in lepidopteran baculoviruses (alpha- and betabaculoviruses). To determine the role of sf58 in peroral infectivity a deletion mutant was constructed using bacmid technology. OBs of the deletion mutant (Sf58null) were not orally infectious for S. frugiperda larvae, whereas Sf58null rescue virus OBs recovered oral infectivity. Sf58null DNA and occlusion derived virions (ODVs) were as infective as SfMNPV bacmid DNA and ODVs in intrahemocelically infected larvae or cell culture, indicating that defects in ODV or OB morphogenesis were not involved in the loss of peroral infectivity. Addition of optical brightener or the presence of the orally infectious SfMNPV-B OBs in mixtures with SfMNPV-G OBs did not recover Sf58null OB infectivity. According to these results sf58 is a new per os infectivity factor present only in lepidopteran baculoviruses.

  8. Phylogenetic analysis of mitochondrial DNA in a patient with Kearns-Sayre syndrome containing a novel 7629-bp deletion.

    Science.gov (United States)

    Montiel-Sosa, Jose Francisco; Herrero, María Dolores; Munoz, Maria de Lourdes; Aguirre-Campa, Luis Enrique; Pérez-Ramírez, Gerardo; García-Ramírez, Rubén; Ruiz-Pesini, Eduardo; Montoya, Julio

    2013-08-01

    Mitochondrial DNA mutations have been associated with different illnesses in humans, such as Kearns-Sayre syndrome (KSS), which is related to deletions of different sizes and positions among patients. Here, we report a Mexican patient with typical features of KSS containing a novel deletion of 7629 bp in size with 85% heteroplasmy, which has not been previously reported. Sequence analysis revealed 3-bp perfect short direct repeats flanking the deletion region, in addition to 7-bp imperfect direct repeats within 9-10 bp. Furthermore, sequencing, alignment and phylogenetic analysis of the hypervariable region revealed that the patient may belong to a founder Native American haplogroup C4c.

  9. Deletion and interallelic complementation analysis of Steel mutant mice

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, M.A.; Cleveland, L.S.; Copeland, N.G. [NCI-Frederick Cancer Research and Development Center, MD (United States)] [and others

    1996-03-01

    Mutations at the Steel (Sl) locus produce pleiotropic effects on viability as well as hematopoiesis, pigmentation and fertility. Several homozygous viable Sl alleles have previously have been shown to contain either structural alterations in mast cell growth factor (Mgf) or regulatory mutations that affect expression of the Mgf gene. More severe Sl alleles cause lethality to homozygous embryos and all lethal Sl alleles examined to date contain deletions that remove the entire Mgf coding region. As the timing of the lethality varies from early to late in gestation, it is possible that some deletions may affect other closely linked genes in addition to Mgf. We have analyzed the extent of deleted sequences in seven homozygous lethal Sl alleles. The results of this analysis suggests that late gestation lethality represents the Sl null phenotype and that peri-implantation lethality results from the deletion of at least one essential gene that maps proximal to Sl. We have also examined gene dosage effects of Sl comparing the phenotypes of mice homozygous and hemizygous for each of four viable Sl alleles. Lastly, we show that certain combinations of the viable Sl alleles exhibit interallelic complementation. Possible mechanisms by which such complementation could occur are discussed. 39 refs., 3 figs., 3 tabs.

  10. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas

    OpenAIRE

    Kamoun, Aurélie; Idbaih, Ahmed; Dehais, Caroline; Elarouci, Nabila; Carpentier, Catherine; Letouzé, Eric; Colin, Carole; Mokhtari, Karima; Jouvet, Anne; Uro-Coste, Emmanuelle; Martin-Duverneuil, Nadine; Sanson, Marc; Delattre, Jean-Yves; Figarella-Branger, Dominique; de Reyniès, Aurélien

    2016-01-01

    POLA Network; International audience; Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q co-deletion. Here we present an integrated analysis of the transcriptome, genome and methylome of 156 OT. Not only does our multi-omics classification match the current classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated with specific expression patter...

  11. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island.

    Science.gov (United States)

    Schübbe, Sabrina; Kube, Michael; Scheffel, André; Wawer, Cathrin; Heyen, Udo; Meyerdierks, Anke; Madkour, Mohamed H; Mayer, Frank; Reinhardt, Richard; Schüler, Dirk

    2003-10-01

    Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria.

  12. Molecular analysis of Brazilian strains of bovine coronavirus (BCoV) reveals a deletion within the hypervariable region of the S1 subunit of the spike glycoprotein also found in human coronavirus OC43.

    Science.gov (United States)

    Brandão, P E; Gregori, F; Richtzenhain, L J; Rosales, C A R; Villarreal, L Y B; Jerez, J A

    2006-09-01

    Bovine coronavirus (BCoV) causes enteric and respiratory dis- orders in calves and dysentery in cows. In this study, 51 stool samples of calves from 10 Brazilian dairy farms were analysed by an RT-PCR that amplifies a 488-bp fragment of the hypervariable region of the spike glycoprotein gene. Maximum parsimony genealogy with a heuristic algorithm using sequences from 15 field strains studied here and 10 sequences from GenBank and bredavirus as an outgroup virus showed the existence of two major clusters (1 and 2) in this viral species, the Brazilian strains segregating in both of them. The mean nucleotide identity between the 15 Brazilian strains was 98.34%, with a mean amino acid similarity of 98%. Strains from cluster 2 showed a deletion of 6 amino acids inside domain II of the spike protein that was also found in human coronavirus strain OC43, supporting the recent proposal of a zoonotic spill- over of BCoV. These results contribute to the molecular characterization of BCoV, to the prediction of the efficiency of immunogens, and to the definition of molecular markers useful for epidemiologic surveys on coronavirus-caused diseases.

  13. Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo

    Directory of Open Access Journals (Sweden)

    Bettler Bernhard

    2009-11-01

    Full Text Available Abstract Background γ-aminobutyric acid (GABA is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABAA and metabotropic (GABAB receptors. GABAB receptors are widely expressed in the central and the peripheral nervous system. Although there is evidence for a key function of GABAB receptors in the modulation of pain, the relative contribution of peripherally- versus centrally-expressed GABAB receptors is unclear. Results In order to elucidate the functional relevance of GABAB receptors expressed in peripheral nociceptive neurons in pain modulation we generated and analyzed conditional mouse mutants lacking functional GABAB(1 subunit specifically in nociceptors, preserving expression in the spinal cord and brain (SNS-GABAB(1-/- mice. Lack of the GABAB(1 subunit precludes the assembly of functional GABAB receptor. We analyzed SNS-GABAB(1-/- mice and their control littermates in several models of acute and neuropathic pain. Electrophysiological studies on peripheral afferents revealed higher firing frequencies in SNS-GABAB(1-/- mice compared to corresponding control littermates. However no differences were seen in basal nociceptive sensitivity between these groups. The development of neuropathic and chronic inflammatory pain was similar across the two genotypes. The duration of nocifensive responses evoked by intraplantar formalin injection was prolonged in the SNS-GABAB(1-/- animals as compared to their control littermates. Pharmacological experiments revealed that systemic baclofen-induced inhibition of formalin-induced nociceptive behaviors was not dependent upon GABAB(1 expression in nociceptors. Conclusion This study addressed contribution of GABAB receptors expressed on primary afferent nociceptive fibers to the modulation of pain. We observed that neither the development of acute and chronic pain nor the analgesic effects of a systematically-delivered GABAB agonist was significantly

  14. Integrative genomics analyses reveal molecularly distinct subgroups of B-cell chronic lymphocytic leukemia patients with 13q14 deletion.

    Science.gov (United States)

    Mosca, Laura; Fabris, Sonia; Lionetti, Marta; Todoerti, Katia; Agnelli, Luca; Morabito, Fortunato; Cutrona, Giovanna; Andronache, Adrian; Matis, Serena; Ferrari, Francesco; Gentile, Massimo; Spriano, Mauro; Callea, Vincenzo; Festini, Gianluca; Molica, Stefano; Deliliers, Giorgio Lambertenghi; Bicciato, Silvio; Ferrarini, Manlio; Neri, Antonino

    2010-12-01

    Chromosome 13q14 deletion occurs in a substantial number of chronic lymphocytic leukemia (CLL) patients and it is believed to play a pathogenetic role. The exact mechanisms involved in this lesion have not yet been fully elucidated because of its heterogeneity and the imprecise knowledge of the implicated genes. This study was addressed to further contribute to the molecular definition of this lesion in CLL. We applied single-nucleotide polymorphism (SNP)-array technology and gene expression profiling data to investigate the 13q14 deletion occurring in a panel of 100 untreated, early-stage (Binet A) patients representative of the major genetics, molecular, and biological features of the disease. Concordantly with FISH analysis, SNP arrays identified 44 patients with del(13)(q14) including 11 cases with a biallelic deletion. The shorter monoallelic deletion was 635-kb long. The loss of the miR-15a/16-1 cluster occurred in all del(13)(q14) cases except in 2 patients with a monoallelic deletion, who retained both copies. MiR-15a/16 expression was significantly downregulated only in patients with the biallelic loss of the miRNA cluster compared to 13q normal cases. Finally, the natural grouping of SNP profiles by nonnegative matrix factorization algorithm showed that patients could be classified into 2 separate clusters, mainly characterized by short/biallelic versus wide/monoallelic 13q14 deletions. Supervised analyses of expression data showed that specific transcriptional profiles are correlated with these 2 genomic subgroups. Overall, our data highlight the presence of 2 distinct molecular types of 13q14 deletions, which may be of clinical relevance in CLL. ©2010 AACR.

  15. Mitochondrial DNA deletion analysis: a comparison of PCR quantitative methods.

    Science.gov (United States)

    Hamblet, N S; Castora, F J

    1995-02-15

    The role of mitochondrial DNA (mtDNA) deletions in aging and in neurodegenerative diseases is often determined by measuring the amount of deleted mtDNA in the affected tissue. Upon examining brain autopsy tissue from a 59 year old individual with lung cancer we determined by serial dilution PCR and kinetic PCR that a greater ratio of deleted mtDNA was present in the caudate than in the parietal cortex. However, the magnitude difference for these two brain regions appeared to be technique dependent; by serial dilution PCR the caudate had 10 times more deleted mtDNA than the parietal cortex (0.0141 vs 0.0014) whereas kinetic PCR yielded a 4-fold difference (0.1258 vs 0.0316). These results indicate that although it is valid to compare the amount of deleted mtDNA in normal and diseased tissue and draw conclusions based on relative comparisons within one study, greater caution should be exercised when comparing absolute values from studies using different measurement techniques.

  16. Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant.

    Science.gov (United States)

    Kotwal, G J; Moss, B

    1988-12-01

    The principal objectives of this study were to analyze the structure and coding potential of a long segment of DNA missing from a previously isolated (B. Moss, E. Winters, and J. A. Cooper (1981) J. Virol. 40, 387-395) attenuated variant of vaccinia virus strain WR and to examine the precise changes in the genome accompanying the deletion. The sequences of a 14.5-kbp region located at the left end of the standard vaccinia virus genome, extending from within the inverted terminal repetition (ITR) of the HindIII C fragment to the end of the HindIII N fragment, and of a 3-kbp segment from a corresponding region of the variant genome were determined. A comparison of these sequences revealed that the variant contained a deletion of 12 kbp and an insertion of 2.1 kbp. The origin of the inserted DNA was traced to the HindIII B region by using oligonucleotide probes indicating that a transposition of unique DNA located adjacent to the right ITR had occurred. Structural analysis indicated no extensive homologies, nucleotide substitutions, additions, or deletions at the boundaries of the transposed DNA. Examination of the right end of the variant genome indicated that a copy of the transposed DNA was still present and, therefore, the length of the ITR had been increased by 2.1 kbp. The variant genome could have formed by a mechanism that resulted in the replacement of a 22-kbp left-terminal fragment with a 12-kbp right-terminal fragment. The DNA missing from the variant and contained within the standard vaccinia virus WR genome contains 17 contiguous open reading frames (ORFs), all of which are directed leftward and apparently not required for replication in cultured cells. One deleted ORF has a 60% sequence similarity to another gene encoding a 42,000-Da protein present within the ITR suggesting that duplications have previously occurred during the evolution of vaccinia virus. Another deleted ORF has a 39% sequence similarity to a complement 4b binding protein. The

  17. Molecular Diagnosis of Duchenne/Becker Muscular Dystrophy: Analysis of Exons Deletion and Carrier Detection

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Akbari

    2010-01-01

    Full Text Available Objective: Duchenne and Becker Muscular Dystrophy (DMD and BMD are X-linked conditionsresulting from a defect in the dystrophin gene located at Xp21.2. DMD is the mostfrequent neuromuscular disease in humans (1/3500 male newborns. In approximately65% of DMD and BMD patients, deletions in the dystrophin gene have been identified asthe molecular determinant. The frequency and distribution of dystrophin gene deletions inDMD/BMD patients from different populations are different.The aim of this study was to delineate various types of deleted exons and their frequencyin affected male patients and identification of carrier females by linkage analysis.Materials and Methods: In this study 100 unrelated patients with DMD/BMD were studiedfor intragenic deletions in 28 exons and the promoter region of the dystrophin geneusing multiplex PCR. We also performed linkage analysis within the dystrophin gene utilizing8 short tandem repeat markers.Results: Fifty-two (52% patients showed intragenic deletions. A total of 81% of the deletionswere located at the distal hot spot region (44-55 exons and 19% of the deletionswere located at the proximal region (exon 2-19. The most frequent deleted exons were47(16%, 48 and 46 (11%.Most of the STR markers showed heterozygosity in the families studied. The linkageanalysis was useful for detecting carrier status.Conclusion: The present study suggests that intragenic dystrophin gene deletions occurwith the same frequency in Iranian patients compared with other ethnic groups.

  18. 9p21 deletion in the diagnosis of malignant mesothelioma, using fluorescence in situ hybridization analysis.

    Science.gov (United States)

    Takeda, Maiko; Kasai, Takahiko; Enomoto, Yasunori; Takano, Masato; Morita, Kouhei; Kadota, Eiji; Nonomura, Akitaka

    2010-05-01

    Homozygous deletion of 9p21, the locus harboring the p16 gene, has been reported as one of the most common genetic alterations in malignant mesotheliomas (MMs). Previous studies showed that this alteration might be useful for differentiating benign from malignant mesothelial tumors in cytology and surgical specimens. Although the diagnostic utility of 9p21 homozygous deletion by fluorescence in situ hybridization (FISH) analysis has been reported only recently, it has not been well demonstrated. The purpose of this study is to evaluate the diagnostic utility of 9p21 homozygous deletion assessed by FISH in mesothelial neoplasm and hyperplasia of Japanese patients using paraffin-embedded tissue. Simultaneously, p16 protein immunoexpression was explored as a potential diagnostic aid. FISH analysis demonstrated 9p21 deletion in 35 of 40 cases with MM (88%) (P multicystic tumor, reactive mesothelial hyperplasia or pleuritis showed 9p21 deletion (P < 0.005). 9p21 homozygous deletion correlated well with p16 protein expression in the tumor cells. Our study suggests that 9p21 homozygous deletion assessed by FISH on paraffin-embedded tissue may be very useful for differentiating MM from reactive mesothelial proliferation.

  19. Comparative genome analysis of deleted genes in Shigella flexneri 2a strain 301

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Comparative genome analysis is performed between Shigella flexneri 2a strain 301 and its close relatives, the nonpathogenic E. Coli K-12 strain MG1655. Result shows that there are 136 DNA segments whose size is larger than 1000 bp absent from Shigella flexneri 2a strain 301, which is up to 717253 bp in total length. These deleted segments altogether contain 670 open reading frames (ORFs). Prediction of these ORFs indicates that there are 40% genes of unknown function. The other genes of definite functions encode metabolic enzymes, structure proteins, transcription regulatory factors and some elements correlated with horizontal transfer. Here we compare the complete genomic sequences of the two closely related species, which differ in pathogenic phenotype. To our knowledge, this not only reveals the difference of genomic sequence between the two important enteric pathogens for the first time, but also provides valuable clues to further researches in its process of physiological activity, pathogenesis and the evolution of enteric bacteria.

  20. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  1. Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans.

    Directory of Open Access Journals (Sweden)

    Sung O Park

    Full Text Available Germline deletion of Jak2 in mice results in embryonic lethality at E12.5 due to impaired hematopoiesis. However, the role that Jak2 might play in late gestation and postnatal life is unknown. To understand this, we utilized a conditional knockout approach that allowed for the deletion of Jak2 at various stages of prenatal and postnatal life. Specifically, Jak2 was deleted beginning at either mid/late gestation (E12.5, at postnatal day 4 (PN4, or at ∼2 months of age. Deletion of Jak2 beginning at E12.5 resulted in embryonic death characterized by a lack of hematopoiesis. Deletion beginning at PN4 was also lethal due to a lack of erythropoiesis. Deletion of Jak2 in young adults was characterized by blood cytopenias, abnormal erythrocyte morphology, decreased marrow hematopoietic potential, and splenic atrophy. However, death was observed in only 20% of the mutants. Further analysis of these mice suggested that the increased survivability was due to an incomplete deletion of Jak2 and subsequent re-population of Jak2 expressing cells, as conditional deletion in mice having one floxed Jak2 allele and one null allele resulted in a more severe phenotype and subsequent death of all animals. We found that the deletion of Jak2 in the young adults had a differential effect on hematopoietic lineages; specifically, conditional Jak2 deletion in young adults severely impaired erythropoiesis and thrombopoiesis, modestly affected granulopoiesis and monocytopoiesis, and had no effect on lymphopoiesis. Interestingly, while the hematopoietic organs of these mutant animals were severely affected by the deletion of Jak2, we found that the hearts, kidneys, lungs, and brains of these same mice were histologically normal. From this, we conclude that Jak2 plays an essential and non-redundant role in hematopoiesis during both prenatal and postnatal life and this has direct implications regarding the inhibition of Jak2 in humans.

  2. Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes.

    Science.gov (United States)

    Le Tallec, Benoît; Millot, Gaël Armel; Blin, Marion Esther; Brison, Olivier; Dutrillaux, Bernard; Debatisse, Michelle

    2013-08-15

    Cancer genomes exhibit numerous deletions, some of which inactivate tumor suppressor genes and/or correspond to unstable genomic regions, notably common fragile sites (CFSs). However, 70%-80% of recurrent deletions cataloged in tumors remain unexplained. Recent findings that CFS setting is cell-type dependent prompted us to reevaluate the contribution of CFS to cancer deletions. By combining extensive CFS molecular mapping and a comprehensive analysis of CFS features, we show that the pool of CFSs for all human cell types consists of chromosome regions with genes over 300 kb long, and different subsets of these loci are committed to fragility in different cell types. Interestingly, we find that transcription of large genes does not dictate CFS fragility. We further demonstrate that, like CFSs, cancer deletions are significantly enriched in genes over 300 kb long. We now provide evidence that over 50% of recurrent cancer deletions originate from CFSs associated with large genes.

  3. Deletion analysis of SMN1 and NAIP genes in southern Chinese children with spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Yu-hua LIANG; Xiao-ling CHEN; Zhong-sheng YU; Chun-yue CHEN; Sheng BI; Lian-gen MAO; Bo-lin ZHOU; Xian-ning ZHANG

    2009-01-01

    Spinal muscular atrophy (SMA) is a disorder characterized by degeneration of lower motor neurons and occasionally bulbar motor neurons leading to progressive limb and trunk paralysis as well as muscular atrophy. Three types of SMA are rec-ognized depending on the age of onset, the maximum muscular activity achieved, and survivorship: SMA1, SMA2, and SMA3. The survival of motor neuron (SMN) gene has been identified as an SMA determining gene, whereas the neuronal apoptosis inhibitory protein (NAIP) gene is considered to be a modifying factor of the severity of SMA. The main objective of this study was to analyze the deletion of SMN1 and NAIP genes in southern Chinese children with SMA. Here, polymerase chain reaction (PCR) combined with restriction fragment length polymorphism (RFLP) was performed to detect the deletion of both exon 7 and exon 8 of SMNI and exon 5 of NAIP in 62 southern Chinese children with strongly suspected clinical symptoms of SMA. All the 32 SMAI patients and 76% (13/17) of SMA2 patients showed homozygous deletions for exon 7 and exon 8, and all the 13 SMA3 patients showed single deletion of SMN1 exon 7 along with 24% (4/17) of SMA2 patients. Eleven out of 32 (34%) SMA1 patients showed NAIP deletion, and none of SMA2 and SMA3 patients was found to have NAIP deletion. The findings of homozygous deletions of exon 7 and/or exon 8 of SMN1 gene confirmed the diagnosis of SMA, and suggested that the deletion of SMN1 exon 7 is a major cause of SMA in southern Chinese children, and that the NA1P gene may be a modifying factor for disease severity of SMA 1. The molecular diagnosis system based on PCR-RFLP analysis can conveniently be applied in the clinical testing, genetic counseling, prenatal diagnosis and preimplantation genetic diagnosis of SMA.

  4. Genetic deletion of JAM-C reveals a role in myeloid progenitor generation.

    Science.gov (United States)

    Praetor, Asja; McBride, Jacqueline M; Chiu, Henry; Rangell, Linda; Cabote, Lorena; Lee, Wyne P; Cupp, James; Danilenko, Dimitry M; Fong, Sherman

    2009-02-26

    Hematopoietic stem cells (HSCs) have the capacity to self-renew and continuously differentiate into all blood cell lineages throughout life. At each branching point during differentiation, interactions with the environment are key in the generation of daughter cells with distinct fates. Here, we examined the role of the cell adhesion molecule JAM-C, a protein known to mediate cellular polarity during spermatogenesis, in hematopoiesis. We show that murine JAM-C is highly expressed on HSCs in the bone marrow (BM). Expression correlates with self-renewal, the highest being on long-term repopulating HSCs, and decreases with differentiation, which is maintained longest among myeloid committed progenitors. Inclusion of JAM-C as a sole marker on lineage-negative BM cells yields HSC enrichments and long-term multilineage reconstitution when transferred to lethally irradiated mice. Analysis of Jam-C-deficient mice showed that two-thirds die within 48 hours after birth. In the surviving animals, loss of Jam-C leads to an increase in myeloid progenitors and granulocytes in the BM. Stem cells and myeloid cells from fetal liver are normal in number and homing to the BM. These results provide evidence that JAM-C defines HSCs in the BM and that JAM-C plays a role in controlling myeloid progenitor generation in the BM.

  5. Becker muscular dystrophy in Indian patients: Analysis of dystrophin gene deletion patterns

    Directory of Open Access Journals (Sweden)

    Dastur Rashna

    2008-01-01

    Full Text Available Background: Becker muscular dystrophy (BMD is caused by mutations in the dystrophin gene with variable phenotypes. Becker muscular dystrophy patients have low levels of nearly full-length dystrophin and carry in-frame mutations, which allow partial functioning of the protein. Aim: To study the deletion patterns of BMD and to correlate the same with reading frame rule and different phenotypes. Setting: A tertiary care teaching hospital. Design: This is a prospective hospital-based study. Materials and Methods: Thirty-two exons spanning different "hot spot" regions using Multiplex PCR techniques were studied in 347 patients. Two hundred and twenty-two showed deletions in one or more of the 32 exons. Out of these, 46 diagnosed as BMD patients were analyzed. Results: Forty-six BMD patients showed deletions in both regions of the dystrophin gene. Out of these 89.1% (41/46 were in-frame deletions. Deletions starting with Exon 45 were found in 76.1% (35/46 of the cases. Mutations in the majority of cases i.e. 39/46 (84.8% were seen in 3′ downstream region (Exon 45-55, distal rod domain. Few, i.e. 5/46 (10.8% showed deletions in 5′ upstream region (Exons 3-20, N-terminus and proximal rod domain of the gene, while in 2/46 (4.4% large mutations (>40 bp spanning both regions (Exons 3-55 were detected. Conclusion: This significant gene deletion analysis has been carried out for BMD patients particularly from Western India using 32 exons.

  6. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Gottelt, Marco; Kol, Stefan; Gomez-Escribano, Juan Pablo; Bibb, Mervyn; Takano, Eriko; Herron, P.R.

    2010-01-01

    Genome sequencing of Streptomyces coelicolor A3(2) revealed an uncharacterized type I polyketide synthase gene cluster (cpk) Here we describe the discovery of a novel antibacterial activity (abCPK) and a yellow-pigmented secondary metabolite (yCPK) after deleting a presumed pathway-specific regulato

  7. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Gottelt, Marco; Kol, Stefan; Gomez-Escribano, Juan Pablo; Bibb, Mervyn; Takano, Eriko

    Genome sequencing of Streptomyces coelicolor A3(2) revealed an uncharacterized type I polyketide synthase gene cluster (cpk) Here we describe the discovery of a novel antibacterial activity (abCPK) and a yellow-pigmented secondary metabolite (yCPK) after deleting a presumed pathway-specific

  8. Deletion analysis of oligomycin PKS genes (olmA) in Streptomyces avermitilis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaolin; CHEN Zhi; ZHAO Jinlei; SONG Yuan; WEN Ying; LI Jilun

    2004-01-01

    Gene deletion vector pXL05(pKC1139∷△olmA1 +△olmA4) was used to disrupt oligomycin PKS encoding genes (olmA) in Streptomyces avermitilis CZ8-73, the producer of anthelmintic avermectins B and the cell growth inhibitor oligomycin. olmA gene cluster in the chromosome was displaced by deletion allele on the plasmid via double crossover. Four of disruptants were confirmed by Southern blotting. Shaking flask experiments and HPLC analyses showed that the four mutants no longer produced the toxic oligomycin, but only made four components of avermectins B, which were avermectin B1a, B1b, B2a, B2b. The yields of avermectins B in these mutants were separately equal to those in CZ8-73. This revealed that olmA genes deletion did not affect the biosynthesis of avermectins. The deletion mutants were proved to be genetically stable, and thus might be promising strains in industrial production of avermectins B.

  9. Adipose-Specific Deletion of Autophagy-Related Gene 7 (atg7) in Mice Reveals a Role in Adipogenesis

    National Research Council Canada - National Science Library

    Yong Zhang; Scott Goldman; Rebecca Baerga; Yun Zhao; Masaaki Komatsu; Shengkan Jin

    2009-01-01

    .... Autophagy is a membrane trafficking process leading to lysosomal degradation. Here, we investigated the effect of the deletion of an essential autophagy gene, autophagy-related gene 7 (atg7), on adipogenesis...

  10. A genome-wide survey reveals a deletion polymorphism associated with resistance to gastrointestinal nematodes in Angus cattle.

    Science.gov (United States)

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Van Tassell, Curtis P; Sonstegard, Tad S; Liu, George E

    2014-06-01

    Gastrointestinal (GI) nematode infections are a worldwide threat to human health and animal production. In this study, we performed a genome-wide association study between copy number variations (CNVs) and resistance to GI nematodes in an Angus cattle population. Using a linear regression analysis, we identified one deletion CNV which reaches genome-wide significance after Bonferroni correction. With multiple mapped human olfactory receptor genes but no annotated bovine genes in the region, this significantly associated CNV displays high population frequencies (58.26 %) with a length of 104.8 kb on chr7. We further investigated the linkage disequilibrium (LD) relationships between this CNV and its nearby single nucleotide polymorphisms (SNPs) and genes. The underlining haplotype blocks contain immune-related genes such as ZNF496 and NLRP3. As this CNV co-segregates with linked SNPs and associated genes, we suspect that it could contribute to the detected variations in gene expression and thus differences in host parasite resistance.

  11. Systematic deletion of the ER lectin chaperone genes reveals their roles in vegetative growth and male gametophyte development in Arabidopsis.

    Science.gov (United States)

    Vu, Kien Van; Nguyen, Ngoc Trinh; Jeong, Chan Young; Lee, Yong-Hwa; Lee, Hojoung; Hong, Suk-Whan

    2017-03-01

    Calnexin (CNX) and calreticulin (CRT) are homologous lectin chaperones in the endoplasmic reticulum (ER) that facilitate glycoprotein folding and retain folding intermediates to prevent their transit via the secretary pathway. The Arabidopsis genome has two CNX (CNX1 and CNX2) and three CRT (CRT1, CRT2 and CRT3) homologs. Despite growing evidence of the biological roles of CNXs and CRTs, little is understood about their function in Arabidopsis growth and development under normal conditions. Here, we report that the deletion of CNX1, but not of CNX2, in the crt1 crt2 crt3 triple mutation background had an adverse effect on pollen viability and pollen tube growth, leading to a significant reduction in fertility. The cnx1 crt1 crt2 crt3 quadruple mutation also conferred severe defects in growth and development, including a shortened primary root, increased root hair length and density, and reduced plant height. Disruption of all five members of the CNX/CRT family was revealed to be lethal. Finally, the abnormal phenotype of the cnx1 crt1 crt2 crt3 quadruple mutants was completely rescued by either the CNX1 or CNX2 cDNA under the control of the CNX1 promoter, suggesting functional redundancy between CNX1 and CNX2. Taken together, these results provide genetic evidence that CNX and CRT play essential and overlapping roles during vegetative growth and male gametophyte development in Arabidopsis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: functional, metabolic, and differential network analysis.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available Estrogen exerts diverse biological effects in multiple tissues in both animals and humans. Much of the accumulated knowledge on the role of estrogen receptor (ER in the heart has been obtained from studies using ovariectomized mice, whole body ER gene knock-out animal models, ex vivo heart studies, or from isolated cardiac myocytes. In light of the wide systemic influence of ER signaling in regulating a host of biological functions in multiple tissues, it is difficult to infer the direct role of ER on the heart. Therefore, we developed a mouse model with a cardiomyocyte-specific deletion of the ERα allele (cs-ERα-/-. Male and female cs-ERα-/- mice with age/sex-matched wild type controls were examined for differences in cardiac structure and function by echocardiogram and differential gene expression microarray analysis. Our study revealed sex-differences in structural parameters in the hearts of cs-ERα-/- mice, with minimal functional differences. Analysis of microarray data revealed differential variations in the expression of 208 genes affecting multiple transcriptional networks. Furthermore, we report sex-specific differences in the expression of 56 genes. Overall, we developed a mouse model with cardiac-specific deletion of ERα to characterize the role of ERα in the heart independent of systemic effects. Our results suggest that ERα is involved in controlling the expression of diverse genes and networks in the cardiomyocyte in a sex-dependent manner.

  13. Deletion of the TNFAIP3/A20 gene detected by FICTION analysis in classical Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    Nomoto Junko

    2012-10-01

    Full Text Available Abstract Background The TNFAIP3 gene, which encodes a ubiquitin-modifying enzyme (A20 involved in the negative regulation of NF-κB signaling, is frequently inactivated by gene deletions/mutations in a variety of B-cell malignancies. However, the detection of this in primary Hodgkin lymphoma (HL specimens is hampered by the scarcity of Hodgkin Reed-Sternberg (HR-S cells even after enrichment by micro-dissection. Methods We used anti-CD30 immunofluorescence with fluorescence in-situ hybridization (FISH to evaluate the relative number of TNFAIP3/CEP6 double-positive signals in CD30-positive cells. Results From a total of 47 primary classical Hodgkin lymphoma (cHL specimens, 44 were evaluable. We found that the relative numbers of TNFAIP3/CD30 cells were distributed among three groups, corresponding to those having homozygous (11%, heterozygous (32%, and no (57% deletions in TNFAIP3. This shows that TNFAIP3 deletions could be sensitively detected using our chosen methods. Conclusions Comparing the results with mutation analysis, TNFAIP3 inactivation was shown to have escaped detection in many samples with homozygous deletions. This suggests that TNFAIP3 inactivation in primary cHL specimens might be more frequent than previously reported.

  14. Deletion of the TNFAIP3/A20 gene detected by FICTION analysis in classical Hodgkin lymphoma

    Science.gov (United States)

    2012-01-01

    Background The TNFAIP3 gene, which encodes a ubiquitin-modifying enzyme (A20) involved in the negative regulation of NF-κB signaling, is frequently inactivated by gene deletions/mutations in a variety of B-cell malignancies. However, the detection of this in primary Hodgkin lymphoma (HL) specimens is hampered by the scarcity of Hodgkin Reed-Sternberg (HR-S) cells even after enrichment by micro-dissection. Methods We used anti-CD30 immunofluorescence with fluorescence in-situ hybridization (FISH) to evaluate the relative number of TNFAIP3/CEP6 double-positive signals in CD30-positive cells. Results From a total of 47 primary classical Hodgkin lymphoma (cHL) specimens, 44 were evaluable. We found that the relative numbers of TNFAIP3/CD30 cells were distributed among three groups, corresponding to those having homozygous (11%), heterozygous (32%), and no (57%) deletions in TNFAIP3. This shows that TNFAIP3 deletions could be sensitively detected using our chosen methods. Conclusions Comparing the results with mutation analysis, TNFAIP3 inactivation was shown to have escaped detection in many samples with homozygous deletions. This suggests that TNFAIP3 inactivation in primary cHL specimens might be more frequent than previously reported. PMID:23039325

  15. Analysis of chromosome 22 deletions in neurofibromatosis type 2-related tumors

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R.K.; Frazer, K.A.; Jackler, R.K.; Lanser, M.J.; Pitts, L.H.; Cox, D.R. (Univ. of California, San Francisco, CA (United States))

    1992-09-01

    The neurofibromatosis type 2 (NF2) gene has been hypothesized to be a recessive tumor suppressor, with mutations at the same locus on chromosome 22 that lead to NF2 also leading to sporadic tumors of the types seen in NF2. Flanking markers for this gene have previously been defined as D22S1 centromeric and D22S28 telomeric. Identification of subregions of this interval that are consistently rearranged in the NF2-related tumors would aid in better defining the disease locus. To this end, the authors have compared tumor and constitutional DNAs, isolated from 39 unrelated patients with sporadic and NF2-associated acoustic neuromas, meningiomas, schwannomas, and ependymomas, at eight polymorphic loci on chromosome 22. Two of the tumors studied revealed loss-of-heterozygosity patterns, which is consistent with the presence of chromosome 22 terminal deletions. By using additional polymorphic markers, the terminal deletion breakpoint found in one of the tumors, an acoustic neuroma from an NF2 patient, was mapped within the previously defined NF2 region. The breakpoint occurred between the haplotyped markers D22S41/D22S46 and D22S56. This finding redefines the proximal flanking marker and localizes the NF2 gene between markers D22S41/D22S46 and D22S28. In addition, the authors identified a sporadic acoustic neuroma that reveals a loss-of-heterozygosity pattern consistent with mitotic recombination or deletion and reduplication, which are mechanisms not previously seen in studies of these tumors. This finding, while inconsistent with models of tumorigenesis that invoke single deletions and their gene-dosage effects, lends further support to the recessive tumor-suppressor model. 33 refs., 2 figs., 1 tab.

  16. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions

    Directory of Open Access Journals (Sweden)

    Edwards Jeremy S

    2000-07-01

    Full Text Available Abstract Background Genome sequencing and bioinformatics are producing detailed lists of the molecular components contained in many prokaryotic organisms. From this 'parts catalogue' of a microbial cell, in silico representations of integrated metabolic functions can be constructed and analyzed using flux balance analysis (FBA. FBA is particularly well-suited to study metabolic networks based on genomic, biochemical, and strain specific information. Results Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Escherichia coli. We have computationally mapped the metabolic capabilities of E. coli using FBA and examined the optimal utilization of the E. coli metabolic pathways as a function of environmental variables. We have used an in silico analysis to identify seven gene products of central metabolism (glycolysis, pentose phosphate pathway, TCA cycle, electron transport system essential for aerobic growth of E. coli on glucose minimal media, and 15 gene products essential for anaerobic growth on glucose minimal media. The in silico tpi-, zwf, and pta- mutant strains were examined in more detail by mapping the capabilities of these in silico isogenic strains. Conclusions We found that computational models of E. coli metabolism based on physicochemical constraints can be used to interpret mutant behavior. These in silica results lead to a further understanding of the complex genotype-phenotype relation. Supplementary information: http://gcrg.ucsd.edu/supplementary_data/DeletionAnalysis/main.htm

  17. Influence of the LILRA3 Deletion on Multiple Sclerosis Risk: Original Data and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Miguel A Ortiz

    Full Text Available Multiple sclerosis (MS is a neurodegenerative, autoimmune disease of the central nervous system. Genome-wide association studies (GWAS have identified over hundred polymorphisms with modest individual effects in MS susceptibility and they have confirmed the main individual effect of the Major Histocompatibility Complex. Additional risk loci with immunologically relevant genes were found significantly overrepresented. Nonetheless, it is accepted that most of the genetic architecture underlying susceptibility to the disease remains to be defined. Candidate association studies of the leukocyte immunoglobulin-like receptor LILRA3 gene in MS have been repeatedly reported with inconsistent results.In an attempt to shed some light on these controversial findings, a combined analysis was performed including the previously published datasets and three newly genotyped cohorts. Both wild-type and deleted LILRA3 alleles were discriminated in a single-tube PCR amplification and the resulting products were visualized by their different electrophoretic mobilities.Overall, this meta-analysis involved 3200 MS patients and 3069 matched healthy controls and it did not evidence significant association of the LILRA3 deletion [carriers of LILRA3 deletion: p = 0.25, OR (95% CI = 1.07 (0.95-1.19], even after stratification by gender and the HLA-DRB1*15:01 risk allele.

  18. Experimental analysis of oligonucleotide microarray design criteria to detect deletions by comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Moerman Donald G

    2008-10-01

    quality when varying the oligonucleotide length between 50 and 70, and even when using an isothermal design strategy. Conclusion We have determined experimentally the effects of varying several key oligonucleotide microarray design criteria for detection of deletions in C. elegans and humans with NimbleGen's CGH technology. Our oligonucleotide design recommendations should be applicable for CGH analysis in most species.

  19. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein.

    Science.gov (United States)

    Burakova, Ludmila P; Natashin, Pavel V; Markova, Svetlana V; Eremeeva, Elena V; Malikova, Natalia P; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.

  20. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Burakova, Ludmila P.; Natashin, Pavel V.; Markova, Svetlana V.; Eremeeva, Elena V.; Malikova, Natalia P.; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S.

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca2 +-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30 Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473–474 nm with no shoulder at 400 nm). Fluorescence spectra of Ca2 +-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca2 +-discharged aequorin, but different from Ca2 +-discharged obelins and clytin which fluorescence is red-shifted by 25–30 nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.

  1. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation.

  2. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function

    Directory of Open Access Journals (Sweden)

    Trevor P. Fidler

    2017-07-01

    Full Text Available Anucleate platelets circulate in the blood to facilitate thrombosis and diverse immune functions. Platelet activation leading to clot formation correlates with increased glycogenolysis, glucose uptake, glucose oxidation, and lactic acid production. Simultaneous deletion of glucose transporter (GLUT 1 and GLUT3 (double knockout [DKO] specifically in platelets completely abolished glucose uptake. In DKO platelets, mitochondrial oxidative metabolism of non-glycolytic substrates, such as glutamate, increased. Thrombosis and platelet activation were decreased through impairment at multiple activation nodes, including Ca2+ signaling, degranulation, and integrin activation. DKO mice developed thrombocytopenia, secondary to impaired pro-platelet formation from megakaryocytes, and increased platelet clearance resulting from cytosolic calcium overload and calpain activation. Systemic treatment with oligomycin, inhibiting mitochondrial metabolism, induced rapid clearance of platelets, with circulating counts dropping to zero in DKO mice, but not wild-type mice, demonstrating an essential role for energy metabolism in platelet viability. Thus, substrate metabolism is essential for platelet production, activation, and survival.

  3. Multi-species sequence comparison reveals dynamic evolution of the elastin gene that has involved purifying selection and lineage-specific insertions/deletions

    Directory of Open Access Journals (Sweden)

    Green Eric D

    2004-05-01

    Full Text Available Abstract Background The elastin gene (ELN is implicated as a factor in both supravalvular aortic stenosis (SVAS and Williams Beuren Syndrome (WBS, two diseases involving pronounced complications in mental or physical development. Although the complete spectrum of functional roles of the processed gene product remains to be established, these roles are inferred to be analogous in human and mouse. This view is supported by genomic sequence comparison, in which there are no large-scale differences in the ~1.8 Mb sequence block encompassing the common region deleted in WBS, with the exception of an overall reversed physical orientation between human and mouse. Results Conserved synteny around ELN does not translate to a high level of conservation in the gene itself. In fact, ELN orthologs in mammals show more sequence divergence than expected for a gene with a critical role in development. The pattern of divergence is non-conventional due to an unusually high ratio of gaps to substitutions. Specifically, multi-sequence alignments of eight mammalian sequences reveal numerous non-aligning regions caused by species-specific insertions and deletions, in spite of the fact that the vast majority of aligning sites appear to be conserved and undergoing purifying selection. Conclusions The pattern of lineage-specific, in-frame insertions/deletions in the coding exons of ELN orthologous genes is unusual and has led to unique features of the gene in each lineage. These differences may indicate that the gene has a slightly different functional mechanism in mammalian lineages, or that the corresponding regions are functionally inert. Identified regions that undergo purifying selection reflect a functional importance associated with evolutionary pressure to retain those features.

  4. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1

    Science.gov (United States)

    Wat, Margaret J.; Beck, Tyler F.; Hernández-García, Andrés; Yu, Zhiyin; Veenma, Danielle; Garcia, Monica; Holder, Ashley M.; Wat, Jeanette J.; Chen, Yuqing; Mohila, Carrie A.; Lally, Kevin P.; Dickinson, Mary; Tibboel, Dick; de Klein, Annelies; Lee, Brendan; Scott, Daryl A.

    2012-01-01

    Recurrent microdeletions of 8p23.1 that include GATA4 and SOX7 confer a high risk of both congenital diaphragmatic hernia (CDH) and cardiac defects. Although GATA4-deficient mice have both CDH and cardiac defects, no humans with cardiac defects attributed to GATA4 mutations have been reported to have CDH. We were also unable to identify deleterious GATA4 sequence changes in a CDH cohort. This suggested that haploinsufficiency of another 8p23.1 gene may contribute, along with GATA4, to the development of CDH. To determine if haploinsufficiency of SOX7—another transcription factor encoding gene—contributes to the development of CDH, we generated mice with a deletion of the second exon of Sox7. A portion of these Sox7Δex2/+ mice developed retrosternal diaphragmatic hernias located in the anterior muscular portion of the diaphragm. Anterior CDH is also seen in Gata4+/− mice and has been described in association with 8p23.1 deletions in humans. Immunohistochemistry revealed that SOX7 is expressed in the vascular endothelial cells of the developing diaphragm and may be weakly expressed in some diaphragmatic muscle cells. Sox7Δex2/Δex2 embryos die prior to diaphragm development with dilated pericardial sacs and failure of yolk sac remodeling suggestive of cardiovascular failure. Similar to our experience screening GATA4, no clearly deleterious SOX7 sequence changes were identified in our CDH cohort. We conclude that haploinsufficiency of Sox7 or Gata4 is sufficient to produce anterior CDH in mice and that haploinsufficiency of SOX7 and GATA4 may each contribute to the development of CDH in individuals with 8p23.1 deletions. PMID:22723016

  5. Detection of α-thalassemia-1 Southeast Asian and Thai Type Deletions and β-thalassemia 3.5-kb Deletion by Single-tube Multiplex Real-time PCR with SYBR Green1 and High-resolution Melting Analysis

    Science.gov (United States)

    Wiengkum, Thanatcha; Srithep, Sarinee; Chainoi, Isarapong; Singboottra, Panthong; Wongwiwatthananukit, Sanchai

    2011-01-01

    Background Prevention and control of thalassemia requires simple, rapid, and accurate screening tests for carrier couples who are at risk of conceiving fetuses with severe thalassemia. Methods Single-tube multiplex real-time PCR with SYBR Green1 and high-resolution melting (HRM) analysis were used for the identification of α-thalassemia-1 Southeast Asian (SEA) and Thai type deletions and β-thalassemia 3.5-kb gene deletion. The results were compared with those obtained using conventional gap-PCR. DNA samples were derived from 28 normal individuals, 11 individuals with α-thalassemia-1 SEA type deletion, 2 with α-thalassemia-1 Thai type deletion, and 2 with heterozygous β-thalassemia 3.5-kb gene deletion. Results HRM analysis indicated that the amplified fragments from α-thalassemia-1 SEA type deletion, α-thalassemia-1 Thai type deletion, β-thalassemia 3.5-kb gene deletion, and the wild-type β-globin gene had specific peak heights at mean melting temperature (Tm) values of 86.89℃, 85.66℃, 77.24℃, and 74.92℃, respectively. The results obtained using single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis showed 100% consistency with those obtained using conventional gap-PCR. Conclusions Single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis is a potential alternative for routine clinical screening of the common types of α- and β-thalassemia large gene deletions, since it is simple, cost-effective, and highly accurate. PMID:21779184

  6. Association between Angiotensin I-Converting Enzyme Insertion/Deletion Polymorphism and Prognosis of Kidney Transplantation: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Zhengkai Huang

    Full Text Available Angiotensin I-converting enzyme (ACE is crucial in the renin-angiotensin-aldosterone system. ACE insertion/deletion (I/D polymorphism is a common genetic variation of this gene and is associated with several disease phenotypes. However, the results of published studies on the influence of this polymorphism on renal transplantation are inconsistent. Therefore, a meta-analysis was performed to evaluate the association between ACE I/D polymorphism and prognosis of kidney transplantation.A meta-analysis was performed based on 21 case-control studies from 12 publications (1497 cases and 2029 controls and 10 studies with quantitative values from 5 publications (814 patients. Pooled odds ratios (ORs and weighted mean differences (WMDs with their corresponding 95% confidence intervals (CIs were used to estimate associations.ACE I/D polymorphism was found to be associated with acute rejection (AR in genotypes DD+ID versus II (OR = 1.62, 95% CI = 1.14-2.29 and with serum creatinine concentration after renal transplantation in genotypes DD versus ID (WMD = 13.12, 95% CI = 8.09-18.16. Stratified analysis revealed that recipients transplanted within a year had higher serum creatinine concentrations in the DD versus ID model. No significant association was found between hypertension and ACE I/D polymorphism.ACE I/D polymorphism is associated with AR and allograft function after kidney transplantation.

  7. Association of NOD1 (CARD4) insertion/deletion polymorphism with susceptibility to IBD: A meta-analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To find evidences about whether NOD1/CARD4 insertion/deletion polymorphism is associated with inflammatory bowel disease by meta-analysis. METHODS: We surveyed the studies on the association of NOD1/CARD4 insertion/deletion polymorphism with inflammatory bowel disease in PubMed. Meta-analysis was performed for genotypes GG/T vs T/T, GG/GG vs T/T, GG/T + GG/GG vs T/T, GG/GG vs T/T + GG/T, and GG allele vs T allele in a fixed/random effect model. RESULTS: We identified 8 studies (6439 cases and 4798 cont...

  8. Targeted deletion of multiple CTCF-binding elements in the human C-MYC gene reveals a requirement for CTCF in C-MYC expression.

    Directory of Open Access Journals (Sweden)

    Wendy M Gombert

    Full Text Available BACKGROUND: Insulators and domain boundaries both shield genes from adjacent enhancers and inhibit intrusion of heterochromatin into transgenes. Previous studies examined the functional mechanism of the MYC insulator element MINE and its CTCF binding sites in the context of transgenes that were randomly inserted into the genome by transfection. However, the contribution of CTCF binding sites to both gene regulation and maintenance of chromatin has not been tested at the endogenous MYC gene. METHODOLOGY/PRINCIPAL FINDINGS: To determine the impact of CTCF binding on MYC expression, a series of mutant human chromosomal alleles was prepared in homologous recombination-efficient DT40 cells and individually transferred by microcell fusion into murine cells. Functional tests reported here reveal that deletion of CTCF binding elements within the MINE does not impact the capacity of this locus to correctly organize an 'accessible' open chromatin domain, suggesting that these sites are not essential for the formation of a competent, transcriptionally active locus. Moreover, deletion of the CTCF site at the MYC P2 promoter reduces transcription but does not affect promoter acetylation or serum-inducible transcription. Importantly, removal of either CTCF site leads to DNA methylation of flanking sequences, thereby contributing to progressive loss of transcriptional activity. CONCLUSIONS: These findings collectively demonstrate that CTCF-binding at the human MYC locus does not repress transcriptional activity but is required for protection from DNA methylation.

  9. Characterization of genomic variations in SNPs of PE_PGRS genes reveals deletions and insertions in extensively drug resistant (XDR) M. tuberculosis strains from Pakistan

    KAUST Repository

    Kanji, Akbar

    2015-03-01

    Background: Mycobacterium tuberculosis (MTB) PE_PGRS genes belong to the PE multi-gene family. Although the function of the members of the PE_PGRS multi-gene family is not yet known, it is hypothesized that the PE_PGRS genes may be associated with genetic variability. Material and methods: Whole genome sequencing analysis was performed on (n= 37) extensively drug resistant (XDR) MTB strains from Pakistan which included Central Asian (n= 23), East African Indian (n= 2), X3 (n= 1), T group (n= 3) and Orphan (n= 8) MTB strains. Results: By analyzing 42 PE_PGRS genes, 111 SNPs were identified, of which 13 were non-synonymous SNPs (nsSNPs). The nsSNPs identified in the PE_PGRS genes were as follows: 6, 9, 10 and 55 present in each of the CAS, EAI, Orphan, T1 and X3 XDR MTB strains studied. Deletions in PE_PGRS genes: 19, 21 and 23 were observed in 7 (35.0%) CAS1 and 3 (37.5%) in Orphan XDR MTB strains, while deletions in the PE_PGRS genes: 49 and 50 were observed in 36 (95.0%) CAS1 and all CAS, CAS2 and Orphan XDR MTB strains. An insertion in PE_PGRS6 gene was observed in all CAS, EAI3 and Orphan, while insertions in the PE_PGRS genes 19 and 33 were observed in 19 (95%) CAS1 and all CAS, CAS2, EAI3 and Orphan XDR MTB strains. Conclusion: Genetic diversity in PE_PGRS genes contributes to antigenic variability and may result in increased immunogenicity of strains. This is the first study identifying variations in nsSNPs, Insertions and Deletions in the PE_PGRS genes of XDR-TB strains from Pakistan. It highlights common genetic variations which may contribute to persistence.

  10. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur P

    2004-01-01

    Full Text Available The diagnosis of Duchenna Muscular Dystrophy (DMD and Becker Muscular Dystorphy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hot spot′ regions allowing determinations of deletion end points. Intragenic deletions were detected in 74 patients indicating that the use of PCR- based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  11. Analysis of dystrophin gene deletions by multiplex PCR in eastern India

    Directory of Open Access Journals (Sweden)

    Basak Jayasri

    2006-01-01

    Full Text Available The most common genetic neuromuscular disease of childhood, Duchenne and Becker muscular dystrophy (DMD/BMD is caused by deletion, duplication or point mutation of the dystrophin gene located at Xp 21.2. In the present study DNA from seventy unrelated patients clinically diagnosed as having DMD/BMD referred from different parts of West Bengal, a few other states and Bangladesh are analyzed using the multiplex polymerase chain reaction (m-PCR to screen for exon deletions and its distribution within the dystrophin gene. Out of seventy patients forty six (63% showed large intragenic deletion in the dystrophin gene. About 79% of these deletions are located in the hot spot region i.e., between exon 42 to 53. This is the first report of frequency and distribution of deletion in dystrophin gene in eastern Indian DMD/BMD population.

  12. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur R

    2003-01-01

    Full Text Available The diagnosis of Duchenne Muscular Dystrophy (DMD and Becker Muscular Dystrophy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. Most recent and accurate method for diagnosing DMD/BMD is by detection of mutations in the DMD gene. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hotspot′ regions allowing determination of deletion end point. Intragenic deletions were detected in 74 patients indicating that the use of PCR-based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  13. Genotyping of the 19-bp insertion/deletion polymorphism in the 5' flank of beta-hydroxylase gene by dissociation analysis of allele-specific PCR products

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2005-01-01

    The 19-bp insertion/deletion polymorphism in the 5' flank of the dopamine beta-hydroxylase (DBH) gene has been associated with psychiatric disorders. We have developed a simple, reliable and inexpensive closed-tube assay for genotyping of this polymorphism based upon T(m) determination of amplified...... and a conventional approach based upon agarose gel electrophoresis of amplified fragments revealed complete concordance between the two procedures. The insights obtained in this study may be utilized to develop assays based upon dissociation analysis of PCR products for genotyping of other insertion...

  14. Gap-PCR Screening for Common Large Deletional Mutations of β-Globin Gene Cluster Revealed a Higher Prevalence of the Turkish Inversion/Deletion (δβ0 Mutation in Antalya

    Directory of Open Access Journals (Sweden)

    Türker Bilgen

    2016-05-01

    Full Text Available Objective: Although the calculated carrier frequency for point mutations of the β-globin gene is around 10% for Antalya Province, nothing is known about the profile of large deletional mutations involving the β-globin gene. In this study, we aimed to screen common deletional mutations in the β-globin gene cluster in patients for whom direct DNA sequencing was not able to demonstrate the mutation(s responsible for the disease phenotype. Materials and Methods: Thirty-one index cases selected with a series of selection events among 60 cases without detected β-globin gene mutation from 580 thalassemia-related cases tested by direct sequencing over the last 4 years in our diagnostic center were screened for the most common 8 different large deletional mutations of the β-globin gene cluster by gap-PCR. Results: We detected 1 homozygous and 9 heterozygous novel unrelated cases for the Turkish inversion/deletion (δβ0 mutation in our series of 31 cases. Our study showed that the Turkish inversion/ deletion (δβ0 mutation per se accounts for 16.6% of the unidentified causative alleles and also accounts for 1.5% of all detected mutations over the last 4 years in our laboratory. Conclusion: Since molecular diagnosis of deletional mutations in the β-globin gene cluster warrants different approaches, it deserves special attention in order to provide prenatal diagnosis and prevention opportunities to the families involved. We conclude that the Turkish inversion/deletion (δβ0, as the most prevalent deletional mutation detected so far, has to be routinely tested for in Antalya, and the gapPCR approach has valuable diagnostic potential in the patients at risk.

  15. Gene dosage analysis identifies large deletions of the FECH gene in 10% of families with erythropoietic protoporphyria.

    Science.gov (United States)

    Whatley, Sharon D; Mason, Nicola G; Holme, S Alexander; Anstey, Alex V; Elder, George H; Badminton, Michael N

    2007-12-01

    Erythropoietic protoporphyria (EPP) is an inherited cutaneous porphyria characterized by partial deficiency of ferrochelatase (FECH), accumulation of protoporphyrin IX in erythrocytes, skin, and liver, and acute photosensitivity. Genetic counseling in EPP requires identification of FECH mutations, but current sequencing-based procedures fail to detect mutations in about one in six families. We have used gene dosage analysis by quantitative PCR to identify large deletions of the FECH gene in 19 (58%) of 33 unrelated UK patients with EPP in whom mutations could not be detected by sequencing. Seven deletions were identified, six of which were previously unreported. Breakpoints were identified for six deletions (c.1-7887-IVS1+2425insTTCA; c.1-9629-IVS1+2437; IVS2-1987-IVS4+352del; c.768-IVS7+244del; IVS7+2784-IVS9+108del; IVS6+2350-TGA+95del). Five breakpoints were in intronic repeat sequences (AluSc, AluSq, AluSx, L1MC4). The remaining deletion (Del Ex3-4) is likely to be a large insertion-deletion. Combining quantitative PCR with routine sequencing increased the sensitivity of mutation detection in 189 unrelated UK patients with EPP from 83% (95% CI: 76-87%) to 93% (CI: 88-96%) (P=0.003). Our findings show that large deletions of the FECH gene are an important cause of EPP. Gene dosage analysis should be incorporated into routine procedures for mutation detection in EPP.

  16. Analysis of Dystrophin Gene Deletions by Multiplex PCR in Moroccan Patients

    Directory of Open Access Journals (Sweden)

    Aziza Sbiti

    2002-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD and BMD are X-linked diseases resulting from a defect in the dystrophin gene located on Xp21. DMD is the most frequent neuromuscular disease in humans (1/3500 male newborn. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. We have analyzed DNA from 72 Moroccan patients with DMD/BMD using the multiplex polymerase chain reaction (PCR to screen for exon deletions within the dystrophin gene, and to estimate the frequency of these abnormalities. We found dystrophin gene deletions in 37 cases. Therefore the frequency in Moroccan DMD/BMD patients is about 51.3%. All deletions were clustered in the two known hot-spots regions, and in 81% of cases deletions were detected in the region from exon 43 to exon 52. These findings are comparable to those reported in other studies. It is important to note that in our population, we can first search for deletions of DMD gene in the most frequently deleted exons determined by this study. This may facilitate the molecular diagnosis of DMD and BMD in our country.

  17. Tetrahydrodipicolinate N-succinyltransferase and dihydrodipicolinate synthase from Pseudomonas aeruginosa: structure analysis and gene deletion.

    Directory of Open Access Journals (Sweden)

    Robert Schnell

    Full Text Available The diaminopimelic acid pathway of lysine biosynthesis has been suggested to provide attractive targets for the development of novel antibacterial drugs. Here we report the characterization of two enzymes from this pathway in the human pathogen Pseudomonas aeruginosa, utilizing structural biology, biochemistry and genetics. We show that tetrahydrodipicolinate N-succinyltransferase (DapD from P. aeruginosa is specific for the L-stereoisomer of the amino substrate L-2-aminopimelate, and its D-enantiomer acts as a weak inhibitor. The crystal structures of this enzyme with L-2-aminopimelate and D-2-aminopimelate, respectively, reveal that both compounds bind at the same site of the enzyme. Comparison of the binding interactions of these ligands in the enzyme active site suggests misalignment of the amino group of D-2-aminopimelate for nucleophilic attack on the succinate moiety of the co-substrate succinyl-CoA as the structural basis of specificity and inhibition. P. aeruginosa mutants where the dapA gene had been deleted were viable and able to grow in a mouse lung infection model, suggesting that DapA is not an optimal target for drug development against this organism. Structure-based sequence alignments, based on the DapA crystal structure determined to 1.6 Å resolution revealed the presence of two homologues, PA0223 and PA4188, in P. aeruginosa that could substitute for DapA in the P. aeruginosa PAO1ΔdapA mutant. In vitro experiments using recombinant PA0223 protein could however not detect any DapA activity.

  18. FISH and array-CGH analysis of a complex chromosome 3 aberration suggests that loss of CNTN4 and CRBN contributes to mental retardation in 3pter deletions.

    Science.gov (United States)

    Dijkhuizen, Trijnie; van Essen, Ton; van der Vlies, Pieter; Verheij, Joke B G M; Sikkema-Raddatz, Birgit; van der Veen, Anneke Y; Gerssen-Schoorl, Klasien B J; Buys, Charles H C M; Kok, Klaas

    2006-11-15

    Imbalances of 3p telomeric sequences cause 3p- and trisomy 3p syndrome, respectively, showing distinct, but also shared clinical features. No causative genes have been identified in trisomy 3p patients, but for the 3p- syndrome, there is growing evidence that monosomy for one or more of four genes at 3pter, CHL1, CNTN4, CRBN, and MEGAP/srGAP3, may play a causative role. We describe here an analysis of a complex chromosome 3p aberration in a severely mentally retarded patient that revealed two adjacent segments with different copy number gains and a distal deletion. The deletion in this patient included the loci for CHL1, CNTN4, and CRBN, and narrowed the critical segment associated with the 3p- syndrome to 1.5 Mb, including the loci for CNTN4 and CRBN. We speculate that the deletion contributes more to this patient's phenotype than the gains that were observed. We suggest that 3p- syndrome associated features are primarily caused by loss of CNTN4 and CRBN, with loss of CHL1 probably having an additional detrimental effect on the cognitive functioning of the present patient.

  19. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  20. Structural and functional analysis of Escherichia coli ribosomes containing small deletions around position 1760 in the 23S ribosomal RNA.

    Science.gov (United States)

    Zweib, C; Dahlberg, A E

    1984-09-25

    Three different small deletions were produced at a single Pvu 2 restriction site in E. coli 23S rDNA of plasmid pKK 3535 using exonuclease Bal 31. The deletions were located around position 1760 in 23S rRNA and were characterized by DNA sequencing as well as by direct fingerprinting and S1-mapping of the rRNA. Two of the mutant plasmids, Pvu 2-32 and Pvu 2-33, greatly reduced the growth rate of transformed cells while the third mutant, Pvu 2-14 grew as fast as cells containing the wild-type plasmid pKK 3535. All three mutant 23S rRNAs were incorporated into 50S-like particles and were even found in 70S ribosomes and polysomes in vivo. The conformation of mutant 23S rRNA in 50S subunits was probed with a double-strand specific RNase from cobra venom. These analyses revealed changes in the accessibility of cleavage sites near the deletions around position 1760 and in the area around position 800 in all three mutant rRNAs. We suggest, that an altered conformation of the rRNAs at the site of the deletion is responsible for the slow growth of cells containing mutant plasmids Pvu 2-32 and Pvu 2-33.

  1. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions.

    Directory of Open Access Journals (Sweden)

    Bum Jun Kim

    Full Text Available Individuals with terminal and interstitial deletions of chromosome 1p36 have a spectrum of defects that includes eye anomalies, postnatal growth deficiency, structural brain anomalies, seizures, cognitive impairment, delayed motor development, behavior problems, hearing loss, cardiovascular malformations, cardiomyopathy, and renal anomalies. The proximal 1p36 genes that contribute to these defects have not been clearly delineated. The arginine-glutamic acid dipeptide (RE repeats gene (RERE is located in this region and encodes a nuclear receptor coregulator that plays a critical role in embryonic development as a positive regulator of retinoic acid signaling. Rere-null mice die of cardiac failure between E9.5 and E11.5. This limits their usefulness in studying the role of RERE in the latter stages of development and into adulthood. To overcome this limitation, we created an allelic series of RERE-deficient mice using an Rere-null allele, om, and a novel hypomorphic Rere allele, eyes3 (c.578T>C, p.Val193Ala, which we identified in an N-ethyl-N-nitrosourea (ENU-based screen for autosomal recessive phenotypes. Analyses of these mice revealed microphthalmia, postnatal growth deficiency, brain hypoplasia, decreased numbers of neuronal nuclear antigen (NeuN-positive hippocampal neurons, hearing loss, cardiovascular malformations-aortic arch anomalies, double outlet right ventricle, and transposition of the great arteries, and perimembranous ventricular septal defects-spontaneous development of cardiac fibrosis and renal agenesis. These findings suggest that RERE plays a critical role in the development and function of multiple organs including the eye, brain, inner ear, heart and kidney. It follows that haploinsufficiency of RERE may contribute-alone or in conjunction with other genetic, environmental, or stochastic factors-to the development of many of the phenotypes seen in individuals with terminal and interstitial deletions that include the

  2. A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR

    DEFF Research Database (Denmark)

    Pereira, Rui; Pereira, Vania; Gomes, Iva

    2012-01-01

    Studies of human genetic variation predominantly use short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) but Insertion deletion polymorphisms (Indels) are being increasingly explored. They combine desirable characteristics of other genetic markers, especially the possibility of...

  3. Y chromosome b2/b3 deletions and male infertility: A comprehensive meta-analysis, trial sequential analysis and systematic review.

    Science.gov (United States)

    Bansal, Sandeep Kumar; Gupta, Gopal; Rajender, Singh

    2016-01-01

    The correlation of Y-chromosome b2/b3 partial deletions with spermatogenic failure remains dubious. We undertook a systematic review of the literature followed by meta-analyses and trial sequential analyses in order to compare the frequency of b2/b3 deletions between oligo/azoospermic infertile and normozoospermicmen. Out of twenty-four studies reviewed for meta-analysis, twenty reported no correlation between this deletion and male infertility and two studies each reported a direct and inverse correlation. In the collective analysis, 241 out of 8892 (2.71%) oligo/azoospermic individuals and 118 out of 5842 (2.02%) normozoospermic controls had a b2/b3 deletion, suggesting a relatively higher frequency of deletions in the cases. Eventually, meta-analysis showed a significant correlation between b2/b3 deletions and the risk of spermatogenic loss/infertility (Fixed model: OR=1.313, 95% CI=1.04-1.65, p=0.02; Random model: OR=1.315, 95% CI=1.02-1.70, p=0.037). Further meta-analysis on studies grouped by ethnicity and geographic regions showed that the b2/b3 deletions are significantly associated with spermatogenic loss/infertility in Mongolians, Nigro-Caucasians, East Asians and Africans, but not in Caucasians, Europeans, South Asians and Dravidians. In summary, the Y-chromosome b2/b3 deletions increase infertility risk; however, it may be significant only in the Mongolian populations and the East Asian region. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Deletion analysis of the 5' untranslated leader sequence of tobacco mosaic virus RNA.

    OpenAIRE

    Takamatsu, N; Watanabe, Y.; Iwasaki, T.; Shiba, T.; Meshi, T; Okada, Y.

    1991-01-01

    To determine the sequences essential for viral multiplication in the 5' untranslated leader sequence of tobacco mosaic virus RNA, mutant TMV-L (a tomato strain) RNAs which carry several deletions in this 71-nucleotide sequence were constructed by an in vitro transcription system and their multiplication was analyzed by introducing mutant RNA into tobacco protoplasts by electroporation. Large deletions of the sequence from nucleotides 9 to 47 or 25 to 71 abolished viral multiplication; when ab...

  5. Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae

    Science.gov (United States)

    Panja, Chiranjit; Setty, Rakesh K. S.; Vaidyanathan, Gopal; Ghosh, Sanjay

    2016-01-01

    Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in the nitrosative stress responses in Saccharomyces cerevisiae. It is still unclear how S. cerevisiae can withstand this NO level in the absence of flavohemoglobin. To better understand the physiological function of flavohemoglobin in yeast, in the present study a label-free differential proteomics study has been carried out in wild-type and YHB1 deleted strains of S. cerevisiae grown under fermentative conditions. From the analysis, 417 proteins in Y190 and 392 proteins in ΔYHB1 were identified with high confidence. Interestingly, among the differentially expressed identified proteins, 40 proteins were found to be downregulated whereas 41 were found to be upregulated in ΔYHB1 strain of S. cerevisiae (p value < 0.05). The differentially expressed proteins were also classified according to gene ontology (GO) terms. The most enriched and significant GO terms included nitrogen compound biosynthesis, amino acid biosynthesis, translational regulation, and protein folding. Interactions of differentially expressed proteins were generated using Search Tool for the Retrieval of Interacting Genes (STRING) database. This is the first report which offers a more complete view of the proteome changes in S. cerevisiae in the absence of flavohemoglobin. PMID:26881076

  6. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis.

    Science.gov (United States)

    Koo, Byoung-Mo; Kritikos, George; Farelli, Jeremiah D; Todor, Horia; Tong, Kenneth; Kimsey, Harvey; Wapinski, Ilan; Galardini, Marco; Cabal, Angelo; Peters, Jason M; Hachmann, Anna-Barbara; Rudner, David Z; Allen, Karen N; Typas, Athanasios; Gross, Carol A

    2017-03-22

    A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria.

  7. Dystrophin expression in a Duchenne muscular dystrophy patient with a frame shift deletion.

    Science.gov (United States)

    Prior, T W; Bartolo, C; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Kissel, J T; Luquette, M H; Tsao, C Y; Mendell, J R

    1997-02-01

    The exon 45 deletion is a common dystrophin gene deletion. Although this is an out-of-frame deletion, which should not allow for protein synthesis, it has been observed in mildly affected patients. We describe a patient with an exon 45 deletion who produced protein, but still had a severe Duchenne muscular dystrophy phenotype. RT-PCR analysis and cDNA sequencing from the muscle biopsy sample revealed that the exon 45 deletion induced exon skipping of exon 44, which resulted in an in-frame deletion and the production of dystrophin. A conformational change in dystrophin induced by the deletion is proposed as being responsible for the severe phenotype in the patient. We feel that the variable clinical phenotype observed in patients with the exon 45 deletion is not due to exon splicing but may be the result of other environmental or genetic factors, or both.

  8. Functional analysis of the PsbX protein by deletion of the corresponding gene in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Funk, C

    2000-12-01

    The psbX gene (sml0002) coding for a 4.1 kDa protein in Photosystem II of plants and cyanobacteria was deleted in both wild type and in a Photosystem I-less mutant of the cyanobacterium Synechocystis sp. PCC 6803. Polymerase chain reaction and sequencing analysis showed that the mutants had completely segregated. Deletion of the PsbX protein does not seem to influence growth rate, electron transport or water oxidation ability. Whereas a high light induction of the psbX mRNA could be observed in wild type, deletion of the gene did not lead to high light sensibility. Light saturation measurements and 77K fluorescence measurements indicated a minor disconnection of the antenna in the deletion mutant. Furthermore, fluorescence induction measurements as well as immuno-staining of the D1 protein showed that the amount of Photosystem II complexes in the mutants was reduced by 30%. Therefore, PsbX does not seem to be necessary for the Photosystem II electron transport, but directly or indirectly involved in the regulation of the amount of functionally active Photosystem II centres in Synechocystis sp. PCC 6803.

  9. Hereditary hemorrhagic telangiectasia: two distinct ENG deletions in one family.

    Science.gov (United States)

    Wooderchak, W; Gedge, F; McDonald, M; Krautscheid, P; Wang, X; Malkiewicz, J; Bukjiok, C J; Lewis, T; Bayrak-Toydemir, P

    2010-11-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by aberrant vascular development. Mutations in endoglin (ENG) or activin A receptor type II-like 1 (ACVRL1) account for around 90% of HHT patients, 10% of those are large deletions or duplications. We report here the first observation of two distinct, large ENG deletions segregating in one pedigree. An ENG exon 4-7 deletion was observed in a patient with HHT. This deletion was identified in several affected family members. However, some affected family members had an ENG exon 3 deletion instead. These deletions were detected by multiplex ligation-dependent probe amplification and confirmed by mRNA sequencing and an oligo-CGH array. Linkage analysis revealed that one individual with the exon 3 deletion inherited the same chromosome from his mother who has the exon 4-7 deletion. This finding has important clinical implications because it shows that targeted family-specific mutation analysis for exon deletions could have led to the misdiagnosis of some affected family members. © 2010 John Wiley & Sons A/S.

  10. Molecular analysis of the Retinoic Acid Induced 1 gene (RAI1) in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion.

    Science.gov (United States)

    Vilboux, Thierry; Ciccone, Carla; Blancato, Jan K; Cox, Gerald F; Deshpande, Charu; Introne, Wendy J; Gahl, William A; Smith, Ann C M; Huizing, Marjan

    2011-01-01

    Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.

  11. Molecular analysis of the Retinoic Acid Induced 1 gene (RAI1 in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion.

    Directory of Open Access Journals (Sweden)

    Thierry Vilboux

    Full Text Available Smith-Magenis syndrome (SMS is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1 is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion, were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.

  12. Incomplete deletion of IL-4Rα by LysM(Cre reveals distinct subsets of M2 macrophages controlling inflammation and fibrosis in chronic schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Kevin M Vannella

    2014-09-01

    Full Text Available Mice expressing a Cre recombinase from the lysozyme M-encoding locus (Lyz2 have been widely used to dissect gene function in macrophages and neutrophils. Here, we show that while naïve resident tissue macrophages from IL-4Rαf(lox/deltaLysM(Cre mice almost completely lose IL-4Rα function, a large fraction of macrophages elicited by sterile inflammatory stimuli, Schistosoma mansoni eggs, or S. mansoni infection, fail to excise Il4rα. These F4/80(hiCD11b(hi macrophages, in contrast to resident tissue macrophages, express lower levels of Lyz2 explaining why this population resists LysM(Cre-mediated deletion. We show that in response to IL-4 and IL-13, Lyz2(loIL-4Rα(+ macrophages differentiate into an arginase 1-expressing alternatively-activated macrophage (AAM population, which slows the development of lethal fibrosis in schistosomiasis. In contrast, we identified Lyz2(hiIL-4Rα(+ macrophages as the key subset of AAMs mediating the downmodulation of granulomatous inflammation in chronic schistosomiasis. Our observations reveal a limitation on using a LysMCre mouse model to study gene function in inflammatory settings, but we utilize this limitation as a means to demonstrate that distinct populations of alternatively activated macrophages control inflammation and fibrosis in chronic schistosomiasis.

  13. Incomplete deletion of IL-4Rα by LysM(Cre) reveals distinct subsets of M2 macrophages controlling inflammation and fibrosis in chronic schistosomiasis.

    Science.gov (United States)

    Vannella, Kevin M; Barron, Luke; Borthwick, Lee A; Kindrachuk, Kristen N; Narasimhan, Prakash Babu; Hart, Kevin M; Thompson, Robert W; White, Sandra; Cheever, Allen W; Ramalingam, Thirumalai R; Wynn, Thomas A

    2014-09-01

    Mice expressing a Cre recombinase from the lysozyme M-encoding locus (Lyz2) have been widely used to dissect gene function in macrophages and neutrophils. Here, we show that while naïve resident tissue macrophages from IL-4Rαf(lox/delta)LysM(Cre) mice almost completely lose IL-4Rα function, a large fraction of macrophages elicited by sterile inflammatory stimuli, Schistosoma mansoni eggs, or S. mansoni infection, fail to excise Il4rα. These F4/80(hi)CD11b(hi) macrophages, in contrast to resident tissue macrophages, express lower levels of Lyz2 explaining why this population resists LysM(Cre)-mediated deletion. We show that in response to IL-4 and IL-13, Lyz2(lo)IL-4Rα(+) macrophages differentiate into an arginase 1-expressing alternatively-activated macrophage (AAM) population, which slows the development of lethal fibrosis in schistosomiasis. In contrast, we identified Lyz2(hi)IL-4Rα(+) macrophages as the key subset of AAMs mediating the downmodulation of granulomatous inflammation in chronic schistosomiasis. Our observations reveal a limitation on using a LysMCre mouse model to study gene function in inflammatory settings, but we utilize this limitation as a means to demonstrate that distinct populations of alternatively activated macrophages control inflammation and fibrosis in chronic schistosomiasis.

  14. Analysis of crossover breakpoints yields new insights into the nature of the gene conversion events associated with large NF1 deletions mediated by nonallelic homologous recombination.

    Science.gov (United States)

    Bengesser, Kathrin; Vogt, Julia; Mussotter, Tanja; Mautner, Victor-Felix; Messiaen, Ludwine; Cooper, David N; Kehrer-Sawatzki, Hildegard

    2014-02-01

    Large NF1 deletions are mediated by nonallelic homologous recombination (NAHR). An in-depth analysis of gene conversion operating in the breakpoint-flanking regions of large NF1 deletions was performed to investigate whether the rate of discontinuous gene conversion during NAHR with crossover is increased, as has been previously noted in NAHR-mediated rearrangements. All 20 germline type-1 NF1 deletions analyzed were mediated by NAHR associated with continuous gene conversion within the breakpoint-flanking regions. Continuous gene conversion was also observed in 31/32 type-2 NF1 deletions investigated. In contrast to the meiotic type-1 NF1 deletions, type-2 NF1 deletions are predominantly of post-zygotic origin. Our findings therefore imply that the mitotic as well as the meiotic NAHR intermediates of large NF1 deletions are processed by long-patch mismatch repair (MMR), thereby ensuring gene conversion tract continuity instead of the discontinuous gene conversion that is characteristic of short-patch repair. However, the single type-2 NF1 deletion not exhibiting continuous gene conversion was processed without MMR, yielding two different deletion-bearing chromosomes, which were distinguishable in terms of their breakpoint positions. Our findings indicate that MMR failure during NAHR, followed by post-meiotic/mitotic segregation, has the potential to give rise to somatic mosaicism in human genomic rearrangements by generating breakpoint heterogeneity.

  15. 22q13.3 Deletion Syndrome : Clinical and Molecular Analysis Using Array CGH

    NARCIS (Netherlands)

    Dhar, S. U.; del Gaudio, D.; German, J. R.; Peters, S. U.; Ou, Z.; Bader, P. I.; Berg, J. S.; Blazo, M.; Brown, C. W.; Graham, B. H.; Grebe, T. A.; Lalani, S.; Irons, M.; Sparagana, S.; Williams, M.; Phillips, J. A.; Beaudet, A. L.; Stankiewicz, P.; Patel, A.; Cheung, S. W.; Sahoo, T.

    2010-01-01

    The 22q13.3 deletion syndrome results from loss of terminal segments of varying sizes at 22qter. Few genotype phenotype correlations have been found but all patients have mental retardation and severe delay, or absence of, expressive speech. We carried out clinical and molecular characterization of

  16. An analysis of substitution, deletion and insertion mutations in cancer genes.

    Science.gov (United States)

    Iengar, Prathima

    2012-08-01

    Cancer-associated mutations in cancer genes constitute a diverse set of mutations associated with the disease. To gain insight into features of the set, substitution, deletion and insertion mutations were analysed at the nucleotide level, from the COSMIC database. The most frequent substitutions were c → t, g → a, g → t, and the most frequent codon changes were to termination codons. Deletions more than insertions, FS (frameshift) indels more than I-F (in-frame) ones, and single-nucleotide indels, were frequent. FS indels cause loss of significant fractions of proteins. The 5'-cut in FS deletions, and 5'-ligation in FS insertions, often occur between pairs of identical bases. Interestingly, the cut-site and 3'-ligation in insertions, and 3'-cut and join-pair in deletions, were each found to be the same significantly often (p Proto-oncogenes undergo fewer, less-disruptive mutations, in selected protein regions, to activate a single allele. Finally, catalogues, in ranked order, of genes mutated in each cancer, and cancers in which each gene is mutated, were created. The study highlights the nucleotide level preferences and disruptive nature of cancer mutations.

  17. Deletional analysis of functional regions of complementary sense promoter from cotton leaf curl virus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Complementary sense promoter from cotton leaf curl virus (CLCuV) is a novel plant promoter for genetic engineering that could drive high-level foreign gene expression in plant. To determine the optimal promoter sequence for gene expression, CLCuV promoter was deleted from its 5' end to form promoter fragments with five different lengths, and chimeric gus genes were constructed using the promoter deletion. These vectors were delivered into Agrobacterium and tobacco (Nicotiana tabacum L. cv. Xanthi) plants which were transformed by leaf discs method. GUS activity of transgenic plants was measured. The results showed that GUS activities with the promoter deleted to -287 and -271 from the translation initiation site were respectively about five and three times that of full-length promoter. There exists a cis-element which is important for the expressing activity in phloem from -271 to -176. Deletion from -176 to -141 resulted in a 20-30-fold reduction in GUS activity in leaves with weak activity in leaves and stems and losing GUS activity in roots. The functional domains of complementary sense gene promoter of CLCuV were firstly analyzed and compared. It was found that the promoter activity with the deletion of negative cis-elements was much stronger than that of full-length promoter and was about twelve times on average that of CaMV 35S promoter, suggesting that the promoter has great application potential. Results also provide novel clues for understanding the mechanisms of geminivirus gene regulation and interaction between virus and plant.

  18. Detection of α-thalassemia-1 Southeast Asian and Thai Type Deletions and β-thalassemia 3.5-kb Deletion by Single-tube Multiplex Real-time PCR with SYBR Green1 and High-resolution Melting Analysis

    OpenAIRE

    Pornprasert, Sakorn; Wiengkum, Thanatcha; Srithep, Sarinee; Chainoi, Isarapong; Singboottra, Panthong; Wongwiwatthananukit, Sanchai

    2011-01-01

    Background Prevention and control of thalassemia requires simple, rapid, and accurate screening tests for carrier couples who are at risk of conceiving fetuses with severe thalassemia. Methods Single-tube multiplex real-time PCR with SYBR Green1 and high-resolution melting (HRM) analysis were used for the identification of α-thalassemia-1 Southeast Asian (SEA) and Thai type deletions and β-thalassemia 3.5-kb gene deletion. The results were compared with those obtained using conventional gap-P...

  19. Molecular analysis of two mouse dilute locus deletion mutations: Spontaneous dilute lethal20J and radiation-induced dilute prenatal lethal Aa2 alleles

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, M.C.; Seperack, P.K.; Copeland, N.G.; Jenkins, N.A. (National Cancer Institute-Frederick Cancer Research Facility, MD (USA))

    1990-02-01

    The dilute (d) coat color locus of mouse chromosome 9 has been identified by more than 200 spontaneous and mutagen-induced recessive mutations. With the advent of molecular probes for this locus, the molecular lesion associated with different dilute alleles can be recognized and precisely defined. In this study, two dilute mutations, dilute-lethal20J (dl20J) and dilute prenatal lethal Aa2, have been examined. Using a dilute locus genomic probe in Southern blot analysis, we detected unique restriction fragments in dl20J and Aa2 DNA. Subsequent analysis of these fragments showed that they represented deletion breakpoint fusion fragments. DNA sequence analysis of each mutation-associated deletion breakpoint fusion fragment suggests that both genomic deletions were generated by nonhomologous recombination events. The spontaneous dl20J mutation is caused by an interstitial deletion that removes a single coding exon of the dilute gene. The correlation between this discrete deletion and the expression of all dilute-associated phenotypes in dl20J homozygotes defines the dl20J mutation as a functional null allele of the dilute gene. The radiation-induced Aa2 allele is a multilocus deletion that, by complementation analysis, affects both the dilute locus and the proximal prenatal lethal-3 (pl-3) functional unit. Molecular analysis of the Aa2 deletion breakpoint fusion fragment has provided access to a previously undefined gene proximal to d. Initial characterization of this new gene suggests that it may represent the genetically defined pl-3 functional unit.

  20. Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

    NARCIS (Netherlands)

    Heidenblad, M.; Schoenmakers, E.F.P.M.; Jonson, T.; Gorunova, L.; Veltman, J.A.; Geurts van Kessel, A.H.M.; Hoglund, M.

    2004-01-01

    Pancreatic carcinomas display highly complex chromosomal abnormalities, including many structural and numerical aberrations. There is ample evidence indicating that some of these abnormalities, such as recurrent amplifications and homozygous deletions, contribute to tumorigenesis by altering express

  1. Angelman syndrome: Validation of molecular cytogenetic analysis of chromosome 15q11-q13 for deletion detection

    Energy Technology Data Exchange (ETDEWEB)

    White, L.; Knoll, J.H.M. [Harvard Medical School, Boston, MA (United States)

    1995-03-13

    In a series of 18 individuals comprising parents of Angelman syndrome (AS) patients and AS patients with large deletions, microdeletions, and no deletions, we utilized fluorescence in situ hybridization (FISH) with genomic phage clones for loci D15S63 and GABRB3 for deletion detection of chromosome 15q11-q13. Utilization of probes at these loci allows detection of common large deletions and permits discrimination of less common small deletions. In all individuals the molecular cytogenetic data were concordant with the DNA deletion analyses. FISH provides an accurate method of deletion detection for chromosome 15q11-q13. 23 refs., 2 figs., 1 tab.

  2. Directed construction and analysis of a Sinorhizobium meliloti pSymA deletion mutant library.

    Science.gov (United States)

    Yurgel, Svetlana N; Mortimer, Michael W; Rice, Jennifer T; Humann, Jodi L; Kahn, Michael L

    2013-03-01

    Resources from the Sinorhizobium meliloti Rm1021 open reading frame (ORF) plasmid libraries were used in a medium-throughput method to construct a set of 50 overlapping deletion mutants covering all of the Rm1021 pSymA megaplasmid except the replicon region. Each resulting pSymA derivative carried a defined deletion of approximately 25 ORFs. Various phenotypes, including cytochrome c respiration activity, the ability of the mutants to grow on various carbon and nitrogen sources, and the symbiotic effectiveness of the mutants with alfalfa, were analyzed. This approach allowed us to systematically evaluate the potential impact of regions of Rm1021 pSymA for their free-living and symbiotic phenotypes.

  3. Deletion and substitution analysis of the Escherichia coli TonB Q160 region.

    Science.gov (United States)

    Vakharia-Rao, Hema; Kastead, Kyle A; Savenkova, Marina I; Bulathsinghala, Charles M; Postle, Kathleen

    2007-07-01

    The active transport of iron siderophores and vitamin B(12) across the outer membrane (OM) of Escherichia coli requires OM transporters and the potential energy of the cytoplasmic membrane (CM) proton gradient and CM proteins TonB, ExbB, and ExbD. A region at the amino terminus of the transporter, called the TonB box, directly interacts with TonB Q160 region residues. R158 and R166 in the TonB Q160 region were proposed to play important roles in cocrystal structures of the TonB carboxy terminus with OM transporters BtuB and FhuA. In contrast to predictions based on the crystal structures, none of the single, double, or triple alanyl substitutions at arginyl residues significantly decreased TonB activity. Even the quadruple R154A R158A R166A R171A mutant TonB still retained 30% of wild-type activity. Up to five residues centered on TonB Q160 could be deleted without inactivating TonB or preventing its association with the OM. TonB mutant proteins with nested deletions of 7, 9, or 11 residues centered on TonB Q160 were inactive and appeared never to have associated with the OM. Because the 7-residue-deletion mutant protein (TonBDelta7, lacking residues S157 to Y163) could still form disulfide-linked dimers when combined with W213C or F202C in the TonB carboxy terminus, the TonBDelta7 deletion did not prevent necessary energy-dependent conformational changes that occur in the CM. Thus, it appeared that initial contact with the OM is made through TonB residues S157 to Y163. It is hypothesized that the TonB Q160 region may be part of a large disordered region required to span the periplasm and contact an OM transporter.

  4. EXPRESSION AND DELETION ANALYSIS OF EcoRII ENDONUCLEASE AND METHYLASE GENE

    Institute of Scientific and Technical Information of China (English)

    刘金毅; 赵晓娟; 孟雁; 沈洁; 薛越强; 史顺娣; 蔡有余

    2001-01-01

    Objective. To clone complete EcoRII restriction endonuclease gene (ecoRllR) and methyltransferase gene(ecoRllM) in one ector and to analyze the coordinating expression of this whole R-M system.Methods. Unidirectional deletion subclones were constructed with ExolII. ecoRllR/M genes were preliminari-ly located in the cloned fragment according to the enzyme activities of subclones. Exact deletion sites were deter-mined by sequencing, and transcriptional start sites were determined by S1 mapping.Results. The DNA fragment which was cloned into pBluescript SK + contained intact ecoRIlR gene andecoRllM gene, anc two transcriptional start sites of ecoRllR gene were determined. 132bp to 458bp from 3' endof ecoRllR gene ar.e indispensable to enzyme activities and deletion of 202bp from 3' end of ecoRllM gene madeenzyme lose the capability in DNA protection to resist specific cut with EcoRII endonuclease (EcoRII. R). Dele-tion of the coding ar d flanking sequences of one gene did not affect the expression of the other gene, and the recombi-nants only containing ecoRllR gene appeared to be lethal to dcm+ host.Conclusion. scoRllM gene linking closely to ecoRIIR gene is very important for the existence of the R-M sys-tem in process of evolution, but the key to control EcoRlI R-M order may not exist in transcriptional level .``Liu Jmy,Corresponding author.

  5. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism

    Directory of Open Access Journals (Sweden)

    Wang Rong

    2006-02-01

    Full Text Available Abstract Background Certain loci on the human genome, such as glutathione S-transferase M1 (GSTM1, do not permit heterozygotes to be reliably determined by commonly used methods. Association of such a locus with a disease is therefore generally tested with a case-control design. When subjects have already been ascertained in a case-parent design however, the question arises as to whether the data can still be used to test disease association at such a locus. Results A likelihood ratio test was constructed that can be used with a case-parents design but has somewhat less power than a Pearson's chi-squared test that uses a case-control design. The test is illustrated on a novel dataset showing a genotype relative risk near 2 for the homozygous GSTM1 deletion genotype and autism. Conclusion Although the case-control design will remain the mainstay for a locus with a deletion, the likelihood ratio test will be useful for such a locus analyzed as part of a larger case-parent study design. The likelihood ratio test has the advantage that it can incorporate complete and incomplete case-parent trios as well as independent cases and controls. Both analyses support (p = 0.046 for the proposed test, p = 0.028 for the case-control analysis an association of the homozygous GSTM1 deletion genotype with autism.

  6. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism.

    Science.gov (United States)

    Buyske, Steven; Williams, Tanishia A; Mars, Audrey E; Stenroos, Edward S; Ming, Sue X; Wang, Rong; Sreenath, Madhura; Factura, Marivic F; Reddy, Chitra; Lambert, George H; Johnson, William G

    2006-02-10

    Certain loci on the human genome, such as glutathione S-transferase M1 (GSTM1), do not permit heterozygotes to be reliably determined by commonly used methods. Association of such a locus with a disease is therefore generally tested with a case-control design. When subjects have already been ascertained in a case-parent design however, the question arises as to whether the data can still be used to test disease association at such a locus. A likelihood ratio test was constructed that can be used with a case-parents design but has somewhat less power than a Pearson's chi-squared test that uses a case-control design. The test is illustrated on a novel dataset showing a genotype relative risk near 2 for the homozygous GSTM1 deletion genotype and autism. Although the case-control design will remain the mainstay for a locus with a deletion, the likelihood ratio test will be useful for such a locus analyzed as part of a larger case-parent study design. The likelihood ratio test has the advantage that it can incorporate complete and incomplete case-parent trios as well as independent cases and controls. Both analyses support (p = 0.046 for the proposed test, p = 0.028 for the case-control analysis) an association of the homozygous GSTM1 deletion genotype with autism.

  7. Deletional analysis of functional regions of complementary sense promoter from cotton leaf curl virus

    Institute of Scientific and Technical Information of China (English)

    谢迎秋; 刘玉乐; 朱祯

    2000-01-01

    Complementary sense promoter from cotton leaf curl virus (CLCuV) is a novel plant promoter for genetic engineering that could drive high-level foreign gene expression in plant. To determine the optimal promoter sequence for gene expression, CLCuV promoter was deleted from its 5’ end to form promoter fragments with five different lengths, and chimeric gus genes were constructed using the promoterdeletion. These vectors were delivered into Agrobacterium and tobacco (Nicotiana tabacum L cv. Xanthi) plants which were transformed by leaf discs method. GUS activity of transgenic plants was measured. The results showed that GUS activities with the promoter deleted to -287 and -271 from the translation initiation site were respectively about five and three times that of full-length promoter. There exists a c/s-element which is important for the expressing activity in phloem from -271 to -176. Deletion from -176 to -141 resulted in a 20-30-fold reduction in GUS activity in leaves with weak activity in leaves and

  8. Characterization of genomic variations in SNPs of PE_PGRS genes reveals deletions and insertions in extensively drug resistant (XDR) M. tuberculosis strains from Pakistan

    KAUST Repository

    Kanji, Akbar

    2015-01-21

    Background Mycobacterium tuberculosis (MTB) PE_PGRS genes belong to the PE multigene family. Although the function of PE_PGRS genes is unknown, it is hypothesized that the PE_PGRS genes may be associated with antigenic variability in MTB. Material and methods Whole genome sequencing analysis was performed on (n = 37) extensively drug-resistant (XDR) MTB strains from Pakistan, which included Lineage 1 (East African Indian, n = 2); Other lineage 1 (n = 3); Lineage 3 (Central Asian, n = 24); Other lineage 3 (n = 4); Lineage 4 (X3, n = 1) and T group (n = 3) MTB strains. Results There were 107 SNPs identified from the analysis of 42 PE_PGRS genes; of these, 13 were non-synonymous SNPs (nsSNPs). The nsSNPs identified in PE_PGRS genes – 6, 9 and 10 – were common in all EAI, CAS, Other lineages (1 and 3), T1 and X3. Deletions (DELs) in PE_PGRS genes – 3 and 19 – were observed in 17 (80.9%) CAS1 and 6 (85.7%) in Other lineages (1 and 3) XDR MTB strains, while DELs in the PE_PGRS49 were observed in all CAS1, CAS, CAS2 and Other lineages (1 and 3) XDR MTB strains. All CAS, EAI and Other lineages (1 and 3) strains showed insertions (INS) in PE_PGRS6 gene, while INS in the PE_PGRS genes 19 and 33 were observed in 20 (95.2%) CAS1, all CAS, CAS2, EAI and Other lineages (1 and 3) XDR MTB strains. Conclusion Genetic diversity in PE_PGRS genes contributes to antigenic variability and may result in increased immunogenicity of strains. This is the first study identifying variations in nsSNPs and INDELs in the PE_PGRS genes of XDR-TB strains from Pakistan. It highlights common genetic variations which may contribute to persistence.

  9. Targeted deletion of 5'HS1 and 5'HS4 of the beta-globin locus control region reveals additive activity of the DNaseI hypersensitive sites.

    Science.gov (United States)

    Bender, M A; Roach, J N; Halow, J; Close, J; Alami, R; Bouhassira, E E; Groudine, M; Fiering, S N

    2001-10-01

    The mammalian beta-globin locus is a multigenic, developmentally regulated, tissue-specific locus from which gene expression is regulated by a distal regulatory region, the locus control region (LCR). The functional mechanism by which the beta-globin LCR stimulates transcription of the linked beta-like globin genes remains unknown. The LCR is composed of a series of 5 DNaseI hypersensitive sites (5'HSs) that form in the nucleus of erythroid precursors. These HSs are conserved among mammals, bind transcription factors that also bind to other parts of the locus, and compose the functional components of the LCR. To test the hypothesis that individual HSs have unique properties, homologous recombination was used to construct 5 lines of mice with individual deletions of each of the 5'HSs of the endogenous murine beta-globin LCR. Here it is reported that deletion of 5'HS1 reduces expression of the linked genes by up to 24%, while deletion of 5'HS4 leads to reductions of up to 27%. These deletions do not perturb the normal stage-specific expression of genes from this multigenic locus. In conjunction with previous studies of deletions of the other HSs and studies of deletion of the entire LCR, it is concluded that (1) none of the 5'HSs is essential for nearly normal expression; (2) none of the HSs is required for proper developmental expression; and (3) the HSs do not appear to synergize either structurally or functionally, but rather form independently and appear to contribute additively to the overall expression from the locus.

  10. Deletion and Substitution Analysis of the Escherichia coli TonB Q160 Region▿

    Science.gov (United States)

    Vakharia-Rao, Hema; Kastead, Kyle A.; Savenkova, Marina I.; Bulathsinghala, Charles M.; Postle, Kathleen

    2007-01-01

    The active transport of iron siderophores and vitamin B12 across the outer membrane (OM) of Escherichia coli requires OM transporters and the potential energy of the cytoplasmic membrane (CM) proton gradient and CM proteins TonB, ExbB, and ExbD. A region at the amino terminus of the transporter, called the TonB box, directly interacts with TonB Q160 region residues. R158 and R166 in the TonB Q160 region were proposed to play important roles in cocrystal structures of the TonB carboxy terminus with OM transporters BtuB and FhuA. In contrast to predictions based on the crystal structures, none of the single, double, or triple alanyl substitutions at arginyl residues significantly decreased TonB activity. Even the quadruple R154A R158A R166A R171A mutant TonB still retained 30% of wild-type activity. Up to five residues centered on TonB Q160 could be deleted without inactivating TonB or preventing its association with the OM. TonB mutant proteins with nested deletions of 7, 9, or 11 residues centered on TonB Q160 were inactive and appeared never to have associated with the OM. Because the 7-residue-deletion mutant protein (TonBΔ7, lacking residues S157 to Y163) could still form disulfide-linked dimers when combined with W213C or F202C in the TonB carboxy terminus, the TonBΔ7 deletion did not prevent necessary energy-dependent conformational changes that occur in the CM. Thus, it appeared that initial contact with the OM is made through TonB residues S157 to Y163. It is hypothesized that the TonB Q160 region may be part of a large disordered region required to span the periplasm and contact an OM transporter. PMID:17483231

  11. Phenotype MicroArray Analysis of Escherichia coli K-12 Mutants with Deletions of All Two-Component Systems

    Science.gov (United States)

    Zhou, Lu; Lei, Xiang-He; Bochner, Barry R.; Wanner, Barry L.

    2003-01-01

    Two-component systems are the most common mechanism of transmembrane signal transduction in bacteria. A typical system consists of a histidine kinase and a partner response regulator. The histidine kinase senses an environmental signal, which it transmits to its partner response regulator via a series of autophosphorylation, phosphotransfer, and dephosphorylation reactions. Much work has been done on particular systems, including several systems with regulatory roles in cellular physiology, communication, development, and, in the case of bacterial pathogens, the expression of genes important for virulence. We used two methods to investigate two-component regulatory systems in Escherichia coli K-12. First, we systematically constructed mutants with deletions of all two-component systems by using a now-standard technique of gene disruption (K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sci. USA 97:6640-6645, 2000). We then analyzed these deletion mutants with a new technology called Phenotype MicroArrays, which permits assays of nearly 2,000 growth phenotypes simultaneously. In this study we tested 100 mutants, including mutants with individual deletions of all two-component systems and several related genes, including creBC-regulated genes (cbrA and cbrBC), phoBR-regulated genes (phoA, phoH, phnCDEFGHIJKLMNOP, psiE, and ugpBAECQ), csgD, luxS, and rpoS. The results of this battery of nearly 200,000 tests provided a wealth of new information concerning many of these systems. Of 37 different two-component mutants, 22 showed altered phenotypes. Many phenotypes were expected, and several new phenotypes were also revealed. The results are discussed in terms of the biological roles and other information concerning these systems, including DNA microarray data for a large number of the same mutants. Other mutational effects are also discussed. PMID:12897016

  12. Definition of 5q11.2 Microdeletion Syndrome Reveals Overlap with CHARGE Syndrome and 22q11 Deletion Syndrome Phenotypes

    NARCIS (Netherlands)

    Blok, Charlotte Snijders; Corsten-Janssen, Nicole; FitzPatrick, David R.; Romano, Corrado; Fichera, Marco; Vitello, Girolamo Aurelio; Willemsen, Marjolein H.; Schoots, Jeroen; Pfundt, Rolph; van Ravenswaaij-Arts, Conny M. A.; Hoefsloot, Lies; Kleefstra, Tjitske

    2014-01-01

    Microdeletions of the 5q11.2 region are rare; in literature only two patients with a deletion in this region have been reported so far. In this study, we describe four additional patients and further define this new 5q11.2 microdeletion syndrome. A comparison of the features observed in all six pati

  13. Microarray based analysis of an inherited terminal 3p26.3 deletion, containing only the CHL1 gene, from a normal father to his two affected children

    Directory of Open Access Journals (Sweden)

    Lerone Margherita

    2011-04-01

    Full Text Available Abstract Background terminal deletions of the distal portion of the short arm of chromosome 3 cause a rare contiguous gene disorder characterized by growth retardation, developmental delay, mental retardation, dysmorphisms, microcephaly and ptosis. The phenotype of individuals with deletions varies from normal to severe. It was suggested that a 1,5 Mb minimal terminal deletion including the two genes CRBN and CNTN4 is sufficient to cause the syndrome. In addition the CHL1 gene, mapping at 3p26.3 distally to CRBN and CNTN4, was proposed as candidate gene for a non specific mental retardation because of its high level of expression in the brain. Methods and Results we describe two affected siblings in which array-CGH analysis disclosed an identical discontinuous terminal 3p26.3 deletion spanning less than 1 Mb. The deletion was transmitted from their normal father and included only the CHL1 gene. The two brothers present microcephaly, light mental retardation, learning and language difficulties but not the typical phenotype manifestations described in 3p- syndrome. Conclusion a terminal 3p26.3 deletion including only the CHL1 gene is a very rare finding previously reported only in one family. The phenotype of the affected individuals in the two families is very similar and the deletion has been inherited from an apparently normal parent. As already described for others recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance.

  14. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    OpenAIRE

    Lobaccaro, J.M.; Lumbroso, S.; Poujol, Nicolas; Georget, V.; Brinkmann, Albert; Malpuech, Georges; Sultan, C.

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for a predictive frameshift in the open reading frame and introduction of a premature stop codon at position 783 instead of 919. The deletion was reproduced in androgen receptor wildtype cDNA and tran...

  15. Differentiation of Indica-Japonica rice revealed by insertion/deletion (InDel) fragments obtained from the comparative genomic study of DNA sequences between 93-11 (Indica) and Nipponbare (Japonica)

    Institute of Scientific and Technical Information of China (English)

    CAI Xingxing; LIU Jing; QIU Yinqiu; ZHAO Wei; SONG Zhiping; LU Baorong

    2007-01-01

    DNA polymorphisms from nucleotide insertion/deletions (InDels) in genomic sequences are the basis for developing InDel molecular markers.To validate the InDel primer pairs on the basis of the comparative genomic study on DNA sequences between an Indica rice 93-11 and a Japonica rice Nipponbare for identifying Indica and Japonica rice varieties and studying wild Oryza species,we studied 49 Indica,43 Japonica,and 24 wild rice accessions collected from ten Asian countries using 45 InDel primer pairs.Results indicated that of the 45 InDel primer pairs,41 can accurately identify Indica and Japonica rice varieties with a reliability of over 80%.The scatter plotting data of the principal component analysis (PCA) indicated that:(i) the InDel primer pairs can easily distinguish Indica from Japonica rice varieties,in addition to revealing their genetic differentiation;(ii) the AA-genome wild rice species showed a relatively close genetic relationship with the Indica rice varieties;and (iii)the non-AA genome wild rice species did not show evident differentiation into the Indica and Japonica types.It is concluded from the study that most of the InDel primer pairs obtained from DNA sequences of 93-11 and Nipponbare can be used for identifying lndica and Japonica rice varieties,and for studying genetic relationships of wild rice species,particularly in terms of the Indica-Japonica differentiation.

  16. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein.

    Science.gov (United States)

    Wartenberg, Dirk; Lapp, Katrin; Jacobsen, Ilse D; Dahse, Hans-Martin; Kniemeyer, Olaf; Heinekamp, Thorsten; Brakhage, Axel A

    2011-11-01

    Surface-associated and secreted proteins represent primarily exposed components of Aspergillus fumigatus during host infection. Several secreted proteins are known to be involved in defense mechanisms or immune evasion, thus, probably contributing to pathogenicity. Furthermore, several secreted antigens were identified as possible biomarkers for the verification of diseases caused by Aspergillus species. Nevertheless, there is only limited knowledge about the composition of the secretome and about molecular functions of particular proteins. To identify secreted proteins potentially essential for virulence, the core secretome of A. fumigatus grown in minimal medium was determined. Two-dimensional gel electrophoretic separation and subsequent MALDI-TOF-MS/MS analyses resulted in the identification of 64 different proteins. Additionally, secretome analyses of A. fumigatus utilizing elastin, collagen or keratin as main carbon and nitrogen source were performed. Thereby, the alkaline serine protease Alp1 was identified as the most abundant protein and hence presumably represents an important protease during host infection. Interestingly, the Asp-hemolysin (Asp-HS), which belongs to the protein family of aegerolysins and which was often suggested to be involved in fungal virulence, was present in the secretome under all growth conditions tested. In addition, a second, non-secreted protein with an aegerolysin domain annotated as Asp-hemolysin-like (HS-like) protein can be found to be encoded in the genome of A. fumigatus. Generation and analysis of Asp-HS and HS-like deletion strains revealed no differences in phenotype compared to the corresponding wild-type strain. Furthermore, hemolysis and cytotoxicity was not altered in both single-deletion and double-deletion mutants lacking both aegerolysin genes. All mutant strains showed no attenuation in virulence in a mouse infection model for invasive pulmonary aspergillosis. Overall, this study provides a comprehensive

  17. Proteomic and genetic analysis of wheat endosperm albumins and globulins using deletion lines of cultivar Chinese Spring

    DEFF Research Database (Denmark)

    Merlino, Marielle; Bousbata, Sabrina; Svensson, Birte;

    2012-01-01

    Albumins and globulins from the endosperm of Triticum aestivum L. cv Chinese Spring (CS) were analysed to establish a proteome reference map for this standard wheat cultivar. Approximately, 1,145 Coomassie-stained spots were detected by two-dimensional gel electrophoresis (2DE), 410 of which were...... the composition and genetics of a complex tissue, such as the wheat endosperm.......Albumins and globulins from the endosperm of Triticum aestivum L. cv Chinese Spring (CS) were analysed to establish a proteome reference map for this standard wheat cultivar. Approximately, 1,145 Coomassie-stained spots were detected by two-dimensional gel electrophoresis (2DE), 410 of which were...... in endosperm proteins due to chromosomal deletions. This differential analysis of spots allowed structural or regulatory genes, encoding 211 proteins, to be located on segments of the 21 wheat chromosomes. In addition, variance analysis of quantitative variations in spot volume showed that the expression...

  18. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Science.gov (United States)

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  19. Analysis of Expression Pattern and Genetic Deletion of Netrin5 in the Developing Mouse

    Science.gov (United States)

    Garrett, Andrew M.; Jucius, Thomas J.; Sigaud, Liam P. R.; Tang, Fu-Lei; Xiong, Wen-Cheng; Ackerman, Susan L.; Burgess, Robert W.

    2016-01-01

    Boundary cap cells (BCC) are a transient, neural-crest-derived population found at the motor exit point (MEP) and dorsal root entry zone (DREZ) of the embryonic spinal cord. These cells contribute to the central/peripheral nervous system (CNS/PNS) boundary, and in their absence neurons and glia from the CNS migrate into the PNS. We found Netrin5 (Ntn5), a previously unstudied member of the netrin gene family, to be robustly expressed in BCC. We generated Ntn5 knockout mice and examined neurodevelopmental and BCC-related phenotypes. No abnormalities in cranial nerve guidance, dorsal root organization, or sensory projections were found. However, Ntn5 mutant embryos did have ectopic motor neurons (MNs) that migrated out of the ventral horn and into the motor roots. Previous studies have implicated semaphorin6A (Sema6A) in BCC signaling to plexinA2 (PlxnA2)/neuropilin2 (Nrp2) in MNs in restricting MN cell bodies to the ventral horn, particularly in the caudal spinal cord. In Ntn5 mutants, ectopic MNs are likely to be a different population, as more ectopias were found rostrally. Furthermore, ectopic MNs in Ntn5 mutants were not immunoreactive for NRP2. The netrin receptor deleted in colorectal cancer (DCC) is a potential receptor for NTN5 in MNs, as similar ectopic neurons were found in Dcc mutant mice, but not in mice deficient for other netrin receptors. Thus, Ntn5 is a novel netrin family member that is expressed in BCC, functioning to prevent MN migration out of the CNS. PMID:26858598

  20. Droplet Digital PCR Analysis of GSTM1 Deletion Polymorphism in Psoriatic Subjects Treated with Goeckerman Therapy

    Directory of Open Access Journals (Sweden)

    Martin Beránek

    2016-08-01

    Full Text Available Goeckerman therapy (GT represents an effective treatment of psoriasis including a combination of pharmaceutical grade crude coal tar (CCT and ultraviolet irradiation (UV-R. Coal tar contains a mixture of polycyclic aromatic hydrocarbons. The best known carcinogenic polyaromate – benzo[a]pyrene is metabolized into a highly reactive benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE. Glutathione S-transferase M1 (GSTM1 catalyses the conjugation of drugs, toxins and products of oxidative stress with glutathione. The aim of the study is to found possible associations between GSTM1 genotypes and the level of BPDE-DNA adducts in 46 psoriatic patients treated with GT. For genotyping, droplet digital PCR was applied. The GSTM1 copy number was normalized to β-globin reference gene. In five GSTM1*1/*1 subjects, the GSTM1 to β-globin ratio moved from 0.99 to 1.03 with a median of 1.01. GSTM1*0/*1 heterozygotes (n = 20 contained only one GSTM1 function allele which conditioned the ratio 0.47–0.53 (median 0.50. GSTM1*0/*0 individuals (n = 21 showed no amplification of the null variants because of the large deletion in GSTM1. BPDE-DNA concentrations ranged from 1.8 to 66.3 ng/µg with a median of 12.3 ng/µg. GSTM1*0/*0 and GSTM1*0/*1 genotypes showed non-significantly higher concentrations of BPDE-DNA adducts than the GSTM1*1/*1 one (12.3 and 12.4 vs 7.8 ng/µg. The non-significant relationship between BPDE-DNA adducts and GSTM1 genotypes in psoriatic patients could be associated with relatively low doses of CCT and short-term UV-R exposures used in GT.

  1. Serial deletion reveals structural basis and stability for the core enzyme activity of human glutaminase 1 isoforms: relevance to excitotoxic neurodegeneration.

    Science.gov (United States)

    Li, Yuju; Peer, Justin; Zhao, Runze; Xu, Yinghua; Wu, Beiqing; Wang, Yi; Tian, Changhai; Huang, Yunlong; Zheng, Jialin

    2017-01-01

    Glutaminase 1 is a phosphate-activated metabolic enzyme that catalyzes the first step of glutaminolysis, which converts glutamine into glutamate. Glutamate is the major neurotransmitter of excitatory synapses, executing important physiological functions in the central nervous system. There are two isoforms of glutaminase 1, KGA and GAC, both of which are generated through alternative splicing from the same gene. KGA and GAC both transcribe 1-14 exons in the N-terminal, but each has its unique C-terminal in the coding sequence. We have previously identified that KGA and GAC are differentially regulated during inflammatory stimulation and HIV infection. Furthermore, glutaminase 1 has been linked to brain diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, and hepatic encephalopathy. Core enzyme structure of KGA and GAC has been published recently. However, how other coding sequences affect their functional enzyme activity remains unclear. We cloned and performed serial deletions of human full-length KGA and GAC from the N-terminal and the C-terminal at an interval of approximately 100 amino acids (AAs). Prokaryotic expressions of the mutant glutaminase 1 protein and a glutaminase enzyme activity assay were used to determine if KGA and GAC have similar efficiency and efficacy to convert glutamine into glutamate. When 110 AAs or 218 AAs were deleted from the N-terminal or when the unique portions of KGA and GAC that are beyond the 550 AA were deleted from the C-terminal, KGA and GAC retained enzyme activity comparable to the full length proteins. In contrast, deletion of 310 AAs or more from N-terminal or deletion of 450 AAs or more from C-terminal resulted in complete loss of enzyme activity for KGA/GAC. Consistently, when both N- and C-terminal of the KGA and GAC were removed, creating a truncated protein that expressed the central 219 AA - 550 AA, the protein retained enzyme activity. Furthermore, expression of the core 219 AA - 550 AA coding

  2. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  3. Deletion (2)(q37)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S. [South Texas Genetics Center, San Antonio, TX (United States)

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  4. Characterization of the Tomato Prosystemin Promoter: Organ-specific Expression, Hormone Specificity and Methyl Jasmonate Responsiveness by Deletion Analysis in Transgenic Tobacco Plants(F)

    Institute of Scientific and Technical Information of China (English)

    Hamlet Avilés-Arnaut; John Paul Délano-Frier

    2012-01-01

    Tomato systemin is a bioactive peptide that regulates the systemic activation of wound-responsive genes.It is released from its 200 amino acid precursor called prosystemin.Initial tissue-localization and hormone-induced expression assays indicated that the tomato prosystemin gene (SIPS) accumulates mainly in floral tissues and in response to exogenous abscisic acid and methyl jasmonate (MeJA)treatments,respectively.Later,the promoter regions of the PS gene in tomato (Solanum lycopersicum L.cv.Castlemart),pepper (Capsicum annuum) and potato (Solanum tuberosum) were isolated and an in silico analysis of the SIPS promoter revealed an over-representation of stress- and MeJA-responsive motifs.A subsequent 5' deletion analysis of the SIPS promoter fused to theβ-glucuronidase reporter (GUS) gene showed that the -221 to +40 bp proximal SIPS promoter region was sufficient to direct the stigma,vascular bundle-specific and MeJA-responsive expression of GUS in transgenic tobacco plants.Important vascular-tissue-specific,light- and MeJA-responsive cis-elements were also present in this region.These findings provide relevant information regarding the transcriptional regulation mechanisms of the SIPS promoter operating in transgenic tobacco plants.They also suggest that its tissue-specificity and inducible nature could have wide applicability in plant biotechnology.

  5. Partial protoporphyrinogen oxidase (PPOX gene deletions, due to different Alu-mediated mechanisms, identified by MLPA analysis in patients with variegate porphyria

    Directory of Open Access Journals (Sweden)

    Barbaro Michela

    2013-01-01

    Full Text Available Abstract Variegate porphyria (VP is an autosomal dominantly inherited hepatic porphyria. The genetic defect in the PPOX gene leads to a partial defect of protoporphyrinogen oxidase, the penultimate enzyme of heme biosynthesis. Affected individuals can develop cutaneous symptoms in sun-exposed areas of the skin and/or neuropsychiatric acute attacks. The identification of the genetic defect in VP families is of crucial importance to detect the carrier status which allows counseling to prevent potentially life threatening neurovisceral attacks, usually triggered by factors such as certain drugs, alcohol or fasting. In a total of 31 Swedish VP families sequence analysis had identified a genetic defect in 26. In the remaining five families an extended genetic investigation was necessary. After the development of a synthetic probe set, MLPA analysis to screen for single exon deletions/duplications was performed. We describe here, for the first time, two partial deletions within the PPOX gene detected by MLPA analysis. One deletion affects exon 5 and 6 (c.339-197_616+320del1099 and has been identified in four families, most probably after a founder effect. The other extends from exon 5 to exon 9 (c.339-350_987+229del2609 and was found in one family. We show that both deletions are mediated by Alu repeats. Our findings emphasize the usefulness of MLPA analysis as a complement to PPOX gene sequencing analysis for comprehensive genetic diagnostics in patients with VP.

  6. Identification of a novel 15.5 kb SHOX deletion associated with marked intrafamilial phenotypic variability and analysis of its molecular origin

    Indian Academy of Sciences (India)

    ANGELOS ALEXANDROU; IOANNIS PAPAEVRIPIDOU; KYRIAKOS TSANGARAS; IOANNA ALEXANDROU; MARIOS TRYFONIDIS; VIOLETTA CHRISTOPHIDOU-ANASTASIADOU; ELENI ZAMBA-PAPANICOLAOU; GEORGE KOUMBARIS; VASSOS NEOCLEOUS; LEONIDAS A. PHYLACTOU; NICOS SKORDIS; GEORGE A. TANTELES; CAROLINA SISMANI

    2016-12-01

    Haploinsufficiency of the short stature homeobox contaning SHOX gene has been shown to result in a spectrum of phenotypes ranging from Leri–Weill dyschondrosteosis (LWD) at the more severe end to SHOX-related short stature at the milder end of the spectrum. Most alterations are whole gene deletions, point mutations within the coding region, or microdeletions in its flanking sequences. Here, we present the clinical and molecular data as well as the potential molecular mechanism underlying a novel microdeletion, causing a variable SHOX-related haploinsufficiency disorder in a three-generation family. The phenotyperesembles that of LWD in females, in males, however, the phenotypic expression is milder. The 15523-bp SHOX intragenic deletion, encompassing exons 3–6, was initially detected by array-CGH, followed by MLPA analysis. Sequencing of thebreakpoints indicated an Alu recombination-mediated deletion (ARMD) as the potential causative mechanism.

  7. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    NARCIS (Netherlands)

    J.M. Lobaccaro; S. Lumbroso; N. Poujol (Nicolas); V. Georget; A.O. Brinkmann (Albert); G. Malpuech (Georges); C. Sultan

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for

  8. Parallel mapping and simultaneous sequencing reveals deletions in BCAN and FAM83H associated with discrete inherited disorders in a domestic dog breed.

    Directory of Open Access Journals (Sweden)

    Oliver P Forman

    2012-01-01

    Full Text Available The domestic dog (Canis familiaris segregates more naturally-occurring diseases and phenotypic variation than any other species and has become established as an unparalled model with which to study the genetics of inherited traits. We used a genome-wide association study (GWAS and targeted resequencing of DNA from just five dogs to simultaneously map and identify mutations for two distinct inherited disorders that both affect a single breed, the Cavalier King Charles Spaniel. We investigated episodic falling (EF, a paroxysmal exertion-induced dyskinesia, alongside the phenotypically distinct condition congenital keratoconjunctivitis sicca and ichthyosiform dermatosis (CKCSID, commonly known as dry eye curly coat syndrome. EF is characterised by episodes of exercise-induced muscular hypertonicity and abnormal posturing, usually occurring after exercise or periods of excitement. CKCSID is a congenital disorder that manifests as a rough coat present at birth, with keratoconjunctivitis sicca apparent on eyelid opening at 10-14 days, followed by hyperkeratinisation of footpads and distortion of nails that develops over the next few months. We undertook a GWAS with 31 EF cases, 23 CKCSID cases, and a common set of 38 controls and identified statistically associated signals for EF and CKCSID on chromosome 7 (P(raw 1.9×10(-14; P(genome = 1.0×10(-5 and chromosome 13 (P(raw 1.2×10(-17; P(genome = 1.0×10(-5, respectively. We resequenced both the EF and CKCSID disease-associated regions in just five dogs and identified a 15,724 bp deletion spanning three exons of BCAN associated with EF and a single base-pair exonic deletion in FAM83H associated with CKCSID. Neither BCAN or FAM83H have been associated with equivalent disease phenotypes in any other species, thus demonstrating the ability to use the domestic dog to study the genetic basis of more than one disease simultaneously in a single breed and to identify multiple novel candidate genes in

  9. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    Science.gov (United States)

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  10. Whole exome sequencing combined with linkage analysis identifies a novel 3 bp deletion in NR5A1.

    Science.gov (United States)

    Eggers, Stefanie; Smith, Katherine R; Bahlo, Melanie; Looijenga, Leendert H J; Drop, Stenvert L S; Juniarto, Zulfa A; Harley, Vincent R; Koopman, Peter; Faradz, Sultana M H; Sinclair, Andrew H

    2015-04-01

    Disorders of sex development (DSDs) encompass a broad spectrum of conditions affecting the development of the gonads and genitalia. The underlying causes for DSDs include gain or loss of function variants in genes responsible for gonad development or steroidogenesis. Most patients with DSD have an unknown genetic etiology and cannot be given an accurate diagnosis. We used whole exome capture and massively parallel sequencing to analyse a large family with 46,XY DSD and 46,XX premature ovarian insufficiency. In addition, we used a recently developed method for linkage analysis using genotypes extracted from the MPS data. This approach identified a unique linkage peak on chromosome 9 and a novel, 3 bp, in-frame deletion in exon six of NR5A1 (steroidogenic factor-1 or SF1) in all affected individuals. We confirmed that the variant disrupts the SF1 protein and its ability to bind and regulate downstream genes. NR5A1 has key roles at multiple points in gonad development and steroidogenic pathways. The variant described here affects the function of SF1 in early testis development and later ovarian function, ultimately leading to the 46,XY DSD and 46,XX premature ovarian insufficiency phenotypes, respectively. This study shows that even at low coverage, whole exome sequencing, when combined with linkage analysis, can be a powerful tool to identify rapidly the disease-causing variant in large pedigrees.

  11. Analysis of the efficacy of lenalidomide in patients with intermediate-1 risk myelodysplastic syndrome without 5q deletion.

    Science.gov (United States)

    Yang, Yan; Gao, Sujun; Fan, Hongqiong; Lin, Hai; Li, Wei; Wang, Juan

    2013-09-01

    The aim of this study was to evaluate the efficacy and adverse effects of lenalidomide in the treatment of intermediate-1 risk non-5q deletion [non-del (5q)] myelodysplastic syndrome (MDS). A total of 30 patients with MDS were classified through G-banding chromosome karyotype analysis and fluorescence in situ hybridization (FISH). According to the International Prognostic Scoring System scores, among the 30 patients, 23 and seven cases had scores of 0.5 and 1.0, respectively. Lenalidomide (Revlimid(®)), 10 mg/day) was administered for 21 days every 28 days. All 30 cases were treated with lenalidomide for at least three cycles, including 20 cases with four cycles. The patients did not require erythropoietin, cyclosporine or iron chelation treatments. Statistical analysis was performed using SPSS statistical software version 13.0, and comparisons among groups were conducted using a t-test. The efficacy of lenalidomide was demonstrated in patients with intermediate-1 risk non-del (5q) MDS. Peripheral blood cell counts were improved following treatment, and absolute neutrophil, haemoglobin and platelet counts increased following 2-4 cycles of treatment. All patients became stable having undergone three cycles of treatment; however, 17 patients with chromosomal abnormalities had no cytogenetic response to the treatment, as confirmed through the FISH test. Patients with intermediate-1 risk non-del (5q) MDS treated with lenalidomide did not achieve complete haematological remission, although they demonstrated haematological improvement.

  12. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    Energy Technology Data Exchange (ETDEWEB)

    Brigham, CJ; Speth, DR; Rha, C; Sinskey, AJ

    2012-10-22

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.

  13. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  14. A DNA sequence evolution analysis generalized by simulation and the markov chain monte carlo method implicates strand slippage in a majority of insertions and deletions.

    Science.gov (United States)

    Nishizawa, Manami; Nishizawa, Kazuhisa

    2002-12-01

    To study the mechanisms for local evolutionary changes in DNA sequences involving slippage-type insertions and deletions, an alignment approach is explored that can consider the posterior probabilities of alignment models. Various patterns of insertion and deletion that can link the ancestor and descendant sequences are proposed and evaluated by simulation and compared by the Markov chain Monte Carlo (MCMC) method. Analyses of pseudogenes reveal that the introduction of the parameters that control the probability of slippage-type events markedly augments the probability of the observed sequence evolution, arguing that a cryptic involvement of slippage occurrences is manifested as insertions and deletions of short nucleotide segments. Strikingly, approximately 80% of insertions in human pseudogenes and approximately 50% of insertions in murids pseudogenes are likely to be caused by the slippage-mediated process, as represented by BC in ABCD --> ABCBCD. We suggest that, in both human and murids, even very short repetitive motifs, such as CAGCAG, CACACA, and CCCC, have approximately 10- to 15-fold susceptibility to insertions and deletions, compared to nonrepetitive sequences. Our protocol, namely, indel-MCMC, thus seems to be a reasonable approach for statistical analyses of the early phase of microsatellite evolution.

  15. ROBO1 deletion as a novel germline alteration in breast and colorectal cancer patients

    DEFF Research Database (Denmark)

    Villacis, Rolando A R; Abreu, Francine B; Miranda, Priscila M

    2016-01-01

    interrogated in 113 unrelated cases fulfilling the criteria for hereditary BC/CRC and presenting non-pathogenic mutations in BRCA1, BRCA2, MLH1, MSH2, TP53, and CHEK2 genes. An identical germline deep intronic deletion of ROBO1 was identified in three index patients using two microarray platforms (Agilent 4x......180K and Affymetrix CytoScan HD). The ROBO1 deletion was confirmed by quantitative PCR (qPCR). Six relatives were also evaluated by CytoScan HD Array. Genomic analysis confirmed a co-segregation of the ROBO1 deletion with the occurrence of cancer in two families. Direct sequencing revealed...... no pathogenic ROBO1 point mutations. Transcriptomic analysis (HTA 2.0, Affymetrix) in two breast carcinomas from a single patient revealed ROBO1 down-expression with no splicing events near the intronic deletion. Deeper in silico analysis showed several enhancer regions and a histone methylation mark...

  16. Analysis of conditional gene deletion using probe based Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Lyko Frank

    2010-12-01

    Full Text Available Abstract Following publication of this article 1 the authors noticed that an incorrect probe reference was cited on page 3, 4, 5 and 6 ("UP #69, Roche Applied Science". The correct probe that was used for the 1lox/2lox allele ratio analysis in the paper is as follows Probe for 1lox/2lox allele quantification: 5'-6-FAM-atAaCtTCgtatagCATaCattatac-BHQ-1 -3' (uppercase letters = LNA bases Manufacturer: EUROGENTEC, Seraing, Belgium All other information and reaction conditions in the paper are correct as stated.

  17. Analysis of 22q11.2 deletions by FISH in a series of velocardiofacial syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Ravnan, J.B.; Golabi, M.; Lebo, R.V. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    Deletions in chromosome 22 band q11.2 have been associated with velocardiofacial (VCF or Shprintzen) syndrome and the DiGeorge anomaly. A study of VCF patients evaluated at the UCSF Medical Center was undertaken to correlate disease phenotype with presence or absence of a deletion. Patients referred for this study had at least two of the following: dysmorphic facial features, frequent ear infections or hearing loss, palate abnormalities, thymic hypoplasia, hypocalcemia, congenital heart defect, hypotonia, and growth or language delay. Fluorescence in situ hybridization (FISH) using the DiGeorge critical region probe N25 was used to classify patients according to the presence or absence of a deletion in 22q11.2, and the results were compared to clinical characteristics. We have completed studies on 58 patients with features of VCF. Twenty-one patients (36%) were found to have a deletion in 22q11.2 by FISH. A retrospective study of archived slides from 14 patients originally studied only by prometaphase GTG banding found six patients had a deletion detected by FISH; of these, only two had a microscopically visible chromosome deletion. Our study of 11 sets of parents of children with the deletion found two clinically affected mothers with the deletion, including one with three of three children clinically affected. A few patients who did not fit the classical VCF description had a 22q11.2 deletion detected by FISH. These included one patient with both cleft lip and palate, and another with developmental delay and typical facial features but no cardiac or palate abnormalities. Both patients with the DiGeorge anomaly as part of VCF had the deletion. On the other hand, a number of patients diagnosed clinically with classical VCF did not have a detectable deletion. This raises the question whether they represent a subset of patients with a defect of 22q11.2 not detected by the N25 probe, or whether they represent a phenocopy of VCF.

  18. Population genetic structure analysis and forensic evaluation of Xinjiang Uigur ethnic group on genomic deletion and insertion polymorphisms.

    Science.gov (United States)

    Mei, Ting; Shen, Chun-Mei; Liu, Yao-Shun; Meng, Hao-Tian; Zhang, Yu-Dang; Guo, Yu-Xin; Dong, Qian; Wang, Xin-Xin; Yan, Jiang-Wei; Zhu, Bo-Feng; Zhang, Li-Ping

    2016-01-01

    The Uigur ethnic minority is the largest ethnic group in the Xinjiang Uygur Autonomous Region of China, and valuable resource for the study of ethnogeny. The objective of this study was to estimate the genetic diversities and forensic parameters of 30 insertion-deletion loci in Uigur ethnic group from Xinjiang Uigur Autonomous Region of China and to analyze the genetic relationships between Xinjiang Uigur group and other previously published groups based on population data of these loci. All the tested loci were conformed to Hardy-Weinberg equilibrium after Bonferroni correction. The observed and expected heterozygosity ranged from 0.3750 to 0.5515; and 0.4057 to 0.5037, respectively. The combined power of discrimination and probability of exclusion in the group were 0.99999999999940 and 0.9963, respectively. We analyzed the D A distance, interpopulation differentiations and population structure, conducted principal component analysis and neighbor-joining tree based on our studied group and 21 reference groups. The present results indicated that the studied Xinjiang Uigur group (represented our samples from the whole territory of Xinjiang Uigur Autonomous Region) had a close relationships with Urumchi Uigur (represented previously reported samples from Urumchi of Xinjiang) and Kazak groups. The present study may provide novel biological information for the study of population genetics, and can also increase our understanding of the genetic relationships between Xinjiang Uigur group and other groups.

  19. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  20. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  1. Population stratification of a common APOBEC gene deletion polymorphism.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Kidd

    2007-04-01

    Full Text Available The APOBEC3 gene family plays a role in innate cellular immunity inhibiting retroviral infection, hepatitis B virus propagation, and the retrotransposition of endogenous elements. We present a detailed sequence and population genetic analysis of a 29.5-kb common human deletion polymorphism that removes the APOBEC3B gene. We developed a PCR-based genotyping assay, characterized 1,277 human diversity samples, and found that the frequency of the deletion allele varies significantly among major continental groups (global FST = 0.2843. The deletion is rare in Africans and Europeans (frequency of 0.9% and 6%, more common in East Asians and Amerindians (36.9% and 57.7%, and almost fixed in Oceanic populations (92.9%. Despite a worldwide frequency of 22.5%, analysis of data from the International HapMap Project reveals that no single existing tag single nucleotide polymorphism may serve as a surrogate for the deletion variant, emphasizing that without careful analysis its phenotypic impact may be overlooked in association studies. Application of haplotype-based tests for selection revealed potential pitfalls in the direct application of existing methods to the analysis of genomic structural variation. These data emphasize the importance of directly genotyping structural variation in association studies and of accurately resolving variant breakpoints before proceeding with more detailed population-genetic analysis.

  2. The rates and patterns of deletions in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  3. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  4. Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae.

    Science.gov (United States)

    Matsuno, Kiyoshi; Yamada, Yasuhiro; Lee, Chang-Kwon; Nihira, Takuya

    2004-01-01

    The Streptomyces virginiae gamma-butyrolactone autoregulator virginiae butanolide is a low-molecular-weight Streptomyces hormone eliciting virginiamycin biosynthesis through its binding to the specific receptor protein, BarA. Immediately downstream of barA lies barB, the transcription of which is tightly repressed by BarA in the absence of virginiae butanolide and derepressed in its presence. Thus, BarB is next to BarA on the virginiae butanolide-BarA signaling cascade. An in-frame 279-bp deletion was introduced into the barB allele, which rendered it inactive by eliminating the majority of the coding region, including the helix-turn-helix DNA-binding motif. No significant change was observed with the Delta barB mutant with respect to the timing or amount of virginiae butanolide production, or the morphological differentiation on solid media, indicating that barB neither participates in virginiae butanolide biosynthesis nor in cytodifferentiation. In contrast, analysis of virginiamycin production in the Delta barB mutant revealed that production of both virginiamycin M(1) and virginiamycin S occurred immediately after virginiae butanolide production, 2-3 h earlier than in the wild-type strain, indicating that BarB participates in the temporal retardation of virginiamycin production after virginiae butanolide inactivates the repressor function of BarA. RT-PCR analysis of the transcription of several genes surrounding barA-barB by the Delta barB mutant indicated that BarB plays a negative regulatory role, directly or indirectly, in the transcription of barZ, vmsR, and orf5 located upstream of barB.

  5. Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers.

    Science.gov (United States)

    Wu, Kun; Yang, Minmin; Liu, Hongyan; Tao, Ye; Mei, Ju; Zhao, Yingzhong

    2014-03-19

    Sesame is an important and ancient oil crop in tropical and subtropical areas. China is one of the most important sesame producing countries with many germplasm accessions and excellent cultivars. Domestication and modern plant breeding have presumably narrowed the genetic basis of cultivated sesame. Several modern sesame cultivars were bred with a limited number of landrace cultivars in their pedigree. The genetic variation was subsequently reduced by genetic drift and selection. Characterization of genetic diversity of these cultivars by molecular markers is of great value to assist parental line selection and breeding strategy design. Three hundred and forty nine simple sequence repeat (SSR) and 79 insertion-deletion (InDel) markers were developed from cDNA library and reduced-representation sequencing of a sesame cultivar Zhongzhi 14, respectively. Combined with previously published SSR markers, 88 polymorphic markers were used to assess the genetic diversity, phylogenetic relationships, population structure, and allele distribution among 130 Chinese sesame accessions including 82 cultivars, 44 landraces and 4 wild germplasm accessions. A total of 325 alleles were detected, with the average gene diversity of 0.432. Model-based structure analysis revealed the presence of five subgroups belonging to two main groups, which were consistent with the results from principal coordinate analysis (PCA), phylogenetic clustering and analysis of molecular variance (AMOVA). Several missing or unique alleles were identified from particular types, subgroups or families, even though they share one or both parental/progenitor lines. This report presented a by far most comprehensive characterization of the molecular and genetic diversity of sesame cultivars in China. InDels are more polymorphic than SSRs, but their ability for deciphering genetic diversity compared to the later. Improved sesame cultivars have narrower genetic basis than landraces, reflecting the effect of genetic

  6. Highly Sensitive and Reliable Detection of EGFR Exon 19 Deletions by Droplet Digital Polymerase Chain Reaction.

    Science.gov (United States)

    Oskina, Natalya; Oscorbin, Igor; Khrapov, Evgeniy; Boyarskikh, Ulyana; Subbotin, Dmitriy; Demidova, Irina; Imyanitov, Evgeny; Filipenko, Maxim

    2017-06-06

    Analysis of EGFR mutations is becoming a routine clinical practice but the optimal EGFR mutation testing method is still to be determined. We determined the nucleotide sequence of deletions located in exon 19 of the EGFR gene in lung tumor samples of patients residing in different regions of Russia (153 tumor DNA specimens), using Sanger sequencing. We developed a droplet digital polymerase chain reaction assay capable of detecting all common EGFR deletions in exon 19. We also compared the therascreen amplification refractory mutation system assay with a droplet digital polymerase chain reaction assay for the detection of all the deletions in our study. The droplet digital polymerase chain reaction assay demonstrated 100% sensitivity against polymerase chain reaction fragment length analysis and detected all possible types of deletions revealed in our study (22 types). At the same time, the therascreen EGFR RGQ PCR Kit was not able to detect deletions c.2252-2276>A and c.2253-2276 and showed low performance for another long deletion. Thus, we can conclude that the extraordinary length of deletions and their atypical locations (shift at the 3'-region compared to known deletions) could be problematic for the therascreen EGFR RGQ PCR Kit and should be taken into account during targeted mutation test development. However, droplet digital polymerase chain reaction is a promising and reliable assay that can be used as a diagnostic tool to genotype formalin-fixed paraffin-embedded cancer samples for EGFR or another clinically relevant somatic mutation.

  7. Association between an insertion/deletion polymorphism in IL-1A gene and cancer risk: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Ma L

    2015-12-01

    Full Text Available Ling Ma,1 Ning Zhou21Department of Stomatology, 2Department of Anesthesiology, No 454 Hospital, PLA, Nanjing, Jiangsu, People’s Republic of ChinaPurpose: Previous studies have reported the association of an insertion/deletion (Ins/Del polymorphism (rs3783553 in the 3' untranslated region of interleukin-1A (IL-1A with the risk of cancer, such as oral squamous cell carcinoma, nasopharyngeal carcinoma, and cervical carcinoma. However, the results are still inconsistent. The present meta-analysis aimed to clarify the association of IL-1A rs3783553 polymorphism with cancer risk.Methods: All eligible studies were selected from PubMed, Web of Science, and Chinese National Knowledge Infrastructure up to September 2, 2015. Summary odds ratios (ORs and 95% confidence intervals (CIs were used to evaluate cancer risk.Results: A total of ten case–control studies with 4,514 cases and 6,689 controls were included this meta-analysis. We found that IL-1A rs3783553 polymorphism was significantly associated with cancer risk (Ins/Ins + Ins/Del vs Del/Del: OR =0.79, 95% CI =0.67–0.92; Ins/Ins vs Del/Del: OR =0.61, 95% CI =0.47–0.79; Ins/Ins vs Ins/Del + Del/Del: OR =0.67, 95% CI =0.55–0.83; Ins vs Del: OR =0.81, 95% CI =0.72–0.92. In the stratified analyses, significant effects were found among Asian populations (Ins/Ins + Ins/Del vs Del/Del: OR =0.81, 95% CI =0.69–0.95 and cervical carcinoma (Ins/Ins vs Del/Del: OR =0.51, 95% CI =0.34–0.76; Ins/Ins vs Ins/Del + Del/Del: OR =0.52, 95% CI =0.35–0.78.Conclusion: Our meta-analysis suggests that the IL-1A rs3783553 polymorphism contributes to susceptibility to cancer. However, well-designed studies with larger sample sizes are required to verify the results.Keywords: IL-1A, polymorphism, cancer, meta-analysis

  8. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis.

    Science.gov (United States)

    Turajlic, Samra; Litchfield, Kevin; Xu, Hang; Rosenthal, Rachel; McGranahan, Nicholas; Reading, James L; Wong, Yien Ning S; Rowan, Andrew; Kanu, Nnennaya; Al Bakir, Maise; Chambers, Tim; Salgado, Roberto; Savas, Peter; Loi, Sherene; Birkbak, Nicolai J; Sansregret, Laurent; Gore, Martin; Larkin, James; Quezada, Sergio A; Swanton, Charles

    2017-08-01

    The focus of tumour-specific antigen analyses has been on single nucleotide variants (SNVs), with the contribution of small insertions and deletions (indels) less well characterised. We investigated whether the frameshift nature of indel mutations, which create novel open reading frames and a large quantity of mutagenic peptides highly distinct from self, might contribute to the immunogenic phenotype. We analysed whole-exome sequencing data from 5777 solid tumours, spanning 19 cancer types from The Cancer Genome Atlas. We compared the proportion and number of indels across the cohort, with a subset of results replicated in two independent datasets. We assessed in-silico tumour-specific neoantigen predictions by mutation type with pan-cancer analysis, together with RNAseq profiling in renal clear cell carcinoma cases (n=392), to compare immune gene expression across patient subgroups. Associations between indel burden and treatment response were assessed across four checkpoint inhibitor datasets. We observed renal cell carcinomas to have the highest proportion (0·12) and number of indel mutations across the pan-cancer cohort (ppan-cancer proportion and number of indel mutations. Evidence suggests indels are a highly immunogenic mutational class, which can trigger an increased abundance of neoantigens and greater mutant-binding specificity. Cancer Research UK, UK National Institute for Health Research (NIHR) at the Royal Marsden Hospital National Health Service Foundation Trust, Institute of Cancer Research and University College London Hospitals Biomedical Research Centres, the UK Medical Research Council, the Rosetrees Trust, Novo Nordisk Foundation, the Prostate Cancer Foundation, the Breast Cancer Research Foundation, the European Research Council. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  9. Linear stability analysis reveals exclusion zone for sliding bed transport

    Directory of Open Access Journals (Sweden)

    Talmon Arnold M.

    2015-06-01

    Full Text Available A bend or any another pipe component disturbs solids transport in pipes. Longitudinal pressure profiles downstream of such a component may show a stationary transient harmonic wave, as revealed by a recent settling slurry laboratory experiment. Therefore the fundamental transient response of the two-layer model for fully stratified flow is investigated as a first approach. A linear stability analysis of the sliding bed configuration is conducted. No stationary transient harmonic waves are found in this analysis, but adaptation lengths for exponential recovery are quantified. An example calculation is given for a 0.1 m diameter pipeline.

  10. Invoking Thomas Kuhn: What Citation Analysis Reveals about Science Education

    Science.gov (United States)

    Loving, Cathleen C.; Cobern, William W.

    This paper analyzes how Thomas Kuhn's writings are used by others, especially science education researchers. Previous research in citation analysis is used to frame questions related to who cites Kuhn, in what manner and why. Research questions first focus on the variety of disciplines invoking Kuhn and to what extent Structure of Scientific Revolutions (SSR) is cited. The Web of Science database provides material from 1982 for this analysis. The science education literature is analyzed using back issues from 1985 of the Journal of Research in Science Teaching and Science Education. An article analysis reveals trends in terms of what Kuhnian ideas are most frequently invoked. Results indicate a wide array of disciplines from beekeeping to law cite Kuhn - especially generic citations to SSR. The science education journal analysis reveals pervasive use of the term paradigm, although use is quite varied. The two areas of research in science education most impacted by Kuhn appear to be conceptual change theory and constructivist epistemologies. Additional uses of Kuhn are discussed. The degree to which Kuhn is invoked in ways supporting the theoretical framework of citation analysis, whether his work is misappropriated, and the impact of Kuhn are discussed.

  11. A cross-sectional analysis of the development of response inhibition in children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2013-08-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is a neurogenetic disorder that is associated with cognitive impairments and significantly elevated risk for developing schizophrenia. While impairments in response inhibition are central to executive dysfunction in schizophrenia, the nature and development of such impairments in children with 22q11.2DS, a group at high risk for the disorder, are not clear. Here we used a classic Go/No-Go paradigm to quantify proactive (anticipatory stopping and reactive (actual stopping response inhibition in 47 children with 22q11.2DS and 36 typically developing (TD children, all ages 7-14. A cross-sectional design was used to examine age-related associations with response inhibition. When compared with TD individuals, children with 22q11.2DS demonstrated typical proactive response inhibition at all ages. By contrast, reactive response inhibition was impaired in children with 22q11.2DS relative to TD children. While older age predicted better reactive response inhibition in TD children, there was no age-related association with reactive response inhibition in children with 22q11.2DS. Closer examination of individual performance data revealed a wide range of performance abilities in older children with 22q11.2DS; some typical and others highly impaired. The results of this cross-sectional analysis suggest an impaired developmental trajectory of reactive response inhibition in some children with 22q11.2DS that might be related to atypical development of neuroanatomical systems underlying this cognitive process. As part of a larger study, this investigation might help identify risk factors for conversion to schizophrenia and lead to early diagnosis and preventive intervention.

  12. Genetic deletion of SEPT7 reveals a cell type-specific role of septins in microtubule destabilization for the completion of cytokinesis.

    Directory of Open Access Journals (Sweden)

    Manoj B Menon

    2014-08-01

    Full Text Available Cytokinesis terminates mitosis, resulting in separation of the two sister cells. Septins, a conserved family of GTP-binding cytoskeletal proteins, are an absolute requirement for cytokinesis in budding yeast. We demonstrate that septin-dependence of mammalian cytokinesis differs greatly between cell types: genetic loss of the pivotal septin subunit SEPT7 in vivo reveals that septins are indispensable for cytokinesis in fibroblasts, but expendable in cells of the hematopoietic system. SEPT7-deficient mouse embryos fail to gastrulate, and septin-deficient fibroblasts exhibit pleiotropic defects in the major cytokinetic machinery, including hyperacetylation/stabilization of microtubules and stalled midbody abscission, leading to constitutive multinucleation. We identified the microtubule depolymerizing protein stathmin as a key molecule aiding in septin-independent cytokinesis, demonstrated that stathmin supplementation is sufficient to override cytokinesis failure in SEPT7-null fibroblasts, and that knockdown of stathmin makes proliferation of a hematopoietic cell line sensitive to the septin inhibitor forchlorfenuron. Identification of septin-independent cytokinesis in the hematopoietic system could serve as a key to identify solid tumor-specific molecular targets for inhibition of cell proliferation.

  13. Multiple deletions in the polyketide synthase gene repertoire of Mycobacterium tuberculosis reveal functional overlap of cell envelope lipids in host-pathogen interactions.

    Science.gov (United States)

    Passemar, Charlotte; Arbués, Ainhoa; Malaga, Wladimir; Mercier, Ingrid; Moreau, Flavie; Lepourry, Laurence; Neyrolles, Olivier; Guilhot, Christophe; Astarie-Dequeker, Catherine

    2014-02-01

    Several specific lipids of the cell envelope are implicated in the pathogenesis of M. tuberculosis (Mtb), including phthiocerol dimycocerosates (DIM) that have clearly been identified as virulence factors. Others, such as trehalose-derived lipids, sulfolipids (SL), diacyltrehaloses (DAT) and polyacyltrehaloses (PAT), are believed to be essential for Mtb virulence, but the details of their role remain unclear. We therefore investigated the respective contribution of DIM, DAT/PAT and SL to tuberculosis by studying a collection of mutants, each with impaired production of one or several lipids. We confirmed that among those with a single lipid deficiency, only strains lacking DIM were affected in their replication in lungs and spleen of mice in comparison to the WT Mtb strain. We found also that the additional loss of DAT/PAT, and to a lesser extent of SL, increased the attenuated phenotype of the DIM-less mutant. Importantly, the loss of DAT/PAT and SL in a DIM-less background also affected Mtb growth in human monocyte-derived macrophages (hMDMs). Fluorescence microscopy revealed that mutants lacking DIM or DAT/PAT were localized in an acid compartment and that bafilomycin A1, an inhibitor of phagosome acidification, rescued the growth defect of these mutants. These findings provide evidence for DIM being dominant virulence factors that mask the functions of lipids of other families, notably DAT/PAT and to a lesser extent of SL, which we showed for the first time to contribute to Mtb virulence.

  14. Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis

    Science.gov (United States)

    McInnes, Kerry J.; Smith, Lee B.; Hunger, Nicole I.; Saunders, Philippa T.K.; Andrew, Ruth; Walker, Brian R.

    2012-01-01

    Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet–induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency. PMID:22415878

  15. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development.

    Science.gov (United States)

    Islamovic, Emir; García-Pedrajas, María D; Chacko, Nadia; Andrews, David L; Covert, Sarah F; Gold, Scott E

    2015-01-01

    Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, producing melanized sexual teliospores. Previously we identified Ust1, an APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor, whose deletion led to filamentous haploid growth and the production of highly pigmented teliospore-like structures in culture. In this study, we analyzed the transcriptome of a ust1 deletion mutant and functionally characterized two highly upregulated genes with potential roles in melanin biosynthesis: um05361, encoding a putative laccase (lac1), and um06414, encoding a polyketide synthase (pks1). The Δlac1 mutant strains showed dramatically reduced virulence on maize seedlings and fewer, less-pigmented teliospores in adult plants. The Δpks1 mutant was unaffected in seedling virulence but adult plant tumors generated hyaline, nonmelanized teliospores. Thus, whereas pks1 appeared to be restricted to the synthesis of melanin, lac1 showed a broader role in virulence. In conclusion, the ust1 deletion mutant provided an in vitro model for sporulation in U. maydis, and functional analysis supports the efficacy of this in vitro mutant analysis for identification of genes involved in in planta teliosporogenesis.

  16. Systematic toxicological analysis revealing a rare case of captan ingestion.

    Science.gov (United States)

    Gottzein, Anne K; Musshoff, Frank; Madea, Burkhard

    2013-07-01

    This article presents a case of suicide by intoxication with various pharmaceuticals, particularly anticonvulsants, combined with the fungicide captan. A cause of death could not be ascertained at autopsy. However, systematic toxicological analysis (STA) including a screening via solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) for (semi) volatile organic compounds revealed results suggesting a possible cause of death. The effects of captan on the human organism, its metabolism, and distribution will be discussed. Macroscopically, the cause of death was unascertained. STA revealed clonazepam, citalopram, and its metabolites, lamotrigine, levetiracetam, lacosamide, clonazepam, captan, and its metabolite tetrahydrophthalimide (THPI). For the first time, it was detected in human viscera. A quantification of THPI was performed to obtain distribution in the organs. The significance of a complete STA must be emphasized. The presence of THPI would have been missed without previous detection of captan. Consequently, this fatality would not have been investigated satisfactorily.

  17. The features of Drosophila core promoters revealed by statistical analysis

    Directory of Open Access Journals (Sweden)

    Trifonov Edward N

    2006-06-01

    Full Text Available Abstract Background Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters. In this study, we reveal various transcription initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters. Results Using Drosophila-specific position-weight matrices, we identified promoters containing TATA box, Initiator, Downstream Promoter Element (DPE, and Motif Ten Element (MTE, as well as core elements discovered in Human (TFIIB Recognition Element (BRE and Downstream Core Element (DCE. Promoters utilizing known synergetic combinations of two core elements (TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE were identified. We also establish the existence of promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our analysis revealed several motifs with the features of promoter elements, including possible novel core promoter element(s. Comparison of Human and Drosophila showed consistent percentages of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the same functional and mutual positions of the core elements. No statistical evidence of MTE utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was revealed. Conclusion We present lists of promoters that potentially utilize the aforementioned elements/combinations. The number of these promoters is two orders of magnitude larger than the number of promoters in which transcription initiation was experimentally studied. The sequences are ready to be experimentally tested or used for further statistical analysis. The developed approach may be utilized for other species.

  18. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism

    Science.gov (United States)

    Kinoshita, Syohei; Nishino, Shunsuke; Tomita, Atsumi; Shimizu, Hiroshi

    2017-01-01

    Central carbon metabolism is controlled by modulating the protein abundance profiles of enzymes that maintain the essential systems in living organisms. In this study, metabolic adaptation mechanisms in the model organism Saccharomyces cerevisiae were investigated by direct determination of enzyme abundance levels in 30 wild type and mutant strains. We performed a targeted proteome analysis using S. cerevisiae strains that lack genes encoding the enzymes responsible for central carbon metabolism. Our analysis revealed that at least 30% of the observed variations in enzyme abundance levels could be explained by global regulatory mechanisms. A enzyme-enzyme co-abundance analysis revealed that the abundances of enzyme proteins involved in the trehalose metabolism and glycolysis changed in a coordinated manner under the control of the transcription factors for global regulation. The remaining variations were derived from local mechanisms such as a mutant-specific increase in the abundances of remote enzymes. The proteome data also suggested that, although the functional compensation of the deficient enzyme was attained by using more resources for protein biosynthesis, available resources for the biosynthesis of the enzymes responsible for central metabolism were not abundant in S. cerevisiae cells. These results showed that global and local regulation of enzyme abundance levels shape central carbon metabolism in S. cerevisiae by using a limited resource for protein biosynthesis. PMID:28241048

  19. RAI1 point mutations, CAG repeat variation, and SNP analysis in non-deletion Smith-Magenis syndrome.

    Science.gov (United States)

    Bi, Weimin; Saifi, G Mustafa; Girirajan, Santhosh; Shi, Xin; Szomju, Barbara; Firth, Helen; Magenis, R Ellen; Potocki, Lorraine; Elsea, Sarah H; Lupski, James R

    2006-11-15

    Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation disorder characterized by distinct craniofacial features and neurobehavioral abnormalities usually associated with an interstitial deletion in 17p11.2. Heterozygous point mutations in the retinoic acid induced 1 gene (RAI1) have been reported in nine SMS patients without a deletion detectable by fluorescent in situ hybridization (FISH), implicating RAI1 haploinsufficiency as the cause of the major clinical features in SMS. All of the reported point mutations are unique and de novo. RAI1 contains a polymorphic CAG repeat and encodes a plant homeo domain (PHD) zinc finger-containing transcriptional regulator. We report a novel RAI1 frameshift mutation, c.3103delC, in a non-deletion patient with many SMS features. The deletion of a single cytosine occurs in a heptameric C-tract (CCCCCCC), the longest mononucleotide repeat in the RAI1 coding region. Interestingly, we had previously reported a frameshift mutation, c.3103insC, in the same mononucleotide repeat. Furthermore, all five single base frameshift mutations preferentially occurred in polyC but not polyG tracts. We also investigated the distribution of the polymorphic CAG repeats in both the normal population and the SMS patients as one potential molecular mechanism for variability of clinical expression. In this limited data set, there was no significant association between the length of CAG repeats and the SMS phenotype. However, we identified a 5-year-old girl with an apparent SMS phenotype who was a compound heterozygote for an RAI1 missense mutation inherited from her father and a polyglutamine repeat of 18 copies, representing the largest known CAG repeat in this gene, inherited from her mother.

  20. Deletion analysis of the dystrophin gene in Duchenne and Becker muscular dystrophy patients: Use in carrier diagnosis

    Directory of Open Access Journals (Sweden)

    Kumari D

    2003-04-01

    Full Text Available The dystrophin gene was analyzed in 8 Duchenne muscular dystrophy (DMD and 10 Becker muscular dystrophy (BMD unrelated families (22 subjects: 18 index cases and 4 sibs for the presence of deletions by multiplex polymerase chain reaction (mPCR; 27 exons and Southern hybridization using 8 cDMD probes. Deletions were identified in 5 DMD and 7 BMD patients (6 index cases and 1 sib. The concordance between the clinical phenotype and 'reading frame hypothesis' was observed in 11/12 patients (92%. The female relatives of DMD/BMD patients with identifiable deletions were examined by quantitative mPCR. Carriers were identified in 7 families. We also describe a variation in the HindIII pattern with cDNA probe 8 and 11-14. Molecular characterization of the dystrophin gene in this study has been helpful in advising the patients concerning the inheritance of the condition, and carrier diagnosis of female relatives, and should also prove useful for prenatal diagnosis.

  1. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  2. MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions

    DEFF Research Database (Denmark)

    Kirchhoff, Maria; Bisgaard, Anne-Marie; Bryndorf, Thue;

    2007-01-01

    -Beuren, Prader-Willi, Angelman, Miller-Dieker, Smith-Magenis, and 22q11-deletion syndromes). Patients were initially referred for HR-CGH analysis and MRS-MLPA was performed retrospectively. MRS-MLPA analysis revealed imbalances in 15/258 patients (5.8%). Ten deletions were identified, including deletions of 1p36......, 5q35 (Sotos syndrome), 7q11 (Williams-Beuren syndrome), 17p11 (Smith-Magenis syndrome), 15q11 (Angelman syndrome) and 22q11. Duplications were detected in 5q35, 7q11, 17p13, 17p11 and 22q11. We reviewed another 170 patients referred specifically for MRS-MLPA analysis. Eighty of these patients were...

  3. Molecular Analysis of G1691A Mutation in Factor 5 Leiden and its relation with mtDNA common deletion in Human Recurrent Pregnancy Loss

    Directory of Open Access Journals (Sweden)

    Negin Garoosi

    2016-12-01

    Full Text Available Background: In general, miscarriage is one of the most common complications of pregnancy and it is the pregnancy loss before 20 weeks of gestation or birth weight below500 grams. Recurrent Pregnancy Loss is defined as two or more spontaneous miscarriages. Genetic disorders such as mutations can be involved in miscarriage. Considering the importance of this issue, in this study, G1691A mutation of coagulation factor 5 and common deletion mutation in the mitochondrial genome(4977-bp deletion in mtDNA were investigated as factors which can influence miscarriage, especially recurrent miscarriage. Materials and Methods: For this study 41 patients with the history of miscarriage and 48 healthy women with successful delivery were selected and completed the questionnaires which included questions such as miscarriage history, age, blood type and then Blood samples were taken. After extraction of DNA from each sample, the studied mutations were determined using PCR method. At the end, analysis of the results and assessment of other important and effective factors in them was done using Epi Info software and using chi square (X2 test. Results: Among the patients ,there were 29.25% patients with one miscarriage, 65.85% patients with two miscarriages and 4.9% patients with three miscarriages. There was no homozygous genotype in the study of G1691A mutations in both groups, and prevalence of heterozygotes was 17% among patients and 4.17% among controls. On the other hand, frequency of 4977-bp deletion in mtDNA in patients group and control group was 68.29% and 14.58%, respectively. Analysis showed that frequency of G1691A mutations and common deletion mutation in mtDNA in patients group were higher than controls and were statistically significant . Although the opportunity to have miscarriage in GA genotype and carriers of common deletion is more than control, but there is not any correlation between these two mutations and their inheritability and also they

  4. Geometric morphometric analysis reveals sexual dimorphism in the distal femur.

    Science.gov (United States)

    Cavaignac, Etienne; Savall, Frederic; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2016-02-01

    An individual's sex can be determined by the shape of their distal femur. The goal of this study was to show that differences in distal femur shape related to sexual dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions; these analyses identified trends in bone shape in sex-based subgroups. Sex-related differences in shape were statistically significant. The subject's sex was correctly assigned in 77.3% of cases using geometric morphometric analysis. This study has shown that geometric morphometric analysis of the distal femur is feasible and has revealed sexual dimorphism differences in this bone segment. This reliable, accurate method could be used for virtual autopsy and be used to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome.

    Science.gov (United States)

    Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair

    2017-08-01

    We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Comparative whole-genome analysis of clinical isolates reveals characteristic architecture of Mycobacterium tuberculosis pangenome.

    Science.gov (United States)

    Periwal, Vinita; Patowary, Ashok; Vellarikkal, Shamsudheen Karuthedath; Gupta, Anju; Singh, Meghna; Mittal, Ashish; Jeyapaul, Shamini; Chauhan, Rajendra Kumar; Singh, Ajay Vir; Singh, Pravin Kumar; Garg, Parul; Katoch, Viswa Mohan; Katoch, Kiran; Chauhan, Devendra Singh; Sivasubbu, Sridhar; Scaria, Vinod

    2015-01-01

    The tubercle complex consists of closely related mycobacterium species which appear to be variants of a single species. Comparative genome analysis of different strains could provide useful clues and insights into the genetic diversity of the species. We integrated genome assemblies of 96 strains from Mycobacterium tuberculosis complex (MTBC), which included 8 Indian clinical isolates sequenced and assembled in this study, to understand its pangenome architecture. We predicted genes for all the 96 strains and clustered their respective CDSs into homologous gene clusters (HGCs) to reveal a hard-core, soft-core and accessory genome component of MTBC. The hard-core (HGCs shared amongst 100% of the strains) was comprised of 2,066 gene clusters whereas the soft-core (HGCs shared amongst at least 95% of the strains) comprised of 3,374 gene clusters. The change in the core and accessory genome components when observed as a function of their size revealed that MTBC has an open pangenome. We identified 74 HGCs that were absent from reference strains H37Rv and H37Ra but were present in most of clinical isolates. We report PCR validation on 9 candidate genes depicting 7 genes completely absent from H37Rv and H37Ra whereas 2 genes shared partial homology with them accounting to probable insertion and deletion events. The pangenome approach is a promising tool for studying strain specific genetic differences occurring within species. We also suggest that since selecting appropriate target genes for typing purposes requires the expected target gene be present in all isolates being typed, therefore estimating the core-component of the species becomes a subject of prime importance.

  7. Comparative whole-genome analysis of clinical isolates reveals characteristic architecture of Mycobacterium tuberculosis pangenome.

    Directory of Open Access Journals (Sweden)

    Vinita Periwal

    Full Text Available The tubercle complex consists of closely related mycobacterium species which appear to be variants of a single species. Comparative genome analysis of different strains could provide useful clues and insights into the genetic diversity of the species. We integrated genome assemblies of 96 strains from Mycobacterium tuberculosis complex (MTBC, which included 8 Indian clinical isolates sequenced and assembled in this study, to understand its pangenome architecture. We predicted genes for all the 96 strains and clustered their respective CDSs into homologous gene clusters (HGCs to reveal a hard-core, soft-core and accessory genome component of MTBC. The hard-core (HGCs shared amongst 100% of the strains was comprised of 2,066 gene clusters whereas the soft-core (HGCs shared amongst at least 95% of the strains comprised of 3,374 gene clusters. The change in the core and accessory genome components when observed as a function of their size revealed that MTBC has an open pangenome. We identified 74 HGCs that were absent from reference strains H37Rv and H37Ra but were present in most of clinical isolates. We report PCR validation on 9 candidate genes depicting 7 genes completely absent from H37Rv and H37Ra whereas 2 genes shared partial homology with them accounting to probable insertion and deletion events. The pangenome approach is a promising tool for studying strain specific genetic differences occurring within species. We also suggest that since selecting appropriate target genes for typing purposes requires the expected target gene be present in all isolates being typed, therefore estimating the core-component of the species becomes a subject of prime importance.

  8. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  9. Analysis of the downstream region of nodD3 P1 promoter by deletion and complementation tests in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    陈迪; 刘彦杰; 朱家璧; 沈善炯; 俞冠翘

    2003-01-01

    In Sinorhizobium meliloti, the nodD3 gene is transcriptionally controlled by two promoters, P1 and P2. Under P1, there is a 660 bp sequence including a small open reading frame, ORF2, followed by the nodD3 coding region. Genetic analysis using the different deletions on the 3′ends of P1 downstream sequence showed that the downstream sequence +1-+125nt is essential for P1 expression. Complementation, mutations and nodulation tests demonstrated that the ORF2 auto-represses P1 expression, while the P1 downstream sequence +1-+125nt counteracts it.

  10. Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23.

    Science.gov (United States)

    Lo, Huei-Fen; Lin, Long-Liu; Chiang, Wen-Ying; Chie, Meng-Chun; Hsu, Wen-Hwei; Chang, Chen-Tien

    2002-08-01

    The alpha-amylase from Bacillus sp. strain TS-23 is a secreted starch hydrolase with a domain organization similar to that of other microbial alpha-amylases and an additional functionally unknown domain (amino acids 517-613) in the C-terminal region. By sequence comparison, we found that this latter domain contained a sequence motif typical for raw-starch binding. To investigate the functional role of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23, four His(6)-tagged mutants with extensive deletions in this region were constructed and expressed in Escherichia coli. SDS-PAGE and activity staining analyses showed that the N- and C-terminally truncated alpha-amylases had molecular masses of approximately 65, 58, 54, and 49 kDa. Progressive loss of raw-starch-binding activity occurred upon removal of C-terminal amino acid residues, indicating the requirement for the entire region in formation of a functional starch-binding domain. Up to 98 amino acids from the C-terminal end of the alpha-amylase could be deleted without significant effect on the raw-starch hydrolytic activity or thermal stability. Furthermore, the active mutants hydrolyzed raw corn starch to produce maltopentaose as the main product, suggesting that the raw-starch hydrolytic activity of the Bacillus sp. strain TS-23 alpha-amylase is functional and independent from the starch-binding domain.

  11. Identification by gene deletion analysis of a regulator, VmsR, that controls virginiamycin biosynthesis in Streptomyces virginiae.

    Science.gov (United States)

    Kawachi, R; Wangchaisoonthorn, U; Nihira, T; Yamada, Y

    2000-11-01

    Virginiae butanolide (VB)-BarA of Streptomyces virginiae is one of the newly discovered pairs of a butyrolactone autoregulator and a corresponding receptor protein of Streptomyces species and regulates the production of the antibiotic virginiamycin (VM) in S. virginiae. The gene vmsR was found to be situated 4.7 kbp upstream of the barA gene, which encodes the VB-specific receptor. The vmsR product was predicted to be a regulator of VM biosynthesis based on its high homology to some Streptomyces pathway-specific transcriptional regulators for the biosynthetic gene clusters of polyketide antibiotics, such as Streptomyces peucetius DnrI (47.5% identity, 84. 3% similarity), which controls daunorubicin biosynthesis. A vmsR deletion mutant was created by homologous recombination. Neither virginiamycin M(1) nor virginiamycin S was produced in the vmsR mutant, while amounts of VB and BarA similar to those produced in the wild-type strain were detected. Reverse transcription-PCR analyses confirmed that the vmsR deletion had no deleterious effects on the transcription of the vmsR-surrounding genes, indicating that VmsR is a positive regulator of VM biosynthesis in S. virginiae.

  12. Array-based FMR1 sequencing and deletion analysis in patients with a fragile X syndrome-like phenotype.

    Directory of Open Access Journals (Sweden)

    Stephen C Collins

    Full Text Available BACKGROUND: Fragile X syndrome (FXS is caused by loss of function mutations in the FMR1 gene. Trinucleotide CGG-repeat expansions, resulting in FMR1 gene silencing, are the most common mutations observed at this locus. Even though the repeat expansion mutation is a functional null mutation, few conventional mutations have been identified at this locus, largely due to the clinical laboratory focus on the repeat tract. METHODOLOGY/PRINCIPAL FINDINGS: To more thoroughly evaluate the frequency of conventional mutations in FXS-like patients, we used an array-based method to sequence FMR1 in 51 unrelated males exhibiting several features characteristic of FXS but with normal CGG-repeat tracts of FMR1. One patient was identified with a deletion in FMR1, but none of the patients were found to have other conventional mutations. CONCLUSIONS/SIGNIFICANCE: These data suggest that missense mutations in FMR1 are not a common cause of the FXS phenotype in patients who have normal-length CGG-repeat tracts. However, screening for small deletions of FMR1 may be of clinically utility.

  13. Analysis of mice containing a targeted deletion of beta-globin locus control region 5' hypersensitive site 3.

    Science.gov (United States)

    Hug, B A; Wesselschmidt, R L; Fiering, S; Bender, M A; Epner, E; Groudine, M; Ley, T J

    1996-01-01

    To examine the function of murine beta-globin locus region (LCR) 5' hypersensitive site 3 (HS3) in its native chromosomal context, we deleted this site from the mouse germ line by using homologous recombination techniques. Previous experiments with human 5' HS3 in transgenic models suggested that this site independently contains at least 50% of total LCR activity and that it interacts preferentially with the human gamma-globin genes in embryonic erythroid cells. However, in this study, we demonstrate that deletion of murine 5' HS3 reduces expression of the linked embryonic epsilon y- and beta H 1-globin genes only minimally in yolk sac-derived erythroid cells and reduces output of the linked adult beta (beta major plus beta minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-neo cassette was left within the HS3 region of the LCR, a much more severe phenotype was observed at all developmental stages, suggesting that PGK-neo interferes with LCR activity when it is retained within the LCR. Collectively, these results suggest that murine 5' HS3 is not required for globin gene switching; importantly, however, it is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult erythrocytes. PMID:8649401

  14. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B;

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  15. Secretome analysis revealed adaptive and non-adaptive responses of the Staphylococcus carnosus femB mutant.

    Science.gov (United States)

    Nega, Mulugeta; Dube, Linda; Kull, Melanie; Ziebandt, Anne-Kathrin; Ebner, Patrick; Albrecht, Dirk; Krismer, Bernhard; Rosenstein, Ralf; Hecker, Michael; Götz, Friedrich

    2015-04-01

    FemABX peptidyl transferases are involved in non-ribosomal pentaglycine interpeptide bridge biosynthesis. Here, we characterized the phenotype of a Staphylococcus carnosus femB deletion mutant, which was affected in growth and showed pleiotropic effects such as enhanced methicillin sensitivity, lysostaphin resistance, cell clustering, and decreased peptidoglycan cross-linking. However, comparative secretome analysis revealed a most striking difference in the massive secretion or release of proteins into the culture supernatant in the femB mutant than the wild type. The secreted proteins can be categorized into typical cytosolic proteins and various murein hydrolases. As the transcription of the murein hydrolase genes was up-regulated in the mutant, they most likely represent an adaption response to the life threatening mutation. Even though the transcription of the cytosolic protein genes was unaltered, their high abundance in the supernatant of the mutant is most likely due to membrane leakage triggered by the weakened murein sacculus and enhanced autolysins.

  16. Quantum deletion is possible

    CERN Document Server

    Elizalde, E

    2000-01-01

    A deleting operation is introduced which differs from the commonly used {\\it controlled-not} (C-not) conditional logical operation $-$to flip the (classical or quantum) state of the last copy in a chain in a deletion process. It is completely reversible, in the classical case, possessing a most natural cloning operation counterpart. We call this deleting procedure R-deletion since, in a way, it can be viewed as a `randomization' of the standard C-not operator. It is a nonlinear operation and has the remarkable property of avoiding in a simple manner the `impossibility of deletion of a quantum state' principle, put forward by Pati and Braunstein recently \\cite{pbn1}.

  17. A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion.

    Science.gov (United States)

    Viñas-Jornet, Marina; Esteba-Castillo, Susanna; Gabau, Elisabeth; Ribas-Vidal, Núria; Baena, Neus; San, Joan; Ruiz, Anna; Coll, Maria Dolors; Novell, Ramon; Guitart, Miriam

    2014-11-01

    Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in particular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybridization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and prominent premaxilla. Genetic analysis of family members showed two inherited deletions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, borderline intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecutive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult probands. We suggest that in addition to intellectual disability and psychiatric disease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance.

  18. 1p36 deletion syndrome: an update

    Directory of Open Access Journals (Sweden)

    Jordan VK

    2015-08-01

    Full Text Available Valerie K Jordan,1 Hitisha P Zaveri,2 Daryl A Scott1,2 1Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; 2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Abstract: Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. Keywords: chromosome 1p36, chromosome deletion, 1p36 deletion syndrome, monosomy 1p36

  19. Sequence analysis for the complete proviral genome of subgroup J Avian Leukosis virus associated with hemangioma: a special 11 bp deletion was observed in U3 region of 3'UTR

    Directory of Open Access Journals (Sweden)

    Zou Nianli

    2011-04-01

    Full Text Available Abstract Background Avian Leukosis virus (ALV of subgroup J (ALV-J belong to retroviruses, which could induce tumors in domestic and wild birds. Myelocytomatosis was the most common neoplasma observed in infected flocks; however, few cases of hemangioma caused by ALV-J were reported in recent year. Results An ALV-J strain SCDY1 associated with hemangioma was isolated and its proviral genomic sequences were determined. The full proviral sequence of SCDY1 was 7489 nt long. Homology analysis of the env, pol and gag gene between SCDY1 and other strains in GenBank were 90.3-94.2%, 96.6-97.6%, and 94.3-96.5% at nucleotide level, respectively; while 85.1-90.7%, 97.4-98.7%, and 96.2-98.4% at amino acid level, respectively. Alignment analysis of the genomic sequence of ALV-J strains by using HPRS-103 as reference showed that a special 11 bp deletion was observed in U3 region of 3'UTR of SCDY1 and another ALV-J strain NHH isolated from case of hemangioma, and the non-functional TM and E element were absent in the genome of SCDY1, but the transcriptional regulatory elements including C/EBP, E2BP, NFAP-1, CArG box and Y box were highly conserved. Phylogenetic analysis revealed that all analyzed ALV-J strains could be separated into four groups, and SCDY1 as well as another strain NHH were included in the same cluster. Conclusion The variation in envelope glycoprotein was higher than other genes. The genome sequence of SCDY1 has a close relationship with that of another ALV-J strain NHH isolated from case of hemangioma. A 11 bp deletion observed in U3 region of 3'UTR of genome of ALV-J isolated from case of hemangioma is interesting, which may be associated with the occurrence of hemangioma.

  20. Deletion of the core region of 5' HS2 of the mouse beta-globin locus control region reveals a distinct effect in comparison with human beta-globin transgenes.

    Science.gov (United States)

    Hu, Xiao; Bulger, Michael; Bender, M A; Fields, Jennifer; Groudine, Mark; Fiering, Steven

    2006-01-15

    The beta-globin locus control region (LCR) is a large DNA element that is required for high-level expression of beta-like globin genes from the endogenous mouse locus or in transgenic mice carrying the human beta-globin locus. The LCR encompasses 6 DNaseI hypersensitive sites (HSs) that bind transcription factors. These HSs each contain a core of a few hundred base pairs (bp) that has most of the functional activity and exhibits high interspecies sequence homology. Adjoining the cores are 500- to 1000-bp "flanks" with weaker functional activity and lower interspecies homology. Studies of human beta-globin transgenes and of the endogenous murine locus show that deletion of an entire HS (core plus flanks) moderately suppresses expression. However, human transgenes in which only individual HS core regions were deleted showed drastic loss of expression accompanied by changes in chromatin structure. To address these disparate results, we have deleted the core region of 5'HS2 from the endogenous murine beta-LCR. The phenotype was similar to that of the larger 5'HS2 deletion, with no apparent disruption of chromatin structure. These results demonstrate that the greater severity of HS core deletions in comparison to full HS deletions is not a general property of the beta-LCR.

  1. Deletion of the core region of 5′ HS2 of the mouse β-globin locus control region reveals a distinct effect in comparison with human β-globin transgenes

    Science.gov (United States)

    Hu, Xiao; Bulger, Michael; Bender, M. A.; Fields, Jennifer; Groudine, Mark; Fiering, Steven

    2006-01-01

    The β-globin locus control region (LCR) is a large DNA element that is required for high-level expression of β-like globin genes from the endogenous mouse locus or in transgenic mice carrying the human β-globin locus. The LCR encompasses 6 DNaseI hypersensitive sites (HSs) that bind transcription factors. These HSs each contain a core of a few hundred base pairs (bp) that has most of the functional activity and exhibits high interspecies sequence homology. Adjoining the cores are 500- to 1000-bp “flanks” with weaker functional activity and lower interspecies homology. Studies of human β-globin transgenes and of the endogenous murine locus show that deletion of an entire HS (core plus flanks) moderately suppresses expression. However, human transgenes in which only individual HS core regions were deleted showed drastic loss of expression accompanied by changes in chromatin structure. To address these disparate results, we have deleted the core region of 5′HS2 from the endogenous murine β-LCR. The phenotype was similar to that of the larger 5′HS2 deletion, with no apparent disruption of chromatin structure. These results demonstrate that the greater severity of HS core deletions in comparison to full HS deletions is not a general property of the β-LCR. (Blood. 2006;107:821-826) PMID:16189270

  2. Sequence analysis reveals mosaic genome of Aichi virus

    Directory of Open Access Journals (Sweden)

    Han Xiaohong

    2011-08-01

    Full Text Available Abstract Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity. Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood. The genome of Aichi virus contains 8,280 nucleotides and a poly(A tail. The single large open reading frame (nt 713-8014 according to the strain AB010145 encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  3. NFKBIA Deletion in Glioblastomas

    Science.gov (United States)

    Bredel, Markus; Scholtens, Denise M.; Yadav, Ajay K.; Alvarez, Angel A.; Renfrow, Jaclyn J.; Chandler, James P.; Yu, Irene L.Y.; Carro, Maria S.; Dai, Fangping; Tagge, Michael J.; Ferrarese, Roberto; Bredel, Claudia; Phillips, Heidi S.; Lukac, Paul J.; Robe, Pierre A.; Weyerbrock, Astrid; Vogel, Hannes; Dubner, Steven; Mobley, Bret; He, Xiaolin; Scheck, Adrienne C.; Sikic, Branimir I.; Aldape, Kenneth D.; Chakravarti, Arnab; Harsh, Griffith R.

    2013-01-01

    BACKGROUND Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O6-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival. PMID:21175304

  4. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.

    Science.gov (United States)

    Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F

    2003-01-01

    Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).

  5. Exact break point of a 50 kb deletion 8 kb centromeric of the HLA-A locus with HLA-A*24:02: the same deletion observed in other A*24 alleles and A*23:01 allele.

    Science.gov (United States)

    Mitsunaga, Shigeki; Okudaira, Yuko; Kunii, Nanae; Cui, Tailin; Hosomichi, Kazuyoshi; Oka, Akira; Suzuki, Yasuo; Homma, Yasuhiko; Sato, Shinji; Inoue, Ituro; Inoko, Hidetoshi

    2011-08-01

    In a structural aberration analysis of patients with arthritis mutilans, a 50 kb deletion near the HLA-A locus with HLA-A*24:02 allele was detected. It was previously reported that HLA-A*24:02 haplotype harbored a large-scale deletion telomeric of the HLA-A gene in healthy individuals. In order to confirm that the deletion are the same in patients with arthritis mutilans and in healthy individuals, and to identify the break point of this deletion, the boundary sequences across the deletion in A*24:02 was amplified by polymerase chain reaction (PCR) as a 3.7 kb genomic fragment and subjected to nucleotide sequence determination. A comparison of these genomic sequences with those of the non-A*24:02 haplotype revealed that the deleted genomic region spanning 50 kb was flanked by 3.7 kb repetitive element-rich segments homologous to each other on both sides in non-A*24. The nucleotide sequences of the PCR products were identical in patients with arthritis mutilans and in healthy individuals, revealing that the deletion linked to A*24:02 is irrelevant to the onset of arthritis mutilans. The deletion was detected in all other A*24 alleles so far examined but not in other HLA-A alleles, except A*23:01. This finding, along with the phylogenic tree of HLA-A alleles and the presence of the 3.7 kb highly homologous segments at the boundary of the deleted genomic region in A*03 and A*32, may suggest that this HLA-A*24:02-linked deletion was generated by homologous recombination within two 3.7 kb homologous segments situated 50 kb apart in the ancestral A*24 haplotype after divergence from the A*03 and A*32 haplotypes.

  6. Microhomology-mediated deletion and gene conversion in African trypanosomes.

    Science.gov (United States)

    Glover, Lucy; Jun, Junho; Horn, David

    2011-03-01

    Antigenic variation in African trypanosomes is induced by DNA double-strand breaks (DSBs). In these protozoan parasites, DSB repair (DSBR) is dominated by homologous recombination (HR) and microhomology-mediated end joining (MMEJ), while non-homologous end joining (NHEJ) has not been reported. To facilitate the analysis of chromosomal end-joining, we established a system whereby inter-allelic repair by HR is lethal due to loss of an essential gene. Analysis of intrachromosomal end joining in individual DSBR survivors exclusively revealed MMEJ-based deletions but no NHEJ. A survey of microhomologies typically revealed sequences of between 5 and 20 bp in length with several mismatches tolerated in longer stretches. Mean deletions were of 54 bp on the side closest to the break and 284 bp in total. Break proximity, microhomology length and GC-content all favored repair and the pattern of MMEJ described above was similar at several different loci across the genome. We also identified interchromosomal gene conversion involving HR and MMEJ at different ends of a duplicated sequence. While MMEJ-based deletions were RAD51-independent, one-sided MMEJ was RAD51 dependent. Thus, we describe the features of MMEJ in Trypanosoma brucei, which is analogous to micro single-strand annealing; and RAD51 dependent, one-sided MMEJ. We discuss the contribution of MMEJ pathways to genome evolution, subtelomere recombination and antigenic variation.

  7. Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.

    Directory of Open Access Journals (Sweden)

    Stéphane Caut

    Full Text Available BACKGROUND: The leatherback turtle (Dermochelys coriacea has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI. Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. METHODOLOGY/PRINCIPAL FINDINGS: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal and foraging latitude (North Atlantic vs. West African coasts, respectively. Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. CONCLUSIONS/SIGNIFICANCE: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by

  8. Quantitative flux analysis reveals folate-dependent NADPH production

    Science.gov (United States)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  9. Genotype-phenotype correlation in 13q13.3-q21.3 deletion.

    Science.gov (United States)

    Tosca, Lucie; Brisset, Sophie; Petit, François M; Metay, Corinne; Latour, Stéphanie; Lautier, Benoît; Lebas, Axel; Druart, Luc; Picone, Olivier; Mas, Anne-Elisabeth; Prévot, Sophie; Tardieu, Marc; Goossens, Michel; Tachdjian, Gérard

    2011-01-01

    Pure interstitial deletions of the long arm of chromosome 13 are correlated with variable phenotypes according to the size and the location of the deleted region. Deletions involving the 13q13q21 region are rare. In order to establish interstitial 13q genotype-phenotype correlation, we used high resolution 244K oligonucleotide array in addition to conventional karyotype and molecular (fluorescent in situ hybridization, microsatellite markers analysis) techniques in two independent probands carrying a deletion 13q13 to 13q21. First patient was a 3-year-old girl with mental retardation and dysmorphy carrying a 13q13.3q21.31 de novo deletion diagnosed post-natally. The second one was a fetus with de novo del(13)(q14q21.2) associated with first trimester increased nuchal translucency. We showed that specific dysmorphic features (macrocephaly, high forehead, hypertelorism, large nose, large and malformed ears and retrognathia) were correlated to the common 13q14q21 chromosomal segment. Physical examination revealed overgrowth with global measurement up to the 95th percentile in both probands. This is the second description of overgrowth in patients carrying a 13q deletion. Haploinsufficiency of common candidates genes such as CKAP2, SUGT1, LECT1, DCLK1 and SMAD9, involved in cell division and bone development, is a possible mechanism that could explain overgrowth in both patients. This study underlines also that cytogenetic analysis could be performed in patients with overgrowth.

  10. Allelic and non-allelic heterogeneities in pyridoxine dependent seizures revealed by ALDH7A1 mutational analysis.

    Science.gov (United States)

    Kanno, Junko; Kure, Shigeo; Narisawa, Ayumi; Kamada, Fumiaki; Takayanagi, Masaru; Yamamoto, Katsuya; Hoshino, Hisao; Goto, Tomohide; Takahashi, Takao; Haginoya, Kazuhiro; Tsuchiya, Shigeru; Baumeister, Fritz A M; Hasegawa, Yuki; Aoki, Yoko; Yamaguchi, Seiji; Matsubara, Yoichi

    2007-08-01

    Pyridoxine dependent seizure (PDS) is a disorder of neonates or infants with autosomal recessive inheritance characterized by seizures, which responds to pharmacological dose of pyridoxine. Recently, mutations have been identified in the ALDH7A1 gene in Caucasian families with PDS. To elucidate further the genetic background of PDS, we screened for ALDH7A1 mutations in five PDS families (patients 1-5) that included four Orientals. Diagnosis as having PDS was confirmed by pyridoxine-withdrawal test. Exon sequencing analysis of patients 1-4 revealed eight ALDH7A1 mutations in compound heterozygous forms: five missense mutations, one nonsense mutation, one point mutation at the splicing donor site in intron 1, and a 1937-bp genomic deletion. The deletion included the entire exon 17, which was flanked by two Alu elements in introns 16 and 17. None of the mutations was found in 100 control chromosomes. In patient 5, no mutation was found by the exon sequencing analysis. Furthermore, expression level or nucleotide sequences of ALDH7A1 mRNA in lymphoblasts were normal. Plasma pipecolic acid concentration was not elevated in patient 5. These observations suggest that ALDH7A1 mutation is unlikely to be responsible for patient 5. Abnormal metabolism of GABA/glutamate in brain has long been suggested as the underlying pathophysiology of PDS. CSF glutamate concentration was elevated during the off-pyridoxine period in patient 3, but not in patient 2 or 5. These results suggest allelic and non-allelic heterogeneities of PDS, and that the CSF glutamate elevation does not directly correlate with the presence of ALDH7A1 mutations.

  11. Analysis of colorectal cancers in British Bangladeshi identifies early onset, frequent mucinous histotype and a high prevalence of RBFOX1 deletion

    Directory of Open Access Journals (Sweden)

    Sengupta Neel

    2013-01-01

    Full Text Available Abstract Background Prevalence of colorectal cancer (CRC in the British Bangladeshi population (BAN is low compared to British Caucasians (CAU. Genetic background may influence mutations and disease features. Methods We characterized the clinicopathological features of BAN CRCs and interrogated their genomes using mutation profiling and high-density single nucleotide polymorphism (SNP arrays and compared findings to CAU CRCs. Results Age of onset of BAN CRC was significantly lower than for CAU patients (p=3.0 x 10-5 and this difference was not due to Lynch syndrome or the polyposis syndromes. KRAS mutations in BAN microsatellite stable (MSS CRCs were comparatively rare (5.4% compared to CAU MSS CRCs (25%; p=0.04, which correlates with the high percentage of mucinous histotype observed (31% in the BAN samples. No BRAF mutations was seen in our BAN MSS CRCs (CAU CRCs, 12%; p=0.08. Array data revealed similar patterns of gains (chromosome 7 and 8q, losses (8p, 17p and 18q and LOH (4q, 17p and 18q in BAN and CAU CRCs. A small deletion on chromosome 16p13.2 involving the alternative splicing factor RBFOX1 only was found in significantly more BAN (50% than CAU CRCs (15% cases (p=0.04. Focal deletions targeting the 5’ end of the gene were also identified. Novel RBFOX1 mutations were found in CRC cell lines and tumours; mRNA and protein expression was reduced in tumours. Conclusions KRAS mutations were rare in BAN MSS CRC and a mucinous histotype common. Loss of RBFOX1 may explain the anomalous splicing activity associated with CRC.

  12. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells.

    Science.gov (United States)

    Beckervordersandforth, Ruth; Tripathi, Pratibha; Ninkovic, Jovica; Bayam, Efil; Lepier, Alexandra; Stempfhuber, Barbara; Kirchhoff, Frank; Hirrlinger, Johannes; Haslinger, Anja; Lie, D Chichung; Beckers, Johannes; Yoder, Bradley; Irmler, Martin; Götz, Magdalena

    2010-12-03

    Until now, limitations in the ability to enrich adult NSCs (aNSCs) have hampered meaningful analysis of these cells at the transcriptome level. Here we show via a split-Cre technology that coincident activity of the hGFAP and prominin1 promoters is a hallmark of aNSCs in vivo. Sorting of cells from the adult mouse subependymal zone (SEZ) based on their expression of GFAP and prominin1 isolates all self-renewing, multipotent stem cells at high purity. Comparison of the transcriptome of these purified aNSCs to parenchymal nonneurogenic astrocytes and other SEZ cells reveals aNSC hallmarks, including neuronal lineage priming and the importance of cilia- and Ca-dependent signaling pathways. Inducible deletion of the ciliary protein IFT88 in aNSCs validates the role of ciliary function in aNSCs. Our work reveals candidate molecular regulators for unique features of aNSCs and facilitates future selective analysis of aNSCs in other functional contexts, such as aging and injury.

  13. Cloning and functional analysis of the sequences flanking mini-Tn5 in the magnetosomes deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1

    Institute of Scientific and Technical Information of China (English)

    LI; Feng; LI; Ying; JIANG; Wei; WANG; Zhenfang; LI; Jilun

    2005-01-01

    A magnetosome deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 transposon mutagenesis, and a 5045-bp fragment flanking mini-Tn5 in NM4 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved six putative open reading frames (ORFs); the mini-Tn5 was inserted into ORF4. Functional complementary test indicated that the 5045-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The protein encoded by ORF4 had 25% of identity with the chemotaxis protein CheYIII of Caulobacter crescentus CB15, and the protein encoded by ORF4 contained a conserved signal receiver domain that can receive the signal from the sensor partner of the bacterial two-component systems. It was suggested that the protein encoded by ORF4 may take part in the signal transduction relating to biosynthesis of magnetosomes.

  14. Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder.

    Science.gov (United States)

    Brunner, Daniela; Kabitzke, Patricia; He, Dansha; Cox, Kimberly; Thiede, Lucinda; Hanania, Taleen; Sabath, Emily; Alexandrov, Vadim; Saxe, Michael; Peles, Elior; Mills, Alea; Spooren, Will; Ghosh, Anirvan; Feliciano, Pamela; Benedetti, Marta; Luo Clayton, Alice; Biemans, Barbara

    2015-01-01

    Autism spectrum disorder comprises several neurodevelopmental conditions presenting symptoms in social communication and restricted, repetitive behaviors. A major roadblock for drug development for autism is the lack of robust behavioral signatures predictive of clinical efficacy. To address this issue, we further characterized, in a uniform and rigorous way, mouse models of autism that are of interest because of their construct validity and wide availability to the scientific community. We implemented a broad behavioral battery that included but was not restricted to core autism domains, with the goal of identifying robust, reliable phenotypes amenable for further testing. Here we describe comprehensive findings from two known mouse models of autism, obtained at different developmental stages, using a systematic behavioral test battery combining standard tests as well as novel, quantitative, computer-vision based systems. The first mouse model recapitulates a deletion in human chromosome 16p11.2, found in 1% of individuals with autism. The second mouse model harbors homozygous null mutations in Cntnap2, associated with autism and Pitt-Hopkins-like syndrome. Consistent with previous results, 16p11.2 heterozygous null mice, also known as Del(7Slx1b-Sept1)4Aam weighed less than wild type littermates displayed hyperactivity and no social deficits. Cntnap2 homozygous null mice were also hyperactive, froze less during testing, showed a mild gait phenotype and deficits in the three-chamber social preference test, although less robust than previously published. In the open field test with exposure to urine of an estrous female, however, the Cntnap2 null mice showed reduced vocalizations. In addition, Cntnap2 null mice performed slightly better in a cognitive procedural learning test. Although finding and replicating robust behavioral phenotypes in animal models is a challenging task, such functional readouts remain important in the development of therapeutics and we

  15. Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Daniela Brunner

    Full Text Available Autism spectrum disorder comprises several neurodevelopmental conditions presenting symptoms in social communication and restricted, repetitive behaviors. A major roadblock for drug development for autism is the lack of robust behavioral signatures predictive of clinical efficacy. To address this issue, we further characterized, in a uniform and rigorous way, mouse models of autism that are of interest because of their construct validity and wide availability to the scientific community. We implemented a broad behavioral battery that included but was not restricted to core autism domains, with the goal of identifying robust, reliable phenotypes amenable for further testing. Here we describe comprehensive findings from two known mouse models of autism, obtained at different developmental stages, using a systematic behavioral test battery combining standard tests as well as novel, quantitative, computer-vision based systems. The first mouse model recapitulates a deletion in human chromosome 16p11.2, found in 1% of individuals with autism. The second mouse model harbors homozygous null mutations in Cntnap2, associated with autism and Pitt-Hopkins-like syndrome. Consistent with previous results, 16p11.2 heterozygous null mice, also known as Del(7Slx1b-Sept14Aam weighed less than wild type littermates displayed hyperactivity and no social deficits. Cntnap2 homozygous null mice were also hyperactive, froze less during testing, showed a mild gait phenotype and deficits in the three-chamber social preference test, although less robust than previously published. In the open field test with exposure to urine of an estrous female, however, the Cntnap2 null mice showed reduced vocalizations. In addition, Cntnap2 null mice performed slightly better in a cognitive procedural learning test. Although finding and replicating robust behavioral phenotypes in animal models is a challenging task, such functional readouts remain important in the development of

  16. Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciodigital syndrome

    DEFF Research Database (Denmark)

    Bisschoff, Izak J; Zeschnigk, Christine; Horn, Denise

    2013-01-01

    have studied 55 sporadic and six familial cases of suspected OFD1. Comprehensive mutation analysis in OFD1 revealed mutations in 37 female patients from 30 families; 22 mutations have not been previously described including two heterozygous deletions spanning OFD1 and neighbouring genes. Analysis...

  17. Large deletion of the GJB6 gene in deaf patients heterozygous for the GJB2 gene mutation: genotypic and phenotypic analysis.

    Science.gov (United States)

    Feldmann, Delphine; Denoyelle, Françoise; Chauvin, Pierre; Garabédian, Eréa-Noël; Couderc, Rémy; Odent, Sylvie; Joannard, Alain; Schmerber, Sébastien; Delobel, Bruno; Leman, Jacques; Journel, Hubert; Catros, Hélène; Le Maréchal, Cédric; Dollfus, Hélène; Eliot, Marie-Madeleine; Delaunoy, Jean-Pierre; David, Albert; Calais, Catherine; Drouin-Garraud, Valérie; Obstoy, Marie-Françoise; Bouccara, Didier; Sterkers, Olivier; Huy, Patrice Tran Ba; Goizet, Cyril; Duriez, Françoise; Fellmann, Florence; Hélias, Jocelyne; Vigneron, Jacqueline; Montaut, Bétina; Lewin, Patricia; Petit, Christine; Marlin, Sandrine

    2004-06-15

    Recent investigations identified a large deletion of the GJB6 gene in trans to a mutation of GJB2 in deaf patients. We looked for GJB2 mutations and GJB6 deletions in 255 French patients presenting with a phenotype compatible with DFNB1. 32% of the patients had biallelic GJB2 mutations and 6% were a heterozygous for a GJB2 mutation and a GJB6 deletion. Biallelic GJB2 mutations and combined GJB2/GJB6 anomalies were more frequent in profoundly deaf children. Based on these results, we are now assessing GJB6 deletion status in cases of prelingual hearing loss. Copyright 2004 Wiley-Liss, Inc.

  18. Fatal dilated cardiomyopathy associated with a mitochondrial DNA deletion.

    Science.gov (United States)

    Moslemi, A R; Selimovic, N; Bergh, C H; Oldfors, A

    2000-01-01

    A 27-year-old man was admitted to hospital because of severe cardiac failure. Investigation revealed dilated cardiomyopathy with a left ventricular ejection fraction of 15-20%. During adolescence the patient had been investigated for growth retardation and he also had progressive external ophthalmoplegia. There had been no symptoms of cardiac disease until 2 weeks before admittance. An endomyocardial biopsy showed cardiomyocytes deficient in cytochrome c oxidase (COX) in a mosaic pattern. A skeletal muscle biopsy showed mitochondrial myopathy with COX-deficient ragged-red fibers. Molecular genetic analysis revealed a heteroplasmic, 3.8-kb, mitochondrial DNA (mtDNA) deletion in heart and muscle. PCR-based quantification of the proportion of mtDNA with deletion showed 47% mutated mtDNA in the myocardial biopsy and 68% in muscle. In spite of treatment, the condition deteriorated and the patient died 5 days after admittance. This case demonstrates that mtDNA deletions may occasionally be the cause of severe dilated cardiomyopathy, and that morphological and molecular genetic diagnosis may be obtained by endomyocardial biopsy. Copyright 2000 S. Karger AG, Basel.

  19. Conversion of Deletions during Recombination in Pneumococcal Transformation

    OpenAIRE

    Lefevre, J. C.; Mostachfi, P; Gasc, A M; Guillot, E; Pasta, F.; M. Sicard

    1989-01-01

    Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of...

  20. Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes.

    Science.gov (United States)

    Bianchi, M M; Ngo, S; Vandenbol, M; Sartori, G; Morlupi, A; Ricci, C; Stefani, S; Morlino, G B; Hilger, F; Carignani, G; Slonimski, P P; Frontali, L

    2001-11-01

    Sequencing of the yeast genome has shown that about one-third of the yeast ORFs code for unknown proteins. Many other have similarity to known genes, but still the cellular functions of the gene products are unknown. The aim of the B1 Consortium of the EUROFAN project was to perform a qualitative phenotypic analysis on yeast strains deleted for functionally orphan genes. To this end we set up a simple approach to detect growth defects of a relatively large number of strains in the presence of osmolytes, ethanol, high temperature, inhibitory compounds or drugs affecting protein biosynthesis, phosphorylation level or nucleic acids biosynthesis. We have now developed this procedure to a semi-quantitative level, we have included new inhibitors, such as hygromycin B, benomyl, metals and additional drugs interfering with synthesis of nucleic acids, and we have performed phenotypic analysis on the deleted strains of 564 genes poorly characterized in respect to their cellular functions. About 30% of the deleted strains showed at least one phenotype: many of them were pleiotropic. For many gene deletions, the linkage between the deletion marker and the observed phenotype(s) was studied by tetrad analysis and their co-segregation was demonstrated. Co-segregation was found in about two-thirds of the analysed strains showing phenotype(s).

  1. Partial Gene Deletions of PMP22 Causing Hereditary Neuropathy with Liability to Pressure Palsies

    Directory of Open Access Journals (Sweden)

    Sun-Mi Cho

    2014-01-01

    Full Text Available Hereditary neuropathy with liability to pressure palsies (HNPP is an autosomal neuropathy that is commonly caused by a reciprocal 1.5 Mb deletion on chromosome 17p11.2, at the site of the peripheral myelin protein 22 (PMP22 gene. Other patients with similar phenotypes have been shown to harbor point mutations or small deletions, although there is some clinical variation across these patients. In this report, we describe a case of HNPP with copy number changes in exon or promoter regions of PMP22. Multiplex ligation-dependent probe analysis revealed an exon 1b deletion in the patient, who had been diagnosed with HNPP in the first decade of life using molecular analysis.

  2. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene.

    Science.gov (United States)

    Oka, Tomoichiro; Saif, Linda J; Marthaler, Douglas; Esseili, Malak A; Meulia, Tea; Lin, Chun-Ming; Vlasova, Anastasia N; Jung, Kwonil; Zhang, Yan; Wang, Qiuhong

    2014-10-10

    The highly contagious and deadly porcine epidemic diarrhea virus (PEDV) first appeared in the US in April 2013. Since then the virus has spread rapidly nationwide and to Canada and Mexico causing high mortality among nursing piglets and significant economic losses. Currently there are no efficacious preventive measures or therapeutic tools to control PEDV in the US. The isolation of PEDV in cell culture is the first step toward the development of an attenuated vaccine, to study the biology of PEDV and to develop in vitro PEDV immunoassays, inactivation assays and screen for PEDV antivirals. In this study, nine of 88 US PEDV strains were isolated successfully on Vero cells with supplemental trypsin and subjected to genomic sequence analysis. They differed genetically mainly in the N-terminal S protein region as follows: (1) strains (n=7) similar to the highly virulent US PEDV strains; (2) one similar to the reportedly US S INDEL PEDV strain; and (3) one novel strain most closely related to highly virulent US PEDV strains, but with a large (197aa) deletion in the S protein. Representative strains of these three genetic groups were passaged serially and grew to titers of ∼5-6log10 plaque forming units/mL. To our knowledge, this is the first report of the isolation in cell culture of an S INDEL PEDV strain and a PEDV strain with a large (197aa) deletion in the S protein. We also designed primer sets to detect these genetically diverse US PEDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Short arm deletion of chromosome 12: report of two new cases.

    Science.gov (United States)

    Orye, E; Craen, M

    1975-08-25

    Two boys (W.M. and C.P.) are described, in each of whom a short-arm deleted C chromosome was apparently present. The clinical findings on W.M. are stenosis of the sagittal sutura associated with atrophy of the nervus opticus and mental retardation, and on C.P. osteogenesis imperfecta. An analysis of the G- and Q-banding patterns revealed in each patient a 12p-- chromosome. The deletion involved most of band p12 as shown by length measurements on G-banded chromosomes. Both cases were compared to proven and presumed cases of 12p-- from literature, but no common clinical phenotype could be demonstrated.

  4. A Prenatally Ascertained De Novo Terminal Deletion of Chromosomal Bands 1q43q44 Associated with Multiple Congenital Abnormalities in a Female Fetus

    Directory of Open Access Journals (Sweden)

    Carolina Sismani

    2015-01-01

    Full Text Available Terminal deletions in the long arm of chromosome 1 result in a postnatally recognizable disorder described as 1q43q44 deletion syndrome. The size of the deletions and the resulting phenotype varies among patients. However, some features are common among patients as the chromosomal regions included in the deletions. In the present case, ultrasonography at 22 weeks of gestation revealed choroid plexus cysts (CPCs and a single umbilical artery (SUA and therefore amniocentesis was performed. Chromosomal analysis revealed a possible terminal deletion in 1q and high resolution array CGH confirmed the terminal 1q43q44 deletion and estimated the size to be approximately 8 Mb. Following termination of pregnancy, performance of fetopsy allowed further clinical characterization. We report here a prenatal case with the smallest pure terminal 1q43q44 deletion, that has been molecularly and phenotypically characterized. In addition, to our knowledge this is the first prenatal case reported with 1q13q44 terminal deletion and Pierre-Robin sequence (PRS. Our findings combined with review data from the literature show the complexity of the genetic basis of the associated syndrome.

  5. Association of gr/gr deletion in the AZFc region of Y chromosome with male infertility:A Meta-analysis%Y染色体AZPc区gr/gr缺失与男性不育关系的Meta分析

    Institute of Scientific and Technical Information of China (English)

    李亚; 潘克俭; 王兰; 任江

    2011-01-01

    Objective: To evaluate the association of gr/gr deletion in the AZFc region of Y chromosome with idiopathic male infertility using Meta-analysis.Methods: All relevant case-control studies addressing the relationship between gr/gr deletion and idiopathic male infertility were identified from PubMed, VIP and CNKI (from January 2003 to August 2010).Statistical analyses were performed with the RevMan4.2 software.Results: Twenty eligible articles were selected in this study, including 5 246 cases of idiopathic infertility and 4 380 controls.The integrated data from the 20 studies revealed a significantly higher frequency of gr/gr deletion in the patients than in the controls, with an odds ratio (OR) of 1.63 (95% CI: 1.23 -2.44) (P = 0.002).However, when the Meta-analysis was limited to 16 studies with stricter case and control selection criteria, the overall OR increased to 1.84 (95% CI:1.47 -2.29) (P < 0.000 01 ).Thirteen studies showed that oligozoospermia patients had a significantly higher frequency of gr/gr deletion than controls ( OR = 2.12, 95% CI: 1.61 - 2.80) (P < 0.000 01 ).Eight studies showed a significant association between the gr/gr deletion subtype without DAZ1/DAZ2 gene copies and spermatogenic impairment ( OR = 1.83, 95% CI: 1.31 - 2.55 ) (P = 0.000 4) , but no statistically significant differences were found in the frequency distribution of the gr/gr deletion subtype missing DAZ3/DAZ4 gene copies between the patients and controls (OR = 1.43, 95% CI: 0.97 -2.11) (P = 0.07).Conclusion: The present data suggest that gr/gr deletion may be one of the risk factors of male infertility.%目的:采用Meta分析系统评价Y染色体AZFc区gr/gr缺失与特发性男性不育的关系.方法:检索PubMed、VIP和CNKI数据库(2003年1月至2010年8月)中有关gr/gr缺失与特发性男性不育相关性的病例-对照研究,并用RevMan4.2软件进行统计分析.结果:①共纳入20篇符合条件的文献,累计特发性不育病例5 246

  6. Association between the SERPINE1 (PAI-1) 4G/5G insertion/deletion promoter polymorphism (rs1799889) and pre-eclampsia: a systematic review and meta-analysis.

    Science.gov (United States)

    Zhao, Linlu; Bracken, Michael B; Dewan, Andrew T; Chen, Suzan

    2013-03-01

    The SERPINE1 -675 4G/5G promoter region insertion/deletion polymorphism (rs1799889) has been implicated in the pathogenesis of pre-eclampsia (PE), but the genetic association has been inconsistently replicated. To derive a more precise estimate of the association, a systematic review and meta-analysis was conducted. This study conformed to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed (MEDLINE), Scopus and HuGE Literature Finder literature databases were systematically searched for relevant studies. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for the allelic comparison (4G versus 5G) and genotypic comparisons following the co-dominant (4G/4G versus 5G/5G and 4G/5G versus 5G/5G), dominant (4G/4G+4G/5G versus 5G/5G) and recessive (4G/4G versus 4G/5G+5G/5G) genetic models. Between-study heterogeneity was quantified by I(2) statistics and publication bias was appraised with funnel plots. Sensitivity analysis was conducted to evaluate the robustness of meta-analysis findings. Meta-analysis of 11 studies involving 1297 PE cases and 1791 controls found a significant association between the SERPINE1 -675 4G/5G polymorphism and PE for the recessive genetic model (OR = 1.36, 95% CI: 1.13-1.64, P = 0.001), a robust finding according to sensitivity analysis. A low level of between-study heterogeneity was detected (I(2) = 20%) in this comparison, which may be explained by ethnic differences. Funnel plot inspection did not reveal evidence of publication bias. In conclusion, this study provides a comprehensive examination of the available literature on the association between SERPINE1 -675 4G/5G and PE. Meta-analysis results support this polymorphism as a likely susceptibility variant for PE.

  7. Critical region in 2q31.2q32.3 deletion syndrome: Report of two phenotypically distinct patients, one with an additional deletion in Alagille syndrome region

    Directory of Open Access Journals (Sweden)

    Ferreira Susana

    2012-05-01

    Full Text Available Abstract Background Standard cytogenetic analysis has revealed to date more than 30 reported cases presenting interstitial deletions involving region 2q31-q32, but with poorly defined breakpoints. After the postulation of 2q31.2q32.3 deletion as a clinically recognizable disorder, more patients were reported with a critical region proposed and candidate genes pointed out. Results We report two female patients with de novo chromosome 2 cytogenetically visible deletions, one of them with an additional de novo deletion in chromosome 20p12.2p12.3. Patient I presents a 16.8 Mb deletion in 2q31.2q32.3 while patient II presents a smaller deletion of 7 Mb in 2q32.1q32.3, entirely contained within patient I deleted region, and a second 4 Mb deletion in Alagille syndrome region. Patient I clearly manifests symptoms associated with the 2q31.2q32.3 deletion syndrome, like the muscular phenotype and behavioral problems, while patient II phenotype is compatible with the 20p12 deletion since she manifests problems at the cardiac level, without significant dysmorphisms and an apparently normal psychomotor development. Conclusions Whereas Alagille syndrome is a well characterized condition mainly caused by haploinsufficiency of JAG1 gene, with manifestations that can range from slight clinical findings to major symptoms in different domains, the 2q31.2q32.3 deletion syndrome is still being delineated. The occurrence of both imbalances in reported patient II would be expected to cause a more severe phenotype compared to the individual phenotype associated with each imbalance, which is not the case, since there are no manifestations due to the 2q32 deletion. This, together with the fact that patient I deleted region overlaps previously reported cases and patient II deletion is outside this common region, reinforces the existence of a critical region in 2q31.3q32.1, between 181 to 185 Mb, responsible for the clinical phenotype.

  8. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y.; Ali, Muhammad; Daud, Muhammad; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Iqbal, Hira; Khan, Arif O.; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A.; Khan, Shaheen N.; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O.; Riazuddin, S. Amer

    2016-01-01

    Purpose The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. Methods All participating individuals underwent a detailed ophthalmic examination. Each patient’s medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. Results Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. Conclusion Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family. PMID:27936067

  9. Molecular cytogenetic characterization of a 2q35-q37 duplication and a 4q35.1-q35.2 deletion in two cousins: a genotype-phenotype analysis.

    Science.gov (United States)

    Ronzoni, Luisa; Peron, Angela; Bianchi, Vera; Baccarin, Marco; Guerneri, Silvana; Silipigni, Rosamaria; Lalatta, Faustina; Bedeschi, Maria Francesca

    2015-07-01

    The 2q3 duplication and 4q3 deletion are two distinct conditions with variable phenotypes including developmental delay, intellectual disability, Pierre Robin sequence (PRS), and cardiovascular, craniofacial, digital and skeletal anomalies. We describe two cousins, a 37-year-old man (Patient 1) and a 17-year-old girl (Patient 2), with a derivative chromosome leading to a 4q35 deletion-2q35q37 duplication. Conventional karyotype showed in both patients the same rearrangement derived from unbalanced segregation of a parental reciprocal translocation involving the long arms of chromosome 2 and 4. Patient 1's father and Patient 2's mother were identified as the carriers of a balanced translocation t(2;4)(q35;q35). Array-CGH analysis, performed to characterize the rearrangement, documented in both patients the presence of a 26 Mb duplication of the 2q35-q37.3 region of chromosome 2 and a 6.3 Mb deletion of the 4q35.1-q35.2 region of chromosome 4. Both patients showed intellectual disability, minor facial, and digital anomalies, hearing, ocular, and genitourinary abnormalities. The comparison of their features with those of published cases of 2q3 duplication and 4q3 deletion allowed us to further delineate the genotype-phenotype correlation as well as the combined effect of partial 2q duplication and 4q deletion syndromes in adulthood.

  10. A MOLECULARLY CHARACTERIZED INTERSTITIAL DELETION ENCOMPASSING THE 11q14.1-q23.3 REGION IN A CASE WITH MULTIPLE CONGENITAL ABNORMALITIES.

    Science.gov (United States)

    Cetin, Z; Altiok-Clark, O; Yakut, S; Guzel-Nur, B; Mihci, E; Berker-Karauzum, S

    2016-01-01

    Interstitial deletion of chromosome 11 long arm is a rare event. In most of the interstitial deletions on the long arm of chromosome 11 both the position and the size of these deletions are heterogeneous making a precise karyotype-phenotype correlation. In only a few of the reported cases has the deletion been molecularly characterized. Our patient was a 13-year-old male presented; mental motor retardation, strabismus, myopia, retinopathy, sensorineural hearing loss, a long and triangular face, a broad forehead, hypotelorism, nasal septal deviation, a beaked nose, hypoplastic ala nasie, bilateral low-set ears, a high arched palate, crowded teeth, retrognathia, thin lips, a long neck, and sloping shoulders, hyperactive behavior, pulmonary stenosis and lumbar scoliosis. Conventional cytogenetic analysis revealed 46,XY,del(11)(q14.1-q23.3) karyotype in the patient. Array-CGH analysis of the patient's DNA revealed an interstitial deletion encompassing 33.2 Mb in the 11q14.1-q23.3 genomic region (chr11: 83,161,443-116,401,751 ; Hg19). In this report, we present a patient with an interstitial deletion on the long arm of chromosome 11 that encompassed the 11q14.1-q23.3 region; and, using array-CGH analysis, we molecularly characterized the deleted region.

  11. FLCN intragenic deletions in Chinese familial primary spontaneous pneumothorax.

    Science.gov (United States)

    Ding, Yibing; Zhu, Chengchu; Zou, Wei; Ma, Dehua; Min, Haiyan; Chen, Baofu; Ye, Minhua; Pan, Yanqing; Cao, Lei; Wan, Yueming; Zhang, Wenwen; Meng, Lulu; Mei, Yuna; Yang, Chi; Chen, Shilin; Gao, Qian; Yi, Long

    2015-05-01

    Primary spontaneous pneumothorax (PSP) is a significant clinical problem, affecting tens of thousands patients annually. Germline mutations in the FLCN gene have been implicated in etiology of familial PSP (FPSP). Most of the currently identified FLCN mutations are small indels or point mutations that detected by Sanger sequencing. The aim of this study was to determine large FLCN deletions in PSP families that having no FLCN sequence-mutations. Multiplex ligation-dependent probe amplification (MLPA) assays and breakpoint analyses were used to detect and characterize the deletions. Three heterozygous FLCN intragenic deletions were identified in nine unrelated Chinese families including the exons 1-3 deletion in two families, the exons 9-14 deletion in five families and the exon 14 deletion in two families. All deletion breakpoints are located in Alu repeats. A 5.5 Mb disease haplotype shared in the five families with exons 9-14 deletion may date the appearance of this deletion back to approximately 16 generations ago. Evidences for founder effects of the other two deletions were also observed. This report documents the first identification of founder mutations in FLCN, as well as expands mutation spectrum of the gene. Our findings strengthen the view that MLPA analysis for intragenic deletions/duplications, as an important genetic testing complementary to DNA sequencing, should be used for clinical molecular diagnosis in FPSP.

  12. Detailed deletion mapping of loss of heterozygosity on 9p13-23 in laryngeal squamous cell carcinoma by microsatellite analysis

    Institute of Scientific and Technical Information of China (English)

    徐先发; 高燕宁; 程书鈞

    2004-01-01

    Background This study was designed to investigate the hot spots of microsatellite loss of heterozygosity (LOH) on 9p13-23 in laryngeal squamous cell carcinoma and to find out the correlation between the incidence of microsatellite LOH and the clinicopathological parameters.Methods Tumor tissues were obtained from paraffin embedded sections with microdissection. Genomic DNA was extracted from tumor tissues and peripheral blood lymphocytes with the phenol-chloroform. Polymerase chain reaction (PCR) amplification and denaturing gel electrophoresis were carried out in a set of 42 squamous cell carcinoma (SCC) of larynx and corresponding peripheral blood lymphocytes using 13 highly polymorphic microsatellite markers on 9p13-23. The correlation was analyzed between microsatellite LOH at the high frequency on 9p13-23 and clinicopathological parameters in the patients with squamous cell carcinoma of larynx.Results Of the 42 laryngeal cancers, 41 (97.6%) showed LOH in at least one of the microsatellite markers tested on 9p13-23. The most frequently deleted marker was D9S162 in 17 of the 19 (89.5%) informative samples. The marker D9S171, which is located on 9p21, had LOH detected in 12 of the 15 informative cases (80.0%). LOH at the D9S1748 marker (closest to the p16 gene locus) was detected in 18 of the 36 informative cases (50.0%). Allelic deletion mapping revealed two minimal regions of LOH encompassing markers D9S161-D9S171 on 9p21 and IFNA-D9S162 on 9p22-23. Multiple LOH (≥4) on 9p21-23 was found more frequently in the patients under 60 years, with supraglottic SCC or cervical lymph node metastasis than those over 60 years, with glottic SCC or without cervical lymph node metastasis (P<0.01 or 0.01, 0.05, respectively). On the contrary, there was no correlation between T stages or pathologic classification and the frequency of LOH on 9p21-23 in 42 SCC of Larynx.Conclusions These findings imply the presence of at least two putative tumor suppressor genes on 9p13-23 in

  13. Analysis of blood stem cell activity and cystatin gene expression in a mouse model presenting a chromosomal deletion encompassing Csta and Stfa2l1.

    Science.gov (United States)

    Bilodeau, Mélanie; MacRae, Tara; Gaboury, Louis; Laverdure, Jean-Philippe; Hardy, Marie-Pierre; Mayotte, Nadine; Paradis, Véronique; Harton, Sébastien; Perreault, Claude; Sauvageau, Guy

    2009-10-19

    The cystatin protein superfamily is characterized by the presence of conserved sequences that display cysteine protease inhibitory activity (e.g., towards cathepsins). Type 1 and 2 cystatins are encoded by 25 genes of which 23 are grouped in 2 clusters localized on mouse chromosomes 16 and 2. The expression and essential roles of most of these genes in mouse development and hematopoiesis remain poorly characterized. In this study, we describe a set of quantitative real-time PCR assays and a global expression profile of cystatin genes in normal mouse tissues. Benefiting from our collection of DelES embryonic stem cell clones harboring large chromosomal deletions (to be reported elsewhere), we selected a clone in which a 95-kb region of chromosome 16 is missing (Del(16qB3Delta/+)). In this particular clone, 2 cystatin genes, namely Csta and Stfa2l1 are absent along with 2 other genes (Fam162a, Ccdc58) and associated intergenic regions. From this line, we established a new homozygous mutant mouse model (Del(16qB3Delta/16qB3Delta)) to assess the in vivo biological functions of the 2 deleted cystatins. Stfa2l1 gene expression is high in wild-type fetal liver, bone marrow, and spleen, while Csta is ubiquitously expressed. Homozygous Del(16qB3Delta/16qB3Delta) animals are phenotypically normal, fertile, and not overtly susceptible to spontaneous or irradiation-induced tumor formation. The hematopoietic stem and progenitor cell activity in these mutant mice are also normal. Interestingly, quantitative real-time PCR expression profiling reveals a marked increase in the expression levels of Stfa2l1/Csta phylogenetically-related genes (Stfa1, Stfa2, and Stfa3) in Del(16qB3Delta/16qB3Delta) hematopoietic tissues, suggesting that these candidate genes might be contributing to compensatory mechanisms. Overall, this study presents an optimized approach to globally monitor cystatin gene expression as well as a new mouse model deficient in Stfa2l1/Csta genes, expanding the

  14. The ARABIDOPSIS accession Pna-10 is a naturally occurring sng1 deletion mutant.

    Science.gov (United States)

    Li, Xu; Bergelson, Joy; Chapple, Clint

    2010-01-01

    Sinapoylmalate is the major sinapate ester found in leaves of Arabidopsis thaliana, where it plays an important role in UV-B protection. Metabolic profiling of rosette leaves from 96 Arabidopsis accessions revealed that the Pna-10 accession accumulates sinapoylglucose instead of sinapoylmalate. This unique leaf sinapate ester profile is similar to that of the previously characterized sinapoylglucose accumulator1 (sng1) mutants. SNG1 encodes sinapoylglucose:malate sinapoyltransferase (SMT), a serine carboxypeptidase-like (SCPL) enzyme that catalyzes the conversion of sinapoylglucose to sinapoylmalate. In the reference Columbia genome, the SNG1 gene is located in a cluster of five SCPL genes on Chromosome II. PCR and sequencing analysis of the same genomic region in the Pna-10 accession revealed a 13-kb deletion that eliminates the SNG1 gene (At2g22990) and the gene encoding sinapoylglucose:anthocyanin sinapoyltransferase (SAT) (At2g23000). In addition to its sinapoylmalate-deficient phenotype, and consistent with the loss of SAT, Pna-10 is unable to accumulate sinapoylated anthocyanins. Interestingly, the Pna-17 accession, collected from the same location as Pna-10, has no such deletion. Further analysis of 135 lines collected from the same location as Pna-10 and Pna-17 revealed that four more lines contain the deletion found in Pna-10 accession, suggesting that either the deletion found in Pna-10 is a recent event that has not yet been eliminated through selection or that sinapoylmalate is dispensable for the growth of Arabidopsis under field conditions.

  15. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  16. BAHAMAS: new SNIa analysis reveals inconsistencies with standard cosmology

    CERN Document Server

    Shariff, H; Trotta, R; van Dyk, D A

    2015-01-01

    We present results obtained by applying our BAyesian HierArchical Modeling for the Analysis of Supernova cosmology (BAHAMAS) software package to the 740 spectroscopically confirmed supernovae type Ia (SNIa) from the "Joint Light-curve Analysis" (JLA) dataset. We simultaneously determine cosmological parameters and standardization parameters, including host galaxy mass corrections, residual scatter and object-by-object intrinsic magnitudes. Combining JLA and Planck Cosmic Microwave Background data, we find significant discrepancies in cosmological parameter constraints with respect to the standard analysis: we find Omega_M = 0.399+/-0.027, 2.8\\sigma\\ higher than previously reported and w = -0.910+/-0.045, 1.6\\sigma\\ higher than the standard analysis. We determine the residual scatter to be sigma_res = 0.104+/-0.005. We confirm (at the 95% probability level) the existence of two sub-populations segregated by host galaxy mass, separated at log_{10}(M/M_solar) = 10, differing in mean intrinsic magnitude by 0.055+...

  17. Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo

    Directory of Open Access Journals (Sweden)

    Grywna Klaus

    2009-08-01

    Full Text Available Abstract During the outbreak of SARS in 2002/3, a prototype virus was isolated from a patient in Frankfurt/Germany (strain Frankfurt-1. As opposed to all other SARS-Coronavirus strains, Frankfurt-1 has a 45-nucleotide deletion in the transmembrane domain of its ORF 7b protein. When over-expressed in HEK 293 cells, the full-length protein but not the variant with the deletion caused interferon beta induction and cleavage of procaspase 3. To study the role of ORF 7b in the context of virus replication, we cloned a full genome cDNA copy of Frankfurt-1 in a bacterial artificial chromosome downstream of a T7 RNA polymerase promoter. Transfection of capped RNA transcribed from this construct yielded infectious virus that was indistinguishable from the original virus isolate. The presumed Frankfurt-1 ancestor with an intact ORF 7b was reconstructed. In CaCo-2 and HUH7 cells, but not in Vero cells, the variant carrying the ORF 7b deletion had a replicative advantage against the parental virus (4- and 6-fold increase of virus RNA in supernatant, respectively. This effect was neither associated with changes in the induction or secretion of type I interferon, nor with altered induction of apoptosis in cell culture. However, pretreatment of cells with interferon beta caused the deleted virus to replicate to higher titers than the parental strain (3.4-fold in Vero cells, 7.9-fold in CaCo-2 cells. In Syrian Golden Hamsters inoculated intranasally with 10e4 plaque forming units of either virus, mean titers of infectious virus and viral RNA in the lungs after 24 h were increased 23- and 94.8-fold, respectively, with the deleted virus. This difference could explain earlier observations of enhanced virulence of Frankfurt-1 in Hamsters as compared to other SARS-Coronavirus reference strains and identifies the SARS-CoV 7b protein as an attenuating factor with the SARS-Coronavirus genome. Because attenuation was focused on the early phase of infection in-vivo, ORF 7

  18. Association between insertion/deletion polymorphism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syndrome: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Matsuda Akihisa

    2012-08-01

    Full Text Available Abstract Background A previous meta-analysis reported a positive association between an insertion/deletion (I/D polymorphism in the angiotensin-converting enzyme gene (ACE and the risk of acute lung injury (ALI/acute respiratory distress syndrome (ARDS. Here, we updated this meta-analysis and additionally assessed the association of this polymorphism with ALI/ARDS mortality. Methods We searched electronic databases through October 2011 for the terms “angiotensin-converting enzyme gene”, “acute lung injury”, and “acute respiratory distress syndrome,” and reviewed all studies that reported the relationship of the I/D polymorphism in ACE with ALI/ARDS in humans. Seven studies met the inclusion criteria, comprising 532 ALI/ARDS patients, 3032 healthy controls, and 1432 patients without ALI/ARDS. We used three genetic models: the allele, dominant, and recessive models. Results The ACE I/D polymorphism was not associated with susceptibility to ALI/ARDS for any genetic model. However, the ACE I/D polymorphism was associated with the mortality risk of ALI/ARDS in Asian subjects ( Pallele Pdominant = 0.001, Precessive = 0.002. This finding remained significant after correction for multiple comparisons. Conclusions There is a possible association between the ACE I/D polymorphism genotype and the mortality risk of ALI/ARDS in Asians.

  19. Cloning and functional analysis of the sequences flanking mini-Tn5 in the magnetosome-deleted mutant NM21 of Magnetospirillum gryphiswaldense MSR-1

    Institute of Scientific and Technical Information of China (English)

    LI Feng; LI Ying; JIANG Wei; WANG ZhenFang; LI JiLun

    2009-01-01

    A magnetosome-deleted mutant NM21 of MagnetospMIlum gryphiswaldense MSR-1 was generated by mini-Tn5 lacZ2 transposon mutagenesis, and a 3073-bp fragment flanking mini-Tn5 lacZ2 in NM21 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved three putative ORFs; the mini-Tn5 lacZ2 was inserted into ORF1. Functional complementary test indicated that the 3073-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The majority of proteins, which bad homology with the protein encoded by ORF1, were the cation transporter. Transmembrane domain analysis showed that the protein encoded by ORF1 contained four trans-membrane domains. It may be a transmembrane protein. The protein encoded by ORF1 contained two putative conserved domains: COG0053 and PRK09509. The MMT1 and FieF, containing conserved domains COG0053 and PRK09509 too, were Fe2+ transporter (cation diffusion facilitator superfamily). It was suggested that the protein encoded by ORF1 might take part in the magnetosomes biosynthesis as Fe2+ transporter.

  20. IKZF1 DELETIONS ARE INDEPENDENT PROGNOSTIC FACTOR IN PEDIATRIC B-CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    G. A. Tsaur

    2016-01-01

    Full Text Available We assessed the prognostic significance of IKZF1 gene deletions in 141 pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL  on Russian multicenter trial in pediatric clinics of Ekaterinburg and Orenburg. IKZF1 deletions were estimated by multiplex ligation-dependent probe amplification. IKZF1 deletions were revealed in 15 (10.6 % patients. IKZF1 deletions were associated with age older than 10 years (p = 0.007, initial white blood cell count higher than 30 × 109/l (p = 0.003, t(9;22(q34.q11 (p = 0.003 and delayed blast clearance: М3 status of bone marrow at day 15 of remission induction (p = 0.003, lack of hematological remission at day 36 (p < 0.001 and high levels of minimal residual disease at days 15, 36 and 85 (p = 0.014; p < 0.001; p = 0.001 correspondingly. Patients with IKZF1 deletions had significantly lower event-free survival (EFS (0.30 ± 0.15 vs 0.89 ± 0.03; p < 0.001 and overall survival (OS (0.44 ± 0.19 vs 0.93 ± 0.02; p < 0.001, while cumulative incidence of relapse was higher (0.67 ± 0.18 vs 0.07 ± 0.02; p < 0.001. In the multivariate analysis IKZF1 deletions were associated with decreased EFS (hazard ratio (HR 4.755; 95 % confidence interval (CI 1.856–12.185; p = 0.001, and OS (HR 4.208; 95 % CI 1.322–13.393; p = 0.015, but increased relapse risk (HR 9,083; 95 % CI 3.119–26.451; p < 0.001. IKZF1 deletions retained their prognostic significance in the intermediate risk group patients (p < 0.001, but not in standard or high-risk groups. Majority of IKZF1 deletions – 12 (80 % of 15 – were revealed in the “B-other” group (n = 83. In this cohort of patients IKZF1 deletions led to inferior EFS (HR 6.172; 95 % CI 1.834–20.767; p = 0.003 and higher relapse rate (HR 16.303; 95 % CI 3.324–79.965; p = 0.015. Thus, our results showed that IKZF1 deletions are independent risk factor in BCP-ALL patients.

  1. Revealing the underlying drivers of disaster risk: a global analysis

    Science.gov (United States)

    Peduzzi, Pascal

    2017-04-01

    Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL

  2. Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia.

    Science.gov (United States)

    Griffith, Malachi; Griffith, Obi L; Krysiak, Kilannin; Skidmore, Zachary L; Christopher, Matthew J; Klco, Jeffery M; Ramu, Avinash; Lamprecht, Tamara L; Wagner, Alex H; Campbell, Katie M; Lesurf, Robert; Hundal, Jasreet; Zhang, Jin; Spies, Nicholas C; Ainscough, Benjamin J; Larson, David E; Heath, Sharon E; Fronick, Catrina; O'Laughlin, Shelly; Fulton, Robert S; Magrini, Vincent; McGrath, Sean; Smith, Scott M; Miller, Christopher A; Maher, Christopher A; Payton, Jacqueline E; Walker, Jason R; Eldred, James M; Walter, Matthew J; Link, Daniel C; Graubert, Timothy A; Westervelt, Peter; Kulkarni, Shashikant; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J

    2016-07-01

    The genomic events responsible for the pathogenesis of relapsed adult B-lymphoblastic leukemia (B-ALL) are not yet clear. We performed integrative analysis of whole-genome, whole-exome, custom capture, whole-transcriptome (RNA-seq), and locus-specific genomic assays across nine time points from a patient with primary de novo B-ALL. Comprehensive genome and transcriptome characterization revealed a dramatic tumor evolution during progression, yielding a tumor with complex clonal architecture at second relapse. We observed and validated point mutations in EP300 and NF1, a highly expressed EP300-ZNF384 gene fusion, a microdeletion in IKZF1, a focal deletion affecting SETD2, and large deletions affecting RB1, PAX5, NF1, and ETV6. Although the genome analysis revealed events of potential biological relevance, no clinically actionable treatment options were evident at the time of the second relapse. However, transcriptome analysis identified aberrant overexpression of the targetable protein kinase encoded by the FLT3 gene. Although the patient had refractory disease after salvage therapy for the second relapse, treatment with the FLT3 inhibitor sunitinib rapidly induced a near complete molecular response, permitting the patient to proceed to a matched-unrelated donor stem cell transplantation. The patient remains in complete remission more than 4 years later. Analysis of this patient's relapse genome revealed an unexpected, actionable therapeutic target that led to a specific therapy associated with a rapid clinical response. For some patients with relapsed or refractory cancers, this approach may indicate a novel therapeutic intervention that could alter outcome.

  3. A physical analysis of the Y chromosome shows no additional deletions, other than Gr/Gr, associated with testicular germ cell tumour

    OpenAIRE

    Linger, R; Dudakia, D; Huddart, R; Easton, D; Bishop, D. T.; Stratton, M.R.; Rapley, E A

    2007-01-01

    Testicular germ cell tumour (TGCT) is the most common malignancy in men aged 15–45 years. A small deletion on the Y chromosome known as ‘gr/gr' was shown to be associated with a two-fold increased risk of TGCT, increasing to three-fold in cases with a family history of TGCT. Additional deletions of the Y chromosome, known as AZFa, AZFb and AZFc, are described in patients with infertility; however, complete deletions of these regions have not been identified in TGCT patients. We screened the Y...

  4. Diversity of Dilepididae (Cestoda: Cyclophyllidea) revealed by cytogenetic analysis.

    Science.gov (United States)

    Petkeviciūte, R; Binkiene, R; Komisarovas, J

    2006-03-01

    Karyotypes of three dilepidid species: Molluscotaenia crassiscolex, Anomotaenia bacilligera and Dilepis undula, which have not been recorded previously, were studied using conventional Giemsa staining and comparative karyometric analysis. Twelve small biarmed chromosomes were observed in mitotic cells of M. crassiscolex, 16 biarmed chromosomes of gradually decreasing size were found in cells of A. bacilligera, while 18 elements were characteristic for D. undula. These data, together with information available in literature, prove the heterogeneity and possible polyphyletic nature of the family Dilepididae.

  5. Penicillium simile sp. nov. revealed by morphological and phylogenetic analysis.

    Science.gov (United States)

    Davolos, Domenico; Pietrangeli, Biancamaria; Persiani, Anna Maria; Maggi, Oriana

    2012-02-01

    The morphology of three phenetically identical Penicillium isolates, collected from the bioaerosol in a restoration laboratory in Italy, displayed macro- and microscopic characteristics that were similar though not completely ascribable to Penicillium raistrickii. For this reason, a phylogenetic approach based on DNA sequencing analysis was performed to establish both the taxonomic status and the evolutionary relationships of these three peculiar isolates in relation to previously described species of the genus Penicillium. We used four nuclear loci (both rRNA and protein coding genes) that have previously proved useful for the molecular investigation of taxa belonging to the genus Penicillium at various evolutionary levels. The internal transcribed spacer region (ITS1-5.8S-ITS2), domains D1 and D2 of the 28S rDNA, a region of the tubulin beta chain gene (benA) and part of the calmodulin gene (cmd) were amplified by PCR and sequenced. Analysis of the rRNA genes and of the benA and cmd sequence data indicates the presence of three isogenic isolates belonging to a genetically distinct species of the genus Penicillium, here described and named Penicillium simile sp. nov. (ATCC MYA-4591(T)  = CBS 129191(T)). This novel species is phylogenetically different from P. raistrickii and other related species of the genus Penicillium (e.g. Penicillium scabrosum), from which it can be distinguished on the basis of morphological trait analysis.

  6. Large deletion in the NF1 gene associated with dysmorphism

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, H.E.; Maynard, J.; Sourour, E. [University Hospital of Wales, Cardiff (United Kingdom)] [and others

    1994-09-01

    Neurofibromatosis type 1 is an autosomal dominant disorder with a prevalence of 1 in 3000. The major clinical features of the disease include cafe-au-lait spots, neurofibromas, Lisch nodules and auxillary freckling. Six sporadic NF1 patients with dysmorphism and intellectual impairment have been described to have a large deletion extending beyond the NF1 gene. We report another spordiac NF1 patient with severe developmental delay, early growth failure and dysmorphism (not Noonan-like) associated with a large deletion involving the NF1 gene. A panel of 12 polymorphic DNA markers within 4 cM of the NF1 gene were used to screen for the NF1 gene rearrangements. With all the polymorphic markers, only a single band was ever observed in this affected individual. However, with DNA probe EW301 which maps to 17p, a biparental inheritance was observed. Analysis with several microsatellite markers indicated that this patient had not inherited an allele from the father. A reduction in the hybridization signal was also observed when DNA from this patient was screened with cDNAs AE25, P5, B3A, and an extragenic marker EW206, clearly indicating hemizygosity at these loci. The combined evidence of dosage reduction and biparental inheritance with DNA marker EW301 indictates that this patient has a deletion of paternal origin rather than uniparental disomy. Pulsed-field gel electrophoresis has not, so far, revealed any evidence of an altered band pattern; however, studies are continuing. FISH analysis is currently in progress using YACs and cosmids to define the extent of this deletion.

  7. SNP array analysis reveals novel genomic abnormalities including copy neutral loss of heterozygosity in anaplastic oligodendrogliomas.

    Directory of Open Access Journals (Sweden)

    Ahmed Idbaih

    Full Text Available Anaplastic oligodendrogliomas (AOD are rare glial tumors in adults with relative homogeneous clinical, radiological and histological features at the time of diagnosis but dramatically various clinical courses. Studies have identified several molecular abnormalities with clinical or biological relevance to AOD (e.g. t(1;19(q10;p10, IDH1, IDH2, CIC and FUBP1 mutations.To better characterize the clinical and biological behavior of this tumor type, the creation of a national multicentric network, named "Prise en charge des OLigodendrogliomes Anaplasiques (POLA," has been supported by the Institut National du Cancer (InCA. Newly diagnosed and centrally validated AOD patients and their related biological material (tumor and blood samples were prospectively included in the POLA clinical database and tissue bank, respectively.At the molecular level, we have conducted a high-resolution single nucleotide polymorphism array analysis, which included 83 patients. Despite a careful central pathological review, AOD have been found to exhibit heterogeneous genomic features. A total of 82% of the tumors exhibited a 1p/19q-co-deletion, while 18% harbor a distinct chromosome pattern. Novel focal abnormalities, including homozygously deleted, amplified and disrupted regions, have been identified. Recurring copy neutral losses of heterozygosity (CNLOH inducing the modulation of gene expression have also been discovered. CNLOH in the CDKN2A locus was associated with protein silencing in 1/3 of the cases. In addition, FUBP1 homozygous deletion was detected in one case suggesting a putative tumor suppressor role of FUBP1 in AOD.Our study showed that the genomic and pathological analyses of AOD are synergistic in detecting relevant clinical and biological subgroups of AOD.

  8. Subfield profitability analysis reveals an economic case for cropland diversification

    Science.gov (United States)

    Brandes, E.; McNunn, G. S.; Schulte, L. A.; Bonner, I. J.; Muth, D. J.; Babcock, B. A.; Sharma, B.; Heaton, E. A.

    2016-01-01

    Public agencies and private enterprises increasingly desire to achieve ecosystem service outcomes in agricultural systems, but are limited by perceived conflicts between economic and ecosystem service goals and a lack of tools enabling effective operational management. Here we use Iowa—an agriculturally homogeneous state representative of the Maize Belt—to demonstrate an economic rationale for cropland diversification at the subfield scale. We used a novel computational framework that integrates disparate but publicly available data to map ˜3.3 million unique potential management polygons (9.3 Mha) and reveal subfield opportunities to increase overall field profitability. We analyzed subfield profitability for maize/soybean fields during 2010-2013—four of the most profitable years in recent history—and projected results for 2015. While cropland operating at a loss of US 250 ha-1 or more was negligible between 2010 and 2013 at 18 000-190 000 ha (profitable areas, incorporating conservation management that breaks even (e.g., planting low-input perennials), into low-yielding portions of fields could increase overall cropland profitability by 80%. This approach is applicable to the broader region and differs substantially from the status quo of ‘top-down’ land management for conservation by harnessing private interest to align profitability with the production of ecosystem services.

  9. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium

    Science.gov (United States)

    Iskandar, Christelle F.; Borges, Frédéric; Taminiau, Bernard; Daube, Georges; Zagorec, Monique; Remenant, Benoît; Leisner, Jørgen J.; Hansen, Martin A.; Sørensen, Søren J.; Mangavel, Cécile; Cailliez-Grimal, Catherine; Revol-Junelles, Anne-Marie

    2017-01-01

    Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium. PMID:28337181

  10. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes

    Science.gov (United States)

    Hua, Qingzhu; Zhou, Qianjun; Gan, Susheng; Wu, Jingyu; Chen, Canbin; Li, Jiaqiang; Ye, Yaoxiong; Zhao, Jietang; Hu, Guibing; Qin, Yonghua

    2016-01-01

    Red dragon fruit or red pitaya (Hylocereus polyrhizus) is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to “phenylpropanoid biosynthesis”, “tyrosine metabolism”, “flavonoid biosynthesis”, “ascorbate and aldarate metabolism”, “betalains biosynthesis” and “anthocyanin biosynthesis”. In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA) dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level. PMID:27690004

  11. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes

    Directory of Open Access Journals (Sweden)

    Qingzhu Hua

    2016-09-01

    Full Text Available Red dragon fruit or red pitaya (Hylocereus polyrhizus is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to “phenylpropanoid biosynthesis”, “tyrosine metabolism”, “flavonoid biosynthesis”, “ascorbate and aldarate metabolism”, “betalains biosynthesis” and “anthocyanin biosynthesis”. In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

  12. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes.

    Science.gov (United States)

    Hua, Qingzhu; Zhou, Qianjun; Gan, Susheng; Wu, Jingyu; Chen, Canbin; Li, Jiaqiang; Ye, Yaoxiong; Zhao, Jietang; Hu, Guibing; Qin, Yonghua

    2016-09-28

    Red dragon fruit or red pitaya (Hylocereus polyrhizus) is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to "phenylpropanoid biosynthesis", "tyrosine metabolism", "flavonoid biosynthesis", "ascorbate and aldarate metabolism", "betalains biosynthesis" and "anthocyanin biosynthesis". In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA) dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

  13. -141C insertion/deletion polymorphism of the dopamine D2 receptor gene is associated with schizophrenia in Chinese Han population: Evidence from an ethnic group-specific meta-analysis.

    Science.gov (United States)

    Zhao, Xiaofeng; Huang, Yinglin; Chen, Kaiyuan; Li, Duolu; Han, Chao; Kan, Quancheng

    2016-09-01

    Accumulate evidence has implicated dopamine D2 receptor gene polymorphisms in the etiology of schizophrenia. A single nucleotide polymorphism, -141C insertion/deletion (Ins/Del) (rs1799732), in the promoter region of the dopamine D2 receptor gene has been linked to schizophrenia; however, the data are inconclusive. This study investigated whether the -141C polymorphism is associated with the risk of schizophrenia in different ethnic groups by performing a meta-analysis. A total of 24 case-control studies examining the association between -141C Ins/Del polymorphism and schizophrenia were identified according to established inclusion criteria. Significant association was revealed between -141C Ins/Del polymorphism and schizophrenia risk in dominant genetic model (Ins/Ins + Ins/Del versus Del/Del) (odds ratio = 0.33, 95% confidence interval = 0.14-0.81, z = 2.41, P = 0.02) in Chinese Han but not in Caucasian, Japanese or India populations. Our results indicate that -141C Ins/Del polymorphism might be a susceptibility factor for schizophrenia in Chinese Han population. © 2015 Wiley Publishing Asia Pty Ltd.

  14. Analysis of mice with targeted deletion of AQP9 gene provides conclusive evidence for expression of AQP9 in neurons

    DEFF Research Database (Denmark)

    Mylonakou, Maria N; Petersen, Petur H; Rinvik, Eric;

    2009-01-01

    AQP9 is an aquaglyceroporin that serves important functions in peripheral organs, including the liver. Reflecting the lack of AQP9 knockout mice, uncertainties still prevail regarding the localization and roles of AQP9 in the central nervous system. Here we present a comprehensive analysis of AQP9...... and mouse liver, the organ with the highest level of AQP9. By blue native gel analysis it could be demonstrated that the brain contains tetrameric AQP9, corresponding to the functional form of AQP9. The band corresponding to the AQP9 tetramer was absent in AQP9 knockout brain and liver. Immunocytochemistry...... and in situ hybridization analyses with AQP9 knockout controls show that subpopulations of nigral neurons express AQP9 both at the mRNA and at the protein levels and that populations of cortical cells (including hilar neurons in the hippocampus) contain AQP9 mRNA but no detectable AQP9 immunosignal...

  15. The hand in Smith-Magenis syndrome (deletion 17p11.2): evaluation by metacarpophalangeal pattern profile analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Alan E. [Department of Diagnostic Imaging, Texas Children' s Hospital, 6621 Fannin Street, MC2-2521, Houston, TX 77030 (United States); Potocki, Lorraine [Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children' s Hospital, 6621 Fannin Street, CC-1560, Houston, TX 77030 (United States); Poznanski, Andrew K. [Department of Radiology, Children' s Memorial Hospital and Northwestern University School of Medicine, 2300 Children' s Plaza, Chicago, IL 60614 (United States); Lupski, James R. [Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children' s Hospital, 1 Baylor Plaza, Room 604B, Houston, TX 77030 (United States)

    2003-03-01

    Brachydactyly has been described on physical examination in patients with Smith-Magenis syndrome (SMS). Metacarpophalangeal pattern profile analysis (MCPPPA), a method of graphic depiction of the relative size of the bones of the hand, has been used to objectively evaluate radiographs of the hand in patients with SMS in two small series: a single case and a study of four patients. This technique has confirmed brachydactyly and has suggested conflicting MCPPPA results. The purpose of our study was to evaluate the hand by MCPPPA in a large series of patients with SMS.Patients and methods We measured the bones of the hand and performed MCPPPA in 29 confirmed cases of SMS. Our results in 29 patients demonstrated a different MCPPPA in patients with SMS than previously reported. The analysis confirmed brachydactyly and the previously described trend of more pronounced shortening of the distal bones relative to the more proximal bones, but also demonstrated a previously undescribed pattern: relative enlargement of the proximal phalanx of the thumb and middle phalanx of the fifth finger. However, statistical analysis suggested that the pattern was not highly characteristic. MCPPPA of 29 patients with SMS demonstrates a pattern different than previously reported, but not highly characteristic. (orig.)

  16. Somatic mosaicism for a DMD gene deletion

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kayoko; Ikeya, Kiyoko; Kondo, Eri [Tokyo Women`s Medical College (Japan)] [and others

    1995-03-13

    Mosaicism is a mixed state, with two cell populations of different genetic origins caused by a cell mutation occurring after fertilization. In the present case, DNA analysis of lymphocytes led to a DMD diagnosis before death. Postmortem immunocytochemical and DNA analysis showed somatic mosaicism. At age 18 years, blood lymphocyte DNA analysis showed a DMD gene deletion, upstream from exon 7 to the 5{prime} end containing both muscle and brain promoters. As the patient`s mother and elder sister had no deletions, he was considered to have a new mutation. Immunocytochemical studies of postmortem tissues showed that dystrophin was absent from the tongue, deltoid, intercostal, psoas and rectus femoris muscles, but there was a mix of dystrophin-positive and negative fibers in the rectus abdominis, cardiac, temporalis and sternocleidomastoid muscles. All diaphragm cells were dystrophin positive. Polymerase chain reaction (PCR) amplification from all tissues except the temporalis and sternocleidomastoid muscles, diaphragm and kidney, in which no deletion was found, showed the deletion from at least exon 6 to the 5{prime} end containing both muscle and brain promoters. In this case, a genomic deletion of the DMD gene contributed to the formation of tissues derived from both ectoderm and endoderm, and cells of mesodermal origin showed genotypic and phenotypic heterogeneity. Our results indicate a mutation of the present case may have occurred just before the period of germ layer formation. 34 refs., 7 figs.

  17. Analysis of septins across kingdoms reveals orthology and new motifs

    Directory of Open Access Journals (Sweden)

    Malmberg Russell L

    2007-07-01

    Full Text Available Abstract Background Septins are cytoskeletal GTPase proteins first discovered in the fungus Saccharomyces cerevisiae where they organize the septum and link nuclear division with cell division. More recently septins have been found in animals where they are important in processes ranging from actin and microtubule organization to embryonic patterning and where defects in septins have been implicated in human disease. Previous studies suggested that many animal septins fell into independent evolutionary groups, confounding cross-kingdom comparison. Results In the current work, we identified 162 septins from fungi, microsporidia and animals and analyzed their phylogenetic relationships. There was support for five groups of septins with orthology between kingdoms. Group 1 (which includes S. cerevisiae Cdc10p and human Sept9 and Group 2 (which includes S. cerevisiae Cdc3p and human Sept7 contain sequences from fungi and animals. Group 3 (which includes S. cerevisiae Cdc11p and Group 4 (which includes S. cerevisiae Cdc12p contain sequences from fungi and microsporidia. Group 5 (which includes Aspergillus nidulans AspE contains sequences from filamentous fungi. We suggest a modified nomenclature based on these phylogenetic relationships. Comparative sequence alignments revealed septin derivatives of already known G1, G3 and G4 GTPase motifs, four new motifs from two to twelve amino acids long and six conserved single amino acid positions. One of these new motifs is septin-specific and several are group specific. Conclusion Our studies provide an evolutionary history for this important family of proteins and a framework and consistent nomenclature for comparison of septin orthologs across kingdoms.

  18. Modes of embayed beach dynamics: analysis reveals emergent timescales

    Science.gov (United States)

    Murray, K. T.; Murray, A.; Limber, P. W.; Ells, K. D.

    2013-12-01

    Embayed beaches, or beaches positioned between rocky headlands, exhibit morphologic changes over many length and time scales. Beach sediment is transported as a result of the day-to-day wave forcing, causing patterns of erosion and accretion. We use the Rocky Coastline Evolution Model (RCEM) to investigate how patterns of shoreline change depend on wave climate (the distribution of wave-approach angles) and beach characteristics. Measuring changes in beach width through time allows us to track the evolution of the shape of the beach and the movement of sand within it. By using Principle Component Analysis (PCA), these changes can be categorized into modes, where the first few modes explain the majority of the variation in the time series. We analyze these modes and how they vary as a function of wave climate and headland/bay aspect ratio. In the purposefully simple RCEM, sediment transport is wave-driven and affected by wave shadowing behind the headlands. The rock elements in our model experiments (including the headlands) are fixed and unerodable so that this analysis can focus purely on sand dynamics between the headlands, without a sand contribution from the headlands or cliffs behind the beach. The wave climate is characterized by dictating the percentage of offshore waves arriving from the left and the percentage of waves arriving from high angles (very oblique to the coastline orientation). A high-angle dominated wave climate tends to amplify coastline perturbations, whereas a lower-angle wave climate is diffusive. By changing the headland/bay aspect ratio and wave climate, we can perform PCA analysis of generalized embayed beaches with differing anatomy and wave climate forcings. Previous work using PCA analysis of embayed beaches focused on specific locations and shorter timescales (beach dynamics over longer timescales. The first two PCA modes, which explain a majority of the beach width time series variation (typically >70%), are a 'breathing' mode and a

  19. Insertion and deletion mutagenesis of the human cytomegalovirus genome

    Energy Technology Data Exchange (ETDEWEB)

    Spaete, R.R.; Mocarski, E.S.

    1987-10-01

    Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, with levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.

  20. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  1. Genome analysis of the platypus reveals unique signatures of evolution.

    Science.gov (United States)

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  2. Genome analysis of the platypus reveals unique signatures of evolution

    Science.gov (United States)

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  3. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis.

    Science.gov (United States)

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  4. Interstitial deletion 1p as a result of a de novo reciprocal 1p;2p translocation

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Jensen, P H

    1985-01-01

    A 5-month-old female patient with psychomotor retardation and minor dysmorphisms is described. Cytogenetic analysis using high-resolution banding technique revealed an interstitial deletion of the short arm of one chromosome 1 (p21----p22.2) resulting from a de novo translocation t(1;2)(p22;p25)....

  5. Association between angiotensin converting enzyme gene insertion/deletion polymorphism and renal scar risk in children vesicoureteral reflex: a reappraise meta-analysis.

    Science.gov (United States)

    Ai, Jin-Wei; Zeng, Xian-Tao; Liu, Ying; Fu, Yu; Liu, Tong-Zu; Pei, Bin

    2016-08-10

    Vesicoureteral reflex(VUR) is a common disease in children. Some studies indicated that the angiotensin converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism associated with the renal scar in VUR, but not all researchers agreed with it. To clarify the effect of ACE I/D polymorphism on renal scar risk in children with VUR, we performed the present meta-analysis. PubMed, CNKI, CBM, and Embase databases were searched for studies that examined the relationship between ACE I/D polymorphism and renal scar risk in children with VUR. The Stata 12.0 software was used for statistical analyses. 11 case-control studies with 1,032 VUR patients were analyzed. The results showed that the DD genotype and D allele were associated with renal scar risk in overall VUR patients, DD vs. DI + II: OR = 1.61, 95% CI = 1.04-2.49, P = 0.03; DD vs. II: OR = 1.78, 95% CI = 1.20-2.65, P increase the risk of renal scar in children with VUR.

  6. Genetic variation and forensic efficiency of autosomal insertion/deletion polymorphisms in Chinese Bai ethnic group: phylogenetic analysis to other populations

    Science.gov (United States)

    Yang, Chun-Hua; Yin, Cai-Yong; Shen, Chun-Mei; Guo, Yu-Xin; Dong, Qian; Yan, Jiang-Wei; Wang, Hong-Dan; Zhang, Yu-Dang; Meng, Hao-Tian; Jin, Rui

    2017-01-01

    Thirty insertion/deletion loci were utilized to study the genetic diversities of 125 bloodstain samples collected from Bai group in Yunnan Dali region, China. The observed heterozygosity and expected heterozygosity of the 30 loci ranged from 0.1520 to 0.5680, and 0.1927 to 0.4997, respectively. No deviations from Hardy-Weinberg equilibrium tests after Bonferroni correction were found at all 30 loci in Bai group. The cumulative probability of exclusion and combined discrimination power were 0.9859 and 0.9999999999887, respectively, which indicated the 30 loci could be used as complementary genetic markers for paternity testing and were qualified for personal identification in forensic cases. We found the studied Bai group had close relationships with Tibetan, Yi and Han groups from China by the population structure, principal component analysis, population differentiations, and phylogenetic reconstruction studies. Even so, for a better understanding of Bai ethnicity's genetic milieu, DNA genotyping at various genetic markers is necessary in future studies. PMID:28465476

  7. Genetic variation and forensic efficiency of autosomal insertion/deletion polymorphisms in Chinese Bai ethnic group: phylogenetic analysis to other populations.

    Science.gov (United States)

    Yang, Chun-Hua; Yin, Cai-Yong; Shen, Chun-Mei; Guo, Yu-Xin; Dong, Qian; Yan, Jiang-Wei; Wang, Hong-Dan; Zhang, Yu-Dang; Meng, Hao-Tian; Jin, Rui; Chen, Feng; Zhu, Bo-Feng

    2017-06-13

    Thirty insertion/deletion loci were utilized to study the genetic diversities of 125 bloodstain samples collected from Bai group in Yunnan Dali region, China. The observed heterozygosity and expected heterozygosity of the 30 loci ranged from 0.1520 to 0.5680, and 0.1927 to 0.4997, respectively. No deviations from Hardy-Weinberg equilibrium tests after Bonferroni correction were found at all 30 loci in Bai group. The cumulative probability of exclusion and combined discrimination power were 0.9859 and 0.9999999999887, respectively, which indicated the 30 loci could be used as complementary genetic markers for paternity testing and were qualified for personal identification in forensic cases. We found the studied Bai group had close relationships with Tibetan, Yi and Han groups from China by the population structure, principal component analysis, population differentiations, and phylogenetic reconstruction studies. Even so, for a better understanding of Bai ethnicity's genetic milieu, DNA genotyping at various genetic markers is necessary in future studies.

  8. Hereditary hemochromatosis: HFE mutation analysis in Greeks reveals genetic heterogeneity.

    Science.gov (United States)

    Papanikolaou, G; Politou, M; Terpos, E; Fourlemadis, S; Sakellaropoulos, N; Loukopoulos, D

    2000-04-01

    Hereditary hemochromatosis (HH) is common among Caucasians; reported disease frequencies vary from 0.3 to 0.8%. Identification of a candidate HFE gene in 1996 was soon followed by the description of two ancestral mutations, i.e., c.845G-->A (C282Y) and c.187C-->G (H63D). To these was recently added the mutation S65C, which may represent a simple polymorphism. The incidence of HH in Greece is unknown but clinical cases are rare. Also unknown is the carrier frequency of the two mutant alleles. A first estimate of the latter is given in the present report. It is based on data from the genetic analysis of 10 unrelated patients of Greek origin who were referred to our center for genotyping and 158 unselected male blood donors. The allele frequencies for the C282Y and H63D mutations were 0.003 and 0.145, respectively. The C282Y allele was detected in 50% of HH patients. This is considerably lower than the frequencies reported for HH patients in the U.S.A. (82%) and France (91 %) and closer to that reported in Italy (64%). Five patients did not carry any known HFE mutation; three may represent cases of juvenile hemochromatosis, given their early onset with iron overload, hypogonadism, and heart disease. We suggest that genetic heterogeneity is more prominent in Southern Europe. It is also possible that the penetrance of the responsible genes is different across the Mediterranean.

  9. Network analysis reveals distinct clinical syndromes underlying acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    David P Hall

    Full Text Available Acute mountain sickness (AMS is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS, we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25. These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes.

  10. Genetic and functional analysis of human P2X5 reveals a distinct pattern of exon 10 polymorphism with predominant expression of the nonfunctional receptor isoform.

    Science.gov (United States)

    Kotnis, Smita; Bingham, Brendan; Vasilyev, Dmitry V; Miller, Scott W; Bai, Yuchen; Yeola, Sarita; Chanda, Pranab K; Bowlby, Mark R; Kaftan, Edward J; Samad, Tarek A; Whiteside, Garth T

    2010-06-01

    P2X5 is a member of the P2X family of ATP-gated nonselective cation channels, which exist as trimeric assemblies. P2X5 is believed to trimerize with another member of this family, P2X1. We investigated the single-nucleotide polymorphism (SNP) at the 3' splice site of exon 10 of the human P2X5 gene. As reported previously, presence of a T at the SNP location results in inclusion of exon 10 in the mature transcript, whereas exon 10 is excluded when a G is present at this location. Our genotyping of human DNA samples reveals predominance of the G-bearing allele, which was exclusively present in DNA samples from white American, Middle Eastern, and Chinese donors. Samples from African American donors were polymorphic, with the G allele more frequent. Reverse transcription-polymerase chain reaction analysis of lymphocytes demonstrated a 100% positive correlation between genotype and P2X5 transcript. Immunostaining of P2X1/P2X5 stably coexpressing cell lines showed full-length P2X5 to be expressed at the cell surface and the exon 10-deleted isoform to be cytoplasmic. Fluorometric imaging-based pharmacological characterization indicated a ligand-dependent increase in intracellular calcium in 1321N1 astrocytoma cells transiently expressing full-length P2X5 but not the exon 10-deleted isoform. Likewise, electrophysiological analysis showed robust ATP-evoked currents when full-length but not the exon 10-deleted isoform of P2X5 was expressed. Taken together, our findings indicate that most humans express only a nonfunctional isoform of P2X5, which is in stark contrast to what is seen in other vertebrate species in which P2X5 has been studied, from which only the full-length isoform is known.

  11. Demographic analysis reveals gradual senescence in the flatworm Macrostomum lignano

    Directory of Open Access Journals (Sweden)

    Braeckman Bart P

    2009-07-01

    Full Text Available Abstract Free-living flatworms ("Turbellaria" are appropriate model organisms to gain better insight into the role of stem cells in ageing and rejuvenation. Ageing research in flatworms is, however, still scarce. This is partly due to culture difficulties and the lack of a complete set of demographic data, including parameters such as median lifespan and age-specific mortality rate. In this paper, we report on the first flatworm survival analysis. We used the species Macrostomum lignano, which is an emerging model for studying the reciprocal influence between stem cells, ageing and rejuvenation. This species has a median lifespan of 205 ± 13 days (average ± standard deviation [SD] and a 90th percentile lifespan of 373 ± 32 days. The maximum lifespan, however, is more than 745 days, and the average survival curve is characterised by a long tail because a small number of individuals lives twice as long as 90% of the population. Similar to earlier observations in a wide range of animals, in M. lignano the age-specific mortality rate increases exponentially, but levels off at the oldest ages. To compare the senescence of M. lignano with that of other ageing models, we determined the mortality rate doubling time, which is 0.20 ± 0.02 years. As a result, we can conclude that M. lignano shows gradual senescence at a rate similar to the vertebrate ageing models Rattus norvegicus and Mus musculus. We argue that M. lignano is a suitable model for ageing and rejuvenation research, and especially for the role of stem cells in these processes, due to its accessible stem cell system and regeneration capacity, and the possibility of combining stem cell studies with demographic analyses.

  12. Functional Tissue Analysis Reveals Successful Cryopreservation of Human Osteoarthritic Synovium

    Science.gov (United States)

    de Vries, Marieke; Bennink, Miranda B.; van Lent, Peter L. E. M.; van der Kraan, Peter M.; Koenders, Marije I.; Thurlings, Rogier M.; van de Loo, Fons A. J.

    2016-01-01

    Osteoarthritis (OA) is a degenerative joint disease affecting cartilage and is the most common form of arthritis worldwide. One third of OA patients have severe synovitis and less than 10% have no evidence of synovitis. Moreover, synovitis is predictive for more severe disease progression. This offers a target for therapy but more research on the pathophysiological processes in the synovial tissue of these patients is needed. Functional studies performed with synovial tissue will be more approachable when this material, that becomes available by joint replacement surgery, can be stored for later use. We set out to determine the consequences of slow-freezing of human OA synovial tissue. Therefore, we validated a method that can be applied in every routine laboratory and performed a comparative study of five cryoprotective agent (CPA) solutions. To determine possible deleterious cryopreservation-thaw effects on viability, the synovial tissue architecture, metabolic activity, RNA quality, expression of cryopreservation associated stress genes, and expression of OA characteristic disease genes was studied. Furthermore, the biological activity of the cryopreserved tissue was determined by measuring cytokine secretion induced by the TLR ligands lipopolysaccharides and Pam3Cys. Compared to non frozen synovium, no difference in cell and tissue morphology could be identified in the conditions using the CS10, standard and CryoSFM CPA solution for cryopreservation. However, we observed significantly lower preservation of tissue morphology with the Biofreeze and CS2 media. The other viability assays showed trends in the same direction but were not sensitive enough to detect significant differences between conditions. In all assays tested a clearly lower viability was detected in the condition in which synovium was frozen without CPA solution. This detailed analysis showed that OA synovial tissue explants can be cryopreserved while maintaining the morphology, viability and

  13. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  14. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    Science.gov (United States)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  15. The effect of amino acid deletions and substitutions in the longest loop of GFP

    Directory of Open Access Journals (Sweden)

    Gaytán Paul

    2007-06-01

    Full Text Available Abstract Background The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region. Results In this study, the region I129-L142 of superglo GFP (sgGFP, corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE. Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein. Conclusion The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure.

  16. Analysis of p16 gene mutation, deletion and methylation in patients with arseniasis produced by indoor unventilated-stove coal usage in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A.H.; Bin, H.H.; Pan, X.L.; Xi, X.G. [Guiyang Medical College, Guiyang (China). School of Public Health

    2007-07-01

    The aim of this study was to determine p16 gene mutation, deletion, and promoter 5' CpG island hypermethylation in peripheral blood mononuclear leukocyte of patients with arseniasis as attributed to exposure to indoor unventilated coal stove. The role of the aberrant change of p16 gene in the induction and development of carcinogenesis in endemic arsenisiasis region in China was also examined. Polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP), multiplex PCR (mPCR), methylation-specific PCR (MSP), and sequencing techniques were performed to detect (1) mutation of the p16 gene exon 2, (2) homozygous deletion of the p16 gene exon 1 and exon 2, and (3) hypermethylation of the promoter CpG island in peripheral blood mononuclear leukocyte of patients with arseniasis. Results showed no mutation was found in exon 2 of p16 gene. The homozygous deletion frequency of p16 gene was 5 and 15% in control and arseniasis patients, respectively. The homozygous deletion occurred mainly in exon 2, with significant deletion frequencies of 9, 13, and 20% in mild, intermediate, and severe arseniasis groups. The significant homozygous deletion frequency was 9 and 39% in noncarcinoma and carcinoma individuals. The positive rate of p16 gene promoter CpG island hyermethylation was 42 and 2% in the exposed group and the control group, respectively. The positive rate was 26, 42, and 50% in mild, intermediate, and severe arseniasis. The marked different positive rate was 22 and 56% in noncarcinoma and carcinoma individuals, respectively. In conclusion, homozygous deletion and hypermethylation of p16 gene may play an important role in the initiation and development of manifestations seen in endemic arseniasis including carcinogenesis.

  17. A deletion common to two independently derived waxy mutations of maize.

    Science.gov (United States)

    Okagaki, R J; Neuffer, M G; Wessler, S R

    1991-06-01

    A mutation at the maize waxy locus, wx1240, was isolated following treatment of pollen with EMS and self-pollinating ears on M1 plants. This allele was cloned and found to contain a 30-bp deletion within the gene and additional lesions upstream of the transcription start site. Using fine structure genetic mapping, we determined that the deletion is responsible for the mutant phenotype. In addition, the position of wx1240 on the genetic map coincided with the previously determined positions of two other waxy mutations, the spontaneous wx-C, which is reference allele, and the putative ethyl methanesulfonate (EMS)-induced wx-BL2. Molecular analysis of these alleles revealed that both contain the same deletion as wx1240, and that the wx-BL2 allele is similar to wx-C and possibly resulted from wx-C contamination. The deleted sequence responsible for these mutations is flanked by a short, 4-bp, direct repeat. Similar structures are favored sites for spontaneous deletions in other organisms. The data suggests that EMS is capable of inducing structural alterations in plant genes in addition to the point mutations normally ascribed to EMS-induced mutations.

  18. Molecular basis of Bombay phenotype in Mashhad, Iran: identification of a novel FUT1 deletion.

    Science.gov (United States)

    Zanjani, D S; Afzal Aghaee, M; Badiei, Z; Mehrasa, R; Roodsarabi, A; Khayyami, M E; Shahabi, M

    2016-07-01

    Bombay phenotype is characterized by the lack of H substance both on red blood cell (RBC) surface and in body secretions. Mutations of fucosyltransferase 1 (FUT1) and fucosyltransferase 2 (FUT2) genes are resulted in this rare phenotype. Five unrelated patients were tested by hemagglutination and adsorption/elution techniques for the presence of ABH antigens. The saliva specimens were analysed by hemagglutination inhibition method. The exons 6 and 7 of ABO gene were sequenced to determine ABO genotype. The coding fragments of FUT1 and FUT2 were amplified and sequenced by specific primers. Serologic investigation confirmed Bombay phenotype in all individuals. FUT1 molecular analysis revealed a novel large deletion. Also two novel homozygous mutations were detected; one was a missense mutation (392T>C, L131P) and the other a three nucleotide deletion (668_670delACT, Y224del). FUT2 sequencing showed one reported null allele (428G>A, W143X) and one homozygous deletion of FUT2. Although FUT2 deletion has been reported, this is the first report of FUT1 deletion. Finding two FUT1 novel alleles in Iranian people is indicative of mutation diversity in this gene. © 2016 International Society of Blood Transfusion.

  19. Characteristics of spermatogenesis in infertile men with the AZFc region deletions

    Directory of Open Access Journals (Sweden)

    V. B. Chernykh

    2014-12-01

    Full Text Available Spermatogenetic defects were analyzed in the cohort of 218 russian infertile men with various AZFc region deletions of the Y chromosome. Clear differences were found in both the percentage of pathozoospermia forms and sperm concentration between infertile men with complete (b2/b4 and partial (b2/b3 and gr/gr AZFc deletions. Sperm concentration in the carriers of b2/b4, gr/gr and b2/b3 deletions, were 0.37 ± 0.13, 12.2 ± 7.1 and 30.3 ± 5.3 mln/ml, respectively. Severe spermatogenesis defects were detected in 93, 42 and 57 % patients with b2/b4, b2/b3 and gr/gr deletions, respectively. Quantitative karyological analysis of immature germ cells from ejaculate sediment revealed from incomplete spermatogenesis arrest at prepaсhytene stages to complete spermatogenesis depletion. Moderate oligozoospemia and/or astheno-, teratozoospermia were found in 7; 20; 30 %; and 0; 38; 10 % of the carriers of b2/b4, b2/b3 and gr/gr deletions, respectively.

  20. Comprehensive analysis of phosphorylation sites in Tensin1 reveals regulation by p38MAPK.

    Science.gov (United States)

    Hall, Emily H; Balsbaugh, Jeremy L; Rose, Kristie L; Shabanowitz, Jeffrey; Hunt, Donald F; Brautigan, David L

    2010-12-01

    Tensin1 is the archetype of a family of focal adhesion proteins. Tensin1 has a phosphotyrosine binding domain that binds the cytoplasmic tail of β-integrin, a Src homology 2 domain that binds focal adhesion kinase, p130Cas, and the RhoGAP called deleted in liver cancer-1, a phosphatase and tensin homology domain that binds protein phosphatase-1α and other regions that bind F-actin. The association between tensin1 and these partners affects cell polarization, migration, and invasion. In this study we analyzed the phosphorylation of human S-tag-tensin1 expressed in HEK293 cells by mass spectrometry. Peptides covering >90% of the sequence initially revealed 50 phosphorylated serine/phosphorylated threonine (pSer/pThr) but no phosphorylated tyrosine (pTyr) sites. Addition of peroxyvanadate to cells to inhibit protein tyrosine phosphatases exposed 10 pTyr sites and addition of calyculin A to cells to inhibit protein phosphatases type 1 and 2A gave a total of 62 pSer/pThr sites. We also characterized two sites modified by O-linked N-acetylglucosamine. Tensin1 F302A, which does not bind protein phosphatase-1, showed > twofold enhanced phosphorylation of seven sites. The majority of pSer/pThr have adjacent proline (Pro) residues and we show endogenous p38 mitogen activated protein kinase (MAPK) associated with and phosphorylated tensin1 in an in vitro kinase assay. Recombinant p38α MAPK also phosphorylated S-tag-tensin1, resulting in decreased binding with deleted in liver cancer-1. Activation of p38 MAPK in cells by sorbitol-induced hyperosmotic stress increased phosphorylation of S-tag-tensin1, which reduced binding to deleted in liver cancer-1 and increased binding to endogenous pTyr proteins, including p130Cas and focal adhesion kinase. These data demonstrate that tensin1 is extensively phosphorylated on Ser/Thr residues in cells and phosphorylation by p38 MAPK regulates the specificity of the tensin1 Src homology 2 domain for binding to different proteins. Tensin1

  1. AZF deletions in infertile men from the Republic of Macedonia.

    Science.gov (United States)

    Plaseski, Toso; Novevski, Predrag; Kocevska, Borka; Dimitrovski, Cedomir; Efremov, Georgi D; Plaseska-Karanfilska, Dijana

    2006-07-01

    Y chromosome deletions in the three azoospermia factor (AZF) regions constitute the most common genetic cause of spermatogenic failure. The aim of this study was to estimate the length and boundaries of the AZF deletions and to correlate the AZF deletions with the sperm concentrations, testicular histology, Y haplogroups and the ethnic origin of the men with deletions. PCR analysis of STS loci in the three AZF regions was used to characterize the deletions. Y haplogroup was predicted from a set of 17 Y short tandem repeats (STR) marker values. A total of nine men out of 218 infertile/subfertile men showed the presence of Y microdeletions. In eight patients the results were consistent with the presence of AZFc deletions, while in one patient a larger deletion involving both AZFb and AZFc regions was detected. In two patients, the deletion, initially diagnosed as AZFc, involved part of the distal part of the AZFb region and in one of them the deletion also extended into the region distal to the AZFc. The 3.5 Mb AZFc deletion, due to homologous recombination between b2 and b4 amplicons, was detected in six men (66.7% of all Y deletions), thus being the most common type of AZF deletion among infertile men from the Republic of Macedonia. Patients with the 3.5 Mb AZFc deletion had azoospermia or severe oligozoospermia and variable histological results [Sertoly cell only syndrome (SCOS), maturity arrest (MA) and hypospermatogenesis (HSG)]. They were of different ethnic origin (Macedonian, Albanian and Romany) and belonged to different Y haplogroups (I1b, J2, E3b and G).

  2. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reimann, Julia; Esser, Dominik; Orell, Alvaro; Amman, Fabian; Pham, Trong Khoa; Noirel, Josselin; Lindås, Ann-Christin; Bernander, Rolf; Wright, Phillip C; Siebers, Bettina; Albers, Sonja-Verena

    2013-12-01

    In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.

  3. Altered Ultrasonic Vocalization and Impaired Learning and Memory in Angelman Syndrome Mouse Model with a Large Maternal Deletion from Ube3a to Gabrb3

    Science.gov (United States)

    Jiang, Yong-hui; Pan, Yanzhen; Zhu, Li; Landa, Luis; Yoo, Jong; Spencer, Corinne; Lorenzo, Isabel; Brilliant, Murray; Noebels, Jeffrey; Beaudet, Arthur L.

    2010-01-01

    Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11–q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11–q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m−/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m−/p+), but not paternal (m+/p−), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  4. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  5. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Directory of Open Access Journals (Sweden)

    Zhang Dake

    2012-12-01

    Full Text Available Abstract Background Hepatitis B virus (HBV, because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023. In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007. Particularly, preS2 deletions were associated with the usage of nucleos(tide analog therapy (Fisher exact test, P = 0.023. Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that

  6. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Blok, R.B.; Thorburn, D.R.; Danks, D.M. [Royal Children`s Hospital, Melbourne (Australia)] [and others

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  7. 乙型肝炎病毒基因组中罕见大片段缺失突变的分析%Analysis of rare mutation of large fragment deletion in the genome of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    俞杨; 邬兰; 焦杰; 杜同信; 王自正; 颜宁

    2013-01-01

    目的 对来源于一例慢性乙型肝炎患者的包含罕见大片段缺失的乙肝病毒(HBV)全基因组进行序列分析.方法 提取乙肝病毒基因组DNA,扩增全长基因组,通过单克隆化分析不同准种中大片段缺失的位点和长度;将包含两段缺失突变的片段分别进行扩增,通过扩增产物的序列分析验证准种分析的结果.结果 该标本的HBV基因组中的确存在超过1.4 kb的大片段缺失突变,其中P基因上存在nt2449~489的1256bp的缺失突变,C基因上存在大约nt2088~2298的209bp的缺失突变.结论 该患者HBV基因组中存在罕见大片段缺失突变.%Objective To analyze the whole genome sequence of hepatitis B virus(HBV) including rare large fragment deletion from a patient with chronic hepatitis B.Methods Genomic DNA was extracted from HBV and the whole genome was amplified.The sites and sizes of large fragment deletion in different quasispecies were subjected to monoclonal analysis.Fragments including two deletion mutations were amplified respectively,and the results of quasispecies analysis were confirmed by sequencing analysis of amplified products.Results Mutation of over 1.4 kb large fragment deletion exactly existed in HBV genome of this sample,with 1 256 bp nt2449-489 mutation in P gene and about 209 bp nt2088-2298 deletion mutation in C gene.Conclusion There is a mutation of rare large fragment deletion in HBV genome of the patient.

  8. Uniform deletion junctions of complete azoospermia factor region c deletion in infertile men in Taiwan

    Institute of Scientific and Technical Information of China (English)

    Chao-Chin Hsu; Pao-Lin Kuo; Louise Chuang; Ying-Hung Lin; Yen-Ni Teng; Yung-Ming Lin

    2006-01-01

    Aim: To determine the deletion junctions of infertile men in Taiwan with azoospermia factor region c (AZFc) deletions and to evaluate the genotype/phenotype correlation. Methods: Genomic DNAs from 460 infertile men were examined. Bacterial artificial chromosome clones were used to verify the accuracy of polymerase chain reaction.Deletion junctions of the AZFc region were determined by analysis of sequence-tagged sites and gene-specific markers.Results: Complete AZFc deletions, including BPY2, CDY1 and DAZ genes, were identified in 24 men. The proximal breakpoints were clustered between sY1197 and sY1192, and the distal breakpoints were clustered between sY1054and sY1125 in all but one of the 24 men. The testicular phenotypes of men with complete AZFc deletion varied from oligozoospermia, to hypospermatogenesis, to maturation arrest. Conclusion: We identified a group of infertile men with uniform deletion junctions of AZFc in the Taiwan population. Despite this homogeneous genetic defect in the AZFc region, no clear genotype/phenotype correlation could be demonstrated.

  9. Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes

    National Research Council Canada - National Science Library

    Dongjuan Zhang; Hang Yang; Xiaomu Kong; Kang Wang; Xuan Mao; Xianzhong Yan; Yuan Wang; Siqi Liu; Xiaoyan Zhang; Jing Li; Lihong Chen; Jing Wu; Mingfen Wei; Jichun Yang; Youfei Guan

    2011-01-01

    .... Proteomic analysis revealed that 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2), the key enzyme in ketogenesis, was increased fourfold in the kidneys of type 2 diabetic db/db mice...

  10. Novel GLA Deletion in a Cypriot Female Presenting with Cornea Verticillata

    Directory of Open Access Journals (Sweden)

    Theodoros Georgiou

    2016-01-01

    Full Text Available Fabry disease is an X-linked lysosomal storage disorder resulting from a deficiency of the hydrolytic enzyme α-galactosidase A (α-Gal-A. It is characterized by progressive lysosomal accumulation of globotriaosylceramide (Gb3 and multisystem pathology, affecting the skin, nervous and cerebrovascular systems, kidneys, and heart. Heterozygous females typically exhibit milder symptoms and a later age of onset than males. Rarely, they may be relatively asymptomatic throughout a normal life span or may have symptoms as severe as those observed in males with the classic phenotype. We report on a 17-year-old female in whom cornea verticillata was found during a routine ophthalmological examination but with no other clinical symptoms. Leucocyte α-galactosidase activity was within the overlap range between Fabry heterozygotes and normal controls. Sanger sequencing of the GLA gene failed to reveal any pathogenic variants. Multiplex Ligation-dependent Probe Amplification (MLPA analysis revealed a deletion of exon 7. Using a long-range PCR walking approach, we managed to identify the deletion breakpoints. The deletion spans 1182 bp, with its 5′ end located within exon 6 of the GLA gene and its 3′ end located 612 bp downstream of exon 7. This finding represents a novel deletion identified in the first reported Cypriot female carrier of Fabry disease.

  11. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christopher L Brett

    Full Text Available Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pH(v in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pH(v (5.27±0.13 was resistant to acid stress (5.28±0.14 but shifted significantly in response to alkali stress (5.83±0.13. Of 107 mutants that displayed aberrant pH(v under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pH(v dysregulation in a neo1(ts mutant restored viability whereas cholesterol accumulation in human NPC1(-/- fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.

  12. 9q22 Deletion - First Familial Case

    Directory of Open Access Journals (Sweden)

    Yamamoto Toshiyuki

    2011-06-01

    Full Text Available Abstract Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400 due to haploinsufficiency of the PTCH1 gene (MIM *601309. Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K. The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337 which causing both brachydactyly type 1 (MIM #113000 and Robinow syndrome (MIM #268310, and the immunologically active SYK gene (MIM *600085. The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling.

  13. Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Orij, Rick; Urbanus, Malene L; Vizeacoumar, Franco J; Giaever, Guri; Boone, Charles; Nislow, Corey; Brul, Stanley; Smits, Gertien J

    2012-09-10

    Because protonation affects the properties of almost all molecules in cells, cytosolic pH (pH(c)) is usually assumed to be constant. In the model organism yeast, however, pH(c) changes in response to the presence of nutrients and varies during growth. Since small changes in pH(c) can lead to major changes in metabolism, signal transduction, and phenotype, we decided to analyze pH(c) control. Introducing a pH-sensitive reporter protein into the yeast deletion collection allowed quantitative genome-wide analysis of pH(c) in live, growing yeast cultures. pH(c) is robust towards gene deletion; no single gene mutation led to a pH(c) of more than 0.3 units lower than that of wild type. Correct pH(c) control required not only vacuolar proton pumps, but also strongly relied on mitochondrial function. Additionally, we identified a striking relationship between pH(c) and growth rate. Careful dissection of cause and consequence revealed that pH(c) quantitatively controls growth rate. Detailed analysis of the genetic basis of this control revealed that the adequate signaling of pH(c) depended on inositol polyphosphates, a set of relatively unknown signaling molecules with exquisitely pH sensitive properties. While pH(c) is a very dynamic parameter in the normal life of yeast, genetically it is a tightly controlled cellular parameter. The coupling of pH(c) to growth rate is even more robust to genetic alteration. Changes in pH(c) control cell division rate in yeast, possibly as a signal. Such a signaling role of pH(c) is probable, and may be central in development and tumorigenesis.

  14. Interstitial deletion of 5q33.3q35.1 in a boy with severe mental retardation.

    Science.gov (United States)

    Lee, Jin Hwan; Kim, Hyo Jeong; Yoon, Jung Min; Cheon, Eun Jung; Lim, Jae Woo; Ko, Kyong Og; Lee, Gyung Min

    2016-11-01

    Constitutional interstitial deletions of the long arm of chromosome 5 (5q) are quite rare, and the corresponding phenotype is not yet clearly delineated. Severe mental retardation has been described in most patients who present 5q deletions. Specifically, the interstitial deletion of chromosome 5q33.3q35.1, an extremely rare chromosomal aberration, is characterized by mental retardation, developmental delay, and facial dysmorphism. Although the severity of mental retardation varies across cases, it is the most common feature described in patients who present the 5q33.3q35.1 deletion. Here, we report a case of a de novo deletion of 5q33.3q35.1, 46,XY,del(5)(q33.3q35.1) in an 11-year-old boy with mental retardation; to the best of our knowledge this is the first case in Korea to be reported. He was diagnosed with severe mental retardation, developmental delay, facial dysmorphisms, dental anomalies, and epilepsy. Chromosomal microarray analysis using the comparative genomic hybridization array method revealed a 16-Mb-long deletion of 5q33. 3q35.1(156,409,412-172,584,708)x1. Understanding this deletion may help draw a rough phenotypic map of 5q and correlate the phenotypes with specific chromosomal regions. The 5q33.3q35.1 deletion is a rare condition; however, accurate diagnosis of the associated mental retardation is important to ensure proper genetic counseling and to guide patients as part of long-term management.

  15. Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes

    Science.gov (United States)

    SIA, DANIELA; HOSHIDA, YUJIN; VILLANUEVA, AUGUSTO; ROAYAIE, SASAN; FERRER, JOANA; TABAK, BARBARA; PEIX, JUDIT; SOLE, MANEL; TOVAR, VICTORIA; ALSINET, CLARA; CORNELLA, HELENA; KLOTZLE, BRANDY; FAN, JIAN–BING; COTSOGLOU, CHRISTIAN; THUNG, SWAN N.; FUSTER, JOSEP; WAXMAN, SAMUEL; GARCIA–VALDECASAS, JUAN CARLOS; BRUIX, JORDI; SCHWARTZ, MYRON E.; BEROUKHIM, RAMEEN; MAZZAFERRO, VINCENZO; LLOVET, JOSEP M.

    2013-01-01

    BACKGROUND & AIMS Cholangiocarcinoma, the second most common liver cancer, can be classified as intra-hepatic cholangiocarcinoma (ICC) or extrahepatic cholangiocarcinoma. We performed an integrative genomic analysis of ICC samples from a large series of patients. METHODS We performed a gene expression profile, high-density single-nucleotide polymorphism array, and mutation analyses using formalin-fixed ICC samples from 149 patients. Associations with clinicopathologic traits and patient outcomes were examined for 119 cases. Class discovery was based on a non-negative matrix factorization algorithm and significant copy number variations were identified by GISTIC analysis. Gene set enrichment analysis was used to identify signaling pathways activated in specific molecular classes of tumors, and to analyze their genomic overlap with hepatocellular carcinoma (HCC). RESULTS We identified 2 main biological classes of ICC. The inflammation class (38% of ICCs) is characterized by activation of inflammatory signaling pathways, overexpression of cytokines, and STAT3 activation. The proliferation class (62%) is characterized by activation of oncogenic signaling pathways (including RAS, mitogen-activated protein kinase, and MET), DNA amplifications at 11q13.2, deletions at 14q22.1, mutations in KRAS and BRAF, and gene expression signatures previously associated with poor outcomes for patients with HCC. Copy number variation– based clustering was able to refine these molecular groups further. We identified high-level amplifications in 5 regions, including 1p13 (9%) and 11q13.2 (4%), and several focal deletions, such as 9p21.3 (18%) and 14q22.1 (12% in coding regions for the SAV1 tumor suppressor). In a complementary approach, we identified a gene expression signature that was associated with reduced survival times of patients with ICC; this signature was enriched in the proliferation class (P < .001). CONCLUSIONS We used an integrative genomic analysis to identify 2 classes

  16. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  17. Expanding the phenotype of 22q11 deletion syndrome: the MURCS association.

    Science.gov (United States)

    Uliana, Vera; Giordano, Nicola; Caselli, Rossella; Papa, Filomena Tiziana; Ariani, Francesca; Marcocci, Claudio; Gianetti, Elena; Martini, Giuseppe; Papakostas, Panagiotis; Rollo, Fabio; Meloni, Ilaria; Mari, Francesca; Priolo, Manuela; Renieri, Alessandra; Nuti, Ranuccio

    2008-01-01

    The MURCS association [Müllerian Duct aplasia or hypoplasia (M), unilateral renal agenesis (UR) and cervicothoracic somite dysplasia (CS)] manifests itself as Müllerian Duct aplasia or hypoplasia, unilateral renal agenesis and cervicothoracic somite dysplasia. We report on a 22-year-old woman with bicornuate uterus, right renal agenesis, C2-C3 vertebral fusion (MURCS association) and 22q11.2 deletion. Angio-MRI revealed the aberrant origin of arch arteries. Hashimoto thyroiditis, micropolycystic ovaries with a dermoid cyst in the right ovary and mild osteoporosis were also diagnosed. Accurate revision of radiographs enabled us also to identify thoracolumbar and lumbosacral vertebral-differentiation defects. Audiometry and echocardiogram were normal. Bone densitometry showed osteoporosis. As per our evaluation, the patient had short stature, obesity (BMI 30.7) and facial features suggestive of the 22q11 deletion syndrome. Multiplex ligation-dependent probe amplification analysis showed a de-novo 22q11.2 deletion confirmed by array-comparative genomic hybridization analysis. We discuss whether this is a casual association or whether it is an additional syndrome owing to the well known phenotype extensive variability of the 22q11 deletion syndrome.

  18. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1 Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1 Cells.

    Directory of Open Access Journals (Sweden)

    Misako Haraguchi

    Full Text Available Snail1 is a transcription factor that induces the epithelial to mesenchymal transition (EMT. During EMT, epithelial cells lose their junctions, reorganize their cytoskeletons, and reprogram gene expression. Although Snail1 is a prominent repressor of E-cadherin transcription, its precise roles in each of the phenomena of EMT are not completely understood, particularly in cytoskeletal changes. Previous studies have employed gene knockdown systems to determine the functions of Snail1. However, incomplete protein knockdown is often associated with these systems, which may cause incorrect interpretation of the data. To more precisely evaluate the functions of Snail1, we generated a stable cell line with a targeted ablation of Snail1 (Snail1 KO by using the CRISPR/Cas9n system. Snail1 KO cells show increased cell-cell adhesion, decreased cell-substrate adhesion and cell migration, changes to their cytoskeletal organization that include few stress fibers and abundant cortical actin, and upregulation of epithelial marker genes such as E-cadherin, occludin, and claudin-1. However, morphological changes were induced by treatment of Snail1 KO cells with TGF-beta. Other transcription factors that induce EMT were also induced by treatment with TGF-beta. The precise deletion of Snail1 by the CRISPR/Cas9n system provides clear evidence that loss of Snail1 causes changes in the actin cytoskeleton, decreases cell-substrate adhesion, and increases cell-cell adhesion. Treatment of RMG1 cells with TGF-beta suggests redundancy among the transcription factors that induce EMT.

  19. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018

    Directory of Open Access Journals (Sweden)

    Wang Shengyue

    2011-02-01

    Full Text Available Abstract Background Clostridium acetobutylicum, a gram-positive and spore-forming anaerobe, is a major strain for the fermentative production of acetone, butanol and ethanol. But a previously isolated hyper-butanol producing strain C. acetobutylicum EA 2018 does not produce spores and has greater capability of solvent production, especially for butanol, than the type strain C. acetobutylicum ATCC 824. Results Complete genome of C. acetobutylicum EA 2018 was sequenced using Roche 454 pyrosequencing. Genomic comparison with ATCC 824 identified many variations which may contribute to the hyper-butanol producing characteristics in the EA 2018 strain, including a total of 46 deletion sites and 26 insertion sites. In addition, transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed expression-level changes of several key genes related to solvent formation. For example, spo0A and adhEII have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018. Interestingly, the results also showed that the variation in CEA_G2622 (CAC2613 in ATCC 824, a putative transcriptional regulator involved in xylose utilization, might accelerate utilization of substrate xylose. Conclusions Comparative analysis of C. acetobutylicum hyper-butanol producing strain EA 2018 and type strain ATCC 824 at both genomic and transcriptomic levels, for the first time, provides molecular-level understanding of non-sporulation, higher solvent production and enhanced xylose utilization in the mutant EA 2018. The information could be valuable for further genetic modification of C. acetobutylicum for more effective butanol production.

  20. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018

    Science.gov (United States)

    2011-01-01

    Background Clostridium acetobutylicum, a gram-positive and spore-forming anaerobe, is a major strain for the fermentative production of acetone, butanol and ethanol. But a previously isolated hyper-butanol producing strain C. acetobutylicum EA 2018 does not produce spores and has greater capability of solvent production, especially for butanol, than the type strain C. acetobutylicum ATCC 824. Results Complete genome of C. acetobutylicum EA 2018 was sequenced using Roche 454 pyrosequencing. Genomic comparison with ATCC 824 identified many variations which may contribute to the hyper-butanol producing characteristics in the EA 2018 strain, including a total of 46 deletion sites and 26 insertion sites. In addition, transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed expression-level changes of several key genes related to solvent formation. For example, spo0A and adhEII have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018. Interestingly, the results also showed that the variation in CEA_G2622 (CAC2613 in ATCC 824), a putative transcriptional regulator involved in xylose utilization, might accelerate utilization of substrate xylose. Conclusions Comparative analysis of C. acetobutylicum hyper-butanol producing strain EA 2018 and type strain ATCC 824 at both genomic and transcriptomic levels, for the first time, provides molecular-level understanding of non-sporulation, higher solvent production and enhanced xylose utilization in the mutant EA 2018. The information could be valuable for further genetic modification of C. acetobutylicum for more effective butanol production. PMID:21284892

  1. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases.

    Science.gov (United States)

    Stengel, A; Kern, W; Haferlach, T; Meggendorfer, M; Fasan, A; Haferlach, C

    2017-03-01

    Alterations in TP53 have been described in many cancer types including hematological neoplasms. We aimed at comparing TP53 mutations (mut) and deletions (del) in a large cohort of patients with hematological malignancies (n=3307), including AML (n=858), MDS (n=943), ALL (n=358), CLL (n=1148). Overall, alterations in TP53 were detected in 332/3307 cases (10%). The highest frequency was observed in ALL (total: 19%; mut+del: 6%; mut only: 8%; del only: 5%) and AML (total: 13%; mut+del: 5%; mut only: 7%; del only: 1%), whereas TP53 alterations occurred less frequently in CLL (total: 8%) and MDS (total: 7%). TP53 mutations were significantly more frequent in patients ⩾60 vs TP53 deletion and mutation status.

  2. Severe phenotype in an apparent homozygosity caused by a large deletion in the CFTR gene: a case report.

    Science.gov (United States)

    Martins, Raisa da Silva; Fonseca, Ana Carolina Proença; Acosta, Franklyn Enrique Samudio; Folescu, Tania Wrobel; Higa, Laurinda Yoko Shinzato; Sad, Izabela Rocha; Chaves, Célia Regina Moutinho de Miranda; Cabello, Pedro Hernan; Cabello, Giselda Maria Kalil

    2014-08-30

    Over 1900 mutations have been identified in the cystic fibrosis conductance transmembrane regulator gene, including single nucleotide substitutions, insertions, and deletions. Unidentified mutations may still lie in introns or in regulatory regions, which are not routinely investigated, or in large genomic deletions, which are not revealed by conventional molecular analysis. The apparent homozygosity for a rare, cystic fibrosis conductance transmembrane regulator mutation screened by standard molecular analysis should be further investigated to confirm if the mutation is in fact homozygous. We describe a patient presenting with an apparent homozygous S4X mutation. A 13-year-old female patient of African descent with clinical symptoms of classic cystic fibrosis and a positive sweat test (97 mEq/L, diagnosed at age 3 years) presented with pancreatic insufficiency and severe pulmonary symptoms (initial lung colonization with Pseudomonas aeruginosa at age 4 years; forced vital capacity: 69%; forced expiratory volume: 51%; 2011). Furthermore, she developed severe acute lung disease and recurrent episodes of dehydration requiring hospitalization. The girl carried the CFTR mutation S4X in apparent homozygosity. However, further analysis revealed a large deletion in the second allele that included the region of the mutation. The deletion that we describe includes nucleotides 120-142, which correspond to a loss of 23 nucleotides that abolishes the normal translation initiation codon. This study reiterates the view that large, cystic fibrosis conductance transmembrane regulator deletions are an important cause of severe cystic fibrosis and emphasizes the importance of including large deletions/duplications in cystic fibrosis conductance transmembrane regulator diagnostic tests.

  3. Integrated high-resolution array CGH and SKY analysis of homozygous deletions and other genomic alterations present in malignant mesothelioma cell lines.

    Science.gov (United States)

    Klorin, Geula; Rozenblum, Ester; Glebov, Oleg; Walker, Robert L; Park, Yoonsoo; Meltzer, Paul S; Kirsch, Ilan R; Kaye, Frederic J; Roschke, Anna V

    2013-05-01

    High-resolution oligonucleotide array comparative genomic hybridization (aCGH) and spectral karyotyping (SKY) were applied to a panel of malignant mesothelioma (MMt) cell lines. SKY has not been applied to MMt before, and complete karyotypes are reported based on the integration of SKY and aCGH results. A whole genome search for homozygous deletions (HDs) produced the largest set of recurrent and non-recurrent HDs for MMt (52 recurrent HDs in 10 genomic regions; 36 non-recurrent HDs). For the first time, LINGO2, RBFOX1/A2BP1, RPL29, DUSP7, and CCSER1/FAM190A were found to be homozygously deleted in MMt, and some of these genes could be new tumor suppressor genes for MMt. Integration of SKY and aCGH data allowed reconstruction of chromosomal rearrangements that led to the formation of HDs. Our data imply that only with acquisition of structural and/or numerical karyotypic instability can MMt cells attain a complete loss of tumor suppressor genes located in 9p21.3, which is the most frequently homozygously deleted region. Tetraploidization is a late event in the karyotypic progression of MMt cells, after HDs in the 9p21.3 region have already been acquired.

  4. Oculo-facio-cardio-dental (OFCD) syndrome: the first Italian case of BCOR and co-occurring OTC gene deletion.

    Science.gov (United States)

    Di Stefano, C; Lombardo, B; Fabbricatore, C; Munno, C; Caliendo, I; Gallo, F; Pastore, L

    2015-04-01

    Oculo-facio-cardio-dental (OFCD) syndrome is a rare genetic disorder affecting ocular, facial, dental and cardiac systems. The syndrome is an X-linked dominant trait and it might be lethal in males. This syndrome is usually caused by mutations in the BCL6 interacting co-repressor gene (BCOR). We described a female child with mild phenotype of oculo-facio-cardio-dental syndrome. Array-comparative genomic hybridization (a-CGH) analysis revealed a de novo heterozygous deletion in the Xp11.4 region of approximately 2.3 Mb, involving BCOR and ornithine carbamoyl-transferase (OTC) genes. The deletion observed was subsequently confirmed by real time PCR. In this study we report a first case with co-occurrence of BCOR and OTC genes completely deleted in OFCD syndrome.

  5. Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions.

    Science.gov (United States)

    Buckley, Patrick G; Das, Sudipto; Bryan, Kenneth; Watters, Karen M; Alcock, Leah; Koster, Jan; Versteeg, Rogier; Stallings, Raymond L

    2011-05-15

    The downregulation of specific genes through DNA hypermethylation is a major hallmark of cancer, although the extent and genomic distribution of hypermethylation occurring within cancer genomes is poorly understood. We report on the first genome-wide analysis of DNA methylation alterations in different neuroblastic tumor subtypes and cell lines, revealing higher order organization and clinically relevant alterations of the epigenome. The methylation status of 33,485 discrete loci representing all annotated CpG islands and RefSeq gene promoters was assessed in primary neuroblastic tumors and cell lines. A comparison of genes that were hypermethylated exclusively in the clinically favorable ganglioneuroma/ganglioneuroblastoma tumors revealed that nine genes were associated with poor clinical outcome when overexpressed in the unfavorable neuroblastoma (NB) tumors. Moreover, an integrated DNA methylation and copy number analysis identified 80 genes that were recurrently concomitantly deleted and hypermethylated in NB, with 37 reactivated by 5-aza-deoxycytidine. Lower expression of four of these genes was correlated with poor clinical outcome, further implicating their inactivation in aggressive disease pathogenesis. Analysis of genome-wide hypermethylation patterns revealed 70 recurrent large-scale blocks of contiguously hypermethylated promoters/CpG islands, up to 590 kb in length, with a distribution bias toward telomeric regions. Genome-wide hypermethylation events in neuroblastic tumors are extensive and frequently occur in large-scale blocks with a significant bias toward telomeric regions, indicating that some methylation alterations have occurred in a coordinated manner. Our results indicate that methylation contributes toward the clinicopathological features of neuroblastic tumors, revealing numerous genes associated with poor patient survival in NB.

  6. Increased frequency of minimal homozygous deletions is associated with poor prognosis in primary malignant melanoma patients.

    Science.gov (United States)

    Boi, Sebastiana; Tebaldi, Toma; Re, Angela; Cantaloni, Chiara; Adami, Valentina; Barbareschi, Mattia; Cristofolini, Mario; Pasini, Luigi; Quattrone, Alessandro

    2014-06-01

    Identification of prognostic melanoma-associated copy number alterations (CNAs) is still an area of active research. Here, we investigated by high-resolution array comparative genomic hybridization (aCGH) a cohort of 31 paraffin-preserved primary malignant melanomas (MMs), whose prognosis was not predictable on the basis of conventional histopathological parameters. Although we identified a variety of highly recurrent sites of genomic lesions, the total number of CNAs per patient was not a discriminator of MM outcome. Furthermore, validation of aCGH by quantitative PCR on an extended population of 65 MM samples confirmed the absence of predictive value for the most recurrent CNA loci. Instead, our analysis revealed specific prognostic potential of the frequency of homozygous deletions (representing less than 3% of the total CNAs on average per sample), which was strongly associated with sentinel lymph node (SLN) invasion (P = 0.003), and distant metastasis (P = 0.003). Increased number of homozygous deletions was also indicative of poor patient survival (P = 0.01), both in our samples and in an independent validation of public dataset of primary and metastatic MMs. Moreover, we identified 77 hotspots of minimal common homozygous deletions, enriched in genes involved in cell adhesion processes and cell-communication functions, which preferentially accumulated in primary MMs showing the most severe outcome. Therefore, specific loss of gene loci in regions of minimal homozygous deletion may represent a pivotal type of genomic alteration accumulating during MM progression with potential prognostic implication.

  7. Analysis of the functional consequences of targeted exon deletion in COL7A1 reveals prospects for dystrophic epidermolysis bullosa therapy

    NARCIS (Netherlands)

    Bornert, Olivier; Kuhl, Tobias; Bremer, Jeroen; van den Akker, Peter C.; Pasmooij, Anna M. G.; Nystrom, Alexander

    2016-01-01

    Genetically evoked deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB)-a debilitating disease characterized by chronic skin fragility and progressive fibrosis. Removal of exons carrying frame-disrupting mutations can reinstate protein expression in genetic diseases. The therapeu

  8. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Institute of Scientific and Technical Information of China (English)

    Yonglong Yu; Dong Zhu; Chaoying Ma; Hui Cao; Yaping Wang; Yanhao Xu; Wenying Zhang; Yueming Yan

    2016-01-01

    Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20) during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further informa-tion about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  9. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  10. A Large Deletion Affecting TPM3, Causing Severe Nemaline Myopathy.

    Science.gov (United States)

    Kiiski, K; Lehtokari, V-L; Manzur, A Y; Sewry, C; Zaharieva, I; Muntoni, F; Pelin, K; Wallgren-Pettersson, C

    2015-09-21

    Nemaline myopathy may be caused by pathogenic variants in the TPM3 gene and is then called NEM1. All previously identified disease-causing variants are point mutations including missense, nonsense and splice-site variants. The aim of the study was to identify the disease-causing gene in this patient and verify the NM diagnosis. Mutation analysis methods include our self-designed nemaline myopathy array, The Nemaline Myopathy Comparative Genomic Hybridisation Array (NM-CGH array), whole-genome array-CGH, dHPLC, Sanger sequencing and whole-exome sequencing. The diagnostic muscle biopsy was investigated further by routine histopathological methods. We present here the first large (17-21 kb) aberration in the α-tropomyosinslow gene (TPM3), identified using the NM-CGH array. This homozygous deletion removes the exons 1a and 2b as well as the promoter of the TPM3 isoform encoding Tpm3.12st. The severe phenotype included paucity of movement, proximal and axial weakness and feeding difficulties requiring nasogastric tube feeding. The infant died at the age of 17.5 months. Muscle biopsy showed variation in fibre size and rods in a population of hypotrophic muscle fibres expressing slow myosin, often with internal nuclei, and abnormal immunolabelling revealing many hybrid fibres. This is the only copy number variation we have identified in any NM gene other than nebulin (NEB), suggesting that large deletions or duplications in these genes are very rare, yet possible, causes of NM.

  11. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    Science.gov (United States)

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C S; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  12. Comparative analysis of oncogenic genes revealed unique evolutionary features of field Marek's disease virus prevalent in recent years in China

    Directory of Open Access Journals (Sweden)

    Liu Ping

    2011-03-01

    Full Text Available Abstract Background Marek's disease (MD is an economically important viral disease of chickens caused by Marek's disease virus (MDV, an oncogenic herpesvirus. This disease was well controlled since the widespread use of commercial vaccines, but field MDVs have shown continuous increasing in virulence and acquired the ability to overcome the immune response induced by vaccines. Nowadays, MD continues to be a serious threat to poultry industry, isolation and characterization of MDVs are essential for monitoring changes of viruses and evaluating the effectiveness of existing vaccines. Results Between 2008 and 2010, 18 field MDV strains were isolated from vaccinated chicken flocks in Sichuan province, China. Three oncogenic genes including Meq, pp38 and vIL-8 genes of the 18 isolates were amplified and sequenced. Homology analysis showed that the deduced amino acid sequences of these three genes exhibit 95.0-98.8%, 99.3-100% and 97.0-98.5% homology respectively with these of other reference strains published in GenBank. Alignment analysis of the nucleotide and deduced amino acid sequences showed that four amino acid mutations in Meq gene and two amino acid mutations in vIL-8 gene displayed perfect regularity in MDVs circulating in China, which could be considered as features of field MDVs prevalent in recent years in China. In addition, one amino acid mutation in pp38 gene can be considered as a feature of virulent MDVs from USA, and three amino acid mutations in Meq gene were identified and unique in very virulent plus (vv+ MDVs. Phylogenetic analysis based on Meq and vIL-8 protein sequences revealed that field MDVs in China evolved independently. Virulence studies showed that CVI988 could provide efficient protection against the field MDVs epidemic recently in China. Conclusions This study and other published data in the GenBank have demonstrated the features of Meq, pp38 and vIL-8 genes of MDVs circulating in recent years in Sichuan, China

  13. A genome-wide CNV analysis of schizophrenia reveals a potential role for a multiple-hit model.

    Science.gov (United States)

    Rudd, Danielle S; Axelsen, Michael; Epping, Eric A; Andreasen, Nancy C; Wassink, Thomas H

    2014-12-01

    Schizophrenia is a chronic and severe psychiatric disorder that is highly heritable. While both common and rare genetic variants contribute to disease risk, many questions still remain about disease etiology. We performed a genome-wide analysis of copy number variants (CNVs) in 166 schizophrenia subjects and 52 psychiatrically healthy controls. First, overall CNV characteristics were compared between cases and controls. The only statistically significant finding was that deletions comprised a greater proportion of CNVs in cases. High interest CNVs were then identified as conservative using the following filtering criteria: (i) known deleterious CNVs; (ii) CNVs > 1 Mb that were novel (not found in a database of control individuals); and (iii) CNVs 1 Mb) or with multiple conservative CNVs. Two case individuals with the highest burden of conservative CNVs also share a recurrent 15q11.2 BP1-2 deletion, indicating a role for a potential multiple-hit CNV model for schizophrenia. In total, we report three 15q11.2 BP1-2 deletion individuals with schizophrenia, adding to a growing body of evidence that this CNV is involved in disease etiology.

  14. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage (Brassica oleracea) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2, respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1, seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380) were found, whereas in the region of BoHL2, two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  15. Comparative analysis of the Shadoo gene between cattle and buffalo reveals significant differences.

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    Full Text Available BACKGROUND: While prions play a central role in the pathogenesis of transmissible spongiform encephalopathies, the biology of these proteins and the pathophysiology of these diseases remain largely unknown. Since no case of bovine spongiform encephalopathy (BSE has ever been reported in buffalo despite their phylogenetic proximity to cattle, genetic differences may be driving the different susceptibilities of these two species to BSE. We thus hypothesized that differences in expression of the most recently identified member of the prion family or Shadoo (SPRN gene may relate to these species-specific differences. PRINCIPAL FINDINGS: We first analyzed and compared the polymorphisms of the SPRN gene (~4.4 kb, including the putative promoter, coding and 3' regions, and further verified the entire ORF and putative promoter. This yielded a total of 117 fixed differences, remarkably: 1 a 12-bp insertion/deletion polymorphism in the hydrophobic domain of the cattle but not buffalo gene, introducing a four amino acid expansion/contraction in a series of 5 tandem Ala/Gly-containing repeats; 2 two fixed missense mutations (102Ser→Gly and 119Thr→Ala, and three missense mutations (92Pro>Thr/Met, 122Thr>Ile and 139Arg>Trp in the coding region presenting different (P<0.05 genotypic and allelic frequency distributions between cattle and buffalo; and, 3 functional luciferase-reporter experiments for the predicted promoter region, consistent with a significantly higher activity in buffalo than cattle. Supporting these findings, immunoblotting revealed higher relative expression levels of Sho protein in cerebrum from buffalo than from cattle. In addition, for cattle, highest Sho expression was detected in obex, as compared to cerebrum or cerebellum. SIGNIFICANCE: Our findings support Sho as a non-PrP specific marker for prion infections, with obex as the best tissue source for the detection of Sho in TSE rapid tests. Moreover, these discoveries may prove

  16. A significant effect of the TSPY1 copy number on spermatogenesis efficiency and the phenotypic expression of the gr/gr deletion.

    Science.gov (United States)

    Shen, Ying; Yan, Yuanlong; Liu, Yunqiang; Zhang, Sizhong; Yang, Dong; Zhang, Peng; Li, Lei; Wang, Yan; Ma, Yongxin; Tao, Dachang; Yang, Yuan

    2013-04-15

    AZFc deletions cause a significant phenotypic heterogeneity with respect to spermatogenesis; however, the reason for this is poorly understood. Recently, testis-specific protein Y-encoded 1 (TSPY1) copy number variation (CNV) was determined to be a potential genetic modifier of spermatogenesis. We performed a large-scale cohort study to investigate the effect of TSPY1 CNV on spermatogenesis and to elucidate the possible contribution of TSPY1 genetic variation to the phenotypic expression of AZFc deletions. Haplogrouping of the Y-chromosome and quantification of the TSPY1 copy number were performed in 2272 Han Chinese males with different spermatogenic statuses (704 males with the b2/b4 or gr/gr deletion and 1568 non-AZFc-deleted males). Our data revealed that the TSPY1 copy number distributions were significantly different among non-AZFc-deleted males with different spermatogenic phenotypes. Lower sperm production and an elevated risk of spermatogenic failure were observed in males with fewer than 21 TSPY1 copies and in those with more than 55 copies relative to men with 21-35 copies. Similar results were observed in males with the gr/gr deletion. These findings indicate that TSPY1 CNV affects an individual's susceptibility to spermatogenic failure by modulating the efficiency of spermatogenesis and strongly suggest that there is a significant quantity effect of the TSPY1 copy number on the phenotypic expression of the gr/gr deletion. To our knowledge, this CNV is the first independent genetic factor that has been clearly observed to influence the spermatogenic status of gr/gr deletion carriers. A combined genetic analysis of the TSPY1 copy number and the gr/gr deletion could inform the clinical counselling of infertile couples.

  17. Mitochondrial Myopathy with DNA Deletions

    OpenAIRE

    J Gordon Millichap

    1992-01-01

    Deletions of mitochondrial DNA (mtDNA) are reported in 19 of 56 patients with mitochondrial myopathy examined in the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN.

  18. Molecular analysis of two patients with a duplicated 17p11.2 indicates that this entity may be the reciprocal of the deletion seen in Smith-Magenis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Schwartz, C.; Rogers, R.C. [Greenwood Genetic Center, SC (United States)] [and others

    1994-09-01

    J.M. and H.G. are two unrelated patients that presented at an early age with developmental delay and failure to thrive. Clinical features specific to J.M. include unusual facies, global developmental delay, and clinodactyly of the fifth toe. A cytogenetic analysis of H.G. was performed on amniocytes obtained due to a low MSAFP conducted as part of a routine screening. In both J.M. and H.G., a duplication of chromosome 17p11.2 was discovered. The extent of the duplicated region was determined using single copy DNA probes: cen-D17S58-D17S29-D17S258-D17S71-D17S445-tel. All of the markers were found to be duplicated by dosage analysis except for D17S58. FISH analysis of H.G., using the Smith-Magenis diagnostic probe obtained from ONCOR, also detected a duplication in 17p11.2. The chromosome containing the duplication could be the result of unequal crossing over due to a misalignment of the two chromosomes during meiosis I. It has been shown that the markers deleted in Smith-Magenis syndrome (SMS) patients are the same as those markers duplicated in J.M. and H.G. Therefore, the chromosomal duplication in 17p11.2 observed in these two patients could be the reciprocal of the chromosomal deletion seen in Smith-Magenis syndrome patients. Interestingly, a similar reciprocal duplication/deletion event is observed for CMT1A and HNPP (hereditary neuropathy with liability to pressure palsies) just distal to the SMS region.

  19. Construction of deletion mutants in the phosphotransferase transport system and adenosine triphosphate-binding cassette transporters in Listeria monocytogenes and analysis of their growth under different stress conditions

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2013-10-01

    Full Text Available Functional genomics approaches enable us to investigate the biochemical, cellular, and physiological properties of each gene product and are nowadays applied to enhance food safety by understanding microbial stress responses in food and host-pathogen interactions. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to eliminate this pathogen since it can survive under multiple stress conditions such as low pH and low temperature. Detailed studies are needed to determine its mode of action and to understand the mechanisms that protect the pathogen when it is subjected to stress. In this study, deletion mutants of phosphotransferase transport system genes (PTS and adenosine triphosphate(ATP-binding cassette transporters (ABC of Listeria monocytogenes F2365 were created using molecular techniques. These mutants and the wild-type were tested under different stress conditions, such as in solutions with different NaCl concentration, pH value and for nisin resistance. Results demonstrate that the behaviour of these deletion mutants is different from the wild type. In particular, deleted genes may be involved in L. monocytogenes resistance to nisin and to acid and salt concentrations. Functional genomics research on L. monocytogenes allows a better understanding of the genes related to stress responses and this knowledge may help in intervention strategies to control this food-borne pathogen. Furthermore, specific gene markers can be used to identify and subtype L. monocytogenes. Thus, future development of this study will focus on additional functional analyses of important stress response-related genes, as well as on methods for rapid and sensitive detection of L. monocytogenes such as using DNA microarrays.

  20. Recurrent deletions and reciprocal duplications of 10q11.21q11.23 including CHAT and SLC18A3 are likely mediated by complex low-copy repeats.

    Science.gov (United States)

    Stankiewicz, Paweł; Kulkarni, Shashikant; Dharmadhikari, Avinash V; Sampath, Srirangan; Bhatt, Samarth S; Shaikh, Tamim H; Xia, Zhilian; Pursley, Amber N; Cooper, M Lance; Shinawi, Marwan; Paciorkowski, Alex R; Grange, Dorothy K; Noetzel, Michael J; Saunders, Scott; Simons, Paul; Summar, Marshall; Lee, Brendan; Scaglia, Fernando; Fellmann, Florence; Martinet, Danielle; Beckmann, Jacques S; Asamoah, Alexander; Platky, Kathryn; Sparks, Susan; Martin, Ann S; Madan-Khetarpal, Suneeta; Hoover, Jacqueline; Medne, Livija; Bonnemann, Carsten G; Moeschler, John B; Vallee, Stephanie E; Parikh, Sumit; Irwin, Polly; Dalzell, Victoria P; Smith, Wendy E; Banks, Valerie C; Flannery, David B; Lovell, Carolyn M; Bellus, Gary A; Golden-Grant, Kathryn; Gorski, Jerome L; Kussmann, Jennifer L; McGregor, Tracy L; Hamid, Rizwan; Pfotenhauer, Jean; Ballif, Blake C; Shaw, Chad A; Kang, Sung-Hae L; Bacino, Carlos A; Patel, Ankita; Rosenfeld, Jill A; Cheung, Sau Wai; Shaffer, Lisa G

    2012-01-01

    We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.

  1. Integrated analysis of clinical signs and literature data for the diagnosis and therapy of a previously undescribed 6p21.3 deletion syndrome.

    OpenAIRE

    Zollino, Marcella; Gurrieri, Fiorella; Orteschi, Daniela; Marangi, Giuseppe; Leuzzi, Vincenzo; Neri, Giovanni

    2010-01-01

    Abstract A de novo 0.3 Mb deletion on 6p21.3 was detected by array-CGH in a girl with mental retardation, drug-resistant seizures, facial dysmorphisms, gut malrotation and abnormal pancreas segmentation. Consistent with phenotypic manifestations is haploinsufficiency of SYNGAP1, that was recently demonstrated to cause nonsyndromic mental retardation, and of the flanking genes CuTA, a likely modulator of the processing and trafficking of secretory proteins in the human brain, and hP...

  2. 试析网络有偿删帖的刑事规制%Analysis of Criminal Regulation of the Network Paid to Delete the Post

    Institute of Scientific and Technical Information of China (English)

    宋鹏

    2012-01-01

    随着互联网的迅速发展,网络已经成为重要的民意表达渠道,但是实践中伴随着互联网的发展应运而生的网络有偿删帖公司操纵网络舆论,不仅侵害了网络自由表达,也对社会公共利益造成了伤害。基于网络有偿删帖行为的特点,各方主体的行为和责任也各不相同。网络有偿删帖行为可能触及非法控制计算机信息系统罪、破坏计算机信息系统罪、非国家工作人员受贿罪等。从立法完善角度出发,应将一些严重危害社会公共利益的网络有偿删帖行为人罪。%With the rapid development of Internet, network has already become the important channel for the public to express their opinions and ideas. But in practice, the emerging post deleting companies, coming into be- ing with the development of Internet, manipulate the public opinion of network, and such behavior not only encroa- ches upon the freedom of expression on internet, but also characteristics of paying for deleting posts on internet, the same. The behavior of paying for deleting posts on internet damages the social and public interests. Based on the behavior and responsibility of stakeholders are not the may be involved in the crime of illegal control of com- puter information systems, the crime of destroying computer information system, non-governmental staff taking bribes and so on. From the perspective of improving legislation, the behaviors of deleting posts which do serious damage to the interests of the public should be incriminated.

  3. Isolation and analysis of two Escherichia coli K-12 ilv attenuator deletion mutants with high-level constitutive expression of an ilv-lac fusion operon.

    OpenAIRE

    Bennett, D. C.; Umbarger, H E

    1984-01-01

    A lysogenizing lambda phage, lambda dilv-lac11, was constructed to carry an ilvD-lac operon fusion. Expression from the phage of the ilvE and lacZ genes is controlled by an intact ilv control region also carried by this phage. Two spontaneous mutants of lambda dilv-lac11 that have high-level constitutive expression of the ilv-lac fusion operon were isolated by growth on a beta-chloroalanine selective medium. The mutants were shown by nucleotide sequence determination to contain large deletion...

  4. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting...... of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...

  5. A novel deletion in 2q24.1q24.2 in a girl with mental retardation and generalized hypotonia: a case report.

    Science.gov (United States)

    Palumbo, Orazio; Palumbo, Pietro; Palladino, Teresa; Stallone, Raffaella; Zelante, Leopoldo; Carella, Massimo

    2012-01-03

    Chromosomal imbalances, recognized as the major cause of mental retardation, are often due to submicroscopic deletions or duplications not evidenced by conventional cytogenetic methods. To date, interstitial deletion of long arm of chromosome 2 have been reported for more than 100 cases, although studies reporting small interstitial deletions involving the 2q24.1q24.2 region are rare. With the widespread clinical use of comparative genomic hybridization chromosomal microarray technology, several cryptic chromosome imbalances have outlined new genotype-phenotype correlations and isolated a number of distinctive clinical conditions. here we report on a girl with mental retardation and generalized hypotonia. A genome-wide screen for copy number variations (CNVs) using single nucleotide polymorphisms (SNPs) array revealed a 7.5 Mb interstitial deletion of chromosome region 2q24.1q24.2 encompassing 59 genes, which was absent in parents. The gene content analysis of the deleted region and review of the literature revealed the presence of some genes that may be indicated as good candidate in generating the main clinical features of the patient. the present case represents a further patient described in the literature with an interstitial deletion of chromosome 2q24.1q24.2. Our patient shares some clinical features with the previously reported patients carriers of overlapping 2q24 deletion. Although more cases are needed to delineate the full-blown phenotype of 2q24.1q24.2 deletion syndrome, published data and present observation suggest that hemizygosity of this region results in a clinically recognizable phenotype. Considering these clinical and cytogenetic similarities, we suggest the existence of an emerging syndrome associated to 2q24.1q24.2 region.

  6. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit.

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamwork and leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams.

  7. Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage.

    Science.gov (United States)

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-04-18

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen.

  8. The effect of BIM deletion polymorphism on intrinsic resistance and clinical outcome of cancer patient with kinase inhibitor therapy.

    Science.gov (United States)

    Ying, Hou-Qun; Chen, Jie; He, Bang-Shun; Pan, Yu-Qin; Wang, Feng; Deng, Qi-Wen; Sun, Hui-Ling; Liu, Xian; Wang, Shu-Kui

    2015-06-15

    A common deletion polymorphism within B-cell chronic lymphocytic leukemia-lymphoma like 11 gene (BIM) was deemed to be a genetic cause leading to compromised kinase inhibitor therapeutic efficacy in cancer individuals. However, the results reported were not consistent. Thus, a comprehensive meta-analysis containing 12 eligible studies including 1,532 Asian patients was conducted to investigate a steady and reliable conclusion. The results showed that BIM deletion polymorphism was significantly associated with tyrosine kinase inhibitor (TKI) clinical efficacy in term of response rate (Ph = 0.349, HR = 0.438, 95%CI = 0.274-0.699) and disease control rate (Ph = 0.941, HR = 0.370, 95%CI = 0.202-0.678) in EGFR-mutated NSCLC population, not in CML and HCC subgroups. Additionally, EGFR-mutated NSCLC patient harbored BIM deletion polymorphism was associated with a shorter progression-free survival (PFS) than those with BIM wild polymorphism (Ph = 0.580, adjusted HR = 2.194, 95%CI = 1.710-2.814). However, no significant association was examined between BIM deletion polymorphism and overall survival (OS) and toxic adverse events in EGFR-mutated NSCLC population and it was not associated with PFS and OS in HCC subgroup. These findings revealed that BIM deletion polymorphism might be a genetic cause of intrinsic resistance to TKI therapy and it could be emerged as an independent predictor to identify patients who would benefit from TKI targeted therapy in EGFR-mutated NSCLC.

  9. Microarray analysis of the in vivo response of microglia to Aβ peptides in mice with conditional deletion of the prostaglandin EP2 receptor

    Directory of Open Access Journals (Sweden)

    Jenny U. Johansson

    2015-09-01

    Full Text Available Amyloid-β (Aβ peptides accumulate in the brains of patients with Alzheimer's disease (AD, where they generate a persistent inflammatory response from microglia, the innate immune cells of the brain. The immune modulatory cyclooxygenase/prostaglandin E2 (COX/PGE2 pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD [2,3]. PGE2 signals through four G-protein-coupled receptors, including the EP2 receptor that has been investigated for its role in mediating the inflammatory and phagocytic responses to Aβ [4]. To identify transcriptional differences in microglia lacking the EP2 receptor, we examined mice with EP2 conditionally deleted in Cd11b-expressing immune cells. We injected Aβ peptides or saline vehicle into the brains of adult mice, isolated primary microglia, and analyzed RNA expression by microarray. The resulting datasets were analyzed in two studies [5,6], one describing the basal status of microglia with or without EP2 deletion, and the second study analyzing the microglial response to Aβ. Here we describe in detail the experimental design and data analyses. The raw data from these studies are deposited in GEO, accession GSE57181 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57181.

  10. Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice

    Science.gov (United States)

    Silva-Valenzuela, Cecilia A.; Molina-Quiroz, Roberto C.; Desai, Prerak; Valenzuela, Camila; Porwollik, Steffen; Zhao, Ming; Hoffman, Robert M.; Andrews-Polymenis, Helene; Contreras, Inés; Santiviago, Carlos A.; McClelland, Michael

    2016-01-01

    Two pools of individual single gene deletion (SGD) mutants of S. Typhimurium 14028s encompassing deletions of 3,923 annotated non-essential ORFs and sRNAs were screened by intraperitoneal (IP) injection in BALB/c mice followed by recovery from spleen and liver 2 days post infection. The relative abundance of each mutant was measured by microarray hybridization. The two mutant libraries differed in the orientation of the antibiotic resistance cassettes (either sense-oriented KanR, SGD-K, or antisense-oriented CamR, SGD-C). Consistent systemic colonization defects were observed in both libraries and both organs for hundreds of mutants of genes previously reported to be important after IP injection in this animal model, and for about 100 new candidate genes required for systemic colonization. Four mutants with a range of apparent fitness defects were confirmed using competitive infections with the wild-type parental strain: ΔSTM0286, ΔSTM0551, ΔSTM2363, and ΔSTM3356. Two mutants, ΔSTM0286 and ΔSTM2363, were then complemented in trans with a plasmid encoding an intact copy of the corresponding wild-type gene, and regained the ability to fully colonize BALB/c mice systemically. These results suggest the presence of many more undiscovered Salmonella genes with phenotypes in IP infection of BALB/c mice, and validate the libraries for application to other systems. PMID:26779130

  11. Genome-wide CNV analysis replicates the association between GSTM1 deletion and bladder cancer: a support for using continuous measurement from SNP-array data

    Directory of Open Access Journals (Sweden)

    Marenne Gaëlle

    2012-07-01

    Full Text Available Abstract Background Structural variations such as copy number variants (CNV influence the expression of different phenotypic traits. Algorithms to identify CNVs through SNP-array platforms are available. The ability to evaluate well-characterized CNVs such as GSTM1 (1p13.3 deletion provides an important opportunity to assess their performance. Results 773 cases and 759 controls from the SBC/EPICURO Study were genotyped in the GSTM1 region using TaqMan, Multiplex Ligation-dependent Probe Amplification (MLPA, and Illumina Infinium 1 M SNP-array platforms. CNV callings provided by TaqMan and MLPA were highly concordant and replicated the association between GSTM1 and bladder cancer. This was not the case when CNVs were called using Illumina 1 M data through available algorithms since no deletion was detected across the study samples. In contrast, when the Log R Ratio (LRR was used as a continuous measure for the 5 probes contained in this locus, we were able to detect their association with bladder cancer using simple regression models or more sophisticated methods such as the ones implemented in the CNVtools package. Conclusions This study highlights an important limitation in the CNV calling from SNP-array data in regions of common aberrations and suggests that there may be added advantage for using LRR as a continuous measure in association tests rather than relying on calling algorithms.

  12. Deletion of the Chd6 exon 12 affects motor coordination.

    Science.gov (United States)

    Lathrop, Melissa J; Chakrabarti, Lisa; Eng, Jeremiah; Rhodes, C Harker; Lutz, Thomas; Nieto, Amelia; Liggitt, H Denny; Warner, Sandra; Fields, Jennifer; Stöger, Reinhard; Fiering, Steven

    2010-04-01

    Members of the CHD protein family play key roles in gene regulation through ATP-dependent chromatin remodeling. This is facilitated by chromodomains that bind histone tails, and by the SWI2/SNF2-like ATPase/helicase domain that remodels chromatin by moving histones. Chd6 is ubiquitously expressed in both mouse and human, with the highest levels of expression in the brain. The Chd6 gene contains 37 exons, of which exons 12-19 encode the highly conserved ATPase domain. To determine the biological role of Chd6, we generated mouse lines with a deletion of exon 12. Chd6 without exon 12 is expressed at normal levels in mice, and Chd6 Exon 12 -/- mice are viable, fertile, and exhibit no obvious morphological or pathological phenotype. Chd6 Exon 12 -/- mice lack coordination as revealed by sensorimotor analysis. Further behavioral testing revealed that the coordination impairment was not due to muscle weakness or bradykinesia. Histological analysis of brain morphology revealed no differences between Chd6 Exon 12 -/- mice and wild-type (WT) controls. The location of CHD6 on human chromosome 20q12 is overlapped by the linkage map regions of several human ataxias, including autosomal recessive infantile cerebellar ataxia (SCAR6), a nonprogressive cerebrospinal ataxia. The genomic location, expression pattern, and ataxic phenotype of Chd6 Exon 12 -/- mice indicate that mutations within CHD6 may be responsible for one of these ataxias.

  13. Repair of the 3' proximal and internal deletions of a satellite RNA associated with Cucumber mosaic virus is directed toward restoring structural integrity.

    Science.gov (United States)

    Kwon, Sun-Jung; Chaturvedi, Sonali; Rao, A L N

    2014-02-01

    The phenomenon of rapid turnover of 3' proximal nucleotides (nt) lost by the action of nuclease in RNA viruses is integral to replication. Here, a set of six deletions encompassing the 3' 23 nt region of a satellite RNA (satRNA) of Cucumber mosaic virus (CMV) strain Q (Q-sat), were engineered. Repair of the 3' end was not observed in the absence of CMV. However, co-expression with CMV in planta revealed that Q-sat mutants lacking the 3' 18 nt but not the 3' 23 nt are repaired and the progeny accumulation was inversely proportional to the extent of the deletion. Progeny of the 3'Δ3 mutant were repaired to wild type (wt) while those from the remaining four mutants were heterogeneous, exhibiting a wt secondary structure. Analysis of additional 3' internal deletions mutants revealed that progeny with a repaired sequence reminiscent of wt secondary structure were competent for replication and systemic spread.

  14. Molecular cytogenetic detection of chromosome 15 deletions in patients with Prader-Willi and Angelman syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, D.E.; Weksberg, R.; Shuman, C. [Hospital for Sick Children, Toronto (Canada)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are clinically distinct genetic disorders involving alterations of chromosome 15q11-q13. Approximately 75% of individuals with PWS and AS have deletions within 15q11-q13 by molecular analysis. We have evaluated fluorescence in situ hybridization (FISH) for the clinical laboratory detection of del(15)(q11q13) using the cosmid probes D15S11 and GABRB3 (ONCOR, Gaithersburg, NY). 4/4 PWS and 1/1 AS patients previously identified as having cytogenetic deletions were deleted for both probes. In a prospectively ascertained series of 54 patient samples referred to rule out either PWS or AS, 8 were deleted for D15S11 and GABRB3. In addition, an atypical deletion patient with PWS was also identified who was found to be deleted for GABRB3 but not D15S11. The SNRPN locus was also deleted in this patient. Only 4 of the 9 patient samples having molecular cytogenetic deletions were clearly deleted by high resolution banding (HRB) analysis. The microscopic and submicroscopic deletions have been confirmed by dinucleotide (CA) repeat analysis. Microsatellite polymorphism analysis was also used to demonstrate that five non-deletion patients in this series had biparental inheritance of chromosome 15, including region q11-q13. Deletions were not detected by either HRB, FISH or microsatellite polymorphism analysis in samples obtained from parents of the deletion patients. Methylation studies of chromosome 15q11-q13 are in progress for this series of PWS and AS families. FISH analysis of chromosome 15q11-q13 in patients with PWS and AS is a rapid, sensitive and reliable method for deletion detection.

  15. Analysis of self-overlap reveals trade-offs in plankton swimming trajectories

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Visser, Andre W.; Mazzocchi, Maria Grazia

    2014-01-01

    these contrasting processes. This trade-off can be hypothesized as being evident in the behaviour of plankton, which inhabit a dilute three-dimensional environment with few refuges or orienting landmarks. We present an analysis of the swimming path geometries based on a volumetric Monte Carlo sampling approach......, which is particularly adept at revealing such trade-offs by measuring the self-overlap of the trajectories. Application of this method to experimentally measured trajectories reveals that swimming patterns in copepods are shaped to efficiently explore volumes at small scales, while achieving a large...

  16. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity.

    Science.gov (United States)

    Watson, Eleanor; Sherry, Aileen; Inglis, Neil F; Lainson, Alex; Jyothi, Dushyanth; Yaga, Raja; Manson, Erin; Imrie, Lisa; Everest, Paul; Smith, David G E

    2014-09-01

    Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  17. Conversion of deletions during recombination in pneumococcal transformation.

    Science.gov (United States)

    Lefèvre, J C; Mostachfi, P; Gasc, A M; Guillot, E; Pasta, F; Sicard, M

    1989-11-01

    Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems.

  18. New pleiotropic effects of eliminating a rare tRNA from Streptomyces coelicolor, revealed by combined proteomic and transcriptomic analysis of liquid cultures

    Directory of Open Access Journals (Sweden)

    Hotchkiss Graham

    2007-08-01

    Full Text Available Abstract Background In Streptomyces coelicolor, bldA encodes the only tRNA for a rare leucine codon, UUA. This tRNA is unnecessary for growth, but is required for some aspects of secondary metabolism and morphological development. We describe a transcriptomic and proteomic analysis of the effects of deleting bldA on cellular processes during submerged culture: conditions relevant to the industrial production of antibiotics. Results At the end of rapid growth, a co-ordinated transient up-regulation of about 100 genes, including many for ribosomal proteins, was seen in the parent strain but not the ΔbldA mutant. Increased basal levels of the signal molecule ppGpp in the mutant strain may be responsible for this difference. Transcripts or proteins from a further 147 genes classified as bldA-influenced were mostly expressed late in culture in the wild-type, though others were significantly transcribed during exponential growth. Some were involved in the biosynthesis of seven secondary metabolites; and some have probable roles in reorganising metabolism after rapid growth. Many of the 147 genes were "function unknown", and may represent unknown aspects of Streptomyces biology. Only two of the 147 genes contain a TTA codon, but some effects of bldA could be traced to TTA codons in regulatory genes or polycistronic operons. Several proteins were affected post-translationally by the bldA deletion. There was a statistically significant but weak positive global correlation between transcript and corresponding protein levels. Different technical limitations of the two approaches were a major cause of discrepancies in the results obtained with them. Conclusion Although deletion of bldA has very conspicuous effects on the gross phenotype, the bldA molecular phenotype revealed by the "dualomic" approach has shown that only about 2% of the genome is affected; but this includes many previously unknown effects at a variety of different levels, including post

  19. Bilateral hand amyotrophy with PMP-22 gene deletion.

    Science.gov (United States)

    Gochard, A; Guennoc, A M; Praline, J; Malinge, M C; de Toffol, B; Corcia, P

    2007-01-01

    Hereditary neuropathy with liability to pressure palsies (HNPP) phenotypes are heterogeneous. We report the case of a 52-year-old woman without medical history, who complained of bilateral hand weakness suggestive first of a motor neuron disorder. The presence of a diffuse predominant distal demyelinating neuropathy suggested a deletion of PMP-22 gene, which was confirmed by genetic analysis. This case report underlines a novel phenotype related to the deletion of PMP-22 gene.

  20. Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast.

    Science.gov (United States)

    Passoth, Volkmar; Cohn, Marita; Schäfer, Bernd; Hahn-Hägerdal, Bärbel; Klinner, Ulrich

    2003-01-15

    We introduced a reporter gene system into Pichia stipitis using the gene for the artificial green fluorescent protein (GFP), variant yEGFP. This system was used to analyse hypoxia-dependent PsADH2 regulation. Reporter gene activity was only found under oxygen limitation on a fermentable carbon source. The promoter was not induced by oxygen limitation in the Crabtree-positive yeast Saccharomyces cerevisiae. Promoter deletions revealed that a region of 15 bp contained the essential site for hypoxic induction. This motif was different from the known hypoxia response elements of S. cerevisiae but showed some similarity to the mammalian HIF-1 binding site. Electrophoretic mobility shift assays demonstrated specific protein binding to this region under oxygen limitation. Similar to the S. cerevisiae heme sensor system, the promoter was induced by Co(2+). Cyanide was not able to mimic the effect of oxygen limitation. The activation mechanism of PsADH2 also, in this respect, has similarities to the mammalian HIF-1 system, which is inducible by Co(2+) but not by cyanide. Thus, the very first promoter analysis in P. stipitis revealed a hitherto unknown mechanism of oxygen sensing in yeast.

  1. Genomic clones of bovine parvovirus: Construction and effect of deletions and terminal sequence inversions on infectivity

    Energy Technology Data Exchange (ETDEWEB)

    Shull, B.C.; Chen, K.C.; Lederman, M.; Stout, E.R.; Bates, R.C. (Virginia Polytechnic Institute and State Univ., Blacksburg (USA))

    1988-02-01

    Genomic clones of the autonomous parvovirus bovine parvovirus (BPV) were constructed by blunt-end ligation of reannealed virion plus and minus DNA strands into the plasmid pUC8. These clones were stable during propagation in Escherichia coli JM107. All clones tested were found to be infectious by the criteria of plaque titer and progressive cytophathic effect after transfection into bovine fetal lung cells. Sequencing of the recombinant plasmids demonstrated that all of the BPV inserts had left-end (3{prime})-terminal deletions of up to 34 bases. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. Full-length genomic clones with 3{prime} flip and 3{prime} flop conformations were constructed and were found to have equal infectivity. Expression of capsid proteins from tranfected genomes was demonstrated by hemagglutination, indirect immunofluorescence, and immunoprecipitation of ({sup 35}S)methionine-labeled cell lysates. Use of appropriate antiserum for immunoprecipitation showed the synthesis of BPV capsid and noncapsid proteins after transfection. Independently, a series of genomic clones with increasingly larger 3{prime}-terminal deletions was prepared from separately subcloned 3{prime}-terminal fragments. Transfection of these clones into bovine fetal lung cells revealed that deletions of up to 34 bases at the 3{prime} end lowered but did not abolish infectivity, while deletions of greater than 52 bases were lethal. End-label analysis showed that the 34-base deletion was repaired to wild-type length in the progeny virus.

  2. Chromosome 11q13 deletion syndrome

    Science.gov (United States)

    Kim, Yu-Seon; Kim, Gun-Ha; Byeon, Jung Hye; Eun, So-Hee

    2016-01-01

    Chromosome 11q13 deletion syndrome has been previously reported as either otodental syndrome or oculo-oto-dental syndrome. The otodental syndrome is characterized by dental abnormalities and high-frequency sensorineural hearing loss, and by ocular coloboma in some cases. The underlying genetic defect causing otodental syndrome is a hemizygous microdeletion involving the FGF3 gene on chromosome 11q13.3. Recently, a new form of severe deafness, microtia (small ear) and small teeth, without the appearance of eye abnormalities, was also reported. In this report, we describe a 1-year-old girl presenting with ptosis of the left upper eyelid, right auricular deformity, high-arched palate, delayed dentition, simian line on the right hand, microcephaly, and developmental delay. In this patient, we identified a deletion in the chromosome 11q13.2-q13.3 (2.75 Mb) region by using an array-comparative genomic hybridization analysis. The deletion in chromosome 11q13 results in a syndrome characterized by variable clinical manifestations. Some of these manifestations involve craniofacial dysmorphology and require a functional workup for hearing, ophthalmic examinations, and long-term dental care. PMID:28018436

  3. Changes in microbiota population during fermentation of narezushi as revealed by pyrosequencing analysis.

    Science.gov (United States)

    Kiyohara, Masashi; Koyanagi, Takashi; Matsui, Hiroshi; Yamamoto, Keiko; Take, Harumi; Katsuyama, Yoko; Tsuji, Atsushi; Miyamae, Hiroto; Kondo, Tetsufumi; Nakamura, Shizuo; Katayama, Takane; Kumagai, Hidehiko

    2012-01-01

    Modern Japanese sushi is derived from an archetype, narezushi, which is made by the fermentation of salted fish with rice. Several studies have demonstrated that lactic acid bacteria are dominantly present in narezushi, but no studies have addressed how microbial composition changes during fermentation. In this study, we examined changes in the microbial population in aji (horse mackerel)-narezushi during fermentation by pyrosequencing the 16S ribosomal RNA gene (rDNA). Ribosomal Database Project Classifier analysis revealed that among the 53 genera present, the Lactobacillus population drastically increased during fermentation, while the populations of other bacteria remained unchanged. Basic Local Alignment Search Tool analysis revealed that L. plantarum and L. brevis were the major species. Comparison with other fermented food microbiota indicated high product-dependency of the bacterial composition, which might have been due to the starter-free fermentation process.

  4. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-03-29

    The 'neural plate border' of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure.

  5. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  6. Proteomics Analysis of Ovarian Cancer Cell Lines and Tissues Reveals Drug Resistance-associated Proteins

    Science.gov (United States)

    CRUZ*, ISA N.; COLEY*, HELEN M.; KRAMER, HOLGER B.; MADHURI, THUMULURU KAVITAH; SAFUWAN, NUR A.M.; ANGELINO, ANA RITA; YANG, MIN

    2016-01-01

    Background: Carboplatin and paclitaxel form the cornerstone of chemotherapy for epithelial ovarian cancer, however, drug resistance to these agents continues to present challenges. Despite extensive research, the mechanisms underlying this resistance remain unclear. Materials and Methods: A 2D-gel proteomics method was used to analyze protein expression levels of three human ovarian cancer cell lines and five biopsy samples. Representative proteins identified were validated via western immunoblotting. Ingenuity pathway analysis revealed metabolomic pathway changes. Results: A total of 189 proteins were identified with restricted criteria. Combined treatment targeting the proteasome-ubiquitin pathway resulted in re-sensitisation of drug-resistant cells. In addition, examination of five surgical biopsies of ovarian tissues revealed α-enolase (ENOA), elongation factor Tu, mitochondrial (EFTU), glyceraldehyde-3-phosphate dehydrogenase (G3P), stress-70 protein, mitochondrial (GRP75), apolipoprotein A-1 (APOA1), peroxiredoxin (PRDX2) and annexin A (ANXA) as candidate biomarkers of drug-resistant disease. Conclusion: Proteomics combined with pathway analysis provided information for an effective combined treatment approach overcoming drug resistance. Analysis of cell lines and tissues revealed potential prognostic biomarkers for ovarian cancer. *These Authors contributed equally to this study. PMID:28031236

  7. Whole genome analysis of an MDR Beijing/W strain of Mycobacterium tuberculosis with large genomic deletions associated with resistance to isoniazid.

    Science.gov (United States)

    Zhang, Qiufen; Wan, Baoshan; Zhou, Aiping; Ni, Jinjing; Xu, Zhihong; Li, Shuxian; Tao, Jing; Yao, YuFeng

    2016-05-15

    Mycobacterium tuberculosis (M.tb) is one of the most prevalent bacterial pathogens in the world. With geographical wide spread and hypervirulence, Beijing/W family is the most successful M.tb lineage. China is a country of high tuberculosis (TB) and high multiple drug-resistant TB (MDR-TB) burden, and the Beijing/W family strains take the largest share of MDR strains. To study the genetic basis of Beijing/W family strains' virulence and drug resistance, we performed the whole genome sequencing of M.tb strain W146, a clinical Beijing/W genotype MDR isolated from Wuxi, Jiangsu province, China. Compared with genome sequence of M.tb strain H37Rv, we found that strain W146 lacks three large fragments and the missing of furA-katG operon confers isoniazid resistance. Besides the missing of furA-katG operon, strain W146 harbored almost all known drug resistance-associated mutations. Comparison analysis of single nucleotide polymorphisms (SNPs) and indels between strain W146 and Beijing/W genotype strains and non-Beijing/W genotype strains revealed that strain W146 possessed some unique mutations, which may be related to drug resistance, transmission and pathogenicity. These findings will help to understand the large sequence polymorphisms (LSPs) and the transmission and drug resistance related genetic characteristics of the Beijing/W genotype of M.tb.

  8. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido

    2015-01-01

    Purpose To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Methods Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. Results The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron–exon junction, we observed a homozygous 10 bp deletion between positions −26 and −17 (c.2281–26_-17del). The deletion was linked to a known SNP, c.2281–6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281–26_-17del leads to

  9. Alu-Alu Recombination Underlying the First Large Genomic Deletion in GlcNAc-Phosphotransferase Alpha/Beta (GNPTAB) Gene in a MLII Alpha/Beta Patient

    DEFF Research Database (Denmark)

    Coutinho, F; da Silva Santos, L; Lacerda, L

    2012-01-01

    to the identification of a 21 bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5' and 3' breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous......), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18.This represents the first description of a large deletion identified...

  10. Spinal cord glioneuronal tumor with neuropil-like islands with 1p/19q deletion in an adult with low-grade cerebral oligodendroglioma.

    Science.gov (United States)

    Fraum, Tyler J; Barak, Stephanie; Pack, Svetlana; Lonser, Russell R; Fine, Howard A; Quezado, Martha; Iwamoto, Fabio M

    2012-04-01

    Glioneuronal tumor with neuropil-like islands (GTNI) is considered a rare variant of astrocytoma, characterized by discrete aggregates of cells expressing neuronal markers that punctuate a GFAP-positive glial background. Of the 24 published GTNI cases, only two occurred in adult spinal cords; none occurred concurrent with another CNS tumor; and none of those tested exhibited the 1p/19q deletion typical of oligodendroglioma. A 48-year-old man without significant past medical history was diagnosed with a WHO grade II oligodendroglioma by stereotactic biopsy of a lesion discovered after the patient suffered a generalized tonic-clonic seizure. By FISH analysis, this tumor exhibited the 1p/19q deletion present in up to 80% of oligodendrogliomas. The patient received 14 monthly cycles of temozolomide, and his cerebral tumor had a minor response. When the patient subsequently reported progressive paresthesias of his lower extremities, an MRI revealed an enhancing, cystic tumor of the thoracic spinal cord that was diagnosed as GTNI by histological analysis. By FISH analysis, this lesion exhibited the same 1p/19q deletion present in the concurrent cerebral oligodendroglioma. This case of a spinal cord GTNI with 1p/19q deletions constitutes the third report of a spinal cord GTNI in an adult patient; the first report of a GTNI in an individual with a separate CNS neoplasm; and the first report of a GTNI with 1p/19q deletions. This case establishes a potential genetic kinship between GTNI and oligodendroglioma that warrants further investigation.

  11. New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis.

    Science.gov (United States)

    Pérez-Amador, M A; Lidder, P; Johnson, M A; Landgraf, J; Wisman, E; Green, P J

    2001-12-01

    In this study, DNA microarray analysis was used to expand our understanding of the dst1 mutant of Arabidopsis. The dst (downstream) mutants were isolated originally as specifically increasing the steady state level and the half-life of DST-containing transcripts. As such, txhey offer a unique opportunity to study rapid sequence-specific mRNA decay pathways in eukaryotes. These mutants show a threefold to fourfold increase in mRNA abundance for two transgenes and an endogenous gene, all containing DST elements, when examined by RNA gel blot analysis; however, they show no visible aberrant phenotype. Here, we use DNA microarrays to identify genes with altered expression levels in dst1 compared with the parental plants. In addition to verifying the increase in the transgene mRNA levels, which were used to isolate these mutants, we were able to identify new genes with altered mRNA abundance in dst1. RNA gel blot analysis confirmed the microarray data for all genes tested and also was used to catalog the first molecular differences in gene expression between the dst1 and dst2 mutants. These differences revealed previously unknown molecular phenotypes for the dst mutants that will be helpful in future analyses. Cluster analysis of genes altered in dst1 revealed new coexpression patterns that prompt new hypotheses regarding the nature of the dst1 mutation and a possible role of the DST-mediated mRNA decay pathway in plants.

  12. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Delyfer

    Full Text Available BACKGROUND: Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. METHODOLOGY/PRINCIPAL FINDINGS: Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. CONCLUSIONS/SIGNIFICANCE: This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery.

  13. Analysis of the transcriptional differences between indigenous and invasive whiteflies reveals possible mechanisms of whitefly invasion.

    Science.gov (United States)

    Wang, Yong-Liang; Wang, Yu-Jun; Luan, Jun-Bo; Yan, Gen-Hong; Liu, Shu-Sheng; Wang, Xiao-Wei

    2013-01-01

    The whitefly Bemisa tabaci is a species complex of more than 31 cryptic species which include some of the most destructive invasive pests of crops worldwide. Among them, Middle East-Asia Minor 1 (MEAM1) and Mediterranean have invaded many countries and displaced the native whitefly species. The successful invasion of the two species is largely due to their wide range of host plants, high resistance to insecticides and remarkable tolerance to environmental stresses. However, the molecular differences between invasive and indigenous whiteflies remain largely unknown. Here the global transcriptional difference between the two invasive whitefly species (MEAM1, MED) and one indigenous whitefly species (Asia II 3) were analyzed using the Illumina sequencing. Our analysis indicated that 2,422 genes between MEAM1 and MED; 3,073 genes between MEAM1 and Asia II 3; and 3,644 genes between MED and Asia II 3 were differentially expressed. Gene Ontology enrichment analysis revealed that the differently expressed genes between the invasive and indigenous whiteflies were significantly enriched in the term of 'oxidoreductase activity'. Pathway enrichment analysis showed that carbohydrate, amino acid and glycerolipid metabolisms were more active in MEAM1 and MED than in Asia II 3, which may contribute to their differences in biological characteristics. Our analysis also illustrated that the majority of genes involved in 'drug metabolic pathway' were expressed at a higher level in MEAM1 and MED than in Asia II 3. Taken together, these results revealed that the genes related to basic metabolism and detoxification were expressed at an elevated level in the invasive whiteflies, which might be responsible for their higher resistance to insecticides and environmental stresses. The extensive comparison of MEAM1, MED and Asia II 3 gene expression may serve as an invaluable resource for revealing the molecular mechanisms underlying their biological differences and the whitefly invasion.

  14. Local coexistence of VO2 phases revealed by deep data analysis

    Science.gov (United States)

    Strelcov, Evgheni; Ievlev, Anton; Belianinov, Alex; Tselev, Alexander; Kolmakov, Andrei; Kalinin, Sergei V.

    2016-07-01

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer from information misinterpretation due to low resolving power.

  15. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  16. Somatic mutational analysis of FAK in breast cancer: A novel gain-of-function mutation due to deletion of exon 33

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xu-Qian [Department of Clinical Laboratory, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai (China); Liu, Xiang-Fan [Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai (China); Yao, Ling [Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai (China); Chen, Chang-Qiang; Gu, Zhi-Dong [Department of Clinical Laboratory, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai (China); Ni, Pei-Hua [Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai (China); Zheng, Xin-Min [Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai (China); Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY (United States); Fan, Qi-Shi, E-mail: qishifan@126.com [Department of Clinical Laboratory, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai (China)

    2014-01-10

    Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introduced into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.

  17. Structural Analysis and Deletion Mutagenesis Define Regions of QUIVER/SLEEPLESS that Are Responsible for Interactions with Shaker-Type Potassium Channels and Nicotinic Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Meilin Wu

    Full Text Available Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS, which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K channels and downregulating nicotinic acetylcholine receptors (nAChRs in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function.

  18. Transcriptomic Analysis of the Claudin Interactome in Malignant Pleural Mesothelioma: Evaluation of the Effect of Disease Phenotype, Asbestos Exposure, and CDKN2A Deletion Status

    Science.gov (United States)

    Rouka, Erasmia; Vavougios, Georgios D.; Solenov, Evgeniy I.; Gourgoulianis, Konstantinos I.; Hatzoglou, Chrissi; Zarogiannis, Sotirios G.

    2017-01-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive tumor primarily associated with asbestos exposure. Early detection of MPM is restricted by the long latency period until clinical presentation, the ineffectiveness of imaging techniques in early stage detection and the lack of non-invasive biomarkers with high sensitivity and specificity. In this study we used transcriptome data mining in order to determine which CLAUDIN (CLDN) genes are differentially expressed in MPM as compared to controls. Using the same approach we identified the interactome of the differentially expressed CLDN genes and assessed their expression profile. Subsequently, we evaluated the effect of tumor histology, asbestos exposure, CDKN2A deletion status, and gender on the gene expression level of the claudin interactome. We found that 5 out of 15 studied CLDNs (4, 5, 8, 10, 15) and 4 out of 27 available interactors (S100B, SHBG, CDH5, CXCL8) were differentially expressed in MPM specimens vs. healthy tissues. The genes encoding the CLDN-15 and S100B proteins present differences in their expression profile between the three histological subtypes of MPM. Moreover, CLDN-15 is significantly under-expressed in the cohort of patients with previous history of asbestos exposure. CLDN-15 was also found significantly underexpressed in patients lacking the CDKN2A gene. These results warrant the detailed in vitro investigation of the role of CDLN-15 in the pathobiology of MPM. PMID:28377727

  19. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity

    Directory of Open Access Journals (Sweden)

    Eleanor Watson

    2014-09-01

    Full Text Available Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC–ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith–Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  20. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells

    DEFF Research Database (Denmark)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas

    2016-01-01

    as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human...... kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified...... to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially...

  1. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.

    Science.gov (United States)

    Xue, Jia; Schmidt, Susanne V; Sander, Jil; Draffehn, Astrid; Krebs, Wolfgang; Quester, Inga; De Nardo, Dominic; Gohel, Trupti D; Emde, Martina; Schmidleithner, Lisa; Ganesan, Hariharasudan; Nino-Castro, Andrea; Mallmann, Michael R; Labzin, Larisa; Theis, Heidi; Kraut, Michael; Beyer, Marc; Latz, Eicke; Freeman, Tom C; Ulas, Thomas; Schultze, Joachim L

    2014-02-20

    Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.

  2. Role of direct repeat and stem-loop motifs in mtDNA deletions: cause or coincidence?

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayanan Lakshmanan

    Full Text Available Deletion mutations within mitochondrial DNA (mtDNA have been implicated in degenerative and aging related conditions, such as sarcopenia and neuro-degeneration. While the precise molecular mechanism of deletion formation in mtDNA is still not completely understood, genome motifs such as direct repeat (DR and stem-loop (SL have been observed in the neighborhood of deletion breakpoints and thus have been postulated to take part in mutagenesis. In this study, we have analyzed the mitochondrial genomes from four different mammals: human, rhesus monkey, mouse and rat, and compared them to randomly generated sequences to further elucidate the role of direct repeat and stem-loop motifs in aging associated mtDNA deletions. Our analysis revealed that in the four species, DR and SL structures are abundant and that their distributions in mtDNA are not statistically different from randomized sequences. However, the average distance between the reported age associated mtDNA breakpoints and their respective nearest DR motifs is significantly shorter than what is expected of random chance in human (p10 bp tend to decrease with increasing lifespan among the four mammals studied here, further suggesting an evolutionary selection against stable mtDNA misalignments associated with long DRs in long-living animals. In contrast to the results on DR, the probability of finding SL motifs near a deletion breakpoint does not differ from random in any of the four mtDNA sequences considered. Taken together, the findings in this study give support for the importance of stable mtDNA misalignments, aided by long DRs, as a major mechanism of deletion formation in long-living, but not in short-living mammals.

  3. Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns.

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez-Pérez

    Full Text Available The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA of four core housekeeping genes (rrs, gyrB, rpoB and rpoD. A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1; P. fluorescens, P. lutea and P. syringae (NG 2; and P. rhizosphaerae (NG 3. Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria.

  4. Phylogenomic Analysis Reveals Extensive Phylogenetic Mosaicism in the Human GPCR Superfamily

    Directory of Open Access Journals (Sweden)

    Mathew Woodwark

    2007-01-01

    Full Text Available A novel high throughput phylogenomic analysis (HTP was applied to the rhodopsin G-protein coupled receptor (GPCR family. Instances of phylogenetic mosaicism between receptors were found to be frequent, often as instances of correlated mosaicism and repeated mosaicism. A null data set was constructed with the same phylogenetic topology as the rhodopsin GPCRs. Comparison of the two data sets revealed that mosaicism was found in GPCRs in a higher frequency than would be expected by homoplasy or the effects of topology alone. Various evolutionary models of differential conservation, recombination and homoplasy are explored which could result in the patterns observed in this analysis. We find that the results are most consistent with frequent recombination events. A complex evolutionary history is illustrated in which it is likely frequent recombination has endowed GPCRs with new functions. The pattern of mosaicism is shown to be informative for functional prediction for orphan receptors. HTP analysis is complementary to conventional phylogenomic analyses revealing mosaicism that would not otherwise have been detectable through conventional phylogenetics.

  5. Electrically active defects in silica-filled epoxy as revealed by light emission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, E; Teyssedre, G; Laurent, C [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Rowe, S; Robiani, S, E-mail: christian.laurent@laplace.univ-tlse.f [Schneider Electric, Direction des Recherches Materiaux, rue Henri Tarze, F-38050 Grenoble (France)

    2009-08-21

    Epoxy resins have long been used as the insulation of electrical systems. They are generally formulated with a dispersion of micro-fillers to improve thermal and mechanical properties. However, there are concerns about the possible influence of these fillers on the electric behaviour, especially on the long term ageing under functional stresses. At the loose interface between matrix and fillers, macro- and micro-voids in the resin can provide weak points that are difficult to detect using conventional spectroscopy. Light emission analysis from the material under electrical stress is an efficient way to reveal such electrically active defects since internal ionizing events would give rise to photon emission. A detailed analysis of the light emitted by silica-filled and unfilled epoxy samples is presented. The photon counting technique, spectral analysis and imaging give a firm basis to discuss the contributing emission processes to the detected signal. They reveal the existence of ionizing events into internal defects. The sensitivity of the optical method is order of magnitudes higher than the sensitivity of conventional partial discharge detection.

  6. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas

    DEFF Research Database (Denmark)

    Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo

    2017-01-01

    BACKGROUND: Papillary thyroid carcinoma (PTC) is a common endocrine neoplasm with a recent increase in incidence in many countries. Although PTC has been explored by gene expression and DNA methylation studies, the regulatory mechanisms of the methylation on the gene expression was poorly clarified......-validated by the The Cancer Genome Atlas data. The majority of these probes was found in non-promoters regions, distant from CGI and enriched by enhancers. The integrative analysis between gene expression and DNA methylation revealed 185 and 38 genes (mainly in the promoter and body regions, respectively) with negative...

  7. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.

    Science.gov (United States)

    Jo, William J; Loguinov, Alex; Chang, Michelle; Wintz, Henri; Nislow, Corey; Arkin, Adam P; Giaever, Guri; Vulpe, Chris D

    2008-01-01

    Iron and copper are essential nutrients for life as they are required for the function of many proteins but can be toxic if present in excess. Accumulation of these metals in the human body as a consequence of overload disorders and/or high environmental exposures has detrimental effects on health. The budding yeast Saccharomyces cerevisiae is an accepted cellular model for iron and copper metabolism in humans primarily because of the high degree of conservation between pathways and proteins involved. Here we report a systematic screen using yeast deletion mutants to identify genes involved in the toxic response to growth-inhibitory concentrations of iron and copper sulfate. We aimed to understand the cellular responses to toxic concentrations of these two metals by analyzing the different subnetworks and biological processes significantly enriched with these genes. Our results indicate the presence of two different detoxification pathways for iron and copper that converge toward the vacuole. The product of several of the identified genes in these pathways form molecular complexes that are conserved in mammals and include the retromer, endosomal sorting complex required for transport (ESCRT) and AP-3 complexes, suggesting that the mechanisms involved can be extrapolated to humans. Our data also suggest a disruption in ion homeostasis and, in particular, of iron after copper exposure. Moreover, the identification of treatment-specific genes associated with biological processes such as DNA double-strand break repair for iron and tryptophan biosynthesis for copper suggests differences in the mechanisms by which these two metals are toxic at high concentrations.

  8. VNTR analysis reveals unexpected genetic diversity within Mycoplasma agalactiae, the main causative agent of contagious agalactia

    Directory of Open Access Journals (Sweden)

    Ayling Roger D

    2008-11-01

    Full Text Available Abstract Background Mycoplasma agalactiae is the main cause of contagious agalactia, a serious disease of sheep and goats, which has major clinical and economic impacts. Previous studies of M. agalactiae have shown it to be unusually homogeneous and there are currently no available epidemiological techniques which enable a high degree of strain differentiation. Results We have developed variable number tandem repeat (VNTR analysis using the sequenced genome of the M. agalactiae type strain PG2. The PG2 genome was found to be replete with tandem repeat sequences and 4 were chosen for further analysis. VNTR 5 was located within the hypothetical protein MAG6170 a predicted lipoprotein. VNTR 14 was intergenic between the hypothetical protein MAG3350 and the hypothetical protein MAG3340. VNTR 17 was intergenic between the hypothetical protein MAG4060 and the hypothetical protein MAG4070 and VNTR 19 spanned the 5' end of the pseudogene for a lipoprotein MAG4310 and the 3' end of the hypothetical lipoprotein MAG4320. We have investigated the genetic diversity of 88 M. agalactiae isolates of wide geographic origin using VNTR analysis and compared it with pulsed field gel electrophoresis (PFGE and random amplified polymorphic DNA (RAPD analysis. Simpson's index of diversity was calculated to be 0.324 for PFGE and 0.574 for VNTR analysis. VNTR analysis revealed unexpected diversity within M. agalactiae with 9 different VNTR types discovered. Some correlation was found between geographical origin and the VNTR type of the isolates. Conclusion VNTR analysis represents a useful, rapid first-line test for use in molecular epidemiological analysis of M. agalactiae for outbreak tracing and control.

  9. Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes.

    Science.gov (United States)

    Kitada, Kunio; Taima, Akira; Ogasawara, Kiyomoto; Metsugi, Shouichi; Aikawa, Satoko

    2011-04-01

    Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis.

  10. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  11. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines

    Science.gov (United States)

    Campbell-Sills, Hugo; El Khoury, Mariette; Favier, Marion; Romano, Andrea; Biasioli, Franco; Spano, Giuseppe; Sherman, David J.; Bouchez, Olivier; Coton, Emmanuel; Coton, Monika; Okada, Sanae; Tanaka, Naoto; Dols-Lafargue, Marguerite; Lucas, Patrick M.

    2015-01-01

    Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne. PMID:25977455

  12. Proteomic analysis reveals novel proteins associated with progression and differentiation of colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Yi Gan

    2014-01-01

    Full Text Available Aim: The objective of this study is to characterize differential proteomic expression among well-differentiation and poor-differentiation colorectal carcinoma tissues and normal mucous epithelium. Materials and Methods: The study is based on quantitative 2-dimensional gel electrophoresis and analyzed by PDquest. Results: Excluding redundancies due to proteolysis and posttranslational modified isoforms of over 600 protein spots, 11 proteins were revealed as regulated with statistical variance being within the 95 th confidence level and were identified by peptide mass fingerprinting in matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Progression-associated proteins belong to the functional complexes of tumorigenesis, proliferation, differentiation, metabolism, and the regulation of major histocompatibility complex processing and other functions. Partial but significant overlap was revealed with previous proteomics and transcriptomics studies in CRC. Among various differentiation stage of CRC tissues, we identified calreticulin precursor, MHC class I antigen (human leukocyte antigen A , glutathione S-transferase pi1, keratin 8, heat shock protein 27, tubulin beta chain, triosephosphate, fatty acid-binding protein, hemoglobin (deoxy mutant with val b 1 replaced by met (HBB, and zinc finger protein 312 (FEZF2. Conclusions: Their functional networks were analyzed by Ingenuity systems Ingenuity Pathways Analysis and revealed the potential roles as novel biomarkers for progression in various differentiation stages of CRC.

  13. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    Science.gov (United States)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  14. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas

    DEFF Research Database (Denmark)

    Cirilo, Priscila Daniele Ramos; Marchi, Fábio Albuquerque; Barros Filho, Mateus de Camargo

    2013-01-01

    BACKGROUND: Uterine Leiomyomas (ULs) are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40-50% of ULs have non-random cytogenetic abnormalities, and half of ULs may......: The integrated analysis identified the top 30 significant genes (Pindicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell...... and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs....

  15. Analysis of miRNA market trends reveals hotspots of research activity.

    Science.gov (United States)

    Oosta, Gary; Razvi, Enal

    2012-04-01

    We have conducted an analysis of the miRNA research marketplace by evaluating the publication trends in the field. In this article, we present the results of our analysis which reveals that hotspots exist in terms of research activities in the miRNA space--these hotspots illustrate the areas in the miRNA research space where specific miRNAs have been extensively studied, and other areas that represent new territory. We frame these data into the context of areas of opportunity for miRNA content harvest versus segments of opportunity for the development of research tools. Also presented in this article are the primary market data from online surveys we have performed with researchers involved in miRNA research around the world. Taken together, these data frame the current state of the miRNA marketplace and provide niches of opportunity for new entrants into this space.

  16. Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation.

    Science.gov (United States)

    Gopinath, Chetna; Law, William D; Rodríguez-Molina, José F; Prasad, Arjun B; Song, Lingyun; Crawford, Gregory E; Mullikin, James C; Svaren, John; Antonellis, Anthony

    2016-11-07

    The transcription factor SOX10 is essential for all stages of Schwann cell development including myelination. SOX10 cooperates with other transcription factors to activate the expression of key myelin genes in Schwann cells and is therefore a context-dependent, pro-myelination transcription factor. As such, the identification of genes regulated by SOX10 will provide insight into Schwann cell biology and related diseases. While genome-wide studies have successfully revealed SOX10 target genes, these efforts mainly focused on myelinating stages of Schwann cell development. We propose that less-biased approaches will reveal novel functions of SOX10 outside of myelination. We developed a stringent, computational-based screen for genome-wide identification of SOX10 response elements. Experimental validation of a pilot set of predicted binding sites in multiple systems revealed that SOX10 directly regulates a previously unreported alternative promoter at SOX6, which encodes a transcription factor that inhibits glial cell differentiation. We further explored the utility of our computational approach by combining it with DNase-seq analysis in cultured Schwann cells and previously published SOX10 ChIP-seq data from rat sciatic nerve. Remarkably, this analysis enriched for genomic segments that map to loci involved in the negative regulation of gliogenesis including SOX5, SOX6, NOTCH1, HMGA2, HES1, MYCN, ID4, and ID2. Functional studies in Schwann cells revealed that: (1) all eight loci are expressed prior to myelination and down-regulated subsequent to myelination; (2) seven of the eight loci harbor validated SOX10 binding sites; and (3) seven of the eight loci are down-regulated upon repressing SOX10 function. Our computational strategy revealed a putative novel function for SOX10 in Schwann cells, which suggests a model where SOX10 activates the expression of genes that inhibit myelination during non-myelinating stages of Schwann cell development. Importantly, the

  17. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Martinelli, Diego [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Dionisi-Vici, Carlo [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Nobili, Valerio [Gastroenterology and Liver Unit, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Francalanci, Paola; Boldrini, Renata; Callea, Francesco [Dept. Pathology, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Santorelli, Filippo Maria [UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  18. Alu Sx repeat-induced homozygous deletion of the StAR gene causes lipoid congenital adrenal hyperplasia.

    Science.gov (United States)

    Eiden-Plach, Antje; Nguyen, Huy-Hoang; Schneider, Ursula; Hartmann, Michaela F; Bernhardt, Rita; Hannemann, Frank; Wudy, Stefan A

    2012-05-01

    Lipoid congenital adrenal hyperplasia (Lipoid CAH) is the most severe form of the autosomal recessive disorder CAH. A general loss of the steroid biosynthetic activity caused by defects in the StAR gene manifests as life-threatening primary adrenal insufficiency. We report a case of Lipoid CAH caused by a so far not described homozygous deletion of the complete StAR gene and provide diagnostic results based on a GC-MS steroid metabolomics and molecular genetic analysis. The patient presented with postnatal hypoglycemia, vomiting, adynamia, increasing pigmentation and hyponatremia. The constellation of urinary steroid metabolites suggested Lipoid CAH and ruled out all other forms of CAH or defects of aldosterone biosynthesis. After treatment with sodium supplementation, hydrocortisone and fludrocortisone the child fully recovered. Molecular genetic analysis demonstrated a homozygous 12.1 kb deletion in the StAR gene locus. The breakpoints of the deletion are embedded into two typical genomic repetitive Alu Sx elements upstream and downstream of the gene leading to the loss of all exons and regulatory elements. We established deletion-specific and intact allele-specific PCR methods and determined the StAR gene status of all available family members over three generations. This analysis revealed that one of the siblings, who died a few weeks after birth, carried the same genetic defect. Since several Alu repeats at the StAR gene locus increase the probability of deletions, patients with typical symptoms of lipoid CAH lacking evidence for the presence of both StAR alleles should be analyzed carefully for this kind of disorder.

  19. A 3.2Mb deletion on 18q12 in a patient with childhood autism and high-grade myopia

    DEFF Research Database (Denmark)

    Gilling, M.; Henriksen, K.F.; Lauritsen, M.B.

    2008-01-01

    Autism spectrum disorders (ASDs) are a heterogeneous group of disorders with unknown aetiology. Even though ASDs are suggested to be among the most heritable complex disorders, only a few reproducible mutations leading to susceptibility for ASD have been identified. In an attempt to identify ASD...... susceptibility genes through chromosome rearrangements, we investigated a female patient with childhood autism and high-grade myopia, and an apparently balanced de novo translocation, t(5; 18)(q34; q12.2). Further analyses revealed a 3.2Mb deletion encompassing 17 genes at the 18q break point and an additional...... deletion of 1.27Mb containing two genes on chromosome 4q35. Q-PCR analysis of 14 of the 17 genes deleted on chromosome 18 showed that 11 of these genes were expressed in the brain, suggesting that haploinsufficiency of one or more genes may have contributed to the childhood autism phenotype of the patient...

  20. A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity.

    Directory of Open Access Journals (Sweden)

    Claudia Lappe

    Full Text Available To localize the neural generators of the musically elicited mismatch negativity with high temporal resolution we conducted a beamformer analysis (Synthetic Aperture Magnetometry, SAM on magnetoencephalography (MEG data from a previous musical mismatch study. The stimuli consisted of a six-tone melodic sequence comprising broken chords in C- and G-major. The musical sequence was presented within an oddball paradigm in which the last tone was lowered occasionally (20% by a minor third. The beamforming analysis revealed significant right hemispheric neural activation in the superior temporal (STC, inferior frontal (IFC, superior frontal (SFC and orbitofrontal (OFC cortices within a time window of 100-200 ms after the occurrence of a deviant tone. IFC and SFC activation was also observed in the left hemisphere. The pronounced early right inferior frontal activation of the auditory mismatch negativity has not been shown in MEG studies so far. The activation in STC and IFC is consistent with earlier electroencephalography (EEG, optical imaging and functional magnetic resonance imaging (fMRI studies that reveal the auditory and inferior frontal cortices as main generators of the auditory MMN. The observed right hemispheric IFC is also in line with some previous music studies showing similar activation patterns after harmonic syntactic violations. The results demonstrate that a deviant tone within a musical sequence recruits immediately a distributed neural network in frontal and prefrontal areas suggesting that top-down processes are involved when expectation violation occurs within well-known stimuli.

  1. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-01-01

    The ‘neural plate border’ of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure. DOI: http://dx.doi.org/10.7554/eLife.21620.001 PMID:28355135

  2. Phenotypic Analysis Reveals that the 2010 Haiti Cholera Epidemic Is Linked to a Hypervirulent Strain.

    Science.gov (United States)

    Satchell, Karla J F; Jones, Christopher J; Wong, Jennifer; Queen, Jessica; Agarwal, Shivani; Yildiz, Fitnat H

    2016-09-01

    Vibrio cholerae O1 El Tor strains have been responsible for pandemic cholera since 1961. These strains have evolved over time, spreading globally in three separate waves. Wave 3 is caused by altered El Tor (AET) variant strains, which include the strain with the signature ctxB7 allele that was introduced in 2010 into Haiti, where it caused a devastating epidemic. In this study, we used phenotypic analysis to compare an early isolate from the Haiti epidemic to wave 1 El Tor isolates commonly used for research. It is demonstrated that the Haiti isolate has increased production of cholera toxin (CT) and hemolysin, increased motility, and a reduced ability to form biofilms. This strain also outcompetes common wave 1 El Tor isolates for colonization of infant mice, indicating that it has increased virulence. Monitoring of CT production and motility in additional wave 3 isolates revealed that this phenotypic variation likely evolved over time rather than in a single genetic event. Analysis of available whole-genome sequences and phylogenetic analyses suggested that increased virulence arose from positive selection for mutations found in known and putative regulatory genes, including hns and vieA, diguanylate cyclase genes, and genes belonging to the lysR and gntR regulatory families. Overall, the studies presented here revealed that V. cholerae virulence potential can evolve and that the currently prevalent wave 3 AET strains are both phenotypically distinct from and more virulent than many El Tor isolates.

  3. 11p13 deletions can be more frequent than the PAX6 gene point mutations in Polish patients with aniridia.

    Science.gov (United States)

    Wawrocka, Anna; Sikora, Agata; Kuszel, Lukasz; Krawczynski, Maciej R

    2013-08-01

    Aniridia is a rare, bilateral, congenital ocular disorder causing incomplete formation of the iris, usually characterized by iris aplasia/hypoplasia. It can also appear with other ocular anomalies, such as cataracts, glaucoma, corneal pannus, optic nerve hypoplasia, macular hypoplasia, or ectopia lentis. In the majority of cases, it is caused by mutation in the PAX6 gene, but it can also be caused by microdeletions that involve the 11p13 region. Twelve unrelated patients of Polish origin with a clinical diagnosis of aniridia were screened for the presence of microdeletions in the 11p13 region by means of multiplex ligation probe amplification (MLPA). Additionally, the coding regions of the PAX6 gene were sequenced in all probands. MLPA examination revealed different size deletions of the 11p13 region in five patients. In three cases, deletions encompassed the entire PAX6 gene and a few adjacent genes. In one case, a fragment of the PAX6 gene was deleted only. In the final case, the deletion did not include any PAX6 sequence. Our molecular findings provide further evidence of the existence of the distant 3' regulatory elements in the downstream region of the PAX6 gene, which is known from other studies to influence the level of protein expression. Sequence analysis of the PAX6 gene revealed the three different point mutations in the remaining four patients with aniridia. All the detected mutations were reported earlier. Based on accomplished results, the great diversity of the molecular basis of aniridia was found. It varies from point mutations to different size deletions in the 11p13 region which encompass partly or completely the PAX6 gene or cause a position effect.

  4. 76 FR 9555 - Procurement List; Proposed Deletions

    Science.gov (United States)

    2011-02-18

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed deletions from the Procurement...'Day Act (41 U.S.C. 46- 48c) in connection with the products proposed for deletion from the...

  5. A DNA fragment from Xq21 replaces a deleted region containing the entire FVIII gene in a severe hemophilia A patient

    Energy Technology Data Exchange (ETDEWEB)

    Murru, S.; Casula, L.; Moi, P. [Insituto di Clinica e Biologia dell` Eta Evolutiva, Cagliari (Italy)] [and others

    1994-09-15

    In this paper the authors report the molecular characterization of a large deletion that removes the entire Factor VIII gene in a severe hemophilia A patient. Accurate DNA analysis of the breakpoint region revealed that a large DNA fragment replaced the 300-kb one, which was removed by the deletion. Pulsed-field gel electrophoresis analysis revealed that the size of the inserted fragment is about 550 kb. In situ hybridization demonstrated that part of the inserted region normally maps to Xq21 and to the tip of the short arm of the Y chromosome (Yp). In this patient this locus is present both in Xq21 and in Xq28, in addition to the Yp, being thus duplicated in the X chromosome. Sequence analysis of the 3` breakpoint suggested that an illegitimate recombination is probably the cause of this complex rearrangement. 52 refs., 7 figs.

  6. Gene set based integrated data analysis reveals phenotypic differences in a brain cancer model.

    Directory of Open Access Journals (Sweden)

    Kjell Petersen

    Full Text Available A key challenge in the data analysis of biological high-throughput experiments is to handle the often low number of samples in the experiments compared to the number of biomolecules that are simultaneously measured. Combining experimental data using independent technologies to illuminate the same biological trends, as well as complementing each other in a larger perspective, is one natural way to overcome this challenge. In this work we investigated if integrating proteomics and transcriptomics data from a brain cancer animal model using gene set based analysis methodology, could enhance the biological interpretation of the data relative to more traditional analysis of the two datasets individually. The brain cancer model used is based on serial passaging of transplanted human brain tumor material (glioblastoma--GBM through several generations in rats. These serial transplantations lead over time to genotypic and phenotypic changes in the tumors and represent a medically relevant model with a rare access to samples and where consequent analyses of individual datasets have revealed relatively few significant findings on their own. We found that the integrated analysis both performed better in terms of significance measure of its findings compared to individual analyses, as well as providing independent verification of the individual results. Thus a better context for overall biological interpretation of the data can be achieved.

  7. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schilling-Toth, Boglarka; Sandor, Nikolett; Kis, Eniko [Department of Molecular and Tumor Radiobiology, Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna u 5, H-1221 Budapest (Hungary); Kadhim, Munira [Genomic Instability Research Group, School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP (United Kingdom); Safrany, Geza, E-mail: safrany.geza@osski.hu [Department of Molecular and Tumor Radiobiology, Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna u 5, H-1221 Budapest (Hungary); Hegyesi, Hargita [Department of Molecular and Tumor Radiobiology, Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna u 5, H-1221 Budapest (Hungary)

    2011-11-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2 Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects.

  8. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation.

    Science.gov (United States)

    Schilling-Tóth, Boglárka; Sándor, Nikolett; Kis, Eniko; Kadhim, Munira; Sáfrány, Géza; Hegyesi, Hargita

    2011-11-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects.

  9. Contribution of Large Genomic Rearrangements in Italian Lynch Syndrome Patients: Characterization of a Novel Alu-Mediated Deletion

    Directory of Open Access Journals (Sweden)

    Francesca Duraturo

    2013-01-01

    Full Text Available Lynch syndrome is associated with germ-line mutations in the DNA mismatch repair (MMR genes, mainly MLH1 and MSH2. Most of the mutations reported in these genes to date are point mutations, small deletions, and insertions. Large genomic rearrangements in the MMR genes predisposing to Lynch syndrome also occur, but the frequency varies depending on the population studied on average from 5 to 20%. The aim of this study was to examine the contribution of large rearrangements in the MLH1 and MSH2 genes in a well-characterised series of 63 unrelated Southern Italian Lynch syndrome patients who were negative for pathogenic point mutations in the MLH1, MSH2, and MSH6 genes. We identified a large novel deletion in the MSH2 gene, including exon 6 in one of the patients analysed (1.6% frequency. This deletion was confirmed and localised by long-range PCR. The breakpoints of this rearrangement were characterised by sequencing. Further analysis of the breakpoints revealed that this rearrangement was a product of Alu-mediated recombination. Our findings identified a novel Alu-mediated rearrangement within MSH2 gene and showed that large deletions or duplications in MLH1 and MSH2 genes are low-frequency mutational events in Southern Italian patients with an inherited predisposition to colon cancer.

  10. A syndromic form of Pierre Robin sequence is caused by 5q23 deletions encompassing FBN2 and PHAX.

    Science.gov (United States)

    Ansari, Morad; Rainger, Jacqueline K; Murray, Jennie E; Hanson, Isabel; Firth, Helen V; Mehendale, Felicity; Amiel, Jeanne; Gordon, Christopher T; Percesepe, Antonio; Mazzanti, Laura; Fryer, Alan; Ferrari, Paola; Devriendt, Koenraad; Temple, I Karen; FitzPatrick, David R

    2014-10-01

    Pierre Robin sequence (PRS) is an aetiologically distinct subgroup of cleft palate. We aimed to define the critical genomic interval from five different 5q22-5q31 deletions associated with PRS or PRS-associated features and assess each gene within the region as a candidate for the PRS component of the phenotype. Clinical array-based comparative genome hybridisation (aCGH) data were used to define a 2.08 Mb minimum region of overlap among four de novo deletions and one mother-son inherited deletion associated with at least one component of PRS. Commonly associated anomalies were talipes equinovarus (TEV), finger contractures and crumpled ear helices. Expression analysis of the orthologous genes within the PRS critical region in embryonic mice showed that the strongest candidate genes were FBN2 and PHAX. Targeted aCGH of the critical region and sequencing of these genes in a cohort of 25 PRS patients revealed no plausible disease-causing mutations. In conclusion, deletion of ∼2 Mb on 5q23 region causes a clinically recognisable subtype of PRS. Haploinsufficiency for FBN2 accounts for the digital and auricular features. A possible critical region for TEV is distinct and telomeric to the PRS region. The molecular basis of PRS in these cases remains undetermined but haploinsufficiency for PHAX is a plausible mechanism.

  11. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  12. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  13. Allele-specific amplification in cancer revealed by SNP array analysis.

    Directory of Open Access Journals (Sweden)

    Thomas LaFramboise

    2005-11-01

    Full Text Available Amplification, deletion, and loss of heterozygosity of genomic DNA are hallmarks of cancer. In recent years a variety of studies have emerged measuring total chromosomal copy number at increasingly high resolution. Similarly, loss-of-heterozygosity events have been finely mapped using high-throughput genotyping technologies. We have developed a probe-level allele-specific quantitation procedure that extracts both copy number and allelotype information from single nucleotide polymorphism (SNP array data to arrive at allele-specific copy number across the genome. Our approach applies an expectation-maximization algorithm to a model derived from a novel classification of SNP array probes. This method is the first to our knowledge that is able to (a determine the generalized genotype of aberrant samples at each SNP site (e.g., CCCCT at an amplified site, and (b infer the copy number of each parental chromosome across the genome. With this method, we are able to determine not just where amplifications and deletions occur, but also the haplotype of the region being amplified or deleted. The merit of our model and general approach is demonstrated by very precise genotyping of normal samples, and our allele-specific copy number inferences are validated using PCR experiments. Applying our method to a collection of lung cancer samples, we are able to conclude that amplification is essentially monoallelic, as would be expected under the mechanisms currently believed responsible for gene amplification. This suggests that a specific parental chromosome may be targeted for amplification, whether because of germ line or somatic variation. An R software package containing the methods described in this paper is freely available at http://genome.dfci.harvard.edu/~tlaframb/PLASQ.

  14. Analysis of non-typeable Haemophilus influenzae in invasive disease reveals lack of the capsule locus.

    Science.gov (United States)

    Lâm, T-T; Claus, H; Frosch, M; Vogel, U

    2016-01-01

    Among invasive Haemophilus influenzae, unencapsulated strains have largely surpassed the previously predominant serotype b (Hib) because of Hib vaccination. Isolates without the genomic capsule (cap) locus are designated non-typeable H. influenzae (NTHi). They are different from capsule-deficient variants that show deletion of the capsule transport gene bexA within the cap locus. The frequency of capsule-deficient variants in invasive disease is unknown. We analysed 783 unencapsulated invasive isolates collected over 5 years in Germany and found no single capsule-deficient isolate. Invasive unencapsulated strains in Germany were exclusively NTHi. A negative serotyping result by slide agglutination was therefore highly predictive for NTHi.

  15. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Directory of Open Access Journals (Sweden)

    E. Damaraju

    2014-01-01

    Full Text Available Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length, and a dynamic sense, computed using sliding windows (44 s in length and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual, as well as reduced connectivity (hypoconnectivity between sensory networks from all modalities. Dynamic analysis suggests that (1, on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2, that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity

  16. Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200.

    Science.gov (United States)

    Zhang, Sheng-Da; Santini, Claire-Lise; Zhang, Wei-Jia; Barbe, Valérie; Mangenot, Sophie; Guyomar, Charlotte; Garel, Marc; Chen, Hai-Tao; Li, Xue-Gong; Yin, Qun-Jian; Zhao, Yuan; Armengaud, Jean; Gaillard, Jean-Charles; Martini, Séverine; Pradel, Nathalie; Vidaud, Claude; Alberto, François; Médigue, Claudine; Tamburini, Christian; Wu, Long-Fei

    2016-05-01

    Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.

  17. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    Science.gov (United States)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  18. Comprehensive DNA Adduct Analysis Reveals Pulmonary Inflammatory Response Contributes to Genotoxic Action of Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kousuke Ishino

    2015-02-01

    Full Text Available Nanosized-magnetite (MGT is widely utilized in medicinal and industrial fields; however, its toxicological properties are not well documented. In our previous report, MGT showed genotoxicity in both in vitro and in vivo assay systems, and it was suggested that inflammatory responses exist behind the genotoxicity. To further clarify mechanisms underlying the genotoxicity, a comprehensive DNA adduct (DNA adductome analysis was conducted using DNA samples derived from the lungs of mice exposed to MGT. In total, 30 and 42 types of DNA adducts were detected in the vehicle control and MGT-treated groups, respectively. Principal component analysis (PCA against a subset of DNA adducts was applied and several adducts, which are deduced to be formed by inflammation or oxidative stress, as the case of etheno-deoxycytidine (εdC, revealed higher contributions to MGT exposure. By quantitative-LC-MS/MS analysis, εdC levels were significantly higher in MGT-treated mice than those of the vehicle control. Taken together with our previous data, it is suggested that inflammatory responses might be involved in the genotoxicity induced by MGT in the lungs of mice.

  19. Geometric morphometric analysis reveals age-related differences in the distal femur of Europeans.

    Science.gov (United States)

    Cavaignac, Etienne; Savall, Frederic; Chantalat, Elodie; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2017-12-01

    Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (60). Only the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time. Age-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Manufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.

  20. Rapid genome evolution in Pms1 region of rice revealed by comparative sequence analysis

    Institute of Scientific and Technical Information of China (English)

    YU JinSheng; FAN YouRong; LIU Nan; SHAN Yan; LI XiangHua; ZHANG QiFa

    2007-01-01

    Pms1, a locus for photoperiod sensitive genic male sterility in rice, was identified and mapped to chromosome 7 in previous studies. Here we report an effort to identify the candidate genes for Pms1 by comparative sequencing of BAC clones from two cultivars Minghui 63 and Nongken 58, the parents for the initial mapping population. Annotation and comparison of the sequences of the two clones resulted in a total of five potential candidates which should be functionally tested. We also conducted comparative analysis of sequences of these two cultivars with two other cultivars, Nipponbare and 93-11,for which sequence data were available in public databases. The analysis revealed large differences in sequence composition among the four genotypes in the Pms1 region primarily due to retroelement activity leading to rapid recent growth and divergence of the genomes. High levels of polymorphism in the forms of indels and SNPs were found both in intra- and inter-subspecific comparisons. Dating analysis using LTRs of the retroelements in this region showed that the substitution rate of LTRs was much higher than reported in the literature. The results provided strong evidence for rapid genomic evolution of this region as a consequence of natural and artificial selection.

  1. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis.

    Science.gov (United States)

    Malmstrom, Rex R; Rodrigue, Sébastien; Huang, Katherine H; Kelly, Libusha; Kern, Suzanne E; Thompson, Anne; Roggensack, Sara; Berube, Paul M; Henn, Matthew R; Chisholm, Sallie W

    2013-01-01

    Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome--that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome.

  2. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders.

    Science.gov (United States)

    Li, Jingjing; Shi, Minyi; Ma, Zhihai; Zhao, Shuchun; Euskirchen, Ghia; Ziskin, Jennifer; Urban, Alexander; Hallmayer, Joachim; Snyder, Michael

    2014-12-30

    Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA-sequencing of the corpus callosum from patients with autism exhibited extensive gene mis-expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology.

  3. Comparative Proteomic Analysis of Flag Leaves Reveals New Insight into Wheat Heat Adaptation

    Directory of Open Access Journals (Sweden)

    Yunze Lu

    2017-06-01

    Full Text Available Hexaploid wheat (Triticum aestivum L. is an important food crop but it is vulnerable to heat. The heat-responsive proteome of wheat remains to be fully elucidated because of previous technical and genomic limitations, and this has hindered our understanding of the mechanisms of wheat heat adaptation and advances in improving thermotolerance. Here, flag leaves of wheat during grain filling stage were subjected to high daytime temperature stress, and 258 heat-responsive proteins (HRPs were identified with iTRAQ analysis. Enrichment analysis revealed that chlorophyll synthesis, carbon fixation, protein turnover, and redox regulation were the most remarkable heat-responsive processes. The HRPs involved in chlorophyll synthesis and carbon fixation were significantly decreased, together with severe membrane damage, demonstrating the specific effects of heat on photosynthesis of wheat leaves. In addition, the decrease in chlorophyll content may result from the decrease in HRPs involved in chlorophyll precursor synthesis. Further analysis showed that the accumulated effect of heat stress played a critical role in photosynthesis reduction, suggested that improvement in heat tolerance of photosynthesis, and extending heat tolerant period would be major research targets. The significantly accumulation of GSTs and Trxs in response to heat suggested their important roles in redox regulation, and they could be the promising candidates for improving wheat thermotolerance. In summary, our results provide new insight into wheat heat adaption and provide new perspectives on thermotolerance improvement.

  4. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    Science.gov (United States)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  5. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  6. Meta-Analysis of EMT Datasets Reveals Different Types of EMT.

    Science.gov (United States)

    Liang, Lining; Sun, Hao; Zhang, Wei; Zhang, Mengdan; Yang, Xiao; Kuang, Rui; Zheng, Hui

    2016-01-01

    As a critical process during embryonic development, cancer progression and cell fate conversions, epithelial-mesenchymal transition (EMT) has been extensively studied over the last several decades. To further understand the nature of EMT, we performed meta-analysis of multiple microarray datasets to identify the related generic signature. In this study, 24 human and 17 mouse microarray datasets were integrated to identify conserved gene expression changes in different types of EMT. Our integrative analysis revealed that there is low agreement among the list of the identified signature genes and three other lists in previous studies. Since removing the datasets with weakly-induced EMT from the analysis did not significantly improve the overlapping in the signature-gene lists, we hypothesized the existence of different types of EMT. This hypothesis was further supported by the grouping of 74 human EMT-induction samples into five distinct clusters, and the identification of distinct pathways in these different clusters of EMT samples. The five clusters of EMT-induction samples also improves the understanding of the characteristics of different EMT types. Therefore, we concluded the existence of different types of EMT was the possible reason for its complex role in multiple biological processes.

  7. A novel single gene deletion (-αMAL3.5 giving rise to silent α thalassemia carrier removing the entire HBA2 gene observed in two Chinese patients with Hb H disease: case report of two probands

    Directory of Open Access Journals (Sweden)

    Faidatul Syazlin Abdul Hamid

    2015-07-01

    Full Text Available We report a novel deletion at the HBA2 presented with Hb H disease in two Malaysian- Chinese patients. The two unrelated probands were diagnosed with Hb H disease in a primary hematological screening for thalassemia. Results from routine molecular analysis with gap-polymerase chain reaction (PCR method revealed a genotype asynchrony with the observed clinical presentation. Subsequent DNA analysis using a battery of molecular methods such as gap-PCR, multiplex ligation dependent probe amplification, DNA sequencing, confirmed the presence of a novel deletion in both the index cases removing the entire α2 globin gene. We have designated the deletion as (‒αMAL3.5. Hematological indices and clinical findings suggest that the deletion has an α+ phenotype. The molecular process of this deletion is the result from misalignment and unequal crossover event between the duplicated homologous Y-boxes within the α globin gene cluster. Uncharacterized deletions, single nucleotide polymorphism and other nucleotide indels at the primer binding sites may impede the optimum condition for its annealing and extension and therefore may invalidate the gap-PCR obscuring the real genotype.

  8. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines.

    Science.gov (United States)

    Campbell-Sills, Hugo; El Khoury, Mariette; Favier, Marion; Romano, Andrea; Biasioli, Franco; Spano, Giuseppe; Sherman, David J; Bouchez, Olivier; Coton, Emmanuel; Coton, Monika; Okada, Sanae; Tanaka, Naoto; Dols-Lafargue, Marguerite; Lucas, Patrick M

    2015-05-14

    Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Grogan, Dennis W; Hansen, Josh E

    2003-02-01

    Prokaryotic genomes acquire and eliminate blocks of DNA sequence by lateral gene transfer and spontaneous deletion, respectively. The basic parameters of spontaneous deletion, which are expected to influence the course of genome evolution, have not been determined for any hyperthermophilic archaeon. We therefore screened a number of independent pyrimidine auxotrophs of Sulfolobus acidocaldarius for deletions and sequenced those detected. Deletions accounted for only 0.4% of spontaneous pyrE mutations, corresponding to a frequency of about 10(-8) per cell. Nucleotide sequence analysis of five independent deletions showed no significant association of the endpoints with short direct repeats, despite the fact that several such repeats occur within the pyrE gene and that duplication mutations in pyrE reverted at high frequencies. Endpoints of the spontaneous deletions did not coincide with short inverted repeats or potential stem-loop structures. No consensus sequence common to all the deletions could be identified, although two deletions showed the potential of being stabilized by octanucleotide sequences elsewhere in pyrE, and another pair of deletions shared an octanucleotide at their 3' ends. The unusually low frequency and low sequence dependence of spontaneous deletions in the S. acidocaldarius pyrE gene compared to other genetic systems could not be explained in terms of possible constraints imposed by the 5-fluoroorotate selection.

  10. Neuropathological features in a female fetus with OPHN1 deletion and cerebellar hypoplasia.

    Science.gov (United States)

    Rocas, Delphine; Alix, Eudeline; Michel, Jessica; Cordier, Marie-Pierre; Labalme, Audrey; Guilbert, Hélène; Till, Marianne; Schluth-Bolard, Caroline; de Haas, Pascale; Massardier, Jérôme; Portes, Vincent des; Edery, Patrick; Touraine, Renaud; Guibaud, Laurent; Vasiljevic, Alexandre; Sanlaville, Damien

    2013-05-01

    We report the case of a 33-year-old pregnant woman. The third-trimester ultrasound scan during pregnancy revealed fetal bilateral ventricular dilatation, macrosomia and a transverse diameter of the cerebellum at the 30th centile. A brain MRI scan at 31 weeks of gestation led to a diagnosis of hypoplasia of the cerebellar vermis without hemisphere abnormalities and a non compressive expansion of the cisterna magna. The fetal karyotype was 46,XX. The pregnancy was terminated and array-CGH analysis of the fetus identified a 238 kb de novo deletion on chromosome Xp12, encompassing part of OPHN1 gene. Further studies revealed a completely skewed pattern of X inactivation. OPHN1 is involved in X-linked mental retardation (XLMR) with cerebellar hypoplasia and encodes a Rho-GTPase-activating protein called oligophrenin-1, which is produced throughout the developing mouse brain and in the hippocampus and Purkinje cells of the cerebellum in adult mice. Neuropathological examination of the female fetus revealed cerebellar hypoplasia and the heterotopia of Purkinje cells at multiple sites in the white matter of the cerebellum. This condition mostly affects male fetuses in humans. We report here the first case of a de novo partial deletion of OPHN1, with radiological and neuropathological examination, in a female fetus. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations.

    Science.gov (United States)

    Förster, Frank; Beisser, Daniela; Grohme, Markus A; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C; Shkumatov, Alexander V; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant.

  12. Precursors of stall and surge processes in gas turbines revealed by wavelet analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dremin, I.M.; Ivanov, O.V.; Nechitailo, V.A. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Furletov, V.I. [Central Institute for Aviation Motors, Moscow (Russian Federation); Terziev, V.G. [TEKO, Moscow (Russian Federation)

    2002-06-01

    Multiresolution wavelet analysis of pressure variations in a gas turbine compressor reveals the existence of precursors of stall and surge processes. Signals from eight pressure sensors positioned at various places within the compressor were recorded and digitized in three different operating modes in stationary conditions with a recording interval of 1 ms during 5-6 s. It has been discovered that there exists a scale of 32 intervals over which the dispersion (variance) of the wavelet coefficients shows a remarkable drop of about 40% for more than 1 s prior to the development of the malfunction. A shuffled sample of the same values of the pressure does not show such a drop demonstrating the dynamical origin of this effect. Higher order correlation moments reveal different slopes in these two regions differing by the variance values. The log-log dependence of the moments does not show clear fractal behavior because the scales of 16 and 32 intervals are not on the straight line of monofractals. This is a clear indication of the nonlinear response of the system at this scale. These results provide a means for automatic regulation of an engine, preventing possible failures. (author)

  13. Dependency Network Analysis (DEPNA) Reveals Context Related Influence of Brain Network Nodes

    Science.gov (United States)

    Jacob, Yael; Winetraub, Yonatan; Raz, Gal; Ben-Simon, Eti; Okon-Singer, Hadas; Rosenberg-Katz, Keren; Hendler, Talma; Ben-Jacob, Eshel

    2016-01-01

    Communication between and within brain regions is essential for information processing within functional networks. The current methods to determine the influence of one region on another are either based on temporal resolution, or require a predefined model for the connectivity direction. However these requirements are not always achieved, especially in fMRI studies, which have poor temporal resolution. We thus propose a new graph theory approach that focuses on the correlation influence between selected brain regions, entitled Dependency Network Analysis (DEPNA). Partial correlations are used to quantify the level of influence of each node during task performance. As a proof of concept, we conducted the DEPNA on simulated datasets and on two empirical motor and working memory fMRI tasks. The simulations revealed that the DEPNA correctly captures the network’s hierarchy of influence. Applying DEPNA to the functional tasks reveals the dynamics between specific nodes as would be expected from prior knowledge. To conclude, we demonstrate that DEPNA can capture the most influencing nodes in the network, as they emerge during specific cognitive processes. This ability opens a new horizon for example in delineating critical nodes for specific clinical interventions. PMID:27271458

  14. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark.

    Science.gov (United States)

    Carlisle, Aaron B; Goldman, Kenneth J; Litvin, Steven Y; Madigan, Daniel J; Bigman, Jennifer S; Swithenbank, Alan M; Kline, Thomas C; Block, Barbara A

    2015-01-22

    Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny.

  15. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.

    Science.gov (United States)

    Niida, Atsushi; Imoto, Seiya; Nagasaki, Masao; Yamaguchi, Rui; Miyano, Satoru

    2010-01-01

    Although microarray technology has revealed transcriptomic diversities underlining various cancer phenotypes, transcriptional programs controlling them have not been well elucidated. To decode transcriptional programs governing cancer transcriptomes, we have recently developed a computational method termed EEM, which searches for expression modules from prescribed gene sets defined by prior biological knowledge like TF binding motifs. In this paper, we extend our EEM approach to predict cancer transcriptional networks. Starting from functional TF binding motifs and expression modules identified by EEM, we predict cancer transcriptional networks containing regulatory TFs, associated GO terms, and interactions between TF binding motifs. To systematically analyze transcriptional programs in broad types of cancer, we applied our EEM-based network prediction method to 122 microarray datasets collected from public databases. The data sets contain about 15000 experiments for tumor samples of various tissue origins including breast, colon, lung etc. This EEM based meta-analysis successfully revealed a prevailing cancer transcriptional network which functions in a large fraction of cancer transcriptomes; they include cell-cycle and immune related sub-networks. This study demonstrates broad applicability of EEM, and opens a way to comprehensive understanding of transcriptional networks in cancer cells.

  16. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment.

    Science.gov (United States)

    Chao, Yuanqing; Ma, Liping; Yang, Ying; Ju, Feng; Zhang, Xu-Xiang; Wu, Wei-Min; Zhang, Tong

    2013-12-19

    The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in 'oxidative stress' and 'detoxification' subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.

  17. Conformational Dynamics of apo-GlnBP Revealed by Experimental and Computational Analysis

    KAUST Repository

    Feng, Yitao

    2016-10-13

    The glutamine binding protein (GlnBP) binds l-glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo- and holo-GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single-molecule FRET techniques to decipher the conformational dynamics of apo-GlnBP. The NMR residual dipolar couplings of apo-GlnBP were in good agreement with a MD-derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four-state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  18. Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales.

    Science.gov (United States)

    Allen, Jenny; Weinrich, Mason; Hoppitt, Will; Rendell, Luke

    2013-04-26

    We used network-based diffusion analysis to reveal the cultural spread of a naturally occurring foraging innovation, lobtail feeding, through a population of humpback whales (Megaptera novaeangliae) over a period of 27 years. Support for models with a social transmission component was 6 to 23 orders of magnitude greater than for models without. The spatial and temporal distribution of sand lance, a prey species, was also important in predicting the rate of acquisition. Our results, coupled with existing knowledge about song traditions, show that this species can maintain multiple independently evolving traditions in its populations. These insights strengthen the case that cetaceans represent a peak in the evolution of nonhuman culture, independent of the primate lineage.

  19. Anomalous dispersion of Lagrangian particles in local regions of turbulent flows revealed by convex hull analysis

    CERN Document Server

    Pratt, J; Mueller, W -C; Chapman, S C; Watkins, N W

    2014-01-01

    Local regions of anomalous particle dispersion, and intermittent events that occur in turbulent flows can greatly influence the global statistical description of the flow. These local behaviors can be identified and analyzed by comparing the growth of neighboring convex hulls of Lagrangian tracer particles. Although in our simulations of homogeneous turbulence the convex hulls generally grow in size, after the Lagrangian particles that define the convex hulls begin to disperse, our analysis reveals short periods when the convex hulls of the Lagrangian particles shrink, evidence that particles are not dispersing simply. Shrinkage can be associated with anisotropic flows, since it occurs most frequently in the presence of a mean magnetic field or thermal convection. We compare dispersion between a wide range of statistically homogeneous and stationary turbulent flows ranging from homogeneous isotropic Navier-Stokes turbulence over different configurations of magnetohydrodynamic turbulence and Boussinesq convect...

  20. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies.

    Science.gov (United States)

    Hogan, Laura E; Meyer, Julia A; Yang, Jun; Wang, Jinhua; Wong, Nicholas; Yang, Wenjian; Condos, Gregory; Hunger, Stephen P; Raetz, Elizabeth; Saffery, Richard; Relling, Mary V; Bhojwani, Deepa; Morrison, Debra J; Carroll, William L

    2011-11-10

    Despite an increase in survival for children with acute lymphoblastic leukemia (ALL), the outcome after relapse is poor. To understand the genetic events that contribute to relapse and chemoresistance and identify novel targets of therapy, 3 high-throughput assays were used to identify genetic and epigenetic changes at relapse. Using matched diagnosis/relapse bone marrow samples from children with relapsed B-precursor ALL, we evaluated gene expression, copy number abnormalities (CNAs), and DNA methylation. Gene expression analysis revealed a signature of differentially expressed genes from diagnosis to relapse that is different for early (diversity of genetic changes are seen at relapse, integration of gene expression, CNA, and methylation data suggest a possible convergence on the WNT and mitogen-activated protein kinase pathways.

  1. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut.

    Directory of Open Access Journals (Sweden)

    Francesca Bottacini

    Full Text Available Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.

  2. Proteomics analysis reveals a dynamic diurnal pattern of photosynthesis-related pathways in maize leaves.

    Science.gov (United States)

    Feng, Dan; Wang, Yanwei; Lu, Tiegang; Zhang, Zhiguo; Han, Xiao

    2017-01-01

    Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level.

  3. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis

    Science.gov (United States)

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire

    2016-01-01

    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings. PMID:27687249

  4. Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways.

    Science.gov (United States)

    Müller, Sebastian; Balaz, Miroslav; Stefanicka, Patrik; Varga, Lukas; Amri, Ez-Zoubir; Ukropec, Jozef; Wollscheid, Bernd; Wolfrum, Christian

    2016-07-15

    Human brown adipose tissue (BAT) has become an attractive target to combat the current epidemical spread of obesity and its associated co-morbidities. Currently, information on its functional role is primarily derived from rodent studies. Here, we present the first comparative proteotype analysis of primary human brown adipose tissue versus adjacent white adipose tissue, which reveals significant quantitative differences in protein abundances and in turn differential functional capabilities. The majority of the 318 proteins with increased abundance in BAT are associated with mitochondrial metabolism and confirm the increased oxidative capacity. In addition to uncoupling protein 1 (UCP1), the main functional effector for uncoupled respiration, we also detected the mitochondrial creatine kinases (CKMT1A/B, CKMT2), as effective modulators of ATP synthase coupled respiration, to be exclusively expressed in BAT. The abundant expression and utilization of both energy expenditure pathways in parallel highlights the complex functional involvement of BAT in human physiology.

  5. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.

    Science.gov (United States)

    Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela

    2016-04-15

    The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut.

    Science.gov (United States)

    Bottacini, Francesca; Milani, Christian; Turroni, Francesca; Sánchez, Borja; Foroni, Elena; Duranti, Sabrina; Serafini, Fausta; Viappiani, Alice; Strati, Francesco; Ferrarini, Alberto; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Fitzgerald, Gerald F; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2012-01-01

    Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.

  7. Comparative transcriptional analysis reveals differential gene expression between asymmetric and symmetric zygotic divisions in tobacco.

    Directory of Open Access Journals (Sweden)

    Tian-Xiang Hu

    Full Text Available Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these

  8. Cluster analysis reveals a binary effect of storage on boar sperm motility function.

    Science.gov (United States)

    Henning, Heiko; Petrunkina, Anna M; Harrison, Robin A P; Waberski, Dagmar

    2014-06-01

    Storage of liquid-preserved boar spermatozoa is associated with a loss of fertilising ability of the preserved spermatozoa, which standard semen parameters barely reflect. Monitoring responses to molecular effectors of sperm function (e.g. bicarbonate) has proven to be a more sensitive approach to investigating storage effects. Bicarbonate not only initiates capacitation in spermatozoa, but also induces motility activation. This occurs at ejaculation, but also happens throughout passage through the oviduct. In the present study we tested whether the specific response of boar sperm subpopulations to bicarbonate, as assessed by motility activation, is altered with the duration of storage in vitro. Three ejaculates from each of seven boars were diluted in Beltsville thawing solution and stored at 17°C. Only minor changes in the parameters of diluted semen were revealed over a period of 72h storage. For assessment of bicarbonate responses, subsamples of diluted spermatozoa were centrifuged through a discontinuous Percoll gradient after 12, 24 and 72h storage. Subsequently, spermatozoa were incubated in two Ca2+-free variants of Tyrode's medium either without (TyrControl) or with (TyrBic) 15mM bicarbonate, and computer-aided sperm analysis motility measurements were made. Cluster analysis of imaging data from motile spermatozoa revealed the presence of five major sperm subpopulations with distinct motility characteristics, differing between TyrBic and TyrControl at any given time (Psperm motility function descriptors to storage: although the quantitative descriptor (percentage of motile spermatozoa) declines in washed semen samples, the qualitative descriptor (percentage of spermatozoa stimulated into fast linear motion by bicarbonate) is sustained independent of the duration of storage.

  9. Metabolomic analysis reveals metabolic disturbance in the cortex and hippocampus of subchronic MK-801 treated rats.

    Directory of Open Access Journals (Sweden)

    Liya Sun

    Full Text Available BACKGROUND: Although a number of proteins and genes relevant to schizophrenia have been identified in recent years, few are known about the exact metabolic pathway involved in this disease. Our previous proteomic study has revealed the energy metabolism abnormality in subchronic MK-801 treated rat, a well-established animal model for schizophrenia. This prompted us to further investigate metabolite levels in the same rat model to better delineate the metabolism dysfunctions and provide insights into the pathology of schizophrenia. METHODS: Metabolomics, a high-throughput investigatory strategy developed in recent years, can offer comprehensive metabolite-level insights that complement protein and genetic findings. In this study, we employed a nondestructive metabolomic approach (1H-MAS-NMR to investigate the metabolic traits in cortex and hippocampus of MK-801 treated rats. Multivariate statistics and ingenuity pathways analyses (IPA were applied in data processing. The result was further integrated with our previous proteomic findings by IPA analysis to obtain a systematic view on our observations. RESULTS: Clear distinctions between the MK-801 treated group and the control group in both cortex and hippocampus were found by OPLS-DA models (with R(2X = 0.441, Q(2Y = 0.413 and R(2X = 0.698, Q(2Y = 0.677, respectively. The change of a series of metabolites accounted for the separation, such as glutamate, glutamine, citrate and succinate. Most of these metabolites fell in a pathway characterized by down-regulated glutamate synthesis and disturbed Krebs cycle. IPA analysis further confirmed the involvement of energy metabolism abnormality induced by MK-801 treatment. CONCLUSIONS: Our metabolomics findings reveal systematic changes in pathways of glutamate metabolism and Krebs cycle in the MK-801 treated rats' cortex and hippocampus, which confirmed and improved our previous proteomic observation and served as a valuable reference to

  10. Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding

    Directory of Open Access Journals (Sweden)

    Wang Sha

    2011-09-01

    Full Text Available Abstract Background Bottle gourd [Lagenaria siceraria (Mol. Standl.] is an important cucurbit crop worldwide. Archaeological research indicates that bottle gourd was domesticated more than 10,000 years ago, making it one of the earliest plants cultivated by man. In spite of its widespread importance and long history of cultivation almost nothing has been known about the genome of this species thus far. Results We report here the partial sequencing of bottle gourd genome using the 454 GS-FLX Titanium sequencing platform. A total of 150,253 sequence reads, which were assembled into 3,994 contigs and 82,522 singletons were generated. The total length of the non-redundant singletons/assemblies is 32 Mb, theoretically covering ~ 10% of the bottle gourd genome. Functional annotation of the sequences revealed a broad range of functional types, covering all the three top-level ontologies. Comparison of the gene sequences between bottle gourd and the model cucurbit cucumber (Cucumis sativus revealed a 90% sequence similarity on average. Using the sequence information, 4395 microsatellite-containing sequences were identified and 400 SSR markers were developed, of which 94% amplified bands of anticipated sizes. Transferability of these markers to four other cucurbit species showed obvious decline with increasing phylogenetic distance. From analyzing polymorphisms of a subset of 14 SSR markers assayed on 44 representative China bottle gourd varieties/landraces, a principal coordinates (PCo analysis output and a UPGMA-based dendrogram were constructed. Bottle gourd accessions tended to group by fruit shape rather than geographic origin, although in certain subclades the lines from the same or close origin did tend to cluster. Conclusions This work provides an initial basis for genome characterization, gene isolation and comparative genomics analysis in bottle gourd. The SSR markers developed would facilitate marker assisted breeding schemes for efficient

  11. Severe intellectual disability, omphalocele, hypospadia and high blood pressure associated to a deletion at 2q22.1q22.3: case report

    Directory of Open Access Journals (Sweden)

    Mulatinho Milene

    2012-06-01

    Full Text Available Abstract Background Recently, array-comparative genomic hybridization (aCGH platforms have significantly improved the resolution of chromosomal analysis allowing the identification of genomic copy number gains and losses smaller than 5 Mb. Here we report on a young man with unexplained severe mental retardation, autism spectrum disorder, congenital malformations comprising hypospadia and omphalocele, and episodes of high blood pressure. An ~ 6 Mb interstitial deletion that includes the causative genes is identified by oligonucleotide-based aCGH. Results Our index case exhibited a de novo chromosomal abnormality at 2q22 [del(2(q22.1q22.3dn] which was not visible at the 550 haploid band level. The deleted region includes eight genes: HNMT, SPOPL, NXPH2, LOC64702, LRP1B, KYNU, ARHGAP15 and GTDC1. Discussion aCGH revealed an ~ 6 Mb deletion in 2q22.1 to 2q22.3 in an as-yet unique clinical case associated with intellectual disability, congenital malformations and autism spectrum disorder. Interestingly, the deletion is co-localized with a fragile site (FRA2K, which could be involved in the formation of this chromosomal aberration. Further studies are needed to determine if deletions of 2q22.1 to 2q22.3 define a new microdeletion syndrome.

  12. iTRAQ-based quantitative proteomic analysis reveals potential virulence factors of Erysipelothrix rhusiopathiae.

    Science.gov (United States)

    Wang, Ya; Li, Jingtao; Zhang, Anding; Zhu, Weifeng; Zhang, Qiang; Xu, Zhongmin; Yan, Shuxian; Sun, Xiaomei; Chen, Huanchun; Jin, Meilin

    2017-03-08

    Erysipelothrix rhusiopathiae is a ubiquitous pathogen that has caused considerable economic losses to pig farmers. However, the mechanisms of E. rhusiopathiae pathogenesis remain unclear. To identify new virulence-associated factors, the differentially abundant cell wall-associated proteins (CWPs) between high- and low-virulence strains were investigated through isobaric Tags for Relative and Absolute Quantitation (iTRAQ) combined with liquid chromatography-quadrupole mass spectrometry (LC-MS/MS). In total, 100 CWPs showed significant differences in abundance. Selected differences were verified by western blotting to support the iTRAQ data. Among the differential proteins, the proteins with higher abundance in the high-virulence strain were mostly ABC transporter proteins and adhesion proteins, and the proteins with lower abundance in the high-virulence strain were mainly stress-response proteins. The more abundant proteins in the high-virulence strain may be related to bacterial virulence. The iTRAQ results showed that the abundance of the sugar ABC transporter substrate-binding protein Sbp (No. 5) was higher by 1.73-fold. We further constructed an sbp-deletion mutant. Experiments in animal models showed that the sbp-deletion mutant caused decreased mortality. Together, our data indicated that transporter proteins and adhesion proteins may play important roles in E. rhusiopathiae virulence and confirmed that sbp contributed to the virulence of E. rhusiopathiae.

  13. Global transcriptional analysis of Bacillus licheniformis reveals an overlap between heat shock and iron limitation stimulon.

    Science.gov (United States)

    Nielsen, Allan K; Breüner, Anne; Krzystanek, Marcin; Andersen, Jens T; Poulsen, Thomas A; Olsen, Peter B; Mijakovic, Ivan; Rasmussen, Michael D

    2010-01-01

    In this study, we characterized the heat shock stimulon of the important industrial microorganism Bacillus licheniformis using DNA microarrays. While sharing a high degree of homology with the closely related model organism Bacillus subtilis, the heat shock stimulon of B. licheniformis exhibited several novel and unexpected features. Most notably, heat shock in B. licheniformis resulted in decreased amounts of mRNA from the ytrABCEF operon, encoding a putative acetoin uptake system, and stimulated the transcription of purine biosynthesis and iron uptake genes. Unexpectedly, deletion of the ytrEF genes did not affect acetoin uptake, but increased heat sensitivity. To investigate the connection between heat stress and iron uptake further, we analyzed the iron limitation response of B. licheniformis by DNA microarrays and concluded that the response mostly involves the genes related to iron uptake and metabolism, while the only heat shock gene affected by iron limitation was clpE. We also attempted to delete the fur gene (encoding the ferric uptake repressor), but unexpectedly found it to be essential in B. licheniformis. Using the fluorescent protein-encoding reporter gene under control of the dhb promoter, which responded to both heat shock and iron-starvation, we confirmed the overlap between these responses.

  14. Amelogenin test abnormalities revealed in Belarusian population during forensic DNA analysis.

    Science.gov (United States)

    Borovko, Sergey; Shyla, Alena; Korban, Victorya; Borovko, Alexandra

    2015-03-01

    Study of gender markers is a part of routine forensic genetic examination of crime scene and reference samples, paternity testing and personal identification. Amelogenin locus as a gender marker is included in majority of forensic STR kits of different manufacturers. In current study we report 11 cases of amelogenin abnormalities identified in males of Belarusian origin: 9 cases of AMELY dropout and 2 cases of AMELX dropout. Cases were obtained from forensic casework (n=9) and paternity testing (n=2) groups. In 4 out of 9 AMELY-negative cases deletion of AMELY was associated with the loss of DYS458 marker. In addition, we identified 3 males with SRY-positive XX male syndrome. Deletion of the long arm of the Y-chromosome was detected in two XX males. Loss of the major part of the Y-chromosome was identified in the third XX male. The presence of two X-chromosomes in XX males was confirmed with the use of Mentype(®) Argus X-8 PCR Amplification Kit. AMELY null allele observed in 2 out of 9 cases with AMELY dropout can be caused by mutation in the primer-binding site of AMELY allele. Primer-binding site mutations of AMELX can result in AMELX dropout identified in 2 cases with amplification failure of AMELX. Our study represents the first report and molecular genetic investigation of amelogenin abnormalities in the Belarusian population.

  15. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, James A. J. [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom); Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Heath Park, Cardiff CF14 4XN Wales (United Kingdom); Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom)

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  16. Differential effect of specific gr/gr deletion subtypes on spermatogenesis in the Chinese Han population.

    Science.gov (United States)

    Yang, Y; Ma, M; Li, L; Su, D; Chen, P; Ma, Y; Liu, Y; Tao, D; Lin, L; Zhang, S

    2010-10-01

    trait analyses such as sperm density analysis. The fact that a common gr/gr copy deletion haplotype was found exclusively in the Y hgr Q1, without pathogenic consequences, implies the importance of haplogrouping and of copy deletion typing prior to genetic counselling of deletion carriers of Chinese descent.

  17. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets.

    Science.gov (United States)

    Hassan, Afreenish; Naz, Anam; Obaid, Ayesha; Paracha, Rehan Zafar; Naz, Kanwal; Awan, Faryal Mehwish; Muhmmad, Syed Aun; Janjua, Hussnain Ahmed; Ahmad, Jamil; Ali, Amjad

    2016-09-15

    Acinetobacter baumannii has emerged as a significant nosocomial pathogen during the last few years, exhibiting resistance to almost all major classes of antibiotics. Alternative treatment options such as vaccines tend to be most promising and cost effective approaches against this resistant pathogen. In the current study, we have explored the pan-genome of A. baumannii followed by immune-proteomics and reverse vaccinology approaches to identify potential core vaccine targets. The pan-genome of all available A. baumannii strains (30 complete genomes) is estimated to contain 7,606 gene families and the core genome consists of 2,445 gene families (~32 % of the pan-genome). Phylogenetic tree, comparative genomic and proteomic analysis revealed both intra- and inter genomic similarities and evolutionary relationships. Among the conserved core genome, thirteen proteins, including P pilus assembly protein, pili assembly chaperone, AdeK, PonA, OmpA, general secretion pathway protein D, FhuE receptor, Type VI secretion system OmpA/MotB, TonB dependent siderophore receptor, general secretion pathway protein D, outer membrane protein, peptidoglycan associated lipoprotein and peptidyl-prolyl cis-trans isomerase are identified as highly antigenic. Epitope mapping of the target proteins revealed the presence of antigenic surface exposed 9-mer T-cell epitopes. Protein-protein interaction and functional annotation have shown their involvement in significant biological and molecular processes. The pipeline is validated by predicting already known immunogenic targets against Gram negative pathogen Helicobacter pylori as a positive control. The study, based upon combinatorial approach of pan-genomics, core genomics, proteomics and reverse vaccinology led us to find out potential vaccine candidates against A. baumannii. The comprehensive analysis of all the completely sequenced genomes revealed thirteen putative antigens which could elicit substantial immune response. The integration

  18. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Directory of Open Access Journals (Sweden)

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  19. Identification of recurrent type-2 NF1 microdeletions reveals a mitotic nonallelic homologous recombination hotspot underlying a human genomic disorder.

    Science.gov (United States)

    Vogt, Julia; Mussotter, Tanja; Bengesser, Kathrin; Claes, Kathleen; Högel, Josef; Chuzhanova, Nadia; Fu, Chuanhua; van den Ende, Jenneke; Mautner, Victor-Felix; Cooper, David N; Messiaen, Ludwine; Kehrer-Sawatzki, Hildegard

    2012-11-01

    Nonallelic homologous recombination (NAHR) is one of the major mechanisms underlying copy number variation in the human genome. Although several disease-associated meiotic NAHR breakpoints have been analyzed in great detail, hotspots for mitotic NAHR are not well characterized. Type-2 NF1 microdeletions, which are predominantly of postzygotic origin, constitute a highly informative model with which to investigate the features of mitotic NAHR. Here, a custom-designed MLPA- and PCR-based approach was used to identify 23 novel NAHR-mediated type-2 NF1 deletions. Breakpoint analysis of these 23 type-2 deletions, together with 17 NAHR-mediated type-2 deletions identified previously, revealed that the breakpoints are nonuniformly distributed within the paralogous SUZ12 and SUZ12P sequences. Further, the analysis of this large group of type-2 deletions revealed breakpoint recurrence within short segments (ranging in size from 57 to 253-bp) as well as the existence of a novel NAHR hotspot of 1.9-kb (termed PRS4). This hotspot harbored 20% (8/40) of the type-2 deletion breakpoints and contains the 253-bp recurrent breakpoint region BR6 in which four independent type-2 deletion breakpoints were identified. Our findings indicate that a combination of an open chromatin conformation and short non-B DNA-forming repeats may predispose to recurrent mitotic NAHR events between SUZ12 and its pseudogene. © 2012 Wiley Periodicals, Inc.

  20. A large deletion/insertion-induced frameshift mutation of the androgen receptor gene in a family with a familial complete androgen insensitivity syndrome.

    Science.gov (United States)

    Cong, Peikuan; Ye, Yinghui; Wang, Yue; Lu, Lingping; Yong, Jing; Yu, Ping; Joseph, Kimani Kagunda; Jin, Fan; Qi, Ming

    2012-06-01

    Androgen insensitivity syndrome (AIS) is an X-linked recessive genetic disorder with a normal 46, XY karyotype caused by abnormality of the androgen receptor (AR) gene. One Chinese family consisting of the proband and 5 other members with complete androgen insensitivity syndrome (CAIS) was investigated. Mutation analysis by DNA sequencing on all 8 exons and flanking intron regions of the AR gene revealed a unique large deletion/insertion mutation in the family. A 287 bp deletion and 77 bp insertion (c.933_1219delins77) mutation at codon 312 resulted in a frameshift which caused a premature stop (p.Phe312Aspfs*7) of polypeptide formation. The proband's mother and grandmother were heterozygous for the mutant allele. The proband's father, uncle and grandfather have the normal allele. From the pedigree constructed from mutational analysis of the family, it is revealed that the probably pathogenic mutation comes from the maternal side.

  1. Meta-analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height

    Science.gov (United States)

    Lanktree, Matthew B.; Guo, Yiran; Murtaza, Muhammed; Glessner, Joseph T.; Bailey, Swneke D.; Onland-Moret, N. Charlotte; Lettre, Guillaume; Ongen, Halit; Rajagopalan, Ramakrishnan; Johnson, Toby; Shen, Haiqing; Nelson, Christopher P.; Klopp, Norman; Baumert, Jens; Padmanabhan, Sandosh; Pankratz, Nathan; Pankow, James S.; Shah, Sonia; Taylor, Kira; Barnard, John; Peters, Bas J.; M. Maloney, Cliona; Lobmeyer, Maximilian T.; Stanton, Alice; Zafarmand, M. Hadi; Romaine, Simon P.R.; Mehta, Amar; van Iperen, Erik P.A.; Gong, Yan; Price, Tom S.; Smith, Erin N.; Kim, Cecilia E.; Li, Yun R.; Asselbergs, Folkert W.; Atwood, Larry D.; Bailey, Kristian M.; Bhatt, Deepak; Bauer, Florianne; Behr, Elijah R.; Bhangale, Tushar; Boer, Jolanda M.A.; Boehm, Bernhard O.; Bradfield, Jonathan P.; Brown, Morris; Braund, Peter S.; Burton, Paul R.; Carty, Cara; Chandrupatla, Hareesh R.; Chen, Wei; Connell, John; Dalgeorgou, Chrysoula; Boer, Anthonius de; Drenos, Fotios; Elbers, Clara C.; Fang, James C.; Fox, Caroline S.; Frackelton, Edward C.; Fuchs, Barry; Furlong, Clement E.; Gibson, Quince; Gieger, Christian; Goel, Anuj; Grobbee, Diederik E.; Hastie, Claire; Howard, Philip J.; Huang, Guan-Hua; Johnson, W. Craig; Li, Qing; Kleber, Marcus E.; Klein, Barbara E.K.; Klein, Ronald; Kooperberg, Charles; Ky, Bonnie; LaCroix, Andrea; Lanken, Paul; Lathrop, Mark; Li, Mingyao; Marshall, Vanessa; Melander, Olle; Mentch, Frank D.; J. Meyer, Nuala; Monda, Keri L.; Montpetit, Alexandre; Murugesan, Gurunathan; Nakayama, Karen; Nondahl, Dave; Onipinla, Abiodun; Rafelt, Suzanne; Newhouse, Stephen J.; Otieno, F. George; Patel, Sanjey R.; Putt, Mary E.; Rodriguez, Santiago; Safa, Radwan N.; Sawyer, Douglas B.; Schreiner, Pamela J.; Simpson, Claire; Sivapalaratnam, Suthesh; Srinivasan, Sathanur R.; Suver, Christine; Swergold, Gary; Sweitzer, Nancy K.; Thomas, Kelly A.; Thorand, Barbara; Timpson, Nicholas J.; Tischfield, Sam; Tobin, Martin; Tomaszweski, Maciej; Verschuren, W.M. Monique; Wallace, Chris; Winkelmann, Bernhard; Zhang, Haitao; Zheng, Dongling; Zhang, Li; Zmuda, Joseph M.; Clarke, Robert; Balmforth, Anthony J.; Danesh, John; Day, Ian N.; Schork, Nicholas J.; de Bakker, Paul I.W.; Delles, Christian; Duggan, David; Hingorani, Aroon D.; Hirschhorn, Joel N.; Hofker, Marten H.; Humphries, Steve E.; Kivimaki, Mika; Lawlor, Debbie A.; Kottke-Marchant, Kandice; Mega, Jessica L.; Mitchell, Braxton D.; Morrow, David A.; Palmen, Jutta; Redline, Susan; Shields, Denis C.; Shuldiner, Alan R.; Sleiman, Patrick M.; Smith, George Davey; Farrall, Martin; Jamshidi, Yalda; Christiani, David C.; Casas, Juan P.; Hall, Alistair S.; Doevendans, Pieter A.; D. Christie, Jason; Berenson, Gerald S.; Murray, Sarah S.; Illig, Thomas; Dorn, Gerald W.; Cappola, Thomas P.; Boerwinkle, Eric; Sever, Peter; Rader, Daniel J.; Reilly, Muredach P.; Caulfield, Mark; Talmud, Philippa J.; Topol, Eric; Engert, James C.; Wang, Kai; Dominiczak, Anna; Hamsten, Anders; Curtis, Sean P.; Silverstein, Roy L.; Lange, Leslie A.; Sabatine, Marc S.; Trip, Mieke; Saleheen, Danish; Peden, John F.; Cruickshanks, Karen J.; März, Winfried; O'Connell, Jeffrey R.; Klungel, Olaf H.; Wijmenga, Cisca; Maitland-van der Zee, Anke Hilse; Schadt, Eric E.; Johnson, Julie A.; Jarvik, Gail P.; Papanicolaou, George J.; Grant, Struan F.A.; Munroe, Patricia B.; North, Kari E.; Samani, Nilesh J.; Koenig, Wolfgang; Gaunt, Tom R.; Anand, Sonia S.; van der Schouw, Yvonne T.; Soranzo, Nicole; FitzGerald, Garret A.; Reiner, Alex; Hegele, Robert A.; Hakonarson, Hakon; Keating, Brendan J.

    2011-01-01

    Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 × 10−6), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 × 10−8). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 × 10−11). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait. PMID:21194676

  2. Structure analysis reveals the flexibility of the ADAMTS-5 active site

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Huey-Sheng; Tomasselli, Alfredo G.; Mathis, Karl J.; Schnute, Mark E.; Woodard, Scott S.; Caspers, Nicole; Williams, Jennifer M.; Kiefer, James R.; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D. (Pfizer)

    2012-03-02

    A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.

  3. Electrical Rhythms Revealed by Harmonic Analysis of a High-Resolution Cardiogram.

    Science.gov (United States)

    Revenko, S V; Selector, L Ya; Gavrilov, I Yu; Nesterov, A V; Limonov, E V; Mudraya, I S; Kirpatovskii, V I

    2015-05-01

    The front-end low-noise electronic amplifiers and high-throughput computing systems made it possible to record ECG with a high resolution in the low-frequency range including the respiration and Mayer frequencies and to analyze ECG with digital filtering technique and harmonic analysis. These tools yielded ECG spectra of narcotized rats, which contained the characteristic pulsatile triplets and pentaplets with splitting constant equal to respiration rate, as well as the peaks at respiration and Mayer frequencies. The harmonic analysis of ECG determined the frequency parameters employed to tune the software bandpass filters, which revealed the respiratory (R) and Mayer (M) waves in the time domain with the amplitudes of 20-30 μV amounting to 5% ECG amplitude. The depolarizing myorelaxant succinylcholine chloride capable to trigger various types of arrhythmias, transiently increased R-wave, inhibited M-wave, and provoked a negative U-wave within a heartbeat ECG cycle synchronously with inspiration. It is hypothesized that M-, R-, and U-waves in ECG reflect cardiotropic activity of autonomic nervous system. The respective spectral peaks in ECG can be employed to assess intensity of sympathetic and parasympathetic cardiotropic influences, their balance, and the risk of arrhythmias.

  4. Transcriptome analysis reveals dynamic changes in the gene expression of tobacco seedlings under low potassium stress

    Indian Academy of Sciences (India)

    Liming Lu; Yong Chen; Lin Lu; Yifei Lu; Liqin Li

    2015-09-01

    Potassium plays a key role in plant development and reproduction. In agricultural practice, potassium deficiency is common worldwide, and leads to crop growth inhibition and output reduction. In this study, we analysed the transcriptome of tobacco seedlings under low potassium stress. Tobacco seedlings with or without decreased potassium treatment were harvested after 0 (control), 6, 12, or 24 h and were submitted for microarray analysis. The results showed that up to 3790 genes were upregulated or downregulated more than 2-fold as a result of the decreased potassium treatment. Gene ontology analysis revealed significantly differentially expressed genes that were categorized as cation binding, transcription regulation, metabolic processes, transporter activity and enzyme regulation. Some potassium, nitrogen and phosphorus transporters; transcription factors; and plant signal molecules, such as CPKs were also significantly differentially expressed under potassium deficiency. Our results indicate that the expression profiles of a large number of genes involved in various plant physiological processes are significantly altered in response to potassium deficiency, which can result in physiological and morphological changes in tobacco plants.

  5. Comparative Genomic Analysis of Lactococcus garvieae Strains Isolated from Different Sources Reveals Candidate Virulence Genes

    Directory of Open Access Journals (Sweden)

    Eiji Miyauchi

    2012-01-01

    Full Text Available Lactococcus garvieae is a major pathogen for fish. Two complete (ATCC 49156 and Lg2 and three draft (UNIUD074, 8831, and 21881 genome sequences of L. garvieae have recently been released. We here present the results of a comparative genomic analysis of these fish and human isolates of L. garvieae. The pangenome comprised 1,542 core and 1,378 dispensable genes. The sequenced L. garvieae strains shared most of the possible virulence genes, but the capsule gene cluster was found only in fish-pathogenic strain Lg2. The absence of the capsule gene cluster in other nonpathogenic strains isolated from mastitis and vegetable was also confirmed by PCR. The fish and human isolates of L. garvieae contained the specific two and four adhesin genes, respectively, indicating that these adhesion proteins may be involved in the host specificity differences of L. garvieae. The discoveries revealed by the pangenomic analysis may provide significant insights into the biology of L. garvieae.

  6. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production.

    Science.gov (United States)

    Wang, Xuchu; Wang, Dan; Sun, Yong; Yang, Qian; Chang, Lili; Wang, Limin; Meng, Xueru; Huang, Qixing; Jin, Xiang; Tong, Zheng

    2015-09-08

    Ethylene is a stimulant to increase natural rubber latex. After ethylene application, both fresh yield and dry matter of latex are substantially improved. Moreover, we found that ethylene improves the generation of small rubber particles. However, most genes involved in rubber biosynthesis are inhibited by exogenous ethylene. Therefore, we conducted a proteomics analysis of ethylene-stimulated rubber latex, and identified 287 abundant proteins as well as 143 ethylene responsive latex proteins (ERLPs) with mass spectrometry from the 2-DE and DIGE gels, respectively. In addition, more than 1,600 proteins, including 404 ERLPs, were identified by iTRAQ. Functional classification of ERLPs revealed that enzymes involved in post-translational modification, carbohydrate metabolism, hydrolase activity, and kinase activity were overrepresented. Some enzymes for rubber particle aggregation were inhibited to prolong latex flow, and thus finally improved latex production. Phosphoproteomics analysis identified 59 differential phosphoproteins; notably, specific isoforms of rubber elongation factor and small rubber particle protein that were phosphorylated mainly at serine residues. This post-translational modification and isoform-specific phosphorylation might be important for ethylene-stimulated latex production. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the use of ethylene to stimulate rubber latex production.

  7. Comparative Transcriptome Analysis Reveals Different Silk Yields of Two Silkworm Strains.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS and Lan10 (L10 are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes. Nine enriched gene ontology (GO terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield.

  8. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community.

    Science.gov (United States)

    Xie, Meili; Ren, Minglei; Yang, Chen; Yi, Haisi; Li, Zhe; Li, Tao; Zhao, Jindong

    2016-01-01

    Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.

  9. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    Science.gov (United States)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  10. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes.

    Science.gov (United States)

    Subirats, Jéssica; Sànchez-Melsió, Alexandre; Borrego, Carles M; Balcázar, José Luis; Simonet, Pascal

    2016-08-01

    A metagenomics approach was applied to explore the presence of antibiotic resistance genes (ARGs) in bacteriophages from hospital wastewater. Metagenomic analysis showed that most phage sequences affiliated to the order Caudovirales, comprising the tailed phage families Podoviridae, Siphoviridae and Myoviridae. Moreover, the relative abundance of ARGs in the phage DNA fraction (0.26%) was higher than in the bacterial DNA fraction (0.18%). These differences were particularly evident for genes encoding ATP-binding cassette (ABC) and resistance-nodulation-cell division (RND) proteins, phosphotransferases, β-lactamases and plasmid-mediated quinolone resistance. Analysis of assembled contigs also revealed that blaOXA-10, blaOXA-58 and blaOXA-24 genes belonging to class D β-lactamases as well as a novel blaTEM (98.9% sequence similarity to the blaTEM-1 gene) belonging to class A β-lactamases were detected in a higher proportion in phage DNA. Although preliminary, these findings corroborate the role of bacteriophages as reservoirs of resistance genes and thus highlight the necessity to include them in future studies on the emergence and spread of antibiotic resistance in the environment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  11. Pre-2014 mudslides at Oso revealed by InSAR and multi-source DEM analysis

    Science.gov (United States)

    Kim, J. W.; Lu, Z.; QU, F.

    2014-12-01

    The landslide is a process that results in the downward and outward movement of slope-reshaping materials including rocks and soils and annually causes the loss of approximately $3.5 billion and tens of casualties in the United States. The 2014 Oso mudslide was an extreme event costing nearly 40 deaths and damaging civilian properties. Landslides are often unpredictable, but in many cases, catastrophic events are repetitive. Historic record in the Oso mudslide site indicates that there have been serial events in decades, though the extent of sliding events varied from time to time. In our study, the combination of multi-source DEMs, InSAR, and time-series InSAR analysis has enabled to characterize the Oso mudslide. InSAR results from ALOS PALSAR show that there was no significant deformation between mid-2006 and 2011. The combination of time-series InSAR analysis and old-dated DEM indicated revealed topographic changes associated the 2006 sliding event, which is confirmed by the difference of multiple LiDAR DEMs. Precipitation and discharge measurements before the 2006 and 2014 landslide events did not exhibit extremely anomalous records, suggesting the precipitation is not the controlling factor in determining the sliding events at Oso. The lack of surface deformation during 2006-2011 and weak correlation between the precipitation and the sliding event, suggest other factors (such as porosity) might play a critical role on the run-away events at this Oso and other similar landslides.

  12. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    Science.gov (United States)

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-12-23

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  13. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    Science.gov (United States)

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  14. Large-scale analysis by SAGE reveals new mechanisms of v-erbA oncogene action

    Directory of Open Access Journals (Sweden)

    Faure Claudine

    2007-10-01

    Full Text Available Abstract Background: The v-erbA oncogene, carried by the Avian Erythroblastosis Virus, derives from the c-erbAα proto-oncogene that encodes the nuclear receptor for triiodothyronine (T3R. v-ErbA transforms erythroid progenitors in vitro by blocking their differentiation, supposedly by interference with T3R and RAR (Retinoic Acid Receptor. However, v-ErbA target genes involved in its transforming activity still remain to be identified. Results: By using Serial Analysis of Gene Expression (SAGE, we identified 110 genes deregulated by v-ErbA and potentially implicated in the transformation process. Bioinformatic analysis of promoter sequence and transcriptional assays point out a potential role of c-Myb in the v-ErbA effect. Furthermore, grouping of newly identified target genes by function revealed both expected (chromatin/transcription and unexpected (protein metabolism functions potentially deregulated by v-ErbA. We then focused our study on 15 of the new v-ErbA target genes and demonstrated by real time PCR that in majority their expression was activated neither by T3, nor RA, nor during differentiation. This was unexpected based upon the previously known role of v-ErbA. Conclusion: This paper suggests the involvement of a wealth of new unanticipated mechanisms of v-ErbA action.

  15. Glycoproteomic Analysis of Seven Major Allergenic Proteins Reveals Novel Post-translational Modifications*

    Science.gov (United States)

    Halim, Adnan; Carlsson, Michael C.; Madsen, Caroline Benedicte; Brand, Stephanie; Møller, Svenning Rune; Olsen, Carl Erik; Vakhrushev, Sergey Y.; Brimnes, Jens; Wurtzen, Peter Adler; Ipsen, Henrik; Petersen, Bent L.; Wandall, Hans H.

    2015-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited. Here, we present a detailed PTM1 characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines. PMID:25389185

  16. Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications.

    Science.gov (United States)

    Halim, Adnan; Carlsson, Michael C; Madsen, Caroline Benedicte; Brand, Stephanie; Møller, Svenning Rune; Olsen, Carl Erik; Vakhrushev, Sergey Y; Brimnes, Jens; Wurtzen, Peter Adler; Ipsen, Henrik; Petersen, Bent L; Wandall, Hans H

    2015-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited. Here, we present a detailed PTM(1) characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines.

  17. Dynamic allostery in the methionine repressor revealed by force distribution analysis.

    Directory of Open Access Journals (Sweden)

    Wolfram Stacklies

    2009-11-01

    Full Text Available Many fundamental cellular processes such as gene expression are tightly regulated by protein allostery. Allosteric signal propagation from the regulatory to the active site requires long-range communication, the molecular mechanism of which remains a matter of debate. A classical example for long-range allostery is the activation of the methionine repressor MetJ, a transcription factor. Binding of its co-repressor SAM increases its affinity for DNA several-fold, but has no visible conformational effect on its DNA binding interface. Our molecular dynamics simulations indicate correlated domain motions within MetJ, and quenching of these dynamics upon SAM binding entropically favors DNA binding. From monitoring conformational fluctuations alone, it is not obvious how the presence of SAM is communicated through the largely rigid core of MetJ and how SAM thereby is able to regulate MetJ dynamics. We here directly monitored the propagation of internal forces through the MetJ structure, instead of relying on conformational changes as conventionally done. Our force distribution analysis successfully revealed the molecular network for strain propagation, which connects collective domain motions through the protein core. Parts of the network are directly affected by SAM binding, giving rise to the observed quenching of fluctuations. Our results are in good agreement with experimental data. The force distribution analysis suggests itself as a valuable tool to gain insight into the molecular function of a whole class of allosteric proteins.

  18. Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis.

    Science.gov (United States)

    Tiwari, Manish; Krishnamurthy, Sneha; Shukla, Devesh; Kiiskila, Jeffrey; Jain, Ajay; Datta, Rupali; Sharma, Nilesh; Sahi, Shivendra V

    2016-02-23

    A large number of plants have been tested and exploited in search of a green chemistry approach for the fabrication of gold or other precious metal nanomaterials. Despite the potential of plant based methods, very little is known about the underlying biochemical reactions and genes involved in the biotransformation mechanism of AuCl4 into gold nanoparticles (AuNPs). In this research, we thus focused on studying the effect of Au on growth and nanoparticles formation by analyses of transcriptome, proteome and ionome shift in Arabidopsis. Au exposure favored the growth of Arabidopsis seedling and induced formation of nanoparticles in root and shoot, as indicated by optical and hyperspectral imaging. Root transcriptome analysis demonstrated the differential expression of the members of WRKY, MYB and BHLH gene families, which are involved in the Fe and other essential metals homeostasis. The proteome analysis revealed that Glutathione S-transferases were induced in the shoot and suggested its potential role in the biosynthesis AuNPs. This study also demonstrated the role of plant hormone auxin in determining the Au induced root system architecture. This is the first study using an integrated approach to understand the in planta biotransformation of KAuCl4 into AuNPs.

  19. Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease

    Science.gov (United States)

    Ouyang, Xin; Sun, Xiaoyu; Guo, Ting; Sun, Qiaoyue; Chen, Kewei; Yao, Li; Wu, Xia; Guo, Xiaojuan

    2014-03-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease with the clinical symptom of the continuous deterioration of cognitive and memory functions. Multiple diffusion tensor imaging (DTI) indices such as fractional anisotropy (FA) and mean diffusivity (MD) can successfully explain the white matter damages in AD patients. However, most studies focused on the univariate measures (voxel-based analysis) to examine the differences between AD patients and normal controls (NCs). In this investigation, we applied a multivariate independent component analysis (ICA) to investigate the white matter covariances based on FA measurement from DTI data in 35 AD patients and 45 NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We found that six independent components (ICs) showed significant FA reductions in white matter covariances in AD compared with NC, including the genu and splenium of corpus callosum (IC-1 and IC-2), middle temporal gyral of temporal lobe (IC-3), sub-gyral of frontal lobe (IC-4 and IC-5) and sub-gyral of parietal lobe (IC-6). Our findings revealed covariant white matter loss in AD patients and suggest that the unsupervised data-driven ICA method is effective to explore the changes of FA in AD. This study assists us in understanding the mechanism of white matter covariant reductions in the development of AD.

  20. Joint genetic analysis using variant sets reveals polygenic gene-context interactions.

    Directory of Open Access Journals (Sweden)

    Francesco Paolo Casale

    2017-04-01

    Full Text Available Joint genetic models for multiple traits have helped to enhance association analyses. Most existing multi-trait models have been designed to increase power for detecting associations, whereas the analysis of interactions has received considerably less attention. Here, we propose iSet, a method based on linear mixed models to test for interactions between sets of variants and environmental states or other contexts. Our model generalizes previous interaction tests and in particular provides a test for local differences in the genetic architecture between contexts. We first use simulations to validate iSet before applying the model to the analysis of genotype-environment interactions in an eQTL study. Our model retrieves a larger number of interactions than alternative methods and reveals that up to 20% of cases show context-specific configurations of causal variants. Finally, we apply iSet to test for sub-group specific genetic effects in human lipid levels in a large human cohort, where we identify a gene-sex interaction for C-reactive protein that is missed by alternative methods.

  1. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.

    Directory of Open Access Journals (Sweden)

    Dan Wu

    Full Text Available Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.

  2. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.

    Science.gov (United States)

    Desdouits, Nathan; Nilges, Michael; Blondel, Arnaud

    2015-02-01

    Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities.

  3. Proteomic analysis of mice fed methionine and choline deficient diet reveals marker proteins associated with steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Su Jin Lee

    Full Text Available The mechanisms underlying the progression of simple steatosis to steatohepatitis are yet to be elucidated. To identify the proteins involved in the development of liver tissue inflammation, we performed comparative proteomic analysis of non-alcoholic steatohepatitis (NASH. Mice fed a methionine and choline deficient diet (MCD developed hepatic steatosis characterized by increased free fatty acid (FFA and triglyceride levels as well as alpha-SMA. Two-dimensional proteomic analysis revealed that the change from the normal diet to the MCD diet affected the expressions of 50 proteins. The most-pronounced changes were observed in the expression of proteins involved in Met metabolism and oxidative stress, most of which were significantly downregulated in NASH model animals. Peroxiredoxin (Prx is the most interesting among the modulated proteins identified in this study. In particular, cross-regulated Prx1 and Prx6 are likely to participate in cellular defense against the development of hepatitis. Thus, these Prx isoforms may be a useful new marker for early stage steatohepatitis. Moreover, curcumin treatment results in alleviation of the severity of hepatic inflammation in steatohepatitis. Notably, curcumin administration in MCD-fed mice dramatically reduced CYP2E1 as well as Prx1 expression, while upregulating Prx6 expression. These findings suggest that curcumin may have a protective role against MCD fed-induced oxidative stress.

  4. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.

    Science.gov (United States)

    Wu, Dan; Kendrick, Keith M; Levitin, Daniel J; Li, Chaoyi; Yao, Dezhong

    2015-01-01

    Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.

  5. Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community

    Directory of Open Access Journals (Sweden)

    Meili eXie

    2016-02-01

    Full Text Available Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.

  6. Deep sequencing analysis of tick-borne encephalitis virus from questing ticks at natural foci reveals similarities between quasispecies pools of the virus.

    Science.gov (United States)

    Asghar, Naveed; Pettersson, John H-O; Dinnetz, Patrik; Andreassen, Åshild; Johansson, Magnus

    2017-01-10

    Every year, tick-borne encephalitis virus (TBEV) causes severe central nervous system infection in 10,000 to 15,000 people in Europe and Asia. TBEV is maintained in the environment by an enzootic cycle that requires a tick vector and a vertebrate host, and the adaptation of TBEV to vertebrate and invertebrate environments is essential for TBEV persistence in nature. This adaptation is facilitated by the error-prone nature of the virus' RNA-dependent RNA polymerase that generates genetically distinct virus variants called quasispecies. TBEV shows a focal geographical distribution pattern where each focus represents a TBEV hotspot. Here we sequenced and characterized two TBEV genomes, JP-296 and JP-554, from questing Ixodes ricinus ticks at a TBEV focus in central Sweden. Phylogenetic analysis showed geographical clustering among the newly sequenced strains and three previously sequenced Scandinavian strains, Toro-2003, Saringe-2009, and Mandal-2009, which originated from same ancestor. Among these five Scandinavian TBEV strains, only Mandal-2009 showed a large deletion within the 3´ non-coding region (NCR) similar to the highly virulent TBEV strain Hypr. Deep sequencing of JP-296, JP-554, and Mandal-2009 revealed significantly high quasispecies diversity for JP-296 and JP-554, with intact 3´NCRs, compared to the low diversity in Mandal-2009, with a truncated 3´NCR. SNP analysis showed that 40% of the SNPs were common between quasispecies populations of JP-296 and JP-554, indicating a putative mechanism for how TBEV persists and is maintained within its natural foci.

  7. Bioinformatic analysis of the neprilysin (M13 family of peptidases reveals complex evolutionary and functional relationships

    Directory of Open Access Journals (Sweden)

    Pinney John W

    2008-01-01

    Full Text Available Abstract Background The neprilysin (M13 family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2, which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. Results The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates

  8. Angiotensin-converting enzyme insertion/deletion polymorphism and susceptibility to allergic rhinitis in Chinese populations: a systematic review and meta-analysis.

    Science.gov (United States)

    Huang, Ruo-Fei; Dong, Pin; Zhang, Tian-Zhen; Ying, Xin-Jiang; Hu, Hua

    2016-02-01

    In view of the controversies surrounding the angiotensin-converting enzyme (ACE)-allergic rhinitis (AR) association, a systematic review and meta-analysis of the ACE genetic association studies of AR was performed in Chinese populations. PubMed, Springer Link, OvidSP, Chinese biomedical database, Chinese national knowledge infrastructure, Chinese VIP and Wanfang databases were searched for related studies. A total of 4 studies including 415 AR patients and 309 controls were involved in this meta-analysis. Overall, significant association was found between ACE I/D polymorphism and AR risk when all studies in Chinese populations pooled into the meta-analysis (allele, OR 1.50, 95 % CI 1.19-1.90; homozygous, OR 2.59, 95 % CI 1.52-4.41, recessive, OR 2.05, 95 % CI 1.27-3.32). In the subgroup analysis by ethnicity, ACE I/D polymorphism was associated with significant elevated risks of AR in Chinese Han under homozygous and recessive models (homozygous, OR 4.36, 95 % CI 1.76-10.82, recessive, OR 2.51, 95 % CI 1.18-5.34). In conclusion, this meta-analysis provides the evidence that ACE I/D polymorphism may contribute to the AR development in Chinese populations and studies with large sample size and wider spectrum of population are warranted to verify this finding.

  9. A local-world node deleting evolving network model

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yuying [Department of Mathematics, Tongji University, Shanghai 200092 (China); Sun Jitao [Department of Mathematics, Tongji University, Shanghai 200092 (China)], E-mail: sunjt@sh163.net

    2008-06-16

    A new type network growth rule which comprises node addition with the concept of local-world connectivity and node deleting is studied. A series of theoretical analysis and numerical simulation to the LWD network are conducted in this Letter. Firstly, the degree distribution p(k) of this network changes no longer pure scale free but truncates by an exponential tail and the truncation in p(k) increases as p{sub a} decreases. Secondly, the connectivity is tighter, as the local-world size M increases. Thirdly, the average path length L increases and the clustering coefficient decreases as generally node deleting increases. Finally, trends up when the local-world size M increases, so as to k{sub max}. Hence, the expanding local-world can compensate the infection of the node deleting.

  10. ALE meta-analysis reveals dissociable networks for affective and discriminative aspects of touch.

    Science.gov (United States)

    Morrison, India

    2016-04-01

    Emotionally-laden tactile stimulation-such as a caress on the skin or the feel of velvet-may represent a functionally distinct domain of touch, underpinned by specific cortical pathways. In order to determine whether, and to what extent, cortical functional neuroanatomy supports a distinction between affective and discriminative touch, an activation likelihood estimate (ALE) meta-analysis was performed. This meta-analysis statistically mapped reported functional magnetic resonance imaging (fMRI) activations from 17 published affective touch studies in which tactile stimulation was associated with positive subjective evaluation (n = 291, 34 experimental contrasts). A separate ALE meta-analysis mapped regions most likely to be activated by tactile stimulation during detection and discrimination tasks (n = 1,075, 91 experimental contrasts). These meta-analyses revealed dissociable regions for affective and discriminative touch, with posterior insula (PI) more likely to be activated for affective touch, and primary somatosensory cortices (SI) more likely to be activated for discriminative touch. Secondary somatosensory cortex had a high likelihood of engagement by both affective and discriminative touch. Further, meta-analytic connectivity (MCAM) analyses investigated network-level co-activation likelihoods independent of task or stimulus, across a range of domains and paradigms. Affective-related PI and discriminative-related SI regions co-activated with different networks, implicated in dissociable functions, but sharing somatosensory co-activations. Taken together, these meta-analytic findings suggest that affective and discriminative touch are dissociable both on the regional and network levels. However, their degree of shared activation likelihood in somatosensory cortices indicates that this dissociation reflects functional biases within tactile processing networks, rather than functionally and anatomically distinct pathways.

  11. Regulators of skeletal development: a cluster analysis of 206 bone tumors reveals diagnostically useful markers.

    Science.gov (United States)

    Horvai, Andrew E; Roy, Ritu; Borys, Dariusz; O'Donnell, Richard J

    2012-11-01

    The molecules Indian hedgehog (IHH), SP7 (also known as osterix), sex-determining region Y-box 9 (SOX9), runt-related transcription factor 2 (RUNX2) and TWIST1 regulate the normal differentiation of osteo- and chondrogenic cells from precursors during skeletal development and remodeling. The aberrant function of the same molecules has been implicated in the pathogenesis of bone tumors. Preliminary studies suggest that antibodies against these molecules have practical, diagnostic or prognostic utility in tumors. However, a comprehensive analysis of the expression of these molecules in a large, diverse set of bone tumors has yet to be reported. The goals of this study were to compare the immunohistochemical profiles of IHH, SP7, SOX9, RUNX2 and TWIST1 among bone tumors and to determine the optimum panel for diagnostic utility. Tissue microarrays prepared from 206 undecalcified tumors (71 osteosarcomas, 26 osteoblastomas/osteoid osteomas, 50 giant cell tumors, 5 chondromyxoid fibromas and 54 chondroblastomas) were stained with antibodies to IHH, SP7, SOX9, RUNX2 and TWIST1. The stains were scored for intensity (0-3+) and distribution. The results were analyzed by cluster analysis. Optimum antibody panels for diagnostic sensitivity and specificity were calculated. Analysis revealed six main clusters that corresponded well to tumor types and suggested a close relationship between the stromal cells of giant cell tumor and the osteoblasts of osteosarcoma. The expression profile of chondromyxoid fibroma and chondroblastoma also suggested related differentiation. The distribution of osteoblastomas and osteoid osteomas was more heterogeneous. RUNX2, SOX9 and TWIST1 represented the most sensitive and specific immunohistochemical panel to distinguish among these diagnoses with the limitation that no result could discriminate between chondroblastoma and chondromyxoid fibroma. IHH and SP7 did not yield additional utility.

  12. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Directory of Open Access Journals (Sweden)

    Hong Hao

    Full Text Available A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  13. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis.

    Science.gov (United States)

    Wang, Xiaonan; Chen, Sixue; Zhang, Heng; Shi, Lei; Cao, Fenglin; Guo, Lihai; Xie, Yongming; Wang, Tai; Yan, Xiufeng; Dai, Shaojun

    2010-12-03

    Drought is one of the most severe limitations to plant growth and productivity. Resurrection plants have evolved a unique capability to tolerate desiccation in vegetative tissues. Fern-ally Selaginella tamariscina (Beauv.) is one of the most primitive vascular resurrection plants, which can survive a desiccated state and recover when water becomes available. To better understand the mechanism of desiccation tolerance, we have applied physiological and proteomic analysis. Samples of S. tamariscina were water-deprived for up to seven days followed by 12 h of rewatering. Our results showed that endogenous abscisic acid (ABA) increased to regulate dehydration-responsive genes/proteins and physiological processes. In the course of dehydration, the contents of osmolytes represented by soluble sugars and proline were increased to maintain cell structure integrity. The activities of four antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR)) also increased. In contrast, both the rate of photosynthesis and the chlorophyll content decreased, and plasma membrane integrity was lost. We identified 138 desiccation-responsive two-dimensional electrophoresis (2-DE) spots, representing 103 unique proteins. Hierarchical clustering analysis revealed that 83% of the proteins were down-regulated upon dehydration. They were mainly involved in photosynthesis, carbohydrate and energy metabolism, stress and defense, protein metabolism, signaling, membrane/transport, cell structure, and cell division. The dynamic expression changes of the desiccation-responsive proteins provide strong evidence that cell structure modification, photosynthesis reduction, antioxidant system activation, and protein post-transcriptional/translational modifications are essential to the poikilochlorophyllous fern-ally S. tamariscina in response to dehydration. In addition, our comparative analysis of dehydration-responsive proteins in vegetative tissues

  14. Time series analysis of satellite data reveals continuous deforestation of New England since the 1980s

    Science.gov (United States)

    Olofsson, Pontus; Holden, Christopher E.; Bullock, Eric L.; Woodcock, Curtis E.

    2016-06-01

    Land cover and land change were monitored continuously between 1985 and 2011 at 30 m resolution across New England in the Northeastern United States in support of modeling the terrestrial carbon budget. It was found that the forest area has been decreasing throughout the study period in each state of the region since the 1980s. A total of 386 657 ± 98 137 ha (95% confidence interval) of forest has been converted to other land covers since 1985. Mainly driven by low density residential development, the deforestation accelerated in the mid-1990s until 2007 when it plateaued as a result of declining new residential construction and in turn, the financial crisis of 2007-08. The area of forest harvest, estimated at 226 519 ± 66 682 ha, was mapped separately and excluded from the deforestation estimate, while the area of forest expansion on non-forested lands was found to not be significantly different from zero. New England is often held as a principal example of a forest transition with historical widespread deforestation followed by recovery of forestlands as farming activities diminished, but the results of this study support the notion of a reversal of the forest transition as the region again is experiencing widespread deforestation. All available Landsat imagery acquired after 1985 for the study area were collected and used in the analysis. Areas of land cover and land change were estimated from a random sample of reference observations stratified by a twelve-class land change map encompassing the entire study area and period. The statistical analysis revealed that the net change in forest area and the associated modeled impact on the terrestrial carbon balance would have been considerably different if the results of the map were used without inferring the area of forest change by analysis of a reference sample.

  15. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Science.gov (United States)

    Hao, Hong; Kim, Douglas S; Klocke, Bernward; Johnson, Kory R; Cui, Kairong; Gotoh, Norimoto; Zang, Chongzhi; Gregorski, Janina; Gieser, Linn; Peng, Weiqun; Fann, Yang; Seifert, Martin; Zhao, Keji; Swaroop, Anand

    2012-01-01

    A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  16. Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network

    Directory of Open Access Journals (Sweden)

    Chamovitz Daniel A

    2009-09-01

    Full Text Available Abstract Background Analyses of gene expression data from microarray experiments has become a central tool for identifying co-regulated, functional gene modules. A crucial aspect of such analysis is the integration of data from different experiments and different laboratories. How to weigh the contribution of different experiments is an important point influencing the final outcomes. We have developed a novel method for this integration, and applied it to genome-wide data from multiple Arabidopsis microarray experiments performed under a variety of experimental conditions. The goal of this study is to identify functional globally co-regulated gene modules in the Arabidopsis genome. Results Following the analysis of 21,000 Arabidopsis genes in 43 datasets and about 2 × 108 gene pairs, we identified a globally co-expressed gene network. We found clusters of globally co-expressed Arabidopsis genes that are enriched for known Gene Ontology annotations. Two types of modules were identified in the regulatory network that differed in their sensitivity to the node-scoring parameter; we further showed these two pertain to general and specialized modules. Some of these modules were further investigated using the Genevestigator compendium of microarray experiments. Analyses of smaller subsets of data lead to the identification of condition-specific modules. Conclusion Our method for identification of gene clusters allows the integration of diverse microarray experiments from many sources. The analysis reveals that part of the Arabidopsis transcriptome is globally co-expressed, and can be further divided into known as well as novel functional gene modules. Our methodology is general enough to apply to any set of microarray experiments, using any scoring function.

  17. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Directory of Open Access Journals (Sweden)

    Hong Hao

    Full Text Available A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  18. Deletion of small nuclear ribonucleoprotein polypeptide N (SNRPN) in Prader-Willi syndrome detected by fluorescence in situ hybridization: Two sibs with the typical phenotype without a cytogenetic deletion in chromosome 15q

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Tatsuya; Kibe, Tetsuya; Wada, Yoshiro [Nagoya City Univ. Medical School (Japan)

    1996-04-24

    The small nuclear ribonucleoprotein polypeptide N (SNRPN) gene is regarded as one of the candidates for Prader-Willi syndrome (PWS). We describe two sibs with typical PWS presenting deletion of SNRPN detected by fluorescence in situ hybridization (FISH). Neither a cytogenetically detectable 15q12 deletion nor a deletion for the D15S11, D15S10, and GABRB3 cosmid probes were found in either patient. This implies a smaller deletion limited to the PWS critical region. FISH with a SNRPN probe will permit analysis of PWS patients with limited deletions not detectable with other probes. 22 refs., 1 fig.

  19. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes.

    Science.gov (United States)

    Divya, Dhanasekar; Singh, Y Tunginba; Nair, Suresh; Bentur, J S

    2016-03-01

    The Asian rice gall midge, Orseolia oryzae, is a serious insect pest causing extensive yield loss. Interaction between the gall midge and rice genotypes is known to be on a gene-for-gene basis. Here, we report molecular basis of HR- (hypersensitive reaction-negative) type of resistance in Aganni (an indica rice variety possessing gall midge resistance gene Gm8) through the construction and analysis of a suppressive subtraction hybridization (SSH) cDNA library. In all, 2,800 positive clones were sequenced and analyzed. The high-quality ESTs were assembled into 448 non-redundant gene sequences. Homology search with the NCBI databases, using BlastX and BlastN, revealed that 73% of the clones showed homology to genes with known function and majority of ESTs belonged to the gene ontology category 'biological process'. Validation of 27 putative candidate gall midge resistance genes through real-time PCR, following gall midge infestation, in contrasting parents and their derived pre-NILs (near isogenic lines) revealed induction of specific genes related to defense and metabolism. Interestingly, four genes, belonging to families of leucine-rich repeat (LRR), heat shock protein (HSP), pathogenesis related protein (PR), and NAC domain-containing protein, implicated in conferring HR+ type of resistance, were found to be up-regulated in Aganni. Two of the reactive oxygen intermediates (ROI)-scavenging-enzyme-coding genes Cytosolic Ascorbate Peroxidase1, 2 (OsAPx1 and OsAPx2) were found up-regulated in Aganni in incompatible interaction possibly suppressing HR. We suggest that Aganni has a deviant form of inducible, salicylic acid (SA)-mediated resistance but without HR.

  20. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes.

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-11-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  1. Dysconnection topography in schizophrenia revealed with state-space analysis of EEG.

    Directory of Open Access Journals (Sweden)

    Mahdi Jalili

    Full Text Available BACKGROUND: The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals. METHODS/RESULTS: To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels EEG obtained from 14 patients and 14 controls. This method determines synchron