WorldWideScience

Sample records for delbrueckii subsp lactis

  1. Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis.

    Science.gov (United States)

    Torriani, S; Zapparoli, G; Dellaglio, F

    1999-10-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.

  2. Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis

    Science.gov (United States)

    Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco

    1999-01-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059

  3. Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis

    OpenAIRE

    Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco

    1999-01-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy pr...

  4. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile

    OpenAIRE

    Burns, Patricia; Sánchez García, Borja; Vinderola, Gabriel; Ruas-Madiedo, Patricia; Ruíz García, Lorena; Margolles Barros, Abelardo; Reinheimer, Jorge A.; González de los Reyes-Gavilán, Clara

    2010-01-01

    Progressive adaptation to bile might render some lactobacilli able to withstand physiological bile salt concentrations. In this work, the adaptation to bile was evaluated on previously isolated dairy strains of Lactobacillus delbrueckii subsp. lactis 200 and L. delbrueckii subsp. lactis 200+, a strain derived thereof with stable bile-resistant phenotype. The adaptation to bile was obtained by comparing cytosolic proteomes of both strains grown in the presence or absence of bile. Proteomics we...

  5. Introduction of peptidase genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and controlled expression

    NARCIS (Netherlands)

    Wegmann, U.; Klein, J.R.; Drumm, I.; Kuipers, O.P.; Henrich, B.

    Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp, lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci, Controllable expression of the corresponding genes

  6. Milk-derived angiotensin-I-converting enzymeinhibitory peptides generated by Lactobacillus delbrueckii subsp. lactis CRL 581

    Directory of Open Access Journals (Sweden)

    Villegas Josefina M.

    2014-01-01

    Full Text Available Several strains of Lactobacillus helveticus and Lactobacillus delbrueckii subsp. lactis were evaluated for their ability to release angiotensin-I-converting enzyme (ACE inhibitory peptides from α-casein (α-CN and β-casein (β-CN. Casein peptides resulting from L. delbrueckii subsp. lactis CRL 581-mediated hydrolysis exhibited the highest ACE-inhibitory (ACEI activities, with values of 53 and 40% for α-CN and β-CN, respectively. The casein hydrolysates were fractionated by reversedphase high pressure liquid chromatography and some of the active peptides were identified by mass spectrometry. The fraction with the highest ACEI activity arose from β-CN and contained a mixture of the β-CN f194-206 (QEPVLGPVRGPFP and f198-206 (LGPVRGPFP peptides. Furthermore, the ACEI tripeptide IPP was identified in all β-CN hydrolysates; L. delbrueckii subsp. lactis CRL 581 produced the highest amount of this peptide. The bioactive peptides released by CRL 581 strain may be used in the formulation of functional foods and nutraceuticals, representing a healthier and natural alternative for regulating blood pressure.

  7. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile.

    Science.gov (United States)

    Burns, Patricia; Sánchez, Borja; Vinderola, Gabriel; Ruas-Madiedo, Patricia; Ruiz, Lorena; Margolles, Abelardo; Reinheimer, Jorge; de los Reyes-Gavilán, Clara G

    2010-08-15

    Progressive adaptation to bile might render some lactobacilli able to withstand physiological bile salt concentrations. In this work, the adaptation to bile was evaluated on previously isolated dairy strains of Lactobacillus delbrueckii subsp. lactis 200 and L. delbrueckii subsp. lactis 200+, a strain derived thereof with stable bile-resistant phenotype. The adaptation to bile was obtained by comparing cytosolic proteomes of both strains grown in the presence or absence of bile. Proteomics were complemented with physiological studies on both strains focusing on glycolytic end-products, the ability to adhere to the human intestinal epithelial cell line HT29-MTX and survival to simulated gastrointestinal conditions. Protein pattern comparison of strains grown with and without bile allowed us to identify 9 different proteins whose production was regulated by bile in both strains, and 17 proteins that showed differences in their levels between the parental and the bile-resistant derivative. These included general stress response chaperones, proteins involved in transcription and translation, in peptidoglycan/exopolysaccharide biosynthesis, in the lipid and nucleotide metabolism and several glycolytic and pyruvate catabolism enzymes. Differences in the level of metabolic end-products of the sugar catabolism were found between the strains 200 and 200+. A decrease in the adhesion of both strains to the intestinal cell line was detected in the presence of bile. In simulated gastric and intestinal juices, a protective effect was exerted by milk improving the survival of both microorganisms. These results indicate that bile tolerance in L. delbrueckii subsp. lactis involves several mechanisms responding to the deleterious impact of bile salts on bacterial physiology. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Genome Sequence of the Cheese-Starter Strain Lactobacillus delbrueckii subsp. lactis CRL 581.

    Science.gov (United States)

    Hebert, Elvira María; Raya, Raúl R; Brown, Lucía; Font de Valdez, Graciela; Savoy de Giori, Graciela; Taranto, María Pía

    2013-08-08

    We report the genome sequence of Lactobacillus delbrueckii subsp. lactis CRL 581 (1,911,137 bp, GC 49.7%), a proteolytic strain isolated from a homemade Argentinian hard cheese which has a key role in bacterial nutrition and releases bioactive health-beneficial peptides from milk proteins.

  9. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

    Science.gov (United States)

    Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2011-03-30

    A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Cell-Wall-Bound Proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: Characterization and Specificity for β-Casein

    Science.gov (United States)

    Tsakalidou, E.; Anastasiou, R.; Vandenberghe, I.; van Beeumen, J.; Kalantzopoulos, G.

    1999-01-01

    Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified. PMID:10223997

  11. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    Science.gov (United States)

    Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M

    2016-11-30

    It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of

  12. Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with Various Plasmids

    OpenAIRE

    Serror, Pascale; Sasaki, Takashi; Ehrlich, S. Dusko; Maguin, Emmanuelle

    2002-01-01

    We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 104 transformants per μg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a goo...

  13. Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with Various Plasmids

    Science.gov (United States)

    Serror, Pascale; Sasaki, Takashi; Ehrlich, S. Dusko; Maguin, Emmanuelle

    2002-01-01

    We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 104 transformants per μg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii. PMID:11772607

  14. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    Science.gov (United States)

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  15. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium.

    Science.gov (United States)

    Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F

    2017-03-01

    Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

  16. Characterization of the mature cell surface proteinase of Lactobacillus delbrueckii subsp. lactis CRL 581.

    Science.gov (United States)

    Villegas, Josefina M; Brown, Lucía; Savoy de Giori, Graciela; Hebert, Elvira M

    2015-05-01

    The cell envelope-associated proteinase (CEP) of Lactobacillus delbrueckii subsp. lactis CRL 581 (PrtL) has an essential role in bacterial growth, contributes to the flavor and texture development of fermented products, and can release bioactive health-beneficial peptides during milk fermentation. The genome of L. delbrueckii subsp. lactis CRL 581 possesses only one gene that encodes PrtL, which consists of 1924 amino acids and is a multidomain protein anchored to the cell via its W domain. PrtL was extracted from the cell under high ionic strength conditions using NaCl, suggesting an electrostatic interaction between the proteinase and the cell envelope. The released PrtL was purified and biochemically characterized; its activity was maximal at temperatures between 37 and 40 °C and at pH between 7 and 8. Under optimal conditions, PrtL exhibited higher affinity for succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide than for succinyl-alanyl-glutamyl-prolyl-phenylalanine-p-nitroanilide, while methoxy-succinyl-arginyl-prolyl-tyrosyl-p-nitroanilide was not degraded. A similar α- and β-casein degradation pattern was observed with the purified and the cell envelope-bound proteinase. Finally, on the basis of its specificity towards caseins and the unique combination of amino acids at residues thought to be involved in substrate specificity, PrtL can be classified as a representative of a new group of CEP.

  17. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41.

    Science.gov (United States)

    Tashiro, Yukihiro; Kaneko, Wataru; Sun, Yanqi; Shibata, Keisuke; Inokuma, Kentaro; Zendo, Takeshi; Sonomoto, Kenji

    2011-03-01

    We isolated and characterized a D-lactic acid-producing lactic acid bacterium (D-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 (T) and L. delbrueckii subsp. lactis JCM 1248 (T), which are also known as D-LAB, the QU 41 strain exhibited a high thermotolerance and produced D-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on D-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l D-lactic acid was acquired with high optical purity (>99.9% of D-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve D-lactic acid productivity. At a dilution rate of 0.87 h(-1), the high cell density continuous culture exhibited the highest D-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.

  18. Technological characterization and survival of the exopolysaccharide-producing strain Lactobacillus delbrueckii subsp. lactis 193 and its bile-resistant derivative 193+ in simulated gastric and intestinal juices.

    Science.gov (United States)

    Burns, Patricia; Vinderola, Gabriel; Reinheimer, Jorge; Cuesta, Isabel; de Los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia

    2011-08-01

    The capacity of lactic acid bacteria to produce exopolysaccharides (EPS) conferring microorganisms a ropy phenotype could be an interesting feature from a technological point of view. Progressive adaptation to bile salts might render some lactobacilli able to overcome physiological gut barriers but could also modify functional properties of the strain, including the production of EPS. In this work some technological properties and the survival ability in simulated gastrointestinal conditions of Lactobacillus delbrueckii subsp. lactis 193, and Lb. delbrueckii subsp. lactis 193+, a strain with stable bile-resistant phenotype derived thereof, were characterized in milk in order to know whether the acquisition of resistance to bile could modify some characteristics of the microorganism. Both strains were able to grow and acidify milk similarly; however the production of ethanol increased at the expense of the aroma compound acetaldehyde in milk fermented by the strain 193+, with respect to milk fermented by the strain 193. Both microorganisms produced a heteropolysaccharide composed of glucose and galactose, and were able to increase the viscosity of fermented milks. In spite of the higher production yield of EPS by the bile-resistant strain 193+, it displayed a lower ability to increase viscosity than Lb. delbrueckii subsp. lactis 193. Milk increased survival in simulated gastric juice; the presence of bile improved adhesion to the intestinal cell line HT29-MTX in both strains. However, the acquisition of a stable resistance phenotype did not improve survival in simulated gastric and intestinal conditions or the adhesion to the intestinal cell line HT29-MTX. Thus, Lb. delbrueckii subsp. lactis 193 presents suitable technological properties for the manufacture of fermented dairy products; the acquisition of a stable bile-resistant phenotype modified some properties of the microorganism. This suggests that the possible use of bile-resistant derivative strains should be

  19. Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso.

    Science.gov (United States)

    Adimpong, David B; Nielsen, Dennis S; Sørensen, Kim I; Vogensen, Finn K; Sawadogo-Lingani, Hagrétou; Derkx, Patrick M F; Jespersen, Lene

    2013-10-01

    Lactobacillus delbrueckii is divided into five subspecies based on phenotypic and genotypic differences. A novel isolate, designated ZN7a-9(T), was isolated from malted sorghum wort used for making an alcoholic beverage (dolo) in Burkina Faso. The results of 16S rRNA gene sequencing, DNA-DNA hybridization and peptidoglycan cell-wall structure type analyses indicated that it belongs to the species L. delbrueckii. The genome sequence of isolate ZN7a-9(T) was determined by Illumina-based sequencing. Multilocus sequence typing (MLST) and split-decomposition analyses were performed on seven concatenated housekeeping genes obtained from the genome sequence of strain ZN7a-9(T) together with 41 additional L. delbrueckii strains. The results of the MLST and split-decomposition analyses could not establish the exact subspecies of L. delbrueckii represented by strain ZN7a-9(T) as it clustered with L. delbrueckii strains unassigned to any of the recognized subspecies of L. delbrueckii. Strain ZN7a-9(T) additionally differed from the recognized type strains of the subspecies of L. delbrueckii with respect to its carbohydrate fermentation profile. In conclusion, the cumulative results indicate that strain ZN7a-9(T) represents a novel subspecies of L. delbrueckii closely related to Lactobacillus delbrueckii subsp. lactis and Lactobacillus delbrueckii subsp. delbrueckii for which the name Lactobacillus delbrueckii subsp. jakobsenii subsp. nov. is proposed. The type strain is ZN7a-9(T) = DSM 26046(T) = LMG 27067(T).

  20. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    Science.gov (United States)

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  1. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4

    Science.gov (United States)

    Gobbetti, M.; Ferranti, P.; Smacchi, E.; Goffredi, F.; Addeo, F.

    2000-01-01

    Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of β-casein (β-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of β-CN f7-14, f47-52, and f169-175 and κ-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the β-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC50s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC50s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin. PMID:10966406

  2. Regulation and Adaptive Evolution of Lactose Operon Expression in Lactobacillus delbrueckii

    Science.gov (United States)

    Lapierre, Luciane; Mollet, Beat; Germond, Jacques-Edouard

    2002-01-01

    Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the β-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (β-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus. PMID:11807052

  3. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties

    Directory of Open Access Journals (Sweden)

    Elena Zanni

    2017-06-01

    Full Text Available Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.

  4. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties.

    Science.gov (United States)

    Zanni, Elena; Schifano, Emily; Motta, Sara; Sciubba, Fabio; Palleschi, Claudio; Mauri, Pierluigi; Perozzi, Giuditta; Uccelletti, Daniela; Devirgiliis, Chiara; Miccheli, Alfredo

    2017-01-01

    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus , lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans , with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis . Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.

  5. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.

    Science.gov (United States)

    Tanigawa, Kana; Watanabe, Koichi

    2011-03-01

    Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.

  6. DNA probe for lactobacillus delbrueckii

    Energy Technology Data Exchange (ETDEWEB)

    Delley, M.; Mollet, B.; Hottinger, H. (Nestle Research Centre, Lausanne (Switzerland))

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  7. DNA probe for lactobacillus delbrueckii

    International Nuclear Information System (INIS)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α- 32 P-labeled probe

  8. DNA Probe for Lactobacillus delbrueckii

    OpenAIRE

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-l...

  9. DNA Probe for Lactobacillus delbrueckii

    Science.gov (United States)

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  10. Phage-resistance linked to cell heterogeneity in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1.

    Science.gov (United States)

    Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge

    2008-12-10

    The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates M.

  11. Tulum Peynirlerinden izole Edilen Lactococcus lactis subsp. lactis YBML9 ve

    Directory of Open Access Journals (Sweden)

    Yasin TUNCER

    2009-04-01

    Full Text Available Bu çalısmanın amacı tulum peynirlerinden izole edilen Lactococcus lactis suslarının fenotipik tanısı ve bu suslar tarafından üretilen bakteriyosinlerin kısmi karakterizasyonlarıdır. Bu amaçla Türkiye'nin sekiz farklı ilinden (Ankara, Antalya, Burdur, Denizli, Erzincan, Isparta, İstanbul ve İzmir yöresel pazarlardan toplanan 60 adet tulum peyniri örneginden 40 adet Lactococcus lactis susu (31 adet L. lactis subsp. lactis ve 9 adet L. lactis subsp. cremoris izole edildi. 40 adet L. lactis susu içerisinden, 2 adet L. lactis subsp. lactis (YBML9 ve YBML21 susu bakteriyosin üretme yeteneginde bulundu. L. lactis subsp. lactis YBML9 ve YBML21 susları tarafından üretilen bakteriyosinler, farklı enzim, pH ve sıcaklık uygulamaları sonucu; sırasıyla nisin ve laktisin 481 olarak tanımlandı.

  12. In vitro cholesterol uptake by Lactobacillus delbrueckii subsp. bulgaricus isolates

    OpenAIRE

    Małgorzata Ziarno

    2009-01-01

    Background. Some researchers have indicated that Lactobacillus delbrueckii subsp. bulgaricus may provide additional health benefits, reduce serum cholesterol level, for example. The aim of this study was to determine cholesterol uptake by Lb. delbrueckii subsp. bulgaricus commercial yoghurt starter isolates in artificial GIT fluids. Material and methods. Lb. delbrueckii subsp. bulgaricus isolates were cultured in MRS broth and in artificial GIT fluids contained cholesterol at initial con...

  13. Comparative Phenotypic and Molecular Genetic Profiling of Wild Lactococcus lactis subsp. lactis Strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris Genotypes, Isolated from Starter-Free Cheeses Made of Raw Milk▿

    Science.gov (United States)

    Fernández, Elena; Alegría, Ángel; Delgado, Susana; Martín, M. Cruz; Mayo, Baltasar

    2011-01-01

    Twenty Lactococcus lactis strains with an L. lactis subsp. lactis phenotype isolated from five traditional cheeses made of raw milk with no added starters belonging to the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes (lactis and cremoris genotypes, respectively; 10 strains each) were subjected to a series of phenotypic and genetic typing methods, with the aims of determining their phylogenetic relationships and suitability as starters. Pulsed-field gel electrophoresis (PFGE) analysis of intact genomes digested with SalI and SmaI proved that all strains were different except for three isolates of the cremoris genotype, which showed identical PFGE profiles. Multilocus sequence typing (MLST) analysis using internal sequences of seven loci (namely, atpA, rpoA, pheS, pepN, bcaT, pepX, and 16S rRNA gene) revealed considerable intergenotype nucleotide polymorphism, although deduced amino acid changes were scarce. Analysis of the MLST data for the present strains and others from other dairy and nondairy sources showed that all of them clustered into the cremoris or lactis genotype group, by using both independent and combined gene sequences. These two groups of strains also showed distinctive carbohydrate fermentation and enzyme activity profiles, with the strains in the cremoris group showing broader profiles. However, the profiles of resistance/susceptibility to 16 antibiotics were very similar, showing no atypical resistance, except for tetracycline resistance in three identical cremoris genotype isolates. The numbers and concentrations of volatile compounds produced in milk by the strains belonging to these two groups were clearly different, with the cremoris genotype strains producing higher concentrations of more branched-chain, derived compounds. Together, the present results support the idea that the lactis and cremoris genotypes of phenotypic Lactococcus lactis subsp. lactis actually represent true subspecies. Some strains of the two subspecies

  14. Diversity of the subspecies Bifidobacterium animalis subsp. lactis.

    Science.gov (United States)

    Bunesova, Vera; Killer, Jiri; Javurkova, Barbora; Vlkova, Eva; Tejnecky, Vaclav; Musilova, Sarka; Rada, Vojtech

    2017-04-01

    Strains of Bifidobacterium animalis subsp. lactis are well-known health-promoting probiotics used commercially. B. animalis subsp. lactis has been isolated from different sources, and little is known about animal isolates of this taxon. The aim of this study was to examine the genotypic and phenotypic diversity between B. animalis subsp. lactis strains different animal hosts including Cameroon sheep, Barbary sheep, okapi, mouflon, German shepard and to compare to BB12, food isolates and the collection strain DSM 10140. Ten strains of B. animalis subsp. lactis from different sources were characterised by phenotyping, fingerprinting, and multilocus sequence typing (MLST). Regardless of origin, MLST and phylogenetic analyses revealed a close relationship between strains of B. animalis subsp. lactis with commercial and animal origin with the exception of isolates from ovine cheese, mouflon and German Shepard dog. Moreover, isolates from dog and mouflon showed significant differences in fermentation profiles and peptide mass fingerprints (MALDI-TOF). Results indicated phenotypic and genotypic diversity among strains of B. animalis subsp. lactis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cloning, Sequencing, and Expression of the Pyruvate Carboxylase Gene in Lactococcus lactis subsp. lactis C2†

    OpenAIRE

    Wang, H.; O'Sullivan, D. J.; Baldwin, K. A.; McKay, L. L.

    2000-01-01

    A functional pyc gene was isolated from Lactococcus lactis subsp. lactis C2 and was found to complement a Pyc defect in L. lactis KB4. The deduced lactococcal Pyc protein was highly homologous to Pyc sequences of other bacteria. The pyc gene was also detected in Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis bv. diacetylactis strains.

  16. Genetic Variation of Lactobacillus delbrueckii subsp. lactis Bacteriophages Isolated from Cheese Processing Plants in Finland

    Science.gov (United States)

    Forsman, Päivi; Alatossava, Tapani

    1991-01-01

    The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages. Images PMID:16348513

  17. Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle.

    Science.gov (United States)

    Kudo, Yuko; Oki, Kaihei; Watanabe, Koichi

    2012-11-01

    Although four strains of bacteria isolated from sunki, a traditional Japanese, non-salted pickle, were initially identified as Lactobacillus delbrueckii, the molecular and phenotypic characteristics of the strains did not match those of any of the four recognized subspecies of L. delbrueckii. Together, the results of phenotypic characterization, DNA-DNA hybridizations (in which the relatedness values between the novel strains and type strains of the recognized subspecies of L. delbrueckii were all >88.7%) and 16S rRNA gene sequence, amplified fragment length polymorphism (AFLP) and whole-cell MALDI-TOF/MS spectral pattern analyses indicated that the four novel strains represented a single, novel subspecies, for which the name Lactobacillus delbrueckii subsp. sunkii subsp. nov. is proposed. The type strain is YIT 11221(T) (=JCM 17838(T) =DSM 24966(T)).

  18. Protein Profile and Plasmid Content of Lactococcus lactis subsp. lactis LL52 and Lactococcus lactis subsp. cremoris LC79 Strains under Several Stress Conditions

    OpenAIRE

    LALE, Rahmi; TÜKEL, Çağla; AKÇELİK, Mustafa

    2014-01-01

    Differences in the protein and plasmid content of 2 Lactococcus lactis strains, L. lactis subsp. lactis LL52 and L. lactis subsp. cremoris LC79, under the stresses of high and low temperature, osmotic shock, and low pH were determined. We identified 3 new proteins with molecular masses of 16.0, 29.4, and 45.0 kDa as high temperature stress response specific in strain LL52. High temperature stress did not cause any changes in the protein content of strain LC79. Proteins that were specific for ...

  19. Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii: isolation, molecular characterization, and potential use for strain identification.

    Science.gov (United States)

    Ravin, Victor; Alatossava, Tapani

    2003-05-01

    A group of new insertion sequence (IS) elements, ISLdl2, ISLdl3, and ISLdl4, from Lactobacillus delbrueckii subsp. lactis ATCC 15808 was isolated, characterized, and used for strain identification together with ISLdl1, recently characterized as an L. delbrueckii IS element belonging to the ISL3 family. ISLdl2 was 1367 bp in size and had a 24 bp IR and an 8 bp DR. The single ORF of ISLdl2 encoded a protein of 392 aa similar to transposases of the IS256 family. ISLdl3 had a single ORF encoding a protein of 343 aa similar to transposases of the IS30 family. Finally, ISLdl4 had a single ORF encoding a protein of 406 aa and displayed homology to the transposases of the IS110 family. ISLdl4 was only slight different from ISL4 (Accession No. AY040213). ISLdl1, ISLdl2, and ISLdl4 were present in all of the 10 L. delbrueckii subsp. lactis and subsp. delbrueckii strains tested, as well as in three of the 11 L. delbrueckii subsp. bulgaricus strains tested. ISLdl3 was present only in four closely related strains of L. delbrueckii subsp. lactis. These IS elements were not observed in Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus helveticus, or Lactobacillus plantarum. A cluster of IS elements, ISLdl1, ISLdl2, ISLdl3, ISLdl4, and ISL6, was observed in L. delbrueckii subsp. lactis strain ATCC 15808. Within this cluster, ISLdl4 was inserted into ISLdl1 between the left IR and the start codon of ORF455, encoding a putative transposase. Most of the integration sites of the IS elements were strain-specific. We have observed that IS elements can migrate from one strain to another as integral parts of bacterial DNA by using phage LL-H as a vehicle. We demonstrate for the first time that inverse PCR and vectorette PCR methods with primers based on sequences of the IS elements could be used for identification of L. delbrueckii strains.

  20. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Pérez, Tania; Balcázar, José Luis; Peix, Alvaro; Valverde, Angel; Velázquez, Encarna; de Blas, Ignacio; Ruiz-Zarzuela, Imanol

    2011-08-01

    The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) ( = LMG 24662(T)  = DSM 21502(T)).

  1. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species].

    Science.gov (United States)

    Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei

    2009-02-01

    We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.

  2. Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish.

    Science.gov (United States)

    Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H

    2009-09-01

    We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.

  3. [Identification and phylogenetic analysis of one strain of Lactobacillus delbrueckii subsp. bulgaricus separated from yoghourt].

    Science.gov (United States)

    Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan

    2007-11-01

    For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.

  4. Impact of bile salt adaptation of Lactobacillus delbrueckii subsp. lactis 200 on its interaction capacity with the gut.

    Science.gov (United States)

    Burns, Patricia; Reinheimer, Jorge; Vinderola, Gabriel

    2011-10-01

    In a previous work, bile-salt-resistant derivatives were obtained from non-intestinal lactobacilli. The aim of this work was to investigate the impact of bile adaptation of Lactobacillus delbrueckii subsp. lactis 200 on morphology, surface properties, in vivo interaction capacity with the gut and ability to activate the gut immune response. Electron microscopy studies, growth kinetics in the presence of bovine and porcine bile, the capacity to deconjugate bile acids, hydrophobicity, autoaggregation and co-aggregation capacities were studied for the parental strain and its bile-resistant derivative in vitro. Additionally, survival in intestinal fluid, the interaction with the gut and the immunomodulating capacities were studied in mice. Bile salt adaptation conferred upon the adapted strain a higher capacity to withstand physiological concentrations of bile salts and greater survival capacity in intestinal fluid. However, bile salt exposure reduced cell hydrophobicity, autoaggregation and adhesion capacities, resulting in reduced persistence in the intestinal lumen and delayed capacity to activate the gut immune response. Insight into the effects of bile salts upon the interaction and immunomodulating capacity of lactobacilli with the gut is provided, relating in vitro and in vivo results. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Characterization of Lipoteichoic Acids as Lactobacillus delbrueckii Phage Receptor Components

    OpenAIRE

    Räisänen, Liisa; Schubert, Karin; Jaakonsaari, Tiina; Alatossava, Tapani

    2004-01-01

    Lipoteichoic acids (LTAs) were purified from Lactobacillus delbrueckii subsp. lactis ATCC 15808 and its LL-H adsorption-resistant mutant, Ads-5, by hydrophobic interaction chromatography. L. delbrueckii phages (LL-H, the LL-H host range mutant, and JCL1032) were inactivated by these poly(glycerophosphate) type of LTAs in vitro in accordance to their adsorption to intact ATCC 15808 and Ads-5 cells.

  6. Complete Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus Strain ND02▿

    OpenAIRE

    Sun, Zhihong; Chen, Xia; Wang, Jicheng; Zhao, Wenjing; Shao, Yuyu; Guo, Zhuang; Zhang, Xingchang; Zhou, Zhemin; Sun, Tiansong; Wang, Lei; Meng, He; Zhang, Heping; Chen, Wei

    2011-01-01

    Lactobacillus delbrueckii subsp. bulgaricus strain ND02 is a Chinese commercial dairy starter used for the manufacture of yoghurt. It was isolated from naturally fermented yak milk in Qinghai, China. Here, we report the main genome features of ND02 and several differences with two other published genomes of Lactobacillus delbrueckii subsp. bulgaricus strains.

  7. Effects of six substances on the growth and freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Chen, He; Huang, Jie; Shi, Xiaoyu; Li, Yichao; Liu, Yu

    2017-01-01

    The efficacy of Lactobacillus delbrueckii subsp. bulgaricus as starter cultures for the dairy industry depends largely on the number of viable and active cells. Freeze-drying is the most convenient and successful method to preserve the bacterial cells. However, not all strains survived during freeze-drying. The effects of six substances including NaCl, sorbitol, mannitol, mannose, sodium glutamate, betaine added to the MRS medium on the growth and freeze-drying survival rate and viable counts of Lb. delbrueckii subsp. bulgaricus were studied through a single-factor test and Plackett-Burman design. Subsequently, the optimum freeze-drying conditions of Lb. delbrueckii subsp. bulgaricus were determined. Lb. delbrueckii subsp. bulgaricus survival rates were up to the maximum of 42.7%, 45.4%, 23.6%, while the concentrations of NaCl, sorbitol, sodium glutamate were 0.6%, 0.15%, 0.09%, respectively. In the optimum concentration, the viable counts in broth is 6.1, 6.9, 5.13 (×108 CFU/mL), respectively; the viable counts in freeze-drying power are 3.09, 5.2, 2.7 (×1010 CFU/g), respectively. Three antifreeze factors including NaCl, sorbitol, sodium glutamate have a positive effect on the growth and freeze-drying of Lb. delbrueckii subsp. bulgaricus. The results are beneficial for developing Lb. delbrueckii subsp. bulgaricus.

  8. Characterization of Lipoteichoic Acids as Lactobacillus delbrueckii Phage Receptor Components

    Science.gov (United States)

    Räisänen, Liisa; Schubert, Karin; Jaakonsaari, Tiina; Alatossava, Tapani

    2004-01-01

    Lipoteichoic acids (LTAs) were purified from Lactobacillus delbrueckii subsp. lactis ATCC 15808 and its LL-H adsorption-resistant mutant, Ads-5, by hydrophobic interaction chromatography. L. delbrueckii phages (LL-H, the LL-H host range mutant, and JCL1032) were inactivated by these poly(glycerophosphate) type of LTAs in vitro in accordance to their adsorption to intact ATCC 15808 and Ads-5 cells. PMID:15292157

  9. Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain

    DEFF Research Database (Denmark)

    Oliveira, Letícia C; Saraiva, Tessália D L; Soares, Siomar C

    2014-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 is a nondairy lactic acid bacterium, a xylose fermenter, and a gamma-aminobutyric acid (GABA) producer isolated from frozen peas. Here, we report the complete genome sequence of L. lactis NCDO 2118, a strain with probiotic potential activity....

  10. Cadmium tolerant characteristic of a newly isolated Lactococcus lactis subsp. lactis.

    Science.gov (United States)

    Sheng, Yao; Wang, Ying; Yang, Xuan; Zhang, Boyang; He, Xiaoyun; Xu, Wentao; Huang, Kunlun

    2016-12-01

    Environmental contamination caused by heavy metals poses a major threat to the wildlife and human health for their toxicity and intrinsically persistent nature. Some specific food grade bacteria have properties that enable them to eliminate heavy metals from food and water. Lactococcus lactis subsp. lactis, newly isolated from pickles, is a cadmium (Cd) tolerant bacteria. Cd resistant properties of the lactis was evaluated under different Cd stresses. Cd accumulation in different cellular parts was determined by ICP-MS and cell morphology changes were measured by SEM-EDS and TEM-EDS. In addition, functional groups associated with Cd resistance were detected by infrared spectroscopic analysis. The results indicated that Cd mainly accumulated in the cell surface structures including cytoderm and cytomembrane. Functional groups such as OH and NH 2 in the cell surface played essential roles in Cd biosorption. The elements of O, P, S, and N of polysaccharide, membrane protein and phosphatidate in the cell surface structures might be responsible for Cd biosorption for their strong electronegativity. This study indicated that ultrastructural analysis can be a supplemental method to study heavy metal resistance mechanism of microorganism and the newly isolated lactococcus lactis subsp. lactis has great potential to be applied to decontamination of heavy metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Proteomes of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 Incubated in Milk at Optimal and Low Temperatures.

    Science.gov (United States)

    Yin, Xiaochen; Salemi, Michelle R; Phinney, Brett S; Gotcheva, Velitchka; Angelov, Angel; Marco, Maria L

    2017-01-01

    We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus -expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCE Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as

  12. Complete Genome Sequence of the Yogurt Isolate Lactobacillus delbrueckii subsp. bulgaricus ACA-DC 87.

    Science.gov (United States)

    Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-08-24

    Lactobacillus delbrueckii subsp. bulgaricus is widely used in the production of yogurt and cheese. In this study, we present the complete genome sequence of L. delbrueckii subsp. bulgaricus ACA-DC 87 isolated from traditional Greek yogurt. Whole-genome analysis may reveal desirable technological traits of the strain for dairy fermentations. Copyright © 2017 Alexandraki et al.

  13. Comparison of the acidifying activity of Lactococcus lactis subsp. lactis strains isolated from goat's milk and Valdeteja cheese.

    Science.gov (United States)

    Alonso-Calleja, C; Carballo, J; Capita, R; Bernardo, A; García-López, M L

    2002-01-01

    This work was carried out to study the acid production by Lactococcus lactis subsp. lactis strains isolated from goat's milk and goat cheese (Valdeteja variety) in order to select a suitable starter culture for industrial goat cheese manufacturing. The titrable acidity of 45 Lactococcus lactis subsp. lactis strains isolated from a home-made batch of Valdeteja cheese with excellent sensory characteristics was measured over a period of 18 h. The strains were divided into two groups depending on the acid production rate: 20 fast acid producer (F) strains and 25 slow acid producer (S) strains. The kinetic parameters (lag phase, maximum acid production rate and value of upper asymptote curve) of the acid production curves for F and S strains were significantly (P titrable acidity of F and S strains were observed after the second hour of incubation. An F strain acetoin producer (Lactococcus lactis subsp. lactis 470Ch2) was selected as autochthonous starter culture for industrial Valdeteja goat cheese manufacturing.

  14. Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii.

    Science.gov (United States)

    Suárez, Viviana; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge; Quiberoni, Andrea

    2009-11-01

    The bacteriophages Cb1/204 and Cb1/342 were obtained by induction from the commercial strain Lactobacillus delbrueckii subsp. lactis Cb1, and propagated on Lactobacillus delbrueckii subsp. lactis 204 (Lb.l 204) and Lactobacillus delbrueckii subsp. bulgaricus 342 (Lb.b 342), respectively. By cross sensitivity, it was possible to detect a delay in the lysis of Lb.l 204 with Cb1/342 phage, while the adsorption rate was high (99.5%). Modified and unmodified phages were isolated using phage Cb1/342 and strain Lb.l 204. The EOP (Efficiency of Plaquing) values for the four phages (Cb1/204, Cb1/342, Cb1/342modified and Cb1/342unmodified) suggested that an R/M system modified the original temperate phage, and the BglII-DNA restriction patterns of these phages might point out the presence of a Type II R/M system. Also, the existence of a Type I R/M system was demonstrated by PCR and nucleotide sequence, being the percentages of alignment homology with Type I R/M systems reported previously higher than 95%. In this study it was possible to demonstrate that the native phage resistant mechanisms and the occurrence of prophages in commercial host strains, contribute strongly to diversify the phage population in a factory environment.

  15. Estudo dos parâmetros da ultrafiltração de permeado de soro de queijo fermentado por Lactococcus lactis subsp. lactis Ultrafiltration conditions of whey permeate fermented by Lactococcus lactis subsp. lactis

    Directory of Open Access Journals (Sweden)

    Viviane BRONSTEIN

    1998-04-01

    Full Text Available Permeado de soro doce, suplementado com extrato de levedura e peptona, foi utilizado como meio de crescimento para Lactococcus lactis subsp. lactis. No final da fase exponencial de crescimento, o meio de cultura fermentado foi submetido a uma ultrafiltração com o objetivo de concentrar o microrganismo. Foram realizados 6 processamentos diferentes, nos quais variou-se as condições iniciais da ultrafiltração, tendo sido avaliados os seguintes parâmetros: porosidade da membrana, pH e número de células viáveis no permeado e no retentado, a fim de ser estudado a influência de cada parâmetro na taxa de permeação da ultrafiltração. As membranas utilizadas foram eficazes como meio de barragem para o microrganismo Lactococcus lactis subsp. lactis, ficando o retentado com uma média celular de 10(8 ufc/ml e o permeado com uma média celular de 10² ufc/ml. Membranas de diferentes porosidades tiveram taxas de fluxo semelhantes. O aumento da concentração celular provocou a diminuição do fluxo. O pH também influenciou a taxa de permeação, havendo um aumento do fluxo quando foi utilizado um pH inicial mais alto.Cheese whey permeate supplemented with yeast extract and peptone was used as a growth medium for the bacteria Lactococcus lactis subsp. lactis. At the end of the exponential growth phase, the fermented growth medium was ultrafiltered to concentrate the microorganism and to evaluate the effect of the membrane porosity, inicial UF pH and cellular concentration in permeation rate during the ultrafiltration process. The membranes used were efficient as a mean of a barrage for the Lactococcus lactis subsp. lactis. On average, the cellular concentrations were 10(8 CFU/mL and 10² CFU/mL for retentate and permeate, respectively. Membranes of different porosities had very similar flux rates. Better flow rates were obtained with inicial UF pH 6,5 and with the minors micrrorganism concentration.

  16. Survival of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the Terminal Ileum of Fistulated Göttingen Minipigs

    Science.gov (United States)

    Lick, Sonja; Drescher, Karsten; Heller, Knut J.

    2001-01-01

    The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth. PMID:11526016

  17. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR.

    Science.gov (United States)

    Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex

    2011-02-01

    In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin.

    Science.gov (United States)

    Pescuma, Micaela; Hébert, Elvira M; Haertlé, Thomas; Chobert, Jean-Marc; Mozzi, Fernanda; Font de Valdez, Graciela

    2015-03-01

    Whey, a cheese by-product used as a food additive, is produced worldwide at 40.7 million tons per year. β-Lactoglobulin (BLG), the main whey protein, is poorly digested and is highly allergenic. We aimed to study the contribution of Lactobacillus delbrueckii subsp. bulgaricus CRL 454 to BLG digestion and to analyse its ability to degrade the main allergenic sequences of this protein. Pre-hydrolysis of BLG by L. delbrueckii subsp. bulgaricus CRL 454 increases digestion of BLG assayed by an in vitro simulated gastrointestinal system. Moreover, peptides from hydrolysis of the allergenic sequences V41-K60, Y102-R124, C121-L140 and L149-I162 were found when BLG was hydrolysed by this strain. Interestingly, peptides possessing antioxidant, ACE inhibitory, antimicrobial and immuno-modulating properties were found in BLG degraded by both the Lactobacillus strain and digestive enzymes. To conclude, pre-hydrolysis of BLG by L. delbrueckii subsp. bulgaricus CRL 454 has a positive effect on BLG digestion and could diminish allergenic reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action.

    Science.gov (United States)

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Kennedy, Sean; Galleron, Nathalie; Quinquis, Benoît; Batto, Jean-Michel; Moumen, Bouziane; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-05-28

    Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor.

  20. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2014-12-01

    Full Text Available Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality.

  1. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Characterization of the bacteriocin

    Science.gov (United States)

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality. PMID:25763065

  2. Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. lactis 1AA59

    Science.gov (United States)

    del Rio, Beatriz; Linares, Daniel M.; Fernandez, María; Mayo, Baltasar; Martín, M. Cruz

    2015-01-01

    We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain—isolated from a traditional cheese—produces putrescine, one of the most frequently biogenic amines found in dairy products. PMID:26089428

  3. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CRL871, a Folate-Producing Strain Isolated from a Northwestern Argentinian Yogurt.

    Science.gov (United States)

    Laiño, Jonathan Emiliano; Hebert, Elvira María; Savoy de Giori, Graciela; LeBlanc, Jean Guy

    2015-06-25

    Lactobacillus delbrueckii subsp. bulgaricus CRL871 is the first strain of L. delbrueckii subsp. bulgaricus reported as a folate-producing strain. We report the draft genome sequence of L. delbrueckii subsp. bulgaricus CRL871 (2,063,981 bp, G+C content of 49.1%). This strain is of great biotechnological importance to the dairy industry because it constitutes an alternative to folic acid fortification. Copyright © 2015 Laiño et al.

  4. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.

    Science.gov (United States)

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J H; Luttik, Marijke A H; Pronk, Jack T; Smid, Eddy J; Bron, Peter A; Daran-Lapujade, Pascale

    2013-10-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations.

  5. Quantitative assessment of Lactococcus lactis subsp. cremoris present in artisanal raw cow’s milk cheese

    Directory of Open Access Journals (Sweden)

    Milena Alicja Stachelska

    2018-01-01

    Full Text Available Lactococcus lactis subsp. cremoris belongs to lactic acid bacteria that play a crucial role in cheese production and it is known to be beneficial to human health. The aim of the study was to establish a rapid and accurate quantitative real-time polymerase chain reaction (qPCR method to detect and enumerate L. lactis subsp. cremoris in artisanal raw cow’s milk cheese. Artisanal raw cow’s milk cheese samples were used to check for presence and number of L. lactis subsp. cremoris strains. The method applies a set of target-specific PCR (polymerase chain reaction primers and a fluorogenic probe, and amplifies a part of the LACR_RS01280 gene that encodes the aminoacetone oxidase family flavin adenine dinucleotide (FAD binding enzyme. All 5 L. lactis subsp. cremoris strains examined were found to be qPCR positive. There was no signal recorded for 8 strains which belong to closely related species. The limit of detection amounted to ten copies per reaction and the assay indicated a linear dynamic range of seven logs. This method may be applied in detection and enumeration of L. lactis subsp. cremoris in cheese during its ripening. Moreover, it may be applied to examine the distribution of L. lactis subsp. cremoris during the cheese production and ripening.

  6. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    Science.gov (United States)

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  7. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808.

    Science.gov (United States)

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-12-24

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  8. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808

    Directory of Open Access Journals (Sweden)

    Patricia eMunsch-Alatossava

    2013-12-01

    Full Text Available The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lb. delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimise the risks associated with the appearance and attack of phages in the manufacture of yoghurt, and Swiss or Italian type hard cheeses, which typically use thermophilic LAB starter cultures containing Lb. delbrueckii strains among others. This mini review article summarises the present data concerning (i the special features, particle structure and components of phage LL-H and (ii the structure and properties of lipoteichoic acids (LTAs, which are the phage LL-H receptor components of Lb. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of Lb. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  9. Identification of Lactobacillus spp. from broiler litter in Brazil Identificação de Lactobacillus spp. de cama de frango no Brasil

    Directory of Open Access Journals (Sweden)

    Ronaldo S. Paço

    2003-07-01

    Full Text Available Lactobacillus spp. were identified in 100 broiler litter samples collected from different poultry-rearing regions in Brazil. Ten different Lactobacillus species were identified: L. plantarum, L.casei subsp. pesudoplantarum, L. delbrueckii subsp. delbrueckii, L. reuteri, L. murinus, L. agilis, L. delbrueckii subsp. lactis, L. salivarus subsp. salicinus, L. viridenscens and L. amylophilus.Foram identificadas cepas de Lactobacillus spp. de 100 amostras de camas de frango coletadas de diferentes regiões de produção avícola do Brasil. Foram isoladas dez espécies diferentes de Lactobacillus: L. plantarum, L. casei subsp. pseudoplantarum, L. delbrueckii subsp. delbrueckii, L. reuteri, L. murinus, L. agilis, L.delbrueckii subsp. lactis, L. salivarus subsp. salicinus, L. viridenscens, L. amylophilus.

  10. [A comparison of the properties of bacteriocins formed by Lactococcus lactis subsp. lactis strains of diverse origin].

    Science.gov (United States)

    Stoianova, L G; Egorov, N S; Fedorova, G B; Katrukha, G S; Netrusov, A I

    2007-01-01

    Bacteriocins formed by four strains of Lactococcus lactis subsp. lactis have been studied and compared: 729 (a natural strain isolated from milk), 1605 (a mutant of strain 729), F-116 (a recombinant obtained by fusing of protoplasts of the two related strain 729 and 1605), and a nisin-forming strain obtained by adaptive selection at Moscow State University. Antimicrobial activity studies revealed differences between the strains in the effects on individual groups of microorganisms; the activities of the strains were also distinct from that of Nisaplin (a commercial preparation of the bacteriocin nisin). Methods for isolation and purification of bacteriocins have been developed, making it possible to obtain individual components of antibiotic complexes as chromatographically pure preparations. Bacteriocins formed by the strains of Lactococcus lactis subsp. lactis have been identified and differences in their biological and physicochemical properties, established. A novel potent broad-spectrum antibiotic substance distinct from nisin has been isolated from the recombinant strain F-116.

  11. In Vitro Inhibition of Klebsiella pneumoniae by Lactobacillus delbrueckii Subsp. delbrueckii LDD01 (DSM 22106): An Innovative Strategy to Possibly Counteract Such Infections in Humans?

    Science.gov (United States)

    Mogna, Luca; Deidda, Francesca; Nicola, Stefania; Amoruso, Angela; Del Piano, Mario; Mogna, Giovanni

    To determine the in vitro antimicrobial activity of selected Lactobacillus strains isolated from the feces of healthy humans against Klebsiella pneumoniae. Klebsiella is ubiquitous in nature and may colonize the skin, the pharynx, or the gastrointestinal tract of humans. Despite the widespread use of antibiotic molecules with a broad spectrum in hospitalized patients, an increased overall load of klebsiellae as well as the subsequent development of multidrug-resistant strains able to synthesize extended-spectrum beta-lactamase have been registered. These strains are particularly virulent, express capsular-type K55, and have a considerable ability to propagate. The 4 strains Lactobacillus paracasei LPC01 (CNCM I-1390), Lactobacillus rhamnosus LR04 (DSM 16605), Bifidobacterium longum B2274 (DSM 24707), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106) were tested. The analysis was performed using both a disc-diffusion assay and the broth-dilution procedure, also including an evaluation of the supernatants obtained from a fresh broth culture of each bacterium. L. delbrueckii subsp. delbrueckii LDD01 demonstrated the best inhibitory results among all the tested strains. The antibacterial activity of the supernatant was retained even after treatment with α-amylase and neutralization with NaOH 1N, thus suggesting the protein structure of the inhibitory molecule. In contrast, it was completely lost after treatment with proteinase K. Overall results suggest that the inhibitory effect of L. delbrueckii subsp. delbrueckii LDD01 should be attributed to the production of a bacteriocin. This strain may be prospectively useful for strengthening probiotic formulations and possibly counteract infections by K. pneumoniae in humans.

  12. Lactococcus lactis subsp. lactis MA83 Suşunda Aktif Bir Faj Dirençlilik Sisteminin Genetik ve Biyokimyasal Doğası

    OpenAIRE

    Tükel, Çağla; Akçelik, Mustafa

    2003-01-01

    Lactococcus lactis subsp. lactis MA83 susunda fajlann adsorbsiyonu, bu bakteride 32.7 kb büyüklükteki plazmidin varlığında üretilen ekzopolisakkarit materyal tarafından engellendi. Kimyasal analizler sonucunda bu ekzopolisakkarit materyalin ana bileşenlerinin galaktoz, galaktozamin, ramnoz ve fosfat olduğu belirlendi. Ayrıca, L. lactis subsp. lactis MA83 susunda Øla2, Øp78, Ør4 ve Øp81 fajlannın almaç bölgelerinin protein yapıda olduğu saptandı.  

  13. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5

    NARCIS (Netherlands)

    Urshev, Z.; Hajo, K.; Lenoci, L.; Bron, P.A.; Dijkstra, A.; Alkema, W.; Wels, M.; Siezen, R.J.; Minkova, S.; Hijum, S.A. van

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 originates from homemade Bulgarian yogurt and was selected for its ability to form a strong association with Streptococcus thermophilus The genome sequence will facilitate elucidating the genetic background behind the contribution of LBB.B5 to the

  14. H(+) -ATPase-defective variants of Lactobacillus delbrueckii subsp. bulgaricus contribute to inhibition of postacidification of yogurt during chilled storage.

    Science.gov (United States)

    Wang, Xinhui; Ren, Hongyang; Liu, Dayu; Wang, Bing; Zhu, Wenyou; Wang, Wei

    2013-02-01

    Continued acid production by Lactobacillus delbrueckii subsp. bulgaricus during the chilled storage of yogurt is the major cause of postacidification, resulting in a short shelf life. Two H(+) -ATPase defective variants of L. delbrueckii subsp. bulgaricus were successfully isolated and their H(+) -ATPase activities were reduced by 51.3% and 34.3%, respectively. It was shown that growth and acid production of variants were remarkably inhibited. The variants were more sensitive to acidic condition and had a significant rate for inactivation of H(+) -ATPase by N, N-dicyclohexylcarbodiimide (DCCD), along with a low H(+) -extrusion, suggesting that H(+) -ATPase is direct response for H(+) -extrusion. In addition, the variants were also more sensitive to NaCl, while H(+) -ATPase activities of variants and parent strain were significantly enhanced by NaCl stress. Obviously, H(+) -ATPase might be involved in Na(+) transportation. Furthermore, variants were inoculated in fermented milk to ferment yogurt. There was no significant difference in flavor, whereas the postacidification of yogurt during chilled storage was remarkably inhibited. It is suggested that application of L. delbrueckii subsp. bulgaricus with reduced H(+) -ATPase activity in yogurt fermentation is one of effect, economic and simple avenues of inhibiting postacidification of yogurt during refrigerated storage, giving a longer shelf life. During yogurt fermentation, continued acid production by Lactobacillus delbrueckii subsp. bulgaricus during the chilled storage of yogurt leads to milk fermentation with high postacidification, resulting in a short shelf life. In this work, 2 acid-sensitive variant strains of L. delbrueckii subsp. bulgaricus were isolated. The characteristics related to H(+) -ATPase were compared and it was observed that milk fermented by the variants had lower postacidification, giving a longer shelf life. Application of L. delbrueckii subsp. bulgaricus with reduced H(+) -ATPase activity

  15. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Dan, Tong; Wang, Dan; Wu, Shimei; Jin, Rulin; Ren, Weiyi; Sun, Tiansong

    2017-09-29

    Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000) of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.

  16. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Tong Dan

    2017-09-01

    Full Text Available Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000 of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography–mass spectrometry (SPME-GC-MS against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.

  17. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods.

    Science.gov (United States)

    Sheng, Yao; Yang, Xuan; Lian, Yuanyuan; Zhang, Boyang; He, Xiaoyun; Xu, Wentao; Huang, Kunlun

    2016-09-01

    Heavy metal contamination poses a major threat to the environment and human health for their potential toxicity and non-biodegradable properties. At present, some probiotics bacteria are reported to have great potential to eliminate heavy metals from food and water. In this study, resistance properties of a newly isolated Lactococcus lactis subsp. lactis for cadmium were studied by antioxidant assays and proteomics analysis. Antioxidant capacity of this strain was significantly activated under cadmium stress indicated by Fenton reaction, DPPH assay, SOD assay and GSH assay. Intracellular antioxidant enzyme systems, such as superoxide dismutase, glutathione reductase and catalase were suggested to play vital roles in the activated antioxidant capacity. The up-regulated cadA was associated with the activated P-type ATPases that plays an important role in cadmium resistance. Proteomics analysis identified 12 over-expressed proteins under 50mg/L cadmium stress and these proteins are abundant in oxidative stress response and energy metabolism regulation, which were considered as consequences as cadmium resistance of the strain. Thus, the probiotics Lactococcus lactis subsp. lactis may resist cadmium stress through antioxidant approach and enhanced energy metabolism. The food grade lactis strain may be applied in metal decontamination in environment and food/feed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    OpenAIRE

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for ...

  19. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    Science.gov (United States)

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. PMID:25002431

  20. Efeito e modo de ação das bacteriocinas produzidas por Lactococcus lactis subsp. lactis ITAL 383, ATCC 11454 e CNRZ 150 contra Listeria innocua LIN 11 Effect and mode of action of the bacterioncin produced by Lactococcus. lactis subsp. lactis ITAL 383, ATCC 11454 e CNRZ 150 against Listeria innocua LIN 11

    Directory of Open Access Journals (Sweden)

    Izildinha MORENO

    1999-01-01

    Full Text Available O efeito e o modo de ação das bacteriocinas produzidas por L. lactis subsp. lactis ITAL 383 e CNRZ 150 são similares à nisina de L. lactis subsp. lactis ATCC 11454. Estas bacteriocinas apresentaram um modo de ação bactericida, causando a lise de células de L. innocua LIN 11, associada ao decréscimo da absorbância e da viabilidade celular. O efeito letal foi maior para células em fase exponencial comparativamente à fase estacionária de crescimento. A adsorção dessas bacteriocinas às células de L. innocua LIN 11 foi muito rápida e influenciada pelo pH do meio de suspensão; adsorção máxima foi verificada a pH 6,0 e logo após o contato inicial. Perda completa de adsorção ocorreu em pH 2,0.The effect and mode of action of the bacteriocin produced by L. lactis subsp. lactis ITAL 383 and CNRZ 150 are similar to the nisin produced by L. lactis subsp. lactis ATCC 11454. It was clearly bactericidal, and caused lysis of a strain of L. innocua LIN 11 detected by the decrease of absorbance values and the cell viability. Their lethal effect was considerably higher during the logarithmic growth when compared to the stationary phase. Adsorption developed rapidly and was influenced by the pH value of the suspension medium. Maximum adsorption was observed at pH 6,0 and immediately after initial contact and loss at pH 2,0.

  1. Cloning and nucleotide sequence analysis of pepV, a carnosinase gene from Lactobacillus delbrueckii subsp. lactis DSM 7290, and partial characterization of the enzyme.

    Science.gov (United States)

    Vongerichten, K F; Klein, J R; Matern, H; Plapp, R

    1994-10-01

    Cell extracts of Lactobacillus delbrueckii subsp. lactis DSM 7290 were found to exhibit unique peptolytic ability against unusual beta-alanyl-dipeptides. In order to clone the gene encoding this activity, designated pepV, a gene library of strain DSM 7290 genomic DNA, prepared in the low-copy-number plasmid pLG339, was screened for heterologous expression in Escherichia coli. Recombinant clones harbouring pepV were identified by their ability to allow the utilization of carnosine (beta-alanyl-histidine) as a source of histidine by the E. coli mutant strain UK197 (pepD, hisG). Complementation was observed in a colony harbouring a recombinant plasmid (pKV101), carrying pepV. A 2.4 kb fragment containing pepV was subcloned and its nucleotide sequence revealed an open reading frame (ORF) of 1413 nucleotides, corresponding to a protein with predicted molecular mass of 51998 Da. A single transcription initiation site 71 bp upstream of the ATG translational start codon was identified by primer extension. No significant homology was detected between pepV or its deduced amino acid sequence with any entry in the databases. The only similarity was found in a region conserved in the ArgE/DapE/CPG2/YscS family of proteins. This observation, and protease inhibitor studies, indicated that pepV is of the metalloprotease type. A second ORF present in the sequenced fragment showed extensive homology to a variety of amino acid permeases from E. coli and Saccharomyces cerevisiae.

  2. Co-culturing of Lactobacillus paracasei subsp. paracasei with a Lactobacillus delbrueckii subsp. delbrueckii mutant to make high cell density for increased lactate productivity from cassava bagasse hydrolysate.

    Science.gov (United States)

    John, Rojan Pappy; Nampoothiri, K Madhavan

    2011-03-01

    To increase the productivity of lactic acid, a co-culture of lactobacilli was made by mixing 1:1 ratio of Lactobacillus paracasei subsp. paracasei and a fast growing L. delbrueckii subsp. delbrueckii mutant. The culture was embedded on to polyurethane foam (PUF) cubes as a biofilm and used for fermentation. In order to prevent the cell leakage, the PUF cubes were further entrapped in calcium cross-linked alginate. The maximum lactic acid production using a high cell density free culture was >38 g l(-1) from ~40 g l(-1) of reducing sugar within 12 h of fermentation. Using PUF biofilms, the same yield of lactic acid attained after 24 h. When the cubes were further coated with alginate it took 36 h for the maximum yield. Even though, the productivity is slightly lesser with the alginate coating, cell leakage was decreased and cubes were reused without much decrease in production in repeated batches. Using a conventional control inoculum (3%, w/v), it took 120 h to yield same amount of lactic acid.

  3. Molecular characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages.

    Science.gov (United States)

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2014-09-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration: Involvement of an NADH Oxidase in Oxidative Stress

    Science.gov (United States)

    Marty-Teysset, C.; de la Torre, F.; Garel, J.-R.

    2000-01-01

    The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen. PMID:10618234

  5. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.

    Science.gov (United States)

    Do Carmo, A P; De Oliveira, M N V; Da Silva, D F; Castro, S B; Borges, A C; De Carvalho, A F; De Moraes, C A

    2012-03-01

    There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh - lactate dehydrogenase, adhE - Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 - catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property

  6. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5.

    Science.gov (United States)

    Urshev, Zoltan; Hajo, Karima; Lenoci, Leonardo; Bron, Peter A; Dijkstra, Annereinou; Alkema, Wynand; Wels, Michiel; Siezen, Roland J; Minkova, Svetlana; van Hijum, Sacha A F T

    2016-10-06

    Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 originates from homemade Bulgarian yogurt and was selected for its ability to form a strong association with Streptococcus thermophilus The genome sequence will facilitate elucidating the genetic background behind the contribution of LBB.B5 to the taste and aroma of yogurt and its exceptional protocooperation with S. thermophilus. Copyright © 2016 Urshev et al.

  7. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation.

    Science.gov (United States)

    Arioli, Stefania; Della Scala, Giulia; Remagni, Maria Chiara; Stuknyte, Milda; Colombo, Stefano; Guglielmetti, Simone; De Noni, Ivano; Ragg, Enzio; Mora, Diego

    2017-04-17

    The proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the yogurt consortium enhances the growth rate and size of each population. In contrast, the independent growth of the two species in milk leads to a slower growth rate and a smaller population size. In this study, we report the first evidence that the urease activity of S. thermophilus increases the intracellular pH of L. delbrueckii in the absence of carbon source. However, in milk, in the presence of lactose the alkalizing effect of urea-derived ammonia was not detectable. Nevertheless, based on glucose consumption and lactic acid production at different pH in , L. delbrueckii showed an optimum of glycolysis and homolactic fermentation at alkaline pH values. In milk, we observed that ammonia provided by urea hydrolysis boosted lactic acid production in S. thermophilus and in L. delbrueckii when the species were grown alone or in combination. Therefore, we propose that urease activity acts as an altruistic cooperative trait, which is costly for urease-positive individuals but provides a local benefit because other individuals can take advantage of urease-dependent ammonia release. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of Potential Probiotic Lactococcus lactis Subsp. lactis on Growth Performance, Intestinal Microbiota, Digestive Enzyme Activities, and Disease Resistance of Litopenaeus vannamei.

    Science.gov (United States)

    Adel, Milad; El-Sayed, Abdel-Fattah M; Yeganeh, Sakineh; Dadar, Maryam; Giri, Sib Sankar

    2017-06-01

    The aims of this study were to evaluate the effects of Lactococcus lactis subsp. lactis on the growth, intestinal microbiota, digestive enzyme activity, and disease resistance of Litopenaeus vannamei. Diets containing four different concentrations of L. lactis (0 [basal diet], 10 6 , 10 7 , and 10 8  CFU g -1 ) were fed to white shrimps L. vannamei (average weight 5.89 ± 0.36 g) for 8 weeks. At the end of the feeding trial, shrimps were immersed in Caspian Seawater (10.8 ppt) contaminated with 10 6  CFU ml -1 pathogenic V. anguillarum for 2 h. Results revealed that growth rate, survival, and body protein level were increased with dietary supplementation of L. lactis. The activities of digestive enzymes (cellulose, lipase, amylase, and protease) were significantly higher in the groups fed with diets containing 10 7 or 10 8  CFU g -1 L. lactis than those in the control. The Lactobacillus and Bacillus counts were higher (P lactis-supplemented diets. In addition, higher level of L. lactis supplementation decreased the Vibrio counts. Moreover, L. vannamei fed diet supplemented with 10 8  CFU g -1 of L. lactis exhibited significantly the highest hematocyte count and post-challenge survival rate (79.2 %). Collectively, these results suggest that dietary supplementation of L. lactis subsp. lactis at 10 8  CFU g -1 can promote growth performance, digestive enzyme activity, and disease resistance of L. vannamei.

  9. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine

    NARCIS (Netherlands)

    Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2016-01-01

    The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are

  10. Two-Dimensional Electrophoresis Study of Lactobacillus delbrueckii subsp. bulgaricus Thermotolerance

    OpenAIRE

    Gouesbet, Gwenola; Jan, Gwenael; Boyaval, Patrick

    2002-01-01

    The response of Lactobacillus delbrueckii subsp. bulgaricus cells to heat stress was studied by use of a chemically defined medium. Two-dimensional electrophoresis (2-DE) analysis was used to correlate the kinetics of heat shock protein (HSP) induction with cell recovery from heat injury. We demonstrated that enhanced viability, observed after 10 min at 65°C, resulted from the overexpression of HSP and from mechanisms not linked to protein synthesis. In order to analyze the thermoadaptation m...

  11. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    NARCIS (Netherlands)

    Del Rio, Beatriz; Linares, Daniel M; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2015-01-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB,

  12. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp lactis grown in synthetic medium and reconstituted skim milk

    DEFF Research Database (Denmark)

    Larsen, N.; Boye, Mette; Jakobsen, Marianne

    2006-01-01

    We investigated protein and gene expression in the lag phase of Lactococcus lactis subsp. lactis CNRZ 157 and compared it to the exponential and stationary phases. By means of two-dimensional polyacrylamide gel electrophoresis, 28 highly expressed lag-phase proteins, implicated in nucleotide meta...

  13. Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro.

    Science.gov (United States)

    Zhang, Justina Su; Guri, Anilda; Corredig, Milena; Morales-Rayas, Rocio; Hassan, Ashraf; Griffiths, Mansel; LaPointe, Gisèle

    2016-12-01

    Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis.

    Science.gov (United States)

    Roy, D; Sirois, S; Vincent, D

    2001-04-01

    Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus.

  15. Use of a genetically enhanced, pediocin-producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in cheddar cheese

    NARCIS (Netherlands)

    Buyong, N; Kok, J; Luchansky, JB

    1998-01-01

    Cheddar cheese was prepared with Lactococcus lactis subsp, lactis MM217, a starter culture which contains pMC117 coding for pediocin PA-1, About 75 liters of pasteurized milk (containing ca, 3.6% fat) was inoculated with strain MM217 (ca, 10(6) CFU per ml) and a mixture of three Listeria

  16. Production of lactic acid from whey using Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Adriana M. Rojas

    2015-09-01

    Full Text Available The main objective of this research was to determine the proper growth conditions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for the production of lactic acid using serum as substract. This serum was obtain from the department of Cesar, Colombia. Lactic acid is the result of the extraction and purification of fermentation broths in which bacteria Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus are used, which are usually used for the production of yogurt. The substrate was supplemented with yeast extract, ammonium phosphate as a nitrogen source, and calcium carbonate as a neutralizer, in order to optimize the consumption, by the bacteria, of the main carbohydrate present in serum (lactose. During the fermentation (up to 72 h the inoculums concentration, and temperature were controlled. Purification consisted in esterification, filtration of solids formed during the reaction, and removing of water by evaporation and nitrogen influx. Finally, lactic acid was obtained with 78,0% purity (36.7 g/L, which was characterized by infrared spectroscopy

  17. Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects.

    Science.gov (United States)

    Moro-García, Marco Antonio; Alonso-Arias, Rebeca; Baltadjieva, Maria; Fernández Benítez, Carlos; Fernández Barrial, Manuel Amadeo; Díaz Ruisánchez, Enrique; Alonso Santos, Ricardo; Alvarez Sánchez, Magdalena; Saavedra Miján, Juan; López-Larrea, Carlos

    2013-08-01

    Throughout life, there is an aging of the immune system that causes impairment of its defense capability. Prevention or delay of this deterioration is considered crucial to maintain general health and increase longevity. We evaluated whether dietary supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 could enhance the immune response in the elderly. This multi-center, double-blind, and placebo controlled study enrolled 61 elderly volunteers who were randomly assigned to receive either placebo or probiotics. Each capsule of probiotics contained at least 3 × 10(7)  L. delbrueckii subsp. bulgaricus 8481. Individuals in the study were administered three capsules per day for 6 months. Blood samples were obtained at baseline (time 0), end of month 3, and month 6. We characterized cell subpopulations, measured cytokines by flow cytometry, quantified T cell receptor excision circle (TREC) by real-time PCR (RT-PCR), and determined human β-defensin-2 (hBD-2) concentrations and human cytomegalovirus (CMV) titers by enzyme-linked immunosorbent assay (ELISA). Elderly responded to the intake of probiotic with an increase in the percentage of NK cells, an improvement in the parameters defining the immune risk profile (IRP), and an increase in the T cell subsets that are less differentiated. The probiotic group also showed decreased concentrations of the pro-inflammatory cytokine IL-8 but increased antimicrobial peptide hBD-2. These effects disappeared within 6 months of stopping the probiotic intake. Immunomodulation induced by L. delbrueckii subsp. bulgaricus 8481 could favor the maintenance of an adequate immune response, mainly by slowing the aging of the T cell subpopulations and increasing the number of immature T cells which are potential responders to new antigens.

  18. Characterization of a Wild, Novel Nisin A-Producing Lactococcus Strain with an L. lactis subsp. cremoris Genotype and an L. lactis subsp. lactis Phenotype, Isolated from Greek Raw Milk

    Science.gov (United States)

    Parapouli, Maria; Delbès-Paus, Céline; Kakouri, Athanasia; Koukkou, Anna-Irini; Montel, Marie-Christine

    2013-01-01

    Several molecular taxonomic studies have revealed that many natural (wild) Lactococcus lactis strains of dairy origin which are phenotypically representative of the L. lactis subspecies lactis cluster genotypically within subspecies cremoris and vice versa. Recently, we isolated two wild nisin-producing (Nis+) L. lactis strains, M78 and M104, of the lactis phenotype from Greek raw milk (J. Samelis, A. Lianou, A. Kakouri, C. Delbès, I. Rogelj, B. B. Matijašic, and M. C. Montel, J. Food Prot. 72:783–790, 2009); strain M78 possess a novel nisin A sequence (GenBank accession number HM219853). In this study, the actual subspecies identity of M78 and M104 isolates was elucidated, using 16S rRNA and acmA (encoding lactococcal N-acetylmuramidase) gene and histidine biosynthesis operon polymorphisms and 16S rRNA and ldh (encoding lactate dehydrogenase) gene phylogenies. Except the acmA gene analysis, molecular tools revealed that isolates M78 and M104 clustered with strains of the cremoris genotype, including the LMG 6897T strain, while they were distant from strains of the lactis genotype, including the LMG 6890T strain. The two wild isolates had identical repetitive sequence-based PCR (rep-PCR), randomly amplified polymorphic DNA (RAPD), plasmid, and whole-cell protein profiles and shared high 16S rRNA (99.9%) and ldh (100%) gene sequence homologies. In contrast, they exhibited identical sugar fermentation and enzymatic patterns which were similar to those of the subspecies lactis LMG 6890T strain. To our knowledge, this is the first complete identification report on a wild L. lactis subsp. cremoris genotype of the lactis phenotype which is capable of nisin A production and, thus, has strong potential for use as a novel dairy starter and/or protective culture. PMID:23542625

  19. Suitability of Lactococcus lactis subsp lactis ATCC 11454 as a protective culture for lightly preserved fish products

    DEFF Research Database (Denmark)

    Wessels, Stephen Wallace; Huss, Hans Henrik

    1996-01-01

    This study is part of strategy to control the human pathogen Listeria monocytogenes in lightly preserved fish products by using food-grade lactic acid bacteria. When the nisin-producing Lactococcus lactis subsp lactis ATCC 11454 was cultured in the same vessel as L-monocytogenes Scott A in brain......-heart infusion broth (BHI) at 30-degrees C, the pathogen declined from 5x10(5) to fewer than 5 cfu ml(-1) within 31 h. The effect was not due to lactic acid inhibition. Growth and nisin production by L- lactis ATCC 11454 were investigated under the conditions of temperature and salt used for light preservation...... and no detectable nisin. On slices of commercial cold-smoked salmon at 10-degrees C, no net propagation pf L-lactis ATCC 11454 could be detected within 21 days. However, when salmon slices were inoculated with L- mycocytogenes at 10(4) cfu g(-1) and a 300-fold excess of washed lactococcus cells, the pathogen...

  20. Effect of the addition of Lactobacillus delbrueckii subsp. delbrueckii on the gut microbiota composition and contribution to the well-being of European sea bass (Dicentrarchus labrax, L.)

    OpenAIRE

    Silvi, Stefania; Nardi, Miria; Sulpizio, Roberto; Orpianesi, Carla; Caggiano, Massimo; Carnevali, Oliana; Cresci, Alberto

    2011-01-01

    The present study aimed to test the effects of probiotic treatment on gut microbiota and the contribution to the well-being of European sea bass (Dicentrarchus labrax, L.). A bacterial strain of Lactobacillus delbrueckii subsp. delbrueckii (AS13B), isolated from adult European sea bass gut, was administered during sea bass development using Brachionus plicatilis and/or Artemia salina as carriers. The effective strain colonization and modulation of the gut microbiota, the mortality and the cor...

  1. Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772

    NARCIS (Netherlands)

    Grobben, G.J.; Boels, I.C.; Sikkema, J.; Smith, M.R.; Bont, de J.A.M.

    2000-01-01

    Several lactic acid bacteria produce exopolysaccharides (EPS), either attached to the cell wall or excreted into the environment as slime material. EPS produced by Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) and Streptococcus thermophilus play an important role in improving the

  2. Predictive modeling of Bifidobacterium animalis subsp. lactis Bb-12 growth in cow’s, goat’s and soy milk

    Directory of Open Access Journals (Sweden)

    Vedran Slačanac

    2013-11-01

    Full Text Available The aim of this study was to use a predictive model to analyse the growth of a probiotic strain Bifidobacterium animalis subsp. lactis Bb-12 in cow’s, goat’s and soy milk. The Gompertz model was used, and the suitability of the model was estimated by the Schnute algorithm. Except for the analysis of Bifidobacterium animalis subsp. lactis Bb-12 growth, the Gompertz model was also used for the analysis of pH changes during the fermentation process. Experimental results, as well as the values of kinetic parameters obtained in this study, showed that the highest growth rate of Bifidobacterium animalis subsp. lactis Bb-12 was obtained in goat’s milk, and the lowest in soy milk. Contrary to the growth of Bifidobacterium animalis subsp. lactis Bb-12, pH decreased faster in soy milk than in cow’s milk. The highest rate of pH decrease was also observed in goat’s milk, which is in correspondence with results of various previous studies. The Gompertz model proved to be highly suitable for analysing the course and the fermentation kinetics in these three kinds of milk, and might be used to analyse the growth kinetics of other probiotic and starter cultures in milk.

  3. Genetic transformation of intact Lactococcus lactis subsp. lactis by high-voltage electroporation

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D.A.; Harlander, S.K. (Univ. of Minnesota, St. Paul (USA))

    1989-03-01

    The objective of this study was to develop a system for electroporating intact cells of Lactococcus lactis subsp. lactis LM0230 (previously designated Streptococcus lactis LM0230) with a commercially available electroporation unit. Parameters which influenced the efficiency of transformation included growth phase and final concentration of cells, ionic strength of the suspending medium, concentration of plasmid DNA, and the amplitude and duration of the pulse. Washed suspensions of intact cells suspended in deionized distilled water were subjected to one high-voltage electric pulse varying in voltage (300 to 900 V corresponding to field strengths of 5 to 17 kV/cm) and duration (100 {mu}s to 1 s). Transformation efficiencies of 10{sup 3} transformants per {mu}g of DNA were obtained when dense suspensions (final concentration, 5 {times} 10{sup 10} CFU/ml) of stationary-phase cells were subjected to one pulse with a peak voltage of 900 V (field strength, 17 kV/cm) and a pulse duration of 5 ms in the presence of plasmid DNA. Dilution of porated cells in broth medium followed by an expression period of 2 h at 30{degree}C was beneficial in enhancing transformation efficiencies. Plasmids ranging in size from 9.8 to 30.0 kilobase pairs could be transformed by this procedure.

  4. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli.

    Science.gov (United States)

    Abedi, D; Feizizadeh, S; Akbari, V; Jafarian-Dehkordi, A

    2013-10-01

    Considering the emergence of antibiotic resistance, scientists are interested in using new antimicrobial agents in the treatment of infectious diseases including infections of the enteric systems. Lactic acid bacteria have the great potential to produce antimicrobial compounds that inhibit and control pathogenic bacteria. The aim of this study was to determine the anti-bacterial and anti-adherence properties of Lactobacillus delbrueckii subsp bulgaricus against Escherichia coli. The antibacterial activity of L. delbrueckii was investigated using disc diffusion and spot on lawn methods. In vitro anti-adhesion effect of L. delbrueckii against E. coli was examined using Caco-2 cells. In anti-adhesion assay, three competition conditions including competitive inhibition, adhesion inhibition, and displacement were examined. In spot on lawn method the zone of growth inhibition of E. coli by L. delbrueckii was 21.1 mm. The cell free supernatant of L. delbrueckii showed a good antibacterial activity against E. coli which was mainly related to lactic acid produced by L. delbrueckii. When two bacteria added simultaneously (competitive inhibition) degree of inhibition of E. coli binding by L. delbrueckii was 77%. In adhesion inhibition assay, L. delbrueckii was able to exclude E. coli adherence by around 43.5%. Displacement assay showed that L. delbrueckii had strong displacement ability toward E. coli and reduction of E. coli attachment by bound L. delbrueckii was 81.3%. The results suggest that L. delbrueckii may be able to inhibit E. coli infection in the gut; however more studies including in vivo studies need to be performed.

  5. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; De Hulster, E.; Almering, M.J.; Luttik, M.A.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  6. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; Hulster, de E.; Almering, M.J.; Luttik, M.A.H.; Pronk, J.T.; Smid, E.J.; Baron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  7. Comparative Sequence Analysis of Plasmids from Lactobacillus delbrueckii and Construction of a Shuttle Cloning Vector▿

    Science.gov (United States)

    Lee, Ju-Hoon; Halgerson, Jamie S.; Kim, Jeong-Hwan; O'Sullivan, Daniel J.

    2007-01-01

    While plasmids are very commonly associated with the majority of the lactic acid bacteria, they are only very rarely associated with Lactobacillus delbrueckii, with only four characterized to date. In this study, the complete sequence of a native plasmid, pDOJ1, from a strain of Lactobacillus delbrueckii subsp. bulgaricus was determined. It consisted of a circular DNA molecule of 6,220 bp with a G+C content of 44.6% and a characteristic ori and encoded six open reading frames (ORFs), of which functions could be predicted for three—a mobilization (Mob) protein, a transposase, and a fused primase-helicase replication protein. Comparative analysis of pDOJ1 and the other available L. delbrueckii plasmids (pLBB1, pJBL2, pN42, and pLL1212) revealed a very similar organization and amino acid identities between 85 and 98% for the putative proteins of all six predicted ORFs from pDOJ1, reflecting a common origin for L. delbrueckii plasmids. Analysis of the fused primase-helicase replication gene found a similar fused organization only in the theta replicating group B plasmids from Streptococcus thermophilus. This observation and the ability of the replicon to function in S. thermophilus support the idea that the origin of plasmids in L. delbrueckii was likely from S. thermophilus. This may reflect the close association of these two species in dairy fermentations, particularly yogurt production. As no vector based on plasmid replicons from L. delbrueckii has previously been constructed, an Escherichia coli-L. delbrueckii shuttle cloning vector, pDOJ4, was constructed from pDOJ1, the p15A ori, the chloramphenicol resistance gene of pCI372, and the lacZ polylinker from pUC18. This cloning vector was successfully introduced into E. coli, L. delbrueckii subsp. bulgaricus, S. thermophilus, and Lactococcus lactis. This shuttle cloning vector provides a new tool for molecular analysis of Lactobacillus delbrueckii and other lactic acid bacteria. PMID:17526779

  8. Ameliorated effects of Lactobacillus delbrueckii subsp. lactis DSM 20076 and Pediococcus acidilactici NNRL B-5627 on Fumonisin B1-induced Hepatotoxicity and Nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Amira A. Abdellatef

    2016-04-01

    Full Text Available Oxidative stress has been implicated in a number of human regeneration and disease processes including atherosclerosis, pulmonary fibrosis, cancer, and different neurodegenerative diseases. The aim of this study was to evaluate the protective effects of Lactobacillus delbrueckii subsp. lactis DSM 20076 (LL-DSM and Pediococcus acidilactici NNRL B-5627 (PA-NNRL against the hepatic- and nephro-toxicity of fumonisin B1 (FB1 in FB1-treated rats for an experimental period of 4-weeks. Eighty mature male Sprague-Dawley rats were divided to 12 groups: 1 untreated group; 3 groups fed by a FB1-contaminated diet (50, 100 and 200 mg FB1/kg diet, respectively; 1 group fed orally by LL-DSM (1 ml/d; 1 group fed orally by PA-NNRL (1 ml/d; 3 groups co-administered by FB1-contaminated diet and LL-DSM (1 ml/d, and 3 groups co-administered by FB1-contaminated diet and PA-NNRL (1 ml/d. Malonaldehyde (MDA nitric oxide, glutathione content, SOD activity, total antioxidant capacity (TAC, total oxidant status (TOS and oxidative stress index (OSI were determined. DPA assay was used to assess apoptosis in liver and kidney tissues. The animals fed with FB1-contaminated diet showed a significant increase in oxidative stress markers and DNA fragmentation accompanied with significant decrease in GSH content, SOD activity, and TAC in liver and kidney tissues, especially at high-dosage of FB1 (T200. Probiotics antioxidant strains (LL-DSM and PA-NNRL relatively succeeded to restore almost all parameters investigated as well as to reduce DNA fragmentation in liver and kidney tissues. As a conclusion, probiotics may induce its protective role via increasing the antioxidant capacity, inhibition of lipid peroxidation, scavenging of free radicals and decreasing DNA lesions in liver and kidney of experimental animals tested.

  9. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Sørensen, Kim I; Curic-Bawden, Mirjana; Junge, Mette P; Janzen, Thomas; Johansen, Eric

    2016-06-15

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are used in the fermentation of milk to produce yoghurt. These species normally metabolize only the glucose moiety of lactose, secreting galactose and producing lactic acid as the main metabolic end product. We used multiple serial selection steps to isolate spontaneous mutants of industrial strains of S. thermophilus and L. delbrueckii subsp. bulgaricus that secreted glucose rather than galactose when utilizing lactose as a carbon source. Sequencing revealed that the S. thermophilus strains had mutations in the galKTEM promoter, the glucokinase gene, and genes encoding elements of the glucose/mannose phosphotransferase system (PTS). These strains metabolize galactose but are unable to phosphorylate glucose internally or via the PTS. The L. delbrueckii subsp. bulgaricus mutants had mutations in genes of the glucose/mannose PTS and in the pyruvate kinase gene. These strains cannot grow on exogenous glucose but are proficient at metabolizing internal glucose released from lactose by β-galactosidase. The resulting strains can be combined to ferment milk, producing yoghurt with no detectable lactose, moderate levels of galactose, and high levels of glucose. Since glucose tastes considerably sweeter than either lactose or galactose, the sweetness of the yoghurt is perceptibly enhanced. These strains were produced without the use of recombinant DNA technology and can be used for the industrial production of yoghurt with enhanced intrinsic sweetness and low residual levels of lactose. Based on a good understanding of the physiology of the lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, we were able, by selecting spontaneously occurring mutants, to change dramatically the metabolic products secreted into the growth medium. These mutants consume substantially more of the lactose, metabolize some of the galactose, and secrete the remaining galactose

  10. Produksi Asam Laktat oleh Lactobacillus delbrueckii subsp. bulgaricus dengan Sumber Karbon Tetes Tebu

    Directory of Open Access Journals (Sweden)

    Laita Nurjannah

    2017-04-01

    Full Text Available Senyawa asam laktat sangat dibutuhkan di dunia industri. Namun produksi dengan menggunakan mikrob masih menggunakan bahan pangan sebagai substratnya. Alternatif substrat untuk produksi asam laktat  sebagai pengganti penggunaan bahan pangan  sangat diperlukan industri. Tetes tebu merupakan salah satu substrat yang kaya akan sumber  karbon yang dapat digunakan sebagai komponen media pertumbuhan bakteri. Ketersediaannya melimpah dan harganya murah. Tujuan penelitian ini adalah tetes tebu dapat digunakan sebagai alternatif  sumber karbon bakteri Lactobacillus delbrueckii subsp. bulgaricus untuk menghasilkan asam laktat. Langkah penelitian ini meliputi hidrolisis dan detoksifikasi tetes tebu, uji kualitatif gula pereduksi tetes tebu, analisis gula total dengan metode fenol sulfat, penentuan kurva pertumbuhan bakteri, produksi dan ekstraksi asam laktat, serta analisis kualitatif asam laktat dengan menggunakan kromatografi cair kinerja tinggi. Hasil penelitian menunjukkan bahwa tetes tebu dapat digunakan sebagai alternatif sumber karbon. Hal ini terbukti bakteri dapat tumbuh dengan baik ketika media diberi 0.5% tetes tebu. Konsentrasi gula total tetes tebu adalah 1090 g/L. Uji gula pereduksi menunjukkan hasil yang positif untuk uji Selliwanof, uji Benedict, dan uji Barfoed. Pertumbuhan optimum L. delbrueckii subsp. bulgaricus terjadi pada suhu 42°C dengan agitasi 150 rpm. Produksi asam laktat dilakukan selama 24 jam. Kadar asam laktat yang dihasilkan sebesar 2.80% dengan biomassa sel kering sebesar 0.002 g/L dan pH media fermentasi sebesar 4.0. Hasil analisis kualitatif kromatografi cair kinerja tinggi juga menunjukkan bahwa produk dari hasil fermentasi adalah asam laktat. Abstract. Lactic acid is needed as an industrial feed. However, by using a microbial production still uses food material as a substrate. Alternative substrates for the production of lactic acid is needed in industry. Molasses are potential substrates due to the richness in

  11. The effect of nisin from Lactococcus lactis subsp. lactis on refrigerated patin fillet quality

    Science.gov (United States)

    Adilla, S. N.; Utami, R.; Nursiwi, A.; Nurhartadi, E.

    2017-04-01

    The effect of nisin from Lactococcus lactis subsp. lactis with spraying method application on quality of patin fillet during refrigerated storage (4±1°C) was investigated. The quality of patin fillet based on total plate count (TPC), pH, TVB-N, and TBA values during 16 days at 4±1°C. Completely Randomized Design (CDR) was used in one factor (nisin activity) at 0 IU/ml, 500 IU/ml, 1000 IU/ml, and 2000 IU/ml. The observation was done at 0, 4th, 8th, 12th, and 16th days of storage. The result showed that variation of nisin activity significantly affected the quality of fillet according to TPC, pH, and TVB-N values, however no significant difference on the obtained of TBA value. Nisin in 500 IU/ml, 1000 IU/ml, and 2000 IU/ml could extend the shelf-life of fillet until 4th, 8th, and 12th days respectively based on standard in all parameters.

  12. Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults.

    Science.gov (United States)

    Savard, Patricia; Lamarche, Benoît; Paradis, Marie-Eve; Thiboutot, Hélène; Laurin, Émilie; Roy, Denis

    2011-09-01

    This randomized, placebo-controlled, double blind, parallel dose-response study investigated the impact of 4-week commercial yoghurt consumption supplemented with Bifidobacterium animalis subsp. lactis (BB-12) and Lactobacillus acidophilus (LA-5) on fecal bacterial counts of healthy adults. Fifty-eight volunteers were randomly assigned to three different groups: 1. placebo (no probiotic, no starter and no green tea extract); 2. Yoptimal (10(9)cfu/100g of BB-12 and LA-5 and 40mg of green tea extract) and 3. Yoptimal-10 (10(10)cfu/100g of BB-12, 10(9)cfu/100g of LA-5 and 40mg of green tea extract). These yoghurt products also contained Lactobacillus delbrueckii subsp. bulgaricus (10(7)cfu/100g) and Streptococcus thermophilus (10(10)cfu/100g). The quantitative PCR (qPCR) results showed that there were significant increases (P=0.02) in bifidobacteria counts with the Yoptimal treatment as compared to baseline. The fecal numbers of B. animalis subsp. lactis and LA-5 significantly increased in the two probiotic treatments compared to the placebo treatment. Viable counts of fecal lactobacilli were significantly higher (P=0.05) and those of enterococci were significantly lower (P=0.04) after the intervention when compared to placebo. No significant difference was observed between treatments in volunteers' weight, waist girth, blood pressure, fasting plasma triglyceride and HDL-C concentrations, as well as cholesterol/HDL-cholesterol ratio. However, a significant increase in plasma cholesterol levels was observed in the placebo group (P=0.0018) but the levels remained stable in the two probiotic yoghurt groups. These results show that probiotic strains supplemented in the form of yoghurt remain active during gut transit and are associated with an increase in beneficial bacteria and a reduction in potentially pathogenic bacteria. This trial was registered at clinicaltrials.gov as NCT00730626. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Detection and characterization of bacteriocin-producing Lactococcus lactis strains Detecção e caracterização de Lactococcus lactis produtores de bacteriocinas

    Directory of Open Access Journals (Sweden)

    Izildinha Moreno

    1999-04-01

    Full Text Available One hundred sixty seven strains of Lactococcus lactis were screened for bacteriocin production by well diffusion assay of GM17 agar. Fourteen (8.4% produced antimicrobial activity other than organic acids, bacteriophages or hydrogen peroxide. The frequency of bacteriocin production ranged from 2% in L. lactis subsp. cremoris up to 12% in L. lactis subsp. lactis. Antimicrobial activities were not observed in any strain of L. lactis subsp. lactis var. diacetylactis. Among thirteen bacteriocin-producing strains and two nisin-producing strains (L. lactis subsp. lactis ATCC 11454 and L. lactis subsp. lactis CNRZ 150, eight (53% were characterized as lactose-positive (Lac+ and proteinase-negative (Prt-. The bacteriocin-producing cultures were also characterized on the basis of plasmid content. All strains had 2 to 7 plasmids with molecular weights varying from 0.5 to 28.1 Mdal. Four strains (ITAL 435, ITAL 436, ITAL 437 and ITAL 438 showed identical profiles and the other were quite distinct.Um total de 167 linhagens de L. lactis foi selecionado para os testes de produção de bacteriocinas pelo método de difusão em poços em agar GM17. Desse total, 14 (8.4% produziram substâncias inibidoras que não foram associadas com ácidos orgânicos, peróxido de hidrogênio e bacteriófagos. A frequência de produção de bacteriocinas variou de 2% em L. lactis subsp. cremoris a 12% em L. lactis subsp. lactis. Nenhuma das linhagens de L. lactis subsp. lactis var. diacetylactis produziu substâncias inibidoras. De 13 linhagens produtoras de bacteriocinas e duas de nisina (L. lactis subsp. lactis ATCC 11454 e L. lactis subsp. lactis CNRZ 150, 8 (53% foram caracterizadas como lactose-positivas (Lac+ e proteinase-negativas (Prt-. As linhagens produtoras de bacteriocinas também foram caracterizadas no seu conteúdo de plasmídios. Elas apresentaram de 2 a 7 plasmídios, com pesos moleculares aproximados de 0.5 a 28.1 Mdal. Quatro linhagens (ITAL 435, ITAL 436

  14. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2016-03-01

    Full Text Available The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1,2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR via glucose, but not by other sugars such as lactose or galactose [1,3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1,3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17 as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO database under Accession no. GSE74808. Keywords: Lactococcus lactis, Biogenic amines, Putrescine, Agmatine deiminase, Agmatine

  15. Gene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis

    Directory of Open Access Journals (Sweden)

    Nuria Castro-Bravo

    2017-07-01

    Full Text Available An extracellular layer of exopolysaccharides (EPS covers the surface of some Bifidobacterium animalis subsp. lactis strains, which could be of relevance for its probiotic performance. In order to understand the functional characteristics of B. animalis subsp. lactis, two isogenic strains that differ in their EPS-producing phenotype, due to a single mutation in the gene Balat_1410, were studied. By means of a double crossover recombination strategy, successfully used for the first time in bifidobacteria, Balat_1410 in the type strain B. animalis subsp. lactis DSM10140 was replaced by a mutated gene containing a non-synonymous mutation previously associated with the appearance of a mucoid-ropy phenotype. Nuclear magnetic resonance and SEC-MALS analyses showed that the novel strain harboring the mutation acquired a ropy phenotype, due to the production of a high molecular weight (HMW-EPS that is not produced in the wild-type strain. Fluorescence labeling of both strains with two fluorescent proteins, m-Cherry and Green Fluorescent Protein, was achieved by expressing the corresponding genes under the control of a native selected promoter (the elongation factor Tu promoter. Remarkably, qualitative and quantitative fluorescence analyses demonstrated that the ropy strain displays a lower capability to adhere to human intestinal epithelial cells. In addition, the presence of the HMW-EPS reduced the capability of the producing strain to form biofilms upon three different abiotic surfaces. This work also highlights the fact that different EPS confer variable functional characteristics to the bifidobacterial surface, which may be relevant for the performance of B. animalis subsp. lactis as a probiotic. The construction of molecular tools allowing the functional characterization of surface structures in next generation probiotics is still a challenging issue that deserves further attention, given the relevant role that such molecules must play in the

  16. Lactococcus lactis subsp. lactis infection in Bester sturgeon, a cultured hybrid of Huso huso × Acipenser ruthenus, in Taiwan.

    Science.gov (United States)

    Chen, Ming-Hui; Hung, Shao-Wen; Shyu, Ching-Lin; Lin, Cheng-Chung; Liu, Pan-Chen; Chang, Chen-Hsuan; Shia, Wei-Yau; Cheng, Ching-Fu; Lin, Shiun-Long; Tu, Ching-Yu; Lin, Yu-Hsing; Wang, Way-Shyan

    2012-10-01

    Approximately 5300 hybrid sturgeons with an average body weight of 600-800 g were farmed in 3 round tankers measuring 3m in diameter each containing 28,000 L of aerated groundwater. According to the owner's description, the diseased fish had anorexia, pale body color, and reddish spots on the abdomen. The morbidity and lethality rates in this outbreak were about 70% (3706/5300) and 100% (3706/3706), respectively. The clinical examination revealed enteritis, enlarged abdomen, and rapid respiration rate. The gross findings revealed a volume of about 4 mL of ascites. The histopathological examination showed multiple massive, hemorrhagic or coagulative necrotic foci in the liver and spleen. Furthermore, there was diffuse infiltration of glycogen in hepatic cells, and a few polymorphonuclear and mononuclear leucocytes were observed surrounding the spleen. Some bacterial clumps were noted around the necrotic foci. We also observed that there was moderate to severe, acute, multifocal, coagulative necrosis in the renal parenchyma, with some necrotic foci present beneath the margin of the kidney. Additionally, multifocal, coagulative necrosis was found in the pancreas. Results of microbiologic examinations, including biochemical characteristics, PCR amplification of 16S rRNA gene, sequencing and comparison, and phylogenetic analysis, revealed the pathogen of this infection was Lactococcus lactis subsp. lactis, and based on the results of an antimicrobial agent sensitivity test the bacterium was only sensitive to ampicillin and florfenicol. Additionally, results of in vivo experimental infections in hybrid tilapia showed that 1×10(8) and 1×10(9) CFU/mL of our isolate caused death in all fish and LD(50) values ranged from 10(2) to 10(5) CFU/mL. To the best of the authors' knowledge, this is the first reported case of Lactococcus lactis subsp. lactis infection in hybrid sturgeon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Screening in a Lactobacillus delbrueckii subsp. bulgaricus collection to select a strain able to survive to the human intestinal tract.

    Science.gov (United States)

    Vázquez, Clotilde; Botella-Carretero, José I; García-Albiach, Raimundo; Pozuelo, María J; Rodríguez-Baños, Mercedes; Baquero, Fernando; Baltadjieva, María A; del Campo, Rosa

    2013-01-01

    Genetic diversity and resistance of Lactobacillus bulgaricus sbsp. delbrueckii collection with 100 isolates from different home-made yogurt in rural Bulgarian areas were determined. The strain K98 was the most resistant to bile salts and low pH. Survival and effects on short chain fatty acids production were tested in 20 healthy volunteers. High genetic diversity was observed in the L. bulgaricus collection by RAPD, whereas the ability of tolerate high deoxycholic acid concentrations, and different acid pHs was variable. The strain K98 was selected and used to prepare a homemade yogurt which was administered to 20 healthy volunteers (500 ml/day during 15d). A basal faecal sample and another after yogurt intake were recovered. DGGE experiments, using both universal and Lactic Acid Bacteria (LAB) primers, demonstrated no significant changes in the qualitative composition of gut microbiota. A band corresponding to L. bulgaricus was observed in all 20 samples. Viable L. bulgaricus K98 strain was only recovered in one volunteer. After yogurt intake we found an increase of LAB and Clostridium perfringens, and a decrease of Bacteroides- Prevotella-Porphyromonas. In addition, increases of acetic, butyric and 2-hydroxy-butyric acids in faeces were detected. Genetic diversity of L. delbrueckii subsp. bulgaricus especie is high We have isolated a probiotic resistant strain to bile and high acidity, L. delbrueckii subsp. bulgaricus-K98. Qualitative and quantitative changes in the intestinal microbiota are found after ingestion of a homemade yogurt containing this strain, with a concomitant increase in faecal SCFA. Our findings support the interest in developing further studies providing different amounts of L. delbrueckii subsp. bulgaricus-K98, and should evaluate its clinical effects in human disease. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  18. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Guo, Tingting; Zhang, Chenchen; Xin, Yongping; Xin, Min; Kong, Jian

    2016-05-01

    Prophage vB_LdeS-phiJB (phiJB) was induced by mitomycin C and UV radiation from the Lactobacillus delbrueckii subsp. bulgaricus SDMCC050201 isolated from a Chinese yoghurt sample. It has an isometric head and a non-contractile tail with 36,969 bp linear double-stranded DNA genome, which is classified into the group a of Lb. delbrueckii phages. The genome of phiJB is highly modular with functionally related genes clustered together. Unexpectedly, there is no similarity of its DNA replication module to any phages that have been reported, while it consists of open-reading frames homologous to the proteins of Lactobacillus strains. Comparative genomic analysis indicated that its late gene clusters, integration/lysogeny modules and DNA replication module derived from different evolutionary ancestors and integrated into a chimera. Our results revealed a novel chimeric phage of commercial Lb. delbrueckii and will broaden the knowledge of phage diversity in the dairy industry.

  19. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays.

    Science.gov (United States)

    Oliveira, Letícia C; Saraiva, Tessália D L; Silva, Wanderson M; Pereira, Ulisses P; Campos, Bruno C; Benevides, Leandro J; Rocha, Flávia S; Figueiredo, Henrique C P; Azevedo, Vasco; Soares, Siomar C

    2017-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods.

  20. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Science.gov (United States)

    del Rio, Beatriz; Linares, Daniel M.; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P.; Ladero, Victor; Alvarez, Miguel A.

    2015-01-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514. PMID:26697381

  1. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2015-12-01

    Full Text Available Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine into the biogenic amine putrescine by the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC [1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2], which is also transcriptionally regulated by carbon catabolic repression (CCR via glucose, but not by other sugars such as lactose and galactose [1,3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE59514.

  2. Optimization of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus RR Grown in a Semidefined Medium

    Science.gov (United States)

    Kimmel, Stacy A.; Roberts, Robert F.; Ziegler, Gregory R.

    1998-01-01

    The optimal fermentation temperature, pH, and Bacto-casitone (Difco Laboratories, Detroit, Mich.) concentration for production of exopolysaccharide by Lactobacillus delbrueckii subsp. bulgaricus RR in a semidefined medium were determined by using response surface methods. The design consisted of 20 experiments, 15 unique combinations, and five replications. All fermentations were conducted in a fermentor with a 2.5-liter working volume and were terminated when 90% of the glucose in the medium had been consumed. The population of L. delbrueckii subsp. bulgaricus RR and exopolysaccharide content were measured at the end of each fermentation. The optimum temperature, pH, and Bacto-casitone concentration for exopolysaccharide production were 38°C, 5, and 30 g/liter, respectively, with a predicted yield of 295 mg of exopolysaccharide/liter. The actual yield under these conditions was 354 mg of exopolysaccharide/liter, which was within the 95% confidence interval (217 to 374 mg of exopolysaccharide/liter). An additional experiment conducted under optimum conditions showed that exopolysaccharide production was growth associated, with a specific production at the endpoint of 101.4 mg/g of dry cells. Finally, to obtain material for further characterization, a 100-liter fermentation was conducted under optimum conditions. Twenty-nine grams of exopolysaccharide was isolated from centrifuged, ultrafiltered fermentation broth by ethanol precipitation. PMID:9464404

  3. Complete sequences of four plasmids of Lactococcus lactis subsp cremoris SK11 reveal extensive adaptation to the dairy environment

    NARCIS (Netherlands)

    Siezen, R.J.; Renckens, B.; Swam, van I.; Peters, S.; Kranenburg, van R.; Kleerebezem, M.; Vos, de W.M.

    2005-01-01

    Lactococcus lactis strains are known to carry plasmids encoding industrially important traits. L. lactis subsp. cremoris SK11 is widely used by the dairy industry in cheese making. Its complete plasmid complement was sequenced and found to contain the plasmids pSK11A (10,372 bp), pSK11B (13,332 bp),

  4. Insights into physiological traits of Bifidobacterium animalis subsp. lactis BB-12 through membrane proteome analysis

    DEFF Research Database (Denmark)

    Gilad, Ofir; Hjernø, Karin; Østerlund, Eva Christina

    2012-01-01

    Bifidobacterium animalis subsp. lactis BB-12 is a widely used probiotic strain associated with a variety of health-promoting traits. There is, however, only limited knowledge available regarding the membrane proteome and the proteins involved in oligosaccharide transport in BB-12. We applied two...

  5. Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose.

    NARCIS (Netherlands)

    Grobben, G.J.; Casteren, van W.H.M.; Schols, H.A.; Oosterveld, A.; Sala, G.; Smith, M.R.; Sikkema, J.; Bont, de J.A.M.

    1997-01-01

    The exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in defined medium were investigated. At equal cell densities, the strain produced 95 mg l−1 exopolysaccharides with glucose and 30 mg l−1 with fructose as the carbohydrate source. High-performance

  6. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    García-Hernández, J; Moreno, Y; Amorocho, C M; Hernández, M

    2012-03-01

    We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. This technique was successfully applied to detect viable cells in inoculated faeces. Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  7. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt.

    Science.gov (United States)

    Settachaimongkon, Sarn; Nout, M J Robert; Antunes Fernandes, Elsa C; Hettinga, Kasper A; Vervoort, Jacques M; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J; van Valenberg, Hein J F

    2014-05-02

    Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L. delbrueckii subsp. bulgaricus was investigated in terms of microbial growth, acidification and changes in the biochemical composition of milk during set-yoghurt fermentation. A complementary metabolomics approach was applied for global characterization of volatile and non-volatile polar metabolite profiles of yoghurt associated with proteolytic activity of the individual strains in the starter cultures. The results demonstrated that only non-proteolytic S. thermophilus (Prt-) strain performed proto-cooperation with L. delbrueckii subsp. bulgaricus. The proto-cooperation resulted in significant higher populations of the two species, faster milk acidification, significant abundance of aroma volatiles and non-volatile metabolites desirable for a good organoleptic quality of yoghurt. Headspace SPME-GC/MS and (1)H NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Furthermore, multivariate statistical analysis allows discriminating set-yoghurts fermented by different types of starter cultures according to their metabolite profiles. Our finding underlines that selection of suitable strain combinations in yoghurt starters is important for achieving the best technological performance regarding the quality of product. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    OpenAIRE

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Fran?oise; Loux, Valentin; Vidal, Marie; Passot, St?phanie; B?al, Catherine; Layec, S?verine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

  9. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    Science.gov (United States)

    Pedroso, D.L.; Dogenski, M.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S.

    2013-01-01

    In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01) and Lactobacillus acidophilus (LAC-04) were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF), and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (103 CFU/g). The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at −18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved. PMID:24516445

  10. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    Directory of Open Access Journals (Sweden)

    D.L. Pedroso

    2013-09-01

    Full Text Available In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01 and Lactobacillus acidophilus (LAC-04 were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF, and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (10³ CFU/g. The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at -18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved.

  11. Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics.

    Science.gov (United States)

    Speranza, Barbara; Campaniello, Daniela; Monacis, Noemi; Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2018-06-01

    The aim of this study was to develop a functional fresh cream cheese with Bifidobacterium animalis subsp. lactis DSM 10140 or Lactobacillus reuteri DSM 20016 and prebiotics (inulin, FOS and lactulose). The research was divided into two steps: in vitro evaluation of the effects of prebiotic compounds; validation at laboratory level with production of functional cream mini-cheeses. Prebiotics showed a protective effect: B. animalis subsp. lactis DSM 10140 cultivability on Petri dishes was positively influenced by lactulose, whereas fructooligosaccharides (FOS) were the prebiotic compounds able to prolong Lb. reuteri DSM 20016 cultivability. At 30 °C, a prolongation of the death time (more than 300 days) was observed, while the controls showed death time values about 100 days. At 45 °C, death time values increased from 32.2 (control) to 33, 35, and 38 days in the samples added with FOS, inulin and lactulose, respectively. Lactulose and FOS were chosen to be added to cream mini-cheeses inoculated with B. animalis subsp. lactis DSM 10140 and Lb. reuteri DSM 20016, respectively; the proposed functional cream cheese resulted in a product with favourable conditions for the viability of both probiotics which maintained cultivable cells above the recommended level during 28 days of storage at 4 °C with good sensory characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium, Lactobacillus delbrueckii subsp. bulgaricus strain 2038, in the pigs.

    Science.gov (United States)

    Ohashi, Yuji; Tokunaga, Makoto; Taketomo, Naoki; Ushida, Kazunari

    2007-02-01

    The aim of this study was to evaluate the effect of feeding yoghurt, prepared with Lactobacillus delbrueckii subsp. bulgaricus strain 2038, on indigenous lactobacilli in the pig cecum. Three female pigs fistulated at the cecum were fed 250 g of this yoghurt that contained over 10(11) colony-forming units of L. delbrueckii subsp. bulgaricus strain 2038 with their daily meal for 2 wk. The relative abundance and the composition of cecal lactobacilli was monitored by analysis of bacterial 16S rDNA with real time PCR and amplified bacterial rDNA restriction analysis using Lactobacillus-group specific primers, respectively, for 2 wk prior to, at the end of 2 wk of and 2 wk after the administration of this yoghurt. The relative abundance of lactobacilli was significantly increased by feeding yoghurt (pdelbrueckii subsp. bulgaricus strain 2038 was not detected by amplified bacterial rDNA restriction analysis during this study. The number of operational taxonomic units (OTUs) detected was increased with feeding of the yoghurt in all pigs. At the same time, the estimated cell number of each OTU was increased with feeding of the yoghurt. It is demonstrated that continuous consumption of the probiotic lactobacilli will stimulate the growth of some indigenous lactobacilli and alter the composition of the lactobacilli.

  13. Protein Pattern and Plasmid Profile of Lactic Acid Bacteria Isolated from Dahi, A Traditional Fermented Milk Product of Pakistan

    Directory of Open Access Journals (Sweden)

    Tariq Masud

    2007-01-01

    Full Text Available A total of 116 isolates were identified from randomly collected market dahi samples from Rawalpindi, Pakistan. Lactic acid bacteria dominated the microbial population of dahi and were identified according to their morphological and physiological characteristics. Among these lactobacilli were frequently occurring organisms. The phenotypic and biochemical analyses gave a diversity of species (8 presumptive species. The most abundant species were Lactobacillus delbrueckii subsp. bulgaricus (28 isolates and Streptococcus thermophilus (25 isolates. Some contaminants such as Staphylococcus, Micrococcus and Saccharomyces spp. were also observed. The whole cell protein profiles of selected strains of lactic acid bacteria were examined by SDS-PAGE. It was observed that each species yielded a different electrophoretic pattern. It was further observed that among the strains investigated for the analysis of plasmid DNA 22 strains were found positive, 8 strains of L. delbrueckii subsp. bulgaricus followed by 5 of L. acidophilus, 4 of L. casei, 3 of L. helveticus and one of each L. delbrueckii subsp. delbrueckii and L. delbrueckii subsp. lactis, whereas no plasmid was observed in S. thermophilus and L. lactis strains investigated during the study. All the plasmids isolated were mostly large size plasmids and ranged from 20 to 25 kb in size.

  14. Listeria innocua and Lactobacillus delbrueckii subsp. bulgaricus employ different strategies to cope with acid stress

    DEFF Research Database (Denmark)

    Shabala, Lana; McMeekin, Tom; Budde, Birgitte Bjørn

    2006-01-01

    '-dichlorofluorescein diacetate succinimidyl ester (CDCFDA-SE) was employed that enabled reliable measurements of intracellular pH (pHi) to a minimum pHi of 4.0. Changes in pHi and H+ fluxes from immobilised bacteria were measured using fluorescence ratio imaging microscopy (FRIM) and a non-invasive ion flux measuring...... technique (MIFE), respectively. L. innocua maintained a relatively constant pHi of 5.5-6.1 at pHex 4 and 5 via H+ extrusion. In contrast, L. delbrueckii subsp. bulgaricus progressively lowered pHi towards pHex over the entire pHex range examined. The type of acidulant used influenced pH regulation with both...... pHi and H+ -fluxes being more severely affected by LA compared to HCl. Overall, our data demonstrated different adaptive strategies in these two bacteria. While L. innocua expels protons to maintain a constant pHi, L. delbrueckii subsp. bulgaricus allows proton entry after acidic treatment so that pHi...

  15. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    Science.gov (United States)

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-03-03

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. Copyright © 2016 Meneghel et al.

  16. From Genome to Phenotype: An Integrative Approach to Evaluate the Biodiversity of Lactococcus lactis

    Science.gov (United States)

    Laroute, Valérie; Tormo, Hélène; Couderc, Christel; Mercier-Bonin, Muriel; Le Bourgeois, Pascal; Cocaign-Bousquet, Muriel; Daveran-Mingot, Marie-Line

    2017-01-01

    Lactococcus lactis is one of the most extensively used lactic acid bacteria for the manufacture of dairy products. Exploring the biodiversity of L. lactis is extremely promising both to acquire new knowledge and for food and health-driven applications. L. lactis is divided into four subspecies: lactis, cremoris, hordniae and tructae, but only subsp. lactis and subsp. cremoris are of industrial interest. Due to its various biotopes, Lactococcus subsp. lactis is considered the most diverse. The diversity of L. lactis subsp. lactis has been assessed at genetic, genomic and phenotypic levels. Multi-Locus Sequence Type (MLST) analysis of strains from different origins revealed that the subsp. lactis can be classified in two groups: “domesticated” strains with low genetic diversity, and “environmental” strains that are the main contributors of the genetic diversity of the subsp. lactis. As expected, the phenotype investigation of L. lactis strains reported here revealed highly diverse carbohydrate metabolism, especially in plant- and gut-derived carbohydrates, diacetyl production and stress survival. The integration of genotypic and phenotypic studies could improve the relevance of screening culture collections for the selection of strains dedicated to specific functions and applications. PMID:28534821

  17. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt

    NARCIS (Netherlands)

    Settachaimongkon, S.; Nout, M.J.R.; Antunes Fernandes, E.C.; Hettinga, K.A.; Vervoort, J.J.M.; Hooijdonk, van A.C.M.; Zwietering, M.H.; Smid, E.J.; Valenberg, van H.J.F.

    2014-01-01

    Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L.

  18. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase.

    Science.gov (United States)

    Cornelissen, Anneleen; Sadovskaya, Irina; Vinogradov, Evgeny; Blangy, Stéphanie; Spinelli, Silvia; Casey, Eoghan; Mahony, Jennifer; Noben, Jean-Paul; Dal Bello, Fabio; Cambillau, Christian; van Sinderen, Douwe

    2016-08-05

    Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca(2+) ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis

    NARCIS (Netherlands)

    Visweswaran, Ganesh Ram R.; Kurek, Dorota; Szeliga, Monika; Pastrana, Francisco Romero; Kuipers, Oscar P.; Kok, Jan; Buist, Girbe

    Analysis of autolysis of derivatives of Lactococcus lactis subsp. cremoris MG1363 and subsp. lactis IL1403, both lacking the major autolysin AcmA, showed that L. lactis IL1403 still lysed during growth while L. lactis MG1363 did not. Zymographic analysis revealed that a peptidoglycan hydrolase

  20. Different effects of two newly-isolated probiotic Lactobacillus plantarum 15HN and Lactococcus lactis subsp. Lactis 44Lac strains from traditional dairy products on cancer cell lines.

    Science.gov (United States)

    Haghshenas, Babak; Abdullah, Norhafizah; Nami, Yousef; Radiah, Dayang; Rosli, Rozita; Khosroushahi, Ahmad Yari

    2014-12-01

    Lactobacillus and Lactococcus strains isolated from food products can be introduced as probiotics because of their health-promoting characteristics and non-pathogenic nature. This study aims to perform the isolation, molecular identification, and probiotic characterization of Lactobacillus and Lactococcus strains from traditional Iranian dairy products. Primary probiotic assessments indicated high tolerance to low pH and high bile salt conditions, high anti-pathogenic activities, and susceptibility to high consumption antibiotics, thus proving that both strains possess probiotic potential. Cytotoxicity assessments were used to analyze the effects of the secreted metabolite on different cancer cell lines, including HT29, AGS, MCF-7, and HeLa, as well as a normal human cell line (HUVEC). Results showed acceptable cytotoxic properties for secreted metabolites (40 μg/ml dry weight) of Lactococcus lactis subsp. Lactis 44Lac. Such performance was similar to that of Taxol against all of the treated cancer cell lines; however, the strain exhibited no toxicity on the normal cell line. Cytotoxic assessments through flow cytometry and fluorescent microscopy demonstrated that apoptosis is the main cytotoxic mechanism for secreted metabolites of L. lactis subsp. Lactis 44Lac. By contrast, the effects of protease-treated metabolites on the AGS cell line verified the protein nature of anti-cancer metabolites. However, precise characterizations and in vitro/in vivo investigations on purified proteins should be conducted before these metabolites are introduced as potential anti-cancer therapeutics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Influence of gastrointestinal system conditions on adhesion of exopolysaccharide-producing Lactobacillus delbrueckii subsp. bulgaricus strains to caco-2 cells

    Directory of Open Access Journals (Sweden)

    Derya Onal Darilmaz

    2011-10-01

    Full Text Available This study aimed to assess the transit tolerance of potential probiotic dairy Lactobacillus strains in human uppergastrointestinal tract in vitro, and to evaluate the effect of EPS production on the viability and adhesion of these strains. Survival and adhesion of two exopolysaccharide (EPS-producing L. delbrueckii subsp. bulgaricus strains (B3 and B2 and E. coli ATCC11229 were assessed after the exposure of different pH (gastric juice and gastric plus pancreatic juice challenges. In the artificial gastric juice (pH 2, both the viability of the strain B3 and B2 was decreased. Artificial juice treatments significantly reduced the adhesion to caco-2 cells (P< 0.05. High EPS-producing B3 survived better in the adverse gastrointestinal conditions and showed better ability of adhesion to Caco-2 cells when assessed for competition with E. coli ATCC 11229 compared to low EPS-producing B2. This investigation showed that EPS production could be affected or be involved in the viability, adherence and competition of L. delbrueckii subsp. bulgaricus strains and support the potential of B3 strain for development of new probiotic products.

  2. Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions.

    Science.gov (United States)

    Velly, H; Fonseca, F; Passot, S; Delacroix-Buchet, A; Bouix, M

    2014-09-01

    To investigate the effects of fermentation parameters on the cell growth and on the resistance to each step of the freeze-drying process of Lactococcus lactis subsp. lactis TOMSC161, a natural cheese isolate, using a response surface methodology. Cells were cultivated at different temperatures (22, 30 and 38°C) and pH (5·6, 6·2 and 6·8) and were harvested at different growth phases (0, 3 and 6 h of stationary phase). Cultivability and acidification activity losses of Lc. lactis were quantified after freezing, drying, 1 and 3 months of storage at 4 and 25°C. Lactococcus lactis was not damaged by freezing but was sensitive to drying and to ambient temperature storage. Moreover, the fermentation temperature and the harvesting time influenced the drying resistance of Lc. lactis. Lactococcus lactis cells grown in a whey-based medium at 32°C, pH 6·2 and harvested at late stationary phase exhibited both an optimal growth and the highest resistance to freeze-drying and storage. A better insight on the individual and interaction effects of fermentation parameters made it possible the freeze-drying and storage preservation of a sensitive strain of technological interest. Evidence on the particularly damaging effect of the drying step and the high-temperature storage is presented. © 2014 The Society for Applied Microbiology.

  3. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Aakko, J; Sánchez, B; Gueimonde, M; Salminen, S

    2014-07-01

    The purpose of this study was to investigate the heat-shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and their heat-tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress. The study strains were exposed for 2 h to a heat-shock treatment, Bif. animalis subsp. lactis BB-12 and its derivative at 50°C and the Lact. rhamnosus GG and its derivative at 60°C. Protein synthesis before and after heat shock was examined using proteomics and RT-qPCR. The analysis revealed that the regulation of seven proteins in both strain pairs was modified as a response to heat or between the original and the derivative strain. The comparison of wild-type strains and the heat-tolerant derivatives suggests that the acquisition of heat tolerance in the Bif. animalis subsp. lactis BB-12 derivative is due to a slightly increased constitutive level of chaperones, while in Lact. rhamnosus GG derivative, the main reason seems to be a higher ability to induce the production of chaperones. This study revealed possible markers of heat tolerance in B. lactis and Lact. rhamnosus strains. This study increases our knowledge on how Lactobacillus and Bifidobacterium strains may acquire heat tolerance. These findings may be useful for improving the heat tolerance of existing probiotic strains as well as screening new heat-tolerant strains. © 2014 The Society for Applied Microbiology.

  4. Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Chen, Yujie; Kong, Qing; Chi, Chen; Shan, Shihua; Guan, Bin

    2015-10-15

    The purpose of this study was to explore the ability of anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus to biotransform aflatoxins in peanut meal. The pH of the peanut meal was adjusted above 10, and then heated for 10 min at 100 °C, 115 °C and 121 °C. The S. thermophilus and L. delbrueckii subsp. bulgaricus were precultured together in MRS broth for 48 h at 37 °C. The heated peanut meal was mixed with precultured MRS broth containing 7.0×10(8) CFU/mL of S. thermophilus and 3.0×10(3) CFU/mL of L. delbrueckii subsp. bulgaricus with the ratio of 1 to 1 (weight to volume) and incubated in anaerobic jars at 37 °C for 3 days. The aflatoxin content in the peanut meal samples was determined by HPLC. The results showed that the peanut meal contained mainly aflatoxin B1 (AFB1) (10.5±0.64 μg/kg) and aflatoxin G1 (AFG1) (18.7±0.55 μg/kg). When heat treatment was combined with anaerobic solid fermentation, the biotransformation rate of aflatoxins in peanut meal could attain 100%. The cytotoxicity of fermented peanut meal to L929 mouse connective tissue fibroblast cells was determined by MTT assay and no significant toxicity was observed in the fermented peanut meal. Furthermore, heat treatment and anaerobic solid fermentation did not change the amino acid concentrations and profile in peanut meal. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. NADH Oxidase of Streptococcus thermophilus 1131 is Required for the Effective Yogurt Fermentation with Lactobacillus delbrueckii subsp. bulgaricus 2038

    OpenAIRE

    SASAKI, Yasuko; HORIUCHI, Hiroshi; KAWASHIMA, Hiroko; MUKAI, Takao; YAMAMOTO, Yuji

    2014-01-01

    We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of ...

  6. High-Resolution Amplified Fragment Length Polymorphism Typing of Lactococcus lactis Strains Enables Identification of Genetic Markers for Subspecies-Related Phenotypes▿

    Science.gov (United States)

    Kütahya, Oylum Erkus; Starrenburg, Marjo J. C.; Rademaker, Jan L. W.; Klaassen, Corné H. W.; van Hylckama Vlieg, Johan E. T.; Smid, Eddy J.; Kleerebezem, Michiel

    2011-01-01

    A high-resolution amplified fragment length polymorphism (AFLP) methodology was developed to achieve the delineation of closely related Lactococcus lactis strains. The differentiation depth of 24 enzyme-primer-nucleotide combinations was experimentally evaluated to maximize the number of polymorphisms. The resolution depth was confirmed by performing diversity analysis on 82 L. lactis strains, including both closely and distantly related strains with dairy and nondairy origins. Strains clustered into two main genomic lineages of L. lactis subsp. lactis and L. lactis subsp. cremoris type-strain-like genotypes and a third novel genomic lineage rooted from the L. lactis subsp. lactis genomic lineage. Cluster differentiation was highly correlated with small-subunit rRNA homology and multilocus sequence analysis (MLSA) studies. Additionally, the selected enzyme-primer combination generated L. lactis subsp. cremoris phenotype-specific fragments irrespective of the genotype. These phenotype-specific markers allowed the differentiation of L. lactis subsp. lactis phenotype from L. lactis subsp. cremoris phenotype strains within the same L. lactis subsp. cremoris type-strain-like genomic lineage, illustrating the potential of AFLP for the generation of phenotype-linked genetic markers. PMID:21666014

  7. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium.

    Science.gov (United States)

    Ariana, Mehdi; Hamedi, Javad

    2017-08-20

    Nisin is a safe, approved and commercial bacteriocin that is produced by Lactococcus lactis subsp. lactis. Since lactate accumulation in fermentation medium reduces L. lactis growth and nisin production, Yarrowia lipolytica, a lactate consuming yeast and L. lactis subsp. lactis, were simultaneously cultured in a molasses based medium. Y. lipolytica is not able to consume sucrose as carbon source, but rather consumes lactate and hence decrease lactic acid titer by 10% in the medium. Lactic acid consumption, 15% increased pH value and stimulated L. lactis growth. In the mixed culture, nisin production and L. lactis growth were 50% and 49% higher than that of pure culture, respectively. Also the results showed that specific growth rate of L. lactis increased 4 times more than that of the pure culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    Science.gov (United States)

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-03

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. Copyright © 2011. Published by Elsevier B.V.

  9. Cloning, Expression, and Functional Characterization of Secondary Amino Acid Transporters of Lactococcus lactis

    NARCIS (Netherlands)

    Trip, Hein; Mulder, Niels L.; Lolkema, Juke S.

    Fourteen genes encoding putative secondary amino acid transporters were identified in the genomes of Lactococcus lactis subsp. cremoris strains MG1363 and SK11 and L. lactis subsp. lactis strains IL1403 and KF147, 12 of which were common to all four strains. Amino acid uptake in L. lactis cells

  10. Influence of the addition of Lactobacillus acidophilus La-05, Bifidobacterium animalis subsp. lactis Bb-12 and inulin on the technological, physicochemical, microbiological and sensory features of creamy goat cheese.

    Science.gov (United States)

    Barbosa, Ilsa C; Oliveira, Maria E G; Madruga, Marta S; Gullón, Beatriz; Pacheco, Maria T B; Gomes, Ana M P; Batista, Ana S M; Pintado, Maria M E; Souza, Evandro L; Queiroga, Rita C R E

    2016-10-12

    The effects of the addition of Lactobacillus acidophilus LA-05, Bifidobacterium animalis subsp. lactis BB-12 and inulin on the quality characteristics of creamy goat cheese during refrigerated storage were evaluated. The manufactured cheeses included the addition of starter culture (Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris - R-704) (CC); starter culture, L. acidophilus LA-05 and inulin (CLA); starter culture, B. lactis BB-12 and inulin (CBB); or starter culture, L. acidophilus LA-05, B. lactis BB-12 and inulin (CLB). In the synbiotic cheeses (CLA, CBB and CLB), the counts of L. acidophilus LA-05 and B. lactis BB-12 were greater than 6log CFU g -1 , the amount of inulin was greater than 6 g per 100 g, and the firmness was reduced. The cheeses evaluated had high brightness values (L*), with a predominance of yellow (b*). CC had higher contents of proteins, lipids and minerals compared to the other cheeses. There was a decrease in the amount of short-chain fatty acids (SCFAs) and an increase of medium-chain (MCFAs) and long-chain fatty acids (LCFAs) in the synbiotic cheeses compared to CC. The amount of conjugated linoleic acid increased in CLA, CBB and CLB. The highest depth of proteolysis and the greatest changes in the release of free amino acids were found in CLB. The addition of inulin and probiotics, alone or in co-culture, did not affect the cheese acceptance. Inulin and probiotics can be used together for the production of creamy goat cheese without negatively affecting the general quality characteristics of the product, and to add value because of its synbiotic potential.

  11. DEGRADATION AND DEBITTERING OF A TRYPTIC DIGEST FROM BETA-CASEIN BY AMINOPEPTIDASE-N FROM LACTOCOCCUS-LACTIS SUBSP CREMORIS WG2

    NARCIS (Netherlands)

    TAN, PST; VANKESSEL, TAJM; VANDEVEERDONK, FLM; ZUURENDONK, PF; BRUINS, AP; KONINGS, WN

    The mode of action of purified aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2 on a complex peptide mixture of a tryptic digest from bovine beta-casein was analyzed. The oligopeptides produced in the tryptic digest before and after aminopeptidase N treatment were identified by analysis

  12. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    Science.gov (United States)

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Genome Sequence Analysis of the Biogenic Amine-Producing Strain Lactococcus lactis subsp. cremoris CECT 8666 (Formerly GE2-14)

    Science.gov (United States)

    del Rio, Beatriz; Linares, Daniel M.; Fernandez, Maria; Mayo, Baltasar; Martin, M. Cruz; Alvarez, Miguel A.

    2014-01-01

    We here report a 2,801,031-bp annotated draft assembly for the Lactococcus lactis subsp. cremoris GE2-14 genome. This dairy strain produces the biogenic amine putrescine. This sequence may help identify the mechanisms regulating putrescine biosynthesis and throw light on ways to reduce its presence in fermented foods. PMID:25342694

  14. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.

    Science.gov (United States)

    del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Linares, Daniel M; Fernández, Maria; Martín, Maria Cruz; Alvarez, Miguel A

    2015-06-01

    Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains.

    Science.gov (United States)

    Boyanova, L; Gergova, G; Markovska, R; Yordanov, D; Mitov, I

    2017-12-01

    The aim of the study was to detect anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains by four cell-free supernatant (CFS) types. Activity of non-neutralized and non-heat-treated (CFSs1), non-neutralized and heat-treated (CFSs2), pH neutralized, catalase-treated and non-heat-treated (CFSs3), or neutralized, catalase- and heat-treated (CFSs4) CFSs against 18 H. pylori strains (11 of which with antibiotic resistance) was evaluated. All GLB strains produced bacteriocin-like inhibitory substances (BLISs), the neutralized CFSs of two GLB strains inhibited >81% of test strains and those of four GLB strains were active against >71% of antibiotic resistant strains. Two H. pylori strains were BLIS resistant. The heating did not reduce the CFS activity. Briefly, all GLB strains evaluated produced heat-stable BLISs, although GLB and H. pylori strain susceptibility patterns exhibited differences. Bacteriocin-like inhibitory substance activity can be an advantage for the probiotic choice for H. pylori infection control. In this study, anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains was evaluated by four cell-free supernatant (CFS) types. The GLB strains produced heat-stable bacteriocin-like inhibitory substances (BLISs) with a strong anti-H. pylori activity and some neutralized, catalase- and heat-treated CFSs inhibited >83% of the test strains. Bacteriocin-like inhibitory substance production of GLB strains can render them valuable probiotics in the control of H. pylori infection. © 2017 The Society for Applied Microbiology.

  16. Safety of Bifidobacterium animalis Subsp. Lactis (B. lactis) Strain BB-12-Supplemented Yogurt in Healthy Children.

    Science.gov (United States)

    Tan, Tina P; Ba, Zhaoyong; Sanders, Mary E; D'Amico, Frank J; Roberts, Robert F; Smith, Keisha H; Merenstein, Daniel J

    2017-02-01

    Probiotics are live microorganisms that may provide health benefits to the individual when consumed in sufficient quantities. For studies conducted on health or disease endpoints on probiotics in the United States, the Food and Administration has required those studies to be conducted as investigational new drugs. This phase I, double-blinded, randomized, controlled safety study represents the first requirement of this pathway. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp. lactis (B lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of children. The secondary aim was to assess the effect of BB-12-supplemented yogurt on the gut microbiota of the children. Sixty children ages 1 to 5 years were randomly assigned to consume 4 ounces of either BB-12-supplemented yogurt or nonsupplemented control yogurt daily for 10 days. The primary outcome was to assess safety and tolerability, as determined by the number of reported adverse events. A total of 186 nonserious adverse events were reported, with no significant differences between the control and BB-12 groups. No significant changes due to probiotic treatment were observed in the gut microbiota of the study cohort. BB-12-supplemented yogurt is safe and well-tolerated when consumed by healthy children. The present study will form the basis for future randomized clinical trials investigating the potential effects of BB-12-supplemented yogurt in different disease states.

  17. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to a combination of Lactobacillus delbrueckii subsp. bulgaricus AY/CSL (LMG P-17224) and Streptococcus thermophilus 9Y/CSL (LMG P-17225) and “beneficial modulation

    DEFF Research Database (Denmark)

    Tetens, Inge

    of a health claim related to a combination of Lactobacillus delbrueckii subsp. bulgaricus AY/CSL (LMG P-17224) and Streptococcus thermophilus 9Y/CSL (LMG P-17225) and “beneficial modulation of intestinal microflora”. The scope of the application was proposed to fall under a health claim referring to children......’s development and health. The food constituent that is the subject of the health claim, a combination of L. delbrueckii subsp. bulgaricus AY/CSL (LMG P-17224) and S. thermophilus 9Y/CSL (LMG P-17225), has not been sufficiently characterised. The claimed effect is “beneficial modulation of the intestinal...... that a cause and effect relationship has not been established between the consumption of the food constituent, the combination of L. delbrueckii subsp. bulgaricus AY/CSL (LMG P-17224) and S. thermophilus 9Y/CSL (LMG P-17225), and a beneficial physiological effect related to “beneficial modulation...

  18. Lactobacillus delbrueckii bakteriyofajı LL-H'nin konakçı spektrumu

    OpenAIRE

    Gökçe, Özge

    2010-01-01

    Bu çalışmada, 7 Lactobacillus delbrueckii ssp. lactis, 6 Lactobacillus delbrueckii ssp. bulgaricus ve 5 Lactobacillus helveticus suşu kullanılarak Lactobacillus delbrueckii bakteriyofajı LL-H'nin konakçı spektrumu incelenmiştir. Her bir suş için çift tabakalı plak titresi (double-layer plaque assay) yöntemi kullanılarak en az 2 tekrar ile adsorbsiyon kinetiği incelenmiştir. Adsorbsiyon kinetiğini incelemek için 0, 3, 10, 30 ve 50. dakikalar dikkate alınarak adsorbsiyon eğrileri oluşturulmuştu...

  19. Structural basis for arabinoxylo‐oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl‐04

    DEFF Research Database (Denmark)

    Hansen, Morten Ejby; Fredslund, Folmer; Vujicic‐Zagar, Andreja

    2013-01-01

    Glycan utilization plays a key role in modulating the composition of the gut microbiota, but molecular insight into oligosaccharide uptake by this microbial community is lacking. Arabinoxylo‐oligosaccharides (AXOS) are abundant in the diet, and are selectively fermented by probiotic bifidobacteria...... in the colon. Here we show how selectivity for AXOS uptake is established by the probiotic strain Bifidobacterium animalis subsp. lactis Bl‐04. The binding protein BlAXBP, which is associated with an ATP‐binding cassette (ABC) transporter that mediates the uptake of AXOS, displays an exceptionally broad...

  20. Lactococcus lactis Subsp. Lactis Suşlarında Yüksek Sıklıkta Konjugal Transfer Sistemlerinin Analizi

    Directory of Open Access Journals (Sweden)

    Çağla Tükel

    2015-02-01

    Full Text Available Bu çalışmada L. lactis subsp. lactis suşlarında laktoz fermentasyonu özelliğini kodlayan altı farklı plazmidin yüksek sıklıkta konjugal aktarım yeteneği araştırıldı. Bu plazmidlerin konjugal transfer sıklıkları; iki seks faktörünün interaksiyonuna bağlı olarak (Clu ve Agg, Clu-/Agg-, Agg+ x Clu-/Agg+, Agg- ya da Clu+/Agg- x Clu-/Agg- konjugasyon eşleri için 1.5x10-5–1.0x10-7 ve Clu+/Agg- x Clu-/Agg+ konjugasyon eşleri için 7.1x10-2-2.7x10-3 oranlarında değişim gösterdi. Laktoz plazmidlerinin stabiliteleri ise; doğal suşlarda %82-96, MG1390 alıcı suşu için tanımlanan konjugantlarda %77-98 ve MCL8060 alıcı suşu için tanımlanan konjugantlarda ise %44-67 arasında saptandı.

  1. Effect of oligosaccharides on the growth of Lactobacillus delbrueckii subsp. bulgaricus strains isolated from dairy products.

    Science.gov (United States)

    Ignatova, Tseteslava; Iliev, Ilia; Kirilov, Nikolai; Vassileva, Tonka; Dalgalarrondo, Michèle; Haertlé, Thomas; Chobert, Jean-Marc; Ivanova, Iskra

    2009-10-28

    Eighteen lactic acid bacteria (LAB) strains isolated from dairy products, all identified as Lactobacillus delbrueckii subsp. bulgaricus, were tested for their ability to grow on three different oligosaccharides: fructo-oligosaccharides (FOS), gluco-oligosaccharides (GOS) and galacto-oligosaccharides (GalOS). The growth of LAB on different oligosaccharides was very different. Study of the antimicrobial activities of these LAB indicated that the system of uptake of unusual sugars influenced in a specific way the production of antimicrobial substances (bacteriocins) specific against gram-negative bacteria. The added oligosaccharides induced LAB to form end-products of a typical mixed acid fermentation. The utilization of different types of oligosaccharides may help to explain the ability of Lactobacillus strains to compete with other bacteria in the ecosystem of the human gastro-intestinal tract.

  2. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Pang, Xiaoyang; Liu, Cuiping; Lyu, Pengcheng; Zhang, Shuwen; Liu, Lu; Lu, Jing; Ma, Changlu; Lv, Jiaping

    2016-12-14

    Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.

  3. Structure determination of the neutral exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1.

    Science.gov (United States)

    Van Calsteren, Marie-Rose; Gagnon, Fleur; Nishimura, Junko; Makino, Seiya

    2015-09-02

    The neutral exopolysaccharide (NPS) of Lactobacillus delbrueckii subsp. bulgaricus strain OLL1073R-1 was purified and characterized. The molecular mass was 5.0×10(6) g/mol. Sugar and absolute configuration analyses gave the following composition: d-Glc, 1; d-Gal, 1.5. The NPS was also submitted to periodate oxidation followed by borohydride reduction and Smith degradation. Sugar and methylation analyses, (1)H and (13)C nuclear magnetic resonance, and mass spectrometry of the NPS or of its specifically modified products allowed determining the repeating unit sequence: {2)Glc(α1-3)Glc(β1-3)[Gal(β1-4)]Gal(β1-4)Gal(α1-}n. The structure is compared to that of exopolysaccharides produced by other Lactobacillus bulgaricus strains. Copyright © 2015. Published by Elsevier Ltd.

  4. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12®-supplemented yogurt in healthy children

    Science.gov (United States)

    Tan, Tina P.; Ba, Zhaoyong; Sanders, Mary Ellen; D’Amico, Frank J.; Roberts, Robert F.; Smith, Keisha Herbin; Merenstein, Daniel J.

    2016-01-01

    Objectives Probiotics are live microorganisms that may provide health benefits to the individual when consumed in sufficient quantities. For studies conducted on health or disease endpoints on probiotics in the United States, the Food and Administration (FDA) has required those studies to be conducted as investigational new drugs. This phase I, double-blinded, randomized, controlled safety study represents the first requirement of this pathway. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12® (BB-12®)-supplemented yogurt when consumed by a generally healthy group of children. The secondary aim was to assess the effect of BB-12®-supplemented yogurt on the gut microbiota of the children. Methods Sixty children aged 1–5 years were randomly assigned to consume four ounces of either BB-12®-supplemented yogurt or non-supplemented control yogurt daily for 10 days. The primary outcome was to assess safety and tolerability, as determined by the number of reported adverse events. Results A total of 186 non-serious adverse events were reported, with no significant differences between the control and BB-12® groups. No significant changes due to probiotic treatment were observed in the gut microbiota of the study cohort. Conclusions BB-12®-supplemented yogurt is safe and well-tolerated when consumed by healthy children. This study will form the basis for future randomized clinical trials investigating the potential effects of BB-12®-supplemented yogurt in different disease states. PMID:28114246

  5. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice.

    Science.gov (United States)

    Kawahara, Miho; Nemoto, Maki; Nakata, Toru; Kondo, Saya; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi

    2015-06-01

    Six lactic acid bacteria strains (four Lactobacillus plantarum strains and one each of Lactococcus lactis subsp. lactis and Pediococcus pentosaceus) have been isolated and shown to possess anti-oxidant activity. In this study, we determined their acid, bile, salt resistance, and adhesion activity on human enterocyte-like HT-29-Luc and Caco-2 cells. An isolate Lc. lactis S-SU2 showed highest bile resistance and adhesion activity compared to type strains. S-SU2 could ferment both 10% skimmed milk and soy milk while the type strain could not ferment soy milk. Soy milk fermented with S-SU2 showed an increased nitric oxide (NO) secretion in the mouse macrophage RAW264.7 cells without bacterial lipopolysaccharide (LPS). Furthermore, the inhibitory effects of the fermented soy milk on Escherichia coli O111 LPS-induced NO secretion were higher than those of fresh soy milk. Inflammatory bowel disease (IBD) was induced in mice fed either 5% (w/v) dextran sodium sulfate (DSS) in drinking water or 50% soy milk in drinking water. Shortening of colon length, breaking of epithelial cells, lowering liver and thymus weights, and enlargement of spleen are some of the characteristics observed in the IBD, which were prevented by the use of soy milk fermented with Lc. lactis S-SU2. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey.

    Science.gov (United States)

    Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si

    2012-12-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

  7. Evaluation of Lactococcus lactis Isolates from Nondairy Sources with Potential Dairy Applications Reveals Extensive Phenotype-Genotype Disparity and Implications for a Revised Species.

    Science.gov (United States)

    Cavanagh, Daniel; Casey, Aidan; Altermann, Eric; Cotter, Paul D; Fitzgerald, Gerald F; McAuliffe, Olivia

    2015-06-15

    Lactococcus lactis is predominantly associated with dairy fermentations, but evidence suggests that the domesticated organism originated from a plant niche. L. lactis possesses an unusual taxonomic structure whereby strain phenotypes and genotypes often do not correlate, which in turn has led to confusion in L. lactis classification. A bank of L. lactis strains was isolated from various nondairy niches (grass, vegetables, and bovine rumen) and was further characterized on the basis of key technological traits, including growth in milk and key enzyme activities. Phenotypic analysis revealed all strains from nondairy sources to possess an L. lactis subsp. lactis phenotype (lactis phenotype); however, seven of these strains possessed an L. lactis subsp. cremoris genotype (cremoris genotype), determined by two separate PCR assays. Multilocus sequence typing (MLST) showed that strains with lactis and cremoris genotypes clustered together regardless of habitat, but it highlighted the increased diversity that exists among "wild" strains. Calculation of average nucleotide identity (ANI) and tetranucleotide frequency correlation coefficients (TETRA), using the JSpecies software tool, revealed that L. lactis subsp. cremoris and L. lactis subsp. lactis differ in ANI values by ∼14%, below the threshold set for species circumscription. Further analysis of strain TIFN3 and strains from nonindustrial backgrounds revealed TETRA values of lactis taxonomy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Alternative lactose catabolic pathway in Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Aleksandrzak-Piekarczyk, T; Kok, J; Renault, P; Bardowski, J

    2005-01-01

    In this study, we present a glimpse of the diversity of Lactococcus lactis subsp. lactis IL1403 beta-galactosidase phenotype-negative mutants isolated by negative selection on solid media containing cellobiose or lactose and X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), and we

  9. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis.

    Science.gov (United States)

    Visweswaran, Ganesh Ram R; Kurek, Dorota; Szeliga, Monika; Pastrana, Francisco Romero; Kuipers, Oscar P; Kok, Jan; Buist, Girbe

    2017-02-01

    Analysis of autolysis of derivatives of Lactococcus lactis subsp. cremoris MG1363 and subsp. lactis IL1403, both lacking the major autolysin AcmA, showed that L. lactis IL1403 still lysed during growth while L. lactis MG1363 did not. Zymographic analysis revealed that a peptidoglycan hydrolase activity of around 30 kDa is present in cell extracts of L. lactis IL1403 that could not be detected in strain MG1363. A comparison of all genes encoding putative peptidoglycan hydrolases of IL1403 and MG1363 led to the assumption that one or more of the 99 % homologous 27.9-kDa endolysins encoded by the prophages bIL285, bIL286 and bIL309 could account for the autolysis phenotype of IL1403. Induced expression of the endolysins from bIL285, bIL286 or bIL309 in L. lactis MG1363 resulted in detectable lysis or lytic activity. Prophage deletion and insertion derivatives of L. lactis IL1403 had a reduced cell lysis phenotype. RT-qPCR and zymogram analysis showed that each of these strains still expressed one or more of the three phage lysins. A homologous gene and an endolysin activity were also identified in the natural starter culture L. lactis subsp. cremoris strains E8, Wg2 and HP, and the lytic activity could be detected under growth conditions that were identical as those used for IL1403. The results presented here show that these endolysins of L. lactis are expressed during normal growth and contribute to autolysis without production of (lytic) phages. Screening for natural strains expressing homologous endolysins could help in the selection of strains with enhanced autolysis and, thus, cheese ripening properties.

  10. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    Science.gov (United States)

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  11. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp. bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677.

    Science.gov (United States)

    Zhai, Zhengyuan; Douillard, François P; An, Haoran; Wang, Guohong; Guo, Xinghua; Luo, Yunbo; Hao, Yanling

    2014-06-01

    To overcome the deleterious effects of acid stress, Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) elicits an adaptive response to acid stress. In this study, proteomics approach complemented by transcriptional analysis revealed some cellular changes in L. bulgaricus CAUH1 during acid adaptation. We observed an increase of glycolysis-associated proteins, promoting an optimal utilization of carbohydrates. Also, rerouting of the pyruvate metabolism to fatty acid biosynthesis was observed, indicating a possible modification of the cell membrane rigidity and impermeability. In addition, expression of ribosomal protein S1 (RpsA) was repressed; however, the expression of EF-Tu, EF-G and TypA was up-regulated at both protein and transcript levels. This suggests a reduction of protein synthesis in response to acid stress along with possible enhancement of the translational accuracy and protein folding. It is noteworthy that the putative transcriptional regulator Ldb0677 was 1.84-fold up-regulated. Heterologous expression of Ldb0677 was shown to significantly enhance acid resistance in host strain Lactococcus lactis. To clarify its role in transcriptional regulation network, the DNA-binding specificity of Ldb0677 was determined using bacterial one-hybrid and electrophoretic mobility shift assay. The identification of a binding motif (SSTAGACR) present in the promoter regions of 22 genes indicates that it might function as a major regulator in acid stress response in L. bulgaricus. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Structural investigation of cell wall polysaccharides of Lactobacillus delbrueckii subsp. bulgaricus 17.

    Science.gov (United States)

    Vinogradov, E; Sadovskaya, I; Cornelissen, A; van Sinderen, D

    2015-09-02

    Lactobacilli are valuable strains for commercial (functional) food fermentations. Their cell surface-associated polysaccharides (sPSs) possess important functional properties, such as acting as receptors for bacteriophages (bacterial viruses), influencing autolytic characteristics and providing protection against antimicrobial peptides. The current report provides an elaborate molecular description of several surface carbohydrates of Lactobacillus delbrueckii subsp. bulgaricus strain 17. The cell surface of this strain was shown to contain short chain poly(glycerophosphate) teichoic acids and at least two different sPSs, designated here as sPS1 and sPS2, whose chemical structures were examined by 2D nuclear magnetic resonance spectroscopy and methylation analysis. Neutral branched sPS1, extracted with n-butanol, was shown to be composed of hexasaccharide repeating units (-[α-d-Glcp-(1-3)-]-4-β-l-Rhap2OAc-4-β-d-Glcp-[α-d-Galp-(1-3)]-4-α-Rhap-3-α-d-Galp-), while the major component of the TCA-extracted sPS2 was demonstrated to be a linear d-galactan with the repeating unit structure being (-[Gro-3P-(1-6)-]-3-β-Galf-3-α-Galp-2-β-Galf-6-β-Galf-3-β-Galp-). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Immune Regulatory Effect of Newly Isolated Lactobacillus delbrueckii from Indian Traditional Yogurt.

    Science.gov (United States)

    Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Jeon, Boram; Jagdish, Deepa; Jang, Soojin; Chung, Dae Kyun; Kim, Hangeun

    2015-08-01

    Lactic acid bacteria (LAB) are microorganisms that are believed to provide health benefits. Here, we isolated LAB from Indian fermented foods, such as traditional Yogurt and Dosa. LAB from Yogurt most significantly induced TNF-α and IL-1β production, whereas LAB from Dosa induced mild cytokine production. After 16S rRNA gene sequencing and phylogenetic analysis, a Yogurt-borne lactic acid bacterium was identified and classified as Lactobacillus delbrueckii subsp. bulgaricus, and it was renamed L. delbrueckii K552 for the further studies. Our data suggest that the newly isolated L. delbrueckii can be used for the treatment of immune deficiency disorders.

  14. Molecular Interaction between Lipoteichoic Acids and Lactobacillus delbrueckii Phages Depends on d-Alanyl and α-Glucose Substitution of Poly(Glycerophosphate) Backbones▿

    Science.gov (United States)

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-01-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of α-glucosyl and d-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of d-alanine residues in the LTA backbones. Prior incubation of the LTAs with α-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of α-glucosyl-substituted, d-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption. PMID:17416656

  15. POTENTIAL OF Lactococcus lactis subsp. lactis MTCC 3041 AS A BIOPRESERVATIVE

    Directory of Open Access Journals (Sweden)

    Neha Sharma

    2013-10-01

    Full Text Available Lactic acid bacteria especially in developing countries can be exploited against frequently occurring spoilage organisms of fresh fruits and vegetables in addition to pathogens. Keeping in views this antagonism imparted by bacteria Lactococci, the present study was taken and effectiveness of bacteriocin of Lactococci was also studied in preservatives and enzymes. Lactic acid bacteria Lactococcus lactis subs. Lactis MTCC 3041 was used as bacteriocin producer strain. Isolation of most frequently occurring spoilage organisms from spoiled Mango and Kinnow was done by microbiological procedures and were identified by microscopic studies as Isolate 1 and Isolate 2. It has limited use in processed salted food as no zone of inhibition was observed at and above 5% NaCl (w/v.0.3% (w/v is the minimum concentration of KMS that provides stress to the microorganism for the production of bacteriocin. It is not suitable for food having sodium benzoate as preservative as with increase in concentration growth of Lactococcus lactis decreases. Presence of bacteriocin hinders the growth of the isolate 1 as fresh weight of the mycelium in test sample is 7.09% less than the control. Being non-pathogenic this organism can be safely used against spoilage organisms in addition to food borne pathogens.

  16. Characterization of Probiotic Fermented Milk Prepared by Different Inoculation Size of Mesophilic and Thermophilic Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Sara Nasiri Boosjin

    2016-10-01

    Full Text Available Background and Objectives: Importance of development of novel probiotic fermented milk and challenge made for its acceptability is well known. In this research, the impact of different inoculation sizes of yogurt and DL-type starter culture (mesophilic and thermophilic LAB on titratable acidity, viscosity, sensorial and microbial properties of fermented milk was investigated; and finally, probiotic Langfil was produced.Materials and Methods: Fermented milk produced by 1, 2 and 3% v v-1 inocula consisting thermophilic: mesophilic starter cultures 10:90 (Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. lactis biovar. diacetylactis and Leuconostoc mesenteroides subsp. cremoris. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. Bulgaricus were analyzed for determination of titratable acidity, viscosity, viability of mesophilic starter cultures and sensory properties on days 5, 10, and 15 of storage at 4°C. Then, the most suitable treatments were selected for the producing probiotic Langfil, containing probiotic starter culture (2% v v-1 inoculums with equal ratio of Lactobacillus acidophilus and Bifidobacterium bifidum. Lactococcus lactis and L. cremoris were counted on M17 agar, while Leuconostoc and Lactobacillus were counted aerobically on tomato juice agar and MRS bile agar, respectively. Bifidobacterium was cultured anaerobically on MRS bile agar. Sensory evaluation was carried out by ten trained panelists, based on a nine-point hedonic scale during the cold storage.Results and Conclusion: According to results, the best organoleptic properties were achieved in the product prepared with 2% the mesophilic and thermophilic starter cultures and 2% probiotic. This product had a high viscosity. An Iranian probiotic Langfil with desired properties was produced using the best treatment prepared.Conflict of interests: The authors declare no conflict of

  17. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12 and Streptococcus thermophilus (W22

    Directory of Open Access Journals (Sweden)

    Zehra Nur Yuksekdag

    2008-06-01

    Full Text Available Exopolysaccharides (EPSs production was studied by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12 and Streptococcus thermophilus (W22 in the medium containing various carbon sources (glucose, fructose, sucrose or lactose. For all the strains, glucose was the most efficient carbon source and B3, G12 and W22 strains produced 211, 175 and 120 EPS mg/L respectively. Also, the influence of different concentrations of glucose (5,10,15,20,25,30 g/L on EPS production and growth was studied. The results indicated that EPS production and growth were stimulated by the high glucose concentration (30 g/L.

  18. EXPRESSION OF A CHITINASE GENE FROM SERRATIA-MARCESCENS IN LACTOCOCCUS-LACTIS AND LACTOBACILLUS-PLANTARUM

    NARCIS (Netherlands)

    BRURBERG, MB; HAANDRIKMAN, AJ; LEENHOUTS, KJ; VENEMA, G; NES, IF

    1994-01-01

    A chitinase gene from the Gram-negative bacterium Serratia marcescens BJL200 was cloned in Lactococcus lactis subsp. lactis MG1363 and in the silage inoculum strain Lactobacillus plantarum E19b. The chitinase gene was expressed as an active enzyme at a low level in Lactococcus lactis, when cloned in

  19. The pyrimidine operon pyrRPB-carA from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Schallert, J.; Andersen, Birgit

    2001-01-01

    The four genes pyrR, pyrP, pyrB, and carA were found to constitute an operon in Lactococcus lactis subsp, lactis MG1363. The functions of the different genes were established by mutational analysis. The first gene in the operon is the pyrimidine regulatory gene, pyrR, which is responsible...

  20. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study.

    Science.gov (United States)

    Merenstein, Daniel J; Tan, Tina P; Molokin, Aleksey; Smith, Keisha Herbin; Roberts, Robert F; Shara, Nawar M; Mete, Mihriye; Sanders, Mary Ellen; Solano-Aguilar, Gloria

    2015-01-01

    Probiotics are live microorganisms that, when administered in sufficient doses, provide health benefits on the host. The United States Food and Drug Administration (FDA) requires phase I safety studies for probiotics when the intended use of the product is as a drug. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp lactis (B. lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of adults who were prescribed a 10-day course of antibiotics for a respiratory infection. Secondary aims were to assess the ability of BB-12 to affect the expression of whole blood immune markers associated with cell activation and inflammatory response. A phase I, double-blinded, randomized controlled study was conducted in compliance with FDA guidelines for an Investigational New Drug (IND). Forty participants were randomly assigned to consume 4 ounces of either BB-12 -supplemented yogurt or non-supplemented control yogurt daily for 10 d. The primary outcome was to assess safety and tolerability, assessed by the number of reported adverse events. A total of 165 non-serious adverse events were reported, with no differences between the control and BB-12 groups. When compared to the control group, B lactis fecal levels were modestly higher in the BB-12-supplemented group. In a small subset of patients, changes in whole blood expression of genes associated with regulation and activation of immune cells were detected in the BB-12-supplemented group. BB-12-supplemented yogurt is safe and well tolerated when consumed by healthy adults concurrently taking antibiotics. This study will form the basis for future randomized clinical trials investigating the potential immunomodulatory effects of BB-12-supplemented yogurt in a variety of disease states.

  1. Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Tymczyszyn, E Elizabeth; Gerbino, Esteban; Illanes, Andrés; Gómez-Zavaglia, Andrea

    2011-04-01

    In this work, the protective capacity of galacto-oligosaccharides in the preservation of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was evaluated. Lactobacillus bulgaricus was freeze-dried or dried over silica gel in the presence of three commercial products containing galacto-oligosaccharides. The freeze-dried samples were stored at 5 and 25°C for different periods of time. After desiccation, freeze-drying or storage, samples were rehydrated and bacterial plate counts were determined. According to the results obtained, all galacto-oligosaccharides assays demonstrated to be highly efficient in the preservation of L. bulgaricus. The higher content of galacto-oligosaccharides in the commercial products was correlated with their higher protective capacity. Galacto-oligosaccharides are widely known by their prebiotic properties. However, their role as protective molecules have not been reported nor properly explored up to now. In this work the protective capacity of galacto-oligosaccharides in the preservation of L. bulgaricus, a strain particularly sensitive to any preservation process, was demonstrated. The novel role of galacto-oligosaccharides as protective molecules opens up several perspectives in regard to their applications. The supplementation of probiotics with galacto-oligosaccharides allows the production of self-protected synbiotic products, galacto-oligosaccharides exerting both a prebiotic and protecting effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.

    Science.gov (United States)

    Nguyen, Tien-Thanh; Nguyen, Hoang Anh; Arreola, Sheryl Lozel; Mlynek, Georg; Djinović-Carugo, Kristina; Mathiesen, Geir; Nguyen, Thu-Ha; Haltrich, Dietmar

    2012-02-22

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.

  3. Strains of Lactococcus lactis with a partial pyrimidine requirement show sensitivity toward aspartic acid

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lyders Lerche; Martinussen, Jan

    2009-01-01

    The growth rate of the widely used laboratory strain Lactococcus lactis subsp. cremoris LM0230 was reduced if aspartic acid were present in the growth medium. The strain LM0230 is a plasmid- and phage-cured derivative of L. lactis subsp. cremoris C2, the ancestor of the original dairy isolate L...... with the wild-type strain, and this varied with the concentration of aspartic acid. The observed effect of aspartate could be explained by the accumulation of the toxic pyrimidine de novo pathway intermediate, carbamoyl aspartate. Assays of the pyrimidine biosynthetic enzymes of L. lactis LM0230 showed...... that the partial pyrimidine requirement can be explained by a low specific activity of the pyrimidine biosynthetic enzymes. In conclusion, L. lactis LM0230 during the process of plasmid- and prophage-curing has acquired a partial pyrimidine requirement resulting in sensitivity toward aspartic acid....

  4. Plasmids of Raw Milk Cheese Isolate Lactococcus lactis subsp. lactis Biovar diacetylactis DPC3901 Suggest a Plant-Based Origin for the Strain ▿ †

    Science.gov (United States)

    Fallico, Vincenzo; McAuliffe, Olivia; Fitzgerald, Gerald F.; Ross, R. Paul

    2011-01-01

    The four-plasmid complement of the raw milk cheese isolate Lactococcus lactis subsp. lactis biovar diacetylactis DPC3901 was sequenced, and some genetic features were functionally analyzed. The complete sequences of pVF18 (18,977 bp), pVF21 (21,739 bp), pVF22 (22,166 bp), and pVF50 (53,876 bp) were obtained. Each plasmid contained genes not previously described for Lactococcus, in addition to genes associated with plant-derived lactococcal strains. Most of the novel genes were found on pVF18 and encoded functions typical of bacteria associated with plants, such as activities of plant cell wall modification (orf11 and orf25). In addition, a predicted high-affinity regulated system for the uptake of cobalt was identified (orf19 to orf21 [orf19-21]), which has a single database homolog on a plant-derived Leuconostoc plasmid and whose functionality was demonstrated following curing of pVF18. pVF21 and pVF22 encode additional metal transporters, which, along with orf19-21 of pVF18, could enhance host ability to uptake growth-limiting amounts of biologically essential ions within the soil. In addition, vast regions from pVF50 and pVF21 share significant homology with the plant-derived lactococcal plasmid pGdh442, which is indicative of extensive horizontal gene transfer and recombination between these plasmids and suggests a common plant niche for their hosts. Phenotypes associated with these regions include glutamate dehydrogenase activity and Na+ and K+ transport. The presence of numerous plant-associated markers in L. lactis DPC3901 suggests a plant origin for the raw milk cheese isolate and provides for the first time the genetic basis to support the concept of the plant-milk transition for Lactococcus strains. PMID:21803914

  5. Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus spp. by In Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans

    OpenAIRE

    Jacobsen, C. N.; Rosenfeldt Nielsen, V.; Hayford, A. E.; Møller, P. L.; Michaelsen, K. F.; Pærregaard, A.; Sandström, B.; Tvede, M.; Jakobsen, M.

    1999-01-01

    The probiotic potential of 47 selected strains of Lactobacillus spp. was investigated. The strains were examined for resistance to pH 2.5 and 0.3% oxgall, adhesion to Caco-2 cells, and antimicrobial activities against enteric pathogenic bacteria in model systems. From the results obtained in vitro, five strains, Lactobacillus rhamnosus 19070-2, L. reuteri DSM 12246, L. rhamnosus LGG, L. delbrueckii subsp. lactis CHCC 2329, and L. casei subsp. alactus CHCC 3137, were selected for in vivo studi...

  6. Stability of free and immobilized Lactobacillus acidophilus and Bifidobacterium lactis in acidified milk and of immobilized B. lactis in yoghurt Estabilidade de Lactobacillus acidophilus e Bifidobacterium lactis nas formas livre e imobilizada em leite acidificado e de B. lactis imobilizado em iogurte

    Directory of Open Access Journals (Sweden)

    Carlos Raimundo Ferreira Grosso

    2004-06-01

    Full Text Available This study evaluated the stability of Bifidobacterium lactis (Bb-12 and of Lactobacillus acidophilus (La-05 both free and immobilized in calcium alginate, in milk and in acidified milk (pH 5.0, 4.4 and 3.8. The stability of immobilized B. lactis in yoghurt (fermented to pH 4.2, during 28 days of refrigerated storage was also evaluated. The efficiency of two culture media (modified MRS agar and Reinforced Clostridial Agar plus Prussian Blue for counting of B. lactis in yoghurt was determined. Lee's agar was used to count Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus when B. lactis were counted in the MRS medium. B. lactis and L. acidophilus in both free and immobilized forms presented satisfactory rates of survival in milk and acidified milk because the average reduction of the population was only one log cycle after 21 days of storage. The number of viable cells of immobilized B. lactis in yoghurt presented a gradual decline throughout the storage period, passing from 10(8 cfu/ml to no count after 28 days of storage. When the cultures were not in equilibrium just the selective medium was efficient in counting B. lactis in yoghurt. The results showed that both microorganisms can be added to milk and acidified milk, because their population was only slightly affected during storage. The presence of traditional culture of yoghurt seems to be harmful for survival of immobilized B. lactis and the immobilization in calcium alginate failed as an effective barrier to protect the cells in all analysed treatments.Este trabalho avaliou a estabilidade de Bifidobacterium lactis (Bb-12 e de Lactobacillus acidophilus (La-05 nas formas livre e imobilizada em alginato de cálcio, em leite e leite acidificado (pHs 5.0, 4.4 e 3.8, e a estabilidade de B. lactis imobilizado em iogurte (fermentado até pH 4.2, durante 28 dias de estocagem refrigerada. Também foi estudada a eficiência de dois meios de cultura (ágar MRS modificado e

  7. Growth and viability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in traditional yoghurt enriched by honey and whey protein concentrate.

    Science.gov (United States)

    Glušac, J; Stijepić, M; Đurđević-Milošević, D; Milanović, S; Kanurić, K; Vukić, V

    2015-01-01

    The ability of whey protein concentrate (WPC) (1% w/v) and/or honey (2% and 4% w⁄v) to improve lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) growth and viability in yoghurt during a 21 day period of storage was investigated. Another focus of this study was to examine fermentation kinetics and post-acidification rates through pH and lactic acid content measurements over the 21 day period. The addition of WPC and acacia honey accelerated fermentation and improved lactic acid bacteria (LAB) growth over the 21 days, but honey proportion did not significantly affect the viability of LAB. Moreover, adding honey and WPC did not support the overproduction of lactic acid, which positively influenced yoghurt stability during the 21 day storage period.

  8. Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products.

    Science.gov (United States)

    Andrighetto, C; De Dea, P; Lombardi, A; Neviani, E; Rossetti, L; Giraffa, G

    1998-10-01

    Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot hybridization experiments, by amplification and restriction analysis of the 16S rRNA gene (ARDRA) and by polymerase chain reaction (PCR) using species-specific oligonucleotide primers. Strains were classified as Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus, L. helveticus, and L. acidophilus. Strains which were atypical by sugar fermentation patterns were also identified. Most of the strains could not be grouped using carbohydrate fermentation profiles. PCR fingerprinting was used to identify DNA profiles for the 25 lactobacilli. Experimentally obtained PCR profiles enabled discrimination of all strains, which were grouped according to the similarities in their combined patterns. In general, the clustering of the strains corresponded well with species delineation obtained by molecular identification. The dendrogram of genetic relatedness enabled the unambiguous identification of most of the strains which were shown to be atypical by the sugar fermentation profile, except for a discrepancy in one L. delbrueckii subsp. lactis strain and one atypical Lactobacillus sp. strain.

  9. Generation and Characterization of Environmentally Sensitive Variants of the β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus

    Science.gov (United States)

    Yoast, Sienna; Adams, Robin M.; Mainzer, Stanley E.; Moon, Keith; Palombella, Anthony L.; Schmidt, Brian F.

    1994-01-01

    A method is described for generating and screening variants of the β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus sensitive to several environmental stresses, with potential application in the food industry. Chemical mutagenesis with hydroxylamine or methoxylamine was performed on the β-galactosidase gene carried on an Escherichia coli expression vector. Mutants sensitive to cold, heat, low pH, low magnesium concentration, and the presence of urea were isolated by screening for reduced color development on β-galactosidase indicator plates. The mutations responsible for three variant β-galactosidases were localized, and the base substitutions were determined by DNA sequencing. The amino acid alterations associated with one low-pH-sensitive (pHs) and two urea-sensitive (Us) variants correspond to P584L (pHs1), G400S/R479Q (Us26), and G167E/E168K/E363K/V492M (Us17), respectively. Mutant pHs1 is also heat, cold, low magnesium, and urea sensitive; Us26 is also cold sensitive; and Us17 is also low-pH sensitive. PMID:16349230

  10. Subcellular membrane fluidity of Lactobacillus delbrueckii subsp. bulgaricus under cold and osmotic stress.

    Science.gov (United States)

    Meneghel, Julie; Passot, Stéphanie; Cenard, Stéphanie; Réfrégiers, Matthieu; Jamme, Frédéric; Fonseca, Fernanda

    2017-09-01

    Cryopreservation of lactic acid bacteria may lead to undesirable cell death and functionality losses. The membrane is the first target for cell injury and plays a key role in bacterial cryotolerance. This work aimed at investigating at a subcellular resolution the membrane fluidity of two populations of Lactobacillus delbrueckii subsp. bulgaricus when subjected to cold and osmotic stresses associated to freezing. Cells were cultivated at 42 °C in mild whey medium, and they were exposed to sucrose solutions of different osmolarities (300 and 1800 mOsm L -1 ) after harvest. Synchrotron fluorescence microscopy was used to measure membrane fluidity of cells labeled with the cytoplasmic membrane probe 1-[4 (trimethylamino) phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Images were acquired at 25 and 0 °C, and more than a thousand cells were individually analyzed. Results revealed that a bacterial population characterized by high membrane fluidity and a homogeneous distribution of fluidity values appeared to be positively related to freeze-thaw resistance. Furthermore, rigid domains with different anisotropy values were observed and the occurrence of these domains was more important in the freeze-sensitive bacterial population. The freeze-sensitive cells exhibited a broadening of existing highly rigid lipid domains with osmotic stress. The enlargement of domains might be ascribed to the interaction of sucrose with membrane phospholipids, leading to membrane disorganization and cell degradation.

  11. Physiological Study of Lactobacillus delbrueckii subsp. bulgaricus Strains in a Novel Chemically Defined Medium

    Science.gov (United States)

    Chervaux, Christian; Ehrlich, S. Dusko; Maguin, Emmanuelle

    2000-01-01

    We developed a chemically defined medium called milieu proche du lait (MPL), in which 22 Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) strains exhibited growth rates ranging from 0.55 to 1 h−1. MPL can also be used for cultivation of other lactobacilli and Streptococcus thermophilus. The growth characteristics of L. bulgaricus in MPL containing different carbon sources were determined, including an initial characterization of the phosphotransferase system transporters involved. For the 22 tested strains, growth on lactose was faster than on glucose, mannose, and fructose. Lactose concentrations below 0.4% were limiting for growth. We isolated 2-deoxyglucose-resistant mutants from strains CNRZ397 and ATCC 11842. CNRZ397-derived mutants were all deficient for glucose, fructose, and mannose utilization, indicating that these three sugars are probably transported via a unique mannose-specific-enzyme-II-like transporter. In contrast, mutants of ATCC 11842 exhibited diverse phenotypes, suggesting that multiple transporters may exist in that strain. We also developed a protein labeling method and verified that exopolysaccharide production and phage infection can occur in MPL. The MPL medium should thus be useful in conducting physiological studies of L. bulgaricus and other lactic acid bacteria under well controlled nutritional conditions. PMID:11097906

  12. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods.

    Science.gov (United States)

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-03-04

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2-CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1-L6, with various homologous recombination rates. Although L2-L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.

  13. Strand-specific RNA-seq analysis of the Lactobacillus delbrueckii subsp. bulgaricus transcriptome.

    Science.gov (United States)

    Zheng, Huajun; Liu, Enuo; Shi, Tao; Ye, Luyi; Konno, Tomonobu; Oda, Munehiro; Ji, Zai-Si

    2016-02-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (Lb. bulgaricus 2038) is an industrial bacterium that is used as a starter for dairy products. We proposed several hypotheses concerning its industrial features previously. Here, we utilized RNA-seq to explore the transcriptome of Lb. bulgaricus 2038 from four different growth phases under whey conditions. The most abundantly expressed genes in the four stages were mainly involved in translation (for the logarithmic stage), glycolysis (for control/lag stages), lactic acid production (all the four stages), and 10-formyl tetrahydrofolate production (for the stationary stage). The high expression of genes like d-lactate dehydrogenase was thought as a result of energy production, and consistent expression of EPS synthesis genes, the restriction-modification (RM) system and the CRISPR/Cas system were validated for explaining the advantage of this strain in yoghurt production. Several postulations, like NADPH production through GapN bypass, converting aspartate into carbon-skeleton intermediates, and formate production through degrading GTP, were proved not working under these culture conditions. The high expression of helicase genes and co-expressed amino acids/oligopeptides transporting proteins indicated that the helicase might mediate the strain obtaining nitrogen source from the environment. The transport system of Lb. bulgaricus 2038 was found to be regulated by antisense RNA, hinting the potential application of non-coding RNA in regulating lactic acid bacteria (LAB) gene expression. Our study has primarily uncovered Lb. bulgaricus 2038 transcriptome, which could gain a better understanding of the regulation system in Lb. bulgaricus and promote its industrial application.

  14. Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX

    Science.gov (United States)

    Mulder, Joyce; Wels, Michiel; Kuipers, Oscar P.; Bron, Peter A.

    2017-01-01

    ABSTRACT In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies. IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially

  15. CARACTERÍSTICAS FÍSICAS E QUÍMICAS DE BEBIDAS LÁCTEAS FERMENTADAS E PREPARADAS COM SORO DE QUEIJO MINAS FRESCAL PHYSICAL AND CHEMICAL CHARACTERISTICS OF FERMENTED DAIRY BEVERAGES USING MINAS CHEESE WHEY

    Directory of Open Access Journals (Sweden)

    Keila Emílio de ALMEIDA

    2001-08-01

    Full Text Available Nesta pesquisa procurou-se verificar as características físicas e químicas de bebidas lácteas preparadas com três concentrações de soro de queijo Minas Frescal (30, 40 e 50%, empregando-se dois tipos de culturas lácticas: uma tradicional para iogurte (YC-180 contendo cepas mistas de Streptococcus salivarus subsp. thermophilus, Lactobacillus delbrueckii subsp. lactis e Lactobacillus delbrueckii subsp. bulgaricus e outra (ABY-1 contendo cepas mistas de Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus acidophillus, Bifidobacteria e Streptococcus salivarius subsp. thermophilus. Constatou-se que as bebidas lácteas apresentaram diferença estatística no tempo zero para os teores de gordura e de extrato seco. À medida em que se elevou a proporção de soro em relação ao leite, os teores de gordura e de extrato seco diminuíram. O teor de proteína também diminuiu à medida em que se aumentou o teor de soro nas bebidas lácteas, embora a diferença não tenha sido tão acentuada quanto as observadas para os teores de gordura e de extrato seco. Em relação à lactose, não se constatou diferença entre os tratamentos. Os teores de soro não influenciaram o índice de proteólise das bebidas lácteas. Verificou-se todavia que as bebidas elaboradas com a cultura probiótica ABY-1 apresentaram valores superiores para proteólise quando comparadas às bebidas elaboradas com as culturas YC-180. As bebidas lácteas elaboradas com 30% de soro apresentaram maiores valores para viscosidade. As bebidas elaboradas com a cultura YC-180 apresentaram valores superiores para viscosidade durante o período de armazenamento.This research studies the physical and chemical characteristics of dairy beverages formulated with three different concentrations (30, 40 and 50 % of Minas cheese whey, using two kinds of dairy cultures: the traditional yogurt (YC--180 culture, holding mixed strains of Streptococcus salivarus subsp. thermophilus, Lactobacillus

  16. Proton Motive Force-Driven and ATP-Dependent Drug Extrusion Systems in Multidrug-Resistant Lactococcus lactis

    NARCIS (Netherlands)

    BOLHUIS, H; MOLENAAR, D; POELARENDS, G; VANVEEN, HW; POOLMAN, B; DRIESSEN, AJM; KONINGS, WN

    1994-01-01

    Three mutants of Lactococcus lactis subsp. lactis MG1363, termed Eth(R), Dau(R), and Rho(R), were selected for resistance to high concentrations of ethidium bromide, daunomycin, and rhodamine 6G, respectively. These mutants were found to be cross resistant to a number of structurally and

  17. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    Science.gov (United States)

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  18. In silico analysis of amino acid biosynthesis and proteolysis in Lactobacillus delbrueckii subsp. bulgaricus 2038 and the implications for bovine milk fermentation.

    Science.gov (United States)

    Zheng, Huajun; Liu, Enuo; Hao, Pei; Konno, Tomonobu; Oda, Munehiro; Ji, Zai-Si

    2012-08-01

    The amino acid biosynthesis pathway and proteolytic system of Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038), a mainstay of large-scale yogurt production, were modeled based on its genomic sequence. L. bulgaricus 2038 retains more potential for amino acid synthesis and a more powerful proteolytic system than other L. bulgaricus strains, but favors amino acid uptake over de novo synthesis. Free amino acids and peptides in bovine milk provide the main nitrogen sources; whey is more important than casein for L. bulgaricus during fermentation. Free amino acids are imported by amino acid permeases and by ABC-type transport systems whereas exogenous oligopeptides are imported by ABC-type proteins only. Histidine is neither synthesized nor imported singly, which might explain why L. bulgaricus cannot grow in synthetic media.

  19. A two component system is involved in acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei

    2012-05-20

    The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  20. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  1. Combined Transcriptome and Proteome Analysis of Bifidobacterium animalis subsp. lactis BB-12 Grown on Xylo-Oligosaccharides and a Model of Their Utilization

    DEFF Research Database (Denmark)

    Gilad, Ofir; Jacobsen, Susanne; Stuer-Lauridsen, B.

    2010-01-01

    -documented and widely used probiotic strain B. animalis subsp. lactis BB-12, a combined proteomic and transcriptomic approach was applied, involving DNA microarrays, real-time quantitative PCR (qPCR), and two-dimensional difference gel electrophoresis (2D-DIGE) analyses of samples obtained from cultures grown on either...... of these (beta-D-xylosidase, sugar-binding protein, and xylose isomerase) showed higher abundance on XOS. Based on the obtained results, a model for the catabolism of XOS in BB-12 is suggested, according to which the strain utilizes an ABC (ATP-binding cassette) transport system (probably for oligosaccharides...

  2. Interaction between the genomes of Lactococcus lactis and phages of the P335 species

    Science.gov (United States)

    Kelly, William J.; Altermann, Eric; Lambie, Suzanne C.; Leahy, Sinead C.

    2013-01-01

    Phages of the P335 species infect Lactococcus lactis and have been particularly studied because of their association with strains of L. lactis subsp. cremoris used as dairy starter cultures. Unlike other lactococcal phages, those of the P335 species may have a temperate or lytic lifestyle, and are believed to originate from the starter cultures themselves. We have sequenced the genome of L. lactis subsp. cremoris KW2 isolated from fermented corn and found that it contains an integrated P335 species prophage. This 41 kb prophage (Φ KW2) has a mosaic structure with functional modules that are highly similar to several other phages of the P335 species associated with dairy starter cultures. Comparison of the genomes of 26 phages of the P335 species, with either a lytic or temperate lifestyle, shows that they can be divided into three groups and that the morphogenesis gene region is the most conserved. Analysis of these phage genomes in conjunction with the genomes of several L. lactis strains shows that prophage insertion is site specific and occurs at seven different chromosomal locations. Exactly how induced or lytic phages of the P335 species interact with carbohydrate cell surface receptors in the host cell envelope remains to be determined. Genes for the biosynthesis of a variable cell surface polysaccharide and for lipoteichoic acids (LTAs) are found in L. lactis and are the main candidates for phage receptors, as the genes for other cell surface carbohydrates have been lost from dairy starter strains. Overall, phages of the P335 species appear to have had only a minor role in the adaptation of L. lactis subsp. cremoris strains to the dairy environment, and instead they appear to be an integral part of the L. lactis chromosome. There remains a great deal to be discovered about their role, and their contribution to the evolution of the bacterial genome. PMID:24009606

  3. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.

    Science.gov (United States)

    Ruggirello, Marianna; Cocolin, Luca; Dolci, Paola

    2016-10-01

    The presence of Lactococcus lactis, commonly employed as starter culture, was, recently, highlighted and investigated during late cheese ripening. Thus, the main goal of the present study was to assess the persistence and viability of this microorganism throughout manufacturing and ripening of model cheeses. Eight commercial starters, constituted of L. lactis subsp. lactis and L. lactis subsp. cremoris, were inoculated in pasteurized milk in order to manufacture miniature cheeses, ripened for six months. Samples were analysed at different steps (milk after inoculum, curd after cutting, curd after pressing and draining, cheese immediately after salting and cheese at 7, 15, 30, 60, 90, 120, 150 and 180 days of ripening) and submitted to both culture-dependent (traditional plating on M17) and -independent analysis (reverse transcription-quantitative PCR). On the basis of direct RNA analysis, L. lactis populations were detected in all miniature cheeses up to the sixth month of ripening, confirming the presence of viable cells during the whole ripening process, including late stages. Noteworthy, L. lactis was detected by RT-qPCR in cheese samples also when traditional plating failed to indicate its presence. This discrepancy could be explain with the fact that lactococci, during ripening process, enter in a stressed physiological state (viable not culturable, VNC), which might cause their inability to grow on synthetic medium despite their viability in cheese matrix. Preliminary results obtained by "resuscitation" assays corroborated this hypothesis and 2.5% glucose enrichment was effective to recover L. lactis cells in VNC state. The capability of L. lactis to persist in late ripening, and the presence of VNC cells which are known to shift their catabolism to peptides and amino acids consumption, suggests a possible technological role of this microorganism in cheese ripening with a possible impact on flavour formation. Copyright © 2016 Elsevier Ltd. All rights

  4. Exopolysaccharide-producing Bifidobacterium animalis subsp. lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue.

    Science.gov (United States)

    Hidalgo-Cantabrana, Claudio; Nikolic, Milica; López, Patricia; Suárez, Ana; Miljkovic, Marija; Kojic, Milan; Margolles, Abelardo; Golic, Natasa; Ruas-Madiedo, Patricia

    2014-04-01

    The effect of exopolysaccharide (EPS) producing bifidobacteria, and the EPS derived thereof, on the modulation of immune response was evaluated. Cells isolated from gut associated lymphoid tissue (GALT) and from peripheral blood mononuclear cells (PBMC) of naïve rats were used. The proliferation and cytokine production of these immune cells in the presence of the three isogenic Bifidobacterium animalis subsp. lactis strains (A1, A1dOx and A1dOxR), as well as their purified polymers, were in vitro analysed. The cytokine pattern produced by immune cells isolated from GALT showed that most levels remained stable in the presence of the three strains or their corresponding polymers. However, in PBMC the UV-inactivated bacteria induced higher levels of the ratios IFNγ/IL-17, TNFα/IL-10 and TNFα/TGFβ, and no variation in the ratio IFNγ/IL-4. Thus, B. animalis subsp. lactis strains were able to activate blood monocytes as well as T lymphocytes towards a mild inflammatory Th1 response. Furthermore, only the EPS-A1dOxR was able to stimulate a response in a similar way than its EPS-producing bacterium. Our work supports the notion that some bifidobacterial EPS could play a role in mediating the dialog of these microorganisms with the immune system. In addition, this study emphasizes the effect that the origin of the immune cells has in results obtained; this could explain the great amount of contradiction found in literature about the immunomodulation capability of EPS from probiotic bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.

    Science.gov (United States)

    Amiri-Jami, Mitra; Lapointe, Gisele; Griffiths, Mansel W

    2014-04-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35 ± 0.5 mg g(-1) cell dry weight) and EPA (0.12 ± 0.04 mg g(-1) cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.

  6. Proteome analysis of the purine stimulon from Lactococcus lactis

    DEFF Research Database (Denmark)

    Beyer, N.H.; Roepstorff, P.; Hammer, Karin

    2003-01-01

    kinase) and translation elongation factors (GTPases: EF-TU, EF-G). Two Dcu proteins could not be identified. Out of 28 proteins subjected to mass spectrometry, 19 could be readily identified despite the fact that only the genome sequence of a strain of L. lactis subsp. lactis was available. The two...... subspecies share about 85% sequence identity, comparable to the genetic distance between Escherichia coli and Salmonella typhimurium. A success rate of 68% indicates that it may be feasible to perform proteomics based upon genomic sequences of relatives outside the genus....

  7. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    Directory of Open Access Journals (Sweden)

    Clarissa Santos Rocha

    Full Text Available Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD, showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327, also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  8. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    Science.gov (United States)

    Santos Rocha, Clarissa; Gomes-Santos, Ana Cristina; Garcias Moreira, Thais; de Azevedo, Marcela; Diniz Luerce, Tessalia; Mariadassou, Mahendra; Longaray Delamare, Ana Paula; Langella, Philippe; Maguin, Emmanuelle; Azevedo, Vasco; Caetano de Faria, Ana Maria; Miyoshi, Anderson; van de Guchte, Maarten

    2014-01-01

    Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  9. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Putrescine-Producing Lactococcus lactis ▿ †

    Science.gov (United States)

    Ladero, Victor; Rattray, Fergal P.; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A.

    2011-01-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution. PMID:21803900

  10. Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates.

    Science.gov (United States)

    Strahinic, I; Busarcevic, M; Pavlica, D; Milasin, J; Golic, N; Topisirovic, L

    2007-04-01

    The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains.

  11. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.

    Science.gov (United States)

    Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio

    2009-03-15

    A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.

  12. Galacto-oligosaccharides and lactulose as protectants against desiccation of Lactobacillus delbrueckii subsp. bulcaricus.

    Science.gov (United States)

    Santos, Mauricio I; Araujo-Andrade, Cuauhtémoc; Esparza-Ibarra, Edgar; Tymczyszyn, Elizabeth; Gómez-Zavaglia, Andrea

    2014-01-01

    Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was dehydrated on desiccators containing silica gel in the presence of 20% w/w of two types of galacto-oligosaccharides (GOS Biotempo and GOS Cup Oligo H-70®) and lactulose, until no changes in water desorption were detected. After rehydration, bacterial growth was monitored at 37°C by determining: (a) the absorbance at 600 nm and (b) the near infrared spectra (NIR). Principal component analysis (PCA) was then performed on the NIR spectra of samples dehydrated in all conditions. A multiparametric flow cytometry assay was carried out using carboxyfluorescein diacetate and propidium iodide probes to determine the relative composition of damaged, viable, and dead bacteria throughout the growth kinetics. The absorbance at 600 nm and the position of the second derivative band at ∼1370 nm were plotted against the time of incubation. The efficiency of the protectants was GOS Biotempo > GOS Cup Oligo H-70®  > lactulose. The better protectant capacity of GOS Biotempo was explained on the basis of the lower contribution of damaged cells immediately after rehydration (t = 0). PCA showed three groups along PC1, corresponding to the lag, exponential and stationary phases of growth, which explained 99% of the total variance. Along PC2, two groups were observed, corresponding to damaged or viable cells. The results obtained support the use of NIR to monitor the recovery of desiccated microorganisms in real time and without the need of chemical reagents. The use of GOS and lactulose as protectants in dehydration/rehydration processes was also supported. © 2014 American Institute of Chemical Engineers.

  13. Analysis of heat shock gene expression in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Arnau, José; Sørensen, Kim; Appel, Karen Fuglede

    1996-01-01

    The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologous was carried out. Nothern blot analysis showed a similar induction pattern...... in the heat shock response in L. lactis MG1363 is presented. A gene located downstream of the dnaK operon in strain MG1363, named orf4, was shown not to be regulated by heat shock....

  14. Reduction of the off-flavor volatile generated by the yogurt starter culture including Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in soymilk.

    Science.gov (United States)

    Kaneko, Daisuke; Igarashi, Toshinori; Aoyama, Kenji

    2014-02-19

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus establish a symbiotic relationship in milk; however, S. thermophilus predominantly grows in soymilk. This study determined that excess diacetyl was notably generated mainly by S. thermophilus in soymilk, and this flavor compound created an unpleasant odor in fermented soymilk. The addition of l-valine to soymilk reduced the amount of diacetyl and increased the levels of acetoin during fermentation by S. thermophilus . In addition, it was found that the expression of the ilvC gene was repressed and that of the als and aldB genes was stimulated in S. thermophilus by l-valine. Sensory evaluations with the triangle difference test and a preference test showed that the soymilk fermented with l-valine was significantly preferred compared with that without l-valine. In this study, we successfully controlled the metabolic flux of S. thermophilus in soymilk and produced more favorable fermented soymilk without the use of genetically modified lactic acid bacteria strains.

  15. In vivo study of the survival of Lactobacillus delbruecki subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801 by DVC-FISH after consumption of fermented milk.

    Science.gov (United States)

    García-Hernández, J; Moreno, Y; Chuan, C; Hernández, M

    2012-10-01

    Direct Viable Count (DVC) method has been recently combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of Lactobacillus delbrueckii subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801. This method has been used to determine their in vitro viability to gastrointestinal juices, being the resistance of L. delbrueckii subsp. bulgaricus and S. thermophilus 26.2% and 9.2%, respectively. On the other hand, an in vivo study has been carried out with the application of this technique for their detection in human feces, after consuming fermented milk. Cells of L. delbrueckii subsp. bulgaricus CECT 4005T were not detected, whereas viable cells of S. thermophilus CECT 801 were detected in a number higher than 10(3) cells per gram in a 30% of the samples after 4 wk of consumption. DVC-FISH is a quick and culture-independent useful method, which has been applied for the 1st time in an in vivo survival study of LAB. © 2012 Institute of Food Technologists®

  16. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates.

    Science.gov (United States)

    Cirkovic, Ivana; Bozic, Dragana D; Draganic, Veselin; Lozo, Jelena; Beric, Tanja; Kojic, Milan; Arsic, Biljana; Garalejic, Eliana; Djukic, Slobodanka; Stankovic, Slavisa

    2016-01-01

    Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200-400 AU/ml for licheniocin 50.2 and 400-3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p < 0.05, respectively), while BGBU1-4 crude extract inhibited biofilm formation by all L. monocytogenes isolates (p < 0.01 and p < 0.05, respectively). Both bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p < 0.05, p < 0.01, p < 0.001). This study suggests that novel bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes.

  17. Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production.

    Science.gov (United States)

    Hao, Pei; Zheng, Huajun; Yu, Yao; Ding, Guohui; Gu, Wenyi; Chen, Shuting; Yu, Zhonghao; Ren, Shuangxi; Oda, Munehiro; Konno, Tomonobu; Wang, Shengyue; Li, Xuan; Ji, Zai-Si; Zhao, Guoping

    2011-01-17

    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production.

  18. NADH Oxidase of Streptococcus thermophilus 1131 is Required for the Effective Yogurt Fermentation with Lactobacillus delbrueckii subsp. bulgaricus 2038.

    Science.gov (United States)

    Sasaki, Yasuko; Horiuchi, Hiroshi; Kawashima, Hiroko; Mukai, Takao; Yamamoto, Yuji

    2014-01-01

    We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of L. bulgaricus 2038, resulting in earlier l-lactate and formate accumulation. Measurement of the DO concentration and hydrogen peroxide generation in the milk medium suggested that DO is mainly removed by S. thermophilus 1131. The results using an H2O-forming NADH oxidase (Nox)-defective mutant of S. thermophilus 1131 revealed that Nox is the major oxygen-consuming enzyme of the bacterium. Yogurt fermentation with the S. thermophilus Δnox mutant and L. bulgaricus 2038 was significantly slower than with S. thermophilus 1131 and L. bulgaricus 2038, and the DO concentrations of the mixed culture did not decrease to less than 2 mg/kg within 3 hr. These observations suggest that Nox of S. thermophilus 1131 contributes greatly to yogurt fermentation, presumably by removing the DO in milk.

  19. Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production.

    Directory of Open Access Journals (Sweden)

    Pei Hao

    Full Text Available Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus is an important species of Lactic Acid Bacteria (LAB used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production.

  20. Complete Sequencing and Pan-Genomic Analysis of Lactobacillus delbrueckii subsp. bulgaricus Reveal Its Genetic Basis for Industrial Yogurt Production

    Science.gov (United States)

    Ding, Guohui; Gu, Wenyi; Chen, Shuting; Yu, Zhonghao; Ren, Shuangxi; Oda, Munehiro; Konno, Tomonobu; Wang, Shengyue; Li, Xuan; Ji, Zai-Si; Zhao, Guoping

    2011-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production. PMID:21264216

  1. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.

    Science.gov (United States)

    Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline

    2008-03-01

    The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.

  2. Probiotic Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp lactis Bl-04 interactions with prebiotic carbohydrates using differential proteomics and protein characterization

    DEFF Research Database (Denmark)

    Hansen, Morten Ejby

    of probiotics, primarily non-digestible carbohydrates, are termed prebiotics. The knowledge of prebiotic utilization and in particular the specificities of carbohydrate transport and metabolism are limited, hampering robust understanding for the basis of selective utilization of known prebiotics...... and the discovery and documentation of novel ones. In this project we set out to investigate the metabolism of carbohydrates that are prebiotic or potential prebiotic compounds utilized by the probiotic organisms Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis BL-04 (Bl-04). The aim...... of this Ph.D. thesis was the study of probiotic NCFM and Bl-04 interaction with prebiotic carbohydrates using differential proteomics and protein characterization. Proteomics is a potential omics tool to investigate probiotic bacteria and its response to prebiotic carbohydrates at the protein level...

  3. Cloning and Characterization of upp, a Gene Encoding Uracil Phosphoribosyltransferase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1994-01-01

    Uracil phosphoribosyltransferase catalyzes the key reaction in the salvage of uracil in many microorganisms. The gene encoding uracil phosphoribosyltransferase (upp) was cloned from Lactococcus lactis subsp. cremoris MG1363 by complementation of an Escherichia coli mutant. The gene was sequenced...

  4. Preparation of low galactose yogurt using cultures of Gal(+) Streptococcus thermophilus in combination with Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Anbukkarasi, Kaliyaperumal; UmaMaheswari, Thiyagamoorthy; Hemalatha, Thiagarajan; Nanda, Dhiraj Kumar; Singh, Prashant; Singh, Rameshwar

    2014-09-01

    Streptococcus thermophilus is an important lactic starter used in the production of yogurt. Most strains of S. thermophilus are galactose negative (Gal(-)) and are able to metabolize only glucose portion of lactose and expel galactose into the medium. This metabolic defect leads to the accumulation of free galactose in yogurt, resulting in galactosemia among consumers. Hence there is an absolute need to develop low galactose yogurt. Therefore, in this study, three galactose positive (Gal(+)) S. thermophilus strains from National Collection of Dairy Cultures (NCDC) viz. NCDC 659 (AJM), NCDC 660 (JM1), NCDC 661 (KM3) and a reference galactose negative (Gal(-)) S. thermophilus NCDC 218 were used for preparation of low galactose yogurt. In milk fermented using S. thermophilus isolates alone, NCDC 659 released less galactose (0.27 %) followed by NCDC 661 (0.3 %) and NCDC 660 (0.45 %) after 10 h at 42 °C. Milk was fermented in combination with Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04, in which NCDC 659 released least galactose upto 0.49 % followed by NCDC 661 (0.51 %) and NCDC 660 (0.60 %) than reference Gal(-) NCDC 218(0.79 %). Low galactose yogurt was prepared following standard procedure using Gal(+) S. thermophilus isolates and Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04 in 1:1 ratio. Among which low galactose yogurt by NCDC 659 combination contained less galactose 0.37 % followed by NCDC 661 (0.51 %), NCDC 660 (0.65 %) and reference Gal(-) NCDC 218 (0.98 %) after 4 h of fermentation. This study clearly reveals that Gal(+) S. thermophilus isolates can be paired with Gal(-) L. delbrueckii subsp. bulgaricus for developing low galactose yogurt.

  5. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  6. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products.

    Science.gov (United States)

    Zycka-Krzesinska, Joanna; Boguslawska, Joanna; Aleksandrzak-Piekarczyk, Tamara; Jopek, Jakub; Bardowski, Jacek K

    2015-10-15

    To assess the occurrence of antibiotic-resistant Lactic Acid Bacteria (LAB) in Polish raw milk and fermented artisanal products, a collection comprising 500 isolates from these products was screened. Among these isolates, six strains (IBB28, IBB160, IBB161, IBB224, IBB477 and IBB487) resistant to tetracycline were identified. The strains showing atypical tetracycline resistance were classified as Lactococcus lactis: three of them were identified as L. lactis subsp. cremoris (IBB224, IBB477 and IBB487) and the other three (IBB28, IBB160, IBB161) were identified as L. lactis subsp. lactis. The mechanism involving Ribosomal Protection Proteins (RPP) was identified as responsible for tetracycline resistance. Three of the tested strains (IBB28, IBB160 and IBB224) had genes encoding the TetS protein, whereas the remaining three (IBB161, IBB477 and IBB487) expressed TetM. The results also demonstrated that the genes encoding these proteins were located on genetic mobile elements. The tet(S) gene was found to be located on plasmids, whereas tet(M) was found within the Tn916 transposon. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Growth, nisA Gene Expression, and In Situ Activity of Novel Lactococcus lactis subsp. cremoris Costarter Culture in Commercial Hard Cheese Production.

    Science.gov (United States)

    Noutsopoulos, Dimitrios; Kakouri, Athanasia; Kartezini, Eleftheria; Pappas, Dimitrios; Hatziloukas, Efstathios; Samelis, John

    2017-12-01

    This study evaluated in situ expression of the nisA gene by an indigenous, nisin A-producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A-mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.

  8. The Impact of Storage Conditions on the Stability of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis Bb12 in Human Milk.

    Science.gov (United States)

    Mantziari, Anastasia; Aakko, Juhani; Kumar, Himanshu; Tölkkö, Satu; du Toit, Elloise; Salminen, Seppo; Isolauri, Erika; Rautava, Samuli

    2017-11-01

    Human milk is the optimal source of complete nutrition for neonates and it also guides the development of infant gut microbiota. Importantly, human milk can be supplemented with probiotics to complement the health benefits of breastfeeding. Storage of human milk for limited periods of time is often unavoidable, but little is known about the effect of different storage conditions (temperature) on the viability of the added probiotics. Therefore, in this study, we evaluated how different storage conditions affect the viability of two specific widely used probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis (Bb12), in human milk by culturing and quantitative polymerase chain reaction. Our results indicate that LGG and Bb12 remained stable throughout the storage period. Thus, we conclude that human milk offers an appropriate matrix for probiotic supplementation.

  9. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production.

    Science.gov (United States)

    Huang, Yanna; You, Chunping; Liu, Zhenmin

    2017-07-01

    Lactobacillus delbrueckii subsp. bulgaricus is a heterogenous lactic acid bacterium that converts pyruvate mainly to D-lactic acid using D-lactate dehydrogenases (D-LDHs), whose functional properties remain poorly characterized. Here, the D-LDHs genes (ldb0101, ldb0813, ldb1010, ldb1147 and ldb2021) were cloned and overexpressed in Escherichia coli JM109 from an inducible pUC18 vector, respectively, and the resulting strains were compared in terms of D-lactic acid production. The strain expressing ldb0101 and ldb1010 gene individually produced more D-lactate than other three strains. Further study revealed that Ldb0101 activity was down-regulated by the oxygen and, therefore, achieved a highest titer of D-lactate (1.94 g/L) under anaerobic condition, and introduction of ldb1010 gene enhanced D-lactate formation (0.94 and 0.85 g/L, respectively) both in aerobic and anaerobic conditions due to a relatively stable q d-lactate . Our results suggested that the enzyme Ldb0101 and Ldb1010 played a role of more importance in D-lactate formation. To the best of our knowledge, we demonstrate for the first time the roles of different D-LDH homologs from L. bulgaricus in D-lactic acid production.

  10. Involvement of the ornithine decarboxylase gene in acid stress response in probiotic Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Ferreira, A B; Oliveira, M N V de; Freitas, F S; Paiva, A D; Alfenas-Zerbini, P; Silva, D F da; Queiroz, M V de; Borges, A C; Moraes, C A de

    2015-01-01

    Amino acid decarboxylation is important for the maintenance of intracellular pH under acid stress. This study aims to carry out phylogenetic and expression analysis by real-time PCR of two genes that encode proteins involved in ornithine decarboxylation in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress. Sequencing and phylogeny analysis of genes encoding ornithine decarboxylase and amino acid permease in L. delbrueckii UFV H2b20 showed their high sequence identity (99%) and grouping with those of L. delbrueckii subsp. bulgaricus ATCC 11842. Exposure of L. delbrueckii UFV H2b20 cells in MRS pH 3.5 for 30 and 60 min caused a significant increase in expression of the gene encoding ornithine decarboxylase (up to 8.1 times higher when compared to the control treatment). Increased expression of the ornithine decarboxylase gene demonstrates its involvement in acid stress response in L. delbrueckii UFV H2b20, evidencing that the protein encoded by that gene could be involved in intracellular pH regulation. The results obtained show ornithine decarboxylation as a possible mechanism of adaptation to an acidic environmental condition, a desirable and necessary characteristic for probiotic cultures and certainly important to the survival and persistence of the L. delbrueckii UFV H2b20 in the human gastrointestinal tract.

  11. Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production.

    Science.gov (United States)

    Del Rio, Beatriz; Redruello, Begoña; Ladero, Victor; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-09-02

    The reduction of NaCl in food is a public health priority; high NaCl intakes have been associated with serious health problems. However, it is reported that reducing the NaCl content of cheeses may lead to an increase in the content of biogenic amines (BAs). The present work examines the effect of NaCl on the accumulation of putrescine (one of the BAs often detected at high concentration in cheese) in experimental Cabrales-like cheeses containing Lactococcus lactis subsp. cremoris CECT 8666, a dairy strain that catabolises agmatine to putrescine via the agmatine deiminase (AGDI) pathway. The genes responsible for this pathway are grouped in the AGDI cluster. This comprises a regulatory gene (aguR) (transcribed independently), followed by the catabolic genes that together form an operon (aguBDAC). Reducing the NaCl concentration of the cheese led to increased putrescine accumulation. In contrast, increasing the NaCl concentration of both pH-uncontrolled and pH-controlled (pH 6) cultures of L. lactis subsp. cremoris CECT 8666 significantly inhibited its growth and the production of putrescine. Such production appeared to be inhibited via a reduction in the transcription of the aguBDAC operon; no effect on the transcription of aguR was recorded. The present results suggest that low-sodium cheeses are at risk of accumulating higher concentrations of putrescine. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    OpenAIRE

    Cambillau Christian; O'Connell-Motherway Mary; Douillard François P; van Sinderen Douwe

    2011-01-01

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and/or protein degradation, thereby significantly reducing the yield of soluble target protei...

  13. The extracellular proteome of Bifidobacterium animalis subsp. lactis BB‐12 reveals proteins with putative roles in probiotic effects

    DEFF Research Database (Denmark)

    Gilad, Ofir; Svensson, Birte; Viborg, Alexander Holm

    2011-01-01

    Probiotics are live microorganisms that exert health‐promoting effects on the human host, as demonstrated for numerous strains of the genus Bifidobacterium. To unravel the proteins involved in the interactions between the host and the extensively used and well‐studied probiotic strain Bifidobacte......Probiotics are live microorganisms that exert health‐promoting effects on the human host, as demonstrated for numerous strains of the genus Bifidobacterium. To unravel the proteins involved in the interactions between the host and the extensively used and well‐studied probiotic strain...... Bifidobacterium animalis subsp. lactis BB‐12, proteins secreted by the bacterium, i.e. belonging to the extracellular proteome present in the culture medium, were identified by 2‐DE coupled with MALDI‐TOF MS. Among the 74 distinct proteins identified, 31 are predicted to carry out their physiological role either...... functions include binding of plasminogen, formation of fimbriae, adhesion to collagen, attachment to mucin and intestinal cells as well as induction of immunomodulative response. These findings suggest a role of the proteins in colonization of the gastrointestinal tract, adhesion to host tissues...

  14. Structure and properties of the metastable bacteriocin Lcn972 from Lactococcus lactis

    Science.gov (United States)

    Turner, David L.; Lamosa, Pedro; Rodríguez, Ana; Martínez, Beatriz

    2013-01-01

    Lactococcus lactis subsp. lactis IPLA 972 produces a polypeptide bacteriocin of 7.5 kDa which has a bactericidal effect on sensitive lactococci, inhibiting septum formation in dividing cells. The active form is a monomer that is metastable under normal conditions but is stabilised by glycerol. The NMR structure of Lcn972 shows a β-sandwich comprising two three-stranded antiparallel β-sheets. Detaching the final strand could allow the sandwich to open, and the irreversible unfolding leads to a loss of antibacterial activity. Covalent linkage of the final strand should increase the stability of Lcn972 and facilitate the study of its interaction with lipid II.

  15. Biochemical and kinetic characterisation of a novel xylooligosaccharide-upregulated GH43 β-d-xylosidase/α-l-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis subsp. lactis BB-12

    DEFF Research Database (Denmark)

    Viborg, Alexander Holm; Sørensen, Kim Ib; Gilad, Ofir

    2013-01-01

    The Bifidobacterium animalis subsp. lactis BB-12 gene BIF_00092, assigned to encode a β-d-xylosidase (BXA43) of glycoside hydrolase family 43 (GH43), was cloned with a C-terminal His-tag and expressed in Escherichia coli. BXA43 was purified to homogeneity from the cell lysate and found to be a dual......-specificity exo-hydrolase active on para-nitrophenyl-β-d-xylopyranoside (pNPX), para-nitrophenyl-α-L-arabinofuranoside (pNPA), β-(1 → 4)-xylopyranosyl oligomers (XOS) of degree of polymerisation (DP) 2–4, and birchwood xylan. A phylogenetic tree of the 92 characterised GH43 enzymes displayed five distinct groups...

  16. Coculture-inducible bacteriocin biosynthesis of different probiotic strains by dairy starter culture Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2011-12-01

    Full Text Available Bacteriocins produced by probiotic strains effectively contribute to colonization ability of probiotic strains and facilitate their establishment in the competitive gut environment and also protect the gut from gastrointestinal pathogens. Moreover, bacteriocins have received considerable attention due to their potential application as biopreservatives, especially in dairy industry. Hence, the objective of this research was to investigate antimicrobial activity of probiotic strains Lactobacillus helveticus M92, Lactobacillus plantarum L4 and Enterococcus faecium L3, with special focus on their bacteriocinogenic activity directed towards representatives of the same or related bacterial species, and towards distant microorganisms including potential food contaminants or causative agents of gut infections. In order to induce bacteriocin production, probiotic cells were cocultivated with Lactococcus lactis subsp. lactis LMG 9450, one of the most important starter cultures in cheese production. The presence of bacteriocin coding genes was investigated by PCR amplification with sequence-specific primers for helveticin and was confirmed for probiotic strain L. helveticus M92. All examined probiotic strains have shown bacteriocinogenic activity against Staphylococcus aureus 3048, Staphylococcus aureus K-144, Escherichia coli 3014, Salmonella enterica serovar Typhimurium FP1, Bacillus subtilis ATCC 6633, Bacillus cereus TM2, which is an important functional treat of probiotic strains significant in competitive exclusion mechanism which provides selective advantage of probiotic strains against undesirable microorganisms in gastrointestinal tract of the host. According to obtained results, living cells of starter culture Lc. lactis subsp. lactis LMG 9450 induced bacteriocin production by examined probiotic strains but starter culture itself was not sensitive to bacteriocin activity.

  17. Riboflavin Production in Lactococcus lactis: Potential for In Situ Production of Vitamin-Enriched Foods

    Science.gov (United States)

    Burgess, Catherine; O'Connell-Motherway, Mary; Sybesma, Wilbert; Hugenholtz, Jeroen; van Sinderen, Douwe

    2004-01-01

    This study describes the genetic analysis of the riboflavin (vitamin B2) biosynthetic (rib) operon in the lactic acid bacterium Lactococcus lactis subsp. cremoris strain NZ9000. Functional analysis of the genes of the L. lactis rib operon was performed by using complementation studies, as well as by deletion analysis. In addition, gene-specific genetic engineering was used to examine which genes of the rib operon need to be overexpressed in order to effect riboflavin overproduction. Transcriptional regulation of the L. lactis riboflavin biosynthetic process was investigated by using Northern hybridization and primer extension, as well as the analysis of roseoflavin-induced riboflavin-overproducing L. lactis isolates. The latter analysis revealed the presence of both nucleotide replacements and deletions in the regulatory region of the rib operon. The results presented here are an important step toward the development of fermented foods containing increased levels of riboflavin, produced in situ, thus negating the need for vitamin fortification. PMID:15466513

  18. The Plasmid Complement of Lactococcus lactis UC509.9 Encodes Multiple Bacteriophage Resistance Systems

    Science.gov (United States)

    Ainsworth, Stuart; Mahony, Jennifer

    2014-01-01

    Lactococcus lactis subsp. cremoris strains are used globally for the production of fermented dairy products, particularly hard cheeses. Believed to be of plant origin, L. lactis strains that are used as starter cultures have undergone extensive adaptation to the dairy environment, partially through the acquisition of extrachromosomal DNA in the form of plasmids that specify technologically important phenotypic traits. Here, we present a detailed analysis of the eight plasmids of L. lactis UC509.9, an Irish dairy starter strain. Key industrial phenotypes were mapped, and genes that are typically associated with lactococcal plasmids were identified. Four distinct, plasmid-borne bacteriophage resistance systems were identified, including two abortive infection systems, AbiB and AbiD1, thereby supporting the observed phage resistance of L. lactis UC509.9. AbiB escape mutants were generated for phage sk1, which were found to carry mutations in orf6, which encodes the major capsid protein of this phage. PMID:24814781

  19. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed

  20. Formation and conversion of oxygen metabolites by Lactococcus lactis subsp lactis ATCC 19435 under different growth conditions

    NARCIS (Netherlands)

    Niel, van E.W.J.; Hofvendahl, K.; Hahn Hagerdal, B.

    2002-01-01

    A semidefined medium based on Casamino Acids allowed Lactococcus lactis ATCC 19435 to grow in the presence of oxygen at a slow rate (0.015 h-1). Accumulation of H2O2 in the culture prevented a higher growth rate. Addition of asparagine to the medium increased the growth rate, whereby H2O2

  1. Effect of Formic Acid on Exopolysaccharide Production in Skim Milk Fermentation by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1.

    Science.gov (United States)

    Nishimura, Junko; Kawai, Yasushi; Aritomo, Ryota; Ito, Yoshiyuki; Makino, Seiya; Ikegami, Shuji; Isogai, Emiko; Saito, Tadao

    2013-01-01

    In yogurt, the formation of formate by Streptococcus thermophilus stimulates the activity of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). However, there have been no reports how formic acid acts on the exopolysaccharide (EPS) production of L. bulgaricus. Here, the effect of formate on the EPS production in skim milk by L. bulgaricus OLL1073R-1 was investigated. After incubation for 24 hr with 100 mg/l formate, cell proliferation and lactic acid production were accelerated. The viable and total cell numbers were increased about ten- and four-fold, respectively. The amount of EPS in culture with formate (~116 µg/ml) was also four-fold greater than that of the control (~27 µg/ml). Although elongation of cells was observed at 6 hr of cultivation in both cultures, cells cultivated with formate returned to a normal shape after incubation for 24 hr. The sensitivity to cell wall hydrolase and composition of surface layer proteins, as well as the cell membrane fatty acid composition of L. bulgaricus OLL1073R-1, were not influenced by formate. However, differences were observed in intracellular fatty acid compositions and sensitivity to antibiotics. Cell length and surface damage returned to normal in cultures with formate. These observations suggest that formic acid is necessary for normal cell growth of L. bulgaricus OLL1073R-1 and higher EPS production.

  2. Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis strain on acute and chronic colitis in mice

    Science.gov (United States)

    Burns, Patricia; Alard, Jeanne; Hrdỳ, Jiri; Boutillier, Denise; Páez, Roxana; Reinheimer, Jorge; Pot, Bruno; Vinderola, Gabriel; Grangette, Corinne

    2017-01-01

    Gut microbiota dysbiosis plays a central role in the development and perpetuation of chronic inflammation in inflammatory bowel disease (IBD) and therefore is key target for interventions with high quality and functional probiotics. The local production of stable probiotic formulations at limited cost is considered an advantage as it reduces transportation cost and time, thereby increasing the effective period at the consumer side. In the present study, we compared the anti-inflammatory capacities of the Bifidobacterium animalis subsp. lactis (B. lactis) INL1, a probiotic strain isolated in Argentina from human breast milk, with the commercial strain B. animalis subsp. lactis BB12. The impact of spray-drying, a low-cost alternative of bacterial dehydration, on the functionality of both bifidobacteria was also investigated. We showed for both bacteria that the spray-drying process did not impact on bacterial survival nor on their protective capacities against acute and chronic colitis in mice, opening future perspectives for the use of strain INL1 in populations with IBD. PMID:28233848

  3. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli

    DEFF Research Database (Denmark)

    Putaala, H; Barrangou, R; Leyer, G J

    2010-01-01

    a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33...

  4. The riboflavin transporter RibU in Lactococcus lactis : Molecular characterization of gene expression and the transport mechanism

    NARCIS (Netherlands)

    Burgess, CM; Slotboom, DJ; Geertsma, ER; Duurkens, Hinderika; Poolman, B; van Sinderen, D

    This study describes the characterization of the riboflavin transport protein RibU in the lactic acid bacterium Lactococcus lactis subsp. cremoris NZ9000. RibU is predicted to contain five membrane-spanning segments and is a member of a novel transport protein family, not described in the Transport

  5. Genotypic and Phenotypic Analysis of Dairy Lactococcus lactis Biodiversity in Milk: Volatile Organic Compounds as Discriminating Markers

    Science.gov (United States)

    Dhaisne, Amandine; Guellerin, Maeva; Laroute, Valérie; Laguerre, Sandrine; Le Bourgeois, Pascal; Loubiere, Pascal

    2013-01-01

    The diversity of nine dairy strains of Lactococcus lactis subsp. lactis in fermented milk was investigated by both genotypic and phenotypic analyses. Pulsed-field gel electrophoresis and multilocus sequence typing were used to establish an integrated genotypic classification. This classification was coherent with discrimination of the L. lactis subsp. lactis bv. diacetylactis lineage and reflected clonal complex phylogeny and the uniqueness of the genomes of these strains. To assess phenotypic diversity, 82 variables were selected as important dairy features; they included physiological descriptors and the production of metabolites and volatile organic compounds (VOCs). Principal-component analysis (PCA) demonstrated the phenotypic uniqueness of each of these genetically closely related strains, allowing strain discrimination. A method of variable selection was developed to reduce the time-consuming experimentation. We therefore identified 20 variables, all associated with VOCs, as phenotypic markers allowing discrimination between strain groups. These markers are representative of the three metabolic pathways involved in flavor: lipolysis, proteolysis, and glycolysis. Despite great phenotypic diversity, the strains could be divided into four robust phenotypic clusters based on their metabolic orientations. Inclusion of genotypic diversity in addition to phenotypic characters in the classification led to five clusters rather than four being defined. However, genotypic characters make a smaller contribution than phenotypic variables (no genetic distances selected among the most contributory variables). This work proposes an original method for the phenotypic differentiation of closely related strains in milk and may be the first step toward a predictive classification for the manufacture of starters. PMID:23709512

  6. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity.

    Science.gov (United States)

    Li, Bailiang; Jin, Da; Yu, Shangfu; Etareri Evivie, Smith; Muhammad, Zafarullah; Huo, Guicheng; Liu, Fei

    2017-08-08

    Lead (Pb) is a toxic contaminating heavy metal that can cause a variety of hazardous effects to both humans and animals. In the present study, Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 ( L. bulgaricus KLDS1.0207), which has a remarkable Pb binding capacity and Pb tolerance, was selected for further study. It was observed that the thermodynamic and kinetic model of L. bulgaricus KLDS1.0207 Pb binding respectively fit with the Langmuir-Freundlich model and the pseudo second-order kinetic model. Scanning electron microscopy and energy dispersive spectroscopy analysis disclosed that the cell surfaces were covered with Pb and that carbon and oxygen elements were chiefly involved in Pb binding. Combined with Fourier transform infrared spectroscopy analysis, it was revealed that the carboxyl, phosphoryl, hydroxyl, amino and amide groups were the main functional groups involved in the Pb adsorption. The protective effects of L. bulgaricus KLDS1.0207 against acute Pb toxicity in mice was evaluated by prevention and therapy groups, the results in vivo showed that L. bulgaricus KLDS1.0207 treatment could reduce mortality rates, effectively increase Pb levels in the feces, alleviate tissue Pb enrichment, improve the antioxidant index in the liver and kidney, and relieve renal pathological damage. Our findings show that L. bulgaricus KLDS1.0207 can be used as a potential probiotic against acute Pb toxicity.

  7. An ecological study of lactococci isolated from raw milk in the camembert cheese registered designation of origin area.

    Science.gov (United States)

    Corroler, D; Mangin, I; Desmasures, N; Gueguen, M

    1998-12-01

    The genetic diversity of lactococci isolated from raw milk in the Camembert cheese Registered Designation of Origin area was studied. Two seasonal samples (winter and summer) of raw milk were obtained from six farms in two areas (Bessin and Bocage Falaisien) of Normandy. All of the strains analyzed had a Lactococcus lactis subsp. lactis phenotype, whereas the randomly amplified polymorphic DNA (RAPD) technique genotypically identified the strains as members of L. lactis subsp. lactis or L. lactis subsp. cremoris. The genotypes were confirmed by performing standard PCR with primers corresponding to a region of the histidine biosynthesis operon. The geographic distribution of each subspecies of L. lactis was determined; 80% of the Bocage Falaisien strains were members of L. lactis subsp. lactis, and 30.5% of the Bessin strains were members of L. lactis subsp. lactis. A dendrogram was produced from a computer analysis of the RAPD profiles in order to evaluate the diversity of the lactococci below the subspecies level. The coefficient of similarity for 117 of the 139 strains identified as members of L. lactis subsp. cremoris was as high as 66%. The L. lactis subsp. lactis strains were more heterogeneous and formed 10 separate clusters (the level of similarity among the clusters was 18%). Reference strains of L. lactis subsp. lactis fell into 2 of these 10 clusters, demonstrating that lactococcal isolates are clearly different. As determined by the RAPD profiles, some L. lactis subsp. lactis strains were specific to the farms from which they originated and were recovered throughout the year (in both summer and winter). Therefore, the typicality of L. lactis subsp. lactis strains was linked to the farm of origin rather than the area. These findings emphasize the significance of designation of origin and the specificity of "Camembert de Normandie" cheese.

  8. Biophysical characterization of the Lactobacillus delbrueckii subsp. bulgaricus membrane during cold and osmotic stress and its relevance for cryopreservation.

    Science.gov (United States)

    Meneghel, Julie; Passot, Stéphanie; Dupont, Sébastien; Fonseca, Fernanda

    2017-02-01

    Freezing lactic acid bacteria often leads to cell death and loss of technological properties. Our objective was to provide an in-depth characterization of the biophysical properties of the Lactobacillus delbrueckii subsp. bulgaricus membrane in relation to its freeze resistance. Freezing was represented as a combination of cold and osmotic stress. This work investigated the relative incidence of increasing sucrose concentrations coupled or not with subzero temperatures without ice nucleation on the biological and biophysical responses of two strains with different membrane fatty acid compositions and freeze resistances. Following exposure of bacterial cells to the highest sucrose concentration, the sensitive strain exhibited a survival rate of less than 10 % and 5 h of acidifying activity loss. Similar biological activity losses were observed upon freeze-thawing and after osmotic treatment for each strain thus highlighting osmotic stress as the main source of cryoinjury. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to membrane lipid organization characterized by FTIR spectroscopy. Both approaches made it possible to investigate the specific contributions of the membrane core and the bilayer external surface to cell degradation caused by cold and osmotic stress. Cold-induced membrane rigidification had no significant implication on bacterial freeze-thaw resistance. Interactions between extracellular sucrose and membrane phospholipid headgroups under osmotic stress were also observed. Such interactions were more evident in the sensitive strain and when increasing sucrose concentration, thus suggesting membrane permeabilization. The relevance of biophysical properties for elucidating mechanisms of cryoinjury and cryoprotection is discussed.

  9. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... resulted in acetate, CO2, and acetoin replacing formate and ethanol as end products. Under microaerobic conditions, growth came to a gradual halt, although more than 60% of the glucose was still left. A decline in growth was not observed during microaerobic cultivation when acetate was added to the medium...

  10. Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway

    NARCIS (Netherlands)

    Groossiord, B.P.; Luesink, E.J.; Vaughan, E.E.; Arnaud, A.; Vos, de W.M.

    2003-01-01

    A cluster containing five similarly oriented genes involved in the metabolism of galactose via the Leloir pathway in Lactococcus lactis subsp. cremoris MG1363 was cloned and characterized. The order of the genes is galPMKTE, and these genes encode a galactose permease (GalP), an aldose I-epimerase

  11. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2011-08-09

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and\\/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. Results Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU\\/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. Conclusions This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.

  12. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    OpenAIRE

    Takuya Yamane; Tatsuji Sakamoto; Takenori Nakagaki; Yoshihisa Nakano

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cell...

  13. A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application.

    Science.gov (United States)

    Stressler, Timo; Ewert, Jacob; Merz, Michael; Funk, Joshua; Claaßen, Wolfgang; Lutz-Wahl, Sabine; Schmidt, Herbert; Kuhn, Andreas; Fischer, Lutz

    2016-01-01

    Lactic acid bacteria (LAB) are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl) specific aminopeptidase (PepA; EC 3.4.11.7). Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%), differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C), the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity) than for Lc-PepA (2% residual activity). EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition.

  14. A Novel Glutamyl (Aspartyl-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application.

    Directory of Open Access Journals (Sweden)

    Timo Stressler

    Full Text Available Lactic acid bacteria (LAB are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl specific aminopeptidase (PepA; EC 3.4.11.7. Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%, differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C, the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity than for Lc-PepA (2% residual activity. EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition.

  15. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    Science.gov (United States)

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  16. Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.

    Science.gov (United States)

    Usui, Yuki; Kimura, Yasumasa; Satoh, Takeshi; Takemura, Naoki; Ouchi, Yasuo; Ohmiya, Hiroko; Kobayashi, Kyosuke; Suzuki, Hiromi; Koyama, Satomi; Hagiwara, Satoko; Tanaka, Hirotoshi; Imoto, Seiya; Eberl, Gérard; Asami, Yukio; Fujimoto, Kosuke; Uematsu, Satoshi

    2018-05-15

    The gut is an extremely complicated ecosystem where microorganisms, nutrients and host cells interact vigorously. Although the function of the intestine and its barrier system weakens with age, some probiotics can potentially prevent age-related intestinal dysfunction. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, which are the constituents of LB81 yogurt, are representative probiotics. However, it is unclear whether their long-term intake has a beneficial influence on systemic function. Here, we examined the gut microbiome, fecal metabolites and gene expression profiles of various organs in mice. Although age-related alterations were apparent in them, long-term LB81 yogurt intake led to an increased Bacteroidetes to Firmicutes ratio and elevated abundance of the bacterial family S24-7 (Bacteroidetes), which is known to be associated with butyrate and propanoate production. According to our fecal metabolite analysis to detect enrichment, long-term LB81 yogurt intake altered the intestinal metabolic pathways associated with propanoate and butanoate in the mice. Gene ontology analysis also revealed that long-term LB81 yogurt intake influenced many physiological functions related to the defense response. The profiles of various genes associated with antimicrobial peptides-, tight junctions-, adherens junctions- and mucus-associated intestinal barrier functions were also drastically altered in the LB81 yogurt-fed mice. Thus, long-term intake of LB81 yogurt has the potential to maintain systemic homeostasis, such as the gut barrier function, by controlling the intestinal microbiome and its metabolites.

  17. Molecular Cloning and Nucleotide Sequence of the Gene Encoding the Major Peptidoglycan Hydrolase of Lactococcus lactis, a Muramidase Needed for Cell Separation

    NARCIS (Netherlands)

    Buist, Girbe; Kok, Jan; Leenhouts, Kees J.; Dabrowska, Magdalena; Venema, Gerhardus; Haandrikman, Alfred J.

    A gene of Lactococcus lactis subsp, cremoris MG1363 encoding a peptidoglycan hydrolase was identified in a genomic library of the strain in pUC19 by screening Escherichia coli transformants for cell wall lysis activity on a medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells,

  18. Metabolic Profiling of Lactococcus lactis Under Different Culture Conditions

    Directory of Open Access Journals (Sweden)

    Normah Mohd Noor

    2012-07-01

    Full Text Available Gas chromatography mass spectrometry (GC-MS and headspace gas chromatography mass spectrometry (HS/GC-MS were used to study metabolites produced by Lactococcus lactis subsp. cremoris MG1363 grown at a temperature of 30 °C with and without agitation at 150 rpm, and at 37 °C without agitation. It was observed that L. lactis produced more organic acids under agitation. Primary alcohols, aldehydes, ketones and polyols were identified as the corresponding trimethylsilyl (TMS derivatives, whereas amino acids and organic acids, including fatty acids, were detected through methyl chloroformate derivatization. HS analysis indicated that branched-chain methyl aldehydes, including 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal are degdradation products of isoleucine, leucine or valine. Multivariate analysis (MVA using partial least squares discriminant analysis (PLS-DA revealed the major differences between treatments were due to changes of amino acids and fermentation products.

  19. Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk.

    Science.gov (United States)

    Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra

    2014-11-02

    We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o -phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli , Staphylococcus aureus , Salmonella cholere enteridis , Listeria monocytogenes , Listeria innocua and Enterobacter aerogenes . The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus , which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes . The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC.

  20. Consumption of Yogurt Containing Probiotic Bifidobacterium Lactis Reduces Streptococcus mutans in Orthodontic Patients

    Directory of Open Access Journals (Sweden)

    Armelia Sari Widyarman

    2018-01-01

    Full Text Available Background: Probiotic bacteria is commonly used as a food supplement intended to benefit the host by improving intestinal bacterial balance. Probiotics have also been investigated from the perspective of oral health. Objectives: The purpose of this study was to investigate the effect of daily intake of yogurt containing probiotic Bifidobacterium animalis subsp. lactis BB-12 (B. lactis on salivary Streptococcus mutans (S. mutans counts in patients undergoing fixed orthodontic treatment. Methods: Saliva samples were collected from each subject (n = 7; mean age, 21 years using spitting method in centrifuge tubes at baseline and two weeks after daily probiotic yogurt consumption. B. lactis BB-12 and S. mutans ATCC 25175 were cultured in BHI-broth (37ºC, anaerobic conditions. After 48-h incubation, the number of colonies on each dilution plate was used to extrapolate a standard curve. The total number of target DNA molecules were identified using real-time PCR followed by SYBR Green reagents and 16S rRNA gene specific primers S. mutans and B. lactis BB-12. Data were analyzed statistically using paired-sample t-tests. Results: Statistical evaluation indicated that there was a significant reduction in the presence of S. mutans before probiotic yogurt consumption, (4.73 ± 1.43 log10 CFU/mL and after two weeks of daily consumption of probiotic yogurt, (4.03 ± 0.77 log10 CFU/mL, p=0.001. Moreover, no B. lactis was found in the saliva of any of the subjects before probiotic consumption, but after two weeks of consumption, B. lactis was found in the saliva of four subjects. Conclusions: Consuming probiotic yogurt containing B. lactis reduced the quantity of S. mutans in the saliva of subjects during fixed orthodontic treatment. Thus, the probiotic bacteria could be beneficial in improving oral health.

  1. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement.

    Science.gov (United States)

    Renault, Philippe; Coulon, Joana; de Revel, Gilles; Barbe, Jean-Christophe; Bely, Marina

    2015-08-17

    The aim of this work was to study ester formation and the aromatic impact of Torulaspora delbrueckii when used in association with Saccharomyces cerevisiae during the alcoholic fermentation of must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. Our results showed that mixed inoculations allowed the increase, in comparison to S. cerevisiae pure culture, of some esters specifically produced by T. delbrueckii and significantly correlated to the maximal T. delbrueckii population reached in mixed cultures. Thus, ethyl propanoate, ethyl isobutanoate and ethyl dihydrocinnamate were considered as activity markers of T. delbrueckii. On the other hand, isobutyl acetate and isoamyl acetate concentrations were systematically increased during mixed inoculations although not correlated with the development of either species but were rather due to positive interactions between these species. Favoring T. delbrueckii development when performing sequential inoculation enhanced the concentration of esters linked to T. delbrueckii activity. On the contrary, simultaneous inoculation restricted the growth of T. delbrueckii, limiting the production of its activity markers, but involved a very important production of numerous esters due to more important positive interactions between species. These results suggest that the ester concentrations enhancement via interactions during mixed modalities was due to S. cerevisiae production in response to the presence of T. delbrueckii. Finally, sensory analyses showed that mixed inoculations between T. delbrueckii and S. cerevisiae allowed to enhance the complexity and fruity notes of wine in comparison to S. cerevisiae pure culture. Furthermore, the higher levels of ethyl propanoate, ethyl isobutanoate, ethyl dihydrocinnamate and isobutyl acetate in mixed wines were found responsible for the increase of

  2. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.

    Science.gov (United States)

    Weidmann, Stéphanie; Maitre, Magali; Laurent, Julie; Coucheney, Françoise; Rieu, Aurélie; Guzzo, Jean

    2017-04-17

    Lactococcus lactis is a lactic acid bacterium widely used in cheese and fermented milk production. During fermentation, L. lactis is subjected to acid stress that impairs its growth. The small heat shock protein (sHsp) Lo18 from the acidophilic species Oenococcus oeni was expressed in L. lactis. This sHsp is known to play an important role in protein protection and membrane stabilization in O. oeni. The role of this sHsp could be studied in L. lactis, since no gene encoding for sHsp has been detected in this species. L. lactis subsp. cremoris strain MG1363 was transformed with the pDLhsp18 plasmid, which is derived from pDL278 and contains the hsp18 gene (encoding Lo18) and its own promoter sequence. The production of Lo18 during stress conditions was checked by immunoblotting and the cellular distribution of Lo18 in L. lactis cells after heat shock was determined. Our results clearly indicated a role for Lo18 in cytoplasmic protein protection and membrane stabilization during stress. The production of sHsp in L. lactis improved tolerance to heat and acid conditions in this species. Finally, the improvement of the L. lactis survival in milk medium thanks to Lo18 was highlighted, suggesting an interesting role of this sHsp. These findings suggest that the expression of a sHsp by a L. lactis strain results in greater resistance to stress, and, can consequently enhance the performances of industrial strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2015-03-01

    Full Text Available Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain (Lc. lactis DF4Mi, isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products.

  4. ORF Alignment: NC_002662 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available eptidase [Lactococcus lactis subsp. lactis Il1403] ... gb|AAK04710.1| mathionine aminopeptidase [Lact...ococcus ... lactis subsp. lactis Il1403] pir||D86701 mathionine ... aminopeptidase [imported

  5. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of epsD.

    Science.gov (United States)

    Frantzen, Cyril A; Kleppen, Hans Petter; Holo, Helge

    2018-02-01

    Undefined mesophilic mixed (DL) starter cultures are used in the production of continental cheeses and contain unknown strain mixtures of Lactococcus lactis and leuconostocs. The choice of starter culture affects the taste, aroma, and quality of the final product. To gain insight into the diversity of Lactococcus lactis strains in starter cultures, we whole-genome sequenced 95 isolates from three different starter cultures. Pan-genomic analyses, which included 30 publically available complete genomes, grouped the strains into 21 L. lactis subsp . lactis and 28 L. lactis subsp. cremoris lineages. Only one of the 95 isolates grouped with previously sequenced strains, and the three starter cultures showed no overlap in lineage distributions. The culture diversity was assessed by targeted amplicon sequencing using purR , a core gene, and epsD , present in 93 of the 95 starter culture isolates but absent in most of the reference strains. This enabled an unprecedented discrimination of starter culture Lactococcus lactis and revealed substantial differences between the three starter cultures and compositional shifts during the cultivation of cultures in milk. IMPORTANCE In contemporary cheese production, standardized frozen seed stock starter cultures are used to ensure production stability, reproducibility, and quality control of the product. The dairy industry experiences significant disruptions of cheese production due to phage attacks, and one commonly used countermeasure to phage attack is to employ a starter rotation strategy, in which two or more starters with minimal overlap in phage sensitivity are used alternately. A culture-independent analysis of the lactococcal diversity in complex undefined starter cultures revealed large differences between the three starter cultures and temporal shifts in lactococcal composition during the production of bulk starters. A better understanding of the lactococcal diversity in starter cultures will enable the development of

  6. An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase.

    Science.gov (United States)

    Branny, P; de la Torre, F; Garel, J R

    1998-04-01

    The structural genes gap, pgk and tpi encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI), respectively, have been cloned and sequenced from Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The genes were isolated after screening genomic sublibraries with specific gap and pgk probes obtained by PCR amplification of chromosomal DNA with degenerate primers corresponding to amino acid sequences highly conserved in GAPDHs and PGKs. Nucleotide sequencing revealed that the three genes were organized in the order gap-pgk-tpi. The translation start codons of the three genes were identified by alignment of the N-terminal sequences. These genes predicted polypeptide chains of 338, 403 and 252 amino acids for GAPDH, PGK and TPI, respectively, and they were separated by 96 bp between gap and pgk, and by only 18 bp between pgk and tpi. The codon usage in gap, pgk, tpi and three other glycolytic genes from L. bulgaricus differed, noticeably from that in other chromosomal genes. The site of transcriptional initiation was located by primer extension, and a probable promoter was identified for the gap-pgk-tpi operon. Northern hybridization of total RNA with specific probes showed two transcripts, an mRNA of 1.4 kb corresponding to the gap gene, and a less abundant mRNA of 3.4 kb corresponding to the gap-pgk-tpi cluster. The absence of a visible terminator in the 3'-end of the shorter transcript and the location of this 3'-end inside the pgk gene indicated that this shorter transcript was produced by degradation of the longer one, rather than by an early termination of transcription after the gap gene.

  7. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.

    Science.gov (United States)

    Cretenet, Marina; Le Gall, Gwenaëlle; Wegmann, Udo; Even, Sergine; Shearman, Claire; Stentz, Régis; Jeanson, Sophie

    2014-12-03

    Lactococcus lactis is the most used species in the dairy industry. Its ability to adapt to technological stresses, such as oxidative stress encountered during stirring in the first stages of the cheese-making process, is a key factor to measure its technological performance. This study aimed to understand the response to oxidative stress of Lactococcus lactis subsp. cremoris MG1363 at the transcriptional and metabolic levels in relation to acidification kinetics and growth conditions, especially at an early stage of growth. For those purposes, conditions of hyper-oxygenation were initially fixed for the fermentation. Kinetics of growth and acidification were not affected by the presence of oxygen, indicating a high resistance to oxygen of the L. lactis MG1363 strain. Its resistance was explained by an efficient consumption of oxygen within the first 4 hours of culture, leading to a drop of the redox potential. The efficient consumption of oxygen by the L. lactis MG1363 strain was supported by a coherent and early adaptation to oxygen after 1 hour of culture at both gene expression and metabolic levels. In oxygen metabolism, the over-expression of all the genes of the nrd (ribonucleotide reductases) operon or fhu (ferrichrome ABC transports) genes was particularly significant. In carbon metabolism, the presence of oxygen led to an early shift at the gene level in the pyruvate pathway towards the acetate/2,3-butanediol pathway confirmed by the kinetics of metabolite production. Finally, the MG1363 strain was no longer able to consume oxygen in the stationary growth phase, leading to a drastic loss of culturability as a consequence of cumulative stresses and the absence of gene adaptation at this stage. Combining metabolic and transcriptomic profiling, together with oxygen consumption kinetics, yielded new insights into the whole genome adaptation of L. lactis to initial oxidative stress. An early and transitional adaptation to oxidative stress was revealed for L

  8. Temperate phages TP901-1 and phi LC3, belonging to the P335 species, apparently use different pathways for DNA injection in Lactococcus lactis subsp cremoris 3107

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Neve, Horst; Heller, Knut J.

    2007-01-01

    Five mutants of Lactococcus lactis subsp. cremoris 3107 resistant to phage TP901-1 were obtained after treatment with ethyl methanesulfonate. Two of the mutants were also resistant to phage phi LC3. The remaining three mutants were as sensitive as 3107. Mutants E46 and E100 did not adsorb the two...... phages. Mutants E119, E121 and E126 adsorbed phage phi LC3 as well as 3107 but phage TP901-1 with significantly reduced efficiency. All, except E46, could be lysogenized with phage TP901-BC1034, a derivative of TP901-1 harboring an erythromycin-resistance marker. However, the lysogenization frequency......-1. As such impairment was not seen when infecting E119, E121 and E126 with phi LC3, we conclude that TP901-1 and phi LC3 either are differently triggered by their receptor or utilize different pathways of injection....

  9. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products.

    Science.gov (United States)

    D'Aimmo, Maria Rosaria; Modesto, Monica; Biavati, Bruno

    2007-04-01

    The outlines of antibiotic resistance of some probiotic microorganisms were studied. This study was conducted with the double purpose of verifying their ability to survive if they are taken simultaneously with an antibiotic therapy and to increase the selective properties of suitable media for the isolation of samples containing mixed bacterial populations. We isolated from commercial dairy and pharmaceutical products, 34 strains declared as probiotics, belonging to the genera Bifidobacterium and Lactobacillus, and 21 strains of starter culture bacteria. All the microorganisms have been compared by electrophoresis of the soluble proteins for the purpose of identifying them. A Multiplex-PCR with genus- and species-specific primers was used to detect for Bifidobacterium animalis subsp. lactis presence. All bifidobacteria were B. animalis subsp. lactis except one Bifidobacterium longum. Sometimes the identification showed that the used strain was not the one indicated on the label. The lactobacilli were Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus. The streptococci were all Streptococcus thermophilus. The minimal inhibitory concentration (MIC) of 24 common antibiotic substances has been valued by the broth microdilution method. All tested strains were susceptible to ampicillin, bacitracin, clindamycin, dicloxacillin, erytromycin, novobiocin, penicillin G, rifampicin (MIC(90) ranging from 0.01 to 4 microg/ml); resistant to aztreonam, cycloserin, kanamycin, nalidixic acid, polymyxin B and spectinomycin (MIC(90) ranging from 64 to >1000 microg/ml). The susceptibility to cephalothin, chloramphenicol, gentamicin, lincomycin, metronidazole, neomycin, paromomycin, streptomycin, tetracycline and vancomycin was variable and depending on the species.

  10. Persistence of Escherichia coli O157:H7 in dairy fermentation systems.

    Science.gov (United States)

    Dineen, S S; Takeuchi, K; Soudah, J E; Boor, K J

    1998-12-01

    We examined (i) the persistence of Escherichia coli O157:H7 as a postpasteurization contaminant in fermented dairy products; (ii) the ability of E. coli O157:H7 strains with and without the general stress regulatory protein, RpoS, to compete with commercial starter cultures in fermentation systems; and (iii) the survival of E. coli O157:H7 in the yogurt production process. In commercial products inoculated with 10(3) CFU/ml, E. coli O157:H7 was recovered for up to 12 days in yogurt (pH 4.0), 28 days in sour cream (pH 4.3), and at levels > 10(2) CFU/ml at 35 days in buttermilk (pH 4.1). For the starter culture competition trials, the relative inhibition of E. coli O157:H7 in the experimental fermentation systems was, in decreasing order, thermophilic culture mixture, Lactobacillus delbrueckii subsp. bulgaricus R110 alone, Lactococcus lactis subsp. lactis D280 alone, Lactococcus lactis subsp. cremoris D62 alone, and Streptococcus thermophilus C90 alone showing the least inhibition. Recovery of the rpoS mutant was lower than recovery of its wild-type parent by 72 h or earlier in the presence of individual starter cultures. No E. coli O157:H7 were recovered after the curd formation step in yogurt manufactured with milk inoculated with 10(5) CFU/ml. Our results show that (i) postprocessing entry of E. coli O157:H7 into fermented dairy products represents a potential health hazard; (ii) commercial starter cultures differ in their ability to reduce E. coli O157:H7 CFU numbers in fermentation systems; and (iii) the RpoS protein appears to most effectively contribute to bacterial survival in the presence of conditions that are moderately lethal to the cell.

  11. Antibacterial Activity of Lactic Acid Bacteria Isolated from Healthy ...

    African Journals Online (AJOL)

    Abstract. Lactic acid bacteria (LAB), namely, Lactobacillus acidophilus 1, Lactobacillus acidophilus 2, Lactobacillus brevis 1, Lactobacillus rhamnosus 1, Lactococcus lactis subsp. lactis 1, Lactococcus lactis subsp. lactis 2, Lactococcus raffinolactis 1, Pediococcus acidilactici 1, Pediococcus pentosaceus 1, and Pediococcus ...

  12. Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui.

    Science.gov (United States)

    Biscola, Vanessa; Abriouel, Hikmate; Todorov, Svetoslav Dimitrov; Capuano, Verena Sant'Anna Cabral; Gálvez, Antonio; Franco, Bernadette Dora Gombossy de Melo

    2014-12-01

    Charqui is a fermented, salted and sun-dried meat product, widely consumed in Brazil and exported to several countries. Growth of microorganisms in this product is unlikely due to reduced Aw, but halophilic and halotolerant bacteria may grow and cause spoilage. Charqui is a good source of lactic acid bacteria able to produce antimicrobial bacteriocins. In this study, an autochthonous bacteriocinogenic strain (Lactococcus lactis subsp. lactis 69), isolated from charqui, was added to the meat used for charqui manufacture and evaluated for its capability to prevent the growth of spoilage bacteria during storage up to 45 days. The influence of L. lactis 69 on the bacterial diversity during the manufacturing of the product was also studied, using denaturing gradient gel electrophoresis (DGGE). L. lactis 69 did not affect the counts and diversity of lactic acid bacteria during manufacturing and storage, but influenced negatively the populations of halotolerant microorganisms, reducing the spoilage potential. The majority of tested virulence genes was absent, evidencing the safety and potential technological application of this strain as an additional hurdle to inhibit undesirable microbial growth in this and similar fermented meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Esmeray Küley

    2013-01-01

    Full Text Available The influences of fish infusion decarboxylase broth (IDB on biogenic amines (BA formation by lactic acid bacteria (LAB were investigated. BA productions by single LAB strains were tested in five different fish (anchovy, mackerel, white shark, sardine and gilthead seabream IDB. The result of the study showed that significant differences in ammonia (AMN and BA production were observed among the LAB strains in fish IDB (p < 0.05. The highest AMN and TMA production by LAB strains were observed for white shark IDB. The all tested bacteria had decarboxylation activity in fish IDB. The uppermost accumulated amines by LAB strains were tyramine (TYM, dopamine, serotonin and spermidine. The maximum histamine production was observed in sardine (101.69 mg/L and mackerel (100.84 mg/L IDB by Leuconostoc mesenteroides subsp. cremoris and Pediococcus acidophilus, respectively. Lactobacillus delbrueckii subsp. lactis and Pediococcus acidophilus had a high TYM producing capability (2943 mg/L and 1157 mg/L in sardine IDB.

  14. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products.

    Science.gov (United States)

    Vinderola, C G; Mocchiutti, P; Reinheimer, J A

    2002-04-01

    Interactions among lactic acid starter and probiotic bacteria were investigated to establish adequate combinations of strains to manufacture probiotic dairy products. For this aim, a total of 48 strains of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium spp. (eight of each) were used. The detection of bacterial interactions was carried out using the well-diffusion agar assay, and the interactions found were further characterized by growth kinetics. A variety of interactions was demonstrated. Lb. delbrueckii subsp. bulgaricus was found to be able to inhibit S. thermophilus strains. Among probiotic cultures, Lb. acidophilus was the sole species that was inhibited by the others (Lb. casei and Bifidobacterium). In general, probiotic bacteria proved to be more inhibitory towards lactic acid bacteria than vice versa since the latter did not exert any effect on the growth of the former, with some exceptions. The study of interactions by growth kinetics allowed the setting of four different kinds of behaviors between species of lactic acid starter and probiotic bacteria (stimulation, delay, complete inhibition of growth, and no effects among them). The possible interactions among the strains selected to manufacture a probiotic fermented dairy product should be taken into account when choosing the best combination/s to optimize their performance in the process and their survival in the products during cold storage.

  15. Absolute Enumeration of Probiotic Strains Lactobacillus acidophilus NCFM® and Bifidobacterium animalis subsp. lactis Bl-04® via Chip-Based Digital PCR

    Directory of Open Access Journals (Sweden)

    Sarah J. Z. Hansen

    2018-04-01

    Full Text Available The current standard for enumeration of probiotics to obtain colony forming units by plate counts has several drawbacks: long time to results, high variability and the inability to discern between bacterial strains. Accurate probiotic cell counts are important to confirm the delivery of a clinically documented dose for its associated health benefits. A method is described using chip-based digital PCR (cdPCR to enumerate Bifidobacterium animalis subsp. lactis Bl-04 and Lactobacillus acidophilus NCFM both as single strains and in combination. Primers and probes were designed to differentiate the target strains against other strains of the same species using known single copy, genetic differences. The assay was optimized to include propidium monoazide pre-treatment to prevent amplification of DNA associated with dead probiotic cells as well as liberation of DNA from cells with intact membranes using bead beating. The resulting assay was able to successfully enumerate each strain whether alone or in multiplex. The cdPCR method had a 4 and 5% relative standard deviation (RSD for Bl-04 and NCFM, respectively, making it more precise than plate counts with an industry accepted RSD of 15%. cdPCR has the potential to replace traditional plate counts because of its precision, strain specificity and the ability to obtain results in a matter of hours.

  16. Identificação bioquímica e molecular de Lactobacillus spp. isolados do íleo de frangos de corte tratados ou não com antimicrobianos Biochemical and molecular characterization of Lactobacillus spp. isolated from the ileum of broilers treated with or without antimicrobials

    Directory of Open Access Journals (Sweden)

    Surama Freitas Zanini

    2012-09-01

    Full Text Available Objetivou-se caracterizar bioquimicamente e molecularmente as espécies de Lactobacillus spp. isoladas do íleo de frangos de corte tratados ou não com antimicrobianos. Utilizou-se 400 pintos de corte alojados em 25 boxes de 2m² (16 aves/boxe, distribuídos em um delineamento inteiramente casualizado, em grupos de cinco tratamentos e cinco repetições: dieta sem promotor de crescimento; dieta com promotor de crescimento; dieta com 0,4% de óleo de aroeira-vermelha (OAV; dieta com 200mg de vitamina E kg-1; dieta com 0,4% OAV e 200mg de vitamina E kg-1. Após a caracterização fenotípica do gênero Lactobacillus, foram identificadas, em ambas as metodologias, 100 amostras de Lactobacillus spp. sendo 20 amostras por tratamento. Os resultados bioquímicos identificaram L. acidophilus, L. fermentum, L. plantarum, L. delbrueckii subsp. delbrueckii além de Lactococcus lactis subp. lactis. Para as amostras padrão ATCC, a identificação bioquímica suscitou algumas dúvidas em relação aos seus resultados. Os resultados da identificação molecular mostraram que os Lactobacillus que amplificaram ambos os iniciadores (LU-1'/ Lac-2 e (Laci-1 / 23-10C são os da espécie L. acidophilus. As amostras que amplificaram apenas com o iniciador (LU-1'/ Lac-2 tratam-se das demais espécies que compõe o grupo L. acidophilus. Já as amostras com o iniciador L. fermentum (Fer 3/Fer 4 amplificaram um fragmento de 192pb padrão para essa espécie. Conclui-se que a identificação das espécies de Lactobacillus spp. isoladas do íleo a partir da PCR apresentou-se mais sensível que o método bioquímico.This study aimed to characterize biochemically and molecular species of Lactobacillus spp. isolated from the ileum of broiler chickens treated with or without antimicrobial. A total of 400 day-old male chicks, Cobb, distributed in a randomized design in groups of five treatments and five replicates: diet without antimicrobials; diet with antimicrobials; diet

  17. Variability of bacterial biofilms of the "tina" wood vats used in the ragusano cheese-making process.

    Science.gov (United States)

    Licitra, G; Ogier, J C; Parayre, S; Pediliggieri, C; Carnemolla, T M; Falentin, H; Madec, M N; Carpino, S; Lortal, S

    2007-11-01

    Ragusano cheese is a "protected denomination of origin" cheese made in the Hyblean region of Sicily from raw milk using traditional wooden tools, without starter. To explore the Ragusano bacterial ecosystem, molecular fingerprinting was conducted at different times during the ripening and biofilms from the wooden vats called "tinas" were investigated. Raw milks collected at two farm sites, one on the mountain and one at sea level, were processed to produce Ragusano cheese. Raw milk, curd before and after cooking, curd at stretching time (cheese 0 time), and cheese samples (4 and 7 months) were analyzed by PCR-temporal temperature gel electrophoresis (PCR-TTGE) and by classical enumeration microbiology. With the use of universal primers, PCR-TTGE revealed many differences between the raw milk profiles, but also notable common bands identified as Streptococcus thermophilus, Lactobacillus lactis, Lactobacillus delbrueckii, and Enterococcus faecium. After the stretching, TTGE profiles revealed three to five dominant species only through the entire process of ripening. In the biofilms of the two tinas used, one to five species were detected, S. thermophilus being predominant in both. Biofilms from five other tinas were also analyzed by PCR-TTGE, PCR-denaturating gradient gel electrophoresis, specific PCR tests, and sequencing, confirming the predominance of lactic acid bacteria (S. thermophilus, L. lactis, and L. delbrueckii subsp. lactis) and the presence of a few high-GC-content species, like coryneform bacteria. The spontaneous acidification of raw milks before and after contact with the five tinas was followed in two independent experiments. The lag period before acidification can be up to 5 h, depending on the raw milk and the specific tina, highlighting the complexity of this natural inoculation system.

  18. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    Science.gov (United States)

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Lactic Acid Yield Using Different Bacterial Strains, Its Purification, and Polymerization through Ring-Opening Reactions

    Directory of Open Access Journals (Sweden)

    F. G. Orozco

    2014-01-01

    Full Text Available Laboratory-scale anaerobic fermentation was performed to obtain lactic acid from lactose, using five lactic acid bacteria: Lactococcus lactis, Lactobacillus bulgaricus, L. delbrueckii, L. plantarum, and L. delbrueckii lactis. A yield of 0.99 g lactic acid/g lactose was obtained with L. delbrueckii, from which a final concentration of 80.95 g/L aqueous solution was obtained through microfiltration, nanofiltration, and inverse osmosis membranes. The lactic acid was polymerized by means of ring-opening reactions (ROP to obtain poly-DL-lactic acid (PDLLA, with a viscosity average molecular weight (Mv of 19,264 g/mol.

  20. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Jacobsen, Susanne; Hammer, Karin

    1997-01-01

    The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during lie in excess nutrients, by compari...... the timing during heat stress although at a lower induction level. These data indicate an overlap between the heat shock and salt stress responses in L. lactis......., by comparison of prototrophic wild-type strains and auxotrophic domesticated (daily) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L,. lactis subsp. cremoris...... laboratory strain MG1363, which was originally derived from a dairy strain, After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shack repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase...

  1. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Science.gov (United States)

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  2. Lactococcus lactis ssp. lactis as Potential Functional Starter Culture

    Directory of Open Access Journals (Sweden)

    Jelena Cvrtila

    2014-01-01

    Full Text Available The aim of this study is to identify and characterise potential autochthonous functional starter cultures in homemade horsemeat sausage. The dominant microflora in the samples of horsemeat sausage were lactic acid bacteria (LAB, followed by micrococci. Among the LAB, Lactococcus lactis ssp. lactis and Lactobacillus plantarum were the dominant species, and since the first is not common in fermented sausages, we characterised it as a potential functional starter culture. Lactococcus lactis ssp. lactis produced a significant amount of lactic acid, displayed good growth capability at 12, 18 and 22 °C, growth in the presence of 5 % NaCl, good viability after lyophilisation and in simulated gastric and small intestinal juice, antimicrobial activity against test pathogens, and good adhesive properties in vitro.

  3. Differentiation studies of predominant lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... Lactobacillus plantarum subsp. plantarum NBRC 15891 as a reference strain. But many .... with conserved primers close to the 3_ and 5_ ends of the gene. ... specific. Agarose gel electrophoresis was done to examine the ..... Lactobacillus delbrueckii subsp. delbrueckii LMG 6412T (AM087689). AA2. AA5.

  4. Torulaspora delbrueckii for secondary fermentation in sparkling wine production.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Ciani, Maurizio

    2018-09-01

    In the search for the desired oenological features and flavour complexity of wines, there is growing interest in the potential use of non-Saccharomyces yeast that are naturally present in the winemaking environment. Torulaspora delbrueckii is one such yeast that has seen profitable use in mixed fermentations with Saccharomyces cerevisiae and with different grape varieties. T. delbrueckii can have positive and distinctive impacts on the overall aroma of wines, and has also been used at an industrial level. Here, T. delbrueckii was successfully used in pure and mixed secondary fermentations for sparkling wine. The two selected T. delbrueckii strains used completed the secondary fermentation 'prise de mousse' in these pure and mixed fermentations. The sparkling wines obtained with T. delbrueckii showed different aromatic compositions and sensory profiles to those of S. cerevisiae. T. delbrueckii strain DiSVA 130 showed high esters production and significantly high scores for some of the aromatic descriptors that positively influence the sensory profile of sparkling wine. Thus, the use of T. delbrueckii in pure and mixed fermentations is a suitable strategy to further develop the flavour complexity during secondary fermentation of sparkling wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Nisin Z produced by Lactococcus lactis from bullfrog hatchery is active against Citrobacter freundii, a red-leg syndrome related pathogen.

    Science.gov (United States)

    Quintana, Gabriel; Niederle, Maria V; Minahk, Carlos J; Picariello, Gianluca; Nader-Macías, María E F; Pasteris, Sergio E

    2017-09-27

    Lactococcus lactis subsp. lactis CRL 1584 isolated from a bullfrog hatchery produces a bacteriocin that inhibits both indigenous Citrobacter freundii (a Red-Leg Syndrome related pathogen) and Lactobacillus plantarum, and Listeria monocytogenes as well. Considering that probiotics requires high cell densities and/or bacteriocin concentrations, the effect of the temperature on L. lactis growth and bacteriocin production was evaluated to find the optimal conditions. Thus, the growth rate was maximal at 36 °C, whereas the highest biomass and bacteriocin activity was achieved between 20 and 30 °C and 20-25 °C, respectively. The bacteriocin synthesis was closely growth associated reaching the maximal values at the end of the exponential phase. Since bacteriocins co-production has been evidenced in bacterial genera, a purification of the bacteriocin/s from L. lactis culture supernatants was carried out. The active fraction was purified by cationic-exchange chromatography and then, a RP-HPLC was carried out. The purified sample was a peptide with a 3353.05 Da, a molecular mass that matches nisin Z, which turned out to be the only bacteriocin produced by L. lactis CRL 1584. Nisin Z showed bactericidal effect on C. freundii and L. monocytogenes, which increased in the presence L-lactic acid + H 2 O 2 . This is the first report on nisin Z production by L. lactis from a bullfrog hatchery that resulted active on a Gram-negative pathogen. This peptide has potential probiotic for raniculture and as food biopreservative for bullfrog meat.

  6. INHIBITION OF STAPHYLOCOCCUS AUREUS BY LACTIC ACID BACTERIA AND / OR BIFIDOBACTERIUM LACTIS DURING MILK FERMENTATION AND STORAGE

    Directory of Open Access Journals (Sweden)

    Khalaf S. Al-Delaimy

    2013-02-01

    Full Text Available Survival and inhibition of Staphylococcus aureus by the lactic acid bacteria (LAB starter culture (Sterptococcus thermophillus and Lactobacillus delbrukii subsp. bulgaricus and/ or probiotic bacteria Bifidobacterium lactis during milk fermentation to yoghurt and storage up to 12 days was studied. Adding S. aureus (initial count log 6.64/ ml with LAB (initial count log 6.8/ ml in milk during yoghurt processing and storage resulted in no significant change in the counts of both S. aureus and LAB during fermentation period of 4 hrs at 45° C. A steady decrease in S. aureus count during storage at 25° C and 4° C was observed reaching a complete (100 % inhibition after 9 and 12 days, respectively, with no significant increase in LAB count. Adding S. aureus (initial count log 6.62/ ml with B. lactis (initial count log 6.83/ ml in milk for 4 hr at45° C, no significant changes in the counts of both bacteria were found. After storage at 25° C and at 4° C a sharp decline in the S. aureus count with a 100 % inhibition after 6 and 9 days with approximately two log and one log increase in B. lactis counts consecutively. In general similar result was observed when adding S. aureus together with LAB and B. lactis in milk during fermentation and storage. pH values decreased during milk fermentation and storage from initially 6.55-6.64 to around 4 in most milk samples. The results of this study show that S. aureus was completely inhibited by LAB and/or B. lactis after milk fermentation to yoghurt and storage at room temperature and refrigeration for 6-9 days. It is therefore recommended to add the probiotic B. lactis with LAB to milk for yoghurt processing.

  7. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Directory of Open Access Journals (Sweden)

    Takuya Yamane

    2018-03-01

    Full Text Available The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  8. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Romano, Nelson; Schebor, Carolina; Mobili, Pablo; Gómez-Zavaglia, Andrea

    2016-12-01

    The aim of this work was to assess the role of mono- and oligosaccharides present in fructo-oligosaccharides (FOS) mixtures as protective agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333. Different FOS mixtures were enzymatically obtained from sucrose and further purified by removing the monosaccharides produced as secondary products. Their glass transition temperatures (T g ) were determined at 11, 22 and 33% relative humidity (RH). Bacterial cultures were freeze-dried in the presence of 20% w/v solutions of the studied FOS. Their protective effect during freeze-drying was assessed by bacterial plate counting, and by determining the lag time from growth kinetics and the uptake of propidium iodide (PI). Plate counting during bacterial storage at 4°C, and 11, 22 and 33% RH for 80days completed this rational analysis of the protective effect of FOS. Purification of FOS led to an increase of T g in all the conditions assayed. Microorganisms freeze-dried in the presence of non-purified FOS were those with the shortest lag times. Bacteria freeze-dried with pure or commercial FOS (92% of total FOS) showed larger lag times (8.9-12.6h). The cultivability of microorganisms freeze-dried with non-purified FOS and with sucrose was not significantly different from that of bacteria before freeze-drying (8.74±0.14logCFU/mL). Pure or commercial FOS were less efficient in protecting bacteria during freeze-drying. All the protectants prevented membrane damage. The cultivability of bacteria freeze-dried with FOS decayed <1logarithmicunit after 80days of storage at 11% RH. When storing at 22 and 33% RH, pure and commercial FOS were those that best protected bacteria, and FOS containing monosaccharides were less efficient. The effect of FOS on bacterial protection is the result of a balance between monosaccharides, sucrose and larger FOS in the mixtures: the smallest sugars are more efficient in protecting lipid membranes, and the

  9. Effect of Lactobacillus sp. isolates supernatant on Escherichia coli O157:H7 enhances the role of organic acids production as a factor for pathogen control

    Directory of Open Access Journals (Sweden)

    Larissa B. Poppi

    2015-04-01

    Full Text Available Many attempts have been made to establish the control of foodborne pathogens through Lactobacillus isolates and their metabolism products with success being obtained in several situations. The aim of this study was to investigate the antagonistic effect of eight Lactobacillus isolates, including L. casei subsp. pseudoplantarum, L. plantarum, L. reuteri and L. delbrueckii subsp. delbrueckii, on the pathogenic Escherichia colistrain O157:H7. The inhibitory effect of pure cultures and two pooled cultures supernatants of Lactobacillus on the growth of pathogenic bacteria was evaluated by the spot agar method and by monitoring turbidity. Antimicrobial activity was confirmed for L. reuteri and L. delbrueckii subsp. delbrueckii and for a pool of lactic acid bacteria. The neutralized supernatant of the pool exerted a higher antimicrobial activity than that of the individual strains. Furthermore, D-lactic acid and acetic acid were produced during growth of the Lactobacillus isolates studied.

  10. The genomes and comparative genomics of Lactobacillus delbrueckii phages.

    Science.gov (United States)

    Riipinen, Katja-Anneli; Forsman, Päivi; Alatossava, Tapani

    2011-07-01

    Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.

  11. Protective role of probiotic lactic acid bacteria against dietary fumonisin B1-induced toxicity and DNA-fragmentation in sprague-dawley rats.

    Science.gov (United States)

    Khalil, Ashraf A; Abou-Gabal, Ashgan E; Abdellatef, Amira A; Khalid, Ahmed E

    2015-08-18

    The genus Fusarium, especially F. verticillioides and F. proliferatum, has been found in several agricultural products worldwide, especially in maize. Regardless the occurrence of symptoms, the presence of Fusarium in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effect on rats, swine, and equines and already classified as possible carcinogens to humans. The toxicity of incremental levels of fumonisin B1 (FB1), that is, 50, 100, and 200 mg FB1/kg diet, and the role of Lactobacillus delbrueckii subsp. lactis DSM 20076 (LL) and Pediococcus acidilactici NNRL B-5627 (PA) supplementation in counteracting the FB1 effects in intoxicated rats were monitored over a period of 4 weeks. Effects on the feed intake and body weight gain were noticed. A significant (p ≤ 0.05) increase in the level of liver and kidney functions markers and DNA fragmentation was also noticed in rat groups T100 and T200. The lactic acid bacteria (LAB) supplementation could bring back the normal serum biochemical parameters in rats fed on fumonisin B1-contaminated diets (T50 and T100) compared to FB1-treated groups. In rats of high-dosage dietary groups supplemented with LAB (T200-LL and T200-PA), the supplementation reduced the serum activity levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatinine by 11.3, 11.9, 32, and 20%, respectively. DNA fragmentations were observed in the rat group treated with 200 mg FB1 after 3 weeks, while fragmentation was noticed in treated groups with 100 and 200 mg FB1 after 4 weeks. No DNA fragmentation was apparent in FB1-treated rats co-administered the LL or PA strain. These results suggest that in male rats consuming diets containing FB1, there is a time- and dose-dependent increase in serum enzyme activities and DNA lesions. Moreover, Lb. delbrueckii subsp. lactis (LL) and P. acidilactici (PA) strains have a protective effect

  12. Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp paracasei CHCC 2115

    DEFF Research Database (Denmark)

    Thage, B.V.; Rattray, F.P.; Laustsen, M.W.

    2004-01-01

    Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. Methods and Results: The purification protocol consisted of anion exchange chromatography, affinity chromatography...... of other metal ions, thiol- and carbonyl-binding agents. The N-terminal sequence of the enzyme was SVNIDWNNLGFDYMQLPYRYVAHXKDGVXD, and had at the amino acid level, 60 and 53% identity to a branched-chain amino acid AT of Lact. plantarum and Lactococcus lactis, respectively. Conclusions: The results suggest...

  13. Lactococcus lactis is diploid

    DEFF Research Database (Denmark)

    Michelsen, Ole; Jensen, Peter Ruhdal

    As part of a collaboration with Danish Dairy Research Foundation we are interested in the DNA replication of Lactococcus lactis. For that we implemented flowcytometric analysis for these studies. The L. lactis does not respond to inhibition by rifampicin by finishing ongoing replication forks. We....... This unexpected result has been confirmed by radioactive labelling of slow growing cultures of Lactococcus lactis, which also showed the presence of two chromosomes. We therefore conclude that Lactococcus lactis is the first diploid bacterium found....... therefore turned to slow growing cultures in order to obtain information about the DNA replication in the cell cycle. From these studies we have obtained evidence that suggest that slow growing L. lactis are born with two chromosomes in contrast to other studied bacteria, which are born with one chromosome...

  14. Non-fusion and fusion expression of beta-galactosidase from Lactobacillus bulgaricus in Lactococcus lactis.

    Science.gov (United States)

    Wang, Chuan; Zhang, Chao-Wu; Liu, Heng-Chuan; Yu, Qian; Pei, Xiao-Fang

    2008-10-01

    To construct four recombinant Lactococcus lactis strains exhibiting high beta-galactosidase activity in fusion or non-fusion ways, and to study the influence factors for their protein expression and secretion. The gene fragments encoding beta-galactosidase from two strains of Lactobacillus bulgaricus, wch9901 isolated from yogurt and 1.1480 purchased from the Chinese Academy of Sciences, were amplified and inserted into lactococcal expression vector pMG36e. For fusion expression, the open reading frame of the beta-galactosidase gene was amplified, while for non-fusion expression, the open reading frame of the beta-galactosidase gene was amplified with its native Shine-Dalgarno sequence upstream. The start codon of the beta-galactosidase gene partially overlapped with the stop codon of vector origin open reading frame. Then, the recombinant plasmids were transformed into Escherichia coli DH5 alpha and Lactococcus lactis subsp. lactis MG1363 and confirmed by determining beta-galactosidase activities. The non-fusion expression plasmids showed a significantly higher beta-galactosidase activity in transformed strains than the fusion expression plasmids. The highest enzyme activity was observed in Lactococcus lactis transformed with the non-fusion expression plasmids which were inserted into the beta-galactosidase gene from Lactobacillus bulgaricus wch9901. The beta-galactosidase activity was 2.75 times as high as that of the native counterpart. In addition, beta-galactosidase expressed by recombinant plasmids in Lactococcus lactis could be secreted into the culture medium. The highest secretion rate (27.1%) was observed when the culture medium contained 20 g/L of lactose. Different properties of the native bacteria may have some effects on the protein expression of recombinant plasmids. Non-fusion expression shows a higher enzyme activity in host bacteria. There may be a host-related weak secretion signal peptide gene within the structure gene of Lb. bulgaricus beta

  15. Growth interactions and antilisterial effects of the bacteriocinogenic Lactococcus lactis subsp. cremoris M104 and Enterococcus faecium KE82 strains in thermized milk in the presence or absence of a commercial starter culture.

    Science.gov (United States)

    Lianou, Alexandra; Kakouri, Athanasia; Pappa, Eleni C; Samelis, John

    2017-06-01

    Traditional Greek cheeses are often produced from thermized milk (TM) with the use of commercial starter cultures (CSCs), which may not inhibit growth of Listeria monocytogenes completely. Therefore, this study evaluated the behavior of an artificial L. monocytogenes contamination in commercially TM (63 °C; 30 s) inoculated with a CSC plus Lactococcus lactis subsp. lactis M104 and/or Enterococcus faecium KE82, two indigenous strains producing nisin A and enterocin A and B, respectively. Inoculation treatments included TM with the CSC only, and TM without the CSC but with strain M104 alone, or combined with strain KE82. All treatments were incubated at 37 °C for 6 h followed by 66 h at 18 °C. L. monocytogenes grew by 0.66-1.24 log cfu/ml at 37 °C, whereas its further growth at 18 °C was retarded, suppressed, or accompanied by different inactivation rates, depending on each TM treatment. Strain M104 caused the greatest inactivation, whereas the CSC per se was the least effective treatment. Strain KE82 assisted the CSC in controlling pathogen growth at 37 °C, whereas both reduced the nisin A-mediated antilisterial activity of strain M104. Overall, the most 'balanced' treatment against L. monocytogenes was CSC+M104+KE82. Hence, this starter/co-starter combination may be utilized in traditional Greek cheese technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Staphylococcus cohnii subspecies: Staphylococcus cohnii subsp. cohnii subsp. nov. and Staphylococcus cohnii subsp. urealyticum subsp. nov.

    Science.gov (United States)

    Kloos, W E; Wolfshohl, J F

    1991-04-01

    Two major subspecies of Staphylococcus cohnii, namely S. cohnii subsp. cohnii, from humans, and S. cohnii subsp. urealyticum, from humans and other primates, are described on the basis of a study of 14 to 25 strains and 18 to 33 strains, respectively. DNA-DNA hybridization studies conducted in our laboratory in 1983 (W. E. Kloos and J. F. Wolfshohl, Curr. Microbiol. 8:115-121, 1983) demonstrated that strains representing the different subspecies were significantly divergent. S. cohnii subsp. urealyticum can be distinguished from S. cohnii subsp. cohnii on the basis of its greater colony size; pigmentation; positive urease, beta-glucuronidase, and beta-galactosidase activities; delayed alkaline phosphatase activity; ability to produce acid aerobically from alpha-lactose; and fatty acid profile. The type strain of S. cohnii subsp. cohnii is ATCC 29974, the designated type strain of S. cohnii Schleifer and Kloos 1975b, 55. The type strain of S. cohnii subsp. urealyticum is ATCC 49330.

  17. High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol

    Directory of Open Access Journals (Sweden)

    Filioussis George

    2007-03-01

    Full Text Available Abstract Background A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA into cells. The efficiency of electrotransformation depends on the level of electropermealization and pretreatment with chemicals which alter cell wall permeability, resulting in improved transformation efficiencies is rather common practice in bacteria as in yeasts and fungi. In the present study, treatment with lithium acetate (LiAc and dithiothreitol (DTT in various combinations was applied to L. lactis spp. lactis cells of the early-log phase prior to electroporation with plasmid pTRKH3 (a 7.8 kb shuttle vector, suitable for cloning into L. lactis. Two strains of L. lactis spp. lactis were used, L. lactis spp. lactis LM0230 and ATCC 11454. To the best of our knowledge these agents have never been used before with L. lactis or other bacteria. Results Electrotransformation efficiencies of up to 105 transformants per μg DNA have been reported in the literature for L. lactis spp.lactis LM0230. We report here that treatment with LiAc and DDT before electroporation increased transformation efficiency to 225 ± 52.5 × 107 transformants per μg DNA, while with untreated cells or treated with LiAc alone transformation efficiency approximated 1.2 ± 0.5 × 105 transformants per μg DNA. Results of the same trend were obtained with L. lactis ATCC 11454, although transformation efficiency of this strain was significantly lower. No difference was found in the survival rate of pretreated cells after electroporation. Transformation efficiency was found to vary directly with cell density and that of 1010 cells/ml resulted in the highest efficiencies. Following electrotransformation of pretreated cells with LiAc and DDT, pTRKH3 stability was examined

  18. A comparative study between inhibitory effect of L. lactis and nisin on important pathogenic bacteria in Iranian UF Feta cheese

    Directory of Open Access Journals (Sweden)

    Saeed Mirdamadi

    2015-02-01

    Full Text Available   Introduction : In the present study, the inhibitory effect of nisin-producing Lactococcus lactis during co-culture and pure standard nisin were assessed against selected foodborne pathogenes in growth medium and Iranian UF Feta cheese. In comparison L lactis, not only proves flavor but also plays a better role in microbial quality of Iranian UF Feta cheese as a model of fermented dairy products.   Materials and method s: L. lactis subsp. lactis as nisin producer strain, Listeria monocytogenes, Escherichia coli and Staphylococcus aureus as pathogenic strains were inoculated in Ultra-Filtered Feta cheese. Growth curve of bacterial strains were studied by colony count method in growth medium and UF Feta cheese separately and during co-culture with L. lactis. Nisin production was determined by agar diffusion assay method against susceptible test strain and confirmed by RP-HPLC analysis method.   Results : Counts of L. monocytogenes decreased in cheese sample containing L. lactis and standard nisin, to 103 CFU/g after 7 days and it reached to undetectable level within 2 weeks. S. aureus counts remained at its initial number, 105 CFU/g, after 7 days then decreased to 104 CFU/g on day 14 and it was not detectable on day 28. E. coli numbers increased in both treatments after 7 days and then decreased to 104 CFU/g after 28 days. Despite the increasing number of E. coli in growth medium containing nisin, due to the synergistic effect of nisin and other metabolites produced by Lactococcus lactis and starter cultures, the number of E. coli decreased with slow rate . Discussion and conclusion : The results showed, L. monocytogenes was inhibited by L. lactis before entering the logarithmic phase during co-culture. S. aureus was also inhibited during co-culture, but it showed less sensitivity in comparison with L. monocytogenes. However, the number of E. coli remained steady in co-culture with L. lactis. Also, we found that, in all cheese samples, E

  19. Enhancement productivity of lactic acid bacteria (LAB) to produced ex polysaccharide

    International Nuclear Information System (INIS)

    EL-Fouly, M.; Meleigy, S.A; Hendawy, W.S.; Magdoub, M.I.N.; Aita, O.A.

    2010-01-01

    Isolation and characterization of exo cellular polysaccharide was studied in order to evaluate some parameters in the synthesis of exo polysaccharide (EPS) and improve their production through submerged fermentation processes. Isolation strains Lactobacillus delbrueckii ssp bulgaricus (IS1), Lactococcus lactis ssp cremoris (IS2) and Lactobacillus delbrueckii ssp bulgaricus (IS3) were studied in shake flasks using yeast extract, surfactants and different exposure doses of gamma irradiation. The optimum concentration of (EPS) formation (0.762 g/l) by Lactococcus lactis ssp cremoris (IS2) at and 3.0(g/l) yeast extract, 1.72 (g/l) at 0.5 (%) surfactant Triton X-100. Also, EPS (1.842 g/l) was produced when Lactococcus lactis ssp cremoris (IS2) exposed to 0.2 kGy dose level

  20. Isolation and Characterization of Lactic Acid Bacteria (LAB) Produced Exo cellular Polysaccharide

    International Nuclear Information System (INIS)

    Meleigy, S.A.; Hendawy, W.S.

    2009-01-01

    Isolation and characterization of exo cellular polysaccharide was studied in order to evaluate some parameters in the synthesis of exo polysaccharide (EPS) and improve their production through submerged fermentation processes. Isolation strains Lactobacillus delbrueckii ssp bulgaricus (IS 1 ), Lactococcus lactis ssp cremoris (IS 2 ) and Lactobacillus delbrueckii ssp bulgaricus (IS 3 ) were studied in shake flasks using yeast extract, surfactants and different exposure doses of gamma irradiation.The optimum concentration of (EPS) formation (0.762 g/l) by Lactococcus lactis ssp cremoris (IS 2 ), 3.0 (g/l) yeast extract, 1.72 (g/l) at 0.5 (%) surfactant Triton X-100. Also, EPS (1.842 g/l) was produced when Lactococcus lactis ssp cremoris (IS 2 ) exposed to 0.2 kGy dose level.

  1. Bacteriocin producers from traditional food products

    Directory of Open Access Journals (Sweden)

    Thonart P.

    2007-01-01

    Full Text Available A total of 220 strains of LAB isolated from 32 samples of traditional fermented food from Senegal were screened for bacteriocin production. Two bacteriocin producers, Lactococcus lactis subsp. lactis and Enterococcus faecium, were identified from 12 bacteriocin-producing isolates on the basis of phenotypic analyses and 16S rDNA sequence. Both bacteriocins produced by new isolates show antimicrobial activity against Listeria monocytogenes and Bacillus coagulans whereas only that produced by Lactococcus lactis has an activity against Bacillus cereus. Bacteriocin-producing Lactococcus lactis strains were found in a variety of traditional foods indicating a high potential of growth of this strain in variable ecological complex environment. Partial 16S rDNA of the two bacteriocin producers obtained in this study has been registered to Genbank databases under the accession number AY971748 for Lactococcus lactis subsp. lactis (named CWBI-B1410 and AY971749 for Enterococcus faecium (named CWBI-B1411. The new bacteriocin-producing Lactococcus lactis subsp. lactis strain has been selected for identification and application of the bacteriocin to food preservation.

  2. Effect of probiotics on the development of dimethylhydrazine-induced preneoplastic lesions in the mice colon

    Directory of Open Access Journals (Sweden)

    Juliana Costa Liboredo

    2013-05-01

    Full Text Available PURPOSE: To determine the effect of probiotics on the development of chemically induced (1, 2-dimethylhydrazine colonic preneoplastic lesions, in mice. METHODS: The animals were divided into five groups. The control group was injected with carcinogen alone and the other groups also received probiotics (1- Lactobacillus delbrueckii UFV-H2b20; 2- Bifidobacterium animalis var. lactis Bb12; 3- L. delbrueckii UFV-H2b20 plus B. animalis var. lactis Bb12; and 4- Saccharomyces boulardii administered orally in drinking water throughout fourteen weeks. RESULTS: Consumption of lactobacilli and bifidobacteria alone resulted in a significant reduction of the total number of aberrant crypt foci (55.7% and 45.1%, respectively. Significant reduction in the number of these small foci (3 aberrant crypts crypts had no significant reduction. CONCLUSION: L. delbrueckii UFV-H2b20 and B. animalis var. lactis Bb12 administered alone protect colonic preneoplastic lesions in mice, while the combined treatment of these bacteria and the administration of S.boulardii were not effective in reducing such colonic lesions.

  3. Study on the effects of microencapsulated Lactobacillus delbrueckii on the mouse intestinal flora.

    Science.gov (United States)

    Sun, Qingshen; Shi, Yue; Wang, Fuying; Han, Dequan; Lei, Hong; Zhao, Yao; Sun, Quan

    2015-01-01

    To evaluate the protective effects of microencapsulation on Lactobacillus delbrueckii by random, parallel experimental design. Lincomycin hydrochloride-induced intestinal malfunction mouse model was successfully established; then the L. delbrueckii microcapsule was given to the mouse. The clinical behaviour, number of intestinal flora, mucous IgA content in small intestine, IgG and IL-2 level in peripheral blood were monitored. The histological sections were also prepared. The L. delbrueckii microcapsule could have more probiotic effects as indicated by higher bifidobacterium number in cecal contents. The sIgA content in microcapsule treated group was significantly higher than that in non-encapsulated L. delbrueckii treated group (p < 0.05). Intestine pathological damage of the L. delbrueckii microcapsule-treated group showed obvious restoration. The L. delbrueckii microcapsules could relieve the intestinal tissue pathological damage and play an important role in curing antibiotic-induced intestinal flora dysfunction.

  4. Bioactive Films Containing Alginate-Pectin Composite Microbeads with Lactococcus lactis subsp. lactis: Physicochemical Characterization and Antilisterial Activity

    Directory of Open Access Journals (Sweden)

    Mariam Bekhit

    2018-02-01

    Full Text Available Novel bioactive films were developed from the incorporation of Lactococcus lactis into polysaccharide films. Two different biopolymers were tested: cellulose derivative (hydroxylpropylmethylcellulose (HPMC and corn starch. Lactic acid bacteria (LAB free or previously encapsulated in alginate-pectin composite hydrogel microbeads were added directly to the film forming solution and films were obtained by casting. In order to study the impact of the incorporation of the protective culture into the biopolymer matrix, the water vapour permeability, oxygen permeability, optical and mechanical properties of the dry films were evaluated. Furthermore, the antimicrobial effect of bioactive films against Listeria monocytogenes was studied in synthetic medium. Results showed that the addition of LAB or alginate-pectin microbeads modified slightly films optical properties. In comparison with HPMC films, starch matrix proves to be more sensitive to the addition of bacterial cells or beads. Indeed, mechanical resistance of corn starch films was lower but barrier properties were improved, certainly related to the possible establishment of interactions between alginate-pectin beads and starch. HPMC and starch films containing encapsulated bioactive culture showed a complete inhibition of listerial growth during the first five days of storage at 5 °C and a reduction of 5 logs after 12 days.

  5. Isolation of a bacteriocin-producing Lactococcus lactis subsp. lactis and application to control Listeria monocytogenes in Moroccan jben.

    Science.gov (United States)

    Benkerroum, N; Oubel, H; Zahar, M; Dlia, S; Filali-Maltouf, A

    2000-12-01

    Use of a bacteriocin-producing lactococcal strain to control Listeria monocytogenes in jben. A Lactococcus lactis strain isolated from lben was shown, by the spot technique, to produce a bacteriocin different from nisin. Inhibitory activity of the bacteriocin-producing strain against Listeria monocytogenes was investigated in jben, made from cow's milk fermented with the producer organism and contaminated with 104 or 107 cfu ml-1. Listeria counts were monitored during manufacture, and during conservation at room and at refrigeration temperatures. Results showed that the pathogen was reduced by 2.7 logarithmic units after 30 h of jben processing when the initial inoculum of 107 cfu ml(-1) was used. For the initial inoculum of 104 cfu ml(-1), the bacterium was completely eliminated at 24 h. Furthermore, the use of the bacteriocin-producing starter culture extended the shelf-life of jben by 5 days. In situ production of the lactococcal bacteriocin is an efficient biological means of controlling L. monocytogenes in jben and of allowing shelf-life extension. The proposed technology will essentially benefit minimally processed dairy products and those made with raw milk.

  6. Antimicrobial effect of selected lactic acid bacteria against microorganisms with decarboxylase activity

    Directory of Open Access Journals (Sweden)

    Khatantuul Purevdorj

    2017-01-01

    Full Text Available The main purpose of this study was to evaluate the antimicrobial activity of twenty-one bacteriocinogenic lactic acid bacteria (12 strains of Lactococcus lactis subsp. lactis, 4 strains of Lactobacillus gasseri, 3 strains of Lb. helveticus and 2 strains of Lb. acidophilus, LAB against 28 Staphylococcus and 33 Enterococcus strains able to produce tyramine, putrescine, 2-phenylethylamine and cadaverine. The antimicrobial activity of cell-free supernatants (CFS from tested LAB was examined by an agar-well diffusion assay. Nine out of twenty-one strains (33% showed the inhibitory effect on tested enterococci and staphylococci, namely 9 strains of Lactococcus lactis subsp. lactis. The diameters of inhibition zones ranged between 7 mm and 14 mm. The biggest diameter of 14 mm inhibition was obtained with the CFS's from strains CCDM 670 and CCDM 731 on Enterococcus sp. E16 and E28. The cell-free supernatants from Lactococcus lactis subsp. lactis CCDM 71 and from Lactococcus lactis subsp. lactis CCDM 731 displayed the broadest antibacterial activity (52% inhibition of all tested strains. On the other hand, the cell-free supernatants from the screened Lactobacillus strains did not show any inhibitory effect on the tested Staphylococcus and Enterococcus strains. Nowadays, the great attention is given to the antibacterial substances produced by lactic acid bacteria. With the ability to produce a variety of metabolites displaying inhibitory effect, the LAB have great potential in biopreservation of food.

  7. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.

    Science.gov (United States)

    Bely, Marina; Stoeckle, Philippe; Masneuf-Pomarède, Isabelle; Dubourdieu, Denis

    2008-03-20

    Conventional wine yeasts produce high concentrations of volatile acidity, mainly acetic acid, during high-sugar fermentation. This alcoholic fermentation by-product is highly detrimental to wine quality and, in some cases, levels may even exceed legal limits. In this study, a non-conventional species, Torulaspora delbrueckii, was used, in pure cultures and mixed with Saccharomyces cerevisiae yeast, to ferment botrytized musts. Fermentation rate, biomass growth, and the formation of volatile acidity, acetaldehyde, and glycerol were considered. This study demonstrated that T. delbrueckii, often described as a low acetic producer under standard conditions, retained this quality even in a high-sugar medium. Unlike S. cerevisiae, this species did not respond to the hyper-osmotic medium by increasing acetic production as soon as it is inoculated into the must. Nevertheless, this yeast produced low ethanol and biomass yields, and the fermentation was sluggish. As a result, T. delbrueckii fermentations do not reach the required ethanol content (14%vol.), although this species can survive at this concentration. A mixed culture of T. delbrueckii and S. cerevisiae was the best combination for improving the analytical profile of sweet wine, particularly volatile acidity and acetaldehyde production. A mixed T. delbrueckii/S. cerevisiae culture at a 20:1 ratio produced 53% less in volatile acidity and 60% less acetaldehyde than a pure culture of S. cerevisiae. Inoculating S. cerevisiae after 5 days' fermentation by T. delbrueckii had less effect on volatile acidity and acetaldehyde production and resulted in stuck fermentation. These results contribute to a better understanding of the behaviour of non-Saccharomyces and their potential application in wine industry.

  8. In ovo injection of prebiotics and synbiotics affects the digestive potency of the pancreas in growing chickens.

    Science.gov (United States)

    Pruszynska-Oszmalek, E; Kolodziejski, P A; Stadnicka, K; Sassek, M; Chalupka, D; Kuston, B; Nogowski, L; Mackowiak, P; Maiorano, G; Jankowski, J; Bednarczyk, M

    2015-08-01

    The purpose of the study was to examine the effect of 2 prebiotics and 2 synbiotics on the digestive potency of pancreas in 1-, 3-, 7-, 14-, 21-, and 34-day-old cockerels. Prebiotics (inulin and Bi²tos) and synbiotics (inulin + Lactococcus lactis subsp. lactis and Bi²tos + Lactococcus lactis subsp. cremoris) were injected in ovo into the air cell on the 12th d embryonic development. Their application increased the activity of amylase, lipase, and trypsin in the pancreas. The most pronounced changes were observed at the end of the investigated rearing period (d 34). The strongest stimulative effects on amylase were shown by both synbiotics, on lipase synbiotic Bi²tos + Lactococcus lactis subsp. cremoris, and on trypsin all the used prebiotics and synbiotics. Simultaneously, neither the absolute nor the relative mass of the pancreas in comparison to control group were changed. Also, the injected in ovo compounds did not cause a deterioration in the posthatching condition of the chicken liver, as determined by measurement of the activity of marker enzymes in the blood (alanine aminotransferase and aspartate aminotransferase). Treatment with the prebiotics and synbiotics did not change the feed conversion ratio but Bi²tos (galacto-oligosaccharide) and inulin (fructan) + Lactococcus lactis subsp. lactis significantly increased final BW. © 2015 Poultry Science Association Inc.

  9. Engineering of sugar metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Pool, Weia Arianne

    2008-01-01

    Short English Summary Lactococcus lactis is a lactic acid bacterium used in the dairy industry. This thesis decribes the genetic engineering performed on the sugar metabolism of L. lactis. Besides our fundamental interest for sugar metabolism and its regulation in L. lactis, this project had the

  10. Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171.

    Science.gov (United States)

    Kumari, Archana; Akkoç, Nefise; Akçelik, Mustafa

    2012-04-01

    Lactic acid bacteria (LAB) are possessing ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this regard, novel bacteriocin compound secreting capability of LAB isolated from Tulum Cheese in Turkey was demonstrated. The synthesized bacteriocin was purified by ammonium sulphate precipitation, dialysis and gel filtration. The molecular weight (≈3.4 kDa) of obtained bacteriocin was confirmed by SDS-PAGE, which revealed single peptide band. Molecular identification of LAB strain isolated from Tulum Cheese was conducted using 16S rDNA gene sequencing as Lactococcus lactis ssp. lactis LL171. The amino acid sequences (KKIDTRTGKTMEKTEKKIELSLKNMKTAT) of the bacteriocin from Lactococcus lactis ssp. lactis LL171 was found unique and novel than reported bacteriocins. Further, the bacteriocin was possessed the thermostable property and active at wide range of pH values from 1 to 11. Thus, bacteriocin reported in this study has the potential applications property as food preservative agent.

  11. One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis.

    Science.gov (United States)

    Li, Ling; Kim, Seul-Ah; Heo, Ji Eun; Kim, Tae-Jip; Seo, Jin-Ho; Han, Nam Soo

    2017-12-20

    GDP-l-fucose is an l-fucose donor to synthesize fucosylated compounds such as human milk oligosaccharides or Lewis antigen. In this study, we used Lactococcus lactis subsp. cremoris NZ9000 to express 4 enzymes, ManB, ManC, Gmd, and WcaG and produced GDP-l-fucose by using one-pot synthesis method with mannose-6-phosphate as substrate and the enzymes as biocatalyst. For preparation of enzyme mixture, 4 genes (manB, manC, gmd, and wcaG) cloned from Escherichia coli were transformed into L. lactis strains using pNZ8008 and the recombinant cell lysates were obtained after cultivation. When mannose-6-phosphate was used as the substrate, the consecutive reactions with ManB, ManC, Gmd, and WcaG resulted in the successful production of GDP-l-fucose (0.13mM). When GDP-d-mannose was used as the substrate, it was entirely converted to GDP-l-fucose (0.2mM; 0.12g/L) via 2 enzymatic reactions mediated by Gmd and WcaG. This is the first report of GDP-l-fucose production by using multiple enzymes expressed in lactic acid bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Liposome-enhanced transformation of Streptococcus lactis and plasmid transfer by intergeneric protoplast fusion of Streptococcus lactis and Bacillus subtilis

    NARCIS (Netherlands)

    Vossen, Jos M.B.M. van der; Kok, Jan; Lelie, Daniel van der; Venema, Gerhardus

    An efficient protoplast transformation system and a procedure of plasmid transfer by means of protoplast fusion is described for Streptococcus lactis. Protoplasts of S. lactis IL1403 and S. lactis MG1363 were transformed by pGK12 [2.9 MDa erythromycin resistance (Emr)] with an efficiency of 3 × 10^5

  13. Probiotic Yogurt Culture Bifidobacterium Animalis Subsp. Lactis BB-12 and Lactobacillus Acidophilus LA-5 Modulate the Cytokine Secretion by Peripheral Blood Mononuclear Cells from Patients with Ulcerative Colitis.

    Science.gov (United States)

    Sheikhi, A; Shakerian, M; Giti, H; Baghaeifar, M; Jafarzadeh, A; Ghaed, V; Heibor, M R; Baharifar, N; Dadafarin, Z; Bashirpour, G

    2016-06-01

    There are some evidences for the immunomodulation disorders in the response to intestinal microbiota in inflammatory bowel disease. Yogurt is a fermented milk product made with a starter culture consisting of different probiotics which could be colonized in intestine. However, the role of probiotics in the aetiopathogenesis of ulcerative colitis (UC) has not been clarified. To determine how the immune system responds to these bacteria this study was planned. Bifidobacterium lactis BB-12 (B. lactis) and Lactobacillus acidophilus LA-5 (L. acidophilus) were cultivated on MRS broth. PBMCs of 36 UC patients were separated by Ficoll-Hypaque centrifugation and co-cultured with different concentrations of UV killed bacteria in RPMI-1 640 plus 10% FCS for 48/72 h. IL-10, TGF-β, IFN-γ and TNF-α were measured in supernatant of PBMCs by ELISA. Both bacteria significantly augmented IL-10, TGF-β, IFN-γ and TNF-α compared to control (p<0.001). The secretion levels of IL-10 and TGF-β by B. lactis- compared to L. acidophilus-stimulated PBMCs were significantly higher (p<0.05, p<0.01 respectively). The secretion levels of TNF-α and IFN-γ by PBMCs after 72 h were significantly lower compared to 48 h stimulation by B. lactis (p<0.001, p<0.035 respectively). These data show that both probiotics may trigger the pro- and anti-inflammatory immune response of UC patients. It seems that IL-10/TGF-β uprising by B. lactis could be the reason of TNF-α/IFN-γ reduction. Therefore albeit B. lactis still stimulates the effector Th cells but because of more stimulatory effect on Tregs, it could be a good potential therapeutic candidate for further investigation. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Inhibitory Effect of Lactococcus lactis HY 449 on Cariogenic Biofilm.

    Science.gov (United States)

    Kim, Young-Jae; Lee, Sung-Hoon

    2016-11-28

    Dental caries is caused by cariogenic biofilm, an oral biofilm including Streptococcus mutans . Recently, the prevention of dental caries using various probiotics has been attempted. Lactococcus lactis HY 449 is a probiotic bacterium. The aim of this study was to investigate the effect of L. lactis HY 449 on cariogenic biofilm and to analyze its inhibitory mechanisms. Cariogenic biofilm was formed in the presence or absence of L. lactis HY 449 and L. lactis ATCC 19435, and analyzed with a confocal laser microscope. The formation of cariogenic biofilm was reduced in cultures spiked with both L. lactis strains, and L. lactis HY 449 exhibited more inhibitory effects than L. lactis ATCC 19435. In order to analyze and to compare the inhibitory mechanisms, the antibacterial activity of the spent culture medium from both L. lactis strains against S. mutans was investigated, and the expression of glucosyltransferases ( gtfs ) of S. mutans was then analyzed by real-time RT-PCR. In addition, the sucrose fermentation ability of both L. lactis strains was examined. Both L. lactis strains showed antibacterial activity and inhibited the expression of gtfs , and the difference between both strains did not show. In the case of sucrose-fermenting ability, L. lactis HY 449 fermented sucrose but L. lactis ATCC 19435 did not. L. lactis HY 449 inhibited the uptake of sucrose and the gtfs expression of S. mutans , whereby the development of cariogenic biofilm may be inhibited. In conclusion, L. lactis HY 449 may be a useful probiotic for the prevention of dental caries.

  15. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses.

    Science.gov (United States)

    Azizan, Kamalrul Azlan; Ressom, Habtom W; Mendoza, Eduardo R; Baharum, Syarul Nataqain

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13 C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis ( r ) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis , in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis . Overall, the

  16. Improvement of production performance of functional fermented whey-based beverage

    Directory of Open Access Journals (Sweden)

    Bulatović Maja Lj.

    2014-01-01

    Full Text Available The aim of this study was improvement of the performances for the production of whey-based beverages with highly productive strains of Lactobacillus. Individual or mixed culture containing Lactobacillus helveticus ATCC 15009, Lactobacillus delbrueckii ssp. lactis NRRL B-4525 and Streptococcus thermophilus S3 were studied. The scientific hypothesis was that production performances, especially aroma and viable cell count, are positively affected by the strains combination and temperature. Based on the results, beverages obtained by mixed cultures Lb. helveticus ATCC 15009 - S. thermophilus S3 and Lb. delbrueckii ssp. lactis - S. thermophilus S3 had higher aroma values than beverages obtained by individual strains. The symbiosis of tested strains has positive impact on the aroma of produced beverage. In addition, the temperature has significant influence on cell viability during the storage and fermentation dynamic. The beverages produced by mixed cultures Lb. helveticus ATCC 15009 - S. thermophilus S3 and Lb. delbrueckii ssp. lactis - S. thermophilus S3 at 42 oC achieved higher storage stability (19 to 22 days than beverages produced at 37°C and 45°C (13 to 19 days. Subsequently, at 42 °C fermentation time for both mixed cultures was 1.5 h shorter, compared to the time achieved at 37°C.

  17. Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Ciani, Maurizio

    2017-10-16

    In recent years, there has been growing demand for distinctive high quality beer. Fermentation management has a fundamental role in beer quality and the levels of aroma compounds. Use of non-conventional yeast has been proposed to enhance beer bioflavor. In the present work we investigated mixed fermentations using three commercial Saccharomyces cerevisiae strains, without and with addition of a selected Torulaspora delbrueckii strain evaluating their interactions, as well as the aroma profiles. At the S. cerevisiae/T. delbrueckii co-inoculation ratio of 1:20, viable cell counts indicated that T. delbrueckii dominated all of the three combinations. In the mixed fermentations, T. delbrueckii provided higher levels of higher alcohols (excepting of β-phenyl ethanol), in contrast to data obtained in winemaking, where higher alcohols had lower levels. Moreover, mixed fermentations showed significantly higher ethyl acetate (from 5 to 16mg/L) and isoamyl acetate (from 0.019 to 0.128mg/L), and were generally lower in ethyl hexanoate and ethyl octanoate. Therefore, irrespective of S. cerevisiae strain, T. delbrueckii influenced on all mixed fermentations. On the other hand, the mixed fermentations were also affected by each of the three S. cerevisiae strains, which resulted in beers with distinctive flavors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Transcriptome analysis and related databases of Lactococcus lactis

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Jong, Anne de; Baerends, Richard J.S.; Hijum, Sacha A.F.T. van; Zomer, Aldert L.; Karsens, Harma A.; Hengst, Chris D. den; Kramer, Naomi E.; Buist, Girbe; Kok, Jan

    Several complete genome sequences of Lactococcus lactis and their annotations will become available in the near future, next to the already published genome sequence of L. lactis ssp. lactis IL1403. This will allow intraspecies comparative genomics studies as well as functional genomics studies

  19. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  20. Dynamics of fecal microbiota in hospitalized elderly fed probiotic LKM512 yogurt.

    Science.gov (United States)

    Matsumoto, Mitsuharu; Sakamoto, Mitsuo; Benno, Yoshimi

    2009-08-01

    The comprehensive dynamics of intestinal microbiota including uncultured bacteria in response to probiotic consumption have not been well studied. The aims of this study were twofold: firstly to analyze the impact on intestinal microbiota of yogurt fermented by Bifidobacterium animalis subsp. lactis LKM512, Lactobacillus delbrueckii subsp. bulgaricus LKM1759, and Streptococcus thermophilus LKM1742 (LKM512 yogurt) and placebo fermented by these lactic acid bacterial strains without LKM512; and secondly to investigate the changes in intestinal microbiota that influence the concentration of PA, one of the beneficial metabolites produced by bacteria in the intestine. The LKM512 yogurt/placebo trial was performed in six hospitalized elderly patients (three men and three women with an average age of 80.3 years) and lasted seven weeks with the following schedule: pre-consumption for one week, LKM512 yogurt consumption for two weeks, washout period for two weeks, and placebo consumption for two weeks. The amount of ingested LKM512 yogurt or placebo was 100 g/day/individual. Fecal samples were analyzed using T-RFLP and real-time PCR. The T-RFLP patterns in five of the six volunteers were changed in a similar fashion by LKM512 yogurt consumption, although these patterns were individually changed following consumption of placebo. It was confirmed that B. animalis subsp. lactis was increased dramatically and Lactobacillus spp. tended to be decreased by LKM512 yogurt consumption. Some indigenous uncultured bacteria were increased and some decreased by LKM512 yogurt/placebo consumption. The similar changes in the intestinal microbiota of the elderly caused by consumption of the LKM512 yogurt were found to be influenced by the LKM512 strain itself, and not by the lactic acid bacteria in the yogurt. Moreover, this study suggests that the increase in intestinal PA concentrations caused by LKM512 yogurt consumption is probably dependent on the LKM512 strain colonizing the intestine.

  1. Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk

    Science.gov (United States)

    Jatmiko, Yoga Dwi; Howarth, Gordon S.; Barton, Mary D.

    2017-11-01

    This study aimed to characterize the probiotic properties of lactic acid bacteria from the naturally fermented milk of Indonesia, namely dangke and dadih. Fifty-one representative lactic acid bacteria belonging to the species Lactobacillus Plantarum, Lactococcus lactis subsp. lactis and Enterococcus faecium were evaluated in vitro for potential probiotic properties based on their bile salt resistance, low pH tolerance, antimicrobial activity, antibiotic susceptibility and adherence to Caco-2 colon cancer cells. In addition, bacteriocin related gene (plantaricin A), bile salt hydrolase (bsh) and mannose-specific adhesin (msa) genes in the genome of lactobacilli were also examined. None of the dangke isolates, which belonged to the species L. lactis subsp. lactis tolerated low pH. However, eight of the isolates were able to grow in the presence of bile salts. It was observed that L. plantarum strain S1.30 and SL2.7 from dadih tolerated low pH, survived bile salt concentrations and were resistant to vancomycin. Furthermore, these strains also contained bacteriocin regulating gene (plantaricin A) and msa and bsh genes in their genome. However, only the strain S1.30 exhibited optimal antimicrobial activity against the selected pathogens and was able to adhere to Caco-2 cells by up to 82.24±0.14%. Antagonistic activity of L. lactis subsp. lactis from dadih and dangke was not detected. However, 73.94±1.26% adherence to Caco-2 cells was demonstrated by L. lactis subsp. lactis strain SL3.34 sourced from dangke. These results suggest that Lactobacillus plantarum strain S1.30 associated with dadih fulfilled the in vitro probiotic criteria and could be exploited for further in vivo evaluation. In addition, dadih was an effective probiotic carrier compared to dangke.

  2. Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate

    DEFF Research Database (Denmark)

    Jensen, Niels B.S.; Melchiorsen, Claus Rix; Jochumsen, Kirsten Væver

    2001-01-01

    Minute amounts of oxygen were supplied to a continuous cultivation of Lactococcus lactis subsp. cremoris MG1363 grown on a defined glucose-limited medium at a dilution rate of 0.1 h(-1). More than 80% of the carbon supplied with glucose ended up in fermentation products other than lactate. Addition...... of even minute amounts of oxygen increased the yield of biomass on glucose by more than 10% compared to that obtained under anaerobic conditions and had a dramatic impact on catabolic enzyme activities and hence on the distribution of carbon at the pyruvate branch point. Increasing aeration caused carbon...... dehydrogenase while increasing the enzyme activity levels of the pyruvate dehydrogenase complex, alpha -acetolactate synthase, and the NADH oxidases. Lactate dehydrogenase and glyceraldehyde dehydrogenase enzyme activity levels were unaffected by aeration....

  3. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147.

    Science.gov (United States)

    Ryan, M P; Rea, M C; Hill, C; Ross, R P

    1996-01-01

    Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products. PMID:8593062

  4. Shortening of the Lactobacillus paracasei subsp. paracasei BGNJ1-64 AggLb protein switches its activity from auto-aggregation to biofilm formation

    Directory of Open Access Journals (Sweden)

    Marija Miljković

    2016-09-01

    Full Text Available AggLb is the largest (318.6 kDa aggregation-promoting protein of Lactobacillus paracasei subsp. paracasei BGNJ1-64 responsible for forming large cell aggregates, which causes auto-aggregation, collagen binding and pathogen exclusion in vitro. It contains an N-terminus leader peptide, followed by six successive collagen binding domains, 20 successive repeats (CnaB-like domains and an LPXTG sorting signal at the C-terminus for cell wall anchoring. Experimental information about the roles of the domains of AggLb is currently unknown. To define the domain that confers cell aggregation and the key domains for interactions of specific affinity between AggLb and components of the extracellular matrix (ECM, we constructed a series of variants of the aggLb gene and expressed them in Lactococcus lactis subsp. lactis BGKP1-20 using a lactococcal promoter. All of the variants contained a leader peptide, an inter collagen binding-CnaB domain region (used to raise an anti-AggLb antibody, an anchor domain and a different number of collagen binding and CnaB-like domains. The role of the collagen binding repeats of the N-terminus in auto-aggregation and binding to collagen and fibronectin was confirmed. Deletion of the collagen binding repeats II, III and IV resulted in a loss of the strong auto-aggregation, collagen and fibronectin binding abilities whereas the biofilm formation capability was increased. The strong auto-aggregation, collagen and fibronectin binding abilities of AggLb were negatively correlated to biofilm formation.

  5. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    Science.gov (United States)

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Detection and viability of Lactococcus lactis throughout cheese ripening.

    Directory of Open Access Journals (Sweden)

    Marianna Ruggirello

    Full Text Available Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.

  7. Detection and Viability of Lactococcus lactis throughout Cheese Ripening

    Science.gov (United States)

    Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese. PMID:25503474

  8. 13C based proteinogenic amino acid (PAA and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP pathway in response to agitation and temperature related stresses

    Directory of Open Access Journals (Sweden)

    Kamalrul Azlan Azizan

    2017-07-01

    Full Text Available Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C and agitation (with and without agitation at 150 rpm. Collectively, the concentrations of proteinogenic amino acids (PAAs and free fatty acids (FAAs were compared, and Pearson correlation analysis (r was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA. Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis’ central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA from pyruvate (PYR reaction in all conditions suggested the activation of pyruvate carboxylate (pycA in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall

  9. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses

    Science.gov (United States)

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis (r) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis’ central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall, the

  10. AbiV, a Novel Antiphage Abortive Infection Mechanism on the Chromosome of Lactococcus lactis subsp. cremoris MG1363

    DEFF Research Database (Denmark)

    Haaber, Jakob Brandt Borup; Moineau, Sylvain; Fortier, Louis-Charles

    2008-01-01

    phenotype was caused by a chromosomal gene turned on by a promoter from the inserted construct. Reverse transcription-PCR analysis confirmed that there were higher levels of transcription of a downstream open reading frame (ORF) in the phage-resistant integrants than in the phage-sensitive strain L. lactis...... searches revealed no homology to other phage resistance mechanisms, and thus, this novel Abi mechanism was designated AbiV. The mode of action of AbiV is unknown, but the activity of AbiV prevented cleavage of the replicated phage DNA of 936-like phages....

  11. Pyelonephritis and Bacteremia from Lactobacillus delbrueckii

    OpenAIRE

    DuPrey, Kevin M.; McCrea, Leon; Rabinowitch, Bonnie L.; Azad, Kamran N.

    2012-01-01

    Lactobacilli are normal colonizers of the oropharynx, gastrointestinal tract, and vagina. Infection is rare, but has been reported in individuals with predisposing conditions. Here we describe the case of a woman with pyelonephritis and bacteremia in which Lactobacillus delbrueckii was determined to be the causative agent.

  12. Comparison of the Growth of Lactobacillus delbrueckii, L. paracasei and L. plantarum on Inulin in Co-culture Systems.

    Science.gov (United States)

    Takagi, Risa; Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2014-01-01

    Lactobacillus delbrueckii TU-1, which apparently takes intact inulin into its cells and then degrades it intracellularly, was co-cultured in vitro with L. paracasei KTN-5, an extracellular inulin degrader; or L. plantarum 22A-3, a strain that is able to utilize fructose but not inulin; or both in order to prequalify inulin as a prebiotic agent in vivo. When L. delbrueckii TU-1 was co-cultured with L. paracasei KTN-5 on fructose or inulin, the growth of L. delbrueckii TU-1 on inulin was markedly higher than that of L. paracasei KTN-5, whereas the growth of L. delbrueckii TU-1 on fructose was much lower than that of L. paracasei KTN-5. These results suggest that L. delbrueckii TU-1 and L. paracasei KTN-5 were efficient at utilizing inulin and fructose, respectively. When L. plantarum 22A-3 was co-cultured with L. delbrueckii TU-1 on inulin, the growth of L. plantarum 22A-3 was enhanced by L. paracasei KTN-5 but not by L. delbrueckii TU-1, suggesting that the fructose moiety that L. paracasei KTN-5 released temporarily into the medium was "scavenged" by L. plantarum 22A-3. Thus, L. delbrueckii TU-1, L. paracasei KTN-5, and L. plantarum 22A-3 were then cultured altogether on inulin. The growth of L. delbrueckii TU-1 was unaffected but that of L. paracasei KTN-5 was markedly suppressed. This evidence suggests that prebiotic use of inulin supported the selective growth of intracellular inulin degraders such as L. delbrueckii rather than extracellular inulin degraders such as L. paracasei in the host microbiota.

  13. Fermentation capability of bulk milk under usual conditions

    OpenAIRE

    BOUŠKOVÁ, Lucie

    2012-01-01

    The evaluation of changes during fermentation of heat-modified milk in connection with different fermentation temperatures was main goal of this thesis. Titrable acidity, active acidity and growth dynamics of bacteria strains - Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus were observed during fermentation process.

  14. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    Science.gov (United States)

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.

  15. ORF Alignment: NC_002662 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available lactis subsp. lactis Il1403] ... Length = 134 ... Query: 6 ... LDNLYRAVILDHSSNPRHAGELQTGCMVDLNNPTCGDVIRLTVEFENDVI...SNIAFSGHGC 65 ... LDNLYRAVILDHSSNPRHAGELQTGCMVDLNNPTCGDVIRLTVEFENDVISNIAFSGHGC Sbjct: 1 ... LDN...LYRAVILDHSSNPRHAGELQTGCMVDLNNPTCGDVIRLTVEFENDVISNIAFSGHGC 60 ... Query: 126 KCSTLAWNALKKAI 139 ... KCSTLAWNALKKAI Sbjct: 121 KCSTLAWNALKKAI 134

  16. Pyelonephritis and Bacteremia from Lactobacillus delbrueckii

    Directory of Open Access Journals (Sweden)

    Kevin M. DuPrey

    2012-01-01

    Full Text Available Lactobacilli are normal colonizers of the oropharynx, gastrointestinal tract, and vagina. Infection is rare, but has been reported in individuals with predisposing conditions. Here we describe the case of a woman with pyelonephritis and bacteremia in which Lactobacillus delbrueckii was determined to be the causative agent.

  17. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...... milk products, is born with two complete non-replicating chromosomes. L. lactis therefore remain diploid throughout its entire life cycle....

  18. Genome Sequence of Torulaspora delbrueckii NRRL Y-50541, Isolated from Mezcal Fermentation.

    Science.gov (United States)

    Gomez-Angulo, Jorge; Vega-Alvarado, Leticia; Escalante-García, Zazil; Grande, Ricardo; Gschaedler-Mathis, Anne; Amaya-Delgado, Lorena; Arrizon, Javier; Sanchez-Flores, Alejandro

    2015-07-23

    Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published. Thus, a genome of a new mezcal yeast was sequenced and characterized and showed genetic differences and a higher genome assembly quality, offering a better reference genome. Copyright © 2015 Gomez-Angulo et al.

  19. Fig juice Fortified with Inulin and Lactobacillus Delbrueckii: A Promising Functional Food

    Directory of Open Access Journals (Sweden)

    Sima Khezri

    2018-03-01

    Full Text Available Background and Objective: Nowadays, consumption of functional foods is favored because of their health promoting characteristics. Also there is an increasing demand for nondairy products because of lactose intolerance in dairies. Fig juice as a source of dietary fiber and other nutrients would be a functional food. Adding probiotics and prebiotics makes it more functional for daily use. No study has yet been done on synbiotic fig juice. Accordingly, the aim of this study was to characterize synbiotic fig juice prepared by Lactobacillus delbrueckii and inulin.Material and Methods: Samples consisted of control fig juice; fig juice fermented by Lactobacillus delbrueckii (probiotic and fig juice containing inulin fermented by Lactobacillus delbrueckii (synbiotic were produced. Physico-chemical parameters, total phenolic content, antioxidant capacity and microbial survival aspects were analyzed during the fermentation period. Aforementioned parameters were also evaluated in 4 weeks with one-week time intervals. Sensory characteristics of fig juices were assessed in the second week of storage.Results and Conclusion: The results showed significant differences among treatments (p≤0.05 in physico-chemical indices during incubation and storage time. Total phenolic content and antioxidant capacity of fermented fig juices were significantly increased in comparison to the control samples (p≤0.05. Viability of Lactobacillus delbrueckii was increased in both probiotic and synbiotic treatments during incubation; but a significant reduction was observed during storage time. Sensory analysis revealed that there were significant differences in terms of odor, taste and overall acceptance between the fermented fig juices and control (p≤0.05 and the highest scores were obtained for control. Considering viable counts of Lactobacillus delbrueckii depicted that fermented fig juice could be a suitable medium for survival and proliferation of Lactobacillus

  20. Dynamics of pyruvate metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, Claus Rix; Jensen, Niels B.S.; Christensen, Bjarke

    2001-01-01

    The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end...... product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis...

  1. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci.

    Science.gov (United States)

    Willems, A; Goor, M; Thielemans, S; Gillis, M; Kersters, K; De Ley, J

    1992-01-01

    DNA-rRNA hybridizations, DNA-DNA hybridizations, polyacrylamide gel electrophoresis of whole-cell proteins, and a numerical analysis of carbon assimilation tests were carried out to determine the relationships among the phylogenetically misnamed phytopathogenic taxa Pseudomonas avenae, Pseudomonas rubrilineans, "Pseudomonas setariae," Pseudomonas cattleyae, Pseudomonas pseudoalcaligenes subsp. citrulli, and Pseudomonas pseudoalcaligenes subsp. konjaci. These organisms are all members of the family Comamonadaceae, within which they constitute a separate rRNA branch. Only P. pseudoalcaligenes subsp. konjaci is situated on the lower part of this rRNA branch; all of the other taxa cluster very closely around the type strain of P. avenae. When they are compared phenotypically, all of the members of this rRNA branch can be differentiated from each other, and they are, as a group, most closely related to the genus Acidovorax. DNA-DNA hybridization experiments showed that these organisms constitute two genotypic groups. We propose that the generically misnamed phytopathogenic Pseudomonas species should be transferred to the genus Acidovorax as Acidovorax avenae and Acidovorax konjaci. Within Acidovorax avenae we distinguished the following three subspecies: Acidovorax avenae subsp. avenae, Acidovorax avenae subsp. cattleyae, and Acidovorax avenae subsp. citrulli. Emended descriptions of the new taxa are presented.

  2. Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk.

    Science.gov (United States)

    Martín, Maria Cruz; del Rio, Beatriz; Martínez, Noelia; Magadán, Alfonso H; Alvarez, Miguel A

    2008-12-01

    One of the main microbiological problems of the dairy industry is the susceptibility of starter bacteria to virus infections. Lactobacillus delbrueckii, a component of thermophilic starter cultures used in the manufacture of several fermented dairy products, including yogurt, is also sensitive to bacteriophage attacks. To avoid the problems associated with these viruses, quick and sensitive detection methods are necessary. In the present study, a fast real-time quantitative polymerase chain reaction assay for the direct detection and quantification of L. delbrueckii phages in milk was developed. A set of primers and a TaqMan MGB probe was designed, based on the lysin gene sequence of different L. delbrueckii phages. The results show the proposed method to be a rapid (total processing time 30 min), specific and highly sensitive technique for detecting L. delbrueckii phages in milk.

  3. Sugar utilization patterns and respiro-fermentative metabolism in the baker's yeast Torulaspora delbrueckii.

    Science.gov (United States)

    Alves-Araújo, C; Pacheco, A; Almeida, M J; Spencer-Martins, I; Leão, C; Sousa, M J

    2007-03-01

    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T. delbrueckii PYCC 5321, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields, fermentation and respiration rates, hydrolase activities and sugar uptake rates were used to infer the potential applied relevance of this yeast in comparison to a conventional baker's strain of Saccharomyces cerevisiae. The results showed that both maltase and maltose transport in T. delbrueckii were subject to glucose repression and maltose induction, whereas invertase was subject to glucose control but not dependent on sucrose induction. A comparative analysis of specific sugar consumption rates and transport capacities suggests that the transport step limits both glucose and maltose metabolism. Specific rates of CO(2) production and O(2) consumption showed a significantly higher contribution of respiration to the overall metabolism in T. delbrueckii than in S. cerevisiae. This was reflected in the biomass yields from batch cultures and could represent an asset for the large-scale production of the former species. This work contributes to a better understanding of the physiology of a non-conventional yeast species, with a view to the full exploitation of T. delbrueckii by the baking industry.

  4. Heterologous Expression and Characterization of an N-Acetyl-beta-D-hexosaminidase from Lactococcus lactis ssp. lactis IL1403

    Czech Academy of Sciences Publication Activity Database

    Nguyen, A. H.; Nguyen, T.-H.; Křen, Vladimír; Eijsink, V. G. H.; Haltrich, D.; Peterbauer, C.

    2012-01-01

    Roč. 60, č. 12 (2012), s. 3275-3281 ISSN 0021-8561 R&D Projects: GA ČR(CZ) GAP207/11/0629 Keywords : N-acetyl-beta-D-hexosaminidase * Lactococcus lactis ssp lactis IL1403 * pNP-GlcNAc Subject RIV: CE - Biochemistry Impact factor: 2.906, year: 2012

  5. Volatile Organic Compounds in Naturally Fermented Milk and Milk Fermented Using Yeasts, Lactic Acid Bacteria and Their Combinations As Starter Cultures

    Directory of Open Access Journals (Sweden)

    Bennie C. Viljoen

    2007-01-01

    Full Text Available The volatile organic compounds present in 18 Zimbabwean naturally fermented milk (amasi samples and those produced by various yeasts, lactic acid bacteria (LAB and yeast/ LAB combinations were determined using headspace gas chromatography. The yeast strains used were: Candida kefyr 23, C. lipolytica 57, Saccharomyces cerevisiae 71, C. lusitaniae 68, C. tropicalis 78, C. lusitaniae 63, C. colliculosa 41, S. dairenensis 32, and Dekkera bruxellensis 43, and were coded Y1 to Y9, respectively. The LAB strains used were Lactococcus lactis subsp. lactis Lc39, L. lactis subsp. lactis Lc261, Lactobacillus paracasei Lb11, and L. lactis subsp. lactis biovar. diacetylactis C1, and were coded B1 to B4, respectively. Some of the volatile organic compounds found in amasi were acetaldehyde, ethanol, acetone, 2-methyl propanal, 2-methyl-1-propanol and 3-methyl-1-butanol. However, the levels of volatile organic compounds in the naturally fermented milk (NFM samples varied from one sample to another, with acetaldehyde ranging from 0.1–18.4 ppm, 3-methyl butanal from <0.1–0.47 ppm and ethanol from 39.3–656 ppm. The LAB/C. kefyr 23 (B/Y1 co-cultures produced significantly (p<0.05 higher levels of acetaldehyde and ethanol than the levels found in the NFM. The acetaldehyde levels in the B/Y1 samples ranged from 26.7–87.7 ppm, with L. lactis subsp. lactis biovar. diacetylactis C1 (B4 producing the highest level of acetaldehyde in combination with C. kefyr 23 (Y1. Using principal component analysis (PCA, most of the NFM samples were grouped together with single and co-cultures of Lc261, Lb11 and the non-lactose fermenting yeasts, mainly because of the low levels of ethanol and similar levels of 3-methyl butanal. Chromatograms of amasi showed prominent peak of methyl aldehydes and their alcohols including 3-methyl-butanal and 3-methyl-butanol, suggesting that these compounds are important attributes of Zimbabwean naturally fermented milk.

  6. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    Science.gov (United States)

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Characterization of non-starter lactic acid bacteria in traditionally produced home-made Radan cheese during ripening

    Directory of Open Access Journals (Sweden)

    Jokovic Natasa

    2011-01-01

    Full Text Available Two hundred thirteen non-starter lactic acid bacteria isolated from Radan cheese during ripening were identified with both a classical biochemical test and rep-PCR with (GTG5 primer. For most isolates, which belong to the Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Enterococcus faecium, a phenotypic identification was in good agreement with rep-PCR identification. Lactococeus lactis subsp. lactis, Enterococcus faecium and subspecies from the Lenconostoc mesenteroides group were the dominant population of lactic acid bacteria in cheese until 10 days of ripening and only one Streptococcus thermophilus strain was isolated from the 5-day-old cheese sample. As ripening progressed, Lactobacillus plantarum became the predominant species together with the group of heterofermentative species of lactobacilli that could not be precisely identified with rep-PCR.

  8. Unusual Structure of the attB Site of the Site-Specific Recombination System of Lactobacillus delbrueckii Bacteriophage mv4

    Science.gov (United States)

    Auvray, Frédéric; Coddeville, Michèle; Ordonez, Romy Catoira; Ritzenthaler, Paul

    1999-01-01

    The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3′ end of a tRNASer gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNASer gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model. PMID:10572145

  9. Adaptation of Lactococcus lactis to its environment : a genomics approach

    NARCIS (Netherlands)

    Zomer, Albertus Lambert

    2007-01-01

    This thesis describes a number of strategies of Lactococcus lactis to adapt to its ever-changing environment. Although the complete genome sequence of L. lactis subspecies lactis IL1403, became available when this research was started, the genome sequence of the lactic acid bacterial paradigm, L.

  10. Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae.

    Science.gov (United States)

    Araújo, Carlos; Muñoz-Atienza, Estefanía; Pérez-Sánchez, Tania; Poeta, Patrícia; Igrejas, Gilberto; Hernández, Pablo E; Herranz, Carmen; Ruiz-Zarzuela, Imanol; Cintas, Luis M

    2015-12-01

    Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p trout against infection with the invasive pathogen L. garvieae and the relevance of NisZ production as an anti-infective mechanism. This is the first report demonstrating the effective in vivo role of LAB bacteriocin (NisZ) production as a mechanism to protect fish against bacterial infection. Our results suggest that the wild-type NisZ-producer strain L. cremoris WA2-67 could be used in fish farming to prevent lactococcosis in rainbow trout.

  11. Short communication: Genotypic and phenotypic identification of environmental streptococci and association of Lactococcus lactis ssp. lactis with intramammary infections among different dairy farms.

    Science.gov (United States)

    Werner, B; Moroni, P; Gioia, G; Lavín-Alconero, L; Yousaf, A; Charter, M E; Carter, B Moslock; Bennett, J; Nydam, D V; Welcome, F; Schukken, Y H

    2014-11-01

    Lactococcus species are counted among a large and closely related group of environmental streptococci and streptococci-like bacteria that include bovine mastitis pathogenic Streptococcus, Enterococcus, and Aerococcus species. Phenotypic and biochemical identification methods can be inaccurate and unreliable for species within this group, particularly for Lactococcus spp. As a result, the incidence of Lactococcus spp. on the farm may have been historically underreported and consequently little is known about the clinical importance of this genus as a mastitis pathogen. We used molecular genetic identification methods to accurately differentiate 60 environmental streptococci and streptococci-like bacteria isolated from cows with high somatic cell count and chronic intramammary infection (IMI; >2 somatic cell scores above 4) among 5 geographically distinct farms in New York and Minnesota that exhibited an observed increase in IMI. These isolates were phenotypically identified as Streptococcus uberis and Streptococcus spp. Genetic methods identified 42 isolates (70%) as Lactococcus lactis ssp. lactis, including all 10 isolates originally phenotypically identified as Streptococcus uberis. Antibiotic inhibition testing of all Lc. lactis ssp. lactis showed that 7 isolates were resistant to tetracycline. In the present study, a predominance of Lc. lactis ssp. lactis was identified in association with chronic, clinical bovine IMI among all 5 farms and characterized antimicrobial resistance for treatment therapies. Routine use by mastitis testing labs of molecular identification methods for environmental streptococci and streptococci-like bacteria can further define the role and prevalence of Lc. lactis ssp. lactis in association with bovine IMI and may lead to more targeted therapies. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    Science.gov (United States)

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  13. African Journal of Biotechnology - Vol 13, No 53 (2014)

    African Journals Online (AJOL)

    Cloning of nis gene and Nisin purification from Lactococcus lactis subsp. lactis Fc2 · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. DE El-hadedy, EW El-gammal ...

  14. Purification and characteristics of a novel bacteriocin produced by Enterococcus faecalis L11 isolated from Chinese traditional fermented cucumber.

    Science.gov (United States)

    Gao, Yurong; Li, Benling; Li, Dapeng; Zhang, Liyuan

    2016-05-01

    To purify and characterize a novel bacteriocin with broad inhibitory spectrum produced by an isolate of Enterococcus faecalis from Chinese fermented cucumber. E. faecalis L11 produced a bacteriocin with antimicrobial activity against both Escherichia coli and Staphylococcus aureus. The amino acid sequence of the purified bacteriocin, enterocin L11, was assayed by Edman degradation method. It differs from other class II bacteriocins and exhibited a broad antimicrobial activity against not only Gram-positive bacteria, including Bacillus subtilis, S. aureus, Listeria monocytogenes, Sarcina flava, Lactobacillus acidophilus, L. plantarum, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus, but also some Gram-negative bacteria including Salmonella typhimurium, E. coli and Shigella flexneri. Enterocin L11 retained 91 % of its activity after holding at 121 °C for 30 min. It was also resistant to acids and alkalis. Enterocin L11 is a novel broad-spectrum Class II bacteriocin produced by E. faecalis L11, and may have potential as a food biopreservative.

  15. Characterization of lactococci isolated from milk produced in the Camembert region of Normandy.

    Science.gov (United States)

    Desmasures, N; Mangin, I; Corroler, D; Guéguen, M

    1998-12-01

    Thirty-eight Lactococcus strains, isolated from raw milk produced in two dairy areas in Normandy, were identified at the phenotypic level. Only Lactococcus lactis strains with the lactis phenotype were found in the milk samples. Most strains fermented lactose (97%) and showed proteinase activity (76%). Isolates were characterized by RAPD technique and rRNA gene restriction analysis. More L. lactis strains with the lactis genotype were found in the first area, while L. lactis strains with the cremoris genotype predominated in the second area. RAPD was more efficient than rRNA gene restriction analysis in differentiating between strains with the subsp. lactis genotype. For L. lactis with the subsp. cremoris genotype, the second method gave a better result but there was poor discrimination between strains. Plasmid profiles were determined. Patterns ranged in size from 1.3 to 16.5 kbp, and 29 different profiles were found. Six groups of strains were determined, five of which were specific for the area of origin. It is suggested that the region of manufacture could influence organoleptic properties of cheeses because of different Lactococcus strains in the raw milk used for cheese making.

  16. TdPIR minisatellite fingerprinting as a useful new tool for Torulaspora delbrueckii molecular typing.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Ciani, Maurizio

    2015-05-04

    Torulaspora delbrueckii yeast strains are being increasingly applied at the industrial level, such as in the winemaking process, and so their identification and characterisation require effective, fast, accurate, reproducible and reliable approaches. Therefore, the development of typing techniques that allow discrimination at the strain level will provide an essential tool for those working with T. delbrueckii strains. Here, 28 T. delbrueckii strains from various substrates were characterised using different PCR-fingerprinting molecular methods: random amplified polymorphic DNA with polymerase chain reaction (RAPD-PCR), minisatellites SED1, AGA1, DAN4 and the newly designed T. delbrueckii (Td)PIR, and microsatellites (GAC)5 and (GTG)5. The aim was to determine and compare the efficacies, reproducibilities and discriminating powers of these molecular methods. RAPD-PCR using the M13 primers and the newly designed TdPIR3 minisatellite primer pair provided discrimination of the greatest number of T. delbrueckii strains. TdPIR3 clustered the 28 strains into 16 different groups with an efficiency of 100%, while M13 clustered the strains into 17 different groups, although with a lower efficiency of 89%. Moreover, the TdPIR3 primers showed reproducible profiles when the stringency of the PCR protocol was varied, which highlighted the great robustness of this technique. In contrast, variation of the stringency of the M13 PCR protocol resulted in modification of the amplified profiles, which suggested low reproducibility of this technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Evolution of gene regulation research in Lactococcus lactis.

    Science.gov (United States)

    Kok, Jan; van Gijtenbeek, Lieke A; de Jong, Anne; van der Meulen, Sjoerd B; Solopova, Ana; Kuipers, Oscar P

    2017-08-01

    Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden. © FEMS 2017.

  18. Lactobacillus delbrueckii ssp. bulgaricus thermotolerance

    OpenAIRE

    Gouesbet , Gwenola; Jan , Gwenaël; Boyaval , Patrick

    2001-01-01

    International audience; Lactobacillus delbrueckii ssp. bulgaricus is a lactic acid bacterium widely used in the dairy food industry. Since the industrial processes are a succession of constraints, it is essential to understand the behaviour of L. bulgaricus when facing usual stresses. The influence of heat stress was investigated on the viability of L. bulgaricus cells grown in a chemically defined medium. The susceptibility of cells to heat-shock was obvious only above 55 $^{\\circ}$C. We inv...

  19. Transforming Lactococcus lactis into a microbial cell factory

    DEFF Research Database (Denmark)

    Petersen, Kia Vest

    the potential of Lactococcus lactis as a platform organism for production of biofuels and-chemicals with a focus on characterization and optimization of the xylose metabolism. The plant isolate L. lactis KF147 was selected as the potential platform organism due to its natural ability to utilize both the pentose....... To simplify further analysis arcA encoding the arginine deiminase was deleted, thus eliminating the arginine catabolism. We found that in L. lactis KF147 xylose is metabolized through two pathways namely the phosphoketolase pathway and the non-oxidative part of the pentose phosphate pathway. The only products......, and ethanol. Three adaptive mutations were identified in AD29. Two is by all accounts involved in regulatory mechanisms either to stress (yhfB) or more globally (ytgF), and the last facilitate improved uptake of xylose (ptnC). Based on the above findings we conclude that L. lactis KF147 possesses many...

  20. Probiotic Lactococcus lactis: A Review

    Directory of Open Access Journals (Sweden)

    Priti Khemariya

    2017-07-01

    Full Text Available Lactococcus lactis plays a critical role in food, dairy and health sectors. In food and dairy industries, it is found in production processes of various fermented products such as sausages, pickled vegetables, beverages such as beer and wine, breads, soymilk kefir, sour milk, butter, cream, fresh cheese and different types of cheeses, like Cheddar, Colby, Cottage cheese, Camembert, cream cheese, Roquefort and Brie. Additionally, there is an increasing interest towards the possible health benefits of the probiotic activity of this organism which generally is species and strain specific and depends upon the survival in gastrointestinal tract with sufficient number. Certain strains have the ability to produce antimicrobial peptide called nisin which exhibits preservative potential. Therefore, application of bacteriocinogenic Lactococcus lactis in food and dairy sectors to preserve foods as a natural way and contributing health promoting attributes due to probiotic activity would definitely fulfil today’s consumer demands. This paper aimed to review the adaptation, antibiotic resistance, therapeutic and preservation potential of bacteriocinogenic and probiotic Lactococcus lactis.

  1. Chorioamnionitis due to Lactococcus lactis cremoris: A case report

    Directory of Open Access Journals (Sweden)

    F. Azouzi

    2015-07-01

    Full Text Available Lactococcus lactis cremoris is rarely involved in human pathology. A thirty two-year old pregnant woman with premature rupture of membrane history presented with chorioamnionitis due to L. lactis cremoris. She underwent an emergency caesarian section and was treated with antibiotics including the association of amoxicillin and clavulanic acid. She was completely recovered. This is the first case to our knowledge of chorioamnionitis due to this organism. Keywords: Chorioamnionitis, Premature rupture of membranes, Lactococcus lactis cremoris

  2. Investigation of the bacteriophage community in induced lysates of undefined mesophilic mixed-strain DL-cultures using classical and metagenomic approaches

    DEFF Research Database (Denmark)

    Muhammed, Musemma K.; Olsen, Mette L.; Kot, Witold

    2018-01-01

    To investigate the notion that starter cultures can be a reservoir of bacteriophages (phages) in the dairy environment, strains of three DL-starters (undefined mesophilic mixed-strain starters containing Lactococcus lactis subsp. lactis biovar. diacetylactis and Leuconostoc species) were selected...

  3. The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lüders; Martinussen, Jan; Hammer, Karin

    2000-01-01

    establishing the ability of the encoded protein to synthesize UDP. The pyrH gene in L. lactis is flanked downstream by frr1 encoding ribosomal recycling factor 1 and upstream by an open reading frame, orfA, of unknown function. The three genes were shown to constitute an operon transcribed in the direction orf......A-pyrH-frr1 from a promoter immediately in front of orfA. This operon belongs to an evolutionary highly conserved gene cluster, since the organization of pyrH on the chromosomal level in L. lactis shows a high resemblance to that found in Bacillus subtilis as well as in Escherichia coli and several other...

  4. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    Science.gov (United States)

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  5. Autolysis of Lactococcus lactis is influenced by proteolysis

    NARCIS (Netherlands)

    Buist, G; Venema, G; Kok, J.

    1998-01-01

    The autolysin AcmA of Lactococcus lactis was shown to be degraded by the extracellular Lactococcal proteinase PrtP. Autolysis, as evidenced by reduction in optical density of a stationary-phase culture and concomitant release of intracellular proteins, was greatly reduced when L. lactis MG1363 cells

  6. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine.

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L; Hernández, Luis M; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii-dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae-dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii-dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae.

  7. Disruption of a Transcriptional Repressor by an Insertion Sequence Element Integration Leads to Activation of a Novel Silent Cellobiose Transporter in Lactococcus lactis MG1363.

    Science.gov (United States)

    Solopova, Ana; Kok, Jan; Kuipers, Oscar P

    2017-12-01

    Lactococcus lactis subsp. cremoris strains typically carry many dairy niche-specific adaptations. During adaptation to the milk environment these former plant strains have acquired various pseudogenes and insertion sequence elements indicative of ongoing genome decay and frequent transposition events in their genomes. Here we describe the reactivation of a silenced plant sugar utilization cluster in an L. lactis MG1363 derivative lacking the two main cellobiose transporters, PtcBA-CelB and PtcBAC, upon applying selection pressure to utilize cellobiose. A disruption of the transcriptional repressor gene llmg_1239 by an insertion sequence (IS) element allows expression of the otherwise silent novel cellobiose transporter Llmg_1244 and leads to growth of mutant strains on cellobiose. Llmg_1239 was labeled CclR, for c ellobiose cl uster r epressor. IMPORTANCE Insertion sequences (ISs) play an important role in the evolution of lactococci and other bacteria. They facilitate DNA rearrangements and are responsible for creation of new genetic variants with selective advantages under certain environmental conditions. L. lactis MG1363 possesses 71 copies in a total of 11 different types of IS elements. This study describes yet another example of an IS-mediated adaptive evolution. An integration of IS 981 or IS 905 into a gene coding for a transcriptional repressor led to activation of the repressed gene cluster coding for a plant sugar utilization pathway. The expression of the gene cluster allowed assembly of a novel cellobiose-specific transporter and led to cell growth on cellobiose. Copyright © 2017 American Society for Microbiology.

  8. Consumption of Bifidobacterium animalis subsp. lactis BB-12 in yogurt reduced expression of TLR-2 on peripheral blood-derived monocytes and pro-inflammatory cytokine secretion in young adults.

    Science.gov (United States)

    Meng, Huicui; Ba, Zhaoyong; Lee, Yujin; Peng, Jiayu; Lin, Junli; Fleming, Jennifer A; Furumoto, Emily J; Roberts, Robert F; Kris-Etherton, Penny M; Rogers, Connie J

    2017-03-01

    Probiotic bacteria modulate immune parameters and inflammatory outcomes. Emerging evidence demonstrates that the matrix used to deliver probiotics may influence the efficacy of probiotic interventions in vivo. The aims of the current study were to evaluate (1) the effect of one species, Bifidobacterium animalis subsp. lactis BB-12 at a dose of log10 ± 0.5 CFUs/day on immune responses in a randomized, partially blinded, 4-period crossover, free-living study, and (2) whether the immune response to BB-12 differed depending on the delivery matrix. Healthy adults (n = 30) aged 18-40 years were recruited and received four treatments in a random order: (A) yogurt smoothie alone; smoothie with BB-12 added (B) before or (C) after yogurt fermentation, or (D) BB-12 given in capsule form. At baseline and after each 4-week treatment, peripheral blood mononuclear cells (PBMCs) were isolated, and functional and phenotypic marker expression was assessed. BB-12 interacted with peripheral myeloid cells via Toll-like receptor 2 (TLR-2). The percentage of CD14 + HLA-DR + cells in peripheral blood was increased in male participants by all yogurt-containing treatments compared to baseline (p = 0.0356). Participants who consumed yogurt smoothie with BB-12 added post-fermentation had significantly lower expression of TLR-2 on CD14 + HLA-DR + cells (p = 0.0186) and reduction in TNF-α secretion from BB-12- (p = 0.0490) or LPS-stimulated (p = 0.0387) PBMCs compared to baseline. These findings not only demonstrate a potential anti-inflammatory effect of BB-12 in healthy adults, but also indicate that the delivery matrix influences the immunomodulatory properties of BB-12.

  9. Antimicrobial susceptibilities and random amplified polymorphic DNA-PCR fingerprint characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae isolated from bovine intramammary infections.

    Science.gov (United States)

    Plumed-Ferrer, C; Barberio, A; Franklin-Guild, R; Werner, B; McDonough, P; Bennett, J; Gioia, G; Rota, N; Welcome, F; Nydam, D V; Moroni, P

    2015-09-01

    In total, 181 streptococci-like bacteria isolated from intramammary infections (IMI) were submitted by a veterinary clinic to Quality Milk Production Services (QMPS, Cornell University, Ithaca, NY). The isolates were characterized by sequence analysis, and 46 Lactococcus lactis ssp. lactis and 47 Lactococcus garvieae were tested for susceptibility to 17 antibiotics. No resistant strains were found for β-lactam antibiotics widely used in clinical practice (penicillin, ampicillin, and amoxicillin), and all minimum inhibitory concentrations (MIC) were far from the resistance breakpoints. Eight strains had MIC intermediate to cefazolin. The random amplification of polymorphic DNA (RAPD)-PCR fingerprint patterns showed a slightly higher heterogeneity for Lc. lactis ssp. lactis isolates than for Lc. garvieae isolates. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Quantitative PCR for the specific quantification of Lactococcus lactis and Lactobacillus paracasei and its interest for Lactococcus lactis in cheese samples.

    Science.gov (United States)

    Achilleos, Christine; Berthier, Françoise

    2013-12-01

    The first objective of this work was to develop real-time quantitative PCR (qPCR) assays to quantify two species of mesophilic lactic acid bacteria technologically active in food fermentation, including cheese making: Lactococcus lactis and Lactobacillus paracasei. The second objective was to compare qPCR and plate counts of these two species in cheese samples. Newly designed primers efficiently amplified a region of the tuf gene from the target species. Sixty-three DNA samples from twenty different bacterial species, phylogenetically related or commonly found in raw milk and dairy products, were selected as positive and negative controls. Target DNA was successfully amplified showing a single peak on the amplicon melting curve; non-target DNA was not amplified. Quantification was linear over 5 log units (R(2) > 0.990), down to 22 gene copies/μL per well for Lc. lactis and 73 gene copies/μL per well for Lb. paracasei. qPCR efficiency ranged from 82.9% to 93.7% for Lc. lactis and from 81.1% to 99.5% for Lb. paracasei. At two stages of growth, Lc. lactis was quantified in 12 soft cheeses and Lb. paracasei in 24 hard cooked cheeses. qPCR proved to be useful for quantifying Lc. lactis, but not Lb. paracasei. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    Science.gov (United States)

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  12. Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeast Torulaspora delbrueckii

    OpenAIRE

    Araújo, Cecília Alves; Pacheco, A.; Almeida, M. J.; Martins, I. Spencer; Leão, Cecília; Sousa, M. J.

    2007-01-01

    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T delbrueckii PYCC 532 1, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields...

  13. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    Science.gov (United States)

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Nucleotide Sequence and Analysis of an orotate transporter-containing plasmid isolated from the Lactococcus lactis ssp. lactis biovar diacetylactis strain DB0410

    DEFF Research Database (Denmark)

    Defoor, Els Marie Celine; Martinussen, Jan

    A new lactococcal plasmid, pDBORO, was isolated from the Lactococcus lactis ssp. lactis biovar diacetylactis strain DB0410 responsible for the sensitivity of DB0410 towards the pyrimidine-analog 5´-fluoroorotate. The plasmid pDBORO amounts to 16404 bp and its complete nucleotide sequence has been...

  15. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling

    2012-10-01

    To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.

  16. Nisin-induced Expression of Pediocin in Dairy Lactic Acid Bacteria

    Science.gov (United States)

    To test if a single vector, nisin-controlled expression (NICE) system could be used to regulate expression of the pediocin operon in Streptococcus thermophilus, Lactococcus lactis subsp. lactis and Lactobacillus casei, the intact pediocin operon was cloned into pMSP3535 immediately down stream of th...

  17. Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes

    NARCIS (Netherlands)

    Boerrigter, Ingrid J.; Buist, Girbe; Haandrikman, Alfred J.; Nijhuis, Monique; Reuver, Marjon B. de; Siezen, Roland J.; Venema, Gerhardus; Vos, Willem M. de; Kok, Jan

    Plasmids containing wild-type and hybrid proteinase genes were constructed from DNA fragments of the prtP genes of Lactococcus lactis strains Wg2 and SK11. These plasmids were introduced into the plasmid-free strain L. lactis MG1363. The serine proteinases produced by these L. lactis strains were

  18. KOMPOSISI KIMIAWI DAN KECERNAAN INVITRO SILASE HIJAUAN GEMBILINA (Gmelina arborea MENGGUNAKAN INOKULUM Lactobacillus collinoides DAN Lactobacillus delbrueckii

    Directory of Open Access Journals (Sweden)

    Badat Muwakhid

    2014-06-01

    Full Text Available The purpose of this research is to know an effect of the lactate acid bacteria inoculants of toward Gmelina arborea forage as feeding material.The significance of this research is hopefully as direction and information about using Gmelina arborea forage effectively and efficiently. The research was experimental method by completely randomized design. In the type of inoculants treatment is Lactobacillus collinoides, Lactobacillus delbrueckii, the mixture (compounding between Lactobacillus collinoides, Lactobacillus delbrueckii 1:1, and giving treatment to the incubation length for about 2, 3, 5, 10, 15 and 21 days in the nested of bacterial types factorial. Each treatment is repeated for 3 times. The result showed that lactic acid bacteria inoculant affects affected to the content of NDF, ADF, cellulose, and affected in invitro dry matter digestibility (IVDMD and invitro organic matter digestibility (IVOMD of Gmelina arborea forage as well. The Lactobacillus delbrueckii inoculant is the most effective to defend the lost of NDF, ADF and cellulose, and to defend the decrease of IVDMD and IVOMD during ensilages. The bacterial inoculums Lactobacillus delbrueckii is able to accelerate quality reduction stagnation of NDF, ADF and cellulose, and IVDMD and IVOMD for five days, while others for ten days. It is suggested to obtain good forage ensiling in Gmelina arborea forage, it is better to use Lactobacillus delbrueckii inoculant.

  19. In vitro evaluation of immunological properties of extracellular polysaccharides produced by Lactobacillus delbrueckii strains.

    Science.gov (United States)

    Kishimoto, Mana; Nomoto, Ryohei; Osawa, Ro

    2015-01-01

    We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties.

  20. Acidovorax avenae subsp. avenae

    African Journals Online (AJOL)

    Jane

    2011-06-24

    Jun 24, 2011 ... Studies on Acidovorax avenae subsp. avenae, associated with red stripe disease of sugarcane was ... fiber, organic fertilizer and many by-products/co-products with ... colour, colony diameter and size of bacteria (µm) (Dye and Kemp, ..... leaf blight of turmeric caused by Acidovorax avenae subsp. avenae in.

  1. Studying the effect of some growth factors and gamma radiation on the production of polysaccharides by lactic acid bacteria

    International Nuclear Information System (INIS)

    Mansour, W.S.H.

    2008-01-01

    using cheese whey as a microbial production medium for exo polysaccharides (EPS) presents a cleaner production opportunity (CPO)to create value-added products and protect the environment. In the present study, fifty lactic acid bacterial strains were isolated from some traditional dairy products including buttermilk, Karish cheese, and yoghurt. The isolates were assessed for EPS production , and three isolates were selected as good EPS producers. When comparing the growth and production kinetics achieved by the selected 3 isolates (Lactobacillus delbrueckii ssp. bulgaricus l1, Lactococcus lactis ssp. cremoris I2, Lactobacillus delbrueckii ssp. Bulgaricus I3) and 3 reference LAB strains including Lactococcus lactis ssp. cremoris DSM 20069, Lactobacillus delbrueckii ssp. bulgaricus EMCC 1102 and Lactobacillus rhamnosus EMCC 1105 in MRS broth and whey based medium (WBM), it was found that reference strains achieved higher growth and EPS productivity than isolates. In addition the growth and productivity achieved in MRS broth were higher than these achieved in WBM. In this study, the optimum nutritional supplements for EPS production in WBM by the studied strains were identified as 100 g/l glucose and 30 g/l yeast extract. In addition, the optimum fermentation conditions were identified as incubation temperature of 37 degree C, initial ph of 6.2 and agitation speed of 50 rpm.

  2. Biochemical Characteristics and Viability of Probiotic and Yogurt Bacteria in Yogurt during the Fermentation and Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    F Sarvari

    2014-09-01

    Full Text Available This research aimed to investigate the viability of probiotic bacteria (Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and yogurt bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in yogurt during the fermentation, immediately after fermentation and during refrigerated storage (21 d, 4˚C. Also the biochemical characteristics of milk as affected by the commercial 4-strain mixed starter culture were investigated. Storage time affected the viability of all bacterial species. The concentration of lactic acid during the fermentation increased in parallel with the titrable acidity, and the concentration of acetic acid was proportional to the viability of Bifidobacterium lactis. The acetaldehyde level was decreased in the yogurt from day 0 up to the end of the storage. Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus were multiplied considerably during the fermentation. Streptococcus thermophilus could maintain its viability to the highest level, but Lactobacillus delbrueckii ssp. bulgaricus lost its viability rapidly during the cold storage compared to Streptococcus thermophilus. The multiplication and viability of probiotic bacteria were also influenced by the associative strains and species of yogurt organisms. Bifidobacteria counts were satisfactory. The loss of viability for bifidobacteria was gradual and steady during the storage, and they showed good stability during the storage as compared to Lactobacillus acidophilus.

  3. Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads.

    Science.gov (United States)

    Yeung, Timothy W; Arroyo-Maya, Izlia J; McClements, David J; Sela, David A

    2016-04-01

    Probiotics are beneficial microbes often added to food products to enhance the health and wellness of consumers. A major limitation to producing efficacious functional foods containing probiotic cells is their tendency to lose viability during storage and gastrointestinal transit. In this study, the impact of encapsulating probiotics within food-grade hydrogel particles to mitigate sensitivity to environmental stresses was examined. Confocal fluorescence microscopy confirmed that Lactococcus lactis were trapped within calcium alginate beads formed by dripping a probiotic-alginate mixture into a calcium solution. Encapsulation improved the viability of the probiotics during aerobic storage: after seven days, less than a two-log reduction was observed in encapsulated cells stored at room temperature, demonstrating that a high concentration of cells survived relative to non-encapsulated bacteria. These hydrogel beads may have applications for improving the stability and efficacy of probiotics in functional foods.

  4. Microbes of fermented kefir-like using combination of kefir grains and Bifidobacterium longum

    Directory of Open Access Journals (Sweden)

    Sri Usmiati

    2005-03-01

    Full Text Available The objectives of research were to find out physico-chemical characters and to detect flavor volatile compound of kefir-like. Material used was skim milk TS 9.5% which was heated at 85oC for 30 minutes and cooled at 22oC before innoculation of the starter. Microorganisms used were (a Lactobacillus acidophilus P155110, (b Lactobacillus delbrueckii subsp. Bulgaricus NCIMB 11778, (c Lactococcus lactis P155610, (d Leuconostoc mesenteroides subsp. dextranicum NCIMB 3350, (e Acetobacter aceti P154810, (f Bifidobacterium longum BF1, and (g Saccharomyces cerevisiae P156252. The treatments consist of P1 = without (b; P2 = without (a; and P3= used (a until (g. The physico-chemical characters identified were lactic acid and lactose percentages, pH, viscosity, organoleptic test for intensity of kefir-like sensory attributes. Results indicated that B. longum was potential bacterium use for starter combination on kefir-like making. The use starter P1 combination has high acidity and viscosity, low pH and lactose percentage, and high intensity on attribute creamy-white color, soft and curdle consistency, and kefir specific aroma on kefir-like. Volatile compound acid group were dominate by high acidity character on kefir-like resulted from starter P1 combination. Compound of 3-hydroxi-2-butanone (acetoin was affecting butter-like of P3 character. This compound resulted from which is a character of fermented milk flavor was not detected on P1 kefir-like.

  5. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    Science.gov (United States)

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  6. Evaluation of the passage of Lactobacillus gasseri K7 and bifidobacteria from the stomach to intestines using a single reactor model

    Directory of Open Access Journals (Sweden)

    von Ah Ueli

    2009-05-01

    Full Text Available Abstract Background Probiotic bacteria are thought to play an important role in the digestive system and therefore have to survive the passage from stomach to intestines. Recently, a novel approach to simulate the passage from stomach to intestines in a single bioreactor was developed. The advantage of this automated one reactor system was the ability to test the influence of acid, bile salts and pancreatin. Lactobacillus gasseri K7 is a strain isolated from infant faeces with properties making the strain interesting for cheese production. In this study, a single reactor system was used to evaluate the survival of L. gasseri K7 and selected bifidobacteria from our collection through the stomach-intestine passage. Results Initial screening for acid resistance in acidified culture media showed a low tolerance of Bifidobacterium dentium for this condition indicating low survival in the passage. Similar results were achieved with B. longum subsp. infantis whereas B. animalis subsp. lactis had a high survival. These initial results were confirmed in the bioreactor model of the stomach-intestine passage. B. animalis subsp. lactis had the highest survival rate (10% attaining approximately 5 × 106 cfu ml-1 compared to the other tested bifidobacteria strains which were reduced by a factor of up to 106. Lactobacillus gasseri K7 was less resistant than B. animalis subsp. lactis but survived at cell concentrations approximately 1000 times higher than other bifidobacteria. Conclusion In this study, we were able to show that L. gasseri K7 had a high survival rate in the stomach-intestine passage. By comparing the results with a previous study in piglets we could confirm the reliability of our simulation. Of the tested bifidobacteria strains, only B. animalis subsp. lactis showed acceptable survival for a successful passage in the simulation system.

  7. Effect of non-nutritional factors on nisin production | Tafreshi | African ...

    African Journals Online (AJOL)

    order to assess some of non-nutritional factors and how they influence the nisin production in batch cultivation, a laboratory scale study was performed. Lactococcus lactis subsp. lactis ATCC 11454 produced nisin and Micrococcus luteus ATCC 10240 was used in bioassay measurement as the nisinsensitive strain. The age ...

  8. Production and crystallization of α-phosphoglucomutase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Nogly, Przemyslaw; Castro, Rute; Rosa, Matteo de; Neves, Ana Rute; Santos, Helena; Archer, Margarida

    2012-01-01

    α-Phosphoglucomutase from L. lactis, a homologue of human phosphomannomutase 1, was produced and crystallized. X-ray diffraction data were collected to 1.5 Å resolution. α-Phosphoglucomutase (α-PGM) is an enzyme that is essential for the growth of Lactococcus lactis. The enzyme links bacterial anabolism with sugar utilization through glycolysis by catalyzing the reversible interconversion of glucose 6-phosphate and α-glucose 1-phosphate. The gene encoding α-PGM was cloned and overexpressed in L. lactis. The purified protein was functionally active and was crystallized with ammonium sulfate as a precipitant using vapour-diffusion and seeding techniques. Optimized crystals diffracted to 1.5 Å resolution at a synchrotron source

  9. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    Science.gov (United States)

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL -1 and 0.6-0.7 ng mL -1 , respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Use of DNA quantification to measure growth and autolysis of Lactococcus and Propionibacterium spp. in mixed populations.

    Science.gov (United States)

    Treimo, Janneke; Vegarud, Gerd; Langsrud, Thor; Rudi, Knut

    2006-09-01

    Autolysis is self-degradation of the bacterial cell wall that results in the release of enzymes and DNA. Autolysis of starter bacteria, such as lactococci and propionibacteria, is essential for cheese ripening, but our understanding of this important process is limited. This is mainly because the current tools for measuring autolysis cannot readily be used for analysis of bacteria in mixed populations. We have now addressed this problem by species-specific detection and quantification of free DNA released during autolysis. This was done by use of 16S rRNA gene single-nucleotide extension probes in combination with competitive PCR. We analyzed pure and mixed populations of Lactococcus lactis subsp. lactis and three different species of Propionibacterium. Results showed that L. lactis subsp. lactis INF L2 autolyzed first, followed by Propionibacterium acidipropionici ATCC 4965, Propionibacterium freudenreichii ISU P59, and then Propionibacterium jensenii INF P303. We also investigated the autolytic effect of rennet (commonly used in cheese production). We found that the effect was highly strain specific, with all the strains responding differently. Finally, autolysis of L. lactis subsp. lactis INF L2 and P. freudenreichii ISU P59 was analyzed in a liquid cheese model. Autolysis was detected later in this cheese model system than in broth media. A challenge with DNA, however, is DNA degradation. We addressed this challenge by using a DNA degradation marker. We obtained a good correlation between the degradation of the marker and the target in a model experiment. We conclude that our DNA approach will be a valuable tool for use in future analyses and for understanding autolysis in mixed bacterial populations.

  11. Statistical optimization of cell disruption techniques for releasing intracellular X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis spp. lactis.

    Science.gov (United States)

    Üstün-Aytekin, Özlem; Arısoy, Sevda; Aytekin, Ali Özhan; Yıldız, Ece

    2016-03-01

    X-prolyl dipeptidyl aminopeptidase (PepX) is an intracellular enzyme from the Gram-positive bacterium Lactococcus lactis spp. lactis NRRL B-1821, and it has commercial importance. The objective of this study was to compare the effects of several cell disruption methods on the activity of PepX. Statistical optimization methods were performed for two cavitation methods, hydrodynamic (high-pressure homogenization) and acoustic (sonication), to determine the more appropriate disruption method. Two level factorial design (2FI), with the parameters of number of cycles and pressure, and Box-Behnken design (BBD), with the parameters of cycle, sonication time, and power, were used for the optimization of the high-pressure homogenization and sonication methods, respectively. In addition, disruption methods, consisting of lysozyme, bead milling, heat treatment, freeze-thawing, liquid nitrogen, ethylenediaminetetraacetic acid (EDTA), Triton-X, sodium dodecyl sulfate (SDS), chloroform, and antibiotics, were performed and compared with the high-pressure homogenization and sonication methods. The optimized values of high-pressure homogenization were one cycle at 130 MPa providing activity of 114.47 mU ml(-1), while sonication afforded an activity of 145.09 mU ml(-1) at 28 min with 91% power and three cycles. In conclusion, sonication was the more effective disruption method, and its optimal operation parameters were manifested for the release of intracellular enzyme from a L. lactis spp. lactis strain, which is a Gram-positive bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dual recombinant Lactococcus lactis for enhanced delivery of DNA vaccine reporter plasmid pPERDBY.

    Science.gov (United States)

    Yagnik, Bhrugu; Sharma, Drashya; Padh, Harish; Desai, Priti

    2017-04-01

    Food grade Lactococcus lactis has been widely used as an antigen and DNA delivery vehicle. We have previously reported the use of non-invasive L. lactis to deliver the newly constructed immunostimulatory DNA vaccine reporter plasmid, pPERDBY. In the present report, construction of dual recombinant L. lactis expressing internalin A of Listeria monocytogenes and harboring pPERDBY (LL InlA + pPERDBY) to enhance the efficiency of delivery of DNA by L. lactis is outlined. After confirmation and validation of LL InlA + pPERDBY, its DNA delivery potential was compared with previously developed non-invasive r- L. lactis::pPERDBY. The use of invasive L. lactis resulted in around threefold increases in the number of enhanced green fluorescent protein-expressing Caco-2 cells. These findings reinforce the prospective application of invasive strain of L. lactis for delivery of DNA/RNA and antigens. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  13. Development of a Novel Probiotic Yogurt “PENTOYO” with a Fully ...

    African Journals Online (AJOL)

    HP

    Methods: Mother cultures of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus and L. ... indicating the presence of a sufficient number of viable bacterial cells at 4 oC. .... and galactose uptake and utilization, including ...

  14. CLONING AND SEQUENCING OF THE GENE FOR A LACTOCOCCAL ENDOPEPTIDASE, AN ENZYME WITH SEQUENCE SIMILARITY TO MAMMALIAN ENKEPHALINASE

    NARCIS (Netherlands)

    Mierau, Igor; Tan, Paris S.T.; Haandrikman, Alfred J.; Kok, Jan; Leenhouts, Kees J.; Konings, Wil N.; Venema, Gerard

    The gene specifying an endopeptidase of Lactococcus lactis, named pepO, was cloned from a genomic library of L. lactis subsp. cremoris P8-247 in lambdaEMBL3 and was subsequently sequenced. pepO is probably the last gene of an operon encoding the binding-protein-dependent oligopeptide transport

  15. A review on Lactococcus lactis: from food to factory.

    Science.gov (United States)

    Song, Adelene Ai-Lian; In, Lionel L A; Lim, Swee Hua Erin; Rahim, Raha Abdul

    2017-04-04

    Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Salmonella cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.

  16. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products.

    Science.gov (United States)

    Takeda, Shiro; Yamasaki, Keiko; Takeshita, Masahiko; Kikuchi, Yukiharu; Tsend-Ayush, Chuluunbat; Dashnyam, Bumbein; Ahhmed, Abdulatef M; Kawahara, Satoshi; Muguruma, Michio

    2011-08-01

    The aims of this study were to investigate the diversity of lactic acid bacteria (LAB) isolated from traditional Mongolian dairy products, and to estimate the probiotic potential of the isolated strains. We collected 66 samples of the traditional Mongolian dairy products tarag (n = 45), airag (n = 7), aaruul (n = 8), byasulag (n = 1) and eezgii (n = 5), from which 543 LAB strains were isolated and identified based on 16S ribosomal DNA sequence. The predominant species of those products were Lactobacillus (L.) delbrueckii ssp. bulgaricus, L. helveticus, L. fermentum, L. delbrueckii ssp. lactis and Lactococcus lactis ssp. lactis. However, we could not detect any LAB strains from eezgii. All LAB isolates were screened for tolerance to low pH and to bile acid, gas production from glucose, and adherence to Caco-2 cells. In vitro, we found 10 strains possess probiotic properties, and almost identified them as L. plantarum or L. paracasei subspecies, based on 16S ribosomal DNA and carbohydrate fermentation pattern. These strains were differentiated from each other individually by randomly amplified polymorphic DNA analysis. Additionally, it was notable that 6/10 strains were isolated from camel milk tarag from the Dornogovi province. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  17. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000.

    Science.gov (United States)

    Zhu, Duolong; Fu, Yuxin; Liu, Fulu; Xu, Haijin; Saris, Per Erik Joakim; Qiao, Mingqiang

    2017-01-03

    The implementation of novel chassis organisms to be used as microbial cell factories in industrial applications is an intensive research field. Lactococcus lactis, which is one of the most extensively studied model organisms, exhibits superior ability to be used as engineered host for fermentation of desirable products. However, few studies have reported about genome reduction of L. lactis as a clean background for functional genomic studies and a model chassis for desirable product fermentation. Four large nonessential DNA regions accounting for 2.83% in L. lactis NZ9000 (L. lactis 9 k) genome (2,530,294 bp) were deleted using the Cre-loxP deletion system as the first steps toward a minimized genome in this study. The mutants were compared with the parental strain in several physiological traits and evaluated as microbial cell factories for heterologous protein production (intracellular and secretory expression) with the red fluorescent protein (RFP) and the bacteriocin leucocin C (LecC) as reporters. The four mutants grew faster, yielded enhanced biomass, achieved increased adenosine triphosphate content, and diminished maintenance demands compared with the wild strain in the two media tested. In particular, L. lactis 9 k-4 with the largest deletion was identified as the optimum candidate host for recombinant protein production. With nisin induction, not only the transcriptional efficiency but also the production levels of the expressed reporters were approximately three- to fourfold improved compared with the wild strain. The expression of lecC gene controlled with strong constitutive promoters P5 and P8 in L. lactis 9 k-4 was also improved significantly. The genome-streamlined L. lactis 9 k-4 outcompeted the parental strain in several physiological traits assessed. Moreover, L. lactis 9 k-4 exhibited good properties as platform organism for protein production. In future works, the genome of L. lactis will be maximally reduced by using our specific design

  18. Effects of Lactococcus lactis on composition of intestinal microbiota: Role of nisin

    DEFF Research Database (Denmark)

    Bernbom, Nete; Licht, Tine Rask; Brogren, Carl-Henrik

    2006-01-01

    This study examined the ability of (i) pure nisin, (ii) nisin-producing Lactococcus lactis strain CHCC5826, and (iii) the non-nisin-producing L. lactis strain CHCH2862 to affect the composition of the intestinal microbiota of human flora-associated rats. The presence of both the nisin-producing a......This study examined the ability of (i) pure nisin, (ii) nisin-producing Lactococcus lactis strain CHCC5826, and (iii) the non-nisin-producing L. lactis strain CHCH2862 to affect the composition of the intestinal microbiota of human flora-associated rats. The presence of both the nisin...... in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different...

  19. Esterase activities of intracellular extracts of wild strains of lactic acid bacteria isolated from Serra da Estrela cheese

    OpenAIRE

    Macedo, Angela C.; Tavares, Tânia G.; Malcata, F. Xavier

    2003-01-01

    Lactococcus lactis subsp. lactis strain ESB110019 and Lactobacillus plantarum strain ESB5004, novel strains that were previously isolated from the wild adventitious microflora of certified Serra da Estrela cheeses, were assayed for esterase activity using, as substrates, ortho- and para-nitrophenyl derivatives of fatty acids. Both strains preferentially hydrolyzed short-chain fatty acids; L. lactis ESB110019 exhibited a stronger esterase activity than Lb. plantarum ESB5004 and cleaved the p-n...

  20. The yogurt amino acid profile's variation during the shelf-life.

    Science.gov (United States)

    Germani, A; Luneia, R; Nigro, F; Vitiello, V; Donini, L M; del Balzo, V

    2014-01-01

    To analyze the yogurt amino acid profile starting from marketing through the whole shelf-life. The evaluation of the proteolytic activity of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus, allows to deduce their vitality during the shelf-life period and within 45 days. Three types of full fats yogurts have been analyzed (a) natural white (b) sweet white and (c) whole fruit - in two stages: t0 (first day of shelf-life) and t1 (end of shelf-life). The proteins have been analyzed by the Kjeldahl method and the amino acid profile by HPLC. In natural yogurt a significant increase of the amount of free amino acids has been observed during the period of shelf-life (97%). In the sweetened full fats and fruit yogurt, instead, there is a lower increase of respectively 33% and 39% In whole milk natural yogurt, based on our data, the proteolytic activity seems to persist during the entire period of the shelf-life and this can be considered an index of bacterial survival, especially of Lactobacillus delbrueckii subsp. bulgaricus during the marketing process.

  1. Discovery of proteins involved in the interaction between prebiotics carbohydrates and probiotics & whole proteome analysis of the probiotic strain Bifidobacterium animalis susp. lactis BB-12

    DEFF Research Database (Denmark)

    Gilad, Ofir

    Probiotic bacteria, which primarily belong to the genera Lactobascillus and Bifidobacterium, are live microorganisms that have been related to a variety of health-promoting effects. Prebiotics are indigestible food components that specifically stimulate the growth of probiotic organisms...... in the human gastrointestinal tract. Despite an increased scientific focus within this field, the mechanisms behind the beneficial effects exerted by pre- and probiotics are still far from fully understood. The purpose of the present industrial-PhD project was to identify proteins involved in interactions...... between the widely-used, extensively-studied probiotic strain Bifidobacterium animalis subsp. lactis BB-12 and potentially-prebiotic carbohydrates. The project was initiated with a screening phase in which more than 40 carbohydrates were tested for their ability to promote the growth of the bacterium...

  2. Protoplast formation and regeneration in Lactobacillus delbrueckii

    OpenAIRE

    Singhvi, Mamta; Joshi, Dipti; Gaikaiwari, Shalaka; Gokhale, Digambar V.

    2010-01-01

    Method for production and regeneration of Lactobacillus delbrueckii protoplasts are described. The protoplasts were obtained by treatment with a mixture of lysozyme and mutanolysin in protoplast buffer at pH 6.5 with different osmotic stabilizers. The protoplasts were regenerated on deMan, Rogosa and Sharpe (MRS) with various osmotic stabilizers. Maximum protoplast formation was obtained in protoplast buffer with sucrose as an osmotic stabilizer using a combination of lysozyme (1 mg/ml) and m...

  3. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus

    NARCIS (Netherlands)

    Sieuwerts, S.; Molenaar, D.; Hijum, van S.A.F.T.; Beerthuyzen, M.; Stevens, M.J.A.; Janssen, P.W.; Ingham, C.J.; Bok, de F.A.M.; Vos, de W.M.; Hylckama Vlieg, van J.E.T.

    2010-01-01

    Many food fermentations are performed using mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yogurt fermentation by Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp.

  4. Lactobacillus delbrueckii TUA4408L and its extracellular polysaccharides attenuate enterotoxigenic Escherichia coli-induced inflammatory response in porcine intestinal epitheliocytes via Toll-like receptor-2 and 4.

    Science.gov (United States)

    Wachi, Satoshi; Kanmani, Paulraj; Tomosada, Yohsuke; Kobayashi, Hisakazu; Yuri, Toshihito; Egusa, Shintaro; Shimazu, Tomoyuki; Suda, Yoshihito; Aso, Hisashi; Sugawara, Makoto; Saito, Tadao; Mishima, Takashi; Villena, Julio; Kitazawa, Haruki

    2014-10-01

    Immunobiotics are known to modulate intestinal immune responses by regulating Toll-like receptor (TLR) signaling pathways, which are responsible for the induction of cytokines and chemokines in response to microbial-associated molecular patterns. However, little is known about the immunomodulatory activity of compounds or molecules from immunobiotics. We evaluated whether Lactobacillus delbrueckii subsp. delbrueckii TUA4408L (Ld) or its extracellular polysaccharide (EPS): acidic EPS (APS) and neutral EPS (NPS), modulated the response of porcine intestinal epitheliocyte (PIE) cells against Enterotoxigenic Escherichia coli (ETEC) 987P. The roles of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effects were also studied. ETEC-induced inflammatory cytokines were downregulated when PIE cells were prestimulated with both Ld or EPSs. Ld, APS, and NPS inhibited ETEC mediated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation by upregulating TLR negative regulators. The capability of Ld to suppress inflammatory cytokines was diminished when PIE cells were blocked with anti-TLR2 antibody, while APS failed to suppress inflammatory cytokines when cells were treated with anti-TLR4 antibody. Induction of Ca²⁺ fluxes in TLR knockdown cells confirmed that TLR2 plays a principal role in the immunomodulatory action of Ld, while the activity of APS is mediated by TLR4. In addition, NPS activity depends on both TLR4 and TLR2. Ld and its EPS have the potential to be used for the development of anti-inflammatory functional foods to prevent intestinal diseases in both humans and animals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Secretory expression of a heterologous nattokinase in Lactococcus lactis.

    Science.gov (United States)

    Liang, Xiaobo; Zhang, Lixin; Zhong, Jin; Huan, Liandong

    2007-05-01

    Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P( nisZ) and signal peptide SP(Usp) were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.

  6. Lactococcus lactis As a Versatile Vehicle for Tolerogenic Immunotherapy

    Science.gov (United States)

    Cook, Dana P.; Gysemans, Conny; Mathieu, Chantal

    2018-01-01

    Genetically modified Lactococcus lactis bacteria have been engineered as a tool to deliver bioactive proteins to mucosal tissues as a means to exert both local and systemic effects. They have an excellent safety profile, the result of years of human consumption in the food industry, as well as a lack of toxicity and immunogenicity. Also, containment strategies have been developed to promote further application as clinical protein-based therapeutics. Here, we review technological advancements made to enhanced the potential of L. lactis as live biofactories and discuss some examples of tolerogenic immunotherapies mediated by mucosal drug delivery via L. lactis. Additionally, we highlight their use to induce mucosal tolerance by targeted autoantigen delivery to the intestine as an approach to reverse autoimmune type 1 diabetes. PMID:29387056

  7. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    Science.gov (United States)

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  8. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    Science.gov (United States)

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  9. Genetically Modified Lactococcus lactis for Delivery of Human Interleukin-10 to Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Inge L. Huibregtse

    2012-01-01

    Full Text Available Interleukin-10 (IL-10 plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L.  lactisIL-10 on DC function in vitro. Monocyte-derived DC incubated with L.  lactisIL-10 induced effector Th-cells that markedly suppressed the proliferation of allogenic Th-cells as compared to L. lactis. This suppressive effect was only seen when DC showed increased CD83 and CD86 expression. Furthermore, enhanced production of IL-10 was measured in both L.  lactisIL-10-derived DC and Th-cells compared to L. lactis-derived DC and Th-cells. Neutralizing IL-10 during DC-Th-cell interaction and coculturing L.  lactisIL-10-derived suppressor Th-cells with allogenic Th-cells in a transwell system prevented the induction of suppressor Th-cells. Only 130 pg/mL of bacterial-derived IL-10 and 40 times more exogenously added recombinant human IL-10 were needed during DC priming for the generation of suppressor Th-cells. The spatially restricted delivery of IL-10 by food-grade bacteria is a promising strategy to induce suppressor Th-cells in vivo and to treat inflammatory diseases.

  10. Modeling Lactococcus lactis using a genome-scale flux model

    Directory of Open Access Journals (Sweden)

    Nielsen Jens

    2005-06-01

    Full Text Available Abstract Background Genome-scale flux models are useful tools to represent and analyze microbial metabolism. In this work we reconstructed the metabolic network of the lactic acid bacteria Lactococcus lactis and developed a genome-scale flux model able to simulate and analyze network capabilities and whole-cell function under aerobic and anaerobic continuous cultures. Flux balance analysis (FBA and minimization of metabolic adjustment (MOMA were used as modeling frameworks. Results The metabolic network was reconstructed using the annotated genome sequence from L. lactis ssp. lactis IL1403 together with physiological and biochemical information. The established network comprised a total of 621 reactions and 509 metabolites, representing the overall metabolism of L. lactis. Experimental data reported in the literature was used to fit the model to phenotypic observations. Regulatory constraints had to be included to simulate certain metabolic features, such as the shift from homo to heterolactic fermentation. A minimal medium for in silico growth was identified, indicating the requirement of four amino acids in addition to a sugar. Remarkably, de novo biosynthesis of four other amino acids was observed even when all amino acids were supplied, which is in good agreement with experimental observations. Additionally, enhanced metabolic engineering strategies for improved diacetyl producing strains were designed. Conclusion The L. lactis metabolic network can now be used for a better understanding of lactococcal metabolic capabilities and potential, for the design of enhanced metabolic engineering strategies and for integration with other types of 'omic' data, to assist in finding new information on cellular organization and function.

  11. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    Directory of Open Access Journals (Sweden)

    Rocío eVelázquez

    2015-11-01

    Full Text Available Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by S. cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odour descriptors, including those with the greatest odour activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate, were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odours. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S

  12. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L.; Hernández, Luis M.; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae. PMID

  13. ORF Alignment: NC_002662 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available tis subsp. ... lactis (strain IL1403) ... Length = 206 ... Query: 530 VEFHAHTNMSQMDAIPSASSLVAQAAK...WGHKAIAITDHGGLQSFPEAHSAGKKNGVKIIY 589 ... VEFHAHTNMSQMDAIPSASSLVAQAAKWGHKAIAITDHGGLQSFPEAHSAGKKNGVKII...Y Sbjct: 1 ... VEFHAHTNMSQMDAIPSASSLVAQAAKWGHKAIAITDHGGLQSFPEAHSAGKKNGVKIIY 60 ... Que

  14. Production of recombinant peanut allergen Ara h 2 using Lactococcus lactis

    DEFF Research Database (Denmark)

    Glenting, J.; Poulsen, Lars K.; Kato, K.

    2007-01-01

    lactis is an attractive microorganism for use in the production of protein therapeutics. L. lactis is considered food grade, free of endotoxins, and is able to secrete the heterologous product together with few other native proteins. Hypersensitivity to peanut represents a serious allergic problem. Some...... of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis. Results: A synthetic ara h 2 gene was cloned into an L...

  15. The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study.

    Science.gov (United States)

    Del Piano, Mario; Anderloni, Andrea; Balzarini, Marco; Ballarè, Marco; Carmagnola, Stefania; Montino, Franco; Orsello, Marco; Pagliarulo, Michela; Tari, Roberto; Soattini, Liliana; Sforza, Filomena; Mogna, Luca; Mogna, Giovanni

    2012-10-01

    LPS01 (DSM 21980), Lactobacillus plantarum LP01 (LMG P-21021), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106) were administered for 10 days to 10 subjects treated with PPIs for >12 months (group B). In the 60 mg formulation, N-acetylcysteine was included as well in light of its well-known mechanical effects on bacterial biofilms. Gastroscopies were performed at the beginning of the study (d0) in all the groups (A, B, C, and D) and after 10 days (d10) in group B only; that is, at the end of probiotics intake. The total viable cells and total Lactobacillus were quantified in gastric juice and duodenal brushing material from all subjects. The results were compared among all the groups and with the control subjects (group D) to confirm the bacterial overgrowth. A comparison was made also between d0 and d10 in group B to quantify the efficacy of the 4 probiotics administered for 10 days. Fecal samples were collected from all groups at d0, including subjects not treated with PPIs, and in group B only at d10. Specific bacterial classes, namely enterococci, total coliforms, E. coli, molds, and yeasts were quantified in all fecal specimens. The results collected confirmed the strong bacterial overgrowth in the stomach and duodenum of people treated with PPIs compared with subjects with a normal intragastric acidity. It is also worth noting that the bacterial cell counts in subjects who underwent a long-term treatment with a PPI were greater than the results from subjects taking these drugs for 3 to 12 months. The intake of 4 specific probiotic strains with a marked antagonistic activity towards 5 E. coli bacteria, including the enterohaemorrhagic O157:H7 strain, and an effective amount of N-acetylcysteine (NAC) was able to significantly reduce bacterial overgrowth in long-term PPI-treated subjects. Total lactobacilli represented the major percentage of bacterial counts, thus demonstrating the ability of such bacteria to colonize the stomach and the duodenum

  16. Prevalence of Streptococcus dysgalactiae subsp. equisimilis and S. equi subsp. zooepidemicus in a sample of healthy dogs, cats and horses.

    Science.gov (United States)

    Acke, E; Midwinter, A C; Lawrence, K; Gordon, S J G; Moore, S; Rasiah, I; Steward, K; French, N; Waller, A

    2015-09-01

    To estimate the prevalence of β-haemolytic Lancefield group C streptococci in healthy dogs, cats and horses; to determine if frequent contact with horses was associated with isolation of these species from dogs and cats; and to characterise recovered S. equi subsp. zooepidemicus isolates by multilocus sequence typing. Oropharyngeal swabs were collected from 197 dogs and 72 cats, and nasopharyngeal swabs from 93 horses. Sampling was carried out at the Massey University Veterinary Teaching Hospital, on sheep and beef farms or on premises where horses were present. All animals were healthy and were categorised as Urban dogs and cats (minimal contact with horses or farm livestock), Farm dogs (minimal contact with horses) and Stable dogs and cats (frequent contact with horses). Swabs were cultured for β-haemolytic Streptococcus spp. and Lancefield group C streptococcal subspecies were confirmed by phenotypic and molecular techniques. Of the 197 dogs sampled, 21 (10.7 (95% CI= 4.0-25.4)%) tested positive for S. dysgalactiae subsp. equisimilis and 4 (2.0 (95% CI=0.7-5.5)%) tested positive for S. equi subsp. zooepidemicus. All these isolates, except for one S. dysgalactiae subsp. equisimilis isolate in an Urban dog, were from Stable dogs. S. dysgalactiae subsp. equisimilis was isolated from one Stable cat. Of the 93 horses, 22 (23.7 (95% CI=12.3-40.6)%) and 6 (6.5 (95% CI=2.8-14.1)%) had confirmed S. dysgalactiae subsp. equisimilis and S. equi subsp. zooepidemicus isolation respectively. Isolation of S. dysgalactiae subsp. equisimilis from dogs was associated with frequent contact with horses (OR=9.8 (95% CI=2.6-72.8)). Three different multilocus sequence type profiles of S. equi subsp. zooepidemicus that have not been previously reported in dogs were recovered. Subclinical infection or colonisation by S. equi subsp. zooepidemicus and S. dysgalactiae subsp. equisimilis occurs in dogs and further research on inter-species transmission and the pathogenic potential of these

  17. Microbial community dynamics in thermophilic undefined milk starter cultures.

    Science.gov (United States)

    Parente, Eugenio; Guidone, Angela; Matera, Attilio; De Filippis, Francesca; Mauriello, Gianluigi; Ricciardi, Annamaria

    2016-01-18

    Model undefined thermophilic starter cultures were produced from raw milk of nine pasta-filata cheesemaking plants using a selective procedure based on pasteurization and incubation at high temperature with the objective of studying the microbial community dynamics and the variability in performances under repeated (7-13) reproduction cycles with backslopping. The traditional culture-dependent approach, based on random isolation and molecular characterization of isolates was coupled to the determination of pH and the evaluation of the ability to produce acid and fermentation metabolites. Moreover, a culture-independent approach based on amplicon-targeted next-generation sequencing was employed. The microbial diversity was evaluated by 16S rRNA gene sequencing (V1-V3 regions), while the microdiversity of Streptococcus thermophilus populations was explored by using novel approach based on sequencing of partial amplicons of the phosphoserine phosphatase gene (serB). In addition, the occurrence of bacteriophages was evaluated by qPCR and by multiplex PCR. Although it was relatively easy to select for a community dominated by thermophilic lactic acid bacteria (LAB) within a single reproduction cycle, final pH, LAB populations and acid production activity fluctuated over reproduction cycles. Both culture-dependent and -independent methods showed that the cultures were dominated by either S. thermophilus or Lactobacillus delbrueckii subsp. lactis or by both species. Nevertheless, subdominant mesophilic species, including lactococci and spoilage organisms, persisted at low levels. A limited number of serB sequence types (ST) were present in S. thermophilus populations. L. delbrueckii and Lactococcus lactis bacteriophages were below the detection limit of the method used and high titres of cos type S. thermophilus bacteriophages were detected in only two cases. In one case a high titre of bacteriophages was concurrent with a S. thermophilus biotype shift in the culture

  18. Enhanced 3-sulfanylhexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae reveals a situation of synergistic interaction between two industrial strains

    Directory of Open Access Journals (Sweden)

    Philippe eRenault

    2016-03-01

    Full Text Available The aim of this work was to study the volatile thiol productions of 2 industrial strains of Torulaspora delbrueckii and Saccharomyces cerevisiae during alcoholic fermentation (AF of Sauvignon Blanc must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. The results confirmed the inability of T. delbrueckii to release 4-methyl-4-sulfanylpentan-2-one (4MSP and its low capacity to produce 3-sulfanylhexyl acetate (3SHA, as already reported in previous studies. A synergistic interaction was observed between the two species, resulting in higher levels of 3SH (3-sulfanylhexan-1-ol and its acetate when S. cerevisiae was inoculated 24 hours after T. delbrueckii, compared to the pure cultures. To elucidate the nature of the interactions between these 2 species, the yeast population kinetics were examined and monitored, as well as the production of 3SH, its acetate and their related non-odorous precursors: Glut-3SH (glutathionylated conjugate precursor and Cys-3SH (cysteinylated conjugate precursor. For the first time, it was suggested that, unlike, S. cerevisiae, which is able to metabolize the two precursor forms, T. delbrueckii was only able to metabolize the glutathionylated precursor. Consequently, the presence of T. delbrueckii during mixed fermentation led to an increase in Glut-3SH degradation and Cys-3SH production. This overproduction was dependent on the T. delbrueckii biomass. In sequential culture, thus favouring T. delbrueckii development, the higher availability of Cys-3SH throughout AF (alcoholic fermentation resulted in more abundant 3SH and 3SHA production by S. cerevisiae

  19. Enhanced 3-Sulfanylhexan-1-ol Production in Sequential Mixed Fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae Reveals a Situation of Synergistic Interaction between Two Industrial Strains.

    Science.gov (United States)

    Renault, Philippe; Coulon, Joana; Moine, Virginie; Thibon, Cécile; Bely, Marina

    2016-01-01

    The aim of this work was to study the volatile thiol productions of two industrial strains of Torulaspora delbrueckii and Saccharomyces cerevisiae during alcoholic fermentation (AF) of Sauvignon Blanc must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. The results confirmed the inability of T. delbrueckii to release 4-methyl-4-sulfanylpentan-2-one (4MSP) and its low capacity to produce 3-sulfanylhexyl acetate (3SHA), as already reported in previous studies. A synergistic interaction was observed between the two species, resulting in higher levels of 3SH (3-sulfanylhexan-1-ol) and its acetate when S. cerevisiae was inoculated 24 h after T. delbrueckii, compared to the pure cultures. To elucidate the nature of the interactions between these two species, the yeast population kinetics were examined and monitored, as well as the production of 3SH, its acetate and their related non-odorous precursors: Glut-3SH (glutathionylated conjugate precursor) and Cys-3SH (cysteinylated conjugate precursor). For the first time, it was suggested that, unlike S. cerevisiae, which is able to metabolize the two precursor forms, T. delbrueckii was only able to metabolize the glutathionylated precursor. Consequently, the presence of T. delbrueckii during mixed fermentation led to an increase in Glut-3SH degradation and Cys-3SH production. This overproduction was dependent on the T. delbrueckii biomass. In sequential culture, thus favoring T. delbrueckii development, the higher availability of Cys-3SH throughout AF resulted in more abundant 3SH and 3SHA production by S. cerevisiae.

  20. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var.

    Science.gov (United States)

    Zhang, Chun-Nuan; Zhang, Ji-Liang; Guan, Wen-Chao; Zhang, Xiao-Fei; Guan, Su-Hua; Zeng, Qing-Hui; Cheng, Gao-Feng; Cui, Wei

    2017-09-01

    The aim of the present study was to investigate effects of dietary Lactobacillus delbrueckii (L. delbrueckii) on immune response, disease resistance against Aeromonas hydrophila (A. hydrophila), antioxidant capability and growth performance of Cyprinus carpio Huanghe var. 450 fish (mean weight of 1.05 ± 0.03 g) were randomly distributed into five groups that fed diets containing different levels of L. delbrueckii (0, 1 × 10 5 , 1 × 10 6 , 1 × 10 7 and 1 × 10 8  CFU g -1 ) for 8 weeks. The results showed that intestinal immune parameters such as lysozyme, acid phosphatase, and myeloperoxidase activities, immunoglobulin M content, and the survival rate were improved in fish fed with 1 × 10 6 and 1 × 10 7  CFU g -1 L. delbrueckii. In addition, 1 × 10 7  CFU g -1 L. delbrueckii supplementation down-regulated mRNA levels of TNF-α, IL-8, IL-1β and NF-κBp65, and up-regulated IL-10 and TGF-β mRNA levels in the intestine. The survival rate was significantly (P < 0.05) higher (68.33%) in fish fed 1 × 10 6  CFU g -1 L. delbrueckii than the control diet-fed group (40%) after challenge by A. hydrophila. Fish fed with diet containing 1 × 10 6  CFU g -1 L. delbrueckii showed higher antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and total antioxidant capacity (T-AOC) and lower MDA concentrations than those of the control group (P < 0.05). The relative gene expression (SOD, CAT, GPX) showed the same trend with their activities. In addition, the growth performance was significantly improved in fish fed with the diet containing 1 × 10 6 and 1 × 10 7  CFU g -1 L. delbrueckii (P < 0.05). These results demonstrated that dietary optimal levels of L. delbrueckii enhanced immunity, disease resistance against A. hydrophila antioxidant capability and growth performance in Cyprinus carpio Huanghe var. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Survival of Lactobacillus bulgaricus and Bifidobacterium animalis in yoghurts made from commercial starter cultures during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Eva Dudriková

    2017-01-01

    Full Text Available All over the world, fermented dairy products have been consumed for nutrition and maintenance of good health for a very long time. This study evaluated the survival of Lactobacillus delbrueckii ssp. bulgaricus and Bifidobacterium animalis ssp. lactis BB-12 in yoghurts after the manufacturing during the shelf-life up to 21 days at 4 °C, which is mostly accepted by the consumers. The titratable acidity and pH showed the same patterns of increase or decline after manufacturing and storage of yoghurts. There was a significant difference (p <0.05 in acidity between yoghurts in glass bottle and plastic cup. The increase in numbers of lactobacilli and bifidobacteria and their survival during storage time were dependent on the species and strain of associative yoghurt bacteria (control-only yoghurt lactic acid bacteria and experimental containing except yoghurt culture also Bifidobacterium animalis ssp. lactis BB-12 and on the packaging material (glass bottle versus plastic cup. It was observed, that counts of bifidobacteria were lower than counts of Lactobacillus delbrueckii ssp. bulgaricus (190 to 434 x 107 at 1d and slowly increased (p <0.001 at maximum level on day 7 (294.3 - 754 x 107 and then slowly declined to 6.33 x 107 in glass bottle and 2.33 x 107 in plastic cups, respectively. Lactobacillus delbrueckii ssp. bulgaricus multiplied better in glass bottles than in plastic cups, as observed during experimental period in-group with Bifidobacterium animalis ssp. lactis BB-12. At the end of the storage period at 4 ºC, viable counts of lactobacilli were higher (p <0.001 in glass bottles. Al the yoghurts, contained the recommended levels of lactobacilli and bifidobacteria (107 cfu.g-1 at the end of storage period (21 d. 

  2. Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts.

    Science.gov (United States)

    Ferreira, A B; De Oliveira, M N V; Freitas, F S; Alfenas-Zerbini, P; Da Silva, D F; De Queiroz, M V; Borges, A C; De Moraes, C A

    2013-12-01

    The ability to survive in harsh environments is an important criterion to select potential probiotics strains. The objective of this study was to identify and carry out phylogenetic and expression analysis by quantitative real-time PCR of the clpP, clpE, clpL and clpX genes in the probiotic strain Lactobacillus delbrueckii UFV H2b20 exposed to the conditions prevailing in the gastrointestinal tract (GIT). Phylogenetic trees reconstructed by Bayesian inference showed that the L. delbrueckii UFV H2b20 clpP, clpL and clpE genes and the ones from L. delbrueckii ATCC 11842 were grouped. The exposure of cells to MRS broth of pH 3.5 for 30 and 60 min resulted in an increased expression of the four genes. Exposure of the L. delbrueckii UFV H2b20 cells for 30 and 60 min to MRS broth containing 0.1% bile salts increased the expression of the clpP and clpE genes, while the expression level of the clpL and clpX genes increased only after 30 min of exposure. The involvement of the studied genes in the responses to acid stress and bile salts suggests a possible central role of these genes in the survival of L. delbrueckii UFV H2b20 during the passage through the GIT, a characteristic necessary for probiotic strains.

  3. Membrane Protein Production in Lactococcus lactis for Functional Studies.

    Science.gov (United States)

    Seigneurin-Berny, Daphne; King, Martin S; Sautron, Emiline; Moyet, Lucas; Catty, Patrice; André, François; Rolland, Norbert; Kunji, Edmund R S; Frelet-Barrand, Annie

    2016-01-01

    Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

  4. Plasmid-mediated UV-protection in Streptococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, M.C.; Rouault, A. (Institut National de la Recherche Agronomique, Rennes (France). Lab. de Recherches de Technologie Laitiere); Moillo-Batt, A. (Institut National de la Sante et de la Recherche Medicale (INSERM), Hopital de Pontchaillon, 35 - Rennes (France))

    1985-02-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by co-transfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci.

  5. Plasmid-mediated UV-protection in Streptococcus lactis

    International Nuclear Information System (INIS)

    Chopin, M.-C.; Rouault, A.

    1985-01-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by cotransfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci. (orig.)

  6. Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water

    Science.gov (United States)

    Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...

  7. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans.

    Science.gov (United States)

    Jacobsen, C N; Rosenfeldt Nielsen, V; Hayford, A E; Møller, P L; Michaelsen, K F; Paerregaard, A; Sandström, B; Tvede, M; Jakobsen, M

    1999-11-01

    The probiotic potential of 47 selected strains of Lactobacillus spp. was investigated. The strains were examined for resistance to pH 2.5 and 0.3% oxgall, adhesion to Caco-2 cells, and antimicrobial activities against enteric pathogenic bacteria in model systems. From the results obtained in vitro, five strains, Lactobacillus rhamnosus 19070-2, L. reuteri DSM 12246, L. rhamnosus LGG, L. delbrueckii subsp. lactis CHCC 2329, and L. casei subsp. alactus CHCC 3137, were selected for in vivo studies. The daily consumption by 12 healthy volunteers of two doses of 10(10) freeze-dried bacteria of the selected strains for 18 days was followed by a washout period of 17 days. Fecal samples were taken at days 0 and 18 and during the washout period at days 5 and 11. Lactobacillus isolates were initially identified by API 50CHL and internal transcribed spacer PCR, and their identities were confirmed by restriction enzyme analysis in combination with pulsed-field gel electrophoresis. Among the tested strains, L. rhamnosus 19070-2, L. reuteri DSM 12246, and L. rhamnosus LGG were identified most frequently in fecal samples; they were found in 10, 8, and 7 of the 12 samples tested during the intervention period, respectively, whereas reisolations were less frequent in the washout period. The bacteria were reisolated in concentrations from 10(5) to 10(8) cells/g of feces. Survival and reisolation of the bacteria in vivo appeared to be linked to pH tolerance, adhesion, and antimicrobial properties in vitro.

  8. Survival of Yogurt Bacteria in the Human Gut

    OpenAIRE

    Elli, Marina; Callegari, Maria Luisa; Ferrari, Susanna; Bessi, Elena; Cattivelli, Daniela; Soldi, Sara; Morelli, Lorenzo; Goupil Feuillerat, Nathalie; Antoine, Jean-Michel

    2006-01-01

    Whether Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus can be recovered after passage through the human gut was tested by feeding 20 healthy volunteers commercial yogurt. Yogurt bacteria were found in human feces, suggesting that they can survive transit in the gastrointestinal tract.

  9. From Streptococcus lactis to Lactococcus lactis: A qualitative and quantitative analysis of the scope of research undertaken around a microbial concept

    OpenAIRE

    Yann Demarigny; Virginie Soldat; Laetitia Gemelas

    2015-01-01

    The lactic acid bacterium Lactococcus lactis, formerly named Streptococcus lactis, has been known and used for many years, even before its re-affiliation in 1985. The number of published papers featuring one of the two names, either in the title or in the key words, currently stands at more than 2,900. From 1945 to 2014, a bibliometric analysis of the evolution of this bacterium allowed us to identify three phases we have called 1, the “exploratory period” (or the “US period” if we refer to t...

  10. Vaccination against Staphylococcus aureus experimental endocarditis using recombinant Lactococcus lactis expressing ClfA or FnbpA.

    Science.gov (United States)

    Veloso, Tiago Rafael; Mancini, Stefano; Giddey, Marlyse; Vouillamoz, Jacques; Que, Yok-Ai; Moreillon, Philippe; Entenza, José Manuel

    2015-07-09

    Staphylococcus aureus is a major cause of serious infections in humans and animals and a vaccine is becoming a necessity. Lactococcus lactis is a non-pathogenic bacterium that can be used as a vector for the delivery of antigens. We investigated the ability of non-living L. lactis heterologously expressing S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnbpA), alone or together, to elicit an immune response in rats and protect them from S. aureus experimental infective endocarditis (IE). L. lactis ClfA was used for immunization against S. aureus Newman (expressing ClfA but not FnbpA), while L. lactis ClfA, L. lactis FnbpA, as well as L. lactis ClfA/FnbpA, were used against S. aureus P8 (expressing ClfA and FnbpA). Vaccination of rats with L. lactis ClfA elicited antibodies that inhibited binding of S. aureus Newman to fibrinogen, triggered the production of IL-17A and conferred protection to 13/19 (68%) of the animals from IE (Plactis ClfA, L. lactis FnbpA or L. lactis ClfA/FnbpA also produced antibodies against the target proteins, but these did not prevent binding of S. aureus P8 to fibrinogen or fibronectin and did not protect animals against S. aureus P8 IE. Moreover, immunization with constructs containing FnbpA did not increase IL-17A production. These results indicate that L. lactis is a valuable antigen delivery system able to elicit efficient humoral and cellular responses. However, the most appropriate antigens affording protection against S. aureus IE are yet to be elucidated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Simultaneous lactic acidification and coagulation by using recombinant Lactococcus lactis strain.

    Science.gov (United States)

    Raftari, M; Ghafourian, S; Abu Bakar, F

    2017-04-01

    This study was an attempt to create a novel milk clotting procedure using a recombinant bacterium capable of milk coagulation. The Rhizomucor pusillus proteinase (RPP) gene was sub-cloned into a pALF expression vector. The recombinant pALF-RPP vector was then electro-transferred into Lactococcus lactis. Finally, the milk coagulation ability of recombinant L. lactis carrying a RPP gene was evaluated. Nucleotide sequencing of DNA insertion from the clone revealed that the RPP activity corresponded to an open reading frame consisting of 1218 bp coding for a 43·45 kDa RPP protein. The RPP protein assay results indicated that the highest RPP enzyme expression with 870 Soxhlet units (SU) per ml and 7914 SU/OD were obtained for cultures which were incubated at pH 5·5 and 30°C. Interestingly, milk coagulation was observed after 205 min of inoculating milk with recombinant L. lactis carrying the RPP gene. The recombinant L. lactis carrying RPP gene has the ability to function as a starter culture for acidifying and subsequently coagulating milk by producing RPP as a milk coagulant agent. Creating a recombinant starter culture bacterium that is able to coagulate milk. It is significant because the recombinant L. lactis has the ability to work as a starter culture and milk coagulation agent. © 2016 The Society for Applied Microbiology.

  12. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.

    Science.gov (United States)

    Shi, Weijia; Li, Yu; Gao, Xueling; Fu, Ruiyan

    2016-03-01

    The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148). Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5-6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5-6.5) was at pH 5.5. The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.

  13. Physicochemical and microbiological study of “shmen”, a traditional butter made from camel milk in the Sahara (Algeria: isolation and identification of lactic acid bacteria and yeasts

    Directory of Open Access Journals (Sweden)

    Mourad, Kacem

    2006-06-01

    Full Text Available Microorganisms (aerobic bacteria, coliforms, lactic acid bacteria, psychrotrophs, lipolytic bacteria and yeasts were isolated from 20 samples of shmen, a traditional clarified butter made from sour camel milk in the Algerian Sahara. The values of pH, titratable acidity, NaCl, total solid, moisture, and fat content ranged from : 3.11-4.97, 0.19-0.36%, 1.04-2.15%, 64.03-65.11%, 34.40-34.99%, and 49.90-56% respectively. A total of 181 isolates of lactic acid bacteria were identified as Lactobacillus plantarum (40 strains, Lactobacillus delbrueckii ssp. bulgaricus (35 strains, Lactococcus lactis ssp. lactis biovar diacetylacti (22 strains, Lactococcus lactis ssp. cremoris (18 strains, Lactobacillus paracasei ssp. paracasei (10 strains, Leuconostoc pseudomesenteroides (9 strains and Leuconostoc gelidum (12 strains Enterococcus faecium (35 strains. Yeasts were isolated from all samples (55 isolates. Of these, 40 were identified as Saccharomyces cerevisiae and 15 isolates were identified as Saccharomyces sp.Se aislaron los microorganismos (bacterias aeróbicas, coliformes, bacterias acido lácticas, bacterias lipolíticas y levaduras de 20 muestras de “shmen”, una matequilla tradicional del Sahara argelino hecha a partir de leche de camella. Los valores de pH, acidez, libre, Nacl, solidos totales, humedad y grasa oscilaron entre 3,11-4,97, 0,19-0,36%, 1.04-2,15%, 64,03-65,11%, 34,40-34,99% y 49,90-56,00%, respectivamente. Entre los 181 cultivos puros de bacterias lácticas se identificaron Lactobacillus plantarum (40 cepas, Lactobacillus delbrueckii ssp. bulgaricus (35 cepas, Lactococcus lactis ssp. lactis biovar diacetylacti (22 cepas, Lactococcus lactis ssp. cremoris (18 cepas, Lactobacillus paracasei ssp. paracasei (10 cepas, Leuconostoc pseudomesenteroides (9 cepas and Leuconostoc gelidum (12cepas Enterococcus faecium (35 cepas. Asimismo, se detectaron levaduras en todas las muestras (55 cultivos puros. De estos, 40 se identificaron como

  14. Effect of using different probiotic cultures on properties of Torba (strained yoghurt

    Directory of Open Access Journals (Sweden)

    Harun Kesenkaş

    2010-03-01

    Full Text Available The viability of Lactobacillus casei LAFTI® L26, Bifidobacterium animalis subsp. lactis LAFTI® B94 and Lactobacillus acidophilus LAFTI® L10, their proteolytic activities and effects on chemical, textural and sensory properties of Torba yoghurts were assessed during 14 days of storage at 4 °C. These probiotic cultures were separately added after the fermentation of milk with yoghurt culture but prior to packaging of the product. Probiotic bacteria reached the recommended level of 6 log cfu/g in Torba yoghurt except B. animalis subsp. lactis B94. The addition of probiotic bacteria resulted in an appreciable proteolytic activity but also textural defects due to the lower total solid content in the final product.

  15. Analysis of the lactic acid bacteria microflora in traditional Caucasus cow's milk cheeses

    Directory of Open Access Journals (Sweden)

    Terzić-Vidojević Amarela

    2009-01-01

    Full Text Available A total of 157 lactic acid bacteria (LAB were isolated from three hand-made cheeses taken from different households in the region of the Caucasus Mountains. The cheeses were manufactured from cow's milk without the addition of a starter culture. The isolates of LAB were characterized by subjecting them to phenotypic and genotypic tests. The results of identification of LAB indicate that the examined cheeses contained 10 species, viz., Lactobacillus plantarum, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus farciminis, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. mesenteroides, Leuconostoc pseudomesenteroides, Enterococcus faecium, and Enterococcus faecalis. The strains within the species L. plantarum, L. arizonensis, L. paraplantarum, L. farciminis, and L. pseudomesenteroides showed good proteolytic activity.

  16. Monoassociation with probiotic Lactobacillus delbrueckii UFV-H2b20 stimulates the immune system and protects germfree mice against Listeria monocytogenes infection.

    Science.gov (United States)

    dos Santos, Liliane Martins; Santos, Mônica Morais; de Souza Silva, Humberto Pereira; Arantes, Rosa Maria Esteves; Nicoli, Jacques Robert; Vieira, Leda Quercia

    2011-02-01

    In the present study, we investigated the protective effects of Lactobacillus delbrueckii UFV-H2b20 on the resistance to Listeria monocytogenes infection in gnotobiotic mice. Germfree mice or monoassociated mice were infected with L. monocytogenes, and the microbiological and immunological responses were evaluated after 1, 3, and 5 days of infection. Monoassociation with L. delbrueckii was capable of protecting mice against death caused by L. monocytogenes and induced a faster clearance of the bacteria in the liver, spleen, and peritoneal cavity at days 1, 3, and 5 post-infection. Also, monoassociated mice displayed less liver injury than germfree mice. The production of TNF-α in the serum, peritoneal cavity, and gut was augmented in monoassociated mice. Likewise, the levels of IFN-γ found on supernatants of spleen cells cultures were higher after the monoassociation. In addition, increased production of nitric oxide in peritoneal cell cultures supernatants and in serum was observed in mice that received L. delbrueckii. The monoassociation with L. delbrueckii induced higher production of IL-10 in the mucosal immune system. We conclude that monoassociation with L. delbrueckii UFV-H2b20 protects mice from death caused by L. monocytogenes infection by favoring effector responses while preventing their immunopathological consequences.

  17. Demonstration of Mycoplasma capricolum subsp capripneumoniae and Mycoplasma mycoides subsp mycoides, small colony type in outbreaks of caprine pleuropneumonia in eastern Tanzania

    DEFF Research Database (Denmark)

    Kusiluka, L.J.M.; Semuguruka, W.D.; Kazwala, R.R.

    2000-01-01

    by different degrees of vasculitis, and fibrinocellular exudation into the alveolar septae and lumina, and into interlobular septae and pleura. Mycoplasma capricolum subsp. capripneumoniae, Mycoplasma mycoides subsp. mycoides, Small Colony type Mycoplasma ovipneumoniae and Mycoplasma arginini were isolated...... from some of the examined goats including a case with a sequestrum which yielded Mycoplasma mycoides subsp. mycoides, Small Colony type. This work reports the first description of an outbreak of caprine pleuropneumonia in Tanzania in which M. capripneumoniae and M. mycoides subsp. mycoides, Small...

  18. Expression of Helicobacter pylori hspA Gene in Lactococcus lactis NICE System and Experimental Study on Its Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Zhang

    2015-01-01

    Full Text Available Aim. The aim of this study was to develop an oral Lactococcus lactis (L. lactis vaccine against Helicobacter pylori (H. pylori. Methods. After L. lactis NZ3900/pNZ8110-hspA was constructed, growth curves were plotted to study whether the growth of recombinant L. lactis was affected after hspA was cloned into L. lactis and whether the growth of empty bacteria, empty plasmid bacteria, and recombinant L. lactis was affected by different concentrations of Nisin; SDS-PAGE and Western blot were adopted, respectively, to detect the HspA expressed by recombinant L. lactis and its immunoreactivity. Results. There was no effect observed from the growth curve after exogenous gene hspA was cloned into L. lactis NZ3900; different concentrations of Nisin did not affect the growth of NZ3900 and NZ3900/pNZ8110, while different concentrations of Nisin inhibited the growth of NZ3900/pNZ8110-hspA except 10 ng/mL Nisin. No HspA strip was observed from SDS-PAGE. Western blot analysis showed that HspA expressed by recombinant bacteria had favorable immunoreactivity. Conclusion. The growth of recombinant L. lactis was suppressed even though a small amount of HspA had been induced to express. Therefore recombinant L. lactis only express HspA which was not suitable to be oral vaccine against Helicobacter pylori.

  19. Author Details

    African Journals Online (AJOL)

    Eco-friendly synthesis of silver nanoparticles using Lactobacillus delbrueckii subsp. bulgaricus isolated from kindrimo (locally fermented milk) in Kano State, Nigeria Abstract PDF · Vol 10, No 1 (2017): Special Conference Edition - Articles Microbiological evaluation of shelflife indices of fermented African locust bean cake ...

  20. Survival of Yogurt Bacteria in the Human Gut

    Science.gov (United States)

    Elli, Marina; Callegari, Maria Luisa; Ferrari, Susanna; Bessi, Elena; Cattivelli, Daniela; Soldi, Sara; Morelli, Lorenzo; Goupil Feuillerat, Nathalie; Antoine, Jean-Michel

    2006-01-01

    Whether Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus can be recovered after passage through the human gut was tested by feeding 20 healthy volunteers commercial yogurt. Yogurt bacteria were found in human feces, suggesting that they can survive transit in the gastrointestinal tract. PMID:16820518

  1. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability

    International Nuclear Information System (INIS)

    Chopin, M.C.; Chopin, A.; Rouault, A.; Simon, D.

    1986-01-01

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains

  2. A novel non-dairy beverage from durian pulp fermented with selected probiotics and yeast.

    Science.gov (United States)

    Lu, Yuyun; Putra, Satya Dwi; Liu, Shao-Quan

    2018-01-16

    This study investigated the effects of sequential inoculation (Seq-I) of Bifidobacterium animalis subsp. lactis or Lactobacillus casei with yeast Williopsis saturnus on durian pulp fermentation. Seq-I of W. saturnus following B. animalis subsp. lactis did not bring about any significant differences compared to the B. animalis subsp. lactis monoculture due to the sharp early death of W. saturnus soon after inoculation. However, Seq-I of W. saturnus significantly enhanced the survival of L. casei and improved the utilization of fructose and glucose compared to L. casei monoculture. In addition, there were significant differences in the metabolism of organic acids especially for lactic acid and succinic acid. Furthermore, Seq-I produced significantly higher levels of volatile compounds including alcohols (ethanol and 2-phenylethyl alcohol) and acetate esters (2-phenylethyl acetate, isoamyl acetate and ethyl acetate), which would positively contribute to the flavour notes. Although the initial volatile sulphur compounds were reduced to trace levels after fermentation, but the durian odour still remained. This study suggests that the use of probiotics and W. saturnus to ferment durian pulp could act as a potential avenue to develop a novel non-dairy durian-based functional beverage to deliver probiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The use of bacconcentrate Herobacterin in brine cheese technology

    Directory of Open Access Journals (Sweden)

    I. Slyvka:

    2017-12-01

    Full Text Available In the article a comparative analysis of the use of the bacterial preparation Herobacterin and the starter RSF-742 (Chr. Hansen, Denmark in the technology of brine cheese was conducted. Herobacterin is a bacterial preparation created using bacteria Lactococcus lactis, Lactobacillus plantarum, Enterococcus faecium, Leuconostoc mesenteroides and Lactococcus garvieae, isolated from traditional Carpathian brine cheese brynza and identified using classical microbiological and modern molecular genetic methods (RAPD-PCR, RFLP-PCR, sequencing of the 16S rRNA gene. The results of investigations of organoleptic, physico-chemical, syneretical and microbiological parameters of cheese brynza with use of preparation Herobacterin are presented in comparison with the starter RSF-742, which includes cultures: Lactococcus lactis subsp. сremoris, Lactococcus lactis subsp. lactis, Streptococcus thermophilus, Lactobacillus helveticus. The use of Herobacterin has a positive effect on organoleptic, physico-chemical and microbiological parameters, all parameters complied with the requirements of DSTU 7065:2009. The level of survival of lactic acid bacteria in brynza during maturation and storage is high, which confirms the correctness of the selection of strains to preparation Herobakterin, which demonstrated good adaptability to the composition and properties of ewe's milk.

  4. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  5. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport

    NARCIS (Netherlands)

    Brooijmans, R. J. W.; Poolman, B.; Schuurman-Wolters, G. K.; de Vos, W. M.; Hugenholtz, J.

    Lactococcus lactis, a facultative anaerobic lactic acid bacterium, is known to have an increased growth yield when grown aerobically in the presence of heme. We have now established the presence of a functional, proton motive force-generating electron transfer chain (ETC) in L. lactis under these

  6. Elucidating Flux Regulation of the Fermentation Modes of Lactococcus lactis:A Mutlilevel Study

    OpenAIRE

    Chan, Siu Hung Joshua; Solem, Christian; Jensen, Peter Ruhdal

    2014-01-01

    De mange års anvendelse af mælkesyrebakterien Lactococcus lactis (L. lactis) indenfor mejeriindustrien, har været medvirkende til at L. lactis er blevet en af de mest velkarakteriserede bakterier. Denne Gram positive bakterie, som har et lavt GC indhold, har en relativt simpel metabolisme og er let at modificere genetisk. Dette har gjort den til et attraktivt mål for ”metabolic engineering”, bl.a. med henblik på produktion af non-food relaterede kemikalier. Derudover har den status som den fø...

  7. Lactococcus lactis KR-050L inhibit IL-6/STAT3 activation.

    Science.gov (United States)

    Hwang, J T; Jang, H-J; Kim, J H; Park, C S; Kim, Y; Lim, C-H; Lee, S W; Rho, M-C

    2017-05-01

    The purpose of this study was to investigate IL-6/STAT3 inhibitory activity using lactic acid bacteria (LABs) isolated from Gajuknamu kimchi. Six LABs were isolated from Gajuknamu kimchi and identified through 16S rRNA sequencing. Among them, the culture broth of Lactococcus lactis KR-050L inhibited IL-6-induced STAT3 luciferase activity. Fifteen compounds were isolated from the EtOAc extract of culture broth though column chromatography and preparative high-performance liquid chromatography, and they were identified as 2,5-diketopipperazine structures by spectroscopic analyses (MS, 1 H- and 13 C-NMR). They also showed inhibitory activities on IL-6-induced STAT3 activation, and showed the different in activity according to the presence of a phenylalanine residue, hydroxyl groups and isometric structure. The six new LABs isolated from Gajuknamu kimchi, and Lc. lactis KR-050L was selected as candidate IL-6/STAT3 inhibitors. The activity levels of 15 2,5-DKPs isolated from Lc. lactis KR-050L were verified. This study constitutes the first attempt to isolate various LABs from Gajuknamu kimchi and to discover IL-6/STAT3 inhibitors in the EtOAc extract of Lc. lactis KR-050L culture broth. Moreover, our data provide useful biochemical information regarding the commercialization of Lc. lactis isolated from Gajuknamu kimchi as an approach to use functional foods for the treatment of various diseases via IL-6/STAT3 activation. © 2017 The Society for Applied Microbiology.

  8. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains.

    Science.gov (United States)

    Hernandez-Lopez, M J; Prieto, J A; Randez-Gil, F

    2003-01-01

    The response of Saccharomyces cerevisiae and freeze-tolerant Torulaspora delbrueckii strains to osmotic stress and their CO2 production capacity in sweet and frozen-sweet dough has been examined. T. delbrueckii strains, IGC5321 and IGC5323 showed higher leavening ability than Saccharomyces, specially after exposure to hyperosmotic stress of bread dough containing 20% sucrose and 2% salt added. In addition, Torulaspora and especially T. delbrueckii IGC5321 exhibited no loss of CO2 production capacity during freeze-thaw stress. Overall, these results appeared to indicate that Torulaspora cells are more tolerant than Saccharomyces to osmotic stress of bread dough. This trait correlated with a low invertase activity, a slow rate of trehalose mobilisation and the ability to respond rapidly to osmotic stress. Growth behaviour on high osmotic synthetic media was also examined. Cells of the IGC5321 strain showed intrinsic osmotolerance and ion toxicity resistance. However, T. delbrueckii IGC5323 exhibited a clear phenotype of osmosensitivity. Hence, this characteristic may not be essential or the only determinant for leavening ability in salted high-sugar dough.

  9. Generation of Dipeptidyl Peptidase-IV-Inhibiting Peptides from β-Lactoglobulin Secreted by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Suguru Shigemori

    2014-01-01

    Full Text Available Previous studies showed that hydrolysates of β-lactoglobulin (BLG prepared using gastrointestinal proteases strongly inhibit dipeptidyl peptidase-IV (DPP-IV activity in vitro. In this study, we developed a BLG-secreting Lactococcus lactis strain as a delivery vehicle and in situ expression system. Interestingly, trypsin-digested recombinant BLG from L. lactis inhibited DPP-IV activity, suggesting that BLG-secreting L. lactis may be useful in the treatment of type 2 diabetes mellitus.

  10. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    OpenAIRE

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helvetic...

  11. The inhibitory activity of Lactic acid bacteria isolated from fresh cow cheese

    Directory of Open Access Journals (Sweden)

    Nevijo Zdolec

    2007-04-01

    Full Text Available Lactic acid bacteria are the constituent part of milk microbial flora that could influence the safety of dairy products due production of organic acids, hydrogen peroxide, carbon dioxide and bacteriocins. Taking this in consideration, the objective of this study was to investigate the composition of lactic acid bacteria population in fresh cow cheeses taken from local markets, as well as their antimicrobial capacity. Lactic acid bacteria counts were determined according to ISO 1524:1998 method, biochemical determination using API 50 CHL system, and inhibitory activity against L. monocytogenes NCTC 10527 by agar well diffusion assay. Lactic acid bacteria count in fresh cow cheeses (n=10 ranged from 5.87 to 8.38 log10 CFU g-1. Among 52 MRS isolates collected, 61.54 % were assigned to the Lactococcus lactis subsp. Lactis species, 23.07 % Lactobacillus helveticus, 11.54 % Leuconostoc mesenteroides subsp. cremoris and 3.85 % Leuconostoc mesenteroides subsp. mesenteroides. Antilisterial activity was found in 18 isolates.

  12. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2014-06-01

    Full Text Available The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

  13. [The humoral immune response in mice induced by recombinant Lactococcus lactis expressing HIV-1 gag].

    Science.gov (United States)

    Zhao, Xiaofei; Zhang, Cairong; Liu, Xiaojuan; Ma, Zhenghai

    2014-11-01

    To analyze the humoral immune response induced by recombinant Lactococcus lactis expressing HIV-1 gag in mice immunized orally, intranasally, subcutaneously or in the combined way of above three. Fifty BALB/c mice were randomly divided into 5 groups, 10 mice per group. The mice were immunized consecutively three times at two week intervals with 10(9) CFU of recombinant Lactococcus lactis expressing gag through oral, intranasal, subcutaneous administration or the mix of them. The mice that were immunized orally with Lactococcus lactis containing PMG36e served as a control group. The sera of mice were collected before primary immunization and 2 weeks after each immunization to detect the gag specific IgG by ELISA. Compared with the control group, the higher titer of serum gag specific IgG was detected in the four groups immunized with recombinant Lactococcus lactis expressing gag, and it was the highest in the mixed immunization group (PLactococcus lactis expressing gag can induce humoral immune response in mice by oral, intranasal, subcutaneous injection or the mix of them, and the mixed immunization can enhance the immune effects of Lactococcus lactis vector vaccine.

  14. Function and safety assessment of Lactococus lactis subsp. lactis ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... important to develop new ways of reducing serum ... times prior to use in present study. ... Ltd.(China); Kit ... added to the media in order to mimic conditions that would be ...... John Wiley & Sons, New York, NY, USA; pp.

  15. Function and safety assessment of Lactococus lactis subsp. lactis ...

    African Journals Online (AJOL)

    the characterizations of the strain, such as acid-tolerance, bile-tolerance, antimicrobial activity, antibiotic sensitivity and safety were also examined. The serum total cholesterol, triglyceride and bile acid levels significantly decreased of mice given a high-cholesterol diet supplemented with yogurt fermented by Lactococus ...

  16. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice

    Directory of Open Access Journals (Sweden)

    Portugal L.R.

    2006-01-01

    Full Text Available Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Several studies have reported a decrease in serum cholesterol during the consumption of large doses of fermented dairy products or lactobacillus strains. The proposed mechanism for this effect is the removal or assimilation of intestinal cholesterol by the bacteria, reducing cholesterol absorption. Although this effect was demonstrated in vitro, its relevance in vivo is still controversial. Furthermore, few studies have investigated the role of lactobacilli in atherogenesis. The aim of the present study was to determine the effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and the possible hypocholesterolemic and antiatherogenic action of these bacteria using atherosclerosis-prone apolipoprotein E (apo E knock-out (KO mice. For this purpose, Swiss/NIH germ-free mice were monoassociated with L. delbrueckii and fed a hypercholesterolemic diet for four weeks. In addition, apo E KO mice were fed a normal chow diet and treated with L. delbrueckii for 6 weeks. There was a reduction in cholesterol excretion in germ-free mice, which was not associated with changes in blood or liver cholesterol concentration. In apo E KO mice, no effect of L. delbrueckii was detected in blood, liver or fecal cholesterol. The atherosclerotic lesion in the aorta was also similar in mice receiving or not these bacteria. In conclusion, these results suggest that, although L. delbrueckii treatment was able to reduce cholesterol excretion in germ-free mice, no hypocholesterolemic or antiatherogenic effect was observed in apo E KO mice.

  17. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    Science.gov (United States)

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  18. Experimental determination of control of glycolysis in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Andersen, Heidi Winterberg; Solem, Christian

    2002-01-01

    ), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK) and lactate dehydrogenase (LDH) are shown to have no significant control on the glycolytic flux in exponentially growing cells of L. lactis MG1363. Introduction of an uncoupled ATPase activity results in uncoupling of glycolysis from biomass...... production. With MG1363 growing in defined medium supplemented with glucose, the ATP demanding processes do not have a significant control on the glycolytic flux; it appears that glycolysis is running at maximal rate. It is likely that the flux control is distributed over many enzymes in L. lactis...

  19. The prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells

    Directory of Open Access Journals (Sweden)

    YOUSEF eNAMI

    2015-11-01

    Full Text Available Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, AGS, HT-29, and MCF-7. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.

  20. Lactobacillus delbrueckii UFV-H2b20 induces type 1 cytokine production by mouse cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    E. Neumann

    2009-04-01

    Full Text Available Lactobacillus delbrueckii UFV-H2b20 has been shown to increase clearance of bacteria injected into the blood of germ-free mice. Moreover, it induces the production of type 1 cytokines by human peripheral mononuclear cells. The objective of the present study was to investigate the production of inflammatory cytokines [interleukin-12 (IL-12 p40, tumor necrosis factor-α (TNF-α, and interferon-γ (IFN-γ] triggered in vitro by live, heat-killed or lysozyme-treated L. delbrueckii UFV-H2b20 and in vivo by a live preparation. Germ-free, L. delbrueckii-monoassociated and lipopolysaccharide (LPS-resistant C3H/HeJ mice were used as experimental models. UFV-H2b20 induced the production of IL-12 p40 and TNF-α by peritoneal cells and IFN-γ by spleen cells from germ-free or monoassociated Swiss/NIH mice and LPS-hyporesponsive mice (around 40 ng/mL for IL-12 p40, 200 pg/mL for TNF-α and 10 ng/mL for IFN-γ. Heat treatment of L. delbrueckii did not affect the production of these cytokines. Lysozyme treatment decreased IL-12 p40 production by peritoneal cells from C3H/HeJ mice, but did not affect TNF-α production by these cells or IFN-γ production by spleen cells from the same mouse strain. TNF-α production by peritoneal cells from Swiss/NIH L. delbrueckii-monoassociated mice was inhibited by lysozyme treatment. When testing IL-12 p40 and IFN-γ levels in sera from germ-free or monoassociated Swiss/NIH mice systemically challenged with Escherichia coli we observed that IL-12 p40 was produced at marginally higher levels by monoassociated mice than by germ-free mice (40 vs 60 ng/mL, but IFN-γ was produced earlier and at higher levels by monoassociated mice (monoassociated 4 and 14 ng/mL 4 and 8 h after infection, germfree 0 and 7.5 ng/mL at the same times. These results show that L. delbrueckii UFV-H2b20 stimulates the production of type 1 cytokines in vitro and in vivo, therefore suggesting that L. delbrueckii might have adjuvant properties in infection

  1. Cell wall anchoring of the Campylobacter antigens to Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Patrycja Anna Kobierecka

    2016-02-01

    Full Text Available Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type Campylobacter jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analysed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ LAB (Lactic Acid Bacteria strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered

  2. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    International Nuclear Information System (INIS)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-01-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [ 14 C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31 P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM

  3. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-04-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.

  4. Determinação da compatibilidade de desenvolvimento de culturas bacteriocinogênicas e fermento láctico Determination of the growth compatibility between bacteriocinogenic and starter cultures

    Directory of Open Access Journals (Sweden)

    Maristela da Silva do Nascimento

    2009-03-01

    Full Text Available Além da utilização como bioconservantes de alimentos, algumas culturas bacteriocinogênicas estão sendo empregadas para acelerar a maturação de queijos. Porém a compatibilidade de desenvolvimento destas culturas com o fermento láctico é essencial para a obtenção de produtos característicos. O objetivo deste estudo foi avaliar a compatibilidade de desenvolvimento de Lactococcus lactis subsp. lactis ATCC 11454, Lactobacillus plantarum ALC 01 e Enterococcus faecium FAIR-E 198 com duas marcas comerciais de fermentos lácticos. Inicialmente, foi determinada a sensibilidade in vitro dos fermentos às culturas bacteriocinogênicas, somente Lc. lactis subsp. lactis ATCC 11454 foi capaz de promover a inibição de ambos os fermentos. Durante desenvolvimento associativo em leite a 35 ºC, as culturas bacteriocinogênicas não afetaram significativamente a produção de ácido láctico pelos fermentos. Estes, por sua vez proporcionaram aumento significativo da atividade de pediocina AcH e enterocina FAIR-E 198 e supressão da atividade da nisina. Dentre todas as culturas lácticas, Lb. plantarum ALC 01 apresentou a maior atividade de aminopeptidases (0,226 a 0,390. Portanto, baseado nos resultados em questão, Lb. plantarum ALC 01 e E. faecium FAIR-E 198 apresentam características de compatibilidade de desenvolvimento com o fermento mesofílico tipo O para serem empregadas como adjuntas no processamento de queijos.In addition to being used as food bioconservants, some bacteriocinogenic cultures have been employed to accelerate cheese ripening. However, the compatibility between their growth and starter cultures is essential to obtain the characteristic products. The purpose of this study was to evaluate the growth compatibility between Lactococcus lactis subsp. lactis ATCC 11454, Lactobacillus plantarum ALC 01, and Enterococcus faecium FAIR-E 198 and two commercial starter cultures. Initially, the sensibility in vitro of the starter to

  5. A counterselection method for Lactococcus lactis genome editing based on class IIa bacteriocin sensitivity.

    Science.gov (United States)

    Wan, Xing; Usvalampi, Anne M; Saris, Per E J; Takala, Timo M

    2016-11-01

    In this paper, we present a new counterselection method for deleting fragments from Lactococcus lactis chromosome. The method uses a non-replicating plasmid vector, which integrates into the chromosome and makes the cell sensitive to bacteriocins. The integration vector carries pUC ori functional in Escherichia coli but not in L. lactis, an erythromycin resistance gene for selecting single crossover integrants, and two fragments from L. lactis chromosome for homologous recombinations. In addition, the integration vector is equipped with the Listeria monocytogenes gene mptC encoding the mannose-phosphotransferase system component IIC, the receptor for class IIa bacteriocins. Expression of mptC from the integration vector renders the naturally resistant L. lactis sensitive to class IIa bacteriocins. This sensitivity is then used to select the double crossover colonies on bacteriocin agar. Only the cells which have regained the endogenous bacteriocin resistance through the loss of the mptC plasmid will survive. The colonies carrying the desired deletion can then be distinguished from the wild-type revertants by PCR. By using the class IIa bacteriocins leucocin A, leucocin C or pediocin AcH as the counterselective agents, we deleted 22- and 33-kb chromosomal fragments from the wild-type nisin producing L. lactis strain N8. In conclusion, this counterselection method presented here is a convenient, efficient and inexpensive technique to generate successive deletions in L. lactis chromosome.

  6. Survival of Lactobacillus delbrueckii UFV H2b20 in fermented milk under simulated gastric and intestinal conditions.

    Science.gov (United States)

    da Conceição, L L; Leandro, E S; Freitas, F S; de Oliveira, M N V; Ferreira-Machado, A B; Borges, A C; de Moraes, C A

    2013-09-01

    The survival of Lactobacillus delbrueckii UFV H2b20 was assessed in fermented milk, both during the storage period and after exposure to simulated gastric and intestinal juices, as well the detection of the gene fbpA involved in adherence to human gastrointestinal tract. L. delbrueckii UFV H2b20 remained stable and viable for 28 days under refrigerated storage conditions. After one day of storage, that strain exhibited a one-log population reduction following exposure in tandem to simulated gastric and intestinal juices. After 14 days of storage, a two-log reduction was observed following 90 min of exposure to the simulated gastric conditions. However, the strain did not survive following exposure to the simulated intestinal juice. The observed tolerance to storage conditions and resistance to the simulated gastric and intestinal conditions confirm the potential use of L. delbrueckii UFV H2b20 as a probiotic, which is further reinforced by the detection of fbpA in this strain.

  7. Hemin reconstitutes proton extrusion in an H+-ATPase-negative mutant of Lactococcus lactis

    DEFF Research Database (Denmark)

    Blank, L.M.; Købmann, Brian Jensen; Michelsen, Ole

    2001-01-01

    H+-ATPase is considered essential for growth of Lactococcus lactis. However, media containing hemin restored the aerobic growth of an H+-ATPase-negative mutant, suggesting that hemin complements proton extrusion. We show that inverted membrane vesicles prepared from hemin-grown L. lactis cells...

  8. Elucidating Flux Regulation of the Fermentation Modes of Lactococcus lactis

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua

    an important subject for basic research in cellular metabolism because L. lactis exhibits an interesting metabolic shift. Under anaerobic conditions, on fast fermentable sugars, L. lactis produces lactate as the primary product, known as homolactic fermentation but on slowly fermentable sugars, significant...... amounts of formate, acetate and ethanol are formed, known as mixed-acid fermentation. This shift is termed the mixedacid shift. This type of shift between a low-yield and a high-yield metabolism has drawn a lot of research focus and has similarly been observed in other bacteria, yeast and even tumor cells....... Efforts have been put to find out the mechanism regulating the mixed-acid shift as well as to answer questions such as why L. lactis prefers such a switch. Until now, some pieces of evidence have been reported and several factors and models have been proposed as the keys to regulating the shift, including...

  9. Production of Recombinant Peanut Allergen Ara h 2 using Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Frøkiær Hanne

    2007-08-01

    Full Text Available Abstract Background Natural allergen sources can supply large quantities of authentic allergen mixtures for use as immunotherapeutics. However, such extracts are complex, difficult to define, vary from batch to batch, which may lead to unpredictable efficacy and/or unacceptable levels of side effects. The use of recombinant expression systems for allergen production can alleviate some of these issues. Several allergens have been tested in high-level expression systems and in most cases show immunereactivity comparable to their natural counterparts. The gram positive lactic acid bacterium Lactococcus lactis is an attractive microorganism for use in the production of protein therapeutics. L. lactis is considered food grade, free of endotoxins, and is able to secrete the heterologous product together with few other native proteins. Hypersensitivity to peanut represents a serious allergic problem. Some of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis. Results A synthetic ara h 2 gene was cloned into an L. lactis expression plasmid containing the P170 promoter and the SP310mut2 signal sequence. Flask cultures grown overnight showed secretion of the 17 kDa Ara h 2 protein. A batch fermentation resulted in 40 mg/L recombinant Ara h 2. Purification of Ara h 2 from the culture supernatant was done by hydrophobic exclusion and size separation. Mass spectrometry and N-terminal analysis showed a recombinant Ara h 2 of full length and correctly processed by the signal peptidase. The immunological activity of recombinant Ara h 2 was analysed by ELISA using antibodies specific for native Ara h 2. The recombinant Ara h 2 showed comparable immunereactivity to that of native Ara h 2. Conclusion Recombinant production of Ara h 2 using L. lactis can offer high yields

  10. Environmental stress responses in Lactococcus lactis

    NARCIS (Netherlands)

    Sanders, JW; Venema, G; Kok, J

    Bacteria can encounter a variety of physical conditions during their life, Bacterial cells are able to survive these (often adverse) conditions by the induction of specific or general protection mechanisms. The lactic acid bacterium Lactococcus lactis is widely used for the production of cheese.

  11. Description of Mycobacterium chelonae subsp. bovis subsp. nov., isolated from cattle (Bos taurus coreanae), emended description of Mycobacterium chelonae and creation of Mycobacterium chelonae subsp. chelonae subsp. nov.

    Science.gov (United States)

    Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Jeon, Che Ok; Jeong, Joseph; Lee, Seon Ho; Lim, Ji-Hun; Lee, Seung-Heon; Kim, Chang Ki; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-10-01

    Three rapidly growing mycobacterial strains, QIA-37 T , QIA-40 and QIA-41, were isolated from the lymph nodes of three separate Korean native cattle, Hanwoo (Bos taurus coreanae). These strains were previously shown to be phylogenetically distinct but closely related to Mycobacterium chelonae ATCC 35752 T by taxonomic approaches targeting three genes (16S rRNA, hsp6 and rpoB) and were further characterized using a polyphasic approach in this study. The 16S rRNA gene sequences of all three strains showed 99.7 % sequence similarity with that of the M. chelonae type strain. A multilocus sequence typing analysis targeting 10 housekeeping genes, including hsp65 and rpoB, revealed a phylogenetic cluster of these strains with M. chelonae. DNA-DNA hybridization values of 78.2 % between QIA-37 T and M. chelonae indicated that it belongs to M. chelonae but is a novel subspecies distinct from M. chelonae. Phylogenetic analysis based on whole-genome sequences revealed a 95.44±0.06 % average nucleotide identity (ANI) value with M. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, distinct phenotypic characteristics such as positive growth at 37 °C, at which temperature M. chelonae does not grow, further support the taxonomic status of these strains as representatives of a novel subspecies of M. chelonae. Therefore, we propose an emended description of Mycobacterium chelonae, and descriptions of M. chelonae subsp. chelonae subsp. nov. and M. chelonae subsp. bovis subsp. nov. are presented; strains ATCC 35752 T (=CCUG 47445 T =CIP 104535 T =DSM 43804 T =JCM 6388 T =NCTC 946 T ) and QIA-37 T (=KCTC 39630 T =JCM 30986 T ) are the type strains of the two novel subspecies.

  12. Controlles modulation of folate polyglutamyl tail length by metabolic engineering of Lactococcus lactis

    NARCIS (Netherlands)

    Sybesma, W.F.H.; Born, van den E.; Starrenburg, M.; Mierau, I.; Kleerebezem, M.; Vos, de W.M.; Hugenholtz, J.

    2003-01-01

    The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates >90% of the produced folate intracellularly, predominantly in the polyglutamyl form. Approximately 10% of the produced folate is released into the environment. Overexpression of folC in L. lactis led to an

  13. [Design of primers to DNA of lactic acid bacteria].

    Science.gov (United States)

    Lashchevskiĭ, V V; Kovalenko, N K

    2003-01-01

    Primers LP1-LP2 to the gene 16S rRNA have been developed, which permit to differentiate lactic acid bacteria: Lactobacillus plantarum, L. delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus. The strain-specific and species-specific differentiations are possible under different annealing temperature. Additional fragments, which are synthesized outside the framework of gene 16S rRNA reading, provide for the strain-specific type of differentiation, and the fragment F864 read in the gene 16S rRNA permits identifying L. plantarum.

  14. The proteolytic system of Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, Edmundus Richardus Stephanus

    1997-01-01

    The bacterium Lactococcus lactis usues an extencive proteolytic system to utilize milk proteins (caseins) in orde to meet its need for amino acids. The genetic and biochemical properties of the putative components of the proteolytic pathway are well-described. However, little is known about the role

  15. Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH.

    Science.gov (United States)

    Lyu, Yunbin; LaPointe, Gisèle; Zhong, Lei; Lu, Jing; Zhang, Chong; Lu, Zhaoxin

    2018-02-01

    Aldehyde dehydrogenase (E.C. 1.2.1.x) can catalyze detoxification of acetaldehydes. A novel acetaldehyde dehydrogenase (istALDH) from the non-Saccharomyces yeast Issatchenkia terricola strain XJ-2 has been previously characterized. In this work, Lactococcus lactis with the NIsin Controlled Expression (NICE) System was applied to express the aldehyde dehydrogenase gene (istALDH) in order to catalyze oxidation of acetaldehyde at low pH. A recombinant L. lactis NZ3900 was obtained and applied for the detoxification of acetaldehyde as whole-cell biocatalysts. The activity of IstALDH in L. lactis NZ3900 (pNZ8148-istALDH) reached 36.4 U mL -1 when the recombinant cells were induced with 50 ng mL -1 nisin at 20 °C for 2 h. The IstALDH activity of recombinant L. lactis cells showed higher stability at 37 °C and pH 4.0 compared with the crude enzyme. L. lactis NZ3900 (pNZ8148-istALDH) could convert acetaldehyde at pH 2.0 while the crude enzyme could not. Moreover, the resting cells of L. lactis NZ3900 (pNZ8148-istALDH) showed a 2.5-fold higher activity and better stability in catalyzing oxidation of acetaldehyde at pH 2.0 compared with that of Escherichia coli expressing the IstALDH. Taken together, the L. lactis cells expressing recombinant IstALDH are potential whole-cell biocatalysts that can be applied in the detoxification of aldehydes.

  16. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1.

    Science.gov (United States)

    Lim, Jeong-A; Jee, Samnyu; Lee, Dong Hwan; Roh, Eunjung; Jung, Kyusuk; Oh, Changsik; Heu, Sunggi

    2013-08-01

    Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

  17. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    CTP synthase is encoded by the pyrG gene and catalyzes the conversion of UTP to CTP. A Lactococcus lactis pyrG mutant with a cytidine requirement was constructed, in which beta-galactosidase activity in a pyrG-lacLM transcriptional fusion was used to monitor gene expression of pyrG. A 10-fold...... decrease in the CTP pool induced by cytidine limitation was found to immediately increase expression of the L. lactis pyrG gene. The final level of expression of pyrG is 37-fold higher than the uninduced level. CTP limitation has pronounced effects on central cellular metabolism, and both RNA and protein...... for regulation of the pyrG gene. It is possible to fold the pyrG leader in an alternative structure that would prevent the formation of the terminator. We suggest a model for pyrG regulation in L. lactis, and probably in other gram-positive bacteria as well, in which pyrG expression is directly dependent...

  18. Development of Chemically Defined Media to Express Trp-Analog-Labeled Proteins in a Lactococcus lactis Trp Auxotroph.

    Science.gov (United States)

    Shao, Jinfeng; Marcondes, Marcelo F M; Oliveira, Vitor; Broos, Jaap

    2016-01-01

    Chemically defined media for growth of Lactococcus lactis strains contain about 50 components, making them laborious and expensive growth media. However, they are crucial for metabolism studies as well as for expression of heterologous proteins labeled with unnatural amino acids. In particular, the L. lactis Trp auxotroph PA1002, overexpressing the tryptophanyl tRNA synthetase enzyme of L. lactis, is very suitable for the biosynthetic incorporation of Trp analogs in proteins because of its most relaxed substrate specificity reported towards Trp analogs. Here we present two much simpler defined media for L. lactis, which consist of only 24 or 31 components, respectively, and with which the L. lactis Trp auxotroph shows similar growth characteristics as with a 50-component chemically defined medium. Importantly, the expression levels of two recombinant proteins used for evaluation were up to 2-3 times higher in these new media than in the 50-component medium, without affecting the Trp analog incorporation efficiency. Taken together, the simplest chemically defined media reported so far for L. lactis are presented. Since L. lactis also shows auxotrophy for Arg, His, Ile, Leu Val, and Met, our simplified media may also be useful for the biosynthetic incorporation of analogs of these five amino acids. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Defining the bacteroides ribosomal binding site.

    Science.gov (United States)

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  20. Heterologous Protein Expression by Lactococcus lactis

    NARCIS (Netherlands)

    Villatoro-Hernández, J.; Kuipers, O.P.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.

    2012-01-01

    This chapter describes the use of Lactococcus lactis as a safe and efficient cell factory to produce heterologous proteins of medical interest. The relevance of the use of this lactic acid bacterium (LAB) is that it is a noncolonizing, nonpathogenic microorganism that can be delivered in vivo at a

  1. The extracellular proteinase of Lactococcus lactis

    NARCIS (Netherlands)

    Laan, Harm Willem Frederik

    1991-01-01

    Lactococci are used in the production of fermentated dairy products of which cheese is one of the most important. In starter cultures used in dutch cheese manufacturing Lactococcus lactis the dominants pecies. The main functions of the Lactococci are a fast conversion of lactose into lactate and the

  2. Análisis comparativo del cariotipo en poblaciones de Alstroemeria ligtu subsp. ligtu y A. ligtu subsp. simsii (Alstroemeriaceae de Chile

    Directory of Open Access Journals (Sweden)

    Carlos M. Baeza

    2006-01-01

    Full Text Available Alstroemeria (Alstroemeriaceae es un género endémico de América del Sur. En Chile, este género se distribuye desde el extremo norte hasta la Patagonia, y la mayor diversidad de especies se encuentra en la zona central. Precisamente en esta zona crece Alstroemeria ligtu con sus 3 subespecies: A. ligtu subsp. ligtu, A. ligtu subsp. incarnata, A. ligtu subsp. simsii. Se realizó un estudio comparativo del cariotipo de individuos provenientes de 5 poblaciones de A. ligtu subsp. ligtu de la VIII Región, y de una población de A. ligtu subsp. simsii de la V Región, mediante tinción de los cromosomas con DAPI u orceína acética. Las seis poblaciones estudiadas presentaron un cariotipo asimétrico, con 2n=2x=16 cromosomas. Las poblaciones de A. ligtu subsp. ligtu presentaron una fórmula haploide conformada por cuatro cromosomas metacéntricos (los pares 1 y 2 con microsatélites, uno submetacéntrico con microsatélite y tres telocéntricos con microsatélites. La población de A. ligtu subsp. simsii se caracterizó por poseer cinco cromosomas metacéntricos (el par 2 con un microsatélite y el par 6 con una constricción secundaria y tres cromosomas telocéntricos con satélite. Estos resultados indican que el cariotipo en A. ligtu es variable, y es probable que cambios a nivel cromosómico hayan contribuido en la diversificación de esta especie.

  3. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Xiangrong Dong

    Full Text Available PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  4. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Science.gov (United States)

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  5. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    The thioredoxin system has evolved in all kingdoms of life acting as a key antioxidant system in the defense against oxidative stress. The thioredoxin system utilizes reducing equivalents from NADPH to reduce protein disulfide targets. The reducing equivalents are shuttled via a flavin and redox...... active dithiol motif in thioredoxin reductase (TrxR) to reduce the small ubiquitous thioredoxin (Trx). Trx in turn regulates the protein dithiol/disulfide balance by reduction of protein disulfide targets in e.g. ribonucleotide reductase, peroxiredoxins and methionine sulfoxide reductase. The glutathione......, thus expected to rely mainly on the Trx system for thiol-disulfide control. L. lactis is an important industrial microorganism used as starter culture in the dairy production of cheese, buttermilk etc. and known to be sensitive to oxidative stress. The L. lactis TrxR (LlTrxR) is a homodimeric...

  6. “PENTOYO” with a Fully Sequenced Lactobacillus pentosus KCA1 ...

    African Journals Online (AJOL)

    Purpose: To determine whether L. pentosus KCA1 can be used to create a new probiotic yogurt and the organism's duration of survival when stored at 4 oC. Methods: Mother cultures of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus and L. pentosus KCA1 were prepared and subsequently ...

  7. Potential Transmission Pathways of Streptococcus gallolyticus subsp. gallolyticus.

    Directory of Open Access Journals (Sweden)

    Jessika Dumke

    Full Text Available Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus subsp. gallolyticus, a member of group D streptococci, is an inhabitant of the animal and human gastrointestinal tract. Furthermore, it is a facultative pathogen which causes e.g. endocarditis, septicemia and mastitis. S. gallolyticus subsp. gallolyticus may be transmitted either directly or indirectly between animals and humans. However, the transmission routes are an unsolved issue. In this study, we present systematic analyses of an S. gallolyticus subsp. gallolyticus isolate of an infective endocarditis patient in relation to isolates of his laying hen flock. Isolates from pooled droppings of laying hens, pooled dust samples and human blood culture were characterized by using multilocus sequence typing (MLST and DNA fingerprinting. MLST revealed the same allelic profile of isolates from the human blood culture and from the droppings of laying hens. In addition, these isolates showed clonal identity regarding a similar DNA fingerprinting pattern. For the first time, we received a hint that transmission of S. gallolyticus subsp. gallolyticus between poultry and humans may occur. This raises the question about the zoonotic potential of isolates from poultry and should be considered in future studies.

  8. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis.

    Science.gov (United States)

    Yagnik, Bhrugu; Padh, Harish; Desai, Priti

    2016-04-01

    Use of food grade Lactococcus lactis (L. lactis) is fast emerging as a safe alternative for delivery of DNA vaccine. To attain efficient DNA delivery, L. lactis, a non-invasive bacterium is converted to invasive strain either by expressing proteins like Internalin A (InlA) or Fibronectin binding protein A (FnBPA) or through chemical treatments. However the safety status of invasive L. lactis is questionable. In the present report, we have shown that non-invasive L. lactis efficiently delivered the newly constructed reporter plasmid pPERDBY to mammalian cells without any chemical enhancers. The salient features of the vector are; I) Ability to replicate in two different hosts; Escherichia coli (E. coli) and Lactic Acid Bacteria (LAB), II) One of the smallest reporter plasmid for DNA vaccine, III) Enhanced Green Fluorescence Protein (EGFP) linked to Multiple Cloning Site (MCS), IV) Immunostimulatory CpG motifs functioning as an adjuvant. Expression of EGFP in pPERDBY transfected CHO-K1 and Caco-2 cells demonstrates its functionality. Non-invasive r-L. lactis was found efficient in delivering pPERDBY to Caco-2 cells. The in vitro data presented in this article supports the hypothesis that in the absence of invasive proteins or relevant chemical treatment, L. lactis was found efficient in delivering DNA to mammalian cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Købmann, Brian Jensen; Jensen, Peter Ruhdal

    2008-01-01

    Triosephosphate isomerase (TPI), which catalyses the conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P), was studied for its control on glycolysis and mixed acid production in L. lactis subspecies lactis IL1403 and L. lactis subspecies cremoris MG1363. Strains...... metabolites glucose-6-phosphate, fructose-1,6-bisphosphate and DHAP in the IL1403 derivatives were essentially unchanged for TPI activities from 26% to 225%. At a TPI activity of 3%, the level of DHAP increased four times. The finding that an increased level of DHAP coincides with an increase in formate...

  10. Lactic acid bacteria as bio-preservatives in bakery – Role of sourdough systems in the quality, safety and shelf life of bread

    OpenAIRE

    Koy, Rebaz

    2017-01-01

    Microbial contamination and survival during storage of bread are a cause of both health concerns and economic losses. Traditional fermentation systems were studied as sources of lactic acid bacteria (LAB) with antagonistic potential against foodborne pathogens and spoilage organisms, with the aim to improve the safety and shelf life of bakery products. The antagonistic activity of four types of buttermilk (BM) products fermented with Lactococcus lactis subsp. lactis was evaluated against a...

  11. Characterization of lactic acid bacteria isolated from a Thai low-salt fermented fish product and the role of garlic as substrate for fermentation

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Huss, Hans Henrik; Gram, Lone

    1999-01-01

    associated with fish fillet and minced fish, Lactobacillus paracasei subsp. paracasei with boiled rice and Weisella confusa with garlic mix and banana leaves. In addition, Lactobacillus plantarum, Lactobacillus pentosus and Pediococcus pentosaceus were isolated from raw materials. A succession of aciduric......Lactic acid bacteria (LAB) isolated from raw materials (fish, rice, garlic and banana leaves) and processed som-fak (a Thai low-salt fermented fish product) were characterized by API 50- CH and other phenotypic criteria. Lactococcus lactis subsp. lactis and Leuconostoc citreum were specifically....... paracasei, or garlic fermenting Lb. plantarum and Pd. pentosaceus, or a combination of these strains were inoculated into laboratory prepared som-fak with or without garlic. In som-fak without garlic, pH was above 4.8 after three days, irrespective of addition of mixed LAB cultures. The starch fermenting...

  12. Characterization of a Lactococcus lactis promoter for heterologous protein production

    Directory of Open Access Journals (Sweden)

    Christian E. Ogaugwu

    2018-03-01

    Full Text Available Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.

  13. Immunization against Leishmania major infection using LACK- and IL-12-expressing Lactococcus lactis induces delay in footpad swelling.

    Directory of Open Access Journals (Sweden)

    Felix Hugentobler

    Full Text Available BACKGROUND: Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. METHODOLOGY/PRINCIPAL FINDINGS: We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional T(H1 CD4(+ and CD8(+ T cells and a systemic LACK-specific T(H1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific T(H1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective T(H1 response. CONCLUSIONS/SIGNIFICANCE: This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania.

  14. Immunization against Leishmania major Infection Using LACK- and IL-12-Expressing Lactococcus lactis Induces Delay in Footpad Swelling

    Science.gov (United States)

    Hugentobler, Felix; Yam, Karen K.; Gillard, Joshua; Mahbuba, Raya; Olivier, Martin; Cousineau, Benoit

    2012-01-01

    Background Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. Methodology/Principal findings We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional TH1 CD4+ and CD8+ T cells and a systemic LACK-specific TH1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific TH1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective TH1 response. Conclusions/Significance This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania. PMID:22348031

  15. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae in the first fermentation on the foam properties of sparkling wine (Cava

    Directory of Open Access Journals (Sweden)

    Medina-Trujillo Laura

    2016-01-01

    Full Text Available In a previous study we reported that sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae during the first fermentation increased the protein concentration and improved the foaming properties of a base wine. Since effervescence and foam of sparkling wines are key quality factors, the interest of this practice for sparkling wine industry is obvious. In this paper we study whether the foaming properties of the sparkling wines produced from the base wines obtained by sequential inoculation with T. delbrueckii and S. cerevisiae remains better than those of their controls produced from base wines fermented only with S. cerevisiae. The obtained results confirmed that sequential inoculation in the production of the base wine originated sparkling wines with significantly higher maximum heights of foam than conventional inoculation, probably because autolysis of the T. delbrueckii cells in the base wine released higher amounts of proteins, especially of the low molecular weight fraction.

  16. Surface Proteins of Lactococcus lactis: Bacterial Resources for Muco-adhesion in the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Muriel Mercier-Bonin

    2017-11-01

    Full Text Available Food and probiotic bacteria, in particular lactic acid bacteria, are ingested in large amounts by humans and are part of the transient microbiota which is increasingly considered to be able to impact the resident microbiota and thus possibly the host health. The lactic acid bacterium Lactococcus lactis is extensively used in starter cultures to produce dairy fermented food. Also because of a generally recognized as safe status, L. lactis has been considered as a possible vehicle to deliver in vivo therapeutic molecules with anti-inflammatory properties in the gastrointestinal tract. One of the key factors that may favor health effects of beneficial bacteria to the host is their capacity to colonize transiently the gut, notably through close interactions with mucus, which covers and protects the intestinal epithelium. Several L. lactis strains have been shown to exhibit mucus-binding properties and bacterial surface proteins have been identified as key determinants of such capacity. In this review, we describe the different types of surface proteins found in L. lactis, with a special focus on mucus-binding proteins and pili. We also review the different approaches used to investigate the adhesion of L. lactis to mucus, and particularly to mucins, one of its major components, and we present how these approaches allowed revealing the role of surface proteins in muco-adhesion.

  17. Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons

    DEFF Research Database (Denmark)

    Larsen, Rasmus; van Hijum, Sacha A. F. T.; Martinussen, Jan

    2008-01-01

    In previous studies, we have shown that direct protein-protein. interaction between the two regulators ArgR and AhrC in Lactococcus lactis is required for arginine-dependent repression of the biosynthetic argC promoter and the activation of the catabolic arcA promoter. Here, we establish the global...... ArgR and AhrC regulons by transcriptome analyses and show that both regulators are dedicated to the control of arginine metabolism in L. lactis....

  18. Growth and activity of Bulgarian yogurt starter culture in iron-fortified milk.

    Science.gov (United States)

    Simova, Emilina; Ivanov, Galin; Simov, Zhelyazko

    2008-10-01

    Bulgarian yogurts were manufactured and fortified with 8, 15 and 27 mg of iron kg(-1) of yogurt. The growth and acidifying activity of the starter culture bacteria Streptococcus thermophilus 13a and Lactobacillus delbrueckii subsp. bulgaricus 2-11 were monitored during milk fermentation and over 15 days of yogurt storage at 4 degrees C. Fortifying milk with iron did not affect significantly the growth of the starter culture during manufacture and storage of yogurt. Counts of yogurt bacteria at the end of fermentation of iron-fortified milks were between 2.1 x 10(10) and 4.6 x 10(10) CFU ml(-1), which were not significantly different from numbers in unfortified yogurts. In all batches of yogurt, the viable cell counts of S. thermophilus 13a were approximately three times higher than those of L. delbrueckii subsp. bulgaricus 2-11. Greater decrease in viable cell count over 15 days of storage was observed for S. thermophilus 13a compared to L. delbrueckii subsp. bulgaricus 2-11. Intensive accumulation of lactic acid was observed during incubation of milk and all batches reached pH 4.5 +/- 0.1 after 3.0 h. At the end of fermentation process, lactic acid concentrations in iron-fortified yogurts were between 6.9 +/- 0.4 and 7.3 +/- 0.5 g l(-1). The acidifying activity of starter culture bacteria in the control and iron-fortified milks was similar. There was no increase in oxidized, metallic and bitter off-flavors in iron-fortified yogurts compared to the control. Iron-fortified yogurts did not differ significantly in their sensorial, chemical and microbiological characteristics with unfortified yogurt, suggesting that yogurt is a suitable vehicle for iron fortification and that the ferrous lactate is an appropriate iron source for yogurt fortification.

  19. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain.

    Directory of Open Access Journals (Sweden)

    Cristina Camperio

    Full Text Available Lactococcus lactis is one of the most important microorganisms in the dairy industry and has "generally recognized as safe" (GRAS status. L. lactis belongs to the group of lactic acid bacteria (LAB and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU or S. aureus (≈ 102 CFU/ml were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were

  20. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain

    Science.gov (United States)

    Biasibetti, Elena; Frassanito, Paolo; Giovannelli, Carlo; Spuria, Liliana; D’Agostino, Claudia; Tait, Sabrina; Capucchio, Maria Teresa

    2017-01-01

    Lactococcus lactis is one of the most important microorganisms in the dairy industry and has “generally recognized as safe” (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found