ON FEEDBACK CONTROL OF DELAYED CHAOTIC SYSTEM
Institute of Scientific and Technical Information of China (English)
李丽香; 彭海朋; 卢辉斌; 关新平
2001-01-01
In this paper two different types of feedback control technique are discussed: the standard feedback control and the time-delay feedback control which have been successfully used in many control systems. In order to understand to what extent the two different types of control technique are useful in delayed chaotic systems, some analytic stabilization conditions for chaos control from the two types of control technique are derived based on Lyapunov stabilization arguments. Similarly, we discuss the tracking problem by applying the time-delay feedback control. Finally, numerical examples are provided.
Anharmonic resonances with recursive delay feedback
Energy Technology Data Exchange (ETDEWEB)
Goldobin, Denis S., E-mail: Denis.Goldobin@gmail.com [Department of Mathematics, University of Leicester, Leicester LE1 7RH (United Kingdom); Institute of Continuous Media Mechanics, UB RAS, Perm 614013 (Russian Federation)
2011-09-12
We consider application of time-delayed feedback with infinite recursion for control of anharmonic (nonlinear) oscillators subject to noise. In contrast to the case of a single delay feedback, recursive delay feedback exhibits resonances between feedback and nonlinear harmonics, leading to a resonantly strong or weak oscillation coherence even for a small anharmonicity. Remarkably, these small-anharmonicity induced resonances can be stronger than the harmonic ones. Analytical results are confirmed numerically for van der Pol and van der Pol-Duffing oscillators. -- Highlights: → We construct general theory of noisy limit-cycle oscillators with linear feedback. → We focus on coherence and 'reliability' of oscillators. → For recursive delay feedback control the theory shows importance of anharmonicity. → Anharmonic resonances are studied both numerically and analytically.
Feedback Control of Chaos in Delay Maps
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, we discuss feedback control of a class of delay chaotic maps. Our aim is to drive the chaoticmaps to its initially unstable fixed points by using linear and nonlinear state feedback control. The control is achievedby using small, bounded perturbations. Some numerical simulations are given to demonstrate the effectiveness of theproposed control method.
Control of spatially patterned synchrony with multisite delayed feedback
Hauptmann, C.; Omelchenko, O.; Popovych, O. V.; Maistrenko, Y.; Tass, P.A.
2007-01-01
We present an analytical study describing a method for the control of spatiotemporal patterns of synchrony in networks of coupled oscillators. Delayed feedback applied through a small number of electrodes effectively induces spatiotemporal dynamics at minimal stimulation intensities. Different arrangements of the delays cause different spatial patterns of synchrony, comparable to central pattern generators (CPGs), i.e., interacting clusters of oscillatory neurons producing patterned output, e...
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Delayed feedback on tax audits affects compliance and fairness perceptions
Kogler, C.; Mittone, Luigi; Kirchler, Erich
2016-01-01
In the present study we explore the conflicting finding that delayed feedback on tax audits apparently results in higher tax compliance, although delaying feedback is associated with lower perceptions of procedural fairness. In a repeated rounds design the timing of feedback (delayed vs. immediate)
Nonlinear dynamics of neural delayed feedback
Energy Technology Data Exchange (ETDEWEB)
Longtin, A.
1990-01-01
Neural delayed feedback is a property shared by many circuits in the central and peripheral nervous systems. The evolution of the neural activity in these circuits depends on their present state as well as on their past states, due to finite propagation time of neural activity along the feedback loop. These systems are often seen to undergo a change from a quiescent state characterized by low level fluctuations to an oscillatory state. We discuss the problem of analyzing this transition using techniques from nonlinear dynamics and stochastic processes. Our main goal is to characterize the nonlinearities which enable autonomous oscillations to occur and to uncover the properties of the noise sources these circuits interact with. The concepts are illustrated on the human pupil light reflex (PLR) which has been studied both theoretically and experimentally using this approach. 5 refs., 3 figs.
LHC One-turn Delay Feedback Commissioning
Mastoridis, T; Molendijk, J
2012-01-01
The LHC One-Turn delay FeedBack (OTFB) is an FPGA based feedback system part of the LHC cavity controller, which produces gain only around the revolution frequency (frev = 11.245 kHz) harmonics. As such, it helps reduce the transient beam loading and effective cavity impedance. Consequently, it increases the stability margin for Longitudinal Coupled Bunch Instabilities driven by the cavity impedance at the fundamental and allows reliable operation at higher beam currents. The OTFB was commissioned on all sixteen cavities in mid-October 2011 and has been used in operation since. The commissioning procedure and algorithms for setting-up are presented. The resulting improvements in transient beam loading, beam stability, and required klystron power are analyzed. The commissioning of the OTFB reduced the cavity voltage phase modulation from approximately six degrees peak-to-peak to below one degree at 400 MHz with nominal bunch intensity of 1.1e11 protons.
H∞ State Feedback Delay-dependent Control for Discrete Systems with Multi-time-delay
Institute of Scientific and Technical Information of China (English)
Bai-Da Qu
2005-01-01
In this paper,H∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H∞ performance indices is induced, and then a strategy for H∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach.
Time-delay feedback control in a delayed dynamical chaos system and its applications
Institute of Scientific and Technical Information of China (English)
Ye Zhi-Yong; Yang Guang; Deng Cun-Bing
2011-01-01
The feedback control of a delayed dynamical system, which also includes various chaotic systems with time delays, is investigated. On the basis of stability analysis of a nonautonomons system with delays, some simple yet less conservative criteria are obtained for feedback control in a delayed dynamical system. Finally, the theoretical result is applied to a typical class of chaotic Lorenz system and Chua circuit with delays. Numerical simulations are also given to verify the theoretical results.
Delayed feedback model of axonal length sensing.
Karamched, Bhargav R; Bressloff, Paul C
2015-05-05
A fundamental question in cell biology is how the sizes of cells and organelles are regulated at various stages of development. Size homeostasis is particularly challenging for neurons, whose axons can extend from hundreds of microns to meters (in humans). Recently, a molecular-motor-based mechanism for axonal length sensing has been proposed, in which axonal length is encoded by the frequency of an oscillating retrograde signal. In this article, we develop a mathematical model of this length-sensing mechanism in which advection-diffusion equations for bidirectional motor transport are coupled to a chemical signaling network. We show that chemical oscillations emerge due to delayed negative feedback via a Hopf bifurcation, resulting in a frequency that is a monotonically decreasing function of axonal length. Knockdown of either kinesin or dynein causes an increase in the oscillation frequency, suggesting that the length-sensing mechanism would produce longer axons, which is consistent with experimental findings. One major prediction of the model is that fluctuations in the transport of molecular motors lead to a reduction in the reliability of the frequency-encoding mechanism for long axons. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Time-delay identification for vibration systems with multiple feedback
Sun, Yi-Qiang; Jin, Meng-Shi; Song, Han-Wen; Xu, Jian
2016-12-01
An approach for time-delay identification is proposed in multiple-degree-of-freedom (MDOF) linear systems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteristics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay identification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the "frequencies" of the oscillation curve, the time-delays can be obtained from the "frequencies" of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.
Time-delay identification for vibration systems with multiple feedback
Institute of Scientific and Technical Information of China (English)
Yi-Qiang Sun; Meng-Shi Jin; Han-Wen Song; Jian Xu
2016-01-01
An approach for time-delay identification is pro-posed in multiple-degree-of-freedom (MDOF) linear sys-tems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteris-tics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay iden-tification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the“frequencies”of the oscillation curve, the time-delays can be obtained from the“frequencies”of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.
Variable-delay feedback control of unstable steady states in retarded time-delayed systems
Gjurchinovski, Aleksandar; 10.1103/PhysRevE.81.016209
2010-01-01
We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.
Dynamical behaviour of Liu system with time delayed feedback
Institute of Scientific and Technical Information of China (English)
Qian Qin; Wang Lin; Ni Qiao
2008-01-01
This paper investigates the dynamical behaviour of the Liu system with time delayed feedback.Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed.It is shown that the Liu system with time delayed feedback may exhibit interesting and extremely rich dynamical behaviour.The evolution of the dynamics is shown to be complex with varying time-delay parameter.Moreover,the strange attractor like 'wormhole' is detected via numerical simulations.
Stabilizing unstable steady states using multiple delay feedback control.
Ahlborn, Alexander; Parlitz, Ulrich
2004-12-31
Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.
Nakata, Tatsuya
2015-01-01
Feedback, or information given to learners regarding their performance, is found to facilitate second language (L2) learning. Research also suggests that the timing of feedback (whether it is provided immediately or after a delay) may affect learning. The purpose of the present study was to identify the optimal feedback timing for L2 vocabulary…
The Effects of Delay of Feedback on a Delayed Concept Formation Transfer Task.
Schroth, Marvin L.
1992-01-01
Delay and completeness of verbal information feedback were investigated within a transfer of learning paradigm involving concept formation. An experiment with 192 undergraduates indicates that, although delay of feedback (up to 30 seconds) slows speed of learning on the initial task, it has positive effects on the transfer task. (SLD)
Delayed excitatory and inhibitory feedback shape neural information transmission
Chacron, Maurice J.; Longtin, André; Maler, Leonard
2017-01-01
Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges. PMID:16383655
Time-Delay Systems with Band-Limited Feedback
2005-08-01
used as generators of chaos in applications such as communication, chaos control , and ranging. As an example, such devices are studied as a signal...tions [Lukin, 1997; Myneni, 2001]. Furthermore, time delayed feedback is used in the chaos control scheme known as time-delay autosynchronization
Feedback delays eliminate auditory-motor learning in speech production.
Max, Ludo; Maffett, Derek G
2015-03-30
Neurologically healthy individuals use sensory feedback to alter future movements by updating internal models of the effector system and environment. For example, when visual feedback about limb movements or auditory feedback about speech movements is experimentally perturbed, the planning of subsequent movements is adjusted - i.e., sensorimotor adaptation occurs. A separate line of studies has demonstrated that experimentally delaying the sensory consequences of limb movements causes the sensory input to be attributed to external sources rather than to one's own actions. Yet similar feedback delays have remarkably little effect on visuo-motor adaptation (although the rate of learning varies, the amount of adaptation is only moderately affected with delays of 100-200ms, and adaptation still occurs even with a delay as long as 5000ms). Thus, limb motor learning remains largely intact even in conditions where error assignment favors external factors. Here, we show a fundamentally different result for sensorimotor control of speech articulation: auditory-motor adaptation to formant-shifted feedback is completely eliminated with delays of 100ms or more. Thus, for speech motor learning, real-time auditory feedback is critical. This novel finding informs theoretical models of human motor control in general and speech motor control in particular, and it has direct implications for the application of motor learning principles in the habilitation and rehabilitation of individuals with various sensorimotor speech disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Truncated predictor feedback for time-delay systems
Zhou, Bin
2014-01-01
This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...
Yamazaki, Tatsuya; Hagiwara, Tomomichi
2014-08-01
A new stability analysis method of time-delay systems (TDSs) called the monodromy operator approach has been studied under the assumption that a TDS is represented as a time-delay feedback system consisting of a finite-dimensional linear time-invariant (LTI) system and a pure delay. For applying this approach to TDSs described by delay-differential equations (DDEs), the problem of converting DDEs into representation as time-delay feedback systems has been studied. With regard to such a problem, it was shown that, under discontinuous initial functions, it is natural to define the solutions of DDEs in two different ways, and the above conversion problem was solved for each of these two definitions. More precisely, the solution of a DDE was represented as either the state of the finite-dimensional part of a time-delay feedback system or a part of the output of another time-delay feedback system, depending on which definition of the DDE solution one is talking about. Motivated by the importance in establishing a thorough relationship between time-delay feedback systems and DDEs, this paper discusses the opposite problem of converting time-delay feedback systems into representation as DDEs, including the discussions about the conversion of the initial conditions. We show that the state of (the finite-dimensional part of) a time-delay feedback system can be represented as the solution of a DDE in the sense of one of the two definitions, while its 'essential' output can be represented as that of another DDE in the sense of the other type of definition. Rigorously speaking, however, it is also shown that the latter representation is possible regardless of the initial conditions, while some initial condition could prevent the conversion into the former representation. This study hence establishes that the representation of TDSs as time-delay feedback systems possesses higher ability than that with DDEs, as description methods for LTI TDSs with commensurate delays.
Delay-dependent state feedback robust stabilization for uncertain singular time-delay systems
Institute of Scientific and Technical Information of China (English)
Gao Huanli; Xu Bugong
2008-01-01
The problem of robust stabilization for uncertain singular time-delay systems is studied.First,a new delay-dependent asymptotic stability criteria for normal singular time-delay systems is given,which is less conservative.Using this result,the problem of state feedback robust stabilization for uncertain singular time-delay systems is discussed.Finally,two examples are given to illustrate the effectiveness of the results.
Delayed feedback control of time-delayed chaotic systems: Analytical approach at Hopf bifurcation
Energy Technology Data Exchange (ETDEWEB)
Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, PO Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, PO Box 16315-1355, Tehran (Iran, Islamic Republic of)
2008-07-28
This Letter is concerned with bifurcation and chaos control in scalar delayed differential equations with delay parameter {tau}. By linear stability analysis, the conditions under which a sequence of Hopf bifurcation occurs at the equilibrium points are obtained. The delayed feedback controller is used to stabilize unstable periodic orbits. To find the controller delay, it is chosen such that the Hopf bifurcation remains unchanged. Also, the controller feedback gain is determined such that the corresponding unstable periodic orbit becomes stable. Numerical simulations are used to verify the analytical results.
Swing Damping for Helicopter Slung Load Systems using Delayed Feedback
DEFF Research Database (Denmark)
Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon
2009-01-01
of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...
Predictor feedback for delay systems implementations and approximations
Karafyllis, Iasson
2017-01-01
This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems’ nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book’s core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (b...
Nonlinear dynamics of a microelectromechanical oscillator with delayed feedback
Van Leeuwen, R.; Karabacak, D.M.; Van der Zant, H.S.J.; Venstra, W.J.
2013-01-01
We study the dynamics of a nonlinear electromechanical oscillator with delayed feedback. Compared to their linear counterparts, we find that the dynamics is dramatically different. The well-known Barkhausen stability criterion ceases to exist, and two modes of operation emerge: one characterized by
Controlling Beam Halo-Chaos via Time-Delayed Feedback
Institute of Scientific and Technical Information of China (English)
FANG Jin-Qing; WENG Jia-Qiang; ZHU Lun-Wu; LUO Xiao-Shu
2004-01-01
The study of controlling high-current proton beam halo-chaos has become a key concerned issue for many important applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle in cell simulation results show that the method is very effective and has some advantages for high-current beam experiments and engineering.
Limit-cycle oscillators subject to a delayed feedback
Erneux, T.; Grasman, J.
2008-01-01
The coexistence of two stable limit cycles exhibiting different periods is examined for a nonlinear oscillator subject to a delayed feedback. For the case of a weakly nonlinear oscillator, we discuss the validity of a previously determined phase equation. For the case of a strongly nonlinear oscilla
Controlling a time-delay system using multiple delay feedback control
Institute of Scientific and Technical Information of China (English)
Qi Wei; Zhang Yan; Wang Ying-Hai
2007-01-01
In this paper multiple delay feedback control (MDFC) with different and independent delay times is shown to be an efficient method for stabilizing fixed points in finite-dimensional dynamical systems. Whether MDFC can be applied to infinite-dimensional systems has been an open question. In this paper we find that for infinite-dimensional systems modelled by delay differential equations, MDFC works well for stabilizing (unstable) steady states in long-, moderate-and short-time delay regions, in particular for the hyperchaotic case.
Energy Technology Data Exchange (ETDEWEB)
Pyragas, V. [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania); Pyragas, K. [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)
2011-10-24
We propose a simple adaptive delayed feedback control algorithm for stabilization of unstable periodic orbits with unknown periods. The state dependent time delay is varied continuously towards the period of controlled orbit according to a gradient-descent method realized through three simple ordinary differential equations. We demonstrate the efficiency of the algorithm with the Roessler and Mackey-Glass chaotic systems. The stability of the controlled orbits is proven by computation of the Lyapunov exponents of linearized equations. -- Highlights: → A simple adaptive modification of the delayed feedback control algorithm is proposed. → It enables the control of unstable periodic orbits with unknown periods. → The delay time is varied continuously according to a gradient descend method. → The algorithm is embodied by three simple ordinary differential equations. → The validity of the algorithm is proven by computation of the Lyapunov exponents.
Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos.
Buchner, T; Zebrowski, J J
2001-01-01
The logistic map with a delayed feedback is studied as a generic model. The stability of the model and its bifurcation scheme is analyzed as a function of the feedback amplitude and of the delay. Stability analysis is performed semianalytically. A relation between the delay and the periodicity of the orbit, which explains why some terms used in chaos control are ineffective, was found. The consequences for chaos control are discussed. The structure of bifurcations is found to depend strongly on the parity and on the length of the delay. Boundary crisis, the tangent, the Neimark, as well as the period-doubling bifurcations occur in this system. The effective dimension of the model is also discussed.
Chaos control in delayed chaotic systems via sliding mode based delayed feedback
Energy Technology Data Exchange (ETDEWEB)
Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)
2009-04-15
This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.
Autonomous learning by simple dynamical systems with delayed feedback.
Kaluza, Pablo; Mikhailov, Alexander S
2014-09-01
A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.
A survey on delayed feedback control of chaos
Institute of Scientific and Technical Information of China (English)
Yuping TIAN; Jiandong ZHU; Guanrong CHEN
2005-01-01
This paper introduces the basic idea and provides the mathematical formulation of the delayed feedback control (DFC) methodology, which has been widely used in chaos control. Stability analysis including the well-known odd number limitation of the DFC is reviewed. Some new developments in characterizing the limitation of the DFC are presented. Various modified DFC methods, which are developed in order to overcome the odd number limitation, are also described. Finally, some open problems in this research field are discussed.
Dynamical output feedback stabilization for neutral systems with mixed delays
Institute of Scientific and Technical Information of China (English)
Wei QIAN; Guo-jiang SHEN; You-xian SUN
2008-01-01
This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays.The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems.Based on the model transformation of neutral type,the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion.Then,through the controller parameterization and some matrix transformation techniques,the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs),and the desired controller is explicitly formulated.A numerical example is given to illustrate the effectiveness of the proposed method.
Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers
Energy Technology Data Exchange (ETDEWEB)
Soriano, Miguel C., E-mail: miguel@ifisc.uib-csic.es; Flunkert, Valentin; Fischer, Ingo [Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-12-15
We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delay in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.
Theory of feedback controlled brain stimulations for Parkinson's disease
Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.
2016-01-01
Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.
On X-Channels with Feedback and Delayed CSI
Tandon, Ravi; Poor, H Vincent; Shamai, Shlomo
2012-01-01
The sum degrees of freedom (DoF) of the two-user MIMO X-channel is characterized in the presence of output feedback and delayed channel state information (CSI). The number of antennas at each transmitters is assumed to be M and the number of antennas at each of the receivers is assumed to be N. It is shown that the sum DoF of the two-user MIMO X-channel is the same as the sum DoF of a two-user MIMO broadcast channel with 2M transmit antennas, and N antennas at each receiver. Hence, for this symmetric antenna configuration, there is no performance loss in the sum degrees of freedom due to the distributed nature of the transmitters. This result highlights the usefulness of feedback and delayed CSI for the MIMO X-channel. The K-user X-channel with single antenna at each transmitter and each receiver is also studied. In this network, each transmitter has a message intended for each receiver. For this network, it is shown that the sum DoF with partial output feedback alone is at least 2K/(K+1). This lower bound is...
All-optical noninvasive delayed feedback control of semiconductor lasers
Schikora, Sylvia
2013-01-01
The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached. The work has been awarded the Carl-Ramsauer-Prize 2012. Contents · All-Optical Control Setup · Stable States with Resonant Fabry-Perot Feedback · Control of an Unstable Stationary State and of Unstable Selfpulsations · Controlling Chaos · Con...
Investigation of a delayed feedback controller of MEMS resonators
Masri, Karim M.
2013-08-04
Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.
Hopf Bifurcation of a Positive Feedback Delay Differential Equation
Institute of Scientific and Technical Information of China (English)
陈玉明; 黄立宏
2003-01-01
Under some minor technical hypotheses, for each T larger than a certain Ts > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) =-Tμx(t) +Tf(x(t - 1)), where T and μ are positive constants and f : R→ R satisfies f(0) = 0 and f′ > 0 。Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result underthe condition that f ∈ C3(R,R) is such that f″(0) = 0 and f″′(0) < 0, which is weaker than those of Krisztin and Walther。
Kraft, Manuel; Hein, Sven M.; Lehnert, Judith; Schöll, Eckehard; Hughes, Stephen; Knorr, Andreas
2016-08-01
Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time delay and feedback strength.
Stimulus-locked responses of two phase oscillators coupled with delayed feedback
Krachkovskyi, Valerii; Popovych, Oleksandr V.; Tass, Peter A.
2006-06-01
For a system of two phase oscillators coupled with delayed self-feedback we study the impact of pulsatile stimulation administered to both oscillators. This system models the dynamics of two coupled phase-locked loops (PLLs) with a finite internal delay within each loop. The delayed self-feedback leads to a rich variety of dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic phase synchronization and desynchronization. Remarkably, for large coupling strength the two PLLs are completely desynchronized. We study stimulus-locked responses emerging in the different dynamical regimes. Simple phase resets may be followed by a response clustering, which is intimately connected with long poststimulus resynchronization. Intriguingly, a maximal perturbation (i.e., maximal response clustering and maximal resynchronization time) occurs, if the system gets trapped at a stable manifold of an unstable saddle fixed point due to appropriately calibrated stimulus. Also, single stimuli with suitable parameters can shift the system from a stable synchronized state to a stable desynchronized state or vice versa. Our result show that appropriately calibrated single pulse stimuli may cause pronounced transient and/or long-lasting changes of the oscillators’ dynamics. Pulse stimulation may, hence, constitute an effective approach for the control of coupled oscillators, which might be relevant to both physical and medical applications.
Stimulus-locked responses of two phase oscillators coupled with delayed feedback.
Krachkovskyi, Valerii; Popovych, Oleksandr V; Tass, Peter A
2006-06-01
For a system of two phase oscillators coupled with delayed self-feedback we study the impact of pulsatile stimulation administered to both oscillators. This system models the dynamics of two coupled phase-locked loops (PLLs) with a finite internal delay within each loop. The delayed self-feedback leads to a rich variety of dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic phase synchronization and desynchronization. Remarkably, for large coupling strength the two PLLs are completely desynchronized. We study stimulus-locked responses emerging in the different dynamical regimes. Simple phase resets may be followed by a response clustering, which is intimately connected with long poststimulus resynchronization. Intriguingly, a maximal perturbation (i.e., maximal response clustering and maximal resynchronization time) occurs, if the system gets trapped at a stable manifold of an unstable saddle fixed point due to appropriately calibrated stimulus. Also, single stimuli with suitable parameters can shift the system from a stable synchronized state to a stable desynchronized state or vice versa. Our result show that appropriately calibrated single pulse stimuli may cause pronounced transient and/or long-lasting changes of the oscillators' dynamics. Pulse stimulation may, hence, constitute an effective approach for the control of coupled oscillators, which might be relevant to both physical and medical applications.
Directory of Open Access Journals (Sweden)
Stephanie eGanzenmüller
2012-10-01
Full Text Available Previous research has shown that voluntary action can attract subsequent, delayed feedback events towards the action, and adaptation to the sensorimotor delay can even reverse motor-sensory temporal-order judgments. However, whether and how sensorimotor delay affects duration reproduction is still unclear. To investigate this, we injected an onset- or offset-delay to the sensory feedback signal from a duration reproduction task. We compared duration reproductions within (visual, auditory modality and across audiovisual modalities with feedback signal onset- and offset-delay manipulations. We found that the reproduced duration was lengthened in both visual and auditory feedback signal onset-delay conditions. The lengthening effect was evident immediately, on the first trial with the onset delay. However, when the onset of the feedback signal was prior to the action, the lengthening effect was diminished. In contrast, a shortening effect was found with feedback signal offset-delay, though the effect was weaker and manifested only in the auditory offset-delay condition. These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction. Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration was independent of the delay manipulation.
Role of Delay of Feedback on Subsequent Pattern Recognition Transfer Tasks.
Schroth, Marvin L.; Lund, Elissa
1993-01-01
Two experiments with 100 undergraduates investigated effects of delay of feedback on immediate and delayed transfer tasks involving different pattern recognition strategies. Delay of feedback resulted in greater retention of the concepts underlying construction of the different patterns in all transfer tasks. Results support the Kulhavy-Anderson…
Incentives for Delay-Constrained Data Query and Feedback in Mobile Opportunistic Crowdsensing
Directory of Open Access Journals (Sweden)
Yang Liu
2016-07-01
Full Text Available In this paper, we propose effective data collection schemes that stimulate cooperation between selfish users in mobile opportunistic crowdsensing. A query issuer generates a query and requests replies within a given delay budget. When a data provider receives the query for the first time from an intermediate user, the former replies to it and authorizes the latter as the owner of the reply. Different data providers can reply to the same query. When a user that owns a reply meets the query issuer that generates the query, it requests the query issuer to pay credits. The query issuer pays credits and provides feedback to the data provider, which gives the reply. When a user that carries a feedback meets the data provider, the data provider pays credits to the user in order to adjust its claimed expertise. Queries, replies and feedbacks can be traded between mobile users. We propose an effective mechanism to define rewards for queries, replies and feedbacks. We formulate the bargain process as a two-person cooperative game, whose solution is found by using the Nash theorem. To improve the credit circulation, we design an online auction process, in which the wealthy user can buy replies and feedbacks from the starving one using credits. We have carried out extensive simulations based on real-world traces to evaluate the proposed schemes.
Incentives for Delay-Constrained Data Query and Feedback in Mobile Opportunistic Crowdsensing
Liu, Yang; Li, Fan; Wang, Yu
2016-01-01
In this paper, we propose effective data collection schemes that stimulate cooperation between selfish users in mobile opportunistic crowdsensing. A query issuer generates a query and requests replies within a given delay budget. When a data provider receives the query for the first time from an intermediate user, the former replies to it and authorizes the latter as the owner of the reply. Different data providers can reply to the same query. When a user that owns a reply meets the query issuer that generates the query, it requests the query issuer to pay credits. The query issuer pays credits and provides feedback to the data provider, which gives the reply. When a user that carries a feedback meets the data provider, the data provider pays credits to the user in order to adjust its claimed expertise. Queries, replies and feedbacks can be traded between mobile users. We propose an effective mechanism to define rewards for queries, replies and feedbacks. We formulate the bargain process as a two-person cooperative game, whose solution is found by using the Nash theorem. To improve the credit circulation, we design an online auction process, in which the wealthy user can buy replies and feedbacks from the starving one using credits. We have carried out extensive simulations based on real-world traces to evaluate the proposed schemes. PMID:27455261
Stability analysis in a car-following model with reaction-time delay and delayed feedback control
Jin, Yanfei; Xu, Meng
2016-10-01
The delayed feedback control in terms of both headway and velocity differences has been proposed to guarantee the stability of a car-following model including the reaction-time delay of drivers. Using Laplace transformation and transfer function, the stable condition is derived and appropriate choices of time delay and feedback gains are designed to stabilize traffic flow. Meanwhile, an upper bound on explicit time delay is determined with respect to the response of desired acceleration. To ensure the string stability, the explicit time delay cannot over its upper bound. Numerical simulations indicate that the proposed control method can restraint traffic congestion and improve control performance.
On the Permanence of a Nonautonomous Nicholson's Blowflies Model with Feedback Control and Delay
Institute of Scientific and Technical Information of China (English)
LAI Wei-ying
2011-01-01
A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper.We show that for this system,feedback control variable has no influence on the persistent property of the system.
The Permanence in a Single Species Nonautonomous System with Delays and Feedback Control
2010-01-01
We consider a single species nonautonomous system with delays and feedback control. A general criterion on the permanence for all positive solutions is established. The results show that the feedback control does not influence the permanence of species.
Experimental study of delayed positive feedback control for a flexible beam
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing ...
Delayed-feedback chimera states: Forced multiclusters and stochastic resonance
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-07-01
A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.
Coherence versus reliability of stochastic oscillators with delayed feedback.
Goldobin, Denis S
2008-12-01
For noisy self-sustained oscillators, both reliability, the stability of a response to a noisy driving, and coherence, understood in the sense of constancy of oscillation frequency, are important characteristics. Although both characteristics and techniques for controlling them have received great attention from researchers, owing to their importance for neurons, lasers, clocks, electric generators, etc., these characteristics were previously considered separately. In this paper, a strong quantitative relation between coherence and reliability is revealed for a limit cycle oscillator subject to a weak noisy driving and a linear delayed feedback, a convection control tool. The analytical findings are verified and enriched with a numerical simulation for the Van der Pol-Duffing oscillator.
Output regulation problem for discrete-time linear time-delay systems by output feedback control
Institute of Scientific and Technical Information of China (English)
Yamin YAN; Jie HUANG
2016-01-01
In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.
Delayed feedback control of unstable steady states in fractional-order chaotic systems
Gjurchinovski, Aleksandar; Urumov, Viktor
2010-01-01
We study the possibility to stabilize unstable steady states in chaotic fractional-order dynamical systems by the time-delayed feedback method with both constant and time-varying delays. By performing a linear stability analysis in the constant delay case, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parametrizad by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. It is shown numerically that delayed feedback control with a variable time-delay significantly enlarges the stability region of the steady states in comparison to the classical time-delayed feedback scheme with a constant delay.
The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator
Yao, Chenggui; Ma, Jun; Li, Chuan; He, Zhiwei
2016-10-01
The delayed feedback loops play a crucial role in the stability of dynamical systems. The effect of process delay in feedback is studied numerically and theoretically in the delayed feedback nonlinear systems including the neural model, periodic system and chaotic oscillator. The process delay is of key importance in determining the evolution of systems, and the rich dynamical phenomena are observed. By introducing a process delay, we find that it can induce bursting electric activities in the neural model. We demonstrate that this novel regime of amplitude death also exists in the parameter space of feedback strength and process delay for the periodic system and chaotic oscillator. Our results extend the effect of process delay in the paper of Zou et al.(2013) where the process delay can eliminate the amplitude death of the coupled nonlinear systems.
Che, Yanqiu; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile
2014-01-01
In this paper, we propose a dynamic delayed feedback control approach for desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.
Energy Technology Data Exchange (ETDEWEB)
Wen Guilin [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China); Wang Qingguo [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)]. E-mail: elewqg@nus.edu.sg; Lin Chong [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Han Xu [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China); Li Guangyao [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China)
2006-09-15
Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays.
Delay signatures in the chaotic intensity output of a quantum dot laser with optical feedback
Indian Academy of Sciences (India)
VARGHESE BEJOY; JOHN MANU P; NANDAKUMARAN V M
2016-05-01
Delay identification from the chaotic intensity output of a quantum dot laser with optical feedback is done using numerical and information theoretic techniques. Four quantifiers, namely autocorrelation function, delayed mutual information, permutation entropy and permutation statistical complexity, are employed in delay estimation. A detailed comparison of these quantifiers with different feedback rates and delay is undertaken. Permutation entropy and permutation statistical complexity are calculated with different dimensions of symbolic reconstruction to obtain the best results.
Dynamical behaviors in time-delay systems with delayed feedback and digitized coupling
Mitra, Chiranjit; Ambika, G.; Banerjee, Soumitro
2014-12-01
We consider a network of delay dynamical systems connected in a ring via unidirectional positive feedback with constant delay in coupling. For the specific case of Mackey-Glass systems on the ring topology, we capture the phenomena of amplitude death, isochronous synchronization and phase-flip bifurcation as the relevant parameters are tuned. Using linear stability analysis and master stability function approach, we predict the region of amplitude death and synchronized states respectively in the parameter space and study the nature of transitions between the different states. For a large number of systems in the same dynamical configuration, we observe splay states, mixed splay states and phase locked clusters. We extend the study to the case of digitized coupling and observe that these emergent states still persist. However, the sampling and quantization reduce the regions of amplitude death and induce phase-flip bifurcation.
Timing matters: the impact of immediate and delayed feedback on artificial language learning.
Opitz, Bertram; Ferdinand, Nicola K; Mecklinger, Axel
2011-01-01
In the present experiment, we used event-related potentials (ERP) to investigate the role of immediate and delayed feedback in an artificial grammar learning (AGL) task. Two groups of participants were engaged in classifying non-word strings according to an underlying rule system, not known to the participants. Visual feedback was provided after each classification either immediately or with a short delay of 1 s. Both groups were able to learn the artificial grammar system as indicated by an increase in classification performance. However, the gain in performance was significantly larger for the group receiving immediate feedback as compared to the group receiving delayed feedback. Learning was accompanied by an increase in P300 activity in the ERP for delayed as compared to immediate feedback. Irrespective of feedback delay, both groups exhibited learning related decreases in the feedback-related positivity (FRP) elicited by positive feedback only. The feedback-related negativity (FRN), however, remained constant over the course of learning. These results suggest, first, that delayed feedback is less effective for AGL as task requirements are very demanding, and second, that the FRP elicited by positive prediction errors decreases with learning while the FRN to negative prediction errors is elicited in an all-or-none fashion by negative feedback throughout the entire experiment.
Timing matters: The impact of immediate and delayed feedback on artificial language learning
Directory of Open Access Journals (Sweden)
Bertram Opitz
2011-02-01
Full Text Available In the present experiment, we used event-related potentials (ERP to investigate the role of immediate and delayed feedback in an artificial grammar learning task. Two groups of participants were engaged in classifying non-word strings according to an underlying rule system, not known to the participants. Visual feedback was provided after each classification either immediately or with a short delay of one second. Both groups were able to learn the artificial grammar system as indicated by an increase in classification performance. However, the gain in performance was significantly larger for the group receiving immediate feedback as compared to the group receiving delayed feedback. Learning was accompanied by an increase in P300 activity in the ERP for delayed as compared to immediate feedback. Irrespective of feedback delay, both groups exhibited learning related decreases in the feedback-related positivity (FRP elicited by positive feedback only. The feedback-related negativity (FRN, however, remained constant over the course of learning. These results suggest, first, that delayed feedback is less effective for artificial grammar learning as task requirements are very demanding, and second, that the FRP elicited by positive prediction errors decreases with learning while the FRN to negative prediction errors is elicited in an all-or-none fashion by negative feedback throughout the entire experiment.
Chaos and Its Impulsive Control in Chua's Oscillator via Time-Delay Feedback
Institute of Scientific and Technical Information of China (English)
Yong-Bin Yu; Hong-Bin Zhang; Zhu-Sheng Kang; Xiao-Feng Liao; Jue-Bang Yu
2008-01-01
A novel framework for chaos and its impul sive control in Chua's oscillator via time-delay feedback is presented. The exponential stability of impulsive control Chua's oscillator via time-delay feedback is considered, and some novel conditions are obtained. Then a novel impulsive controller design procedure is proposed. Simulation experiments are provided to demonstrate the feasibility and effectiveness of our method finally.
Dekker, Hanke; Schonrock-Adema, Johanna; Snoek, Jos W.; van der Molen, Thys; Cohen-Schotanus, Janke
2013-01-01
Background: Teacher feedback on student reflective writing is recommended to improve learners' reflective competence. To be able to improve teacher feedback on reflective writing, it is essential to gain insight into which characteristics of written feedback stimulate students' reflection processes.
Dekker, Hanke; Schonrock-Adema, Johanna; Snoek, Jos W.; van der Molen, Thys; Cohen-Schotanus, Janke
2013-01-01
Background: Teacher feedback on student reflective writing is recommended to improve learners' reflective competence. To be able to improve teacher feedback on reflective writing, it is essential to gain insight into which characteristics of written feedback stimulate students' reflection processes.
Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics
Tlidi, Mustapha; Panajotov, Krassimir
2017-01-01
We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.
Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use.
Brudner, Samuel N; Kethidi, Nikhit; Graeupner, Damaris; Ivry, Richard B; Taylor, Jordan A
2016-03-01
In sensorimotor adaptation tasks, feedback delays can cause significant reductions in the rate of learning. This constraint is puzzling given that many skilled behaviors have inherently long delays (e.g., hitting a golf ball). One difference in these task domains is that adaptation is primarily driven by error-based feedback, whereas skilled performance may also rely to a large extent on outcome-based feedback. This difference suggests that error- and outcome-based feedback may engage different learning processes, and these processes may be associated with different temporal constraints. We tested this hypothesis in a visuomotor adaptation task. Error feedback was indicated by the terminal position of a cursor, while outcome feedback was indicated by points. In separate groups of participants, the two feedback signals were presented immediately at the end of the movement, after a delay, or with just the error feedback delayed. Participants learned to counter the rotation in a similar manner regardless of feedback delay. However, the aftereffect, an indicator of implicit motor adaptation, was attenuated with delayed error feedback, consistent with the hypothesis that a different learning process supports performance under delay. We tested this by employing a task that dissociates the contribution of explicit strategies and implicit adaptation. We find that explicit aiming strategies contribute to the majority of the learning curve, regardless of delay; however, implicit learning, measured over the course of learning and by aftereffects, was significantly attenuated with delayed error-based feedback. These experiments offer new insight into the temporal constraints associated with different motor learning processes.
On a new time-delayed feedback control of chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Tian Lixin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China)], E-mail: tianlx@ujs.edu.cn; Xu Jun; Sun Mei; Li Xiuming [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China)
2009-01-30
In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.
A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback
Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.
2014-10-01
Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.
Kashchenko, Sergey A.
2016-12-01
The dynamics of second-order equations with nonlinear delayed feedback and a large coefficient of a delayed equation is investigated using asymptotic methods. Based on special methods of quasi-normal forms, a new construction is elaborated for obtaining the main terms of asymptotic expansions of asymptotic residual solutions. It is shown that the dynamical properties of the above equations are determined mostly by the behavior of the solutions of some special families of parabolic boundary value problems. A comparative analysis of the dynamics of equations with the delayed feedback of three types is carried out.
Theory and numerics of vibrational resonance in Duffing oscillators with time-delayed feedback.
Jeevarathinam, C; Rajasekar, S; Sanjuán, M A F
2011-06-01
The influence of linear time-delayed feedback on vibrational resonance is investigated in underdamped and overdamped Duffing oscillators with double-well and single-well potentials driven by both low frequency and high frequency periodic forces. This task is performed through both theoretical approach and numerical simulation. Theoretically determined values of the amplitude of the high frequency force and the delay time at which resonance occurs are in very good agreement with the numerical simulation. A major consequence of time-delayed feedback is that it gives rise to a periodic or quasiperiodic pattern of vibrational resonance profile with respect to the time-delayed parameter. An appropriate time delay is shown to induce a resonance in an overdamped single-well system which is otherwise not possible. For a range of values of the time-delayed parameters, the response amplitude is found to be larger than in delay-time feedback-free systems.
Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback
Directory of Open Access Journals (Sweden)
A.F. EL-Bassiouny
2006-01-01
Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.
Institute of Scientific and Technical Information of China (English)
Chang-shui FENG; Wei-qiu ZHU
2009-01-01
We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-bang control force is expressed approximately in terms of the system state variables without time delay. Then the averaged Ito stochastic differential equations for the system are derived using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged Ito equations. A Duffing oscillator with time-delayed feedback bang-bang control under combined harmonic and white noise excitations is taken as an example to illus-trate the proposed method. The analytical results are confirmed by digital simulation. We found that the time delay in feedback bang-bang control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing oscillator.
Finite Element Modeling of Cutaneous Electrical Stimulation for Sensory Feedback
Institute of Scientific and Technical Information of China (English)
LI Si; CHAI Guo-hong; SUI Xiao-hong; LAN Ning
2014-01-01
It is currently difficult for the amputee to perceive environmental information such as tactile pressure on the fingertip of the present upper limb prostheses. Sensory feedback induced by cutaneous electrical stimulation can be used to transmit tactile information from hand prostheses to sensory nerve of intact upper arm, thus producing the corresponding perceptions in human brain. In order to have a deeper understanding on the distribution of stimulation current within the limb, and find a better placement of the stimulating and reference electrodes, we constructed a three-dimensional upper-limb model to systematically study the effect of electrode placement on current distribution based on finite element analysis. In these simulations, the reference electrode is positioned at four different locations around and on the axial direction of the arm. The results show that with the increase of distance between reference electrode and stimulating electrode, the current density increases in the skin layer of the upper limb. When the reference electrode is on the opposite side of stimulating electrode around the arm, the current is more concentrated in the skin layer, which is in line with recent findings in psychophysiological experiments. But better spatial selectivity could be achieved when the reference electrode is closer to the stimulating electrode around the arm, and it is more obvious in comparison with that on the axial direction. These findings will provide insights for the design of electrode array used for evoking cutaneous sensory afferents.
Kal'Ianov, E. V.
1986-11-01
The stimulation by an external signal of stochastic self-excited oscillations in a nonautonomous transistor oscillator with delayed feedback is investigated experimentally, with a focus on the case of parametric pumping, where the frequency of the external signal is close to the interval between the natural frequencies of the system. The experimental technique and apparatus are similar to those employed by Kal'ianov and Starkov (1985), and the results are presented graphically. Phenomena observed include both (1) enrichment of the oscillation spectrum by excitation of additional, asynchronously interacting modes until a transition to chaos occurs; and (2) parametric suppression of oscillations at certain modes, with phase locking of the mode oscillations and the establishment of synchronous oscillations (i.e., destochastization).
Wang, Qi; Gong, Yubing; Wu, Yanan
2015-04-01
Autapse is a special synapse that connects a neuron to itself. In this work, we numerically study the effect of chemical autapse on the synchronization of Newman-Watts Hodgkin-Huxley neuron network with time delays. It is found that the neurons exhibit synchronization transitions as autaptic self-feedback delay is varied, and the phenomenon enhances when autaptic self-feedback strength increases. Moreover, this phenomenon becomes strongest when network time delay or coupling strength is optimal. It is also found that the synchronization transitions by network time delay can be enhanced by autaptic activity and become strongest when autaptic delay is optimal. These results show that autaptic delayed self-feedback activity can intermittently enhance and reduce the synchronization of the neuronal network and hence plays an important role in regulating the synchronization of the neurons. These findings could find potential implications for the information processing and transmission in neural systems.
A new switching parameter varying optoelectronic delayed feedback model with computer simulation
Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing
2016-02-01
In this paper, a new switching parameter varying optoelectronic delayed feedback model is proposed and analyzed by computer simulation. This model is switching between two parameter varying optoelectronic delayed feedback models based on chaotic pseudorandom sequences. Complexity performance results show that this model has a high complexity compared to the original model. Furthermore, this model can conceal the time delay effectively against the auto-correlation function, delayed mutual information and permutation information analysis methods, and can extent the key space, which greatly improve its security.
Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series
Institute of Scientific and Technical Information of China (English)
YIN Hua-Wei; LU Wei-Ping; WANG Peng-Ye
2004-01-01
@@ We study controlling chaos using time-delayed feedback control based on chaotic time series without prior knowl edge of dynamical systems, and determine the optimal control parameters for stabilizing unstable periodic orbits with maximal stability.
Su, Huan; Mao, Xuerong; Li, Wenxue
2016-11-01
This paper is concerned with the asymptotical stabilization for a class of unstable delay differential equations. Continuous-time delayed feedback controller (C-TDFC) and discrete-time delayed feedback controller (D-TDFC) are presented and studied, respectively. To our best knowledge, applying Hopf bifurcation theory to delay differential equations with D-TDFC is original and meaningful. The difficulty brought by the introduction of sampling period has been overcome. An effective control range which ensures the asymptotical stability of equilibrium for the system with C-TDFC is obtained. Sequently, another effective control range for the system with D-TDFC is gotten, which approximates the one of C-TDFCS provided that the sampling period is sufficiently small. Meanwhile, efforts are paid to estimate a bound on sampling period. Finally, the theoretical results are applied to a physiological system to illustrate the effectiveness of the two control ranges.
Firing statistics of inhibitory neuron with delayed feedback. I. Output ISI probability density.
Vidybida, A K; Kravchuk, K G
2013-06-01
Activity of inhibitory neuron with delayed feedback is considered in the framework of point stochastic processes. The neuron receives excitatory input impulses from a Poisson stream, and inhibitory impulses from the feedback line with a delay. We investigate here, how does the presence of inhibitory feedback affect the output firing statistics. Using binding neuron (BN) as a model, we derive analytically the exact expressions for the output interspike intervals (ISI) probability density, mean output ISI and coefficient of variation as functions of model's parameters for the case of threshold 2. Using the leaky integrate-and-fire (LIF) model, as well as the BN model with higher thresholds, these statistical quantities are found numerically. In contrast to the previously studied situation of no feedback, the ISI probability densities found here both for BN and LIF neuron become bimodal and have discontinuity of jump type. Nevertheless, the presence of inhibitory delayed feedback was not found to affect substantially the output ISI coefficient of variation. The ISI coefficient of variation found ranges between 0.5 and 1. It is concluded that introduction of delayed inhibitory feedback can radically change neuronal output firing statistics. This statistics is as well distinct from what was found previously (Vidybida and Kravchuk, 2009) by a similar method for excitatory neuron with delayed feedback.
ON THE PERSISTENT PROPERTY OF A DELAYED NON-AUTONOMOUS SCHOENER MODEL WITH FEEDBACK CONTROL
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
We study a delayed non-autonomous Schoener model with feedback control, which was proposed by Qiming Liu, Rui Xu and Pinghua Yang [8]. By applying a differential inequality and some analysis technique, we show that under some suitable assumptions, the feedback control variable has no influence on the persistent property of the system. Our result improves the existing ones.
PERMANENCE OF A DISCRETE SINGLE SPECIES SYSTEM WITH DELAYS AND FEEDBACK CONTROL
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,a discrete single species system with time delays and feedback control is considered.Sufficient conditions which guarantee the permanence of all positive solutions to this discrete system are obtained.The results show that the feedback control is harmless for the permanence of the species.
Permanence of a Single Species System with Distributed Time Delay and Feedback Control
Directory of Open Access Journals (Sweden)
Yali Shen
2012-01-01
Full Text Available We study the permanence of a classofsingle species system with distributed time delay and feedback controls. General criteria on permanence are established in this paper. A very important fact is found in our results; that is, the feedback control is harmless to the permanence of species.
A Mechanism for Stimulated AGN Feedback in Massive Galaxies
McNamara, B R; Nulsen, P E J; Hogan, M T; Fabian, A C; Pulido, F; Edge, A C
2016-01-01
Observation shows that cooling instabilities leading to nebular emission, molecular gas, and star formation in giant galaxies are formed behind buoyantly-rising X-ray bubbles inflated by radio jets launched from massive nuclear black holes. We propose a model where molecular clouds condense from hot but relatively low entropy gas lifted by X-ray bubbles to an altitude where its cooling time is shorter than the time required for it to fall to its equilibrium location in the galaxy i.e., t_c/t_I <~1$. Here the infall time can exceed the free-fall time, t_ff, by factors of a few. This mechanism, which we refer to as stimulated feedback, is motivated by recent ALMA observations of central galaxies in clusters and groups revealing molecular clouds apparently forming in the wakes of rising X-ray bubbles and with surprisingly low cloud velocities. Supported by recent numerical simulations, our model would naturally sustain a continual feedback-loop in galaxies fuelled by cooling gas stimulated by radio-mechanical...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm bounded parameter perturbetions in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.
Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.
Carmele, Alexander; Kabuss, Julia; Schulze, Franz; Reitzenstein, Stephan; Knorr, Andreas
2013-01-01
We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity quantum electrodynamics, we treat the quantum correlation of external and internal light modes dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed feedback. Our theoretical approach proposes a way to experimentally feedback control quantum correlations in the single photon limit.
Chen, Weisheng; Jiao, Licheng; Li, Jing; Li, Ruihong
2010-06-01
For the first time, this paper addresses the problem of adaptive output-feedback control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delays using neural networks (NNs). The circle criterion is applied to designing a nonlinear observer, and no linear growth condition is imposed on nonlinear functions depending on system states. Under the assumption that time-varying delays exist in the system output, only an NN is employed to compensate for all unknown nonlinear terms depending on the delayed output, and thus, the proposed control algorithm is more simple even than the existing NN backstepping control schemes for uncertain systems described by ordinary differential equations. Three examples are given to demonstrate the effectiveness of the control scheme proposed in this paper.
An, Fang; Chen, Wei-dong; Shao, Min-qiang
2014-09-01
This paper addresses the design problem of the controller with time-delayed acceleration feedback. On the basis of the reduction method and output state-derivative feedback, a time-delayed acceleration feedback controller is proposed. Stability boundaries of the closed-loop system are determined by using Hurwitz stability criteria. Due to the introduction of time delay into the controller with acceleration feedback, the proposed controller has the feature of not only changing the mass property but also altering the damping property of the controlled system in the sense of equivalent structural modification. With this feature, the closed-loop system has a greater logarithmic decrement than the uncontrolled one, and in turn, the control behavior can be improved. In this connection, the time delay in the acceleration feedback control is a positive factor when satisfying some given conditions and it could be actively utilized. On the ground of the analysis, the developed controller is implemented on a cantilever beam for different controller gain-delay combinations, and the control performance is evaluated with the comparison to that of pure acceleration feedback controller. Simulation and experimental results verify the ability of the controller to attenuate the vibration resulting from the dominant mode.
Information thermodynamics for a multi-feedback process with time delay
Kwon, Chulan; Um, Jaegon; Park, Hyunggyu
2017-01-01
We investigate a measurement-feedback process of repeated operations with time delay. During a finite-time interval, measurement on the system is performed and the feedback protocol derived from the measurement outcome is applied with time delay. This protocol is maintained into the next interval until a new protocol from the next measurement is applied. Unlike a feedback process without delay, both memories associated with previous and present measurement outcomes are involved in the system dynamics, which naturally brings forth a joint system described by a system state and two memory states. The thermodynamic second law provides a lower bound for heat flow into a thermal reservoir by the (3-state) Shannon entropy change of the joint system. However, as the feedback protocol depends on memory states sequentially, we can deduce a tighter bound for heat flow by integrating out irrelevant memory states during dynamics. As a simple example, we consider the so-called cold damping feedback process where the velocity of a particle is measured and a dissipative feedback protocol is applied to decelerate the particle. We confirm that the heat flow is well above the tightest bound. We also examine the long-time limit of this feedback process, which turns out to exhibit an interesting instability transition as well as heating by controlling parameters such as measurement errors, time interval, protocol strength, and time delay length. We discuss the underlying mechanism for instability and heating, which might be unavoidable in reality.
Compensation for time-delayed feedback bang-bang control of quasi-integrable Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback bang-bang control is first introduced. Then, two time delay compensation methods, namely the method of changing control force amplitude (CFA) and the method of changing control delay time (CDT), are proposed. The conditions applicable to each compensation method are discussed. Finally, an example is worked out in detail to illustrate the application and effectiveness of the proposed methods and the two compensation methods in combination.
Bubbling effect in the electro-optic delayed feedback oscillator coupled network
Liu, Lingfeng; Lin, Jun; Miao, Suoxia
2017-03-01
Synchronization in the optical systems coupled network always suffers from bubbling events. In this paper, we numerically investigate the statistical properties of the synchronization characteristics and bubbling effects in the electro-optic delayed feedback oscillator coupled network with different coupling strength, delay time and gain coefficient. Furthermore, we compare our results with the synchronization properties of semiconductor laser (SL) coupled network, which indicates that the electro-optic delayed feedback oscillator can be better to suppress the bubbling effects in the synchronization of coupled network under the same conditions.
Time-Delayed Feedback Control in a Single-Mode Laser System
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The effects of time-delayed feedback control in a single-mode laser system is investigated. Using the small time delay approximation, the analytic expression of the stationary probability distribution function of the laser field is obtaincd. The mean, normalized variance and skewness of the steady-state laser intensity are calculated. It is found that the time-delayed feedback control can suppress the intensity fluctuation of the laser system. The numerical simulations are in good agreement with the approximate analytic results.
Learning monopolies with delayed feedback on price expectations
Matsumoto, Akio; Szidarovszky, Ferenc
2015-11-01
We call the intercept of the price function with the vertical axis the maximum price and the slope of the price function the marginal price. In this paper it is assumed that a monopolistic firm has full information about the marginal price and its own cost function but is uncertain on the maximum price. However, by repeated interaction with the market, the obtained price observations give a basis for an adaptive learning process of the maximum price. It is also assumed that the price observations have fixed delays, so the learning process can be described by a delayed differential equation. In the cases of one or two delays, the asymptotic behavior of the resulting dynamic process is examined, stability conditions are derived. Three main results are demonstrated in the two delay learning processes. First, it is possible to stabilize the equilibrium which is unstable in the one delay model. Second, complex dynamics involving chaos, which is impossible in the one delay model, can emerge. Third, alternations of stability and instability (i.e., stability switches) occur repeatedly.
Lei, Jing; Jiang, Zuo; Li, Ya-Li; Li, Wu-Xin
2014-10-01
The problem of nonlinear vibration control for active vehicle suspension systems with actuator delay is considered. Through feedback linearization, the open-loop nonlinearity is eliminated by the feedback nonlinear term. Based on the finite spectrum assignment, the quarter-car suspension system with actuator delay is converted into an equivalent delay-free one. The nonlinear control includes a linear feedback term, a feedforward compensator, and a control memory term, which can be derived from a Riccati equation and a Sylvester equation, so that the effects produced by the road disturbances and the actuator delay are compensated, respectively. A predictor is designed to implement the predictive state in the designed control. Moreover, a reduced-order observer is constructed to solve its physical unrealisability problem. The stability proofs for the zero dynamics and the closed-loop system are provided. Numerical simulations illustrate the effectiveness and the simplicity of the designed control.
Effects of time-delayed feedback on the properties of self-sustained oscillators
Risau-Gusman, S.
2016-10-01
Most self-sustained oscillations in biological systems and in technical applications are based on a feedback loop, and it is usually important to know how they will react when an external oscillatory force is applied. Here we investigate the effects that the introduction of a time delay in the feedback can have in the entrainment properties of self-sustained oscillators. To do this, we derive analytic expressions for the periodic trajectories and their asymptotic stability, for a generic external oscillatory force. This allows us to show that, for large quality factors, the resonance frequency does not depend on the feedback delay. When the external force is harmonic, it is shown that the largest entrainment range does not correspond to the time delay that gives the maximal response of the unforced oscillator. In fact, that delay gives the shortest entrainment range.
H{sup {infinity}} State Feedback Control for Generalized Continuous/Discrete Time Delay System
Energy Technology Data Exchange (ETDEWEB)
Kim, J.H.; Lee, S.K.; Park, H.B. [Kyungpook National University, Taegu (Korea, Republic of); Jeung, E.T. [Changwon National University, Changwon (Korea, Republic of)
1998-04-01
In this paper, we consider the problem of designing H{sup {infinity}} state feedback controller for the generalized time delay systems with delayed states and control inputs in continuous and discrete time cases, respectively. The generalized time delay system problems are solved on the basis of LMI(linear matrix inequality) technique considering time delays. The sufficient condition for the existence of controller and H{sup {infinity}} state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be rewritten as a LMI form in terms of transformed variables. The proposed controller design method can be extended into the problem of robust H{sup {infinity}} state feedback controller design method easily. (author). 15 refs.
Optimization of time-delayed feedback control of seismically excited building structures
Institute of Scientific and Technical Information of China (English)
Xue-ping LI; Wei-qiu ZHU; Zu-guang YING
2008-01-01
An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Ito stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.
Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops
Huang, Bo; Tian, Xinyu; Liu, Feng; Wang, Wei
2016-11-01
Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.
The role of time delay in adaptive cellular negative feedback systems.
Lapytsko, Anastasiya; Schaber, Jörg
2016-06-07
Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour.
Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay
Chunodkar, Apurva A.; Akella, Maruthi R.
2013-12-01
This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.
Stability and Performance of First-Order Linear Time-Delay Feedback Systems: An Eigenvalue Approach
Directory of Open Access Journals (Sweden)
Shu-An He
2011-01-01
Full Text Available Linear time-delay systems with transcendental characteristic equations have infinitely many eigenvalues which are generally hard to compute completely. However, the spectrum of first-order linear time-delay systems can be analyzed with the Lambert function. This paper studies the stability and state feedback stabilization of first-order linear time-delay system in detail via the Lambert function. The main issues concerned are the rightmost eigenvalue locations, stability robustness with respect to delay time, and the response performance of the closed-loop system. Examples and simulations are presented to illustrate the analysis results.
Mullaney, Kellie M; Carpenter, Shana K; Grotenhuis, Courtney; Burianek, Steven
2014-11-01
When participants answer a test question and then receive feedback of the correct answer, studies have shown that the feedback is more effective when it is delayed by several seconds rather than provided immediately (e.g., Brackbill & Kappy, Journal of Comparative and Physiological Psychology, 55, 14-18, 1962; Schroth, Contemporary Educational Psychology, 17, 78-82, 1992). Despite several demonstrations of this delay-of-feedback benefit, a theoretical explanation for this finding has not yet been developed. The present study tested the hypothesis that brief delays of feedback are beneficial because they encourage anticipation of the upcoming feedback. In Experiment 1, participants answered obscure trivia questions, and before receiving the answer, they rated their curiosity to know the answer. The answer was then provided either immediately or after a 4-s delay. A later final test over the same questions revealed a significant delay-of-feedback benefit, but only for items that had been rated high in curiosity. Experiment 2 replicated this same effect and showed that the delay-of-feedback benefit only occurs when feedback is provided after a variable, unpredictable time duration (either 2, 4, or 8 s) rather than after a constant duration (always 4 s). These findings demonstrate that the delay-of-feedback effect appears to be greatest under conditions in which participants are curious to know the answer and when the answer is provided after an unpredictable time interval.
Winner-take-all selection in a neural system with delayed feedback
Brandt, Sebastian F
2007-01-01
We consider the effects of temporal delay in a neural feedback system with excitation and inhibition. The topology of our model system reflects the anatomy of the avian isthmic circuitry, a feedback structure found in all classes of vertebrates. We show that the system is capable of performing a `winner-take-all' selection rule for certain combinations of excitatory and inhibitory feedback. In particular, we show that when the time delays are sufficiently large a system with local inhibition and global excitation can function as a `winner-take-all' network and exhibit oscillatory dynamics. We demonstrate how the origin of the oscillations can be attributed to the finite delays through a linear stability analysis.
Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback
Energy Technology Data Exchange (ETDEWEB)
Sun Zhongkui [Department of Applied Mathematics, Northwestern Polytechnic University, Xi' an 710072 (China)] e-mail: sunzk205@mail.nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnic University, Xi' an 710072 (China)] e-mail: weixu@nwpu.edu.cn; Yang Xiaoli [Department of Applied Mathematics, Northwestern Polytechnic University, Xi' an 710072 (China); Department of Mathematics, Shaan' xi Normal University, Xi' an 710062 (China); Fang Tong [Department of Applied Mechanics, Northwestern Polytechnic University, Xi' an 710072 (China)
2006-02-01
The chaotic behavior of a double-well Duffing oscillator with both delayed displacement and velocity feedbacks under a harmonic excitation is investigated. By means of the Melnikov technique, necessary condition for onset of chaos resulting from homoclinic bifurcation is derived analytically. The analytical results reveal that for negative feedback the presence of time delay lowers the threshold and enlarges the possible chaotic domain in parameter space; while for positive feedback the presence of time delay enhances the threshold and reduces the possible chaotic domain in parameter space, which are further verified numerically through Poincare maps of the original system. Furthermore, the effect of the control gain parameters on the chaotic motion of the original system is studied in detail.
Multi-objective optimal design of active vibration absorber with delayed feedback
Huan, Rong-Hua; Chen, Long-Xiang; Sun, Jian-Qiao
2015-03-01
In this paper, a multi-objective optimal design of delayed feedback control of an actively tuned vibration absorber for a stochastically excited linear structure is investigated. The simple cell mapping (SCM) method is used to obtain solutions of the multi-objective optimization problem (MOP). The continuous time approximation (CTA) method is applied to analyze the delayed system. Stability is imposed as a constraint for MOP. Three conflicting objective functions including the peak frequency response, vibration energy of primary structure and control effort are considered. The Pareto set and Pareto front for the optimal feedback control design are presented for two examples. Numerical results have found that the Pareto optimal solutions provide effective delayed feedback control design.
Delay-dependent H-infinity control for continuous time-delay systems via state feedback
Institute of Scientific and Technical Information of China (English)
Xinchun JIA; Yibo GAO; Jingmei ZHANG; Nanning ZHENG
2007-01-01
The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-dependent stability with H-infinity performance for such systems is presented, and a criterion of existence and some design methods of delay-dependent H-infinity controller for such systems are proposed in term of a set of matrix inequalities, which is solved efficiently by an iterative algorithm. Further, the corresponding results for the delay-dependent robust H-infinity analysis and robust H-infinity control problems for continuous time-delay uncertain systems are given. Finally, two numerical examples are given to illustrate the efficiency of the proposed method by comparing with the other existing results.
Effects of Concurrent and Delayed Visual Feedback on Motor Memory Consolidation.
Wang, Dangxiao; Li, Teng; Yang, Gaofeng; Zhang, Yuru
2017-02-22
In many domains, it's important to understand the ways in which humans learn and develop new motor skills effectively and efficiently. For example, in dental operations, the ability to apply a weak force with a required tolerance is a fundamental skill to ensure diagnostic and treatment outcome, but acquiring such a skill is a challenge for novices. In this paper, we focus on motor memory for producing normally applied force by a hand-held probe and we compare the effects of two feedback methods on motor memory consolidation. Fourteen participants were randomly assigned to two groups: a Concurrent Group and a Delayed Group. Participants in the Concurrent Group were trained to apply a target force with concurrent visual feedback, while those in the Delayed Group were trained with delayed visual feedback. The task included two phases: a Training/Testing Phase, and a Retention Phase. The results indicated that participants in the Delayed Group obtained more effective learning outcomes and better retention effects. These findings provide a new perspective to explore the relationship between feedback methods and the cognitive process of motor skill learning, and open a new way to train motor skill using more effective methods than the traditional concurrent feedback approaches.
Chaotification of Quasi-zero Stiffness System Via Direct Time-delay Feedback
Directory of Open Access Journals (Sweden)
Shuyong Liu
2013-03-01
Full Text Available This paper presents a chaotification method based on direct time-delay feedback control for a quasi-zero-stiffness isolation system. An analytical function of time-delay feedback control is derived based on differential-geometry control theory. Furthermore, the feasibility and effectiveness of this method was verified by numerical simulations. Numerical simulations show that this method holds the favorable aspects including the advantage of using tiny control gain, the capability of chaotifying across a large range of parametric domain and the high feasibility of the control implement.
Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delays
Guan, Wei
2012-04-01
This article studies the adaptive output feedback control problem of a class of uncertain nonlinear systems with unknown time delays. The systems considered are dominated by a triangular system without zero dynamics satisfying linear growth in the unmeasurable states. The novelty of this article is that a universal-type adaptive output feedback controller is presented to time-delay systems, which can globally regulate all the states of the uncertain systems without knowing the growth rate. An illustrative example is provided to show the applicability of the developed control strategy.
Global adaptive output feedback control for a class of nonlinear time-delay systems.
Zhai, Jun-yong; Zha, Wen-ting
2014-01-01
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.
Directory of Open Access Journals (Sweden)
Shuiqing Yu
2013-01-01
Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.
Adaptive output feedback control for nonlinear time-delay systems using neural network
Institute of Scientific and Technical Information of China (English)
Weisheng CHEN; Junmin LI
2006-01-01
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on LyapunovKrasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved.The feasibility is investigated by two illustrative simulation examples.
State Feedback Consensus for Multi-Agent System with Multiple Time-Delays
Directory of Open Access Journals (Sweden)
Jia Wei
2013-09-01
Full Text Available In this paper, we study the multi-agent system to achieve a faster consensus with multiple time-delays under a directed asymmetric information exchange topology. We first assume that an agent processes its own state information with self-delay and receives state information from its neighbors with communication delays. Based on state proportion derivative feedback, the improved consensus protocol can accelerate the system to achieve a consensus. A sufficient condition for reaching consensus is then derived based on the Nyquist stability criterion and frequency domain analysis. In addition, a specific form of consensus equilibrium is obtained which is influenced by the initial states of agents, time-delays and state feedback intensity. Finally, simulations are presented to verify the validity of the theoretical results.
Institute of Scientific and Technical Information of China (English)
Gu Wei-Dong; Sun Zhi-Yong; Wu Xiao-Ming; Yu Chang-Bin
2013-01-01
In this paper we present an adaptive scheme to achieve lag synchronization for uncertain dynamical systems with time delays and unknown parameters.In contrast to the nonlinear feedback scheme reported in the previous literature,the proposed controller is a linear one which only involves simple feedback information from the drive system with signal propagation lags.Besides,the unknown parameters can also be identified via the proposed updating laws in spite of the existence of model delays and transmission lags,as long as the linear independence condition between the related function elements is satisfied.Two examples,i.e.,the Mackey-Glass model with single delay and the Lorenz system with multiple delays,are employed to show the effectiveness of this approach.Some robustness issues are also discussed,which shows that the proposed scheme is quite robust in switching and noisy environment.
Institute of Scientific and Technical Information of China (English)
WANG Huailei; WANG Zaihua; HU Haiyan
2004-01-01
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms, and with linear delayed velocity feedback. The analysis indicates that for a sufficiently large velocity feedback gain, the equilibrium of the system may undergo a number of stability switches with an increase of time delay, and then becomes unstable forever. At each critical value of time delay for which the system changes its stability, a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay. The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability. It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions.
Energy Technology Data Exchange (ETDEWEB)
Shim, D.S. [Chung-Ang University, Seoul (Korea, Republic of)
1998-04-01
We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H{infinity} control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system. (author). 9 refs.
A matrix transformation approach to H∞ control via static output feedback for input delay systems
Du, B; Shu, Z; Lam, J.
2009-01-01
This paper addresses the static output feedback (SOF) H∞ control for continuous-time linear systems with an unknown input delay from a novel perspective. New equivalent characterizations on the stability and H∞ performance of the closed-loop system are established in terms of nonlinear matrix inequalities with free parametrization matrices. These delay-dependent characterizations possess a special monotonic structure, which leads to linearized iterative computation. The effectiveness and meri...
Institute of Scientific and Technical Information of China (English)
Peng CUI; Chenghui ZHANG
2008-01-01
The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed.The sufficient conditions of the existence of observers,which are normal linear time-delay systems,and the corresponding design steps are presented via linear matrix inequality(LMI).Moreover,the observer-based feedback stabilizing controller is obtained.Three examples are given to show the effectiveness of the proposed methods.
Incomplete state feedback for time delay systems: observer applications in multidelay compensation
Energy Technology Data Exchange (ETDEWEB)
Ogunnaike, B.A.; Ray, W.H.
1984-09-01
This paper demonstrates how a recently developed observer for time delay systems may be used to estimate needed state variables for implementation of multivariable time delay compensation. The general results are illustrated by an example of a multireactor plant in which only one reactor concentration can be measured. The observer worked well in simulation for both multivariable PID control and multidelay compensated PID control and allowed both schemes to function with estimated state variables in the feedback loop. 16 references, 5 figures.
Recovery of systems with a linear filter and nonlinear delay feedback in periodic regimes.
Ponomarenko, V I; Prokhorov, M D
2008-12-01
We propose a set of methods for the estimation of the parameters of time-delay systems with a linear filter and nonlinear delay feedback performing periodic oscillations. The methods are based on an analysis of the system response to regular external perturbations and are valid only for systems whose dynamics can be perturbed. The efficiency of the methods is illustrated using both numerical and experimental data.
Energy Technology Data Exchange (ETDEWEB)
Rezaie, B; Motlagh, M R Jahed; Analoui, M [Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Khorsandi, S [Amirkabir University of Technology, Hafez St., Tehran (Iran, Islamic Republic of)], E-mail: brezaie@iust.ac.ir
2009-10-02
This paper deals with the problem of Hopf bifurcation control for a class of nonlinear time-delay systems. A dynamic delayed feedback control method is utilized for stabilizing unstable fixed points near Hopf bifurcation. Using a linear stability analysis, we show that under certain conditions of the control parameters, and without changing the operating point of the system, the onset of Hopf bifurcation is delayed. Meanwhile, by applying the center manifold theorem and the normal form theory, we obtain formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions of the closed loop system. Numerical simulations are given to justify the validity of the analytical results for the system controlled by the proposed method.
Directed Current Induced by an Symmetrically ac Force Coexisting with a Time-Delayed Feedback
Institute of Scientific and Technical Information of China (English)
易述婷; 宋晖; 欧志娥; 艾保全; 熊建文
2012-01-01
We study the transport of overdamped Brownian particles in a symmetricaJly periodic potential in the presence of an asymmetrically ac driving force and a time-delayed feedback. It is found that for low frequencies, the average velocity can be negative by changing the driving amplitude, for high frequencies, there exists an optimized driving amplitude at which the average velocity takes its maximum value. Additionally, there is a threshold value of driving amplitude below which no directed transport can be obtained for high frequencies. For the large value of the delay time, the average velocity is independent of the delay time.
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Directory of Open Access Journals (Sweden)
Mahtab Zadkhast
2017-09-01
Full Text Available The present study investigated the impact of immediate and delayed corrective feedback on Iranian EFL learners’ willingness to communicate. To attain the purpose of the study, 45 females intermediate students that were roughly selected according to their previous grades and their assigned level in language school were chosen to participate in this study. Then they were divided to three equal groups: Experimental group 1(immediate feedback, Experimental group 2 (delayed feedback and control group. In the first session, WTC questionnaire (MacIntyre ,2001 modified by Pourya Baghaei and Ali Dourakhshan was administered to all groups as pretests. In group 1 the students’ errors were corrected by the teacher immediately after committing but in the second group, the students’ errors were written by the teacher and her comments were given to them when they finished their tasks. For the control group, the routine procedure of New Headway intermediate was followed. After about 12 sessions WTC was repeated as posttests. The findings revealed that immediate and delayed corrective feedback have a significant effect on EFL students’ level of WTC. The results, also demonstrated that experimental group 1 (immediate feedback outweighed the other two groups in relation to their WTC. The findings have implication for pedagogy as well as further research.
Directory of Open Access Journals (Sweden)
A.M. Elnaggar
2016-01-01
Full Text Available An analysis of primary, superharmonic of order five, and subharmonic of order one-three resonances for non-linear s.d.o.f. system with two distinct time-delays under an external excitation is investigated. The method of multiple scales is used to determine two first order ordinary differential equations which describe the modulation of the amplitudes and the phases. Steady-state solutions and their stabilities in each resonance are studied. Numerical results are obtained by using the Software of Mathematica, which presented in a group of figures. The effect of the feedback gains and time-delays on the non-linear response of the system is discussed and it is found that: an appropriate feedback can enhance the control performance. A suitable choice of the feedback gains and time-delays can enlarge the critical force amplitude, and reduce the peak amplitude of the response (or peak amplitude of the free oscillation term for the case of primary resonance (superharmonic resonance. Furthermore, a proper feedback can eliminate saddle-node bifurcation, thereby eliminating jump and hysteresis phenomena taking place in the corresponding uncontrolled system. For subharmonic resonance, an adequate feedback can reduce the regions of subharmonic resonance response.
Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness.
Kravchuk, Kseniia; Vidybida, Alexander
2014-02-01
Spiking statistics of a self-inhibitory neuron is considered. The neuron receives excitatory input from a Poisson stream and inhibitory impulses through a feedback line with a delay. After triggering, the neuron is in the refractory state for a positive period of time. Recently, [35,6], it was proven for a neuron with delayed feedback and without the refractory state, that the output stream of interspike intervals (ISI) cannot be represented as a Markov process. The refractory state presence, in a sense limits the memory range in the spiking process, which might restore Markov property to the ISI stream. Here we check such a possibility. For this purpose, we calculate the conditional probability density P (tn+1 l tn,...,t1,t0), and prove exactly that it does not reduce to P (tn+1 l tn,...,t1) for any n ⋝0. That means, that activity of the system with refractory state as well cannot be represented as a Markov process of any order. We conclude that it is namely the delayed feedback presence which results in non-Markovian statistics of neuronal firing. As delayed feedback lines are common for any realistic neural network, the non-Markovian statistics of the network activity should be taken into account in processing of experimental data.
Theoretical feasibility of suppressing offensive sports chants by means of delayed feedback of sound
Wijngaarden, S.J. van; Balken, J.A. van
2007-01-01
A novel approach for disrupting offensive chants at sporting events is proposed, based on attacking synchronization between individuals. Since timing is crucial for coordination between chanters, disruption of timing is expected to be effective against undesired chants. Delayed auditory feedback is
PERMANENCE AND GLOBAL STABILITY OF A FEEDBACK CONTROL SYSTEM WITH DELAYS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper considers a feedback control systems of differential equations with delays. By applying the differential inequality theorem, sufficient conditions for the permanence of the system are obtained. Also, by constructing a suitable Lyapunov functional, a criterion for the global stability of the model is obtained.
Chon, HeeCheong; Kraft, Shelly Jo; Zhang, Jingfei; Loucks, Torrey; Ambrose, Nicoline G.
2013-01-01
Purpose: Delayed auditory feedback (DAF) is known to induce stuttering-like disfluencies (SLDs) and cause speech rate reductions in normally fluent adults, but the reason for speech disruptions is not fully known, and individual variation has not been well characterized. Studying individual variation in susceptibility to DAF may identify factors…
Positive Periodic Solutions of Cooperative Systems with Delays and Feedback Controls
Directory of Open Access Journals (Sweden)
Tursuneli Niyaz
2013-01-01
Full Text Available This paper studies a class of periodic n species cooperative Lotka-Volterra systems with continuous time delays and feedback controls. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin, some new sufficient conditions on the existence of positive periodic solutions are established.
Douik, Ahmed S.
2015-11-05
This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.
Yamamoto, Kosuke; Kawabata, Hideaki
2014-12-01
We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.
Delay-induced transport in a rocking ratchet under feedback control.
Loos, Sarah A M; Gernert, Robert; Klapp, Sabine H L
2014-05-01
Based on the Fokker-Planck equation we investigate the transport of an overdamped colloidal particle in a static, asymmetric periodic potential supplemented by a time-dependent, delayed feedback force, F(fc). For a given time t, F(fc) depends on the status of the system at a previous time t-τ(D), with τ(D) being a delay time, specifically on the delayed mean particle displacement (relative to some "switching position"). For nonzero delay times F(fc)(t) develops nearly regular oscillations, generating a net current in the system. Depending on the switching position, this current is nearly as large or even larger than that in a conventional open-loop rocking ratchet. We also investigate thermodynamic properties of the delayed nonequilibrium system and we suggest an underlying Langevin equation which reproduces the Fokker-Planck results.
Gaudreault, Mathieu; Drolet, François; Viñals, Jorge
2010-11-01
Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear stochastic differential delay equation with feedback. Our results assume that the delay time τ is small compared to other characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line is found, the location of which depends on the conditional average , where x(t) is the dynamical variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deterministic limit and hence that the interaction between fluctuation correlations and delay affect the stability of the solutions of the model equation studied.
Liu, Shuang; Zhao, Shuang-Shuang; Wang, Zhao-Long; Li, Hai-Bin
2015-01-01
The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value. A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).
Overt vs. covert speed cameras in combination with delayed vs. immediate feedback to the offender.
Marciano, Hadas; Setter, Pe'erly; Norman, Joel
2015-06-01
Speeding is a major problem in road safety because it increases both the probability of accidents and the severity of injuries if an accident occurs. Speed cameras are one of the most common speed enforcement tools. Most of the speed cameras around the world are overt, but there is evidence that this can cause a "kangaroo effect" in driving patterns. One suggested alternative to prevent this kangaroo effect is the use of covert cameras. Another issue relevant to the effect of enforcement countermeasures on speeding is the timing of the fine. There is general agreement on the importance of the immediacy of the punishment, however, in the context of speed limit enforcement, implementing such immediate punishment is difficult. An immediate feedback that mediates the delay between the speed violation and getting a ticket is one possible solution. This study examines combinations of concealment and the timing of the fine in operating speed cameras in order to evaluate the most effective one in terms of enforcing speed limits. Using a driving simulator, the driving performance of the following four experimental groups was tested: (1) overt cameras with delayed feedback, (2) overt cameras with immediate feedback, (3) covert cameras with delayed feedback, and (4) covert cameras with immediate feedback. Each of the 58 participants drove in the same scenario on three different days. The results showed that both median speed and speed variance were higher with overt than with covert cameras. Moreover, implementing a covert camera system along with immediate feedback was more conducive to drivers maintaining steady speeds at the permitted levels from the very beginning. Finally, both 'overt cameras' groups exhibit a kangaroo effect throughout the entire experiment. It can be concluded that an implementation strategy consisting of covert speed cameras combined with immediate feedback to the offender is potentially an optimal way to motivate drivers to maintain speeds at the
Directory of Open Access Journals (Sweden)
Li Qiu
2013-01-01
Full Text Available This paper is concerned with the problem of modeling and output feedback controller design for a class of discrete-time networked control systems (NCSs with time delays and packet dropouts. A Markovian jumping method is proposed to deal with random time delays and packet dropouts. Different from the previous studies on the issue, the characteristics of networked communication delays and packet dropouts can be truly reflected by the unified model; namely, both sensor-to-controller (S-C and controller-to-actuator (C-A time delays, and packet dropouts are modeled and their history behavior is described by multiple Markov chains. The resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays model. Based on Lyapunov stability theory and linear matrix inequality (LMI method, sufficient conditions of the stochastic stability and output feedback controller design method for NCSs with random time delays and packet dropouts are presented. A numerical example is given to illustrate the effectiveness of the proposed method.
Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.
Directory of Open Access Journals (Sweden)
Kosuke Yamamoto
Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.
2013-01-01
Background Teacher feedback on student reflective writing is recommended to improve learners’ reflective competence. To be able to improve teacher feedback on reflective writing, it is essential to gain insight into which characteristics of written feedback stimulate students’ reflection processes. Therefore, we investigated (1) which characteristics can be distinguished in written feedback comments on reflective writing and (2) which of these characteristics are perceived to stimulate students’ reflection processes. Methods We investigated written feedback comments from forty-three teachers on their students’ reflective essays. In Study 1, twenty-three medical educators grouped the comments into distinct categories. We used Multiple Correspondence Analysis to determine dimensions in the set of comments. In Study 2, another group of twenty-one medical educators individually judged whether the comments stimulated reflection by rating them on a five-point scale. We used t-tests to investigate whether comments classified as stimulating and not stimulating reflection differed in their scores on the dimensions. Results Our results showed that characteristics of written feedback comments can be described in three dimensions: format of the feedback (phrased as statement versus question), focus of the feedback (related to the levels of students’ reflections) and tone of the feedback (positive versus negative). Furthermore, comments phrased as a question and in a positive tone were judged as stimulating reflection more than comments at the opposite side of those dimensions (t = (14.5) = 6.48; p = reflective essays should be formulated as a question, positive in tone and tailored to the individual student’s reflective level in order to stimulate students to reflect on a slightly higher level. Further research is needed to examine whether incorporating these characteristics into teacher training helps to improve the quality of written feedback comments
Dekker, Hanke; Schönrock-Adema, Johanna; Snoek, Jos W; van der Molen, Thys; Cohen-Schotanus, Janke
2013-07-08
Teacher feedback on student reflective writing is recommended to improve learners' reflective competence. To be able to improve teacher feedback on reflective writing, it is essential to gain insight into which characteristics of written feedback stimulate students' reflection processes. Therefore, we investigated (1) which characteristics can be distinguished in written feedback comments on reflective writing and (2) which of these characteristics are perceived to stimulate students' reflection processes. We investigated written feedback comments from forty-three teachers on their students' reflective essays. In Study 1, twenty-three medical educators grouped the comments into distinct categories. We used Multiple Correspondence Analysis to determine dimensions in the set of comments. In Study 2, another group of twenty-one medical educators individually judged whether the comments stimulated reflection by rating them on a five-point scale. We used t-tests to investigate whether comments classified as stimulating and not stimulating reflection differed in their scores on the dimensions. Our results showed that characteristics of written feedback comments can be described in three dimensions: format of the feedback (phrased as statement versus question), focus of the feedback (related to the levels of students' reflections) and tone of the feedback (positive versus negative). Furthermore, comments phrased as a question and in a positive tone were judged as stimulating reflection more than comments at the opposite side of those dimensions (t = (14.5) = 6.48; p = reflective essays should be formulated as a question, positive in tone and tailored to the individual student's reflective level in order to stimulate students to reflect on a slightly higher level. Further research is needed to examine whether incorporating these characteristics into teacher training helps to improve the quality of written feedback comments on reflective writing.
Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding
Douik, Ahmed S.
2013-10-01
In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.
Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback
Lindner, Benjamin; Doiron, Brent; Longtin, André
2005-12-01
A network of leaky integrate-and-fire neurons with global inhibitory feedback and under the influence of spatially correlated noise is studied. We calculate the spectral statistics of the network (power spectrum of the population activity, cross spectrum between spike trains of different neurons) as well as of a single neuron (power spectrum of spike train, cross spectrum between external noise and spike train) within the network. As shown by comparison with numerical simulations, our theory works well for arbitrary network size if the feedback is weak and the amount of external noise does not exceed that of the internal noise. By means of our analytical results we discuss the quality of the correlation-induced oscillation in a large network as a function of the transmission delay and the internal noise intensity. It is shown that the strongest oscillation is obtained in a system with zero internal noise and adiabatically long delay (i.e., the delay period is longer than any other time scale in the system). For a neuron with a strong intrinsic frequency, the oscillation becomes strongly anharmonic in the case of a long delay time. We also discuss briefly the kind of synchrony introduced by the feedback-induced oscillation.
Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method
Energy Technology Data Exchange (ETDEWEB)
Souza de Paula, Aline [COPPE - Department of Mechanical Engineering, Universidade Federal do Rio de Janeiro, P.O. Box 68503, 21.941-972 Rio de Janeiro, RJ (Brazil)], E-mail: alinesp@ufrj.br; Savi, Marcelo Amorim [COPPE - Department of Mechanical Engineering, Universidade Federal do Rio de Janeiro, P.O. Box 68503, 21.941-972 Rio de Janeiro, RJ (Brazil)], E-mail: savi@mecanica.ufrj.br
2009-12-15
Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.
Comments on multiple oscillatory solutions in systems with time-delay feedback
Directory of Open Access Journals (Sweden)
Michael Stich
2015-11-01
Full Text Available A complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms is considered. In particular, multiple oscillatory solutions and their properties are studied. We present novel results regarding the disappearance of limit cycle solutions, derive analytical criteria for frequency degeneration, amplitude degeneration, and frequency extrema. Furthermore, we discuss the influence of the phase shift parameter and show analytically that the stabilization of the steady state and the decay of all oscillations (amplitude death cannot happen for global feedback only. Finally, we explain the onset of traveling wave patterns close to the regime of amplitude death.
Directory of Open Access Journals (Sweden)
Huimei Jia
2013-01-01
Full Text Available This paper is concerned with the issues of passivity analysis and dynamic output feedback (DOF passive control for uncertain switched stochastic systems with time-varying delay via multiple storage functions (MSFs method. Firstly, based on the MSFs method, a sufficient condition for the existence of the passivity of the underlying system is established in terms of linear matrix inequalities (LMIs. Furthermore, the problem of dynamic output feedback passive control is investigated. Based on the obtained passivity condition, a sufficient condition for the existence of the desired switched passive controller is derived. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints
Directory of Open Access Journals (Sweden)
Wei-Wei Qin
2014-01-01
Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.
Pearson, Adam R; West, Tessa V; Dovidio, John F; Powers, Stacie Renfro; Buck, Ross; Henning, Robert
2008-12-01
Intergroup interactions between racial or ethnic majority and minority groups are often stressful for members of both groups; however, the dynamic processes that promote or alleviate tension in intergroup interaction remain poorly understood. Here we identify a behavioral mechanism-response delay-that can uniquely contribute to anxiety and promote disengagement from intergroup contact. Minimally acquainted White, Black, and Latino participants engaged in intergroup or intragroup dyadic conversation either in real time or with a subtle temporal disruption (1-s delay) in audiovisual feedback. Whereas intergroup dyads reported greater anxiety and less interest in contact after engaging in delayed conversation than after engaging in real-time conversation, intragroup dyads reported less anxiety in the delay condition than they did after interacting in real time. These findings have theoretical and practical implications for understanding intergroup communication and social dynamics and for promoting positive intergroup contact.
Stimulating teachers' professional development using video feedback with reciprocal peer coaching.
Schildwacht, R.; Bolhuis, S.; Akker, J. van den
2007-01-01
Our research aims to formulate design guidelines for stimulating teachers' professional development using video feedback in collaborative settings. The study investigates guidelines concerning video feedback in peer coaching settings and focuses on a setting with three roles (of trainee, coach and o
Global view of Hopf bifurcations of a van der Pol oscillator with delayed state feedback
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This paper presents both analytical and numerical studies on the global view of Hopf bifurcations of a van der Pol oscillator with delayed state feedback.Based on a detailed analysis of the stability switches of the trivial equilibrium of the system,the stability charts are given in a parameter space consisting of the time delay and the feedback gains.The center manifold reduc-tion and the normal form method are used to study Hopf bifurcations with respect to the time delay.To gain an insight into the persistence of a Hopf bifurcation as the time delay varies farther away from its critical value,the method of multiple scales is used to obtain the global view of Hopf bifurcations with respect to the time delay.Both the analytical results of Hopf bifurca-tions and global view of those bifurcations are validated via a collocation scheme implemented on DDE-Biftool.The most important discovery in this paper is the well-structured global view of Hopf bifurcations for the system of concern,showing the generality of the persistence of Hopf bifurcations.
Directory of Open Access Journals (Sweden)
Kosuke Yamamoto
2011-10-01
Full Text Available We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. Participants read some sentences with specific delay times of DAF (0, 30, 75, 120 ms during three minutes to induce ‘Lag Adaptation’. After the adaptation, they then judged the simultaneity between motor sensation and vocal sound given feedback in producing simple voice but not speech. We found that speech production with lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.
Bifurcation Analysis and Chaos Control in a Modified Finance System with Delayed Feedback
Yang, Jihua; Zhang, Erli; Liu, Mei
2016-06-01
We investigate the effect of delayed feedback on the finance system, which describes the time variation of the interest rate, for establishing the fiscal policy. By local stability analysis, we theoretically prove the existences of Hopf bifurcation and Hopf-zero bifurcation. By using the normal form method and center manifold theory, we determine the stability and direction of a bifurcating periodic solution. Finally, we give some numerical solutions, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable equilibrium or periodic orbit.
Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems.
Wang, Rong-Jyue; Lin, Wei-Wei; Wang, Wen-June
2004-04-01
This paper investigates the problem of designing a fuzzy state feedback controller to stabilize an uncertain fuzzy system with time-varying delay. Based on Lyapunov criterion and Razumikhin theorem, some sufficient conditions are derived under which the parallel-distributed fuzzy control can stabilize the whole uncertain fuzzy time-delay system asymptotically. By Schur complement, these sufficient conditions can be easily transformed into the problem of LMIs. Furthermore, the tolerable bound of the perturbation is also obtained. A practical example based on the continuous stirred tank reactor (CSTR) model is given to illustrate the control design and its effectiveness.
Feedback control of time-delay systems with bounded control and state
Directory of Open Access Journals (Sweden)
M. Dambrine
1995-01-01
Full Text Available This paper is concerned with the problem of stabilizing linear time-delay systems under state and control linear constraints. For this, necessary and sufficient conditions for a given non-symmetrical polyhedral set to be positively invariant are obtained. Then existence conditions of linear state feedback control law respecting the constraints are established, and a procedure is given in order to calculate such a controller. The paper concerns memoryless controlled systems but the results can be applied to cases of delayed controlled systems. An example is given.
Vyhlídal, Tomáš; Olgac, Nejat; Kučera, Vladimír
2014-12-01
This paper deals with the problem of active vibration suppression using the concept of delayed resonator (DR) absorber with acceleration feedback. A complete dynamic analysis of DR and its coupling with a single degree of freedom mechanical system are performed. Due to the presence of a delay in the acceleration feedback, the dynamics of the resonator itself, as well as the dynamics of combined system are of ‘neutral' character. On this system, spectral methods are applied to perform a complete stability analysis. Particularly, the method of cluster treatment of characteristic roots is used to determine stability boundaries in the space of the resonator parameters. Based on this analysis, a methodology to select the resonator parameters is proposed in order to guarantee desirable suppression characteristics and to provide safe stability margins. An example case study is included to demonstrate these analytical results.
Robust chaos synchronization based on adaptive fuzzy delayed feedback $\\mathcal{H}_{∞}$ control
Indian Academy of Sciences (India)
Choon Ki Ahn
2012-03-01
In this paper, we propose a new adaptive $\\mathcal_{∞}$ synchronization strategy, called an adaptive fuzzy delayed feedback $\\mathcal_{∞}$ synchronization (AFDFHS) strategy, for chaotic systems with uncertain parameters and external disturbances. Based on Lyapunov–Krasovskii theory, Takagi–Sugeno (T–S) fuzzy model and adaptive delayed feedback $\\mathcal_{∞}$ control scheme, the AFDFHS controller is presented such that the synchronization error system is asymptotically stable with a guaranteed $\\mathcal_{∞}$ performance. It is shown that the design of the AFDFHS controller with adaptive law can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed AFDFHS approach.
Pyragas, Viktoras; Pyragas, Kestutis
2015-08-01
In a recent paper [Phys. Rev. E 91, 012920 (2015)] Olyaei and Wu have proposed a new chaos control method in which a target periodic orbit is approximated by a system of harmonic oscillators. We consider an application of such a controller to single-input single-output systems in the limit of an infinite number of oscillators. By evaluating the transfer function in this limit, we show that this controller transforms into the known extended time-delayed feedback controller. This finding gives rise to an approximate finite-dimensional theory of the extended time-delayed feedback control algorithm, which provides a simple method for estimating the leading Floquet exponents of controlled orbits. Numerical demonstrations are presented for the chaotic Rössler, Duffing, and Lorenz systems as well as the normal form of the Hopf bifurcation.
Analysis of stability of a Power System by using Delay Static State Feedback
Directory of Open Access Journals (Sweden)
Sindy Paola Amaya
2012-12-01
Full Text Available This article presents the analysis of stability of a power system modeled as Infinite Bus Connected Generator with delay static state feedback. The model of the power system is described by nonlinear differential- algebraic equations. For controller design, we linealize the nonlinear differential-algebraic model around an operation point to obtain a lineal differential-algebraic model. As of this model obtains the Kronecker -Weierstrass model which designs the controller. To obtain the K gain of the controller outline inequalities matrix lineal (LMI's . Then it makes a study of the maximum delay that it supports in the state feedback. At the end of the article present the results and the conclusions.
Yan, Xuehua
2014-01-01
This paper is the further investigation of work of Yan and Liu, 2011, and considers the global practical tracking problem by output feedback for a class of uncertain nonlinear systems with not only unmeasured states dependent growth but also time-varying time delay. Compared with the closely related works, the remarkableness of the paper is that the time-varying time delay and unmeasurable states are permitted in the system nonlinear growth. Motivated by the related tracking results and flexibly using the ideas and techniques of universal control and dead zone, an adaptive output-feedback tracking controller is explicitly designed with the help of a new Lyapunov-Krasovskii functional, to make the tracking error prescribed arbitrarily small after a finite time while keeping all the closed-loop signals bounded. A numerical example demonstrates the effectiveness of the results. PMID:25276859
Institute of Scientific and Technical Information of China (English)
XIANG LinYing; LIU ZhongXin; CHEN ZengQiang; YUAN ZhuZhi
2008-01-01
Weighted complex dynamical networks with heterogeneous delays in both con-tinuous-time and discrete-time domains are controlled by applying local feedback injections to a small fraction of network nodes. Some generic stability criteria en-suring delay-independent stability are derived for such controlled networks in terms of linear matrix inequalities (LMIs), which guarantee that by placing a small number of feedback controllers on some nodes the whole network can be pinned to some desired homogenous states. In some particular cases, a single controller can achieve the control objective. It is found that stabilization of such pinned networks is completely determined by the dynamics of the individual uncoupled node, the overall coupling strength, the inner-coupling matrix, and the smallest eigenvalue of the coupling and control matrix. Numerical simulations of a weighted network composing of a 3-dimensional nonlinear system are finally given for illustration and verification.
Time-delayed feedback control optimization for quasi linear systems under random excitations
Institute of Scientific and Technical Information of China (English)
Xueping Li; Detain Wei; Weiqiu Zhu
2009-01-01
A strategy for time-delayed feedback control optimization of quasi linear systems with random excita-tion is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged It6 equation. Finally, numerical examples are used to illustrate the proposed con-trol method, and the numerical results are confirmed by Monte Carlo simulation.
Pyragas, Viktoras; Pyragas, Kestutis
2015-08-01
In a recent paper [Phys. Rev. E 91, 012920 (2015), 10.1103/PhysRevE.91.012920] Olyaei and Wu have proposed a new chaos control method in which a target periodic orbit is approximated by a system of harmonic oscillators. We consider an application of such a controller to single-input single-output systems in the limit of an infinite number of oscillators. By evaluating the transfer function in this limit, we show that this controller transforms into the known extended time-delayed feedback controller. This finding gives rise to an approximate finite-dimensional theory of the extended time-delayed feedback control algorithm, which provides a simple method for estimating the leading Floquet exponents of controlled orbits. Numerical demonstrations are presented for the chaotic Rössler, Duffing, and Lorenz systems as well as the normal form of the Hopf bifurcation.
Noise-induced attractor annihilation in the delayed feedback logistic map
Energy Technology Data Exchange (ETDEWEB)
Pisarchik, A.N., E-mail: apisarch@cio.mx [Centro de Investigaciones en Optica, Loma del Bosque 115, Leon, Guanajuato (Mexico); Centre for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid (Spain); Martínez-Zérega, B.E. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon 1144, Paseos de la Montaña, Lagos de Moreno, Jalisco 47460 (Mexico)
2013-12-06
We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.
Deterministic and stochastic control of chimera states in delayed feedback oscillator
Energy Technology Data Exchange (ETDEWEB)
Semenov, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Maistrenko, Y. [Institute of Mathematics and Center for Medical and Biotechnical Research, NAS of Ukraine, Tereschenkivska Str. 3, 01601 Kyiv (Ukraine)
2016-06-08
Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.
Noise-Induced Phase Locking and Frequency Mixing in an Optical Bistable System with Delayed Feedback
Misono, Masatoshi; Miyakawa, Kenji
2011-11-01
The interplay between stochastic resonance (SR) and coherence resonance (CR) is experimentally studied in an optical bistable system with a time-delayed feedback loop. We demonstrate that the phase of the noise-induced motion is locked to that of the periodic input when the ratio of their frequencies is a simple rational number. We also demonstrate that the interplay between SR and CR generates frequency-mixed modes, and that the efficiency of frequency mixing is enhanced by the optimum noise.
Institute of Scientific and Technical Information of China (English)
SHANG Hui-Lin; WEN Yong-Peng
2011-01-01
Fractal erosion of the safe basin in a Helmholtz oscillator system is studied. A linear delayed velocity feedback is employed to suppress the fractal erosion. The necessary basin erosion condition of the delayed feedback controlled system is obtained. The evolution of the boundary and area of the safe basin over time delay is also presented. It follows that the delayed velocity feedback can be used as an effective strategy to control fractal erosion of a safe basin.%Fractal erosion of the safe basin in a Helmholtz oscillator system is studied.A linear delayed velocity feedback is employed to suppress the fractal erosion.The necessary basin erosion condition of the delayed feedback controlled system is obtained.The evolution of the boundary and area of the safe basin over time delay is also presented.It follows that the delayed velocity feedback can be used as an effective strategy to control fractal erosion of a safe basin.Since the safe basin was induced to explain the integrity of dynamical systems,studies on safe basins have attracted much attention.[1-6] Leigh and Armin calculated the survival probability of a ferry in random seas by estimating the erosion of the safe basin during the ship rolling motion by using Monte Carlo simulations.[1] Lenci and Rega induced the erosion of a safe basin to explain pull-in phenomenon in micro-electro mechanical systems.[2
Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems With Time Delay.
Zhao, Xudong; Yang, Haijiao; Karimi, Hamid Reza; Zhu, Yanzheng
2016-06-01
In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main contributions of this paper lie in that the systems under consideration are more general, and an effective design procedure of output-feedback controller is developed for the considered systems, which is more applicable in practice. Simulation results demonstrate the efficiency of the proposed algorithm.
Chaos Generation and Synchronization Using Driven TWT amplifiers having delayed feedback
Larsen, P.; Booske, J. H.; Bhattacharjee, S.; Marchewka, C.; Sengele, S.; Koch, S.; Ryskin, N.; Titov, V.
2004-11-01
Development of high power sources of chaotic waveforms in the microwave frequency regime is important for communications, noise radar, and other applications. We have demonstrated that driven traveling wave tube (TWT) amplifiers with delayed feedback are excellent sources of chaotic radiation with numerous experimental advantages. The configuration involves a TWT oscillator (using an external feedback loop) which is driven by an external coherent generator. Two types of chaos have been observed in these experiments: a period doubling type and a "loss-of-synchronization" type of chaos. Characterizations have identified single frequency oscillation, self-modulation, and chaos within the parameter space defined by the drive power, drive frequency, and feedback attenuation level. Current investigations are examining synchronization between a pair of driven TWT oscillators.
Bifurcation Control of an Electrostatically-Actuated MEMS Actuator with Time-Delay Feedback
Directory of Open Access Journals (Sweden)
Lei Li
2016-10-01
Full Text Available The parametric excitation system consisting of a flexible beam and shuttle mass widely exists in microelectromechanical systems (MEMS, which can exhibit rich nonlinear dynamic behaviors. This article aims to theoretically investigate the nonlinear jumping phenomena and bifurcation conditions of a class of electrostatically-driven MEMS actuators with a time-delay feedback controller. Considering the comb structure consisting of a flexible beam and shuttle mass, the partial differential governing equation is obtained with both the linear and cubic nonlinear parametric excitation. Then, the method of multiple scales is introduced to obtain a slow flow that is analyzed for stability and bifurcation. Results show that time-delay feedback can improve resonance frequency and stability of the system. What is more, through a detailed mathematical analysis, the discriminant of Hopf bifurcation is theoretically derived, and appropriate time-delay feedback force can make the branch from the Hopf bifurcation point stable under any driving voltage value. Meanwhile, through global bifurcation analysis and saddle node bifurcation analysis, theoretical expressions about the system parameter space and maximum amplitude of monostable vibration are deduced. It is found that the disappearance of the global bifurcation point means the emergence of monostable vibration. Finally, detailed numerical results confirm the analytical prediction.
Pitchfork and Hopf bifurcation thresholds in stochastic equations with delayed feedback.
Gaudreault, Mathieu; Lépine, Françoise; Viñals, Jorge
2009-12-01
The bifurcation diagram of a model stochastic differential equation with delayed feedback is presented. We are motivated by recent research on stochastic effects in models of transcriptional gene regulation. We start from the normal form for a pitchfork bifurcation, and add multiplicative or parametric noise and linear delayed feedback. The latter is sufficient to originate a Hopf bifurcation in that region of parameters in which there is a sufficiently strong negative feedback. We find a sharp bifurcation in parameter space, and define the threshold as the point in which the stationary distribution function p(x) changes from a delta function at the trivial state x=0 to p(x) approximately x(alpha) at small x (with alpha=-1 exactly at threshold). We find that the bifurcation threshold is shifted by fluctuations relative to the deterministic limit by an amount that scales linearly with the noise intensity. Analytic calculations of the bifurcation threshold are also presented in the limit of small delay tau-->0 that compare quite favorably with the numerical solutions even for moderate values of tau .
Institute of Scientific and Technical Information of China (English)
黄冬梅; 徐伟; 谢文贤; 韩群
2015-01-01
In this paper, the principal resonance response of a stochastically driven elastic impact (EI) system with time-delayed cubic velocity feedback is investigated. Firstly, based on the method of multiple scales, the steady-state response and its dynamic stability are analyzed in deterministic and stochastic cases, respectively. It is shown that for the case of the multi-valued response with the frequency island phenomenon, only the smallest amplitude of the steady-state response is stable under a certain time delay, which is different from the case of the traditional frequency response. Then, a design criterion is proposed to suppress the jump phenomenon, which is induced by the saddle-node bifurcation. The effects of the feedback parameters on the steady-state responses, as well as the size, shape, and location of stability regions are studied. Results show that the system responses and the stability boundaries are highly dependent on these parameters. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.
Chai, Lin; Qian, Chunjiang
2015-06-01
This paper investigates the design problem of constructing the state and output feedback stabilisation controller for a class of uncertain nonlinear systems subject to time-delay. First, a dynamic linear state feedback control law with an adaptive strategy is developed to globally stabilise the uncertain nonlinear time-delay system under a lower-triangular higher-order growth condition. Then, one more challenging problem of the adaptive output feedback stabilisation is addressed, which can globally stabilise the time-delay system when the unmeasurable states linearly grow with rate functions consisting of higher-order output.
Observer-based output feedback control of discrete-time linear systems with input and output delays
Zhou, Bin
2014-11-01
In this paper, we study observer-based output feedback control of discrete-time linear systems with both multiple input and output delays. By generalising our recently developed truncated predictor feedback approach for state feedback stabilisation of discrete-time time-delay systems to the design of observer-based output feedback, two types of observer-based output feedback controllers, one being memory and the other memoryless, are constructed. Both full-order and reduced-order observer-based controllers are established in both the memory and memoryless schemes. It is shown that the separation principle holds for the memory observer-based output feedback controllers, but does not hold for the memoryless ones. We further show that the proposed observer-based output feedback controllers solve both the l2 and l∞ semi-global stabilisation problems. A numerical example is given to illustrate the effectiveness of the proposed approaches.
Bifurcation analysis of a semiconductor laser with saturable absorber and delayed optical feedback
Terrien, Soizic; Broderick, Neil G R
2016-01-01
Semiconductor lasers exhibit a wealth of dynamics, from emission of a constant beam of light, to periodic oscillations and excitability. Self-pulsing regimes, where the laser periodically releases a short pulse of light, are particularly interesting for many applications, from material science to telecommunications. Self-pulsing regimes need to produce pulses very regularly and, as such, they are also known to be particularly sensitive to perturbations, such as noise or light injection. We investigate the effect of delayed optical feedback on the dynamics of a self-pulsing semiconductor laser with saturable absorber (SLSA). More precisely, we consider the Yamada model with delay -- a system of three delay-differential equations (DDEs) for two slow and one fast variable -- which has been shown to reproduce accurately self-pulsing features as observed in SLSA experimentally. This model is also of broader interest because it is quite closely related to mathematical models of other self-pulsing systems, such as e...
Adaptive Output-feedback Regulation for Nonlinear Delayed Systems Using Neural Network
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying time-delay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results,where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.
Effects of delay and noise in a negative feedback regulatory motif
Palassini, Matteo; Dies, Marta
2009-03-01
The small copy number of the molecules involved in gene regulation can induce nontrivial stochastic phenomena such as noise-induced oscillations. An often neglected aspect of regulation dynamics are the delays involved in transcription and translation. Delays introduce analytical and computational complications because the dynamics is non-Markovian. We study the interplay of noise and delays in a negative feedback model of the p53 core regulatory network. Recent experiments have found pronounced oscillations in the concentrations of proteins p53 and Mdm2 in individual cells subjected to DNA damage. Similar oscillations occur in the Hes-1 and NK-kB systems, and in circadian rhythms. Several mechanisms have been proposed to explain this oscillatory behaviour, such as deterministic limit cycles, with and without delay, or noise-induced excursions in excitable models. We consider a generic delayed Master Equation incorporating the activation of Mdm2 by p53 and the Mdm2-promoted degradation of p53. In the deterministic limit and for large delays, the model shows a Hopf bifurcation. Via exact stochastic simulations, we find strong noise-induced oscillations well outside the limit-cycle region. We propose that this may be a generic mechanism for oscillations in gene regulatory systems.
Evaluating feedback time delay during perturbed and unperturbed balance in handstand.
Blenkinsop, Glen M; Pain, Matthew T G; Hiley, Michael J
2016-08-01
Feedback delays in balance are often assessed using muscle activity onset latencies in response to discrete perturbations. The purpose of the study was to calculate EMG latencies in perturbed handstand, and determine if delays are different to unperturbed handstand. Twelve national level gymnasts completed 12 perturbed and 10 unperturbed (five eyes open and five closed) handstands. Forearm EMG latencies during perturbed handstands were assessed against delay estimates calculated via: cross correlations of wrist torque and COM displacement, a proportional and derivative model of wrist torque and COM displacement and velocity (PD model), and a PD model incorporating a passive stiffness component (PS-PD model). Delays from the PD model (161±14ms) and PS-PD model (188±14ms) were in agreement with EMG latencies (165±14ms). Cross correlations of COM displacement and wrist torque provided unrealistically low estimates (5±9ms). Delays were significantly lower during perturbed (188±14ms) compared to unperturbed handstand (eyes open: 207±12ms; eyes closed: 220±19ms). Significant differences in delays and model parameters between perturbed and unperturbed handstand support the view that balance measures in perturbed testing should not be generalised to unperturbed balance.
Modulation of proprioceptive feedback during functional electrical stimulation
DEFF Research Database (Denmark)
Christensen, Mark Schram; Grey, Michael James
2013-01-01
Functional electrical stimulation (FES) is sometimes used as a therapeutic modality in motor rehabilitation to augment voluntary motor drive to effect movement that would otherwise not be possible through voluntary activation alone. Effective motor rehabilitation should require that the central...
Controlling traffic jams on a two-lane road using delayed-feedback signals
Institute of Scientific and Technical Information of China (English)
Liang ZHENG; Shi-quan ZHONG; Shou-feng MA
2012-01-01
This paper focuses mainly on the stability analysis of two-lane traffic flow with lateral friction,which may be caused by irregular driving behavior or poorly visible road markings,and also attempts to reveal the formation mechanism of traffic jams.Firstly,a two-lane optimal velocity (OV) model without control signals is proposed and its stability condition is obtained from the viewpoint of control theory.Then delayed-feedback control signals composed of distance headway information from both lanes are added to each vehicle and a vehicular control system is designed to suppress the traffic jams.Lane change behaviors are also incorporated into the two-lane OV model and the corresponding information about distance headway and feedback signals is revised.Finally,the results of numerical experiments are shown to verify that when the stability condition is not met,the position disturbances and resulting lane change behaviors do indeed deteriorate traffic performance and cause serious traffic jams.However,once the proper delayed-feedback control signals are implemented,the traffic jams can be suppressed efficiently.
Identification and characterization of systems with delayed feedback; 1, Theory and tools
Bünner, M J; Giaquinta, A; Hegger, R; Kantz, H; Meucci, R; Politi, A; Bünner, Martin J.; Ciofini, Marco; Giaquinta, Antonino; Hegger, Rainer; Kantz, Holger; Meucci, Riccardo; Politi, Antonio
1999-01-01
High-dimensional chaos displayed by multi-component systems with a single time-delayed feedback is shown to be accessible to time series analysis of a scalar variable only. The mapping of the original dynamics onto scalar time-delay systems defined on sufficiently high dimensional spaces is thoroughly discussed. The dimension of the ``embedding'' space turns out to be independent of the delay time and thus of the dimensionality of the attractor dynamics. As a consequence, the procedure described in the present paper turns out to be definitely advantageous with respect to the standard ``embedding'' technique in the case of high-dimensional chaos, when the latter is practically unapplicable. The mapping is not exact when delayed maps are used to reproduce the dynamics of time-continuous systems, but the errors can be kept under control. In this context, the approximation of delay-differential equations is discussed with reference to different classes of maps. Appropriate tools to estimate the a priori unknown d...
Permanence of a Nicholson’s Blowflies Model with Feedback Control and Multiple Time-varying Delays
Institute of Scientific and Technical Information of China (English)
CHEN Xiao-ying; SHI Chun-ling
2015-01-01
This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obtained to ensure the permanence of the system. Our result shows that feedback control variables have no influence on the permanence of the system.
Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.
Min Wang; Xiaoping Liu; Peng Shi
2011-12-01
This paper is concerned with robust stabilization problem for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Novel continuous packaged functions are introduced in advance to remove unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay functions, which avoids the functions with control law to be approximated by radial basis function (RBF) neural networks. This technique combining implicit function and mean value theorems overcomes the difficulty in controlling the nonaffine pure-feedback systems. Dynamic surface control (DSC) is used to avoid "the explosion of complexity" in the backstepping design. Design difficulties from unknown time-delay functions are overcome using the function separation technique, the Lyapunov-Krasovskii functionals, and the desirable property of hyperbolic tangent functions. RBF neural networks are employed to approximate desired virtual controls and desired practical control. Under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced significantly, and semiglobal uniform ultimate boundedness of all of the signals in the closed-loop system is guaranteed. Simulation studies are given to demonstrate the effectiveness of the proposed design scheme.
Adaptive Output Feedback Sliding Mode Control for Complex Interconnected Time-Delay Systems
Directory of Open Access Journals (Sweden)
Van Van Huynh
2015-01-01
Full Text Available We extend the decentralized output feedback sliding mode control (SMC scheme to stabilize a class of complex interconnected time-delay systems. First, sufficient conditions in terms of linear matrix inequalities are derived such that the equivalent reduced-order system in the sliding mode is asymptotically stable. Second, based on a new lemma, a decentralized adaptive sliding mode controller is designed to guarantee the finite time reachability of the system states by using output feedback only. The advantage of the proposed method is that two major assumptions, which are required in most existing SMC approaches, are both released. These assumptions are (1 disturbances are bounded by a known function of outputs and (2 the sliding matrix satisfies a matrix equation that guarantees the sliding mode. Finally, a numerical example is used to demonstrate the efficacy of the method.
Appelman, Michelle; Vail, Cynthia O.; Lieberman-Betz, Rebecca G.
2014-01-01
The authors of this study evaluated the acquisition of instructive feedback information presented to four kindergarten children with mild delays taught in dyads using a constant time delay (CTD) procedure. They also assessed the learning of observational (dyadic partner) information within this instructional arrangement. A multiple probe design…
Institute of Scientific and Technical Information of China (English)
陈宁; 桂卫华; 谢永芳
2004-01-01
Decentralized H∞ control was studied for a class of interconnected uncertain systems with multiple delays in the state and control and time varying but norm-bounded parametric uncertainties. A sufficient condition which makes the closed--loop system decentralized asymptotically stable with H∞ performance was derived based on Lyapunov stability theorem. This condition is expressed as the solvability problem of linear matrix inequalities. The method overcomes the limitations of the existing algebraic Riccati equation method. Finally, a numerical example was given to demonstrate the design procedure for the decentralized H∞ state feedback controller.
Krisztin, Tibor; Wu, Jianhong
1998-01-01
This book contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. The authors describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behavior of solution curves on it. The approach makes use of advanced tools which in recent years have been developed for the investigation of infinite-dimensional dynamical systems: local invariant manifolds and inclination lemmas f
Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.
Wang, Min; Chen, Bing; Shi, Peng
2008-06-01
This paper proposes a novel adaptive neural control scheme for a class of perturbed strict-feedback nonlinear time-delay systems with unknown virtual control coefficients. Based on the radial basis function neural network online approximation capability, an adaptive neural controller is presented by combining the backstepping approach and Lyapunov-Krasovskii functionals. The proposed controller guarantees the semiglobal boundedness of all the signals in the closed-loop system and contains minimal learning parameters. Finally, three simulation examples are given to demonstrate the effectiveness and applicability of the proposed scheme.
Theoretical and experimental aspects of chaos control by time-delayed feedback.
Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard
2003-03-01
We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.
Delayed Feedback Control of Bao Chaotic System Based on Hopf Bifurcation Analysis
Directory of Open Access Journals (Sweden)
Farhad Khellat
2014-11-01
Full Text Available This paper is concerned with bifurcation and chaos control in a new chaotic system recently introduced by Bao et al [9]. First a condition that the system has a Hopf bifurcation is derived. Then by applying delayed feedback controller, the chaotic system is forced to have a stable periodic orbit extracting from chaotic attractor. This is done by making Hopf bifurcation value of the open loop and the closed loop systems identical. Also by suitable tuning of the controller parameters, unstable equilibrium points become stable. Numerical simulations verify the results.
Bliokh, Y. P.; Krasik, Y. E.; Felsteiner, J.
2012-01-01
The theoretical analysis and numerical simulations of the magnetron operation with a feedback loop were performed assuming that the delay of the electromagnetic wave propagating in the loop is constant whereas the phase of the complex feedback reflection coefficient is varied. Results of simulations showed that by a proper adjustment of values of the time delay and phase of reflection coefficient that determines phase matching between the waves in the resonator and feedback loop, one can increase the magnetron's output power significantly without any other additional measures.
Bliokh, Y P; Felsteiner, J
2011-01-01
The theoretical analysis and numerical simulations of the magnetron operation with a feedback loop were performed assuming that the delay of the electromagnetic wave propagating in the loop is constant whereas the phase of the complex feedback reflection coefficient is varied. Results of simulations showed that by a proper adjustment of values of the time delay and phase of reflection coefficient that determines phase matching between the waves in the resonator and feedback loop, one can increase the magnetron's output power significantly without any other additional measures.
Grimaldi, Giuliana; Fernandez, Alfredo; Manto, Mario
2013-09-24
Recent studies suggest that surface muscular functional electrical stimulation (FES) might suppress neurological upper limb tremor. We assessed its effects on upper limb physiological tremor, which is mainly driven by mechanical-reflex oscillations. We investigated the interaction between FES and augmented visual feedback, since (a) most daily activities are performed using visual cues, and (b) augmented visual feedback exacerbates upper limb tremor. 10 healthy subjects (23.4 ± 7.7 years) performed 2 postural tasks with combinations of FES (4 sites; frequency of stimulation: 30 Hz; pulse width: 300 microsec; range of current delivered 10-34 mAmp) and augmented visual feedback. Spectral analysis of tremor showed a decrease of power spectral density to 62.18% (p = 0.01), of the integral in the 8-12 Hz frequency band to 57.67% (p = 0.003), and of tremor root mean square (RMS) to 57.16% (p = 0.002) during FES, without any changes in tremor frequency. Augmented visual feedback blocked the beneficial effect of FES, as confirmed by power spectral analysis (p = 0.01). We found a statistically significant interaction between augmented visual feedback and electrical stimulation (p = 0.039). Augmented visual feedback antagonizes the effects of FES on physiological tremor. The absence of changes of peak frequency argues against an effect of FES on mechanical properties of the upper limb.
Wang, Qin; Chen, Zuwen; Song, Aiguo
2017-01-01
A robust adaptive output-feedback control scheme based on K-filters is proposed for a class of nonlinear interconnected time-varying delay systems with immeasurable states. It is difficult to design the controller due to the existence of the immeasurable states and the time-delay couplings among interconnected subsystems. This difficulty is overcome by use of the fuzzy system, the K-filters and the appropriate Lyapunov-Krasovskii functional. Based on Lyapunov theory, the closed-loop control system is proved to be semi-global uniformly ultimately bounded (SGUUB), and the output tracking error converges to a neighborhood of zero. Simulation results demonstrate the effectiveness of the approach.
Internet based gripper teleoperation with random time delay by using haptic feedback and SEMG
Xu, Xiaonong; Song, Aiguo; Zhang, Huatao; Ji, Peng
2016-10-01
Random time delay may cause instability in the internet based teleoperation system. Transparency and intuitiveness are also very important for operator to control the system to accurately perform the desired action, especially for the gripper teleoperation system. This paper presents a new grip force control method of gripper teleoperation system with haptic feedback. The system employs the SEMG signal as the control parameter in order to enhance the intuitive control experience for operator. In order to eliminate the impacts on the system stability caused by random time delay, a non-time based teleoperation method is applied to the control process. Besides, neural network and designed fuzzy logic controller is also utilized to improve this control method. The effectiveness of the proposed method is demonstrated by experiment results.
Adaptive Fuzzy Control of Strict-Feedback Nonlinear Time-Delay Systems With Unmodeled Dynamics.
Yin, Shen; Shi, Peng; Yang, Hongyan
2016-08-01
In this paper, an approximated-based adaptive fuzzy control approach with only one adaptive parameter is presented for a class of single input single output strict-feedback nonlinear systems in order to deal with phenomena like nonlinear uncertainties, unmodeled dynamics, dynamic disturbances, and unknown time delays. Lyapunov-Krasovskii function approach is employed to compensate the unknown time delays in the design procedure. By combining the advances of the hyperbolic tangent function with adaptive fuzzy backstepping technique, the proposed controller guarantees the semi-globally uniformly ultimately boundedness of all the signals in the closed-loop system from the mean square point of view. Two simulation examples are finally provided to show the superior effectiveness of the proposed scheme.
Stability of PID-Controlled Linear Time-Delay Feedback Systems
Martelli, Gianpasquale
2008-01-01
The stability of feedback systems consisting of linear time-delay plants and PID controllers has been investigated for many years by means of several methods, of which the Nyquist criterion, a generalization of the Hermite-Biehler Theorem, and the root location method are well known. The main purpose of these researches is to determine the range of controller parameters that allow stability. Explicit and complete expressions of the boundaries of these regions and computation procedures with a finite number of steps are now available only for first-order plants, provided with one time delay. In this note, the same results, based on Pontryagin's studies, are presented for arbitrary-order plants.
Anticontrol of chaos in continuous-time systems via time-delay feedback.
Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo
2000-12-01
In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.
Correlation times in stochastic equations with delayed feedback and multiplicative noise.
Gaudreault, Mathieu; Berbert, Juliana Militão; Viñals, Jorge
2011-01-01
We obtain the characteristic correlation time associated with a model stochastic differential equation that includes the normal form of a pitchfork bifurcation and delayed feedback. In particular, the validity of the common assumption of statistical independence between the state at time t and that at t-τ, where τ is the delay time, is examined. We find that the correlation time diverges at the model's bifurcation line, thus signaling a sharp bifurcation threshold, and the failure of statistical independence near threshold. We determine the correlation time both by numerical integration of the governing equation, and analytically in the limit of small τ. The correlation time T diverges as T~a(-1), where a is the control parameter so that a=0 is the bifurcation threshold. The small-τ expansion correctly predicts the location of the bifurcation threshold, but there are systematic deviations in the magnitude of the correlation time.
Institute of Scientific and Technical Information of China (English)
Wang Jun-Wei; Zeng Cai-Bin
2012-01-01
This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties.The objective is to design a static output feedback controller such that the closed-loop system is asymptotically stable while satisfying a prescribed H∞ performance level for all admissible uncertainties.By constructing an appropriate Lyapunov-Krasvskii functional,a delay-dependent stability criterion of the closed-loop system is presented with the help of the Jensen integral inequality.From the derived criterion,the solutions to the problem are formulated in terms of linear matrix inequalities and hence are tractable numerically.A simulation example is given to illustrate the effectiveness of the proposed design method.
Exponential synchronization of general chaotic delayed neural networks via hybrid feedback
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, and covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, recurrent multilayer perceptrons (RMLPs). By virtue of LyapunovKrasovskii stability theory and linear matrix inequality (LMI) technique, some exponential synchronization criteria are derived.Using the drive-response concept, hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria. Finally, detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
Davarpanah Jazi, Shirin; Hosang, Stephanie; Heath, Matthew
2015-05-01
The somatosensory processing model (SPM) asserts that dissociable cortical processing streams mediate tactile perceptions and actions via relative and absolute cues, respectively (Dijkerman and de Haan, 2007). Accordingly, we sought to determine whether the introduction of a memory delay and/or physically touching a target object (i.e., haptic feedback) differentially influences the cues supporting tactile perceptions and actions. Participants used their right hand to manually estimate (i.e., perceptual task) or grasp (i.e., action task) differently sized objects placed on the palm of their left limb in conditions wherein the target object was available for the duration of the response (i.e., closed-loop condition), or was removed prior to response cuing (i.e., memory-guided condition). As well, trials were performed in conditions wherein the physical object was available (i.e., haptic feedback) or unavailable (i.e., no haptic feedback) to touch. Notably, we computed just-noticeable-difference (JND) scores to determine whether the aforementioned tasks and conditions adhered to - or violated - the relative properties of Weber's law. JNDs for manual estimations adhered to Weber's law across each condition - a finding supporting the SPM's contention that an immutable and relative percept supports tactile perceptions. In turn, JNDs for grasping violated Weber's law only when haptic feedback was available. Such a finding indicates that haptic feedback supports the absolute calibration between a tactile defined object and the required motor output. What is more, our study highlights that multiple somatosensory cues (i.e., tactile and haptic) support goal-directed grasping.
Nonlinear resonance in Dufﬁng oscillator with ﬁxed and integrative time-delayed feedbacks
Indian Academy of Sciences (India)
V Ravichandran; V Chinnathambi; S Rajasekar
2012-03-01
We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Dufﬁng oscillator with two types of time-delayed feedbacks, namely, ﬁxed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the time-delayed feedback. Applying the perturbation theory we obtain a nonlinear equation for the amplitude of the periodic response of the system. For a range of values of and , the response amplitude is found to be higher than that of the system in the absence of delayed feedback. The response amplitude is periodic on the parameter with period 2 / where is the angular frequency of the external periodic force. We show the occurrence of multiple branches of the response amplitude curve with and without hysteresis.
Directory of Open Access Journals (Sweden)
Liang Zhao
2014-01-01
Full Text Available A nonautonomous discrete two-species Lotka-Volterra competition system with infinite delays and single feedback control is considered in this paper. By applying the discrete comparison theorem, a set of sufficient conditions which guarantee the permanence of the system is obtained. Also, by constructing some suitable discrete Lyapunov functionals, some sufficient conditions for the global attractivity and extinction of the system are obtained. It is shown that if the the discrete Lotka-Volterra competitive system with infinite delays and without feedback control is permanent, then, by choosing some suitable feedback control variable, the permanent species will be driven to extinction. That is, the feedback control variable, which represents the biological control or some harvesting procedure, is the unstable factor of the system. Such a finding overturns the previous scholars’ recognition on feedback control variables.
RESPONSE OF PARAMETRICALLY EXCITED DUFFING-VAN DER POL OSCILLATOR WITH DELAYED FEEDBACK
Institute of Scientific and Technical Information of China (English)
LI Xin-ye; CHEN Yu-shu; WU Zhi-qiang; SONG Tao
2006-01-01
The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned.By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance. It is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.
Resonances of a nonlinear SDOF system with time-delay in linear feedback control
Energy Technology Data Exchange (ETDEWEB)
El-Bassiouny, A F [Mathematics Department, Faculty of Science, Benha University, Benha 13518 (Egypt); El-kholy, S [Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-kom (Egypt)], E-mail: atef_elbassiouny@yahoo.com
2010-01-15
The primary and subharmonic resonances of a nonlinear single-degree-of-freedom (SDOF) system under feedback control with a time delay have been studied by means of an asymptotic perturbation technique. Both external (forcing) and parametric excitations have been included. By means of the averaging method and multiple scales method, two slow-flow equations for the amplitude and phase of the primary and subharmonic resonances and all other parameters are obtained, respectively. The steady state solutions (fixed points) for the original system are investigated. The stability of the fixed points is examined by using the variational method. The effect of the feedback gains, time-delay, the coefficient of cubic term, the coefficients of external and parametric excitations on the steady state responses are investigated and the results are presented as plots of the steady state response amplitude versus the detuning parameter. The results obtained by the two methods are in excellent agreement. There exist saddle node bifurcations for the case of primary resonance and the solutions lose stability for the case of resonance subharmonic.
Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control
Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming
2015-05-01
With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.
Directory of Open Access Journals (Sweden)
Dongmei Huang
2017-01-01
Full Text Available The principal resonance of a delayed piecewise-smooth (DPWS system with negative stiffness under narrow-band random excitation is investigated in aspects of multiscale analysis, design methodology of the controller, and response properties. The amplitude-frequency response and steady-state moments together with the corresponding stability conditions of the controlled stochastic system are derived, in which the degradation case is also under consideration. Then, from the perspective of the equivalent damping, the comparisons of the response characteristics of the controlled system to the uncontrolled system, such as the phenomenon of frequency island, are fulfilled. Furthermore, sensitivity of the system response to feedback gain and time delay is studied and interesting dynamic properties are found. Meanwhile, the classification of the steady-state solution is also discussed. To control the maximum amplitude, the feedback parameters are determined by the frequency response together with stability boundaries which must be utilized to exclude the combinations of the unstable parameters. For the case with small noise intensity, mean-square responses present the similar characteristics to what is discussed in the deterministic case.
Rosinberg, M L; Munakata, T; Tarjus, G
2015-04-01
Response lags are generic to almost any physical system and often play a crucial role in the feedback loops present in artificial nanodevices and biological molecular machines. In this paper, we perform a comprehensive study of small stochastic systems governed by an underdamped Langevin equation and driven out of equilibrium by a time-delayed continuous feedback control. In their normal operating regime, these systems settle in a nonequilibrium steady state in which work is permanently extracted from the surrounding heat bath. By using the Fokker-Planck representation of the dynamics, we derive a set of second-law-like inequalities that provide bounds to the rate of extracted work. These inequalities involve additional contributions characterizing the reduction of entropy production due to the continuous measurement process. We also show that the non-Markovian nature of the dynamics requires a modification of the basic relation linking dissipation to the breaking of time-reversal symmetry at the level of trajectories. The modified relation includes a contribution arising from the acausal character of the reverse process. This, in turn, leads to another second-law-like inequality. We illustrate the general formalism with a detailed analytical and numerical study of a harmonic oscillator driven by a linear feedback, which describes actual experimental setups.
Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.
Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian
2016-10-15
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes.
Delay-Dependent Response in Weakly Electric Fish under Closed-Loop Pulse Stimulation.
Forlim, Caroline Garcia; Pinto, Reynaldo Daniel; Varona, Pablo; Rodríguez, Francisco B
2015-01-01
In this paper, we apply a real time activity-dependent protocol to study how freely swimming weakly electric fish produce and process the timing of their own electric signals. Specifically, we address this study in the elephant fish, Gnathonemus petersii, an animal that uses weak discharges to locate obstacles or food while navigating, as well as for electro-communication with conspecifics. To investigate how the inter pulse intervals vary in response to external stimuli, we compare the response to a simple closed-loop stimulation protocol and the signals generated without electrical stimulation. The activity-dependent stimulation protocol explores different stimulus delivery delays relative to the fish's own electric discharges. We show that there is a critical time delay in this closed-loop interaction, as the largest changes in inter pulse intervals occur when the stimulation delay is below 100 ms. We also discuss the implications of these findings in the context of information processing in weakly electric fish.
Response of the Duffing-Van der Pol Oscillator under Position Feedback Control with Two Time Delays
Directory of Open Access Journals (Sweden)
Xinye Li
2011-01-01
Full Text Available In this paper, the dynamics of Duffing-van der Pol oscillators under linear-plus-nonlinear position feedback control with two time delays is studied analytically and numerically. By the averaging method, together with truncation of Taylor expansions for those terms with time delay, the slow-flow equations are obtained from which the trivial and nontrivial solutions can be found. It is shown that the trivial solution can be stabilized by appropriate gain and time delay in linear feedback although it loses its stability via Hopf bifurcation and results in periodic solution for uncontrolled systems. And the stability of the trivial solution is independent of nonlinear feedback. Different from the case of the trivial solution, the stability of nontrivial solutions is also associated with nonlinear feedback besides linear feedback. Non-trivial solutions may lose their stability via saddle-node or Hopf bifurcation and the resulting response of the system may be quasi-periodic or chaotic. The feedback gains and time delays have great effects on the amplitude of the periodic solutions and their bifurcation control. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.
Guo, Qun; Xu, Bo; Qiu, Kun
2016-04-01
Adaptive time-domain equalizer (TDE) is an important module for digital optical coherent receivers. From an implementation perspective, we analyze and compare in detail the effects of error signal feedback delay on the convergence performance of TDE using either least-mean square (LMS) or constant modulus algorithm (CMA). For this purpose, a simplified theoretical model is proposed based on which iterative equations on the mean value and the variance of the tap coefficient are derived with or without error signal feedback delay for both LMS- and CMA-based methods for the first time. The analytical results show that decreased step size has to be used for TDE to converge and a slower convergence speed cannot be avoided as the feedback delay increases. Compared with the data-aided LMS-based method, the CMA-based method has a slower convergence speed and larger variation after convergence. Similar results are confirmed using numerical simulations for fiber dispersive channels. As the step size increases, a feedback delay of 20 clock cycles might cause the TDE to diverge. Compared with the CMA-based method, the LMS-based method has a higher tolerance on the feedback delay and allows a larger step size for a faster convergence speed.
Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control.
Konishi, Keiji; Sugitani, Yoshiki; Hara, Naoyuki
2014-02-01
This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without accurate information and can track it using tiny control energy even when a system parameter, such as the power consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be considered a strong candidate for solving the destabilizing problem.
Directory of Open Access Journals (Sweden)
T. Botmart
2013-01-01
Full Text Available The problem of guaranteed cost control for exponential synchronization of cellular neural networks with interval nondifferentiable and distributed time-varying delays via hybrid feedback control is considered. The interval time-varying delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals is combined with Leibniz-Newton's formula and the technique of dealing with some integral terms. New delay-dependent sufficient conditions for the exponential synchronization of the error systems with memoryless hybrid feedback control are first established in terms of LMIs without introducing any free-weighting matrices. The optimal guaranteed cost control with linear error hybrid feedback is turned into the solvable problem of a set of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.
Choi, Ho-Lim
2014-12-01
In this paper, we provide an output feedback solution over one given by Choi and Lim [Systems & Control Letters, 59(6), 374-379 (2010)] under more generalised system set-up. More specifically, we consider a stabilisation problem of a chain of integrators that has nonlinearity and an uncertain delay in the input by output feedback. The nonlinearity is classified into four types. Then, we propose a memoryless output feedback controller which contains a gain-scaling factor to adjust controller gains depending on the given nonlinearity type. Our stability analysis shows that the controlled system has unique stabilisation result associated with each type of nonlinearity. Our result provides a new aspect to the stabilisation problem of nonlinear time-delay systems and broadens the existing control results of time-delay systems. Two examples are given for illustration.
Indian Academy of Sciences (India)
Bindu M Krishna; Manu P John; V M Nandakumaran
2008-12-01
The chaotic dynamics of directly modulated semiconductor lasers with delayed optoelectronic feedback is studied numerically. The effects of positive and negative delayed optoelectronic feedback in producing chaotic outputs from such lasers with nonlinear gain reduction in its optimum value range is investigated using bifurcation diagrams. The results are confirmed by calculating the Lyapunov exponents. A negative delayed optoelectronic feedback configuration is found to be more effective in inducing chaotic dynamics to such systems with nonlinear gain reduction factor in the practical value range.
Ultra-high-frequency piecewise-linear chaos using delayed feedback loops
Cohen, Seth D.; Rontani, Damien; Gauthier, Daniel J.
2012-12-01
We report on an ultra-high-frequency (>1 GHz), piecewise-linear chaotic system designed from low-cost, commercially available electronic components. The system is composed of two electronic time-delayed feedback loops: A primary analog loop with a variable gain that produces multi-mode oscillations centered around 2 GHz and a secondary loop that switches the variable gain between two different values by means of a digital-like signal. We demonstrate experimentally and numerically that such an approach allows for the simultaneous generation of analog and digital chaos, where the digital chaos can be used to partition the system's attractor, forming the foundation for a symbolic dynamics with potential applications in noise-resilient communications and radar.
Noise-induced standing waves in oscillatory systems with time-delayed feedback
Stich, Michael
2016-01-01
In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatio-temporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatio-temporal correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary. The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion dynamics.
Chaotic millimeter wave generation in a helical-waveguide gyro-TWT with delayed feedback
Ginzburg, N. S.; Rozental, R. M.; Sergeev, A. S.; Zotova, I. V.; Tarakanov, V. P.
2016-10-01
We demonstrate the possibility of chaotic millimeter wave generation in broadband helical-waveguide gyrotron travelling wave tubes (gyro-TWTs) by introducing external delayed feedback. It is shown that for the realization of "developed" chaos the amplitude characteristic of the amplifier should have the maximum slope in the overdrive regime upon saturation. This can be achieved by proper choosing of cyclotron resonance detuning. According to the time-domain averaged model and 3D particle-in-cell simulations with the parameters of the experimentally realized 35 GHz gyro-TWT, the power of chaotic generation can achieve 50 kW for an electron mean efficiency of about 7% and a spectrum width of 3-4 GHz.
Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong
2016-08-01
This paper considered the synchronisation of continuous complex dynamical networks with discrete-time communications and delayed nodes. The nodes in the dynamical networks act in the continuous manner, while the communications between nodes are discrete-time; that is, they communicate with others only at discrete time instants. The communication intervals in communication period can be uncertain and variable. By using a piecewise Lyapunov-Krasovskii function to govern the characteristics of the discrete communication instants, we investigate the adaptive feedback synchronisation and a criterion is derived to guarantee the existence of the desired controllers. The globally exponential synchronisation can be achieved by the controllers under the updating laws. Finally, two numerical examples including globally coupled network and nearest-neighbour coupled networks are presented to demonstrate the validity and effectiveness of the proposed control scheme.
Power grid enhanced resilience using proportional and derivative control with delayed feedback
Dongmo, Eric Donald; Colet, Pere; Woafo, Paul
2017-01-01
This paper investigates the resilience of an elementary electricity system (machine-generator) under proportional and derivative (PD) control when subject to large perturbations. A particular attention is paid to small power grids, representative of power grid structure in some developing countries. The considered elementary electricity system consists of a consumer (machine), a power plant (generator) and a transmission line. Both Runge-Kutta and Newton methods are used to solve the dynamical equations and the characteristic equations for stability. It is found that the controller increases the resilience of the system. We also show that time delays associated to the feedback loop of the controller have a negative impact on the performance. It is also shown that the asymmetry due to energy demand of different consumers to power plant increases the stability of the system.
Coupled map car-following model and its delayed-feedback control.
Konishi, K; Kokame, H; Hirata, K
1999-10-01
This paper proposes a coupled map car-following traffic model, which describes a dynamical behavior of a group of road vehicles running in a single lane without overtaking. This model consists of a lead vehicle and following vehicles, which have a piecewise linear optimal velocity function. When the lead-vehicle speed is varied, we can observe a traffic jam in the group of the vehicles. We derive a condition under which the traffic jam never occurs in our model. Furthermore, in order to suppress the traffic jam, for each vehicle we use a dynamic version of decentralized delayed-feedback control proposed in [Konishi, Hirai, and Kokame, Phys. Rev. E 58, 3055 (1998)], and provide a systematic procedure for designing the controller.
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
Hartmann, Cornelia; Dosen, Strahinja; Amsuess, Sebastian; Farina, Dario
2015-09-01
Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.
Firing statistics of inhibitory neuron with delayed feedback. II: Non-Markovian behavior.
Kravchuk, K G; Vidybida, A K
2013-06-01
The instantaneous state of a neural network consists of both the degree of excitation of each neuron the network is composed of and positions of impulses in communication lines between the neurons. In neurophysiological experiments, the neuronal firing moments are registered, but not the state of communication lines. But future spiking moments depend essentially on the past positions of impulses in the lines. This suggests, that the sequence of intervals between firing moments (inter-spike intervals, ISIs) in the network could be non-Markovian. In this paper, we address this question for a simplest possible neural "net", namely, a single inhibitory neuron with delayed feedback. The neuron receives excitatory input from the driving Poisson stream and inhibitory impulses from its own output through the feedback line. We obtain analytic expressions for conditional probability density P(tn+1|tn, …, t1, t0), which gives the probability to get an output ISI of duration tn+1 provided the previous (n+1) output ISIs had durations tn, …, t1, t0. It is proven exactly, that P(tn+1|tn, …, t1, t0) does not reduce to P(tn+1|tn, …, t1) for any n≥0. This means that the output ISIs stream cannot be represented as a Markov chain of any finite order.
Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy
2014-04-01
Semiconductor lasers subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By optically implementing a neuro-inspired computational scheme, called reservoir computing, based on the transient response to optical data injection, high processing speeds have been demonstrated. While previous efforts have focused on signal bandwidths limited by the semiconductor laser's relaxation oscillation frequency, we demonstrate numerically that the much faster phase response makes significantly higher processing speeds attainable. Moreover, this also leads to shorter external cavity lengths facilitating future on-chip implementations. We numerically benchmark our system on a chaotic time-series prediction task considering two different feedback configurations. The results show that a prediction error below 4% can be obtained when the data is processed at 0.25 GSamples/s. In addition, our insight into the phase dynamics of optical injection in a semiconductor laser also provides a clear understanding of the system performance at different pump current levels, even below solitary laser threshold. Considering spontaneous emission noise and noise in the readout layer, we obtain good prediction performance at fast processing speeds for realistic values of the noise strength.
Broadcast Channels with Delayed Finite-Rate Feedback: Predict or Observe?
Xu, Jiaming; Jafar, Syed A
2011-01-01
Most multiuser precoding techniques require accurate transmitter channel state information (CSIT) to maintain orthogonality between the users. Such techniques have proven quite fragile in time-varying channels because the CSIT is inherently imperfect due to estimation and feedback delay, as well quantization noise. An alternative approach recently proposed by Maddah-Ali and Tse (MAT) allows for significant multiplexing gain in the multi-input single-output (MISO) broadcast channel (BC) even with transmit CSIT that is completely stale, i.e. uncorrelated with the current channel state. With $K$ users, their scheme claims to lose only a $\\log(K)$ factor relative to the full $K$ degrees of freedom (DoF) attainable in the MISO BC with perfect CSIT for large $K$. However, their result does not consider the cost of the feedback, which is potentially very large in high mobility (short channel coherence time). In this paper, we more closely examine the MAT scheme and compare its DoF gain to single user transmission (w...
Delayed Feedback Control of 2D Roll-Cell by Pulsed Jets
Ogawara, Kakuji
1998-11-01
Experimental study and numerical experiments were conducted to examine applicability of Pyragas' delayed feedback(DFB) control theory for active control of fluid flow. Although many attempts of turbulence active control have been made, most of those experimental studies experience "out of control" state in the case of using larger feedback gain. In the present study, we assume this "out of control" state as Chaos, and apply chaos control theory to prevent the flow field from falling into "out of control" state. Experiments were carried out for low Reynolds number oil flow in a rectangle thin container, whose aspect ratio is 6:1:0.5. Two pulsed jets were used as actuator in order to keep the circulation of the flow in container constant. Fluid flow was observed using Particle Image Velocimetry (PIV) technology and the flow state was estimated by moving least square (MLS) method. As a result, we found that Pyragas control was effective to prevent chaos for active control fo fluid flow. Numerical simulations were also carried out by using the coupled map lattice(CML). CML is known as a simple model with the essential feature of spatio-temporal chaos. DFB control was applied for CML to examine possibility of active control of turbulence. Simulating results show that the present method can stabilize the whole system of CML.
Lin, Hong; Khurram, Aliza; Hong, Yanhua
2016-10-01
Time delay (TD) signatures are studied experimentally in orthogonal polarizations and in individual transverse modes respectively in a VCSEL operating with three transverse modes. Different types of concealment of the TD signatures are observed when the polarization of feedback is rotated through large angles. Effects of feedback strength and external cavity length on the TD signatures are investigated. Weak feedback leads to better concealment of the TD signatures in the dominant polarization. When the round-trip time difference between the two external cavities is close to a half of the relaxation oscillation period, the TD signatures are minimized.
DEFF Research Database (Denmark)
Lyngeraa, Tobias S; Hjortrup, Peter Buhl; Wulff, Nille B
2012-01-01
delays deterioration of quality of compressions. METHODS: Participants attending a national one-day conference on cardiac arrest and CPR in Denmark were randomized to perform single-rescuer BLS with (n = 26) or without verbal and visual feedback (n = 28) on a manikin using a ZOLL AED plus. Data were...... was the proportion of delivered compressions within target rate compared over a 2-minute period within the groups and between the groups. Performance variables for 30-second intervals were analyzed and compared. RESULTS: 24 (92%) and 23 (82%) had CPR experience in the group with and without feedback respectively. 14...... (54%) were CPR instructors in the feedback group and 18 (64%) in the group without feedback. Data from 26 and 28 participants were analyzed respectively. Although median values for proportion of delivered compressions within target depth were higher in the feedback group (0-30s: 54.0%; 30-60s: 88...
On utilizing delayed feedback for active-multimode vibration control of cantilever beams
Alhazza, Khaled A.; Nayfeh, Ali H.; Daqaq, Mohammed F.
2009-01-01
We present a single-input single-output multimode delayed-feedback control methodology to mitigate the free vibrations of a flexible cantilever beam. For the purpose of controller design and stability analysis, we consider a reduced-order model consisting of the first n vibration modes. The temporal variation of these modes is represented by a set of nonlinearly coupled ordinary-differential equations that capture the evolving dynamics of the beam. Considering a linearized version of these equations, we derive a set of analytical conditions that are solved numerically to assess the stability of the closed-loop system. To verify these conditions, we characterize the stability boundaries using the first two vibration modes and compare them to damping contours obtained by long-time integration of the full nonlinear equations of motion. Simulations show excellent agreement between both approaches. We analyze the effect of the size and location of the piezoelectric patch and the location of the sensor on the stability of the response. We show that the stability boundaries are highly dependent on these parameters. Finally, we implement the controller on a cantilever beam for different controller gain-delay combinations and assess the performance using time histories of the beam response. Numerical simulations clearly demonstrate the controller ability to mitigate vibrations emanating from multiple modes simultaneously.
Zhang, Jiangyan; Shen, Tielong
To analyze and synthesize time-delay systems with discontinuity, the framework of differential inclusion in the sense of Filippov is extended to functional differential inclusion. Based on the extension, the concept of Filippov solution is introduced for the time-delay systems with discontinuity at first, and then it is shown that both the Lyapunov stability and the LaSalle invariance principle results can be extended to such kind of systems. Moreover, by using the proposed analysis tools, a stabilization feedback design approach is proposed for a class of nonlinear time-delay systems with discontinuity. Simulation results of numerical examples are given to demonstrate the proposed control approaches.
Cameron, Brian; Dwyer, Francis
2005-01-01
Online and computer-based instructional gaming is becoming a viable instructional strategy at all levels of education. The purpose of this study was to examine the effect of (a) gaming, (b) gaming plus embedded questions, and (c) gaming plus questions plus feedback on delayed retention of different types of educational objectives for students…
Institute of Scientific and Technical Information of China (English)
Rui Xu; Lan-sun Chen; M.A.J. Chaplain
2003-01-01
A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions, and sufficient conditions are derived for the global attractivity of the positive equilibrium of the system.
Directory of Open Access Journals (Sweden)
Jing Li
2013-04-01
Full Text Available We study the uniform stabilization of a semilinear wave equation with variable coefficients and a delay term in the boundary feedback. The Riemannian geometry method is applied to prove the exponential stability of the system by introducing an equivalent energy function.
Directory of Open Access Journals (Sweden)
Kong Xiangzeng
2010-01-01
Full Text Available A nonautonomous -species discrete Lotka-Volterra competitive system with delays and feedback controls is considered in this work. Sufficient conditions on the coefficients are given to guarantee that all the species are permanent. It is shown that these conditions are weaker than those of Liao et al. 2008.
Institute of Scientific and Technical Information of China (English)
XIANG Shui-Ying; PAN Wei; YAN Lian-Shan; LUO Bin; ZOU Xi-Hua; JIANG Ning; WEN Kun-Hua
2011-01-01
To quantitatively evaluate the time-delay (TD) signatures of chaotic signals generated by vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated optical feedback (PROF), we propose four cases of resolution coefficients R based on correlation functions. The resolution coefficient characteristics for the x-polarization (XP) mode, y-polarization (YP) mode and the total output are considered. The dependences of R on the feedback strength and feedback delay are discussed and compared carefully. The two-dimensional maps of R show that the TD signatures for the single polarization mode (I.e., XP or YP mode) are much more difficult to retrieve than those for the total output in the entire parameter space. Thus, by using single polarization mode as a chaotic carrier, the TD signatures are extremely difficult to be identified, which contributes a lot in the security-enhanced VCSELs-based chaotic optical communication systems.
Jiao, Ticao; Xu, Shengyuan; Lu, Junwei; Wei, Yunliang; Zou, Yun
2016-01-01
This paper deals with the decentralised output feedback stabilisation problem for a class of large-scale stochastic time-delay nonlinear systems. A general theorem is firstly given to guarantee the global existence and uniqueness of the solution for stochastic time-delay systems. In addition, a stochastic version of the well-known LaSalle-Yoshizawa theorem with time-varying delay is initially proposed for the controller design and stability analysis. Then, for a class of large-scale stochastic systems with time-varying delays, totally decentralised adaptive delay-dependent controllers are designed by using K-filter and backstepping approach. Via LaSalle-Yoshizawa-type theorem and constructing a general Lyapunov function, it is shown that all signals in the closed-loop system are bounded almost surely and the solution is almost surely asymptotically stable. Finally, a simulation example is given to illustrate the effectiveness of the results of this paper.
Rossi, V
2010-01-01
In the framework of the LHC project and the modifications of the SPS as its injector, the concept has been developed of a global digital signal processing unit (DSPU) that implements in numerical form the architecture of low-level RF systems. Since 2002 a Digital Notch Filter with programmable delay for the SPS Transverse Damper has been fully operational with fixed target and LHC-type beams circulating in the SPS. The approach, using an FPGA as core for the low-level system, is very flexible and allows the upgrade of the signal processing by modification of the original firmware. The development for the LHC 1-Turn delay Feedback has benefited from the same methodology and similar technology. The achieved performances of the LHC 1-Turn delay Feedback are compared with project requirements. The project flow for the recent LHC 1-T Feedback allows synergy with several other applications. The CERN PS Transverse Damper DSPU, with automatic delay compensation adapting the loop delay to the time of flight of the par...
Xu, Chungui; Kou, Yuhui; Zhang, Peixun; Han, Na; Yin, Xiaofeng; Deng, Jiuxu; Chen, Bo; Jiang, Baoguo
2014-01-01
Electrical stimulation (ES) has been proven to be an effective means of enhancing the speed and accuracy of nerve regeneration. However, these results were recorded when the procedure was performed almost immediately after nerve injury. In clinical settings, most patients cannot be treated immediately. Some patients with serious trauma or contaminated wounds need to wait for nerve repair surgery. Delays in nerve repair have been shown to be associated with poorer results than immediate surgery. It is not clear whether electrical stimulation still has any effect on nerve regeneration after enough time has elapsed. A delayed nerve repair model in which the rats received delayed nerve repair after 1 day, 1 week, 1 month, and 2 months was designed. At each point in time, the nerve stumps of half the rats were bridged with an absorbable conduit and the rats were given 1 h of weak electrical stimulation. The other half was not treated. In order to analyze the morphological and molecular differences among these groups, 6 ES rats and 6 sham ES rats per point in time were killed 5 days after surgery. The other rats in each group were allowed to recover for 6 weeks before the final functional test and tissue observation. The amounts of myelinated fibers in the distal nerve stumps decreased as the delay in repair increased for both ES rats and sham ES rats. In the 1-day-delay and 1-week-delay groups, there were more fibers in ES rats than in sham ES rats. And the compound muscle action potential (CMAP) and motor nerve conduction velocity (MNCV) results were better for ES rats in these two groups. In order to analyze the mechanisms underlying these differences, Masson staining was performed on the distal nerves and quantitative PCR on the spinal cords. Results showed that, after delays in repair of 1 month and 2 months, there was more collagen tissue hyperplasia in the distal nerve in all rats. The brain-derived neurotrophic factor (BDNF) and trkB expression levels in the
Directory of Open Access Journals (Sweden)
Chungui Xu
Full Text Available BACKGROUND: Electrical stimulation (ES has been proven to be an effective means of enhancing the speed and accuracy of nerve regeneration. However, these results were recorded when the procedure was performed almost immediately after nerve injury. In clinical settings, most patients cannot be treated immediately. Some patients with serious trauma or contaminated wounds need to wait for nerve repair surgery. Delays in nerve repair have been shown to be associated with poorer results than immediate surgery. It is not clear whether electrical stimulation still has any effect on nerve regeneration after enough time has elapsed. METHODS: A delayed nerve repair model in which the rats received delayed nerve repair after 1 day, 1 week, 1 month, and 2 months was designed. At each point in time, the nerve stumps of half the rats were bridged with an absorbable conduit and the rats were given 1 h of weak electrical stimulation. The other half was not treated. In order to analyze the morphological and molecular differences among these groups, 6 ES rats and 6 sham ES rats per point in time were killed 5 days after surgery. The other rats in each group were allowed to recover for 6 weeks before the final functional test and tissue observation. RESULTS: The amounts of myelinated fibers in the distal nerve stumps decreased as the delay in repair increased for both ES rats and sham ES rats. In the 1-day-delay and 1-week-delay groups, there were more fibers in ES rats than in sham ES rats. And the compound muscle action potential (CMAP and motor nerve conduction velocity (MNCV results were better for ES rats in these two groups. In order to analyze the mechanisms underlying these differences, Masson staining was performed on the distal nerves and quantitative PCR on the spinal cords. Results showed that, after delays in repair of 1 month and 2 months, there was more collagen tissue hyperplasia in the distal nerve in all rats. The brain-derived neurotrophic
Oscillatory Gene Expression by the microRAN Mediating Delayed Negative Feedback Loop
Institute of Scientific and Technical Information of China (English)
ZHANG Feng-pan; LU Jin-rui; LIU Zhi-guang
2013-01-01
More and more experiments show that microRNAs can regulate gene expression by stimulating degradation of mRNA or repression of translation of mRNA.In this paper,we incorporate the microRNA into a previous mathematical model of gene expression through forming a microRNA-induced silencing complex(RISC).Our findings demonstrate the dynamical behavior of the constructed system.By Hopf theories,we derive the theoretical results of globally asymptotical stability and provide the sufficient conditions for the oscillation of the simple gene regulatory system,and by numerical simulation further demonstrate how the amplitudes against the change of delay in the gene regulatory network.
Yang, Xinsong; Cao, Jinde; Ho, Daniel W C
2015-04-01
This paper investigates drive-response synchronization for a class of neural networks with time-varying discrete and distributed delays (mixed delays) as well as discontinuous activations. Strict mathematical proof shows the global existence of Filippov solutions to neural networks with discontinuous activation functions and the mixed delays. State feedback controller and impulsive controller are designed respectively to guarantee global exponential synchronization of the neural networks. By using Lyapunov function and new analysis techniques, several new synchronization criteria are obtained. Moreover, lower bound on the convergence rate is explicitly estimated when state feedback controller is utilized. Results of this paper are new and some existing ones are extended and improved. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.
La Orden Izquierdo, E; Salcedo Lobato, E; Cuadrado Pérez, I; Herráez Sánchez, M S; Cabanillas Vilaplana, L
2012-01-01
Premature baby's oral feeding is not possible until the reflex of sucking-swallowing-breathing adquisition. Its delay extends hospital stay and increases the incidence of oral motor disorders in early childhood. To analyze the transition from enteral to oral nutrition, the comorbidity associated with its delay and the impact of an early suction stimulation in a cohort of premature babies. Retrospective checking of 95 infants less than 32 gestation weeks (GW) admitted to a neonatal ICU in the last 4 years. It was revised the gestational age, anthropometric at birth and discharge, comorbidity, duration of mechanical ventilation, oxygen requirements, time of beginning and end of enteral/oral nutrition, beginning of Kangaroo method and the suction stimulation and the daily weight gain average. Suction stimulation began between weeks 29 and 40 GW (average and median 32 GW). Oral nutrition was initiated between 31-40 GW (average and median 33 GW) and completed between 33-44 GW (average and median 35 GW). Oral nutrition was delayed in patients who required longer mechanical ventilation and oxygen therapy. There was a positive correlation between the beginning of suction stimulation and the time of acquisition of a complete oral nutrition (84% Spearman correlation test) and length of hospital stay (80% Spearman correlation test). [corrected] Early suction stimulation in a preterm patient seems to facilitate full oral nutrition at an early stage and it is associated with a hospital stay decrease and the improvement in the daily weight gain average.
Hua, Chang-Chun; Wang, Qing-Guo; Guan, Xin-Ping
2009-04-01
In this paper, the robust-control problem is investigated for a class of uncertain nonlinear time-delay systems via dynamic output-feedback approach. The considered system is in the strict-feedback form with unknown control direction. A full-order observer is constructed with the gains computed via linear matrix inequality at first. Then, with the bounds of uncertain functions known, we design the dynamic output-feedback controller such that the closed-loop system is asymptotically stable. Furthermore, when the bound functions of uncertainties are not available, the adaptive fuzzy-logic system is employed to approximate the uncertain function, and the corresponding output-feedback controller is designed. It is shown that the resulting closed-loop system is stable in the sense of semiglobal uniform ultimate boundedness. Finally, simulations are done to verify the feasibility and effectiveness of the obtained theoretical results.
Error-resilient low-delay H.264/802.11 transmission via cross-layer coding with feedback channel
Chiew, Tuan-Kiang; Hill, Paul; Ferre, Pierre; Agrafiotis, Dimitris; Chung-How, James T. H.; Nix, Andy; Bull, David R.
2005-07-01
We propose a method of providing error resilient H.264 video over 802.11 wireless channels by using a feedback mechanism which does not incur an additional delay typically found in ARQ-type feedback. Our system uses the TCP/IP and UDP/IP protocols, located between the medium access control (MAC) layer of 802.11, and the H.264 video application layer. The UDP protocol is used to transfer time sensitive video data without delay; however, packet losses introduce excessive artifacts which propagate to subsequent frames. Error resilience is achieved by a feedback mechanism-the decoder conveys the packet-loss information as small TCP packets to the video source as negative acknowledgements. By using multiple reference frames, slice-based coding and timely intra-refresh, the encoder makes use of this feedback information to perform subsequent temporal prediction without propagating the error to future frames. We take static measurements of the actual channel and use the packet loss and delay patterns to test our algorithms. Simulations show an improvement of 0.5~5 dB in PSNR over plain UDP-based video transmission. Our method improves the overall quality of service of interactive video transmission over wireless LAN; it can be used as a model for future media-aware wireless network protocol designs.
Directory of Open Access Journals (Sweden)
Yong Wang
2015-01-01
Full Text Available This paper proposes the time-delayed cubic velocity feedback control strategy to improve the isolation performance of High-Static-Low-Dynamic-Stiffness (HSLDS vibration isolator. Firstly, the primary resonance of the controlled HSLDS vibration isolator is obtained by using multiple scales method. The equivalent damping ratio and equivalent resonance frequency are defined to study the effects of feedback gain and time delay on the primary resonance. The jump phenomenon analysis of the controlled system without and with time delay is investigated by using Sylvester resultant method and optimization method, respectively. The stability analysis of the controlled system is also considered. Then, the 1/3 subharmonic resonance of the controlled system is studied by using multiple scales method. The effects of feedback gain and time delay on the 1/3 subharmonic resonance are also presented. Finally, force transmissibility is proposed to evaluate the performance of the controlled system and compared with an equivalent linear passive vibration isolator. The results show that the vibration amplitude of the controlled system around the resonance frequency region decreases and the isolation frequency band is larger compared to the equivalent one. A better isolation performance in the high frequency band can be achieved compared to the passive HSLDS vibration isolator.
Delay-Dependent Response in Weakly Electric Fish under Closed-Loop Pulse Stimulation.
Directory of Open Access Journals (Sweden)
Caroline Garcia Forlim
Full Text Available In this paper, we apply a real time activity-dependent protocol to study how freely swimming weakly electric fish produce and process the timing of their own electric signals. Specifically, we address this study in the elephant fish, Gnathonemus petersii, an animal that uses weak discharges to locate obstacles or food while navigating, as well as for electro-communication with conspecifics. To investigate how the inter pulse intervals vary in response to external stimuli, we compare the response to a simple closed-loop stimulation protocol and the signals generated without electrical stimulation. The activity-dependent stimulation protocol explores different stimulus delivery delays relative to the fish's own electric discharges. We show that there is a critical time delay in this closed-loop interaction, as the largest changes in inter pulse intervals occur when the stimulation delay is below 100 ms. We also discuss the implications of these findings in the context of information processing in weakly electric fish.
Directory of Open Access Journals (Sweden)
Lyngeraa Tobias
2012-02-01
Full Text Available Abstract Background Good quality basic life support (BLS improves outcome following cardiac arrest. As BLS performance deteriorates over time we performed a parallel group, superiority study to investigate the effect of feedback on quality of chest compression with the hypothesis that feedback delays deterioration of quality of compressions. Methods Participants attending a national one-day conference on cardiac arrest and CPR in Denmark were randomized to perform single-rescuer BLS with (n = 26 or without verbal and visual feedback (n = 28 on a manikin using a ZOLL AED plus. Data were analyzed using Rescuenet Code Review. Blinding of participants was not possible, but allocation concealment was performed. Primary outcome was the proportion of delivered compressions within target depth compared over a 2-minute period within the groups and between the groups. Secondary outcome was the proportion of delivered compressions within target rate compared over a 2-minute period within the groups and between the groups. Performance variables for 30-second intervals were analyzed and compared. Results 24 (92% and 23 (82% had CPR experience in the group with and without feedback respectively. 14 (54% were CPR instructors in the feedback group and 18 (64% in the group without feedback. Data from 26 and 28 participants were analyzed respectively. Although median values for proportion of delivered compressions within target depth were higher in the feedback group (0-30 s: 54.0%; 30-60 s: 88.0%; 60-90 s: 72.6%; 90-120 s: 87.0%, no significant difference was found when compared to without feedback (0-30 s: 19.6%; 30-60 s: 33.1%; 60-90 s: 44.5%; 90-120 s: 32.7% and no significant deteriorations over time were found within the groups. In the feedback group a significant improvement was found in the proportion of delivered compressions below target depth when the subsequent intervals were compared to the first 30 seconds (0-30 s: 3.9%; 30-60 s: 0.0%; 60-90 s: 0
Gao, Fangzheng; Wu, Yuqiang
2015-03-01
This paper considers the problem of global stabilization by state feedback for a class of high-order nonlinear systems with time-varying delays. Comparing with the existing relevant literature, the systems under investigation allow more uncertainties, to which the existing control methods are inapplicable. By introducing sign function and necessarily modifying the method of adding a power integrator, a state feedback controller is successfully constructed to preserve the equilibrium at the origin and guarantee the global asymptotic stability of the resulting closed-loop system. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed approach.
Wang, Leimin; Shen, Yi; Sheng, Yin
2016-04-01
This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.
Arfin, Scott K; Sarpeshkar, Rahul
2012-02-01
In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.
Marcus, Patrick L.; Fuglevand, Andrew J.
2009-12-01
Spinal cord injury is often accompanied by impaired tactile and proprioceptive sensations. Normally, somatosensensory information derived from such sensations is important in the formation of voluntary motor commands. Therefore, as a preliminary step toward the development of an electrotactile feedback system to restore somatosensation, psychophysical methods were used to characterize perceptual attributes associated with electrical stimulation of the skin on the back of the neck in human subjects. These data were compared to mechanical stimulation of the skin on the back of neck and on the distal pad of the index finger. Spatial acuity of the neck, evaluated using two-point thresholds, was not significantly different for electrical (37 ± 14 mm) or mechanical stimulation (39 ± 10 mm). The exponent (β) of the best fitting power function relating perceived intensity to applied stimulus strength was used to characterize perceptual sensitivity to mechanical and electrical stimuli. For electrical stimuli, both current amplitude-modulated and frequency-modulated trains of pulses were tested. Perceptual sensitivity was significantly greater for current amplitude modulation (β = 1.14 ± 0.37) compared to frequency modulation (β = 0.57 ± 0.24) and mechanical stimulation (0.51 ± 0.12). Finally, based on the data gathered here, we derive a transfer function that could be used in the future to convert mechanical stimuli detected with artificial sensors placed on the fingers into electrotactile signals that evoke perceptions similar to those arising from normal mechanical stimulation of the skin.
Institute of Scientific and Technical Information of China (English)
FANG Jin-Qing; LUO Xiao-Shu; HUANG Guo-Xian
2006-01-01
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neuralnetwork with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.
Language Delays and Child Depressive Symptoms: the Role of Early Stimulation in the Home.
Herman, Keith C; Cohen, Daniel; Owens, Sarah; Latimore, Tracey; Reinke, Wendy M; Burrell, Lori; McFarlane, Elizabeth; Duggan, Anne
2016-07-01
The present study investigated the role of early stimulation in the home and child language delays in the emergence of depressive symptoms. Data were from a longitudinal study of at-risk children in Hawaii (n = 587). Low learning stimulation in the home at age 3 and language delays in first grade both significantly increased risk for child depressive symptoms in third grade. Structural equation modeling supported the hypothesized path models from home learning environment at age 3 to depressive symptoms in third grade controlling for a host of correlated constructs (maternal depression, child temperament, and child internalizing symptoms). Total language skills in the first grade mediated the effect of home learning environment on depressive symptoms. The study and findings fit well with a nurturing environment perspective. Implications for understanding the etiology of child depression and for designing interventions and prevention strategies are discussed.
Directory of Open Access Journals (Sweden)
Mohammad Gudarzi
2013-10-01
Full Text Available This study presents a robust output feedback optimal H&infin control synthesis for a class of uncertain seat suspension systems with actuator saturation and an uncertain actuator time delay. A vertical vibration model of human body is added in order to make the modeling of seat suspension systems more accurate. A dynamic controller is considered by using of two measurable states of the model, by real sensors, as output feedback. Moreover, uncertain actuator time delay is considered to guarantee robust performance of the closed-loop system. The controller is derived by using D-K iteration algorithm for constrained systems with norm-bounded uncertainties. The corresponding closed-loop system is asymptotically stable with a guaranteed H&infin performance. Finally, a design example is presented to show the performance and robustness of the developed theoretical results.
Al-Qahtani, Fawaz S.
2011-09-01
In this paper, we investigate the outage performance of a dual-hop relaying systems with partial relay selection and feedback delay. The analysis considers the case of Rayleigh fading channels when the relaying station as well as the destination undergo mutually independent interfering signals. Particularly, we derive the cumulative distribution function (c.d.f.) of a new type of random variable involving sum of multiple independent exponential random variables, based on which, we present closed-form expressions for the exact outage probability of a fixed amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols. Numerical results are provided to illustrate the joint effect of the delayed feedback and co-channel interference on the outage probability. © 2011 IEEE.
Dunn, John C.; Newell, Ben R.; Kalish, Michael L.
2012-01-01
Evidence that learning rule-based (RB) and information-integration (II) category structures can be dissociated across different experimental variables has been used to support the view that such learning is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables, the delay between response and feedback…
Directory of Open Access Journals (Sweden)
Chunling Shi
2014-01-01
Full Text Available We study a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls. We establish a series of criteria under which a part of n-species of the systems is driven to extinction while the remaining part of the species is persistent. Particularly, as a special case, a series of new sufficient conditions on the persistence for all species of system are obtained. Several examples together with their numerical simulations show the feasibility of our main results.
Li, Jimeng; Li, Ming; Zhang, Jinfeng
2017-08-01
Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.
Indian Academy of Sciences (India)
Qian Lin; Xiaofeng Wu; Yun Chen
2015-12-01
This paper studies the global synchronization of non-autonomous, time-delay, chaotic power systems via linear state-error feedback control. The frequency domain criterion and the LMI criterion are proposed and applied to design the coupling matrix. Some algebraic criteria via a single-variable linear coupling are derived and formulated in simple algebraic inequalities. The effectiveness of the new criteria is illustrated with numerical examples.
Patel, Hemal H; Hsu, Anna; Gross, Garrett J
2004-01-01
Acute cardioprotection is mediated primarily through delta opioid receptor stimulation independent of micro or kappa opioid receptor stimulation. Delayed cardioprotection is mediated by delta opioid receptor agonists but ambiguity remains about direct receptor involvement. Therefore, we investigated the potential of SNC-121, a non-peptide delta opioid agonist, to produce delayed cardioprotection and characterized the role of opioid receptors in this delayed response. All rats underwent 30 minutes of ischemia followed by 2 hours of reperfusion. SNC-121 induced a significant delayed cardioprotective effect. To determine the nature of this SNC-121-induced delayed cardioprotection, rats were treated with specific opioids receptor antagonists and underwent pertussis toxin (PT) treatment prior to opioid agonist stimulation. Control rats were injected with saline and allowed to recover for 24 hours. Pretreatment and early treatment with opioid receptor antagonists failed to inhibit the delayed protective effects of SNC-121, as did pretreatment with PT. Treatment with a free radical scavenger, 2-mercaptopropionyl glycine, at the time of opioid stimulation attenuated the delayed cardioprotective effects of SNC-121. These data suggest that delayed cardioprotection is stimulated via non-peptide delta opioid agonists by a mechanism unrelated to opioid receptor activation. The mechanism appears to be a non-opioid receptor mediated production of reactive oxygen species that triggers the signaling cascade leading to delayed cardioprotection.
Wilkinson, Leonora; Steel, Adam; Mooshagian, Eric; Zimmermann, Trelawny; Keisler, Aysha; Lewis, Jeffrey D; Wassermann, Eric M
2015-10-01
Feedback and monetary reward can enhance motor skill learning, suggesting reward system involvement. Continuous theta burst (cTBS) transcranial magnetic stimulation (TMS) of the primary motor area (M1) disrupts processing, reduces excitability and impairs motor learning. To see whether feedback and reward can overcome the learning impairment associated with M1 cTBS, we delivered real or sham stimulation to two groups of participants before they performed a motor sequence learning task with and without feedback. Participants were trained on two intermixed sequences, one occurring 85% of the time (the "probable" sequence) and the other 15% of the time (the "improbable" sequence). We measured sequence learning as the difference in reaction time (RT) and error rate between probable and improbable trials (RT and error difference scores). Participants were also tested for sequence recall with the same indices of learning 60 min after cTBS. Real stimulation impaired initial sequence learning and sequence knowledge recall as measured by error difference scores and impaired sequence knowledge recall as measured by RT difference score. Relative to non-feedback learning, the introduction of feedback during sequence learning improved subsequent sequence knowledge recall indexed by RT difference score, in both real and sham stimulation groups and feedback reversed the RT difference score based sequence knowledge recall impairment from real cTBS that we observed in the non-feedback learning condition. Only the real cTBS group in the non-feedback condition showed no evidence of explicit sequence knowledge when tested at the end of the study. Feedback improves recall of implicit and explicit motor sequence knowledge and can protect sequence knowledge against the effect of M1 inhibition. Adding feedback and monetary reward/punishment to motor skill learning may help overcome retention impairments or accelerate training in clinical and other settings. Published by Elsevier Ltd.
Koh, Hyung-Woo; Cho, Sung-Hyoun; Kim, Cheol-Yong; Cho, Byung-Jun; Kim, Jin-Woo; Bo, Kak Hwang
2013-09-01
[Purpose] The aim of this study was to investigate the effect of vibratory stimulation on maximal voluntary isometric contraction (MVIC) from delayed onset muscle soreness (DOMS). [Subjects] Sixty healthy adults participated in this study. The exclusion criteria were orthopedic or neurologic disease. [Methods] The researchers induced DOMS in the musculus extensor carpi radialis longus of each participant. Subjects in the control group received no treatment. The ultrasound group received ultrasound treatment (intensity, 1.0 W/cm(2;) frequency 1 MHz; time, 10 minutes). The vibration group received vibration stimulation (frequency, 20 MHz; time, 10 minutes). Maximal voluntary isometric contraction (MVIC) was recorded at baseline, immediately after exercise, and 24, 48, and 72 hours after exercise. [Results] MVIC measurements showed statistically significant differences in the vibration group compared with the control group. [Conclusion] Vibratory stimulation had a positive effect on recovery of muscle function from DOMS.
Directory of Open Access Journals (Sweden)
Yuan Ren
2016-01-01
Full Text Available This paper analyzes the effects of time delay on the stability of the rotation modes for the magnetically suspended flywheel (MSFW with strong gyroscopic effects. A multi-input multioutput system is converted into a single-input single-output control system with complex coefficient by variable reconstruction, and the stability equivalence of the systems before and after variable reconstruction is proven. For the rotation modes, the stability limits and corresponding vibration frequencies are found as a function of nondimensional magnetic stiffness and damping and nondimensional parameters of rotor speed and time delay. Additionally, the relationship between cross feedback control system stability and time delay is investigated. And an effective phase compensation method based on cross-channel is further presented. Simulation and experimental results are presented to demonstrate the correctness of the stability analysis method and the superiority of the phase compensation strategy.
Directory of Open Access Journals (Sweden)
Jinxing Lin
2010-01-01
Full Text Available This paper is concerned with the problems of exponential admissibility and dynamic output feedback (DOF control for a class of continuous-time switched singular systems with interval time-varying delay. A full-order, dynamic, synchronously switched DOF controller is considered. First, by using the average dwell time approach, a delay-range-dependent exponential admissibility criterion for the unforced switched singular time-delay system is established in terms of linear matrix inequalities (LMIs. Then, based on this criterion, a sufficient condition on the existence of a desired DOF controller, which guarantees that the closed-loop system is regular, impulse free and exponentially stable, is proposed by employing the LMI technique. Finally, some illustrative examples are given to show the effectiveness of the proposed approach.
Sinha, Neha; Glass, Arnold Lewis
2015-01-01
Three experiments, two performed in the laboratory and one embedded in a college psychology lecture course, investigated the effects of immediate versus delayed feedback following a multiple-choice exam on subsequent short answer and multiple-choice exams. Performance on the subsequent multiple-choice exam was not affected by the timing of the feedback on the prior exam; however, performance on the subsequent short answer exam was better following delayed than following immediate feedback. This was true regardless of the order in which immediate versus delayed feedback was given. Furthermore, delayed feedback only had a greater effect than immediate feedback on subsequent short answer performance following correct, confident responses on the prior exam. These results indicate that delayed feedback cues a student's prior response and increases subsequent recollection of that response. The practical implication is that delayed feedback is better than immediate feedback during academic testing.
Kong, Yongsu; Zhao, Dingxuan; Yang, Bin; Han, Chenghao; Han, Kyongwon
2014-07-01
This paper presents an approach to design a delay-dependent non-fragile H∞/L2-L∞ static output feedback (SOF) controller for active suspension with input time-delay. The control problem of quarter-car active suspension with actuator time-delay is formulated to a H∞/L2-L∞ control problem. By employing a delay-dependent Lyapunov function, new existence conditions of delay-dependent non-fragile SOF H∞ controller and L2-L∞ controller are derived, respectively, in terms of the feasibility of bilinear matrix inequalities (BMIs). Then, a procedure based on linear matrix inequality optimisation and a hybrid algorithm of the particle swarm optimisation and differential evolution is used to solve an optimisation problem with BMI constraints. Design and simulation results of non-fragile H∞/L2-L∞ controller for active suspension show that the designed controller not only can achieve the optimal performance and stability of the closed-loop system in spite of the existence of the actuator time-delay, but also has significantly improved the non-fragility characteristics over controller perturbations.
Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J
2013-01-01
This study investigated the use of center of mass (COM) acceleration feedback for improving performance of a functional neuromuscular stimulation control system to restore standing function to a subject with complete, thoracic-level spinal cord injury. The approach for linearly relating changes in muscle stimulation to changes in COM acceleration was verified experimentally and subsequently produced data to create an input-output map driven by sensor feedback. The feedback gains were systematically tuned to reduce upper extremity (UE) loads applied to an instrumented support device while resisting external postural disturbances. Total body COM acceleration was accurately estimated (>89% variance explained) using 3-D outputs of two accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, feedback control of stimulation reduced UE loading by 33%. COM acceleration feedback is advantageous in constructing a standing neuroprosthesis since it provides the basis for a comprehensive control synergy about a global, dynamic variable and requires minimal instrumentation. Future work should include tuning and testing the feedback control system during functional reaching activity that is more indicative of activities of daily living.
Mirkin, Boris; Haddad, Jack; Shtessel, Yuri
2016-09-01
Asymptotical sliding mode-model reference adaptive control design for a class of systems with parametric uncertainty, unknown nonlinear perturbation and external disturbance, and with known input and state delays is proposed. To overcome the difficulty to directly predict the plant state under uncertainties, a control design is based on a developed decomposition procedure, where a 'generalised error' in conjunction with auxiliary linear dynamic blocks with adjustable gains is introduced and the sliding variable is formed on the basis of this error. The effect of such a decomposition is to pull the input delay out of first step of the design procedure. As a result, similarly to the classical Smith predictor, the adaptive control architecture based only on the lumped-delays, i.e. without conventional in such cases difficult-implemented distributed-delay blocks. Two new adaptive control schemes are proposed. A linearisation-based control design is constructed for feedback control of an urban traffic region model with uncertain dynamics. Simulation results demonstrate the effectiveness of the developed adaptive control method.
Sensing and feedback stimulation via the wireless ZigBee protocol.
Chati, Harding D; Salem, Fathi M
2006-01-01
The aim of this work is to implement a feedback sensing and control mechanism via wireless sensor nodes for medical sensing and actuation. To that end, we employ the Zigbee protocol in sensing and precisely commanding an analog signal to a probe. We employ a user application upon the layer available in the Zigbee stack to achieve our goal. Signal transmission delays, packet losses, and energy consumption are major challenges, we present strategies to minimize or solve these challenges. We also introduce strategies to enable sensor nodes to acquire and command (electrical current) signals from/to sensing/actuating platforms. Finally, we implement algorithms allowing the sensor node to compute and to regulate command signal on line.
D'Alonzo, Marco; Dosen, Strahinja; Cipriani, Christian; Farina, Dario
2014-03-01
Electro- or vibro-tactile stimulations were used in the past to provide sensory information in many different applications ranging from human manual control to prosthetics. The two modalities were used separately in the past, and we hypothesized that a hybrid vibro-electrotactile (HyVE) stimulation could provide two afferent streams that are independently perceived by a subject, although delivered in parallel and through the same skin location. We conducted psychophysical experiments where healthy subjects were asked to recognize the intensities of electroand vibro-tactile stimuli during hybrid and single modality stimulations. The results demonstrated that the subjects were able to discriminate the features of the two modalities within the hybrid stimulus, and that the cross-modality interaction was limited enough to allow better transmission of discrete information (messages) using hybrid versus singlemodality coding. The percentages of successful recognitions (mean ± standard deviation) for nine messages were 56 ± 11 % and 72 ± 8 % for two hybrid coding schemes, compared to 29 ±7 % for vibrotactile and 44 ± 4 % for electrotactile coding. The HyVE can be therefore an attractivesolution in numerous application for providing sensory feedbackin prostheses and rehabilitation, and it could be used to increase the resolution of a single variable or to simultaneously feedback two different variables.
Richardson, Barbara K
2004-12-01
The emergency department provides a rich environment for diverse patient encounters, rapid clinical decision making, and opportunities to hone procedural skills. Well-prepared faculty can utilize this environment to teach residents and medical students and gain institutional recognition for their incomparable role and teamwork. Giving effective feedback is an essential skill for all teaching faculty. Feedback is ongoing appraisal of performance based on direct observation aimed at changing or sustaining a behavior. Tips from the literature and the author's experience are reviewed to provide formats for feedback, review of objectives, and elements of professionalism and how to deal with poorly performing students. Although the following examples pertain to medical student education, these techniques are applicable to the education of all adult learners, including residents and colleagues. Specific examples of redirection and reflection are offered, and pitfalls are reviewed. Suggestions for streamlining verbal and written feedback and obtaining feedback from others in a fast-paced environment are given. Ideas for further individual and group faculty development are presented.
Directory of Open Access Journals (Sweden)
H.M. Omar
2005-01-01
Full Text Available We designed a feedback controller to automate crane operations by controlling the load position and its swing. First, a PD tracking controller is designed to follow a prescribed trajectory. Then, another controller is added to the control loop to damp the load swing. The anti-swing controller is designed based on two techniques: a time-delayed feedback of the load swing angle and an anti-swing fuzzy logic controller (FLC. The rules of the FLC are generated by mapping the performance of the time-delayed feedback controller. The same mapping method used for generating the rules can be applied to mimic the performance of an expert operator. The control algorithms were designed for gantry cranes and then extended to tower cranes by considering the coupling between the translational and rotational motions. Experimental results show that the controller is effective in reducing load oscillations and transferring the load in a reasonable time. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction and then applied a control action to cancel it. The friction force was estimated by assuming a mathematical model and then estimating the model coefficients using an off-line identification technique, the method of least squares (LS.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
Directory of Open Access Journals (Sweden)
Qianqian Su
2010-01-01
Full Text Available We consider a discrete n-species Schoener competition system with time delays and feedback controls. By using difference inequality theory, a set of conditions which guarantee the permanence of system is obtained. The results indicate that feedback control variables have no influence on the persistent property of the system. Numerical simulations show the feasibility of our results.
Modeling time delay in the NFκB signaling pathway following low dose IL-1 stimulation
2011-01-01
Stimulation of human epithelial cells with IL-1 (10 ng/ml) + UVB radiation results in sustained NFκB activation caused by continuous IKKβ phosphorylation. We have recently published a strictly reduced ordinary differential equation model elucidating the involved mechanisms. Here, we compare model extensions for low IL-1 doses (0.5 ng/ml), where delayed IKKβ phosphorylation is observed. The extended model including a positive regulatory element, most likely auto-ubiquitination of TRAF6, reproduces the observed experimental data most convincingly. The extension is shown to be consistent with the original model and contains very sensitive processes which may serve as potential intervention targets. PMID:21910922
Constant Delivery Delay Protocol Sequences for the Collision Channel Without Feedback
Salaun, Lou; Shue Chen, Chung; Chen, Yi; Shing Wong, Wing
2016-01-01
International audience; We consider a collision channel model without feedback based on a time-slotted communication channel shared by K users. In this model, packets transmitted in the same time slot collide with each other and are unrecoverable. Each user accesses the channel according to an internal periodical pattern called protocol sequence. Due to the lack of feedback, users cannot synchronize their protocol sequences, leading to unavoidable collisions and varying throughput. Protocol s...
Schiefer, Matthew; Tan, Daniel; Sidek, Steven M.; Tyler, Dustin J.
2016-02-01
Objective. Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Approach. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject’s sense of embodiment with a survey and his self-confidence. Main results. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Significance. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.
Hua, Changchun; Zhang, Liuliu; Guan, Xinping
2016-04-01
This paper studies the problem of output feedback control for a class of nonlinear time-delay systems with prescribed performance. The system is in the form of triangular structure with unmodelled dynamics. First, we introduce a reduced-order observer to provide the estimate of the unmeasured states. Then, by setting a new condition with the performance function, we design the state transformation with prescribed performance control. By employing backstepping method, we construct the output feedback controller. It is proved that the resulting closed-loop system is asymptotically stable and both transient and steady-state performance of the output are preserved with the changing supply function idea. Finally, a simulation example is conducted to show the effectiveness of the main results.
Huang, Sheng-Juan; Yang, Guang-Hong
2016-09-01
This paper mainly focuses on the problem of non-fragile H∞ dynamic output feedback control for a class of uncertain Takagi-Sugeno fuzzy systems with time-varying state delay. Based on a new type of Lyapunov-Krasovskii functional without ignoring any subtle integral terms in the derivatives, a less conservative dynamic output feedback controller with additive gain variations is designed, which guarantees that the closed-loop fuzzy system is asymptotically stable and satisfies a prescribed H∞-performance level. Furthermore, the obtained parameter-dependent conditions are given in terms of solution to a set of linear matrix inequalities, which improve some existing relevant results. Finally, numerical examples are given to illustrate the effectiveness and merits of the proposed method.
Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F
2015-01-07
Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus.
Rosinberg, M. L.; Tarjus, G.; Munakata, T.
2017-02-01
This paper is the second in a series devoted to the study of Langevin systems subjected to a continuous time-delayed feedback control. The goal of our previous paper [Phys. Rev. E 91, 042114 (2015), 10.1103/PhysRevE.91.042114] was to derive second-law-like inequalities that provide bounds to the average extracted work. Here we study stochastic fluctuations of time-integrated observables such as the heat exchanged with the environment, the extracted work, or the (apparent) entropy production. We use a path-integral formalism and focus on the long-time behavior in the stationary cooling regime, stressing the role of rare events. This is illustrated by a detailed analytical and numerical study of a Langevin harmonic oscillator driven by a linear feedback.
Directory of Open Access Journals (Sweden)
Jiwei Wen
2014-01-01
Full Text Available The H∞ dynamic output feedback control problem for a class of discrete-time switched time-delay systems under asynchronous switching is investigated in this paper. Sensor nonlinearity and missing measurements are considered when collecting output knowledge of the system. Firstly, when there exists asynchronous switching between the switching modes and the candidate controllers, new results on the regional stability and l2 gain analysis for the underlying system are given by allowing the Lyapunov-like function (LLF to increase with a random probability. Then, a mean square stabilizing output feedback controller and a switching law subject to average dwell time (ADT are obtained with a given disturbance attenuation level. Moreover, the mean square domain of attraction could be estimated by a convex combination of a set of ellipsoids, the number of which depends on the number of switching modes. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
Chaubet, Vincent; Cormery, Bruno; Maitre, Julien; Paillard, Thierry
2013-05-01
Voluntary and stimulated contractions are commonly used in sports training and rehabilitation, and it is well known that both these kinds of contractions generate central fatigue. However, to date, there is a lack of research on the comparison of the mechanisms by which these 2 exercises induce central disturbances. Central fatigue can be characterized by central activation failure during maximal voluntary contraction (MVC). Superimposition of an electrical stimulation onto MVC has been used to detect central activation failure. Completeness of activation has been quantified by the central activation ratio (CAR) = MVC/(MVC + stimulated force). The aim was not only to evaluate the CAR immediately after fatiguing voluntary (VOL) and stimulated (STIM) contractions but also to compare recovery duration over different time periods (prefatigue: PRE condition; immediate postfatigue: POST condition; after a 5-minute recovery: POST 5 condition; after a 30-minute recovery: POST 30 condition) (n = 18). Results showed that in the POST condition, the CAR is more affected for the VOL contractions than for the STIM contractions (p contractions only in the POST 5 condition (p contractions, whereas it was complete for the VOL contractions (p contractions alter the CAR more than the STIM contractions immediately after their completion. However, the effects of the STIM contractions on the CAR are delayed and prolonged.
Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing
2013-12-01
The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Mervan Pašić
2014-01-01
Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.
Directory of Open Access Journals (Sweden)
Lin Chai
2013-01-01
Full Text Available Stabilization of a class of systems with time delay is studied using adaptive control. With the help of the “error to error” technique and the separated “descriptor form” technique, the memory state-feedback controller is designed. The adaptive controller designed can guarantee asymptotical stability of the closed-loop system via a suitable Lyapunov-Krasovskii functional. Some sufficient conditions are derived for the stabilization together with the linear matrix inequality (LMI design approach. Finally, the effectiveness of the proposed control design methodology is demonstrated in numerical simulations.
Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An
2012-12-01
This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.
Yadmellat, Peyman; Nikravesh, S. Kamaleddin Yadavar
2011-01-01
In this paper, a recursive delayed output-feedback control strategy is considered for stabilizing unstable periodic orbit of unknown nonlinear chaotic systems. An unknown nonlinearity is directly estimated by a linear-in-parameter neural network which is then used in an observer structure. An on-line modified back propagation algorithm with e-modification is used to update the weights of the network. The globally uniformly ultimately boundedness of overall closed-loop system response is analytically ensured using Razumikhin lemma. To verify the effectiveness of the proposed observer-based controller, a set of simulations is performed on a Rossler system in comparison with several previous methods.
The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays
Directory of Open Access Journals (Sweden)
Cong Zhai
2016-01-01
Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.
Hua, Changchun; Zhang, Liuliu; Guan, Xinping
2015-11-01
This paper studies the dynamic output feedback tracking control problem for stochastic interconnected time-delay systems with the prescribed performance. The subsystems are in the form of triangular structure. First, we design a reduced-order observer independent of time delay to estimate the unmeasured state variables online instead of the traditional full-order observer. Then, a new state transformation is proposed in consideration of the prescribed performance requirement. Using neural network to approximate the composite unknown nonlinear function, the corresponding decentralized output tracking controller is designed. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of uniformly ultimately boundedness and that both transient-state and steady-state performances are preserved. Finally, a simulation example is given, and the result shows the effectiveness of the proposed control design method.
Yang, Yang; Yue, Dong; Yuan, Deming
2016-11-01
Considering interconnections among subsystems, we propose an adaptive neural tracking control scheme for a class of multiple-input-multiple-output (MIMO) non-affine pure-feedback time-delay nonlinear systems with input saturation. Neural networks (NNs) are employed to approximate unknown functions in the design procedure, and the separation technology is introduced here to tackle the problem induced from unknown time-delay items. The adaptive neural tracking control scheme is constructed by combining Lyapunov-Krasovskii functionals, NNs, the auxiliary system, the implicit function theory and the mean value theorem along with the dynamic surface control technique. Also, it is proven that the strategy guarantees tracking errors converge to a small neighbourhood around the origin by appropriate choice of design parameters and all signals in the closed-loop system uniformly ultimately bounded. Numerical simulation results are presented to demonstrate the effectiveness of the proposed control strategy.
Directory of Open Access Journals (Sweden)
Na Han
2015-01-01
Full Text Available Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β (an indicator of tissue fibrosis decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair.
Schelte, Christian; Panajotov, Krassimir; Tlidi, Mustapha; Gurevich, Svetlana V.
2017-08-01
We consider a wide-aperture surface-emitting laser with a saturable absorber section subjected to time-delayed feedback. We adopt the mean-field approach assuming a single longitudinal mode operation of the solitary vertical-cavity surface-emitting laser (VCSEL). We investigate cavity soliton dynamics under the effect of time-delayed feedback in a self-imaging configuration where diffraction in the external cavity is negligible. Using bifurcation analysis, direct numerical simulations, and numerical path-continuation methods, we identify the possible bifurcations and map them in a plane of feedback parameters. We show that for both the homogeneous and localized stationary lasing solutions in one spatial dimension, the time-delayed feedback induces complex spatiotemporal dynamics, in particular a period doubling route to chaos, quasiperiodic oscillations, and multistability of the stationary solutions.
Institute of Scientific and Technical Information of China (English)
LIU MeiQin
2007-01-01
A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.
Directory of Open Access Journals (Sweden)
Muhammad Rehan
2012-01-01
Full Text Available Synchronization of chaotic neurons under external electrical stimulation (EES is studied in order to understand information processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN neurons under EES for incorporated parametric variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional, and the L2 gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees both robust stability and robust performance and provides the L2 bound for uncertainty rejection in the synchronization error dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN systems are provided. The results of the proposed techniques are verified through numerical simulations.
Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey
2006-08-16
Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.
Stability result of the Timoshenko system with delay and boundary feedback
Said-Houari, Belkacem
2012-01-06
Our interest in this paper is to analyse the asymptotic behaviour of a Timoshenko beam system together with two boundary controls, with delay terms in the first and second equation. Assuming the weights of the delay are small enough, we show that the system is well-posed using the semigroup theory. Furthermore, we introduce a Lyapunov functional that gives the exponential decay of the total energy. © 2012 The author.
The effect and design of time delay in feedback control for a nonlinear isolation system
Sun, Xiuting; Xu, Jian; Fu, Jiangsong
2017-03-01
The optimum value of time delay of active control used in a nonlinear isolation system for different types of external excitation is studied in this paper. Based on the mathematical model of the nonlinear isolator with time-delayed active control, the stability, response and displacement transmissibility of the system are analyzed to obtain the standards for appropriate values of time delay and control strengths. The effects of nonlinearity and time delay on the stability and vibration response are discussed in details. For impact excitation and random excitation, the optimal value of time delay is obtained based on the vibration dissipation time via eigenvalues analysis, while for harmonic excitation, the optimal values are determined based on multiple vibration properties including natural frequency, amplitude death region and effective isolation region by the Averaging Method. This paper establishes the relationship between the parameters and vibration properties of a nonlinear isolation system which provides the guidance for optimizing time-delayed active control for different types of excitation in engineering practices.
Resonances of a nonlinear single-degree-of-freedom system with time delay in linear feedback control
Energy Technology Data Exchange (ETDEWEB)
El-Bassiouny, Atef F. [Mathematics Dept., Benha Univ., Benha (Egypt); El-Kholy, Salah [Dept. of Mathematics, Menoufia Univ., Shebin El-kom (Egypt)
2010-05-15
The primary and subharmonic resonances of a nonlinear single-degree-of-freedom system under feedback control with a time delay are studied by means of an asymptotic perturbation technique. Both external (forcing) and parametric excitations are included. By means of the averaging method and multiple scales method, two slow-flow equations for the amplitude and phase of the primary and subharmonic resonances and all other parameters are obtained. The steady state (fixed points) corresponding to a periodic motion of the starting system is investigated and frequency-response curves are shown. The stability of the fixed points is examined using the variational method. The effect of the feedback gains, the time-delay, the coefficient of cubic term, and the coefficients of external and parametric excitations on the steady-state responses are investigated and the results are presented as plots of the steady-state response amplitude versus the detuning parameter. The results obtained by two methods are in excellent agreement. (orig.)
Semiconductor ring lasers with delayed optical feedback: low-frequency fluctuations
Van der Sande, Guy; Mashal, Lilia; Nguimdo, Romain Modeste; Cornelles-Soriano, Miguel C.; Danckaert, Jan; Verschaffelt, Guy
2014-05-01
Semiconductor lasers subject to external feedback are known to exhibit a wide variety of dynamical regimes desired for some applications such as chaos cryptography, random bit generation, and reservoir computing. Low-frequency fluctuations is one of the most frequently encountered regimes. It is characterized by a fast drop in laser intensity followed by a gradual recovery. The duration of this recovery process is irregular and of the order of hundred nanoseconds. The average time between dropouts is much larger than the laser system characteristic time-scales. Semiconductor ring lasers are currently the focus of a rapidly thriving research activity due to their unique feature of directional bistability. They can be employed in systems for all-optical switching, gating, wavelength-conversion functions, and all-optical memories. Semiconductor ring lasers do not require cleaved facets or gratings for optical feedback and are thus particularly suited for monolithic integration. We experimentally and numerically address the issue of low-frequency fluctuations considering a semiconductor ring laser in a feedback configuration where only one directional mode is re-injected into the same directional mode, a so-called single self-feedback. We have observed that the system is very sensitive to the feedback strength and the injection current. In particular, the power dropouts are more regular when the pump current is increased and become less frequent when the feedback strength is increased. In addition, we find two different recovery processes after the power dropouts of the low-frequency fluctuations. The recovery can either occur via pulses or in a stepwise manner. Since low-frequency fluctuations are not specific to semiconductor ring lasers, we expect these recovery processes to appear also in VCSELs and edge-emitting lasers under similar feedback conditions. The numerical simulations also capture these different behaviors, where the representation in the phase space of
Robust Output Feedback Control for Uncertain Discrete Systems with Time Delays%不确定时滞离散系统的鲁棒输出反馈控制
Institute of Scientific and Technical Information of China (English)
刘碧玉; 桂卫华
2005-01-01
Based on design of an observer, the issue of dynamic output feedback control is studied for uncertain discrete systems with delays. A comparison theorem is given for nonlinear uncertain discrete systems with multiple time delays. Based on the comparison theorem with some inequalities,some delay-independent sufficient conditions for the robust stabilization of the systems are presented by means of output feedback.
Martins, Karen J B; MacLean, Ian; Murdoch, Gordon K; Dixon, Walter T; Putman, Charles T
2011-12-01
This study examined the effect of nitric oxide synthase (NOS) inhibition via N(ω)-nitro-l-arginine methyl ester (l-NAME) administration on low-frequency stimulation-induced satellite cell (SC) activation in rat skeletal muscle. l-NAME only delayed stimulation-induced increases in SC activity. Also, stimulation-induced increases in hepatocyte growth factor (HGF) mRNA and protein expression were only abrogated at the mRNA level in l-NAME-treated animals. Therefore, early stimulation-induced SC activation appears to be NOS-dependent, while continued activation may involve NOS-independent HGF translational control mechanisms.
Li, Tieshan; Li, Zifu; Wang, Dan; Chen, C L Philip
2015-06-01
This paper presents an adaptive output-feedback neural network (NN) control scheme for a class of stochastic nonlinear time-varying delay systems with unknown control directions. To make the controller design feasible, the unknown control coefficients are grouped together and the original system is transformed into a new system using a linear state transformation technique. Then, the Nussbaum function technique is incorporated into the backstepping recursive design technique to solve the problem of unknown control directions. Furthermore, under the assumption that the time-varying delays exist in the system output, only one NN is employed to compensate for all unknown nonlinear terms depending on the delayed output. Moreover, by estimating the maximum of NN parameters instead of the parameters themselves, the NN parameters to be estimated are greatly decreased and the online learning time is also dramatically decreased. It is shown that all the signals of the closed-loop system are bounded in probability. The effectiveness of the proposed scheme is demonstrated by the simulation results.
Effect of Microcurrent Stimulation on Delayed-Onset Muscle Soreness: A Double-Blind Comparison
Allen, Jennifer D.; Mattacola, Carl G.; Perrin, David H.
1999-01-01
Objective: To examine the efficacy of microcurrent electrical neuromuscular stimulation (MENS) treatment on pain and loss of range of motion (ROM) associated with delayed-onset muscle soreness (DOMS). Design and Setting: We assigned subjects to 1 of 2 groups. Group 1 received treatment with microcurrent stimulation (200 μA, 30 Hz, for 10 minutes, then 100 μA, 0.3 Hz, for 10 minutes) 24, 48, and 72 hours after DOMS induction. Group 2 served as a sham group and was treated using a machine altered by the manufacturer so that no current could flow through the electrodes. Subjects: DOMS was induced in the biceps brachii of the nondominant arm of 18 subjects (3 males, 15 females: age = 20.33 ± 2.3 years, ht = 170.81 ± 7.3 cm, wt = 69.61 ± 13.1 kg). Dominance was defined as the arm used by the subject to throw a ball. Measurements: Subjective pain and active elbow extension ROM were evaluated before and after treatment each day. Two methods were used to assess pain: constant pressure using a weighted Orthoplast sphere and full elbow extension to the limit of pain tolerance. Subjective pain was measured with a graphic rating scale and active elbow extension ROM using a standard, plastic, double-armed goniometer. Three repeated-measures ANOVAs (between-subjects variable was group, within- subjects variables were day and test) were used to assess ROM and pain scores for the 2 groups. Results: We found no significant difference in the measurement of subjective pain scores or elbow extension ROM when the MENS group was compared with the sham group. Conclusions: Our results indicate that the MENS treatment, within the parameters used for this experiment, was not effective in reducing the pain or loss of ROM associated with delayed-onset muscle soreness. PMID:16558582
Murase, Tomokazu; Umeda, Masahiro; Fukunaga, Masaki; Tanaka, Chuzo; Higuchi, Toshihiro
2013-01-01
We used deconvolution analysis to examine temporal changes in brain activity after acupuncture stimulation and assess brain responses without expected reference functions. We also examined temporal changes in brain activity after sham acupuncture (noninsertive) and scrubbing stimulation. We divided 26 healthy right-handed adults into a group of 13 who received real acupuncture with manual manipulation and a group of 13 who received both tactical stimulations. Functional magnetic resonance imaging (fMRI) sequences consisted of four 15-s stimulation blocks (ON) interspersed between one 30-s and four 45-s rest blocks (OFF) for a total scanning time of 270 s. We analyzed data by using Statistical Parametric Mapping 8 (SPM8), MarsBaR, and Analysis of Functional NeuroImages (AFNI) software. For statistical analysis, we used 3dDeconvolve, part of the AFNI package, to extract the impulse response functions (IRFs) of the fMRI signals on a voxel-wise basis, and we tested the time courses of the extracted IRFs for the stimulations. We found stimulus-specific impulse responses of blood oxygen level-dependent (BOLD) signals in various brain regions. We observed significantly delayed and long-sustained increases of BOLD signals in several brain regions following real acupuncture compared to sham acupuncture and palm scrubbing, which we attribute to peripheral nocireceptors, flare responses, and processing of the central nervous system. Acupuncture stimulation induced continued activity that was stronger than activity after the other stimulations. We used tent function deconvolution to process fMRI data for acupuncture stimulation and found delayed increasing and delayed decreasing changes in BOLD signal in the somatosensory areas and areas related to pain perception. Deconvolution analyses with tent functions are expected to be useful in extracting complicated and associated brain activity that is delayed and sustained for a long period after various stimulations.
Boinovich, Ludmila; Emelyanenko, Alexandre M; Korolev, Vadim V; Pashinin, Andrei S
2014-02-18
An increasing number of studies directed at supercooling water droplets on surfaces with different wettabilities have appeared in recent years. This activity has been stimulated by the recognition that water supercooling phenomena can be effectively used to develop methods for protecting outdoor equipment and infrastructure elements against icing and snow accretion. In this article, we discuss the nucleation kinetics of supercooled sessile water droplets on hydrophilic, hydrophobic, and superhydrophobic surfaces under isothermal conditions at temperatures of -8, -10, and -15 °C and a saturated water vapor atmosphere. The statistics of nucleation events for the ensembles of freezing sessile droplets is completed by the detailed analysis of the contact angle temperature dependence and freezing of individual droplets in a saturated vapor atmosphere. We have demonstrated that the most essential freezing delay is characteristic of the superhydrophobic coating on aluminum, with the texture resistant to contact with ice and water. This delay can reach many hours at T = -8 °C and a few minutes at -23 °C. The observed behavior is analyzed on the basis of different nucleation mechanisms. The dissimilarity in the total nucleation rate, detected for two superhydrophobic substrates having the same apparent contact angle of the water drop but different resistivities of surface texture to the contact with water/ice, is associated with the contribution of heterogeneous nucleation on external centers located at the water droplet/air interface.
Estimating the Lyapunov spectrum of time delay feedback systems from scalar time series.
Hegger, R
1999-08-01
On the basis of a recently developed method for modeling time delay systems, we propose a procedure to estimate the spectrum of Lyapunov exponents from a scalar time series. It turns out that the spectrum is approximated very well and allows for good estimates of the Lyapunov dimension even if the sampling rate of the time series is so low that the infinite dimensional tangent space is spanned quite sparsely.
Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children.
Directory of Open Access Journals (Sweden)
Thalita Ubiali
Full Text Available The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing.P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation.P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values.Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Optimizing the dynamics of a two-cell DC-DC buck converter by time delayed feedback control
Feki, M.; El Aroudi, A.; Robert, B. G. M.; Martínez-Salamero, L.
2011-11-01
A study of the dynamical behavior of a two-cell DC-DC buck converter under a digital time delayed feedback control (TDFC) is presented. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without TDFC, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. TDFC is able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.
Sunada, Satoshi; Harayama, Takahisa; Davis, Peter; Tsuzuki, Ken; Arai, Ken-Ichi; Yoshimura, Kazuyuki; Uchida, Atsushi
2012-12-01
We present an experimental method for directly observing the amplification of microscopic intrinsic noise in a high-dimensional chaotic laser system, a laser with delayed feedback. In the experiment, the chaotic laser system is repeatedly switched from a stable lasing state to a chaotic state, and the time evolution of an ensemble of chaotic states starting from the same initial state is measured. It is experimentally demonstrated that intrinsic noises amplified by the chaotic dynamics are transformed into macroscopic fluctuating signals, and the probability density of the output light intensity actually converges to a natural invariant probability density in a strongly chaotic regime. Moreover, with the experimental method, we discuss the application of the chaotic laser systems to physical random bit generators. It is experimentally shown that the convergence to the invariant density plays an important role in nondeterministic random bit generation, which could be desirable for future ultimate secure communication systems.
Fang, Ya-Ling; Shi, Zhong-Ke; Cao, Jin-Liang
2015-06-01
Based on the coupled map car-following model which was presented by Konishi et al. (1999), a modified coupled map car-following model is proposed. Specifically, the velocity difference between two successive vehicles is included in the model. The stability condition is given for the change of the speed of the preceding vehicle on the base of the control theory. We derive a condition under which the traffic jam never occurs in our model. Furthermore, in order to suppress traffic jams, we use static and dynamic version of decentralized delayed-feedback control for each vehicle, respectively, and provide a systematic procedure for designing the controller. In addition, the controller of each vehicle does not include any other vehicle information in real traffic flows.
Tan, A H; Lu, N; Xiao, D
2008-02-01
This paper presents a neural architecture for learning category nodes encoding mappings across multimodal patterns involving sensory inputs, actions, and rewards. By integrating adaptive resonance theory (ART) and temporal difference (TD) methods, the proposed neural model, called TD fusion architecture for learning, cognition, and navigation (TD-FALCON), enables an autonomous agent to adapt and function in a dynamic environment with immediate as well as delayed evaluative feedback (reinforcement) signals. TD-FALCON learns the value functions of the state-action space estimated through on-policy and off-policy TD learning methods, specifically state-action-reward-state-action (SARSA) and Q-learning. The learned value functions are then used to determine the optimal actions based on an action selection policy. We have developed TD-FALCON systems using various TD learning strategies and compared their performance in terms of task completion, learning speed, as well as time and space efficiency. Experiments based on a minefield navigation task have shown that TD-FALCON systems are able to learn effectively with both immediate and delayed reinforcement and achieve a stable performance in a pace much faster than those of standard gradient-descent-based reinforcement learning systems.
Li, Huiping; Shi, Yang
2012-10-01
This article focuses on the state-feedback ℋ∞ control problem for the stochastic nonlinear systems with state and disturbance-dependent noise and time-varying state delays. Based on the maxmin optimisation approach, both the delay-independent and the delay-dependent Hamilton-Jacobi-inequalities (HJIs) are developed for synthesising the state-feedback ℋ∞ controller for a general type of stochastic nonlinear systems. It is shown that the resulting control system achieves stochastic stability in probability and the prescribed disturbance attenuation level. For a class of stochastic affine nonlinear systems, the delay-independent as well as delay-dependent matrix-valued inequalities are proposed; the resulting control system satisfies global asymptotic stability in the mean-square sense and the required disturbance attenuation level. By modelling the nonlinearities as uncertainties in corresponding stochastic time-delay systems, the sufficient conditions in terms of a linear matrix inequality (LMI) and a bilinear matrix inequality (BMI) are derived to facilitate the design of the state-feedback ℋ∞ controller. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed methods.
Lee, Hsin-Min; Li, Ping-Chia; Fan, Shih-Chen
2015-07-11
Mirror visual feedback (MVF) generated in mirror therapy (MT) with a physical mirror promotes the recovery of hemiparetic limbs in patients with stroke, but is limited in that it cannot provide an asymmetric mode for bimanual coordination training. Here, we developed a novel MT system that can manipulate the MVF to resolve this issue. The aims of this pilot study were to examine the feasibility of delayed MVF on MT and to establish its effects on cortical activation in order to understand how it can be used for clinical applications in the future. Three conditions (no MVF, MVF, and 2-s delayed MVF) presented via our digital MT system were evaluated for their time-course effects on cortical activity by event-related desynchronization (ERD) of mu rhythm electroencephalography (EEG) during button presses in 18 healthy adults. Phasic ERD areas, defined as the areas of the relative ERD curve that were below the reference level and within -2-0 s (P0), 0-2 s (P1), and 2-4 s (P2) of the button press, were used. The overall (P0 to P2) and phasic ERD areas were higher when MVF was provided compared to when MVF was not provided for all EEG channels (C3, Cz, and C4). Phasic ERD areas in the P2 phase only increased during the delayed-MVF condition. Significant enhancement of cortical activation in the mirror neuron system and an increase in attention to the unseen limb may play major roles in the response to MVF during MT. In comparison to the no MVF condition, the higher phasic ERD areas that were observed during the P1 phase in the delayed-MVF condition indicate that the image of the still hand may have enhanced the cortical activation that occurred in response to the button press. This study is the first to achieve delayed MVF for upper-limb MT. Our approach confirms previous findings regarding the effects of MVF on cortical activation and contributes additional evidence supporting the use of this method in the future for upper-limb motor training in patients with stroke.
Wang, Zhaoyou
2016-01-01
We show that the effective optical nonlinearity of a cavity optomechanical system can be used to implement quantum gates between propagating photons. By using quantum feedback, we can enhance a slow and small optical nonlinearity to generate a large nonlinear phase shift between two spatially separated temporal modes of a propagating electromagnetic field. This allows us to implement a CPHASE gate between the two modes. After presenting a semiclassical derivation of the operation of the gate, we verify the result by a full simulation of the state of the quantum field in the waveguide coupled to a cavity. To efficiently solve the Schr\\"odinger equation of the full system, we develop a matrix product state approach that keeps track of the entangled full quantum state of the coupled system. These simulations verify the operation of the gate in the weak coupling regime where the semiclassical approximation is valid. In addition, we observe a major reduction in gate fidelity as we approach the vacuum strong coupli...
Directory of Open Access Journals (Sweden)
Nataraj Raviraj
2012-05-01
Full Text Available Abstract Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI. Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS, and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its
Usability testing of a monitoring and feedback tool to stimulate physical activity
Directory of Open Access Journals (Sweden)
van der Weegen S
2014-03-01
Full Text Available Sanne van der Weegen,1 Renée Verwey,1,2 Huibert J Tange,3 Marieke D Spreeuwenberg,1 Luc P de Witte1,2 1Department of Health Services Research, CAPHRI School for Public Health and Primary Care, Faculty of Health Medicine and Life Sciences, Maastricht University, the Netherlands; 2Research Centre Technology in Care, Zuyd University of Applied Sciences, Heerlen, the Netherlands; 3Department of General Practice, CAPHRI School for Public Health and Primary Care, Faculty of Health Medicine and Life Sciences, Maastricht University, the Netherlands Introduction: A monitoring and feedback tool to stimulate physical activity, consisting of an activity sensor, smartphone application (app, and website for patients and their practice nurses, has been developed: the 'It's LiFe!' tool. In this study the usability of the tool was evaluated by technology experts and end users (people with chronic obstructive pulmonary disease or type 2 diabetes, with ages from 40–70 years, to improve the user interfaces and content of the tool. Patients and methods: The study had four phases: 1 a heuristic evaluation with six technology experts; 2 a usability test in a laboratory by five patients; 3 a pilot in real life wherein 20 patients used the tool for 3 months; and 4 a final lab test by five patients. In both lab tests (phases 2 and 4 qualitative data were collected through a thinking-aloud procedure and video recordings, and quantitative data through questions about task complexity, text comprehensiveness, and readability. In addition, the post-study system usability questionnaire (PSSUQ was completed for the app and the website. In the pilot test (phase 3, all patients were interviewed three times and the Software Usability Measurement Inventory (SUMI was completed. Results: After each phase, improvements were made, mainly to the layout and text. The main improvement was a refresh button for active data synchronization between activity sensor, app, and server
The Effects of High-Volt Pulsed Current Electrical Stimulation on Delayed-Onset Muscle Soreness
Butterfield, David Lynn; Draper, David O.; Ricard, Mark D.; Myrer, J. William; Schulthies, Shane S.; Durrant, Earlene
1997-01-01
Objective: We investigated three 30-minute high-volt pulsed current electrical stimulation (HVPC) treatments of 125 pps to reduce pain, restore range of motion (ROM), and recover strength loss associated with delayed-onset muscle soreness (DOMS). Design and Setting: Randomized, masked comparison of three 30-minute treatment and sham HVPC regimens over a 48-hour period. Subjects: Twenty-eight college students. Measurements: Subjects performed concentric and eccentric knee extensions with the right leg to induce muscle soreness. Assessments were made before and after the exercise bout and each treatment at 24, 48, and 72 hours postexercise. Results: Three separate 2 × 3 × 2 ANOVAs were used to determine significant differences (p < .05) between days, treatments, and pre-post treatment effects and significant interaction among these variables. Scheffe post hoc tests showed no significant reduction in pain perception or improvement in loss of function at 24, 48, and 72 hours postexercise. Mean pain perception assessments (0 = no pain, 10 = severe pain) for the HVPC group were 2.9, 4.5, and 3.5 and for the sham group 3.8, 4.8, and 3.5). Mean ROM losses for the HVPC group were 9.0°, 22.3°, and 26.2°, and for the sham group were 9.5°, 23.1°, and 23.0°. Mean strength losses (1RM) for the HVPC group were 25.9, 25.7, and 20.8 lbs and for the sham group were 22.3, 22.3, and 13.8 lbs. Conclusions: HVPC as we studied it was ineffective in providing lasting pain reduction and at reducing ROM and strength losses associated with DOMS. PMID:16558426
Clark, Aaron J; Kuperman, Rachel A; Auguste, Kurtis I; Sun, Peter P
2012-04-01
Vagus nerve stimulation (VNS) is used as palliation for adult and pediatric patients with intractable epilepsy who are not candidates for curative resection. Although the treatment is generally safe, complications can occur intraoperatively, perioperatively, and in a delayed time frame. In the literature, there are 2 reports of pediatric patients with implanted VNS units who had refractory bradycardia that resolved after the stimulation was turned off. The authors report the case of a 13-year-old boy with a history of vagus nerve stimulator placement at 2 years of age, who developed intractable episodic bradycardia that persisted despite the cessation of VNS and whose imaging results suggested vagus nerve tethering by the leads. He was subsequently taken to the operating room for exploration, where it was confirmed that the stimulator lead was exerting traction on the vagus nerve, which was displaced from the carotid sheath. After the vagus nerve was untethered and the leads were replaced, the bradycardia eventually resolved with continual effective VNS therapy. When placing a VNS unit in a very young child, accommodations must be made for years of expected growth. Delayed intractable bradycardia can result from a vagus nerve under traction by tethered stimulator leads.
Institute of Scientific and Technical Information of China (English)
那靖; 任雪梅; 黄鸿
2008-01-01
A new adaptive time-delay positive feedback con-troller (ATPFC) is presented for a class of nonlinear time-delay systems. The proposed control scheme consists of a neural networks-based identification and a time-delay positive feedback controller. Two high-order neural networks (HONN) incorpo-rated with a special dynamic identification model are employed to identify the nonlinear system. Based on the identified model,local linearization compensation is used to deal with the un-known nonlinearity of the system. A time-delay-free inverse model of the linearized system and a desired reference model are utilized to constitute the feedback controller, which can lead the system output to track the trajectory of a reference model.Rigorous stability analysis for both the identification and the tracking error of the closcd-loop control system is provided by means of Lyapunov stability criterion. Simulation results are in-cluded to demonstrate the effectiveness of the proposed scheme.
Institute of Scientific and Technical Information of China (English)
Qi-Hong Sun; Yu Zheng; Xiao-Lin Zhang; Yi-Ming Mu
2015-01-01
Background:Delayed puberty can result either from constitutional delay of growth and puberty (CDP) or idiopathic hypogonadotropic hypogonadism (IHH).Gonadotropin-releasing hormone (GnRH) stimulation test has been generally accepted as a current method for diagnosing delayed puberty.The objective of this research was to assess the cut-off values and the efficacy of GnRH stimulation test in the diagnosis of delayed puberty in both males and females.Methods:A study of 91 IHH,27 CDP patients,6 prepubertal children,and 20 pubertal adults was undertaken.Blood samples were obtained at 0,30,60,and 120 min after GnRH administration and the levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured.For each parameter,the sensitivities and specificities were estimated,and the receiver operating characteristic (ROC) curves were constructed.Results:The ROC curves indicated that a serum basal LH ＜0.6 IU/L or peak LH ＜9.74 IU/L resulted in moderate sensitivity (73.8％ or 80.0％) and specificity (90.9％ or 86.4％) in the diagnosis of HH in males.Serum basal LH ＜0.85 IU/L or basal FSH ＜2.43 IU/L resulted in moderate sensitivity (80.0％ or 100.0％) and specificity (75.0％ or 50.0％) in the diagnosis of HH in females.Conclusions:Our data suggest that isolated use of the gonadorelin stimulation test is almost sufficient to discriminate between HH and CDP in males,but unnecessary in females.The most useful predictor is serum basal or peak LH to differentiate these two disorders in males,but serum basal LH or FSH in females.
Institute of Scientific and Technical Information of China (English)
XING Liang; ZHAN Li; XIA YuXing
2009-01-01
Tunable stimulated-Brillouin-scattering (SBS)-based slow-light in optical fibers has potential applications in optical buffering in the future all-optical router commutation systems.However,due to the low SBS threshold and relatively high realistic signal power,the gain in the usual SBS systems is limited at～30 dB.This paper presents a high-gain SBS scheme to realize large delay slow-light,which benefits from avoiding the depletion of the pump power in a short fiber as SBS media.The experiment demon strates that,up to 50 dB non-saturated gain has been observed in the single-stage 591.8 m fiber SBS amplification.The slow-light delay can be obtained 52 ns,and the fractional delay can exceed 1.
Ozasa, Kazunari; Aono, Masashi; Maeda, Mizuo; Hara, Masahiko
2010-05-01
To explore possible forms of unconventional computers that have high capacities for adaptation and exploration, we propose a new approach to developing a biocomputer based on the photophobic reactions of microbes (Euglena gracilis), and perform the Monte-Carlo simulation of Euglena-based neural network computing, involving virtual optical feedback to the Euglena cells. The photophobic reactions of Euglena are obtained experimentally, and incorporated in the simulation, together with a feedback algorithm with a modified Hopfield-Tank model for solving a 4-city traveling salesman problem. The simulation shows high performances in terms of (1) reaching one of the best solutions of the problem, and (2) searching for a number of solutions via dynamic transition among the solutions. This dynamic transition is attributed to the fluctuation of state variables, global oscillation through feedback instability, and the one-by-one change of state variables.
D'Alonzo, Marco; Dosen, Strahinja; Cipriani, Christian; Farina, Dario
2014-01-01
An important reason for the abandonment of commercial actuated hand prostheses by the users is the lack of sensory feedback. Wearable afferent interfaces capable of providing electro- or vibro-tactile stimulation have high potential to restore the missing tactile and/or proprioceptive information to the user. By definition, these devices can elicit single modality (i.e., either vibrotactile or electrotactile) substitute sensations. In a recent research we have presented a novel approach comprising hybrid vibro-electrotactile (HyVE) combined stimulation, in order to provide multimodal sensory feedback. An important advantage of this approach is in the size of the design: the HyVE interface is much more compact than two separated single-modality interfaces, since electro- and vibro-tactile stimulators are placed one on top of the other. The HyVE approach has been previously tested in healthy subjects and has shown to provide a range of hybrid stimuli that could be properly discriminated. However, this approach has never been assessed as a method to provide multi-channel stimuli, i.e., stimuli from a variety of stimulators, mapping information from a multitude of sensors on a prosthesis. In this study, the ability of ten healthy subjects to discriminate stimuli and patterns of stimuli from four different five-channel interfaces applied on their forearms was evaluated. We showed that multiple HyVE units could be used to provide multi-channel sensory information with equivalent performance (∼95 percent for single stimuli and ∼80 percent for pattern) to single modality interfaces (vibro- or electro-tactile) larger in size and with better performance than vibrotactile interfaces (i.e., 73 percent for single stimuli and 69 percent for pattern) with the same size. These results are promising in relation to the current availability of multi-functional prostheses with multiple sensors.
Directory of Open Access Journals (Sweden)
Anh Tuan Trinh
2013-11-01
Full Text Available The existence of positive periodic solutions of a periodic Lotka-Volterra type competition system with delays and feedback controls is studied by applying the continuation theorem of coincidence degree theory. By contracting a suitable Liapunov functional, a set of sufficient conditions for the global asymptotic stability of the positive periodic solution of the system is given. A counterexample is given to show that the result on the existence of positive periodic solution in [4] is incorrect.
Suelzer, Joseph S.; Prasad, Awadhesh; Ghosh, Rupamanjari; Vemuri, Gautam
2016-07-01
We report on a theoretical and computational investigation of the complex dynamics that arise in a semiconductor laser that is subject to two external, time-delayed, filtered optical feedbacks with special attention to the effect of quantum noise. In particular, we focus on the dynamics of the instantaneous optical frequency (wavelength) and its behavior for a wide range of feedback strengths and filter parameters. In the case of two intermediate filter bandwidths, the most significant results are that in the presence of noise, the feedback strengths required for the onset of chaos in a period doubling route are higher than in the absence of noise. We find that the inclusion of noise changes the dominant frequency of the wavelength oscillations, and that certain attractors do not survive in the presence of noise for a range of filter parameters. The results are interpreted by use of a combination of phase portraits, rf spectra, and first return maps.
Nikiforov, O; Jaurigue, L; Drzewietzki, L; Lüdge, K; Breuer, S
2016-06-27
In this contribution we experimentally demonstrate the change and improvement of dynamical properties of a passively mode-locked semiconductor laser subject to optical feedback from two external cavities by coupling the feedback pulses back into the gain segment. Hereby, we tune the full delay-phase of the pulse-to-pulse period of both external cavities separately and demonstrate the change of the repetition rate, timing jitter, multi-pulse formation and side-band suppression for the first time for such a dual feedback configuration. In addition, we thereby confirm modeling predictions by achieving both a good qualitative and quantitative agreement of experimental and simulated results. Our findings suggest a path towards the realization of side-band free all-optical photonic oscillators based on mode-locked lasers.
Gorzelic, P.; Schiff, S. J.; Sinha, A.
2013-04-01
Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.
Directory of Open Access Journals (Sweden)
Ahmed A. Ali
2014-01-01
Full Text Available In Long Term Evolution-Advanced (LTE-A, the signal quality in a wireless channel is estimated based on the channel quality measurements. The measurement results are used to select suitable modulation and coding scheme for each transmission, feedback, and processing delay, which can cause a mismatch between channel quality information (CQI and current channel state at the base station. However, prospect delays in the reception of such CQI may lead to a system performance degradation. This study analyzes the impact of CQI feedback delay on joint user scheduling (JUS scheme and separated random user scheduling (SRUS scheme in LTE-A system over carrier aggregation. The analysis will be compared with the system having delayed channel and perfect knowledge at different deployment scenario. We will study the throughput performance of both scheduling schemes with different deployment scenario, and then recommend the suitable deployment scenario to keep the desired QoS for a specific number of users. Results show that, in main beam directed at sector boundaries and diverse coverage, JUS scheme performs better than SRUS, which can justify the intensive use of user equipment power and extra control signaling overhead.
Leib, Raz; Karniel, Amir; Nisky, Ilana
2015-05-01
During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain.
Velísek, Libor; Velísková, Jana; Stanton, Patric K
2002-06-21
Stimulation of deep brain sites is a new approach for treatment of intractable seizures. In adult rats, low-frequency stimulation (LFS; 1-3 Hz) of the kindling site interferes with the course of kindling epileptogenesis. In this study we determined whether the LFS will be effective against the fast kindling in the basolateral amygdala in immature, 15 day old rats. LFS (15 min of 1 Hz stimulation) was applied after each of the 1 s, 60 Hz kindling stimulus. LFS suppressed afterdischarge duration and seizure stage throughout the course of kindling, which indicates a strong antiepileptogenic potential. As the kindling and LFS stimulation patterns are similar to those used for induction of long-term potentiation and long-term depression (LTD), respectively, LTD or depotentiation may play a role in the mechanism of action.
Chen, Chen-Wen; Chen, Qian-Bo; Ouyang, Qing; Sun, Ji-Hu; Liu, Fang-Ting; Song, Dian-Wen; Yuan, Hong-Bin
2012-06-25
Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1 β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors.
Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A
2014-01-01
Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico
Directory of Open Access Journals (Sweden)
Maria eHerrojo Ruiz
2014-09-01
Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN
Stimulating Contributions to Public Goods through Information Feedback: Some Experimental Results.
Janssen, Marco A; Lee, Allen; Sundaram, Hari
2016-01-01
In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative) performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups.
Study on stimulated emission from polymer distributed feedback waveguide using interference ablation
Zhang, Bo; Cheng, Hao; Sun, Yangyang
2014-11-01
A polymer distributed feedback (DFB) laser was fabricated by two-beam interference from MEH-PPV film on clear glass substrate. A direct-writing technique was reported that achieves large-area 1D DFB polymer lasers. The polymer thin film was exposed to a single-shot illumination of the interference pattern of one UV laser pulse at 355 nm. The direct-writing and the lasing characters of 1D DFB polymer lasers were demonstrated. The results show the lower threshold and full width at half maximum (FWHM) from DFB polymer laser than slab waveguide. The peak position is tuned by changing the period from 340 nm to 350 nm. The results show that the simple and low-cost technique that enables highly reproducible mass fabrication is required for the easy realization and more profound investigation of the polymer lasers based on the DFB configuration.
Directory of Open Access Journals (Sweden)
Fucheng Liao
2016-01-01
Full Text Available This paper presents a method for designing a type one servomechanism for a discrete-time linear system with input delay subject to a previewable desired output and a nonmeasurable constant disturbance. The tracking problem of a delay system is transformed into a regulation problem of a delay-free system via constructing an augmented error system and a variable substitution. A controller is obtained with delay compensation and preview compensation based on preview control theory and the predictor method. When the state vector is not directly measurable, a full-dimensional observer is offered. The effectiveness of the design method is demonstrated by numerical simulations.
State Feedback Stabilzation for a Class of Time-delay Nonlinear Systems%一类非线性时滞系统的状态反馈镇定
Institute of Scientific and Technical Information of China (English)
张宪福; 程兆林
2005-01-01
The problem of global stabilization by state feedback for a class of time-delay nonlinear system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and using the backstepping design, a linear state feedback controller making the closed-loop system globally asymptotically stable is constructed.
Stimulating Contributions to Public Goods through Information Feedback: Some Experimental Results.
Directory of Open Access Journals (Sweden)
Marco A Janssen
Full Text Available In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups.
DEFF Research Database (Denmark)
Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel
2016-01-01
provided. A proportional resonant voltage controller is designed according to Nyquist criterion taking into account application requirements. For this purpose, a mathematical expression based on root locus analysis is proposed to find the minimum value of the fundamental resonant gain. Experimental tests...... on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. A design methodology for the voltage loop, that considers the closed loop transfer functions developed for the inner loop, is also...... performed in accordance to UPS standards verify the theoretical analysis....
Franceschi, M; Seminara, L; Pinna, L; Dosen, S; Farina, D; Valle, M
2015-08-01
This research is motivated by the need of integrating cutaneous sensing into a prosthetic device, enabling a bidirectional communication between the amputee and the prosthetic limb. An electronic skin based on piezoelectric polymer sensors transduces mechanical contact into electrical response which is conveyed to the human subject by electrotactile stimulation. Rectangular electrode arrays are placed on each patient's forearm and experiments are conducted on five different subjects to determine how well the orientation, position and direction of single lines are recognized. Overall, subjects discriminate the different touch modalities with acceptable success rates. In particular, the direction is identified at best and longitudinal lines on the patient's skin are recognized with the highest success rates. These preliminary results assess the feasibility of the artificial skin - electrostimulation system for prosthetic applications.
Institute of Scientific and Technical Information of China (English)
蒋朝辉; 桂卫华; 谢永芳; 阳春华
2009-01-01
In this paper, the problem of delay-dependent stabilization for singular linear continuous-time systems with multiple internal incommensurate constant point delays (SLCS-MIID) is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily tested with numerical or algebraic methods. Based on the Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memory state feedback control laws such that the resulting closed-loop system is regular independently of time delays, impulse free, and asymptotically stable via solving some strict linear matrix inequalities (LMIs) problem. An explicit expression for the desired memory state feedback control law is also given. Finally, a numerical example illustrates effectiveness and availability for the proposed method.
一个正反馈时滞微分方程的Hopf分支%Hopf Bifurcation of a Positive Feedback Delay Differential Equation
Institute of Scientific and Technical Information of China (English)
陈玉明; 黄立宏
2003-01-01
Under some minor technical hypotheses, for each τ larger than a certain τs ＞ 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -τμx(t) + τf(x(t - 1)), where τ and μ are positive constants and f: R → R satisfies f(0) = 0 and f′＞ 0.Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result under the condition that f ∈ C3(R, R) is such that f"(0) = 0 and f′"(0) ＜ 0, which is weaker than those of Krisztin and Walther.
Ma, Yuechao; Fu, Lei
2016-10-01
This study employs the multiple Lyapunov-like function method and the average dwell-time concept of switching signal to investigate the finite-time H∞ static output-feedback (SOF) control problem for a class of discrete-time switched singular time-delay systems subject to actuator saturation. First, sufficient conditions are presented to guarantee the discrete-time switched singular time-delay system regular, causal and finite-time boundedness. Meanwhile, sufficient conditions are presented to ensure the H∞ disturbance attenuation level, and the design method of H∞ SOF controller is developed by solving matrix inequalities optimisation problem without any decompositions of system matrices and equivalent transformation. Finally, the effectiveness and merit of the theoretical results are shown through some numerical examples and several vivid illustrations.
Timofeeva, O A; Peterson, G M
1997-04-18
We studied the short- and long-term epileptogenic effects of massed stimulation (MS) of the piriform cortex. Sprague-Dawley rats with electrodes implanted bilaterally in the anterior piriform cortex and the dorsal and ventral hippocampi underwent MS: electrical stimulation of the left piriform cortex every 5 min for 6 h (afterdischarge threshold, 60 Hz, 1 ms, 1 s). Animals were retested (5 stimulations) 3-4 times later at different time points to check for the kindled state. Our data showed that MS resulted in delayed development of severe epilepsy. The interval between MS and the first appearance of convulsive response (2 weeks) was characterized by deep refractoriness to seizure (silent period). Unexpectedly, dramatic seizure activity occurred 4-7 weeks after MS. This was manifested by (1) generalized tonic-clonic convulsions with multiple failings, which were elicited repeatedly during retest; (2) frequent progression of elicited generalized convulsions into a prolonged (> 8 min) postictal convulsive state expressed mainly by continuous partial seizures and even new bouts of generalized seizures, and (3) development of mild spontaneous seizures. We found that epileptiform activity predominated in the ventral hippocampus. Mossy fiber sprouting was also most pronounced in this area. We propose that the MS resulted in formation of pathological circuits which involve both piriform cortex and ventral hippocampus and lead to severe epilepsy.
Directory of Open Access Journals (Sweden)
Qinghua He
2016-09-01
Full Text Available Previous correlational imaging studies have implicated the dorsolateral prefrontal cortex (DLPFC in decision making. Using High-Definition Transcranial Direct Current Stimulation (HD-tDCS, the present study directly investigated the causal role of the DLPFC in performing the Iowa Gambling Task (IGT and the Inter-Temporal Choice (ITC task. Three experiments were conducted: Exp. 1 (N = 41 to study the left DLPFC, Exp. 2 (N = 49 to study the right DLPFC, and Exp. 3 (N = 20, a subset of those in Exp. 1 to switch the experimental and control conditions. All participants were healthy male college students. For Exps. 1 and 2, participants were randomly assigned to either the HD- tDCS or the sham stimulation condition. For Exp. 3, participants were assigned to the condition they were not in during Exp. 1. Results showed that HD-tDCS over the left DLPFC increased IGT score, decreased the recency parameter in IGT, and lowered delay discounting rate (k in the ITC task. We discussed the potential roles of impulse control and time perception in mediating the effect of tDCS stimulation of left DLPFC on decision making. Our results have clinical implications for the treatment of disorders involving poor decision-making, such as addictions.
Design of therapeutic clothing for sensory stimulation of children with psychomotor delay.
Pires, Ângela; Miguel, Rui
2012-01-01
This research work was based on an experimental concept of functional clothing for children with psychomotor development limitations. No matter the analyzed pathology, all these children need sensorial stimulation because of their psychomotor difficulties, especially at fine motor skills level. The main objective was to develop functional and comfortable clothing with sensorial stimulation elements (colours, textures, fragrances, sounds, etc.). It is intended, on the one hand, to increase the autonomy of the children in what concerns the act of dressing/undressing and, on the other hand, to stimulate their learning, coordination and self-esteem. A study about the specific needs of these children concerning clothing was worked out, which consisted in inquiring their parents and therapists. Based on the inquiries results, bibliographic revision in the area of therapeutic/ interactive clothing and analysis of didactic and therapeutic material catalogues we developed a clothing prototype (sweat-shirt). The prototype was then tested by the children of the study sample and the test results were, once again, explained by the parents through the fulfilling of a prototype evaluation inquiry. This study supplied some important conclusions, more directed to the confirmation of the theme significance and to the definition of a methodology to be used in future research.
Hartmann, Carol A; Rode, Heinz; Kramer, Beverley
2016-12-01
Acticoat™ has antimicrobial and anti-inflammatory effects which aid wound healing. However, in vitro studies indicate that Acticoat™ is cytotoxic and clinical and in vivo studies suggest that it may delay healing in acute wounds. Therefore, this study investigated the effects of Acticoat™ on healing in acute full-thickness excisional wounds. Using a porcine model, healing was assessed on days 3, 6, 9 and 15 post-wounding. Five wounds dressed with Acticoat™ and five wounds dressed with polyurethane film (control) were assessed per day (n = 40 wounds). The rate of healing, inflammatory response, restoration of the epithelium and blood vessel and collagen formation were evaluated. No difference was found in the rate of healing between wounds treated with Acticoat™ and the control wounds. Inflammation was increased in Acticoat™-treated wounds on day 3 post-wounding compared to the control wounds. However, by day 15 post-wounding, the epithelium of the Acticoat™-treated wounds closely resembled normal epithelium. Acticoat™-treated wounds also contained a higher proportion of mature blood vessels, and differences in collagen deposition were apparent. Despite inducing an inflammatory response, Acticoat™ did not delay healing in acute wounds. Conversely, the improved quality of the epithelium and blood vessels within Acticoat™-treated wounds indicates that Acticoat™ has a beneficial effect on healing. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
DEFF Research Database (Denmark)
Larsen, Jeppe Veirum; Knoche, Hendrik
2017-01-01
of an actuated guitar to a metronome at 60bpm and 120bpm. The long DAF matched a subdivision of the overall tempo. We compared their performance using two different input devices with feedback before or on activation. While 250ms DAF hardly affected musically trained participants, non-musically trained...
Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization
Directory of Open Access Journals (Sweden)
Rui Bai
2014-01-01
Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.
Gaffney, E. A.
2013-10-01
© The authors 2013. Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing\\'s ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing\\'s model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106, 8429-8434; Yamaguchi et al., 2007, PNAS, 104, 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge.
Gaffney, E A; Lee, S Seirin
2015-03-01
Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Clark, Robert L; Brannen, Kimberly C; Sanders, James E; Hoberman, Alan M
2011-02-01
The artemisinin antimalarials cause embryo death and malformations in animals by killing embryonic erythroblasts. Groups of pregnant rats (N = 4) were administered 35 and 48 µmol/kg artesunate and 17.2, 28.7, 48, 96, and 191 µmol/kg artelinic acid as a single oral dose on gestational day (GD) 12. Litters were examined on GD21. The ED(50) for embryo death with artelinic acid (23.4 µmol/kg) was just slightly lower than that for decreased reticulocyte count at 24 hr postdose (33.5 µmol/kg) and both had similarly steep dose responses (maximal effects of total litter loss and ∼60% decreases in reticulocyte count at 48 µmol/kg). Results with artesunate were similar. The correlation coefficient between embryo death and decreased reticulocyte count was 0.82 (pembryotoxicity and reticulocytopenia is suggestive of a common mechanism-artemisinin-induced mitochondrial damage leading to cell death. At 9 days postdose, treatment with artesunate and artelinic acid also caused increases in counts of reticulocytes, lymphocytes, basophils, and monocytes (up to 3.7 ×, 1.7 ×, 4.7 ×, and 1.7 × control, respectively). This stimulation of hematopoiesis may have been mediated by the direct oxidative conversion of artesunate or artelinic acid to the artemisininyl hydroperoxide within the bone marrow cells or by an indirect increase in reactive oxygen species. The high correlation between embryotoxicity and reticulocytopenia further supports the assertion that therapeutic dosage regimens of artemisinins that cause decreases in reticulocyte count in pregnant women during the putative critical period (approximately postconception wk 3 to 9) are at risk of also causing adverse effects on the embryo.
Institute of Scientific and Technical Information of China (English)
温少芳; 申永军; 杨绍普
2016-01-01
With increasingly strict requirements for control speed and system performance, the unavoidable time delay becomes a serious problem. Fractional-order feedback is constantly adopted in control engineering due to its advantages, such as robustness, strong de-noising ability and better control performance. In this paper, the dynamical characteristics of an autonomous Duffng oscillator under fractional-order feedback coupling with time delay are investigated. At first, the first-order approximate analytical solution is obtained by the averaging method. The equivalent stiffness and equivalent damping coeffcients are defined by the feedback coeffcient, fractional order and time delay. It is found that the fractional-order feedback coupling with time delay has the functions of both delayed velocity feedback and delayed displacement feedback simultaneously. Then, the comparison between the analytical solution and the numerical one verifies the correctness and satisfactory precision of the approximately analytical solution under three parameter conditions respectively. The effects of the feedback coeffcient, fractional order and nonlinear stiffness coeffcient on the complex dynamical behaviors are analyzed, including the locations of bifurcation points, the stabilities of the periodic solutions, the existence ranges of the periodic solutions, the stability of zero solution and the stability switch times. It is found that the increase of fractional order could make the delay-amplitude curves of periodic solutions shift rightwards, but the stabilities of the periodic solutions and the stability switch times of zero solution cannot be changed. The decrease of the feedback coeffcient makes the amplitudes and ranges of the periodic solutions become larger, and induces the stability switch times of zero solution to decrease, but the stabilities of the periodic solutions keep unchanged. The sign of the nonlinear stiffness coeffcient determines the stabilities and the bending
Chen, Jiyang; Li, Chuandong; Huang, Tingwen; Yang, Xujun
2017-02-01
In this paper, the memristor-based fractional-order neural networks (MFNN) with delay and with two types of stabilizing control are described in detail. Based on the Lyapunov direct method, the theories of set-value maps, differential inclusions and comparison principle, some sufficient conditions and assumptions for global stabilization of this neural network model are established. Finally, two numerical examples are presented to demonstrate the effectiveness and practicability of the obtained results.
Christian eKlauer; Thomas eSchauer; Werner eReichenfelser; Jakob eKarner; Sven eZwicker; Marta eGandolla; Emilia eAmbrosini; Simona eFerrante; Marco eHack; Andreas eJedlitschka; Alexander eDuschau-Wicke; Margit eGfoehler; Alessandra ePedrocchi
2014-01-01
Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. Potential users of this system are patients with high-level spinal cord injury and neurodegenerative neuromuscular diseases, such as amyotrophic lateral sclerosis, Friedreich ataxia, and multiple sclerosis. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES) to ena...
Institute of Scientific and Technical Information of China (English)
刘艳; 蒋卫生; 黄发伦
2004-01-01
It has been observed that for many stable feedback control systems, the introduction of arbitrarily small delays into the loop causes instability. Therefore, robustness of stablility with respect to small delays is of great importance. The authors study the robustness with respect to small delays for exponential stability of Pritchard-Salamon systems with admissible state feedback,i.e. the exponential stability of the following systems are equivalent:(x(t)=S(t)x0+∫t0S(t-s)ds)(u(t)=Fx(t),x0∈V,t≥0)(x(t)=S(t)x0+∫t0S(t-s)BFx(s-r)ds)(u(t)=Fx(t-r),x0∈V,t≥0)and obtain a mumber of necessary and sufficient conditions,particularly,frepuency domain characterization for robustness with respect to small delays for exponential stability.
Institute of Scientific and Technical Information of China (English)
陈为胜; 李俊民
2005-01-01
An adaptive output feedback neural network tracking controller is designed for a class of unknown output feedback nonlinear time-delay systems by using backstepping technique. Neural networks are used to approximate unknown time-delay functions. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the neural network reconstruction error. Based on Lyapunov-Krasoviskii functional, the semi-global uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters and the neural node number.The feasibility is investigated by an illustrative simulationexample.
Directory of Open Access Journals (Sweden)
Shaohua Luo
2014-01-01
Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.
Fan, Xiaozheng; Wang, Yan; Hu, Manfeng
2016-01-01
In this paper, the fuzzy [Formula: see text] output-feedback control problem is investigated for a class of discrete-time T-S fuzzy systems with channel fadings, sector nonlinearities, randomly occurring interval delays (ROIDs) and randomly occurring nonlinearities (RONs). A series of variables of the randomly occurring phenomena obeying the Bernoulli distribution is used to govern ROIDs and RONs. Meanwhile, the measurement outputs are subject to the sector nonlinearities (i.e. the sensor saturations) and we assume the system output is [Formula: see text], [Formula: see text]. The Lth-order Rice model is utilized to describe the phenomenon of channel fadings by setting different values of the channel coefficients. The aim of this work is to deal with the problem of designing a full-order dynamic fuzzy [Formula: see text] output-feedback controller such that the fuzzy closed-loop system is exponentially mean-square stable and the [Formula: see text] performance constraint is satisfied, by means of a combination of Lyapunov stability theory and stochastic analysis along with LMI methods. The proposed fuzzy controller parameters are derived by solving a convex optimization problem via the semidefinite programming technique. Finally, a numerical simulation is given to illustrate the feasibility and effectiveness of the proposed design technique.
Amini, Hadis; Dotsenko, Igor; Sayrin, Clement; Mirrahimi, Mazyar; Rouchon, Pierre
2012-01-01
The mathematical methods underlying a recent quantum feedback experiment stabilizing photon-number states is developed. It considers a controlled system whose quantum state, a finite dimensional density operator, is governed by a discrete-time nonlinear Markov process. In open-loop, the measurements are assumed to be quantum non-demolition (QND) measurements. This Markov process admits a set of stationary pure states associated to an orthonormal basis. These stationary states provide martingales crucial to prove the open-loop stability: under simple assumptions, almost all trajectories converge to one of these stationary states; the probability to converge to a stationary state is given by its overlap with the initial quantum state. From these open-loop martingales, we construct a supermartingale whose parameters are given by inverting a Metzler matrix characterizing the impact of the control input on the Kraus operators defining the Markov process. This supermartingale measures the "distance" between the cur...
Vey, N; Molnar, S; Faucher, C; Le Corroller, A G; Stoppa, A M; Viens, P; Bouabdallah, R; Camerlo, J; Novakovitch, G; Mannoni, P
1994-11-01
Recombinant granulocyte colony-stimulating factor (rhG-CSF) has been shown to hasten granulocyte recovery after autologous BMT. In current protocols, rhG-CSF treatment starts 1 day after BM reinfusion. Our study retrospectively examined the effects on haematological recovery of a day 6 delayed administration. Seventy-eight patients receiving autologous BMT for malignant lymphoma (21 non-Hodgkin's lymphoma and 9 Hodgkin's disease) or solid tumors (33 breast carcinoma and 5 ovarian carcinoma) were split up into three study groups. Two groups receiving a 5 micrograms/kg/day of rhG-CSF starting either 1 day (day +1 group, n = 25 patients) or 6 days (day +6 group, n = 24 patients) after BM reinfusion were compared with 29 historical control patients. Granulocyte recovery to 0.5 x 10(9)/l was 12 days in day +6 and day +1 groups versus 16 days in control group (p < 0.005) without any difference in other hematological parameters, infectious complications or length of hospitalisation between the three groups. The day +6 administration allows elimination of a median of 7 days rhG-CSF. It has been concluded that the day +6 administration gives the same clinical benefit as day +1 administration with consequent cost reductions.
Kim, Jisung; Kim, Saehan; Lee, Keekeun
2017-06-01
For the first time, a wireless and chipless neuron stimulator was developed by utilizing a surface acoustic wave (SAW) delay line, a diode-capacitor interface, a sharp metal tip, and antennas for the stimulation of neurons in the brain. The SAW delay line supersedes presently existing complex wireless transmission systems composed of a few thousands of transistors, enabling the fabrication of wireless and chipless transceiver systems. The diode-capacitor interface was used to convert AC signals to DC signals and induce stimulus pulses at a sharp metal probe. A 400 MHz RF energy was wirelessly radiated from antennas and then stimulation pulses were observed at a sharp gold probe. A ˜5 m reading distance was obtained using a 1 mW power from a network analyzer. The cycles of electromagnetic (EM) radiation from an antenna were controlled by shielding the antenna with an EM absorber. Stimulation pulses with different amplitudes and durations were successfully observed at the probe. The obtained pulses were ˜0.08 mV in amplitude and 3-10 Hz in frequency. Coupling-of-mode (COM) and SPICE modeling simulations were also used to determine the optimal structural parameters for SAW delay line and the values of passive elements. On the basis of the extracted parameters, the entire system was experimentally implemented and characterized.
Wood, Scott J.; Tyler, Mitchell E.; Bach-y-Rita, Paul; MacDougall, Hamish G.; Moore, Steven T.; Stallings, Valerie L.; Paloski, William H.; Black, F. Owen
2007-01-01
Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y-Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. MacDougall et al. (2006) recently demonstrated that unpredictably varying Galvanic vestibular stimulation (GVS) significantly increased anterior-posterior (AP) sway during rotational sway referencing with eyes closed. The purpose of this study was to assess the influence of electrotactile feedback on postural control performance with pseudorandom binaural bipolar GVS. Postural equilibrium was measured with a computerized hydraulic platform in 10 healthy adults (6M, 4F, 24-65 y). Tactile feedback (TF) of pitch and roll body orientation was derived from a two-axis linear accelerometer mounted on a torso belt and displayed on a 144-point electrotactile array held against the anterior dorsal tongue (BrainPort, Wicab, Inc., Middleton, WI). Subjects were trained to use TF by voluntarily swaying to draw figures on their tongue, both with and without GVS. Subjects were required to keep the intraoral display in their mouths on all trials, including those that did not provide TF. Subjects performed 24 randomized trials (20 s duration with eyes closed) including four support surface conditions (fixed, rotational sway-referenced, translating the support surface proportional to AP sway, and combined rotational-translational sway-referencing), each repeated twice with and without GVS, and with combined GVS and TF. Postural performance was assessed using deviations from upright (peak-to-peak and RMS sway) and convergence toward stability limits (time and distance to base of support boundaries). Postural stability was impaired with GVS in all platform conditions, with larger decrements in performance during trials with rotation sway
Yang, L-X; Jin, C-L; Zhu-Ge, Z-B; Wang, S; Wei, E-Q; Bruce, I C; Chen, Z
2006-01-01
Low-frequency stimulation of the kindling site interferes with the course of kindling epileptogenesis. The present study examined the effect of unilateral low-frequency stimulation of the central piriform cortex on seizure development induced by amygdaloid kindling in rats. The ipsilateral or contralateral central piriform cortex received low-frequency stimulation (15 min train of 0.1 ms pulses at 1 Hz and 50-150 muA) immediately after termination of once daily kindling stimulation (2 s train of 1 ms pulses at 60 Hz and 150-300 microA) in the right amygdala for 30 days. Low-frequency stimulation of either the ipsilateral or contralateral central piriform cortex significantly suppressed the progression of seizure stages and reduced afterdischarge duration throughout the course of amygdaloid kindling. The marked suppression induced by low-frequency stimulation of the central piriform cortex on either side was predominantly due to the significant retardation of progression from stage 0 to stage 1 and stage 3 to stage 4 seizures. In addition, the suppressive effect of low-frequency stimulation did not disappear when the stimulation was stopped; it could persist for at least 10 days. These findings indicate that brain areas other than the kindling focus, such as the central piriform cortex on both sides, can also be used as reasonable targets for low-frequency stimulation to retard seizure development induced by amygdaloid kindling. Secondly, like the ipsilateral central piriform cortex, the contralateral central piriform cortex may also participate in the progression and secondary generalization of focal seizures. The study suggests that unilateral low-frequency stimulation of the central piriform cortex may have a significant antiepileptogenic effect, and may be helpful for exploring effective and long-lasting therapies for human temporal lobe epilepsy.
Li, P; Liao, L; Chen, G; Zhang, F; Tian, Y
2013-09-01
To determine the inhibitory effects of pudendal nerve stimulation (5 Hz) on bladder overactivity at the early stage of spinal cord injury (SCI) in dogs, and to explore the possible effects on delayed progression of bladder fibrosis after SCI. The study was performed using six dogs with spinal cord transection at the T9–T10 level. Group 1 (three dogs) under went low-frequency electrical stimulation of the pudendal nerve 1 day after spinal cord transection. Group 2 (three dogs) underwent only spinal cord transection. All dogs underwent urodynamic examination at 1 and 3 months after SCI. The bladders were removed for histological examination of fibrosis at 3 months after SCI. Bladder capacity and compliance were significantly increased (Pstimulation in group 1 when compared with group 2 at 1 and 3 months after SCI. Non-voiding contractions (NVCs) were inhibited in group 1 compared with group 2. Collagen fibers were significantly increased and elastic fibers were significantly decreased (PEarly low-frequency pudendal nerve stimulation can inhibit detrusor overactivity (DO), increase bladder capacity and delay the progression of bladder fibrosis.
Pulse delay feedback control method for a class of game model in power market%电力市场中一类博弈模型的脉冲延迟反馈控制法
Institute of Scientific and Technical Information of China (English)
王国栋
2014-01-01
In view of the problem of chaos for a class of nonlinear financial model in power market,by adding pulse time delayed feedback control method,its stability was studied,the first form is the introduction of sys-tem variables on an investment of time delayed feedback control,and the second form is introduced into the system variables of the system with time delayed feedback control and numerical simulations were presented to verify the theoretical results with Matlab software. The results show that impulses and time-delayed feed-backs can control the stability of system effectively.%针对电力市场中一类非线性博弈模型的混沌问题，通过加入脉冲时间延迟反馈控制，对其稳定性进行研究。第一种形式是对一家投资商引入系统变量的时间延迟反馈控制法，第二种形式是对整个系统引入系统变量的时间延迟反馈控制，并利用Matlab软件对该系统进行数值模拟，验证该方法的有效性。结果表明：时间延迟反馈控制可以有效控制系统的稳定性。
Impact on vibration error characteristics of FOG with feedback delay%反馈延迟对光纤陀螺振动误差特性的影响
Institute of Scientific and Technical Information of China (English)
潘雄; 张春生; 王夏霄; 王熙辰; 赵亚飞; 王定球
2014-01-01
Large disturbance is introduced into fiber optic gyroscope under vibration environment. And the error characteristics for FOG are severely affected with the ability of tracking disturbance as the existence of non-linear factors, which becomes more complicated as the result of the additional feedback delay. Therefore, it is important for solving vibration problem to analyze the feedback delay. Firstly, impacts on the closed-loop tracking ability and the stability against disturbance of FOG with different feedback delay were analyzed with the non-linear factors. Then, the non-linear element was considered based on the linear control model, and the outputs of FOG with different feedback delay were obtained and the tracking performance was analyzed by simulation as keeping the same stability margin. The simulation and final experiment show that the bias of FOG will be brought into a large offset under vibration with a poor tracking performance. Thus, it is important to solve the vibration problem of FOG by improving the closed-loop tracking ability with a small feedback delay.%振动环境导致光纤陀螺引入较大的扰动。由于非线性因素，陀螺跟踪扰动的能力严重影响着其误差特性，而反馈延迟的存在使得跟踪性能变得更加复杂。因此，分析反馈延迟对于解决陀螺振动问题极其重要。首先，分析了非线性因素作用时不同反馈延迟对陀螺闭环跟踪能力和扰动稳定性的影响；然后在线性控制模型的基础上加入陀螺非线性环节，保证稳定裕度不变，仿真分析了不同反馈延迟下陀螺的跟踪性能以及输出。仿真及实验结果表明，减小反馈延迟，提高系统的跟踪扰动能力，可以减小非线性误差，改善振动环境下陀螺的输出性能。
Selvaraj, Prashanth; Sleigh, Jamie W.; Kirsch, Heidi E.; Szeri, Andrew J.
2016-01-01
Optogenetics provides a method of neuron stimulation that has high spatial, temporal, and cell-type specificity. Here we present a model of optogenetic feedback control that targets the inhibitory population, which expresses light-sensitive channelrhodopsin-2 channels, in a mean-field model of undifferentiated cortex that is driven to seizures. The inhibitory population is illuminated with an intensity that is a function of electrode measurements obtained via the cortical model. We test the efficacy of this control method on seizurelike activity observed in two parameter spaces of the cortical model that most closely correspond to seizures observed in patients. We also compare the effect of closed-loop and open-loop control on seizurelike activity using a less-complicated ordinary differential equation model of the undifferentiated cortex in parameter space. Seizurelike activity is successfully suppressed in both parameter planes using optimal illumination intensities less likely to have adverse effects on cortical tissue.
Zheng, Ya-Juan; Dong, Yu-Chen; Zhu, Chao; Zhao, Mei-Sheng
2016-03-01
Eyelid conditioning, including delay eyelid conditioning and trace eyelid conditioning, has been used extensively to study neural structures and mechanisms of learning and memory as a form of associative learning. In the present study, microcurrent electrical stimulation was used to stimulate the medial prefrontal cortex (mPFC) to induce delay eyelid conditioning in guinea pigs. The acquisition rate and relative latency of the conditioned eyelid response (CR) and the startle eyelid response (SR) were analyzed. The mPFC sites in the guinea pigs were examined under a light microscope following Nissl staining. In addition, the expression of Fos protein in neurons was detected using immunohistochemistry and western blot analysis. The results indicated that the acquisition rates of CR and SR were increased significantly (Pguinea pigs (Pguinea pigs was triggered by the expression of Fos protein. The observations of the present study further expand the understanding of conditioned reflexes and may aid future investigations into the formation of eyelid conditioning and the mechanisms underlying the circuit in various conditions.
Directory of Open Access Journals (Sweden)
Qi-Hong Sun
2015-01-01
Conclusions: Our data suggest that isolated use of the gonadorelin stimulation test is almost sufficient to discriminate between HH and CDP in males, but unnecessary in females. The most useful predictor is serum basal or peak LH to differentiate these two disorders in males, but serum basal LH or FSH in females.
Institute of Scientific and Technical Information of China (English)
安方; 陈卫东; 邵敏强
2012-01-01
The design problem of the time-delayed controller with the measured acceleration signal is presented, which is used to neutralize the effect of the group delay induced by the low-pass filter on active vibration control systems. By means of the reduction method and the state-derivative feedback strategy, a time-delayed velocity-acceleration feedback controller is proposed without the inclusion of the displacement signal, so that the accumulation errors caused by twice integration of the acceleration signal can be avoided. The developed time delayed feedback controller is examined by the computer simulation, with a special focusing on the control performance of a cantilever beam with the piezoelectric actuator and the acceleration sensor. Simulation results demonstrate that the controller can effectively reduce the free vibration response of the intelligent cantilever beam, and compared with the velocity-acceleration feedback controller, it has better control effects at different time delays.%在振动主动控制中,基于加速度测量信号,并考虑滤波器群时延引入的时滞,研究了一种时滞控制器设计方法.采用等维方法和状态导数反馈思想,提出一种速度-加速度时滞反馈控制器的设计方法.该控制器不含位移信号,可省去两次数值积分和去直流分量、趋势项这两个过程,并可避免由两次数值积分带来的累积误差.以粘帖有压电陶瓷和加速度传感器的智能梁为控制对象,采用该控制器控制其自由振动,并与速度-加速度反馈控制效果进行比较.仿真结果表明,当采用速度-加速度反馈直接控制时滞系统时,若时滞超出其稳定区间,该方法失效,而速度-加速度时滞反馈控制方法则具有良好的控制效果.
The two-way feedback and passing-way of human body
Institute of Scientific and Technical Information of China (English)
Zhang Liang; Zhang Kui; Zhang Renxiang
2008-01-01
Two-way feedback of human body was published in 1992. The sensation of two-way feedback of body is a spe-cial system of human reaction, which maintains and regulates symmetry and balance of human body. The human two-way feedback reacts to human health. For human overall health and delay decrepitude, it is necessary to pay attention to the stimulations (passive acceptance and initiative interventions) and relevant influences in human body and the stimu-lative effect. In this paper, the experimental research of stimulation and an example of two-way feedback in human body are given. And lay a foundation of prevention, medical treatment and hygiene of human overall health.
Arditi, Tal; Granot, Er'el; Sternklar, Shmuel
2007-09-15
Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.
van Geffen, Koert G; Berg, Matty P; Aerts, Rien
2011-12-01
As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all possible combinations of three functionally different macro-detritivores (the earthworm Lumbricus rubellus, isopod Oniscus asellus, and millipede Julus scandinavius). Our results show that these macro-detritivores stimulated decomposition, especially of the high-quality A. incana litter and that the macro-detritivores tested differed in their decomposition-stimulating effects, with earthworms having the largest influence. Decomposition processes increased with increasing number of macro-detritivore species, and positive net diveristy effects occurred in several macro-detritivore treatments. However, after correction for macro-detritivore biomass, all interspecific differences in macro-detritivore effects, as well as the positive effects of species number on subarctic litter decomposition disappeared. The net diversity effects also appeared to be driven by variation in biomass, with a possible exception of net diversity effects in mass loss. Based on these results, we conclude that the expected climate change-induced range expansion of macro-detritivores into subarctic regions is likely to result in accelerated decomposition rates. Our results also indicate that the magnitude of macro-detritivore effects on subarctic decomposition will mainly depend on macro-detritivore biomass, rather than on macro-detritivore species number or identity.
Lengliné, Olivier; Boubacar, Mohamed; Schmittbuhl, Jean
2016-04-01
The ECOGI joint-venture is developing a deep geothermal project at Rittershoffen, 6 km east of Soultz-sous-Forêts, in Northern Alsace. For this purpose, at the end of 2012, a first well (GRT1) was drilled to 2580 m depth through Triassic-sediments and into the crystalline basement. In order to enhance the reservoir permeability, a hydraulic stimulation was performed in the GRT1 well in June 2013. The hydraulic stimulation in GRT1 lasted 2 days (27 and 28 June 2013) and was recorded by a dedicated seismic network. The seismic activity related to the GRT1 hydraulic stimulation was processed in real-time and gave rise to a first seismicity catalogue composed of a total of 212 events, from the 27 of June to the 4th of July 2013. The catalogue reveals that the seismicity stopped shortly after injection, but started again after 4 completely quiet days on July 2nd, in the form of an intense seismic swarm that lasted less than one day. In order to understand how this second crisis developed several days after the injection stopped we apply a dedicated set of tools to recover and locate the most precisely as possible the earthquakes that occurred during this sequence. We are able to detect and locate precisely 1393 events. We show that these events that occurred during the injection define a planar structure where we observe migration of the seismicity. Based on our precise relocations we can also identify that the events of the second crisis occurred on a different structure probably activated by slow aseismic movements.
Maaswinkel, E; Veeger, H E J; Dieen, J Hv
2014-02-01
This study investigated the effect of touch on trunk sway in a seated position. Two touch conditions were included: touching an object with the index finger of the right hand (hand-touch) and maintaining contact with an object at the level of the spine of T10 on the mid back (back-touch). In both touch conditions, the exerted force stayed below 2N. Furthermore, the interaction of touch with paraspinal muscle vibration and galvanic vestibular stimulation (GVS) was studied. Thirteen healthy subjects with no history of low-back pain participated in this study. Subjects sat on a stool and trunk sway was measured with a motion capture system tracking a cluster marker on the trunk. Subjects performed a total of 12 trials of 60-s duration in a randomized order, combining the experimental conditions of no-touch, hand-touch or back-touch with no sensory perturbation, paraspinal muscle vibration or GVS. The results showed that touch through hand or back decreased trunk sway and decreased the effects of muscle vibration and GVS. GVS led to a large increase in sway whereas the effect of muscle vibration was only observed as an increase of drift and not of sway. In the current experimental set-up, the stabilizing effect of touch was strong enough to mask any effects of perturbations of vestibular and paraspinal muscle spindle afference. In conclusion, tactile information, whenever available, seems to play a dominant role in seated postural sway and therefore has important implications for studying trunk control. Copyright © 2013 Elsevier B.V. All rights reserved.
Bouhy, Delphine; Malgrange, Brigitte; Multon, Sylvie; Poirrier, Anne-Lise; Scholtes, Félix; Schoenen, Jean; Franzen, Rachelle
2006-06-01
Macrophages (monocytes/microglia) could play a critical role in central nervous system repair. We have previously found a synchronism between the regression of spontaneous axonal regeneration and the deactivation of macrophages 3-4 wk after a compression-injury of rat spinal cord. To explore whether reactivation of endogenous macrophages might be beneficial for spinal cord repair, we have studied the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) in the same paraplegia model and in cell cultures. There was a significant, though transient, improvement of locomotor recovery after a single delayed intraperitoneal injection of 2 microg GM-CSF, which also increased significantly the expression of Cr3 and brain-derived neurotrophic factor (BDNF) by macrophages at the lesion site. At longer survival delays, axonal regeneration was significantly enhanced in GM-CSF-treated rats. In vitro, BV2 microglial cells expressed higher levels of BDNF in the presence of GM-CSF and neurons cocultured with microglial cells activated by GM-CSF generated more neurites, an effect blocked by a BDNF antibody. These experiments suggest that GM-CSF could be an interesting treatment option for spinal cord injury and that its beneficial effects might be mediated by BDNF.
Institute of Scientific and Technical Information of China (English)
冯志宏; 霍睿
2011-01-01
Based on the closed-up control strategy of acceleration time-delay feedback, a dynamics model of piezoelectric-coupling flexible cantilever beam was set up.The stability conditions and dynamic characteristics of the system were achieved via conducting the modal analysis and free vibration trivial solutions analysis.The effects of piezoelectric coupling and time delay were considered and a specific example was presented to proof the previous results.The example shows that ignoring time-delay unreasonably may cause the system to respond divergently, while a reasonable amount of time-delay can improve the efficiency of vibration control.%基于加速度-时滞闭环反馈控制策略,建立压电耦合柔性悬臂梁的动力学模型,通过运用模态分析和对系统自由振动的平凡解的分析,建立了在考虑压电耦合作用和反馈时滞条件下的系统稳定性条件和分析方法,并给出了具体算例;进一步的算例分析表明,时滞的不合理忽略有可能导致系统响应发散,而合理的时滞量也可用以提高振动控制的效率.
Energy Technology Data Exchange (ETDEWEB)
Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U. [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo (Norway); Paulsen, Ragnhild E., E-mail: r.e.paulsen@farmasi.uio.no [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo (Norway)
2011-10-14
Highlights: {yields} NGFI-B and RXR translocate out of the nucleus after glutamate treatment. {yields} Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. {yields} Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXR{alpha} were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXR{alpha}, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.
Audio Feedback -- Better Feedback?
Voelkel, Susanne; Mello, Luciane V.
2014-01-01
National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…
基于扩张状态观测器的航天器时延状态反馈控制%Spacecraft time-delay state feedback control based on extended state observer
Institute of Scientific and Technical Information of China (English)
史小平; 毕显婷; 杨婧
2016-01-01
研究了刚性航天器的时延姿态稳定控制问题。首先建立了基于修正罗德里格斯参数（modified ro-drigues parameters，MRPs）的航天器非线性状态模型，具有确定上界的时延项在状态反馈控制律中体现。通过构造Lyapunov-Krasovskii 泛函进行稳定性分析，由此得到保证系统渐近稳定的线性矩阵不等式，依此设计状态反馈控制系数矩阵。考虑到航天器三轴间的耦合非线性项，利用扩张状态观测器（extended state observer，ESO）方法，设计了二阶非线性扩张状态观测器，以获得航天器系统内部状态向量并用于状态反馈控制律。为便于工程实际应用，仿真中将 MRPs 响应输出转换为欧拉角响应，仿真结果表明，本文所设计的控制系统能保证航天器三轴姿态稳定。%This paper researches the problem of rigid body spacecraft time-delay attitude stabilization. Firstly,the spacecraft nonlinear state model based on modified rodrigues parameters (MRPs)is established,the time delay term with certain upper boundary is modeled in state feedback control law.Lyapunov-Krasovskii functional is constructed for this nonlinear time-delay system to achieve asymptotic stabilization,linear matrix inequalities are accordingly obtained and the state feedback control coefficients matrixes are thereby computed with.Concerning the three-axis coupling nonlinear terms in spacecraft,the extended state observer (ESO) method is used to design a two rank nonlinear ESO,the spacecraft system internal state vector is therefore ac-quired and used in the aforementioned state feedback control law.For the convenience of engineering applica-tion,the MRPs state vector is converted to Euler angles in simulation.The simulation results show the efficient of the state feedback control law with three-axis attitude asymptotic stabilization achieved.
Institute of Scientific and Technical Information of China (English)
董学平; 温锐; 刘红亮
2011-01-01
研究了一类具有时滞的分布参数切换系统反馈镇定问题.通过构造Lyapunov函数,利用Green公式获得了系统状态反馈镇定的充分条件.该条件用一组线性矩阵不等式表示,从而将分布参数切换系统状态反馈镇定问题转化为一组线性矩阵不等式的可行解问题,可借助Matlab中线性矩阵不等式工具箱求解.该方法获得的充分条件容易检验,因而易于应用.通过数值算例说明该方法的有效性.%Feedback stabilization for a class of distributed parameter switched systems (DPSS) with time-delay is studied. By constructing Lyapunov functions and employing the Green formula, several sufficient conditions of state feedback stabilization for a class of DPSS with constant time delay are derived. These conditions are described using a group of linear matrix inequalities (LMI). Thus design of state feedback controllers of DPSS is converted to a group of LMI. The controllers can be solved efficiently with the Matlab LMI toolbox. In addition, the proposed method has the advantage that the criteria can easily be checked and applied. A numerical example is given to illustrate validity of the design method.
利用时间延迟状态反馈实现异步电机的混沌合成%Chaos Synthesis of Asynchronous Motor by Time-Delayed State Feedback
Institute of Scientific and Technical Information of China (English)
李卫东; 唐斌
2012-01-01
为了在三相交流异步电机的运行过程中实现混沌合成,采用非线性系统的微分几何理论和时间延迟反馈控制的方法,设计了混沌合成控制器.该控制器通过对三相交流异步电机模型的简化分析,并利用非线性控制理论的状态反馈精确线性化方法来设计.应该此控制器即可得到异步电机运行时的混沌合成.应用Matlab软件中Simulink 工具进行仿真分析,仿真结果说明利用时间延迟状态反馈设计的控制器实现异步电机的混沌合成是完全合理可行的,运行结果也是满足要求的.%The chaos synthesis controller is designed using the method of differential geometry theory of nonlinear systems and time-delayed feedback control to realize chaos synthesis in running process of three-phase alternating current (AC) asynchronous motor. The exact linearization approach by state feedback of nonlinear control theory is used for controller design and through simplified analysis on the model of three-phase AC asynchronous motor. Chaos synthesis is got when asynchronous motor running by this controller. Simulink tool in Matlab software is used for Simulation analysis. The simulation results show that the time-delayed state feedback method designed controller implementing chaos synthesis of asynchronous motor is feasible and the control result is satisfied.
Feedback as Real-Time Constructions
Keiding, Tina Bering; Qvortrup, Ane
2014-01-01
This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…
Feedback as Real-Time Constructions
Keiding, Tina Bering; Qvortrup, Ane
2014-01-01
This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…
Multimedia as a Means to Enhance Feedback
Tsutsui, Michio
2004-01-01
Interactive feedback, the most common feedback method for oral performance, cannot be used in activities that do not allow for instructor-student interaction, such as speeches and presentations, where feedback should occur after the performance. The conventional ways of providing post-performance or delayed feedback, however, are neither efficient…
Directory of Open Access Journals (Sweden)
Christian eKlauer
2014-09-01
Full Text Available Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. Potential users of this system are patients with high-level spinal cord injury and neurodegenerative neuromuscular diseases, such as amyotrophic lateral sclerosis, Friedreich ataxia, and multiple sclerosis. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES to enable reaching functions in people with no residual voluntary control of the arm due to upper motor neuron lesions after spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOF. The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e. a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 seconds.
Klauer, Christian; Schauer, Thomas; Reichenfelser, Werner; Karner, Jakob; Zwicker, Sven; Gandolla, Marta; Ambrosini, Emilia; Ferrante, Simona; Hack, Marco; Jedlitschka, Andreas; Duschau-Wicke, Alexander; Gföhler, Margit; Pedrocchi, Alessandra
2014-01-01
Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES) to enable reaching functions in people with no residual voluntary control of the arm and shoulder due to high level spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs) passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOF. The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e., a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 s.
Wang, Liang-Yan; Zhong, Zhu-Qiong; Wu, Zheng-Mao; Lu, Dong; Chen, Xi; Chen, Jun; Xia, Guang-Qiong
2016-11-01
Based on a nonlinear fiber loop mirror (NOLM) composed of a fiber coupler (FC) and a highly nonlinear fiber (HNLF), a scheme is proposed to simultaneously realize the bandwidth enhancement and the time-delay signature (TDS) suppression of a chaotic signal generated from an external cavity optical feedback semiconductor laser. The simulation results show that, after passing through the NOLM, the bandwidth of chaotic signal can be efficiently enhanced and the TDS can be well suppressed under suitable operation parameters. Furthermore, the influences of the power-splitting ratio of the FC, the averaged power of the chaotic signal entering into the FC and the length of the HNLF on the chaotic bandwidth and TDS are analyzed, and the optimized parameters are determined.
Denegar, Craig R.; Perrin, David H.
1992-01-01
Athletic trainers have a variety of therapeutic agents at their disposal to treat musculoskeletal pain, but little objective evidence exists of the efficacy of the modalities they use. In this study, delayed onset muscle soreness (DOMS) served as a model for musculoskeletal injury in order to: (1) compare the changes in perceived pain, elbow extension range of motion, and strength loss in subjects experiencing DOMS in the elbow flexor muscle group following a single treatment with either transcutaneous electrical nerve stimulation (TENS), cold, a combination of TENS and cold, sham TENS, or 20 minutes of rest; (2) compare the effects of combining static stretching with these treatments; and (3) determine if decreased pain is accompanied by a restoration of strength. DOMS was induced in the non-dominant elbow flexor muscle group in 40 females (age = 22.0 ± 4.3 yr) with repeated eccentric contractions. Forty-eight hours following exercise, all subjects presented with pain, decreased elbow extension range of motion, and decreased strength consistent with DOMS. Subjects were randomly assigned to 20-minute treatments followed by static stretching. Cold, TENS, and the combined treatment resulted in significant decreases in perceived pain. Treatments with cold resulted in a significant increase in elbow extension range of motion. Static stretching also significantly reduced perceived pain. Only small, nonsignificant changes in muscle strength were observed following treatment or stretching, regardless of the treatment group. These results suggest that the muscle weakness associated with DOMS is not the result of inhibition caused by pain. The results suggest that these modalities are effective in treating the pain and muscle spasm associated with DOMS, and that decreased pain may not be an accurate indicator of the recovery of muscle strength. PMID:16558162
Hayman, Marilyn J.
1981-01-01
Investigated the effectiveness of supervisor feedback in contributing to learning counseling skills. Counselor trainees (N=64) were assigned to supervisor feedback, no supervisor feedback, or control groups for three training sessions. Results indicated counseling skills were learned best by students with no supervisor feedback but self and peer…
Simple Optoelectronic Feedback in Microwave Oscillators
Maleki, Lute; Iltchenko, Vladimir
2009-01-01
A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.
Self-Produced Tickle Sensation by Manipulating Visual Feedback
Directory of Open Access Journals (Sweden)
Hiroyuki Iizuka
2011-10-01
Full Text Available The aim of the present paper was to clarify how the distinction of self- (sense of agency, SOA and other-produced behavior can be synthesized and recognized in multisensory integration as our cognitive processes. To address this issue, we used tickling paradigm that it is hard for us to tickle ourselves. Previous studies show that tickle sensation by their own motion increases if more delay is given between self-motion of tickling and tactile stimulation (Blakemore et al. 1998, 1999. We introduced visual feedbacks to the tickling experiments. In our hypothesis, integration of vision, proprioception, and motor commands forms the SOA and disintegration causes the breakdown the SOA, which causes the feeling of others, producing tickling sensation even by tickling oneself. We used video-see-through HMD to suddenly delay the real-time images of their hand tickling motions. The tickle sensation was measured by subjective response in the following conditions; 1 tickling oneself without any visual modulation, 2 tickled by others, 3 tickling oneself with visual feedback manipulation. The statistical analysis of ranked evaluation of tickle sensations showed that the delay of visual feedback causes the increase of tickle sensation. The SOA was discussed with Blakemore's and our results.
Positive feedback promotes oscillations in negative feedback loops.
Directory of Open Access Journals (Sweden)
Bharath Ananthasubramaniam
Full Text Available A simple three-component negative feedback loop is a recurring motif in biochemical oscillators. This motif oscillates as it has the three necessary ingredients for oscillations: a three-step delay, negative feedback, and nonlinearity in the loop. However, to oscillate, this motif under the common Goodwin formulation requires a high degree of cooperativity (a measure of nonlinearity in the feedback that is biologically "unlikely." Moreover, this recurring negative feedback motif is commonly observed augmented by positive feedback interactions. Here we show that these positive feedback interactions promote oscillation at lower degrees of cooperativity, and we can thus unify several common kinetic mechanisms that facilitate oscillations, such as self-activation and Michaelis-Menten degradation. The positive feedback loops are most beneficial when acting on the shortest lived component, where they function by balancing the lifetimes of the different components. The benefits of multiple positive feedback interactions are cumulative for a majority of situations considered, when benefits are measured by the reduction in the cooperativity required to oscillate. These positive feedback motifs also allow oscillations with longer periods than that determined by the lifetimes of the components alone. We can therefore conjecture that these positive feedback loops have evolved to facilitate oscillations at lower, kinetically achievable, degrees of cooperativity. Finally, we discuss the implications of our conclusions on the mammalian molecular clock, a system modeled extensively based on the three-component negative feedback loop.
DEFF Research Database (Denmark)
Ankjærgaard, Christina; Jain, Mayank
2010-01-01
Time-resolved optically stimulated luminescence (TR-OSL) curves from quartz are usually measured over a few hundred microseconds because this time range best illustrates the main component in quartz which lies in the range 30–45 µs. In this study we present the decay form of quartz TR......-OSL and optically stimulated phosphorescence (OSP) covering over 8 orders of magnitude from 50 ns to ~8 s. A detailed characterization of the previously unstudied slowly decaying signals (millisecond–second time scales) is undertaken to understand the origin of these components and the role of re-trapping following...... optical stimulation. We present preheat and stimulation temperature dependence for both the TR-OSL and OSP curves in these time ranges and use the latter data to determine the E and s values for the participating shallow traps. We observe an abnormal decay behaviour seen as a sudden increase in the decay...
Electrotactile EMG feedback improves the control of prosthesis grasping force
Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario
2016-10-01
predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).
DEFF Research Database (Denmark)
Ankjærgaard, Christina; Jain, Mayank
2010-01-01
Time-resolved optically stimulated luminescence (TR-OSL) curves from quartz are usually measured over a few hundred microseconds because this time range best illustrates the main component in quartz which lies in the range 30–45 µs. In this study we present the decay form of quartz TR-OSL and opt......Time-resolved optically stimulated luminescence (TR-OSL) curves from quartz are usually measured over a few hundred microseconds because this time range best illustrates the main component in quartz which lies in the range 30–45 µs. In this study we present the decay form of quartz TR...
Comprehensive feedback on trainee surgeons' non-technical skills
DEFF Research Database (Denmark)
Spanager, Lene; Dieckmann, Peter; Beier-Holgersen, Randi
2015-01-01
-Technical Skills for Surgeons in Denmark tool to stimulate feedback conversations. Audio recordings of post-operation feedback conversations were collected. Trainees and supervisors provided questionnaire responses on the usefulness and comprehensiveness of the feedback. The feedback conversations were...... qualitatively analyzed for content and feedback style. Usefulness was investigated using a scale from 1 to 5 and written comments were qualitatively analyzed. RESULTS: Six trainees and six supervisors participated in eight feedback conversations. Eighty questionnaires (response rate 83 percent) were collected...
DEFF Research Database (Denmark)
Hyldahl, Kirsten Kofod
Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...
Denegar, Craig R.; Perrin, David H.
1992-01-01
Athletic trainers have a variety of therapeutic agents at their disposal to treat musculoskeletal pain, but little objective evidence exists of the efficacy of the modalities they use. In this study, delayed onset muscle soreness (DOMS) served as a model for musculoskeletal injury in order to: (1) compare the changes in perceived pain, elbow extension range of motion, and strength loss in subjects experiencing DOMS in the elbow flexor muscle group following a single treatment with either tran...
Feedback as real-time constructions
DEFF Research Database (Denmark)
Keiding, Tina Bering; Qvortrup, Ane
2014-01-01
This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very...... instant it takes place. This article argues for a clear distinction between the timing of communicative events, such as responses that are provided as help for feedback constructions, and the feedback construction itself as an event in a psychic system. Although feedback is described as an internal......, system-relative construction, different teaching environments offer diverse conditions for feedback constructions. The final section of this article explores this idea with the help of examples from both synchronous oral interaction and asynchronous text-based interaction mediated by digital media....
Institute of Scientific and Technical Information of China (English)
Dejin WANG
2003-01-01
This article concerns a coupled LMIs approach to delay-dependent observer-based output feedback stabilizing controller design for linear continuous-time systems with multiple state delays. The advantage of our proposed delay-dependent coupled LMIs criterion lies in that: (1) it can optimize one of multiple time delays with others selected properly, and at the same time, the feedback-gain and observer-gain can be obtained, respectively. (2) it is less conservative than the existing delay-independent ones in the literature. Algorithm to solve the coupled LMIs is also given. Numerical examples illustrate the effectiveness of our method.
Isochronal synchronization of time delay and delay-coupled chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Grzybowski, J M V; Yoneyama, T [Instituto Tecnologico de Aeronautica, ITA, Praca Marechal Eduardo Gomes, 50, Vila das Acacias, Sao Jose dos Campos, SP, Brazil, CEP 12.228-900 (Brazil); Macau, E E N, E-mail: zzmariovic@yahoo.com.br, E-mail: elbert@lac.inpe.br, E-mail: takashi@ita.br [Instituto Nacional de Pesquisas Espaciais, INPE, PO Box 515, Sao Jose dos Campos, SP, Brazil, CEP 12.227-010 (Brazil)
2011-04-29
This paper studies the problem of isochronal synchronization of time-delay chaotic systems featuring also coupling delay. Based on the Lyapunov-Krasovskii stability theory, sufficient conditions are derived for the stability of isochronal synchronization between a pair of identical chaotic systems. Such criteria permit the proper design of stable proportional linear feedback controller, more specifically, the design of adequate proportional feedback gain matrices. The proposed criteria are suited to systems with (i) intrinsic delay, (ii) coupling delay or (iii) both. Numerical simulations of the synchronization of delay-coupled systems are presented as examples of the application of the criteria.
The Accuracy of Computer-Assisted Feedback and Students' Responses to It
Lavolette, Elizabeth; Polio, Charlene; Kahng, Jimin
2015-01-01
Various researchers in second language acquisition have argued for the effectiveness of immediate rather than delayed feedback. In writing, truly immediate feedback is impractical, but computer-assisted feedback provides a quick way of providing feedback that also reduces the teacher's workload. We explored the accuracy of feedback from…
Shi, Jiahai; Yuan, Bingbing; Hu, Wenqian; Lodish, Harvey
2016-11-01
JAK2 V617F is a mutant-activated JAK2 kinase found in most polycythemia vera (PV) patients; it skews normal proliferation and differentiation of hematopoietic stem and progenitor cells and simulates aberrant expansion of erythroid progenitors. JAK2 V617F is known to activate some signaling pathways not normally activated in mature erythroblasts, but there has been no systematic study of signal transduction pathways or gene expression in erythroid cells expressing JAK2 V617F undergoing erythropoietin (Epo)-dependent terminal differentiation. Here we report that expression of JAK2 V617F in murine fetal liver Epo-dependent progenitors allows them to divide approximately six rather than the normal approximately four times in the presence of Epo, delaying their exit from the cell cycle. Over time, the number of red cells formed from each Epo-dependent progenitor increases fourfold, and these cells eventually differentiate into normal enucleated reticulocytes. We report that purified fetal liver Epo-dependent progenitors express many cytokine receptors additional to the EpoR. Expression of JAK2 V617F triggers activation of Stat5, the only STAT normally activated by Epo, as well as activation of Stat1 and Stat3. Expression of JAK2 V617F also leads to transient induction of many genes not normally activated in terminally differentiating erythroid cells and that are characteristic of other hematopoietic lineages. Inhibition of Stat1 activation blocks JAK2 V617F hyperproliferation of erythroid progenitors, and we conclude that Stat1-mediated activation of nonerythroid signaling pathways delays terminal erythroid differentiation and permits extended cell divisions.
Zhou, Hao; Chen, Shun; Zhou, Qin; Wei, Yunan; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun
2016-01-01
Interferons are a group of antiviral cytokines acting as the first line of defense in the antiviral immunity. Here, we describe the antiviral activity of goose type I interferon (IFNα) and type II interferon (IFNγ) against duck plague virus (DPV). Recombinant goose IFNα and IFNγ proteins of approximately 20 kDa and 18 kDa, respectively, were expressed. Following DPV-enhanced green fluorescent protein (EGFP) infection of duck embryo fibroblast cells (DEFs) with IFNα and IFNγ pre-treatment, the number of viral gene copies decreased more than 100-fold, with viral titers dropping approximately 100-fold. Compared to the control, DPV-EGFP cell positivity was decreased by goose IFNα and IFNγ at 36 hpi (3.89%; 0.79%) and 48 hpi (17.05%; 5.58%). In accordance with interferon-stimulated genes being the "workhorse" of IFN activity, the expression of duck myxovirus resistance (Mx) and oligoadenylate synthetases-like (OASL) was significantly upregulated (p interferon. These findings will contribute to our understanding of the functional significance of the interferon antiviral system in aquatic birds and to the development of interferon-based prophylactic and therapeutic approaches against viral disease.
DEFF Research Database (Denmark)
Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire
2009-01-01
This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. ...
Institute of Scientific and Technical Information of China (English)
杨洋; 李丕丁
2015-01-01
为使脑卒中偏瘫病人在早期康复训练和护理中得到更加有效更加安全的治疗手段，该文提出一种基于皮肤表面肌电信号（sEMG）作为反馈的功能性电刺激康复治疗仪系统。系统中包含皮肤表面肌电信号拾取电路、刺激信号发生电路、残余电荷释放电路（用于释放刺激堆积在人体组织和电极上的刺激信号残余电荷，降低刺激信号对肌电信号的干扰）和STM32单片机控制电路。该系统是一种以皮肤表面肌电信号作为反馈的功能性电刺激康复训练系统，具有较高有效性和安全性。在脑卒中偏瘫患者早期康复训练中起着重要的作用，拥有前景广阔的医疗应用市场。%To make partial stroke patients have more effective and sager treatment in the early rehabilita-tion training and nursing,this paper puts forward the system of functional electrical stimulation of rehabilitation in-strument that based on the surface electromyography(sEMG)as feedback. The system includes sEMG pick - up circuit,stimulus signal generating circuit,charge releasing circuit which is used for releasing the residual charge between the body 's tissues and electrode to reduce the stimulation interference of sEMG signal immensely and STM32 MUC control circuit. As a functional electrical and rehabilitation instrument system,the system is based on the surface electromyography as feedback,which has high efficacy and safety and plays an important role and has broad prospects for medical applications market in partial stroke patients' early rehabilitation training.
Carter, Michael J; Smith, Victoria; Carlsen, Anthony N; Ste-Marie, Diane M
2017-02-27
A distinct learning advantage has been shown when participants control their knowledge of results (KR) scheduling during practice compared to when the same KR schedule is imposed on the learner without choice (i.e., yoked schedules). Although the learning advantages of self-controlled KR schedules are well-documented, the brain regions contributing to these advantages remain unknown. Identifying key brain regions would not only advance our theoretical understanding of the mechanisms underlying self-controlled learning advantages, but would also highlight regions that could be targeted in more applied settings to boost the already beneficial effects of self-controlled KR schedules. Here, we investigated whether applying anodal transcranial direct current stimulation (tDCS) to the primary motor cortex (M1) would enhance the typically found benefits of learning a novel motor skill with a self-controlled KR schedule. Participants practiced a spatiotemporal task in one of four groups using a factorial combination of KR schedule (self-controlled vs. yoked) and tDCS (anodal vs. sham). Testing occurred on two consecutive days with spatial and temporal accuracy measured on both days and learning was assessed using 24-h retention and transfer tests without KR. All groups improved their performance in practice and a significant effect for practicing with a self-controlled KR schedule compared to a yoked schedule was found for temporal accuracy in transfer, but a similar advantage was not evident in retention. There were no significant differences as a function of KR schedule or tDCS for spatial accuracy in retention or transfer. The lack of a significant tDCS effect suggests that M1 may not strongly contribute to self-controlled KR learning advantages; however, caution is advised with this interpretation as typical self-controlled learning benefits were not strongly replicated in the present experiment.
DEFF Research Database (Denmark)
Kolby, Nanna; Busch, Alexander Siegfried; Juul, Anders
2017-01-01
Delayed puberty can be a source of great concern and anxiety, although it usually is caused by a self-limiting variant of the normal physiological timing named constitutional delay of growth and puberty (CDGP). Delayed puberty can, however, also be the first presentation of a permanent condition ...... mineral density) and psychological (e.g., low self-esteem) and underline the importance of careful clinical assessment of the patients.......Delayed puberty can be a source of great concern and anxiety, although it usually is caused by a self-limiting variant of the normal physiological timing named constitutional delay of growth and puberty (CDGP). Delayed puberty can, however, also be the first presentation of a permanent condition...
Energy Technology Data Exchange (ETDEWEB)
Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-07-01
Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)
Bhalodia, Vidya M; Schwartz, Daniel M; Sestokas, Anthony K; Bloomgarden, Gary; Arkins, Thomas; Tomak, Patrick; Gorelick, Judith; Wijesekera, Shirvinda; Beiner, John; Goodrich, Isaac
2013-10-01
Deltoid muscle weakness due to C-5 nerve root injury following cervical spine surgery is an uncommon but potentially debilitating complication. Symptoms can manifest upon emergence from anesthesia or days to weeks following surgery. There is conflicting evidence regarding the efficacy of spontaneous electromyography (spEMG) monitoring in detecting evolving C-5 nerve root compromise. By contrast, transcranial electrical stimulation-induced motor evoked potential (tceMEP) monitoring has been shown to be highly sensitive and specific in identifying impending C-5 injury. In this study the authors sought to 1) determine the frequency of immediate versus delayed-onset C-5 nerve root injury following cervical spine surgery, 2) identify risk factors associated with the development of C-5 palsies, and 3) determine whether tceMEP and spEMG neuromonitoring can help to identify acutely evolving C-5 injury as well as predict delayed-onset deltoid muscle paresis. The authors retrospectively reviewed the neuromonitoring and surgical records of all patients who had undergone cervical spine surgery involving the C-4 and/or C-5 level in the period from 2006 to 2008. Real-time tceMEP and spEMG monitoring from the deltoid muscle was performed as part of a multimodal neuromonitoring protocol during all surgeries. Charts were reviewed to identify patients who had experienced significant changes in tceMEPs and/or episodes of neurotonic spEMG activity during surgery, as well as those who had shown new-onset deltoid weakness either immediately upon emergence from the anesthesia or in a delayed fashion. Two hundred twenty-nine patients undergoing 235 cervical spine surgeries involving the C4-5 level served as the study cohort. The overall incidence of perioperative C-5 nerve root injury was 5.1%. The incidence was greatest (50%) in cases with dual corpectomies at the C-4 and C-5 spinal levels. All patients who emerged from anesthesia with deltoid weakness had significant and unresolved
Frequent external focus feedback enhances motor learning
Directory of Open Access Journals (Sweden)
Gabriele eWulf
2010-11-01
Full Text Available The present study examined the hypothesis that feedback inducing an external focus of attention enhances motor learning if it is provided frequently (i.e., 100% rather than less frequently. Children (10-12 year olds practiced a soccer throw-in task and were provided feedback about movement form. The feedback statements, provided either after every (100% or every third (33% practice trial, were similar in content but induced either an internal focus (body-movement related or external focus (movement-effect related. The results demonstrated that learning of the movement form was enhanced by external-focus feedback after every trial (100% relative to external-focus feedback after every third trial (33% or internal-focus feedback (100%, 33%, as demonstrated by immediate and delayed transfer tests without feedback. There was no difference between the two internal-focus feedback groups. These findings indicate that the attentional focus induced by feedback is an important factor in determining the effectiveness of different feedback frequencies. We argue that the informational properties of feedback cannot sufficiently account for these and related findings, and suggest that the attentional role of feedback be given greater consideration in future studies.
Peoples, Gregory E; McLennan, Peter L
2017-06-01
Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O2 (SaO2-98%) and hypoxia 14% O2 (SaO2-89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g(-1) tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.
Broadband hyperchaotic oscillator with delay line
DEFF Research Database (Denmark)
Cenys, Antanas; Lindberg, Erik; Anagnostopoulos, A. N.;
2002-01-01
Dynamical systems with time delay can be employed as high dimensional hyperchaotic oscillators with multiple positive Lyapunov exponents. We describe an electronic circuit composed of a 3-stage amplifier and a delay line in the feedback loop. The 1st stage of the amplifier is a nonlinear one while...
Adaptive control for a class of discrete-time time-delay systems with regard to delay parameter
Institute of Scientific and Technical Information of China (English)
Chai Lin; Cheng Ming; Fei Shumin; Zhai Junyong
2009-01-01
The memory state feedback control problem for a class of discrete-time systems with input delay and unknown state delay is addressed based on LMIs and Lyapunov-Krasovskii functional method. Under the action of our designed adaptive control law, the unknown time-delay parameter is included in memory state feedback controller. Using LMI technique, delay-dependent sufficient conditions for the existence of the feedback controller are obtained. Finally, the effectiveness of the proposed design method is demonstrated by a numerical example.
Directory of Open Access Journals (Sweden)
Tingfeng Fu
2016-03-01
Full Text Available The role of corrective feedback in second language classrooms has received considerable research attention in the past few decades. However, most of this research has been conducted in English-teaching settings, either ESL or EFL. This study examined teacher feedback, learner uptake as well as learner and teacher perception of feedback in an adult Chinese as a foreign language classroom. Ten hours of classroom interactions were videotaped, transcribed and coded for analysis. Lyster and Ranta’s (1997 coding system involving six types of feedback was initially used to identify feedback frequency and learner uptake. However, the teacher was found to use a number of additional feedback types. Altogether, 12 types of feedback were identified: recasts, delayed recasts, clarification requests, translation, metalinguistic feedback, elicitation, explicit correction, asking a direct question, repetition, directing question to other students, re-asks, and using L1-English. Differences were noted in the frequency of some of the feedback types as well as learner uptake compared to what had been reported in some previous ESL and EFL studies. With respect to the new feedback types, some led to noticeable uptake. As for the students’ and teacher’s perceptions, they did not match and both the teacher and the students were generally not accurate in perceiving the frequency of each feedback type. The findings are discussed in terms of the role of context in affecting the provision and effectiveness of feedback and its relationship to student and teacher perception of feedback.
Partially blind instantly decodable network codes for lossy feedback environment
Sorour, Sameh
2014-09-01
In this paper, we study the multicast completion and decoding delay minimization problems for instantly decodable network coding (IDNC) in the case of lossy feedback. When feedback loss events occur, the sender falls into uncertainties about packet reception at the different receivers, which forces it to perform partially blind selections of packet combinations in subsequent transmissions. To determine efficient selection policies that reduce the completion and decoding delays of IDNC in such an environment, we first extend the perfect feedback formulation in our previous works to the lossy feedback environment, by incorporating the uncertainties resulting from unheard feedback events in these formulations. For the completion delay problem, we use this formulation to identify the maximum likelihood state of the network in events of unheard feedback and employ it to design a partially blind graph update extension to the multicast IDNC algorithm in our earlier work. For the decoding delay problem, we derive an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both outperform previously proposed approaches and achieve tolerable degradation even at relatively high feedback loss rates.
H-infty Control of systems with multiple i/o delays
Agoes Ariffin Moelja, A.A.; Meinsma, Gjerrit; Mirkin, Leonid
2003-01-01
In this paper the standard (four-block) H-infty control problem for systems with multiple i/o delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators. The adobe delay
Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad
2014-11-01
This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Differential Effects of Context and Feedback on Orthographic Learning: How Good Is Good Enough?
Martin-Chang, Sandra; Ouellette, Gene; Bond, Linda
2017-01-01
In this study, students in Grade 2 read different sets of words under 4 experimental training conditions (context/feedback, isolation/feedback, context/no-feedback, isolation/no-feedback). Training took place over 10 trials, followed by a spelling test and a delayed reading posttest. Reading in context boosted reading accuracy initially; in…
A Design Method for a State Feedback Microcomputer Controller of a Wide Bandwidth Analog Plant.
1983-12-01
METHOD . . . .... 16 1. State Feedback Control System . . . . . . 16 2. Microcomputer Controller Design with Time Delay . . . . . . . . . . . . . . . . 18...90 C. DESIGN OF STATE FEEDBACK CONTROL SYSTEM WITH MICROCOMPUTER . . . . . . . . . . . . . . . . 91 1. Control Algorithm...FIGURES 2.1 Signal Flow Diagram of State Feedback System . . 17 2.2 Feedback Control System with PD Control . . . . 18 2.3 Bode Diagram of Eqn. 2.7
Effects of Vibrotactile Stimulation During Virtual Sandboarding
DEFF Research Database (Denmark)
Lind, Stine; Thomsen, Lui; Egebjerg, Mie
2016-01-01
This poster details a within-subjects study (n=17) investigating the effects of vibrotactile stimulation on illusory self-motion, presence and perceived realism during an interactive sandboarding simulation. Vibrotactile feedback was delivered using a low frequency audio transducer mounted undern...... of vibrotactile feedback. No significant differences were found between the two conditions involving vibrotactile stimulation....
Photonic Quantum Circuits with Time Delays
Pichler, Hannes
2015-01-01
We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the Quantum Stochastic Schr\\"odinger Equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem.
Adaptive synchronization of neural networks with time-varying delay and distributed delay
Wang, Kai; Teng, Zhidong; Jiang, Haijun
2008-01-01
In this paper, the adaptive synchronization of neural networks with time-varying delay and distributed delay is discussed. Based on the LaSalle invariant principle of functional differential equations and the adaptive feedback control technique, some sufficient conditions for adaptive synchronization of such a system are obtained. Finally, a numerical example is given to show the effectiveness of the proposed synchronization method.
Energy Technology Data Exchange (ETDEWEB)
Tobiyama, M.; Kikutani, E. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
Design and the present status of the bunch by bunch feedback systems for KEKB rings are shown. The detection of the bunch oscillation are made with the phase detection for longitudinal plane, the AM/PM method for transverse plane. Two GHz component of the bunch signal which is extracted with an analog FIR filter is used for the detection. Hardware two-tap FIR filter systems to shift the phase of the oscillation by 90deg will be used for the longitudinal signal processing. The same system will be used with no filtering but with only digital delay for transverse system. The candidate for the kicker and the required maximum power are also estimated. (author)
Institute of Scientific and Technical Information of China (English)
邢丹; 马信龙; 马剑雄; 王杰; 陈阳; 杨阳; 马宝意; 朱少文; 冯睿
2013-01-01
Objective To collect and analyze the literature on electromagnetic field stimulation in the treatment of nonunion or delayed union of long bone fractures,and to evaluate its efficacy and safety.Methods Research on electromagnetic stimulation indexed by Medline,Embase and other databases including unpublished literature was collected using pre-established inclusion and exclusion criteria.Comparative studies reporting on the outcomes of electromagnetic field stimulation for the treatment of long bone fractures were the focus.Data were extracted for outcomes including total union rate,nonunion rate,adverse events,and visual analogue scale (VAS) ratings of pain.The quality of each reference was assessed.Where feasible,meta-analyses were performed using RevMan 5.1 software.Results A total of 4 papers reporting 4 randomized controlled trials were found.They reported on 58 patients treated with electromagnetic field stimulation and 63 in sham stimulation groups.There was no significant difference in total union rate after treatment for 12 weeks,or in the nonunion rate after treatment for 24 weeks.VAS scale ratings were also not significantly different in the two groups.Conclusions Electromagnetic field stimulation may be an effective and safe therapy to treat nonunion or delayed union of long bone fractures,but there is not yet adequate evidence to determine its real efficiency and safety.Large,well designed and multi-centre randomized and controlled clinical trials are needed.%目的 通过检索和分析国内外相关文献,评价电磁刺激治疗长骨骨折延迟愈合以及不愈合的临床疗效及安全性.方法 采用计算机检索1978年1月至2012年2月荷兰医学文摘(Embase)、Medline、Ovid和万方医学网等中英文数据库并结合手工检索,按照既定的纳入标准和排除标准查找有关电磁刺激治疗长骨骨折愈合延迟及不愈合的临床随机对照试验,对纳入的研究进行质量评价,使用RevMan 5.1软件对数据
... physical cause. (Examples of stimulation may include wet dreams, masturbation, or intercourse.) See a therapist who specializes ... a better outcome if: You have a past history of satisfying sexual experiences. The problem has not ...
Sensory feedback in interlimb coordination
DEFF Research Database (Denmark)
Gervasio, Sabata; Voigt, Michael; Kersting, Uwe G.
2017-01-01
direct communication between the two sides without the need for the involvement of higher centers. These may also exist in humans since sensory feedback elicited by tibial nerve stimulation on one side (ipsilateral) can affect the muscles activation in the opposite side (contralateral), provoking short......-latency crossed responses (SLCRs). The current study investigated whether contralateral afferent feedback contributes to the mechanism controlling the SLCR in human gastrocnemius muscle. Surface electromyogram, kinematic and kinetic data were recorded from subjects during normal walking and hybrid walking (with.......04). Moreover, estimated spindle secondary afferent and Golgi tendon organ activity were significantly different (P ≤ 0.01) when opposite responses have been observed, that is during normal (facilitation) and hybrid walking (inhibition) conditions. Contralateral sensory feedback, specifically spindle secondary...
Pulsed feedback defers cellular differentiation.
Directory of Open Access Journals (Sweden)
Joe H Levine
2012-01-01
Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.
Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay
Zhusubaliyev, Z. T.; Mosekilde, E.; Churilov, A. N.; Medvedev, A.
2015-07-01
The release of luteinizing hormone (LH) is driven by intermittent bursts of activity in the hypothalamic nerve centers of the brain. Luteinizing hormone again stimulates release of the male sex hormone testosterone (Te) and, via the circulating concentration of Te, the hypothalamic nerve centers are subject to a negative feedback regulation that is capable of modifying the intermittent bursts into more regular pulse trains. Bifurcation analysis of a hybrid model that attempts to integrate the intermittent bursting activity with a continuous hormone secretion has recently demonstrated a number of interesting nonlinear dynamic phenomena, including bistability and deterministic chaos. The present paper focuses on the additional complexity that arises when the time delay in the continuous part of the model exceeds the typical bursting interval of the feedback. Under these conditions, the hybrid model is capable of displaying quasiperiodicity and border collisions as well as multistability and hidden attractors.
Delay Independent Criterion for Multiple Time-delay Systems
Chang, C. J.; Liu, K. F. R.; Yeh, K.; Chen, C. W.; Chung, P. Y.
Based on the fuzzy Lyapunov method, this work addresses the stability conditions for nonlinear systems with multiple time delays to ensure the stability of building structure control systems. The delay independent conditions are derived via the traditional Lyapunov and fuzzy Lyapunov methods for multiple time-delay systems as approximated by the Tagagi-Sugeno (T-S) fuzzy model. The fuzzy Lyapunov function is defined as a fuzzy blending of quadratic Lyapunov functions. A parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic control (FLC) by blending all linear local state feedback controllers in the controller design procedure. Furthermore, the H infinity performance and robustness of the design for modeling errors also need to be considered in the stability conditions.
Robust delay-dependent feedforward control of neutral time-delay systems via dynamic IQCs
Ucun, L.; Küçükdemiral, I. B.
2014-05-01
This paper studies the design problem of delay-dependent ? based robust and optimal feedforward controller design for a class of time-delay control systems having state, control and neutral type delays which are subject to norm-bounded uncertainties and ? type measurable or observable disturbance signals. Two independent loops which include state-feedback and dynamic feedforward controller form the basis of the proposed control scheme in this study. State-feedback controller is generally used in stabilisation of the nominal delay-free system, whereas the feedforward controller is used for improving disturbance attenuation performance of the overall system. In order to obtain less conservative results, the delay and parametric uncertainty effects are treated in operator view point and represented by frequency-dependent (dynamic) integral quadratic constraints (IQCs). Moreover, sufficient delay-dependent criterion is developed in terms of linear matrix inequalities (LMIs) such that the time-delay system having parametric uncertainties is guaranteed to be asymptotically stable with minimum achievable disturbance attenuation level. Plenty of numerical examples are provided at the end, in order to illustrate the efficiency of the proposed technique. The achieved results on minimum achievable disturbance attenuation level and maximum allowable delay bounds are exhibited to be less conservative in comparison to those of controllers having only feedback loop.
Dynamics of Nonlinear Time-Delay Systems
Lakshmanan, Muthusamy
2010-01-01
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...
Institute of Scientific and Technical Information of China (English)
傅湘陵; 周展
2002-01-01
本文考虑一类具McCulloch-pitts型信号函数的描述两个相同神经元动力作用的时滞差分系统.所得结论推广了文[2]的相应结果,同时对参数(β,σ)的某些范围得到了一个渐近稳定的2k+1周期解.%In this paper, we consider a delay difference system which describes the dynamic interac-tion of two identical neurons with McCulloch-Pitts type signal transmission function. We extendedsome results in [2] and obtained a asymptotically stable 2k+1 -periodic solution in some regions ofparameters (β, σ).
Advice and Feedback: Elements of Practice for Problem Solving.
Phye, Gary D.; Sanders, Cheryl E.
1994-01-01
The roles of advice and feedback in the facilitation of online processing during acquisition and subsequent impact on memory-based processing during a delayed problem-solving task were studied in 2 experiments with 123 college students. Results indicate that corrective feedback improves online processing during training. (SLD)
Experimental demonstration of coherent feedback control on optical field squeezing
Iida, Sanae; Yonezawa, Hidehiro; Yamamoto, Naoki; Furusawa, Akira
2011-01-01
Coherent feedback is a non-measurement based, hence a back-action free, method of control for quantum systems. A typical application of this control scheme is squeezing enhancement, a purely non-classical effect in quantum optics. In this paper we report its first experimental demonstration that well agrees with the theory taking into account time delays and losses in the coherent feedback loop. The results clarify both the benefit and the limitation of coherent feedback control in a practical situation.
$H^\\infty$ control of systems with multiple i/o delays
Meinsma, Gjerrit; Mirkin, Leonid
2003-01-01
In this paper the standard (four-block) $H^\\infty$ control problem for systems with multiple i/o delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators. The adobe de
H∞ control of systems with multiple I/O delays via decomposition to adobe problems
Meinsma, Gjerrit; Mirkin, Leonid
2005-01-01
The standard (four-block) H/sup /spl infin// control problem for systems with multiple input-output delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators. The adobe
Improving e-learning by Emotive Feedback
DEFF Research Database (Denmark)
Sharp, Robin; Gjedde, Lisa
2011-01-01
This paper considers the use of feedback with emotive elements in order to improve the efficiency of e-learning for teaching complex technical subjects to the general public by stimulation of implicit learning. An example is presented, based on an effort to investigate the current level of IT sec......This paper considers the use of feedback with emotive elements in order to improve the efficiency of e-learning for teaching complex technical subjects to the general public by stimulation of implicit learning. An example is presented, based on an effort to investigate the current level...
Measuring information-transfer delays.
Directory of Open Access Journals (Sweden)
Michael Wibral
Full Text Available In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener's principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics.
Delay-dependent robust H∞ control for uncertain fuzzy hyperbolic systems with multiple delays
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The robust H∞ control problem was considered for a class of fuzzy hyperbolic model (FHM) systems with parametric uncertainties and multiple delays. First, FHM modeling method was presented for time-delay nonlinear systems. Then, by using Lyapunov-Krasovskii approaches, delay-dependent sufficient condition for the existence of a kind of state feedback controller was proposed, which was expressed as linear matrix inequalities (LMIs). The controller can guarantee that the resulting closed-loop system is robustly asymptotically stable with a prescribed H∞ performance level for all admissible uncertainties and time-delay. Finally, a simulation example was provided to illustrate the effectiveness of the proposed approach.
Silberstein, Gary B; Van Horn, Katharine; Hrabeta-Robinson, Eva; Compton, Jennifer
2006-08-01
During the estrous cycle and beginning in estrus, the mammary gland undergoes pregnancy-like development that depends on transcriptional regulation by the estrogen and progesterone receptors (ER, PR) and Pax-2 as well as the action of the growth factors Wnt-4 and RANKL. In this report, we first describe the decay and delayed expression of ERalpha, PR, and Pax-2 proteins as well as depression of Wnt-4 and RANKL mRNA coincident with the strong estrogen surge in proestrus. In time-course studies using ovari-ectomized mice, a single estrogen injection replicated these delays and caused an 18 h delay in Wnt-4 expression. Molecular time-delay systems are at the core of cellular cycles, most notably the circadian clock, and depend on proteasome degradation of transcriptional regulators that exhibit dedicated timing functions. The cytoplasmic dynamics of these regulators govern delay duration through negative transcription/translation feedback loops. A proteasome inhibitor, PS-341, blocked estrogen-stimulated ERalpha, PR, and Pax-2 decay and proteasome chymotryptic activity, assayed using a fluorogenic substrate, was elevated in proestrus correlating with the depletion of the transcription factors. The 18-h delay in Wnt-4 induction corresponded to the turnover time of Pax-2 protein in the cytoplasm and was eliminated in Pax-2 knockout mammary tissue, demonstrating that Pax-2 has a unique timing function. The patterns of estrogen-triggered ERalpha, PR, and Pax-2 turnover were consistent with a negative transcriptional feedback. Retarding the expression of ERalpha, PR, and Pax-2 may optimize preparations for pregnancy by coordinating expression of critical receptors and transcription factors with rising estrogen and progesterone levels in estrus. The estrogen surge in proestrus has no defined mammotropic function. This study provides the first evidence that it is a synchronizing signal triggering proteasome-dependent turnover of mammary gland ERalpha, PR, and Pax-2. We
Feedback and Stimulus-Offset Timing Effects in Perceptual Category Learning
Worthy, Darrell A.; Markman, Arthur B.; Maddox, W. Todd
2013-01-01
We examined how feedback delay and stimulus offset timing affected declarative, rule-based and procedural, information-integration category-learning. We predicted that small feedback delays of several hundred milliseconds would lead to the best information-integration learning based on a highly regarded neurobiological model of learning in the…
Quantum feedback in a weakly driven cavity QED system
Reiner, J. E.; Smith, W. P.; Orozco, L. A.; Wiseman, H. M.; Gambetta, Jay
2004-08-01
Quantum feedback in strongly coupled systems can probe a regime where one quantum of excitation is a large fluctuation. We present theoretical and experimental studies of quantum feedback in an optical cavity QED system. The time evolution of the conditional state, following a photodetection, can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured in a new steady state and then released. The feedback protocol requires resonance operation, and proper amplitude and delay for the change in the drive. We demonstrate the successful use of feedback in the suppression of the vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return to steady state. The feedback works only because we have an entangled quantum system, rather than an analogous correlated classical system.
Feedback Complexity and Practice: Response Pattern Analysis in Retention and Transfer.
Phye, Gary D.; Bender, Timothy
1989-01-01
Feedback effectiveness and efficiency were studied using 120 college students practicing 40 difficult vocabulary items in 4 experiments. The significant impact of immediate feedback was seen in immediate and delayed posttests. Conditional probability of feedback as a corrective function is discussed via a limited model of general working memory.…
Pneumatic Feedback for Wearable Lower Limb Exoskeletons Further Explored
Muijzer-Witteveen, Heidi; Guerra, Francisco; Sluiter, Victor; Kooij, van der Herman; Bello, Fernando; Kajimoto, Hiroyuki; Visell, Yon
2016-01-01
For optimal control of wearable lower limb exoskeletons the sensory information flow should also be (partly) restored, especially when the users are Spinal Cord Injury subjects. Several methods, like electrotactile or electromechanical vibrotactile stimulation, to provide artificial sensory feedback
Pneumatic Feedback for Wearable Lower Limb Exoskeletons Further Explored
Muijzer-Witteveen, Heintje Johanna Berendina; Guerra, Francisco; Sluiter, Victor IJzebrand; van der Kooij, Herman; Bello, Fernando; Kajimoto, Hiroyuki; Visell, Yon
2016-01-01
For optimal control of wearable lower limb exoskeletons the sensory information flow should also be (partly) restored, especially when the users are Spinal Cord Injury subjects. Several methods, like electrotactile or electromechanical vibrotactile stimulation, to provide artificial sensory feedback
Relay Selection with Limited and Noisy Feedback
Eltayeb, Mohammed E.
2016-01-28
Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Nonetheless, relay selection algorithms generally require error-free channel state information (CSI) from all cooperating relays. Practically, CSI acquisition generates a great deal of feedback overhead that could result in significant transmission delays. In addition to this, the fed back channel information is usually corrupted by additive noise. This could lead to transmission outages if the central node selects the set of cooperating relays based on inaccurate feedback information. In this paper, we propose a relay selection algorithm that tackles the above challenges. Instead of allocating each relay a dedicated channel for feedback, all relays share a pool of feedback channels. Following that, each relay feeds back its identity only if its effective channel (source-relay-destination) exceeds a threshold. After deriving closed-form expressions for the feedback load and the achievable rate, we show that the proposed algorithm drastically reduces the feedback overhead and achieves a rate close to that obtained by selection algorithms with dedicated error-free feedback from all relays. © 2015 IEEE.
The Effects of Pitch Shifts on Delay-Induced Changes in Vocal Sequencing in a Songbird
Kelly, Conor W.
2017-01-01
Abstract Like human speech, vocal behavior in songbirds depends critically on auditory feedback. In both humans and songbirds, vocal skills are acquired by a process of imitation whereby current vocal production is compared to an acoustic target. Similarly, performance in adulthood relies strongly on auditory feedback, and online manipulations of auditory signals can dramatically alter acoustic production even after vocalizations have been well learned. Artificially delaying auditory feedback can disrupt both speech and birdsong, and internal delays in auditory feedback have been hypothesized as a cause of vocal dysfluency in persons who stutter. Furthermore, in both song and speech, online shifts of the pitch (fundamental frequency) of auditory feedback lead to compensatory changes in vocal pitch for small perturbations, but larger pitch shifts produce smaller changes in vocal output. Intriguingly, large pitch shifts can partially restore normal speech in some dysfluent speakers, suggesting that the effects of auditory feedback delays might be ameliorated by online pitch manipulations. Although birdsong provides a promising model system for understanding speech production, the interactions between sensory feedback delays and pitch shifts have not yet been assessed in songbirds. To investigate this, we asked whether the addition of a pitch shift modulates delay-induced changes in Bengalese finch song, hypothesizing that pitch shifts would reduce the effects of feedback delays. Compared with the effects of delays alone, combined delays and pitch shifts resulted in a significant reduction in behavioral changes in one type of sequencing (branch points) but not another (distribution of repeated syllables). PMID:28144622
The Effects of Pitch Shifts on Delay-Induced Changes in Vocal Sequencing in a Songbird.
Wyatt, MacKenzie; Berthiaume, Emily A; Kelly, Conor W; Sober, Samuel J
2017-01-01
Like human speech, vocal behavior in songbirds depends critically on auditory feedback. In both humans and songbirds, vocal skills are acquired by a process of imitation whereby current vocal production is compared to an acoustic target. Similarly, performance in adulthood relies strongly on auditory feedback, and online manipulations of auditory signals can dramatically alter acoustic production even after vocalizations have been well learned. Artificially delaying auditory feedback can disrupt both speech and birdsong, and internal delays in auditory feedback have been hypothesized as a cause of vocal dysfluency in persons who stutter. Furthermore, in both song and speech, online shifts of the pitch (fundamental frequency) of auditory feedback lead to compensatory changes in vocal pitch for small perturbations, but larger pitch shifts produce smaller changes in vocal output. Intriguingly, large pitch shifts can partially restore normal speech in some dysfluent speakers, suggesting that the effects of auditory feedback delays might be ameliorated by online pitch manipulations. Although birdsong provides a promising model system for understanding speech production, the interactions between sensory feedback delays and pitch shifts have not yet been assessed in songbirds. To investigate this, we asked whether the addition of a pitch shift modulates delay-induced changes in Bengalese finch song, hypothesizing that pitch shifts would reduce the effects of feedback delays. Compared with the effects of delays alone, combined delays and pitch shifts resulted in a significant reduction in behavioral changes in one type of sequencing (branch points) but not another (distribution of repeated syllables).
Institute of Scientific and Technical Information of China (English)
周丽娜; 刘晓华
2013-01-01
The problem of robust and non-fragile stabilization and robust non-fragile H∞ control for a class of neutral stochastic time-delay systems with norm-bounded parameter uncertainties was studied.The sufficient conditions ensuring the closed-loop system mean-square asymptotically stable were established With the additive and multiplicative gain uncertainty in the controller,based on the Lyapunov functional,Ito formula and Schur theory.Furthermore,the sufficient conditions were obtained for the solvability of robust non-fragile H∞ control of the uncertain system.The memory state feedback non-fragile H∞ controllers of the stochastic neutral delay system were designed by solving linear matrix inequality.The numerical example was provided to illustrate the effectiveness of the proposed design method.%研究了一类具有参数不确定性的中立型随机时滞系统的鲁棒非脆弱镇定和鲁棒非脆弱H∞控制问题.在控制器增益分别具有加法式摄动和乘法式摄动的情形下,通过构造Lyapunov泛函,利用Ito公式和Schur补原理,建立了用线性矩阵不等式表示的保证闭环系统随机均方渐近稳定的充分条件；给出了不确定系统鲁棒非脆弱H∞控制可解性的充分条件；通过求解线性矩阵不等式,设计了随机时滞系统的记忆状态反馈非脆弱H∞控制器.数值仿真证明了该方法的有效性.
Fault Tolerant Feedback Control
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.
2001-01-01
An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....
Nonlinear Control of Delay and PDE Systems
Bekiaris-Liberis, Nikolaos
In this dissertation we develop systematic procedures for the control and analysis of general nonlinear systems with delays and of nonlinear PDE systems. We design predictor feedback laws (i.e., feedback laws that use the future, rather than the current state of the system) for the compensation of delays (i.e., after the control signal reaches the system for the first time, the system behaves as there were no delay at all) that can be time-varying or state-dependent, on the input and on the state of nonlinear systems. We also provide designs of predic- tor feedback laws for linear systems with constant distributed delays and known or unknown plant parameters, and for linear systems with simultaneous known or unknown constant delays on the input and the state. Moreover, we intro- duce infinite-dimensional backstepping transformations for each particular prob-lem, which enables us to construct Lyapunov-Krasovskii functionals. With the available Lyapunov-Krasovskii functionals we study stability, as well as, robust- ness of our control laws to plant uncertainties. We deal with coupled PDE-ODE systems. We consider nonlinear systems with wave actuator dynamics, for which we design a predictor inspired feedback law. We study stability of the closed-loop system either by constructing Lyapunov functionals, or using arguments of explicit solutions. We also consider linear sys- tems with distributed actuator and sensor dynamics governed by diffusion or wave PDEs, for which we design stabilizing feedback laws. We study stability of the closed-loop systems using Lyapunov functionals that we construct with the intro- duction of infinite-dimensional transformations of forwarding type. Finally, we develop a control design methodology for coupled nonlinear first-order hyperbolic PDEs through an application to automotive catalysts.
Regenerative memory in time-delayed neuromorphic photonic systems
Romeira, B; Figueiredo, José M L; Barland, S; Javaloyes, J
2015-01-01
We investigate a regenerative memory based upon a time-delayed neuromorphic photonic oscillator and discuss the link with temporal localized structures. Our experimental implementation is based upon a optoelectronic system composed of a nanoscale nonlinear resonant tunneling diode coupled to a laser that we link to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback.
Delayed puberty and hypogonadotropic hypogonadism. Differential diagnosis and treatment
Snoep, Marinus Cornelis
1978-01-01
This thesis describes a method enabling a prospecrive differential diagnosis to be made berween delayed puberty (DP) and hypogonadotropic hypogonadism (HH). The influence of androgen administration on the gonadal feedback sysrem of patients with delayed puberty was also studied. ... Zie: Summary
Personalised feedback and eco-driving : An explorative study
Brouwer, R. F. T.; Stuiver, A.; Hof, T.; Kroon, L.; Pauwelussen, J.; Holleman, B.
2015-01-01
Conventional road transport has negative impact on the environment. Stimulating eco-driving through feedback to the driver about his/her energy conservation performance has the potential to reduce CO2 emissions and promote fuel cost savings. Not all drivers respond well to the same type of feedback.
Baseband feedback for SAFARI-SPICA using Frequency Domain Multiplexing
Bounab, A.; de Korte, P.; Cros, A.; van der Kuur, J.; van Leeuwen, B. J.; Monna, B.; Mossel, R.; Nieuwenhuizen, A.; Ravera, L.
We report on the performance of the digital baseband feedback circuit developed to readout and process signals from arrays of transition edge sensors for SPICA-SAFARI in frequency domain multiplexing (FDM). The standard procedure to readout the SQUID current amplifiers is to use a feedback loop (flux-locked loop: FLL). However the achievable FFL bandwidth is limited by the cable transport delay t_d, which makes standard feedback inconvenient. A much better approach is to use baseband feedback. We have developed a model of the electronic readout chain for SPICA-SAFARI instrument by using an Anlog-digital co-simulation based on Simulink-System Generator environment.
Thermodynamics of quantum-jump-conditioned feedback control.
Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano
2013-12-01
We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such systems and analyze how the first and second law of thermodynamics are modified by the feedback. We apply our formalism to study the efficiency of a qubit subjected to a quantum feedback control and operating as a heat pump between two reservoirs. We also demonstrate that quantum feedbacks can be used to stabilize coherences in nonequilibrium stationary states which in some cases may even become pure quantum states.
On Reliability Function of BSC with Noisy Feedback
Burnashev, M V
2010-01-01
For information transmission a binary symmetric channel is used. There is also another noisy binary symmetric channel (feedback channel), and the transmitter observes without delay all the outputs of the forward channel via that feedback channel. The transmission of an exponential number of messages (i.e. the transmission rate is positive) is considered. The achievable decoding error exponent for such a combination of channels is investigated. It is shown that if the crossover probability of the feedback channel is less than a certain positive value, then the achievable error exponent is better than the decoding error exponent of the channel without feedback.
Directory of Open Access Journals (Sweden)
Ethan F Oblak
2017-07-01
Full Text Available Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic and feedback timing (continuous or intermittent. Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results
Hek, G.M.; Rottschäfer, V.
2005-01-01
We study a model for a semiconductor laser subject to filtered optical feedback, i.e. a system of delay differential equations (DDEs). In this model, the filter is characterized by a mean frequency Omega(m) and a filter width A. In the limit of a narrow filter (lambda -> 0), the laser equations redu
Semiconductor laser with filtered optical feedback: from optical injection to conventional feedback.
Hek, G.M.; Rottschäfer, V.
2007-01-01
Abstract We study a model for a semiconductor laser subject to filtered optical feedback, that is a system of delay differential equations (DDEs). In this model the filter is characterised by a mean frequency Ωm and a filter width λ. In the limit of a narrow filter (λ → 0) the laser equations reduce
Hek, G.M.; Rottschäfer, V.
2005-01-01
We study a model for a semiconductor laser subject to filtered optical feedback, i.e. a system of delay differential equations (DDEs). In this model, the filter is characterized by a mean frequency Omega(m) and a filter width A. In the limit of a narrow filter (lambda -> 0), the laser equations
Semi-Discretization for Time-Delay Systems
Insperger, Tamás
2011-01-01
This book presents the recently introduced and already widely referred semi-discretization method for the stability analysis of delayed dynamical systems. Delay differential equations often come up in different fields of engineering, like feedback control systems, machine tool vibrations, balancing/stabilization with reflex delay. The behavior of such systems is often counter-intuitive and closed form analytical formulas can rarely be given even for the linear stability conditions. If parametric excitation is coupled with the delay effect, then the governing equation is a delay differential eq
PEP-II RF feedback system simulation
Energy Technology Data Exchange (ETDEWEB)
Tighe, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
A model containing the fundamental impedance of the PEP-II cavity along with the longitudinal beam dynamics and RF feedback system components is in use. It is prepared in a format allowing time-domain as well as frequency-domain analysis and full graphics capability. Matlab and Simulink are control system design and analysis programs (widely available) with many built-in tools. The model allows the use of compiled C-code modules for compute intensive portions. We desire to represent as nearly as possible the components of the feedback system including all delays, sample rates and applicable nonlinearities. (author)
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip
2012-01-01
This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....
Balancing forward and feedback error correction for erasure channels with unreliable feedback
Sahai, Anant
2007-01-01
The traditional information theoretic approach to studying feedback is to consider ideal instantaneous high-rate feedback of the channel outputs to the encoder. This was acceptable in classical work because the results were negative: Shannon pointed out that even perfect feedback often does not improve capacity and in the context of symmetric DMCs, Dobrushin showed that it does not improve the fixed block-coding error exponents in the interesting high rate regime. However, it has recently been shown that perfect feedback does allow great improvements in the asymptotic tradeoff between end-to-end delay and probability of error, even for symmetric channels at high rate. Since gains are claimed with ideal instantaneous feedback, it is natural to wonder whether these improvements remain if the feedback is unreliable or otherwise limited. Here, packet-erasure channels are considered on both the forward and feedback links. First, the feedback channel is considered as a given and a strategy is given to balance forwa...
New results on robust exponential stability of integral delay systems
Melchor-Aguilar, Daniel
2016-06-01
The robust exponential stability of integral delay systems with exponential kernels is investigated. Sufficient delay-dependent robust conditions expressed in terms of linear matrix inequalities and matrix norms are derived by using the Lyapunov-Krasovskii functional approach. The results are combined with a new result on quadratic stabilisability of the state-feedback synthesis problem in order to derive a new linear matrix inequality methodology of designing a robust non-fragile controller for the finite spectrum assignment of input delay systems that guarantees simultaneously a numerically safe implementation and also the robustness to uncertainty in the system matrices and to perturbation in the feedback gain.
GLOBAL ASYMPTOTIC STABILITY CONDITIONS OF DELAYED NEURAL NETWORKS
Institute of Scientific and Technical Information of China (English)
ZHOU Dong-ming; CAO Jin-de; ZHANG Li-ming
2005-01-01
Utilizing the Liapunov functional method and combining the inequality of matrices technique to analyze the existence of a unique equilibrium point and the global asymptotic stability for delayed cellular neural networks (DCNNs), a new sufficient criterion ensuring the global stability of DCNNs is obtained. Our criteria provide some parameters to appropriately compensate for the tradeoff between the matrix definite condition on feedback matrix and delayed feedback matrix. The criteria can easily be used to design and verify globally stable networks. Furthermore, the condition presented here is independent of the delay parameter and is less restrictive than that given in the references.
Repeated training with augmentative vibrotactile feedback increases object manipulation performance.
Directory of Open Access Journals (Sweden)
Cara E Stepp
Full Text Available Most users of prosthetic hands must rely on visual feedback alone, which requires visual attention and cognitive resources. Providing haptic feedback of variables relevant to manipulation, such as contact force, may thus improve the usability of prosthetic hands for tasks of daily living. Vibrotactile stimulation was explored as a feedback modality in ten unimpaired participants across eight sessions in a two-week period. Participants used their right index finger to perform a virtual object manipulation task with both visual and augmentative vibrotactile feedback related to force. Through repeated training, participants were able to learn to use the vibrotactile feedback to significantly improve object manipulation. Removal of vibrotactile feedback in session 8 significantly reduced task performance. These results suggest that vibrotactile feedback paired with training may enhance the manipulation ability of prosthetic hand users without the need for more invasive strategies.
Brookhart, Susan M.
2012-01-01
Feedback is certainly about saying or writing helpful, learning-focused comments. But that is only part of it. What happens beforehand? What happens afterward? Feedback that is helpful and learning-focused fits into a context. Before a teacher gives feedback, students need to know the learning target so they have a purpose for using the feedback…
Developing Sustainable Feedback Practices
Carless, David; Salter, Diane; Yang, Min; Lam, Joy
2011-01-01
Feedback is central to the development of student learning, but within the constraints of modularized learning in higher education it is increasingly difficult to handle effectively. This article makes a case for sustainable feedback as a contribution to the reconceptualization of feedback processes. The data derive from the Student Assessment and…
Directory of Open Access Journals (Sweden)
Felicia Pei-Hsin Cheng
2013-12-01
Full Text Available Background: This study investigates the effect of altered auditory feedback (AAF in musician's dystonia (MD and discusses whether altered auditory feedback can be considered as a sensory trick in MD. Furthermore, the effect of AAF is compared with altered tactile feedback, which can serve as a sensory trick in several other forms of focal dystonia. Methods: The method is based on scale analysis (Jabusch et al. 2004. Experiment 1 employs synchronization paradigm: 12 MD patients and 25 healthy pianists had to repeatedly play C-major scales in synchrony with a metronome on a MIDI-piano with 3 auditory feedback conditions: 1. normal feedback; 2. no feedback; 3. constant delayed feedback. Experiment 2 employs synchronization-continuation paradigm: 12 MD patients and 12 healthy pianists had to repeatedly play C-major scales in two phases: first in synchrony with a metronome, secondly continue the established tempo without the metronome. There are 4 experimental conditions, among them 3 are the same altered auditory feedback as in Experiment 1 and 1 is related to altered tactile sensory input. The coefficient of variation of inter-onset intervals of the key depressions was calculated to evaluate fine motor control. Results: In both experiments, the healthy controls and the patients behaved very similarly. There is no difference in the regularity of playing between the two groups under any condition, and neither did AAF nor did altered tactile feedback have a beneficial effect on patients’ fine motor control. Conclusions: The results of the two experiments suggest that in the context of our experimental designs, AAF and altered tactile feedback play a minor role in motor coordination in patients with musicians' dystonia. We propose that altered auditory and tactile feedback do not serve as effective sensory tricks and may not temporarily reduce the symptoms of patients suffering from MD in this experimental context.
Backstepping tracking control for nonlinear time-delay systems
Institute of Scientific and Technical Information of China (English)
Chen Weisheng; Li Junmin
2006-01-01
Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the references signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.
Bowen, G
2002-01-01
In classical information theory the capacity of a noisy communication channel cannot be increased by the use of feedback. In quantum information theory the no-cloning theorem means that noiseless copying and feedback of quantum information cannot be achieved. In this paper, quantum feedback is defined as the unlimited use of a noiseless quantum channel from receiver to sender. Given such quantum feedback, it is shown to provide no increase in the entanglement-assisted capacities of a noisy quantum channel, in direct analogy to the classical case. It is also shown that in various cases of non-assisted capacities, feedback can increase the capacity of many quantum channels.
Francis, H H
1985-06-01
In many Western nations, including England and Wales, Sweden, and the US, there is a current trend towards delayed childbearing because of women's pursuit of a career, later marriage, a longer interval between marriage and the 1st birth, and the increasing number of divorcees having children in a 2nd marriage. Wives of men in social classes I and II in England and Wales are, on average, having their 1st child at 27.9 years, 1.6 years later than in 1973, and in social classes IV and V, 1.0 years later than in 1973, at a mean age of 23.7 years. Consequently, the total period fertility rate for British women aged 30-34 years, 35-39 years, and 40 and over increased by 4%, 2%, and 4%, respectively, between 1982-83, in contrast to reductions of 2% and 3%, respectively, in the 15-19 year and 20-24 year age groups, with the 25-29-year-olds remaining static. The average maternal mortality for all parties in England and Wales during 1976-78 was 106/million for adolescents, 70.4/million for 20-24 year-olds, and 1162/million for those aged 40 years and older. The specific obstetric and allied conditions which increase with age are the hypertensive diseases of pregnancy, hemorrhage, pulmonary embolism, abortion, cardiac disease, caesarean section, ruptured uterus, and amniotic fluid embolism. The Swedish Medical Birth Registry of all live births and perinatal deaths since 1973 has shown that the risk of late fetal death is significantly greater in women aged 30-39 years than in those of the same parity and gravidity aged 20-24 years. The risk of giving birth to low birth weight babies preterm and at term and of premature labor are similarly increased. The early neonatal death rate also was increased for primigravidas and nulliparas in the 30-39 year age group but not in parous women. This is, in part, due to the rise in incidence of fetal abnormalities with advancing maternal age because of chromosomal and nonchromosomal anomalies. These also appear to be the cause of the
Chaos control via TDFC in time-delayed systems: The harmonic balance approach
Energy Technology Data Exchange (ETDEWEB)
Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, PO Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Khaki Sedigh, Ali [Faculty of Electrical Engineering, K.N. Toosi University of Technology, PO Box 16315-1355, Tehran (Iran, Islamic Republic of)
2009-01-12
This Letter deals with the problem of designing time-delayed feedback controllers (TDFCs) to stabilize unstable equilibrium points and periodic orbits for a class of continuous time-delayed chaotic systems. Harmonic balance approach is used to select the appropriate controller parameters: delay time and feedback gain. The established theoretical results are illustrated via a case study of the well-known Logistic model.
DEFF Research Database (Denmark)
Lukassen, Niels Bech; Wahl, Christian; Sorensen, Elsebeth Korsgaard
2016-01-01
This study addresses the conceptual challenge of providing students with good quality feedback to enhance student learning in an online community of practice (COP). The aim of the study is to identify feedback mechanisms in a virtual learning environment (VLE) and to create a full formative...... feedback episode (FFE) through an online dialogue. The paper argues that dialogue is crucial for student learning and that feedback is not only something the teacher gives to the student. Viewing good quality feedback as social, situated, formative, emphasis is put on the establishment of dialogue. We...... refer to this type of feedback as, Situated Formative Feedback (SFF). As a basis for exploring, identifying and discussing relevant aspects of SFF the paper analyses qualitative data from a Moodle dialogue. Data are embedded in the qualitative analytic program Nvivo and are analysed with a system...
DEFF Research Database (Denmark)
Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire
2009-01-01
This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. We...... use two pay schemes, a piece rate and a tournament. We find that overall feedback does not improve performance. In contrast to the piece-rate pay scheme there is some evidence of positive peer effects in tournaments since the underdogs almost never quit the competition even when lagging significantly...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....
Institute of Scientific and Technical Information of China (English)
Zhengguang WU; Wuneng ZHOU
2008-01-01
This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality(LMI)approach.Based on a delay-dependent stability condition for the nominal system,a state feedback controller is designed,which guarantees the resultant closedloop system to be robustly stable.An explicit expression for the desired controller is also given by solving a set of matrix inequalities.Some numerical examples are provided to illustrate the less conservativeness of the proposed methods.
Delay-dependent stabilization of singular Markovian jump systems with state delay
Institute of Scientific and Technical Information of China (English)
Zhengguang WU; Hongye SU; Jian CHU
2009-01-01
This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays.A delay-dependent condition is established for the considered system to be regular,impulse free and stochastically stable.Based on the condition,a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular,impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs).Numerical examples show the effectiveness of the proposed methods.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Based on an appropriate Lyapunov function,this paper analyzes the design of a delay-dependent robust H∞ state feedback control,with a focus on a class of non linear uncertainty linear time-delay systems with input delay using linear matrix inequalities.Under the condition that the nonlinear uncertain functions are gain bounded,a sufficient condition dependent on the delays of the state and input is presented for the existence of H∞ controller.The proposed controller not only stabilized closed-loop uncertain systems but also guaranteed a prescribed H∞ norm bound of closed-loop transfer matrix from the disturbance to controlled output.By solving a linear matrix inequation,we can obtain the robust H∞ controller.An example is given to show the effectiveness of the proposed method.
Effects of Vibrotactile Stimulation During Virtual Sandboarding
DEFF Research Database (Denmark)
Lind, Stine; Thomsen, Lui; Egebjerg, Mie;
underneath the board. The study compared three conditions: no vibration, constant vibration and dynamic vibration. The results suggest that constant vibrotactile feedback led to significantly more compelling self-motion illusions and a higher degree of perceived realism, than the condition devoid......This poster details a within-subjects study (n=17) investigating the effects of vibrotactile stimulation on illusory self-motion, presence and perceived realism during an interactive sandboarding simulation. Vibrotactile feedback was delivered using a low frequency audio transducer mounted...... of vibrotactile feedback. No significant differences were found between the two conditions involving vibrotactile stimulation....
$H^\\infty$ control of systems with multiple I/O delays via decomposition to adobe problems
Meinsma, Gjerrit; Mirkin, Leonid
In this paper, the standard (four-block) $H^\\infty$ control problem for systems with multiple input-output delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators.
Analyzing delay causes in Egyptian construction projects
Directory of Open Access Journals (Sweden)
Mohamed M. Marzouk
2014-01-01
Full Text Available Construction delays are common problems in civil engineering projects in Egypt. These problems occur frequently during project life-time leading to disputes and litigation. Therefore, it is essential to study and analyze causes of construction delays. This research presents a list of construction delay causes retrieved from literature. The feedback of construction experts was obtained through interviews. Subsequently, a questionnaire survey was prepared. The questionnaire survey was distributed to thirty-three construction experts who represent owners, consultants, and contractor’s organizations. Frequency Index, Severity Index, and Importance Index are calculated and according to the highest values of them the top ten delay causes of construction projects in Egypt are determined. A case study is analyzed and compared to the most important delay causes in the research. Statistical analysis is carried out using analysis of variance ANOVA method to test delay causes, obtained from the survey. The test results reveal good correlation between groups while there is significant difference between them for some delay causes and finally roadmap for prioritizing delay causes groups is presented.
Analyzing delay causes in Egyptian construction projects.
Marzouk, Mohamed M; El-Rasas, Tarek I
2014-01-01
Construction delays are common problems in civil engineering projects in Egypt. These problems occur frequently during project life-time leading to disputes and litigation. Therefore, it is essential to study and analyze causes of construction delays. This research presents a list of construction delay causes retrieved from literature. The feedback of construction experts was obtained through interviews. Subsequently, a questionnaire survey was prepared. The questionnaire survey was distributed to thirty-three construction experts who represent owners, consultants, and contractor's organizations. Frequency Index, Severity Index, and Importance Index are calculated and according to the highest values of them the top ten delay causes of construction projects in Egypt are determined. A case study is analyzed and compared to the most important delay causes in the research. Statistical analysis is carried out using analysis of variance ANOVA method to test delay causes, obtained from the survey. The test results reveal good correlation between groups while there is significant difference between them for some delay causes and finally roadmap for prioritizing delay causes groups is presented.
Periodicity in Delta-modulated feedback control
Institute of Scientific and Technical Information of China (English)
Xiaohua XIA; Guanrong CHEN; Rudong GAI; Alan S. I. ZINOBER
2008-01-01
The Delta-modulated feedback control of a linear system introduces nonlinearity into the system through switchings between two input values. It has been found that Delta-modulation gives rise to periodic orbits. The existence of periodic points of all orders of Sigma-Delta modulation with "leaky" integration is completely characterized by some interesting groups of polynomials with "sign" coefficients. The results are naturally generalized to Sigma-Delta modulations with multiple delays, Delta-modulations in the "downlink", unbalanced Delta-modulations and systems with two-level quantized feedback. Further extensions relate to the existence of periodic points arising from Delta-modulated feedback control of a stable linear system in an arbitrary direction, for which some necessary and sufficient conditions are given.
Effects of time delays on bifurcation and chaos in a non-autonomous system with multiple time delays
Energy Technology Data Exchange (ETDEWEB)
Sun Zhongkui [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)]. E-mail: sunzk205@mail.nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)]. E-mail: weixu@nwpu.edu.cn; Yang Xiaoli [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); College of Mathematics and Information Science, Shaanxi Normal University, Xi' an 710062 (China); Fang Tong [Department of Applied Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)
2007-01-15
Time delays are often sources of complex behavior in dynamic systems. Yet its complexity needs to be further explored, particularly when multiple time delays are present. As a purpose to gain insight into such complexity under multiple time delays, we investigate the mechanism for the action of multiple time delays on a particular non-autonomous system in this paper. The original mathematical model under consideration is a Duffing oscillator with harmonic excitation. A delayed system is obtained by adding delayed feedbacks to the original system. Two time delays are involved in such system, one of which in the displacement feedback and the other in the velocity feedback. The time delays are taken as adjustable parameters to study their effects on the dynamics of the system. Firstly, the stability of the trivial equilibrium of the linearized system is discussed and the condition under which the equilibrium loses its stability is obtained. This leads to a critical stability boundary where Hopf bifurcation or double Hopf bifurcation may occur. Then, the chaotic behavior of such system is investigated in detail. Particular emphasis is laid on the effect of delay difference between two time delays on the chaotic properties. A Melnikov's analysis is employed to obtain the necessary condition for onset of chaos resulting from homoclinic bifurcation. And numerical analyses via the bifurcation diagram and the top Lyapunov exponent are carried out to show the actual time delay effect. Both the results obtained by the two analyses show that the delay difference between two time delays plays a very important role in inducing or suppressing chaos, so that it can be taken as a simple but efficient 'switch' to control the motion of a system: either from order to chaos or from chaos to order.
Institute of Scientific and Technical Information of China (English)
Huaicheng YAN; Xinhan HUANG; Min WANG
2006-01-01
This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.
Yu, Yue; Zhao, Ying; Sun, Xiao-Hu; Ge, Jie; Zhang, Bin; Wang, Xin; Cao, Xu-Chen
2015-10-27
The epithelial to mesenchymal transition (EMT) plays a pivotal role in breast cancer progression. We found that overexpression of miR-129-5p reversed EMT, whereas depletion of miR-129-5p induced EMT in breast cancer cells. We demonstrated that Twist1 is a direct target of miR-129-5p. Both Twist1 and Snail transcriptionally suppressed miR-129-5p expression. Levels of miR-129-5p were low in breast cancer tissues. miR-129-5p down-regulation correlated with advanced clinical stage and poor prognosis in patients with breast cancer. miR-129-5p expression negatively correlated with Twist1 and Snail expression. Thus, miR-129-5p down-regulation fosters EMT in breast cancer by increasing Twist1-Snail and activating a negative feedback loop.
Vibrotactile Feedback for Brain-Computer Interface Operation
Directory of Open Access Journals (Sweden)
Febo Cincotti
2007-01-01
Full Text Available To be correctly mastered, brain-computer interfaces (BCIs need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury, we compared vibrotactile and visual feedback, addressing: (I the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II the compatibility of this form of feedback in presence of a visual distracter; (III the performance in presence of a complex visual task on the same (visual or different (tactile sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users.
Energy Technology Data Exchange (ETDEWEB)
Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)
Neural cryptography with feedback
Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido
2004-04-01
Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.