WorldWideScience

Sample records for delayed feedback control

  1. Delayed feedback control in quantum transport.

    Science.gov (United States)

    Emary, Clive

    2013-09-28

    Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.

  2. Time-delayed feedback control of diffusion in random walkers

    Science.gov (United States)

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U.

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  3. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.; Younis, Mohammad I.; Shao, Shuai

    2013-01-01

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller

  4. Time-delayed feedback control of coherence resonance chimeras

    Science.gov (United States)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  5. Delayed feedback control of fractional-order chaotic systems

    International Nuclear Information System (INIS)

    Gjurchinovski, A; Urumov, V; Sandev, T

    2010-01-01

    We study the possibility to stabilize unstable steady states and unstable periodic orbits in chaotic fractional-order dynamical systems by the time-delayed feedback method. By performing a linear stability analysis, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parameterized by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. We demonstrate that the method can also stabilize unstable periodic orbits for a suitable choice of the feedback gain, providing that the time delay is chosen to coincide with the period of the target orbit. In addition, it is shown numerically that delayed feedback control with a sinusoidally modulated time delay significantly enlarges the stability region of steady states in comparison to the classical time-delayed feedback scheme with a constant delay.

  6. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2009-04-15

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  7. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Sedigh, Ali Khaki

    2009-01-01

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  8. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.

    2013-08-04

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.

  9. Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay

    International Nuclear Information System (INIS)

    Pyragas, V.; Pyragas, K.

    2011-01-01

    We propose a simple adaptive delayed feedback control algorithm for stabilization of unstable periodic orbits with unknown periods. The state dependent time delay is varied continuously towards the period of controlled orbit according to a gradient-descent method realized through three simple ordinary differential equations. We demonstrate the efficiency of the algorithm with the Roessler and Mackey-Glass chaotic systems. The stability of the controlled orbits is proven by computation of the Lyapunov exponents of linearized equations. -- Highlights: → A simple adaptive modification of the delayed feedback control algorithm is proposed. → It enables the control of unstable periodic orbits with unknown periods. → The delay time is varied continuously according to a gradient descend method. → The algorithm is embodied by three simple ordinary differential equations. → The validity of the algorithm is proven by computation of the Lyapunov exponents.

  10. Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays

    International Nuclear Information System (INIS)

    Wen Guilin; Wang Qingguo; Lin Chong; Han Xu; Li Guangyao

    2006-01-01

    Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays

  11. Quadratic theory and feedback controllers for linear time delay systems

    International Nuclear Information System (INIS)

    Lee, E.B.

    1976-01-01

    Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)

  12. On a new time-delayed feedback control of chaotic systems

    International Nuclear Information System (INIS)

    Tian Lixin; Xu Jun; Sun Mei; Li Xiuming

    2009-01-01

    In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.

  13. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  14. Dynamics and control of a financial system with time-delayed feedbacks

    International Nuclear Information System (INIS)

    Chen, W.-C.

    2008-01-01

    Complex behaviors in a financial system with time-delayed feedbacks are discussed in this study via numerical modeling. The system shows complex dynamics such as periodic, quasi-periodic, and chaotic behaviors. Both period doubling and inverse period doubling routes were found in this system. This paper also shows that the attractor merging crisis is a fundamental feature of nonlinear financial systems with time-delayed feedbacks. Control of the deterministic chaos in the financial system can be realized using Pyragas feedbacks

  15. Bifurcation Regulations Governed by Delay Self-Control Feedback in a Stochastic Birhythmic System

    Science.gov (United States)

    Ma, Zhidan; Ning, Lijuan

    2017-12-01

    We aim to investigate bifurcation behaviors in a stochastic birhythmic van der Pol (BVDP) system subjected to delay self-control feedback. First, the harmonic approximation is adopted to drive the delay self-control feedback to state variables without delay. Then, Fokker-Planck-Kolmogorov (FPK) equation and stationary probability density function (SPDF) for amplitude are obtained by applying stochastic averaging method. Finally, dynamical scenarios of the change of delay self-control feedback as well as noise that markedly influence bifurcation performance are observed. It is found that: the big feedback strength and delay will suppress the large amplitude limit cycle (LC) while the relatively big noise strength facilitates the large amplitude LC, which imply the proposed regulation strategies are feasible. Interestingly enough, the inner LC is never destroyed due to noise. Furthermore, the validity of analytical results was verified by Monte Carlo simulation of the dynamics.

  16. Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method

    International Nuclear Information System (INIS)

    Souza de Paula, Aline; Savi, Marcelo Amorim

    2009-01-01

    Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.

  17. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Xu Daolin; Zhou Jiaxi; Li Yingli

    2012-01-01

    Highlights: ► A chaotification method based on nonlinear time-delay feedback control is present. ► An analytical function of nonlinear time-delay feedback control is derived. ► A large range of parametric domain for chaotification is obtained. ► The approach allows using small control gain. ► Design of chaotification becomes a standard process without uncertainty. - Abstract: This paper presents a chaotification method based on nonlinear time-delay feedback control for a two-dimensional vibration isolation floating raft system (VIFRS). An analytical function of nonlinear time-delay feedback control is derived. This approach can theoretically provide a systematic design of chaotification for nonlinear VIFRS and completely avoid blind and inefficient numerical search on the basis of trials and errors. Numerical simulations show that with a proper setting of control parameters the method holds the favorable aspects including the capability of chaotifying across a large range of parametric domain, the advantage of using small control and the flexibility of designing control feedback forms. The effects on chaotification performance are discussed in association with the configuration of the control parameters.

  18. Eliminating oscillations in the Internet by time-delayed feedback control

    International Nuclear Information System (INIS)

    Liu Chenglin; Tian Yuping

    2008-01-01

    In this paper, a time-delayed feedback control method is applied to congestion control in order to eliminate oscillations in the Internet. The stability of the proposed control method is demonstrated based on frequency-domain analysis. The effectiveness of the method is illustrated using simulation

  19. Eliminating oscillations in the Internet by time-delayed feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Automatic Control, Southeast University, Nanjing 210096 (China); Tian Yuping [Department of Automatic Control, Southeast University, Nanjing 210096 (China)], E-mail: yptian@seu.edu.cn

    2008-03-15

    In this paper, a time-delayed feedback control method is applied to congestion control in order to eliminate oscillations in the Internet. The stability of the proposed control method is demonstrated based on frequency-domain analysis. The effectiveness of the method is illustrated using simulation.

  20. Nonlinear free vibration control of beams using acceleration delayed-feedback control

    International Nuclear Information System (INIS)

    Alhazza, Khaled A; Alajmi, Mohammed; Masoud, Ziyad N

    2008-01-01

    A single-mode delayed-feedback control strategy is developed to reduce the free vibrations of a flexible beam using a piezoelectric actuator. A nonlinear variational model of the beam based on the von Kàrmàn nonlinear type deformations is considered. Using Galerkin's method, the resulting governing partial differential equations of motion are reduced to a system of nonlinear ordinary differential equations. A linear model using the first mode is derived and is used to characterize the damping produced by the controller as a function of the controller's gain and delay. Three-dimensional figures showing the damping magnitude as a function of the controller gain and delay are presented. The characteristic damping of the controller as predicted by the linear model is compared to that calculated using direct long-time integration of a three-mode nonlinear model. Optimal values of the controller gain and delay using both methods are obtained, simulated and compared. To validate the single-mode approximation, numerical simulations are performed using a three-mode full nonlinear model. Results of the simulations demonstrate an excellent controller performance in mitigating the first-mode vibration

  1. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  2. Controlling chaos in RCL-shunted Josephson junction by delayed linear feedback

    International Nuclear Information System (INIS)

    Feng Yuling; Shen Ke

    2008-01-01

    The resistively-capacitively-inductively-shunted (RCL-shunted) Josephson junction (RCLSJJ) shows chaotic behaviour under some parameter conditions. Here a scheme for controlling chaos in the RCLSJJ is presented based on the linear feedback theory. Numerical simulations show that this scheme can be effectively used to control chaotic states in this junction into stable periodic states. Moreover, the different stable period states with different period numbers can be obtained by appropriately adjusting the feedback intensity and delay time without any pre-knowledge of this system required

  3. A feedback control model for network flow with multiple pure time delays

    Science.gov (United States)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  4. Spectrum optimization-based chaotification using time-delay feedback control

    International Nuclear Information System (INIS)

    Zhou Jiaxi; Xu Daolin; Zhang Jing; Liu Chunrong

    2012-01-01

    Highlights: ► A time-delay feedback controller is designed for chaotification. ► A spectrum optimization method is proposed to determine chaotification parameters. ► Numerical examples verify the spectrum optimization- based chaotification method. ► Engineering application in line spectrum reconfiguration is demonstrated. - Abstract: In this paper, a spectrum optimization method is developed for chaotification in conjunction with an application in line spectrum reconfiguration. A key performance index (the objective function) based on Fourier spectrum is specially devised with the idea of suppressing spectrum spikes and broadening frequency band. Minimization of the index empowered by a genetic algorithm enables to locate favorable parameters of the time-delay feedback controller, by which a line spectrum of harmonic vibration can be transformed into a broad-band continuous spectrum of chaotic motion. Numerical simulations are carried out to verify the feasibility of the method and to demonstrate its effectiveness of chaotifying a 2-DOFs linear mechanical system.

  5. Bifurcation analysis in delayed feedback Jerk systems and application of chaotic control

    International Nuclear Information System (INIS)

    Zheng Baodong; Zheng Huifeng

    2009-01-01

    Jerk systems with delayed feedback are considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associated characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, the stability and direction of the Hopf bifurcation are determined by applying the normal form method and center manifold theorem. Finally, the application to chaotic control is investigated, and some numerical simulations are carried out to illustrate the obtained results.

  6. Deterministic and stochastic control of chimera states in delayed feedback oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Maistrenko, Y. [Institute of Mathematics and Center for Medical and Biotechnical Research, NAS of Ukraine, Tereschenkivska Str. 3, 01601 Kyiv (Ukraine)

    2016-06-08

    Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.

  7. Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control

    International Nuclear Information System (INIS)

    Cui Baotong; Lou Xuyang

    2009-01-01

    In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme

  8. A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference

    Science.gov (United States)

    Wang, Yunong; Cheng, Rongjun; Ge, Hongxia

    2017-08-01

    In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.

  9. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    Science.gov (United States)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  10. Bifurcation Control of an Electrostatically-Actuated MEMS Actuator with Time-Delay Feedback

    Directory of Open Access Journals (Sweden)

    Lei Li

    2016-10-01

    Full Text Available The parametric excitation system consisting of a flexible beam and shuttle mass widely exists in microelectromechanical systems (MEMS, which can exhibit rich nonlinear dynamic behaviors. This article aims to theoretically investigate the nonlinear jumping phenomena and bifurcation conditions of a class of electrostatically-driven MEMS actuators with a time-delay feedback controller. Considering the comb structure consisting of a flexible beam and shuttle mass, the partial differential governing equation is obtained with both the linear and cubic nonlinear parametric excitation. Then, the method of multiple scales is introduced to obtain a slow flow that is analyzed for stability and bifurcation. Results show that time-delay feedback can improve resonance frequency and stability of the system. What is more, through a detailed mathematical analysis, the discriminant of Hopf bifurcation is theoretically derived, and appropriate time-delay feedback force can make the branch from the Hopf bifurcation point stable under any driving voltage value. Meanwhile, through global bifurcation analysis and saddle node bifurcation analysis, theoretical expressions about the system parameter space and maximum amplitude of monostable vibration are deduced. It is found that the disappearance of the global bifurcation point means the emergence of monostable vibration. Finally, detailed numerical results confirm the analytical prediction.

  11. The dynamics of second-order equations with delayed feedback and a large coefficient of delayed control

    Science.gov (United States)

    Kashchenko, Sergey A.

    2016-12-01

    The dynamics of second-order equations with nonlinear delayed feedback and a large coefficient of a delayed equation is investigated using asymptotic methods. Based on special methods of quasi-normal forms, a new construction is elaborated for obtaining the main terms of asymptotic expansions of asymptotic residual solutions. It is shown that the dynamical properties of the above equations are determined mostly by the behavior of the solutions of some special families of parabolic boundary value problems. A comparative analysis of the dynamics of equations with the delayed feedback of three types is carried out.

  12. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control

    Science.gov (United States)

    Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming

    2015-05-01

    With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.

  13. Act-and-wait time-delayed feedback control of nonautonomous systems

    Science.gov (United States)

    Pyragas, Viktoras; Pyragas, Kestutis

    2016-07-01

    Act-and-wait modification of a time-delayed feedback control (TDFC) algorithm is proposed to stabilize unstable periodic orbits in nonautonomous dynamical systems. Due to periodical switching on and off the control perturbation, an infinite-dimensional function space of the TDFC system is reduced to the finite-dimensional state space. As a result the number of Floquet exponents defining the stability of the controlled orbit remains the same as for the control-free system. The values of these exponents can be effectively manipulated by the variation of control parameters. We demonstrate the advantages of the modification for the chaotic nonautonomous Duffing oscillator with diagonal and nondiagonal control matrices. In both cases very deep minima of the spectral abscissa of Floquet exponents have been attained. The advantage of the modification is particularly remarkable for the nondiagonal coupling; in this case the conventional TDFC fails, whereas the modified version works.

  14. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  15. Using periodic modulation to control coexisting attractors induced by delayed feedback

    International Nuclear Information System (INIS)

    Martinez-Zerega, B.E.; Pisarchik, A.N.; Tsimring, L.S.

    2003-01-01

    A delay in feedback can stabilize simultaneously several unstable periodic orbits embedded in a chaotic attractor. We show that by modulating the feedback variable it is possible to lock one of these states and eliminate other coexisting periodic attractors. The method is demonstrated with both a logistic map and a CO 2 laser model

  16. Delayed Auditory Feedback and Movement

    Science.gov (United States)

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  17. A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal

    Science.gov (United States)

    Qin, Shunda; Ge, Hongxia; Cheng, Rongjun

    2018-02-01

    In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.

  18. Self-excited vibration control for axially fast excited beam by a time delay state feedback

    International Nuclear Information System (INIS)

    Hamdi, Mustapha; Belhaq, Mohamed

    2009-01-01

    This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.

  19. Dynamics for a discrete competition and cooperation model of two enterprises with multiple delays and feedback controls

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2017-03-01

    Full Text Available This paper is concerned with a competition and cooperation model of two enterprises with multiple delays and feedback controls. With the aid of the difference inequality theory, we have obtained some sufficient conditions which guarantee the permanence of the model. Under a suitable condition, we prove that the system has global stable periodic solution. The paper ends with brief conclusions.

  20. Anti-Swing Control of Gantry and Tower Cranes Using Fuzzy and Time-Delayed Feedback with Friction Compensation

    Directory of Open Access Journals (Sweden)

    H.M. Omar

    2005-01-01

    Full Text Available We designed a feedback controller to automate crane operations by controlling the load position and its swing. First, a PD tracking controller is designed to follow a prescribed trajectory. Then, another controller is added to the control loop to damp the load swing. The anti-swing controller is designed based on two techniques: a time-delayed feedback of the load swing angle and an anti-swing fuzzy logic controller (FLC. The rules of the FLC are generated by mapping the performance of the time-delayed feedback controller. The same mapping method used for generating the rules can be applied to mimic the performance of an expert operator. The control algorithms were designed for gantry cranes and then extended to tower cranes by considering the coupling between the translational and rotational motions. Experimental results show that the controller is effective in reducing load oscillations and transferring the load in a reasonable time. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction and then applied a control action to cancel it. The friction force was estimated by assuming a mathematical model and then estimating the model coefficients using an off-line identification technique, the method of least squares (LS.

  1. The influence of parametric and external noise in act-and-wait control with delayed feedback.

    Science.gov (United States)

    Wang, Jiaxing; Kuske, Rachel

    2017-11-01

    We apply several novel semi-analytic approaches for characterizing and calculating the effects of noise in a system with act-and-wait control. For concrete illustration, we apply these to a canonical balance model for an inverted pendulum to study the combined effect of delay and noise within the act-and-wait setting. While the act-and-wait control facilitates strong stabilization through deadbeat control, a comparison of different models with continuous vs. discrete updating of the control strategy in the active period illustrates how delays combined with the imprecise application of the control can seriously degrade the performance. We give several novel analyses of a generalized act-and-wait control strategy, allowing flexibility in the updating of the control strategy, in order to understand the sensitivities to delays and random fluctuations. In both the deterministic and stochastic settings, we give analytical and semi-analytical results that characterize and quantify the dynamics of the system. These results include the size and shape of stability regions, densities for the critical eigenvalues that capture the rate of reaching the desired stable equilibrium, and amplification factors for sustained fluctuations in the context of external noise. They also provide the dependence of these quantities on the length of the delay and the active period. In particular, we see that the combined influence of delay, parametric error, or external noise and on-off control can qualitatively change the dynamics, thus reducing the robustness of the control strategy. We also capture the dependence on how frequently the control is updated, allowing an interpolation between continuous and frequent updating. In addition to providing insights for these specific models, the methods we propose are generalizable to other settings with noise, delay, and on-off control, where analytical techniques are otherwise severely scarce.

  2. Frequency adaptation in controlled stochastic resonance utilizing delayed feedback method: two-pole approximation for response function.

    Science.gov (United States)

    Tutu, Hiroki

    2011-06-01

    Stochastic resonance (SR) enhanced by time-delayed feedback control is studied. The system in the absence of control is described by a Langevin equation for a bistable system, and possesses a usual SR response. The control with the feedback loop, the delay time of which equals to one-half of the period (2π/Ω) of the input signal, gives rise to a noise-induced oscillatory switching cycle between two states in the output time series, while its average frequency is just smaller than Ω in a small noise regime. As the noise intensity D approaches an appropriate level, the noise constructively works to adapt the frequency of the switching cycle to Ω, and this changes the dynamics into a state wherein the phase of the output signal is entrained to that of the input signal from its phase slipped state. The behavior is characterized by power loss of the external signal or response function. This paper deals with the response function based on a dichotomic model. A method of delay-coordinate series expansion, which reduces a non-Markovian transition probability flux to a series of memory fluxes on a discrete delay-coordinate system, is proposed. Its primitive implementation suggests that the method can be a potential tool for a systematic analysis of SR phenomenon with delayed feedback loop. We show that a D-dependent behavior of poles of a finite Laplace transform of the response function qualitatively characterizes the structure of the power loss, and we also show analytical results for the correlation function and the power spectral density.

  3. The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays

    Directory of Open Access Journals (Sweden)

    Cong Zhai

    2016-01-01

    Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.

  4. Global output feedback control for a class of high-order feedforward nonlinear systems with input delay.

    Science.gov (United States)

    Zha, Wenting; Zhai, Junyong; Fei, Shumin

    2013-07-01

    This paper investigates the problem of output feedback stabilization for a class of high-order feedforward nonlinear systems with time-varying input delay. First, a scaling gain is introduced into the system under a set of coordinate transformations. Then, the authors construct an observer and controller to make the nominal system globally asymptotically stable. Based on homogeneous domination approach and Lyapunov-Krasovskii functional, it is shown that the closed-loop system can be rendered globally asymptotically stable by the scaling gain. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback

    International Nuclear Information System (INIS)

    Goharrizi, Amin Yazdanpanah; Khaki-Sedigh, Ali; Sepehri, Nariman

    2009-01-01

    A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.

  6. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    OpenAIRE

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems usingintentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integra...

  7. Decentralized H-infinity control of complex systems with delayed feedback

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rehák, Branislav; Papík, Martin

    2016-01-01

    Roč. 67, č. 1 (2016), s. 127-131 ISSN 0005-1098 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * H-infinity control * large-scale systems * Fault-tolerant systems Subject RIV: BC - Control Systems Theory Impact factor: 5.451, year: 2016

  8. Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes.

    Science.gov (United States)

    Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E

    2017-08-01

    This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.

  9. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    Science.gov (United States)

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  10. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...

  11. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  12. Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.

  13. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  14. Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.

  15. Predictor feedback for delay systems implementations and approximations

    CERN Document Server

    Karafyllis, Iasson

    2017-01-01

    This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems’ nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book’s core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (b...

  16. Generating Li–Yorke chaos in a stable continuous-time T–S fuzzy model via time-delay feedback control

    International Nuclear Information System (INIS)

    Qiu-Ye, Sun; Hua-Guang, Zhang; Yan, Zhao

    2010-01-01

    This paper investigates the chaotification problem of a stable continuous-time T–S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T–S fuzzy system with time-delay and a discrete-time T–S fuzzy system is established. Based on the discrete-time T–S fuzzy system, it proves that the chaos in the discrete-time T–S fuzzy system satisfies the Li–Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example. (general)

  17. Heteroclinic Bifurcation Behaviors of a Duffing Oscillator with Delayed Feedback

    Directory of Open Access Journals (Sweden)

    Shao-Fang Wen

    2018-01-01

    Full Text Available The heteroclinic bifurcation and chaos of a Duffing oscillator with forcing excitation under both delayed displacement feedback and delayed velocity feedback are studied by Melnikov method. The Melnikov function is analytically established to detect the necessary conditions for generating chaos. Through the analysis of the analytical necessary conditions, we find that the influences of the delayed displacement feedback and delayed velocity feedback are separable. Then the influences of the displacement and velocity feedback parameters on heteroclinic bifurcation and threshold value of chaotic motion are investigated individually. In order to verify the correctness of the analytical conditions, the Duffing oscillator is also investigated by numerical iterative method. The bifurcation curves and the largest Lyapunov exponents are provided and compared. From the analysis of the numerical simulation results, it could be found that two types of period-doubling bifurcations occur in the Duffing oscillator, so that there are two paths leading to the chaos in this oscillator. The typical dynamical responses, including time histories, phase portraits, and Poincare maps, are all carried out to verify the conclusions. The results reveal some new phenomena, which is useful to design or control this kind of system.

  18. Dynamical response of Mathieu–Duffing oscillator with fractional-order delayed feedback

    International Nuclear Information System (INIS)

    Wen, Shao-Fang; Shen, Yong-Jun; Yang, Shao-Pu; Wang, Jun

    2017-01-01

    Highlights: • The analytical solution for Mathieu–Duffing oscillator with fractional-order delayed feedback is obtained. • The fractional-order delayed feedback has both the functions of delayed velocity feedback and delayed displacement feedback. • The special effects of time delay on nonzero periodic solutions are analyzed in detail. • The effects of the fractional-order parameters on system response are characterized. - Abstract: In this paper, the dynamical response of Mathieu–Duffing oscillator under fractional-order delayed feedback is investigated. At first, the approximate analytical solution and the amplitude-frequency equation are obtained based on the averaging method. The equivalent stiffness coefficient and equivalent damping coefficient are defined by the feedback coefficient, fractional order and time delay et al. The effects of feedback coefficient, fractional order and time delay on these two equivalent parameters are analyzed. It is found that the fractional-order delayed feedback has not only the function of delayed velocity feedback, but also the function of delayed displacement feedback. Then, the comparison of the amplitude-frequency curves obtained by the analytical and numerical solutions verifies the correctness and satisfactory precision of the approximate analytical solution. The effects of the parameters in the fractional-order delayed feedback on the complex dynamical behaviors of Mathieu–Duffing oscillator are studied. It could be found that fractional-order delayed feedback has important influences on the dynamical behavior of Mathieu–Duffing oscillator, and the results are very helpful to design, analyze or control in vibration engineering.

  19. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    International Nuclear Information System (INIS)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-01-01

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.

  20. Representing delayed force feedback as a combination of current and delayed states.

    Science.gov (United States)

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the

  1. Rubber hand illusion under delayed visual feedback.

    Directory of Open Access Journals (Sweden)

    Sotaro Shimada

    Full Text Available BACKGROUND: Rubber hand illusion (RHI is a subject's illusion of the self-ownership of a rubber hand that was touched synchronously with their own hand. Although previous studies have confirmed that this illusion disappears when the rubber hand was touched asynchronously with the subject's hand, the minimum temporal discrepancy of these two events for attenuation of RHI has not been examined. METHODOLOGY/PRINCIPAL FINDINGS: In this study, various temporal discrepancies between visual and tactile stimulations were introduced by using a visual feedback delay experimental setup, and RHI effects in each temporal discrepancy condition were systematically tested. The results showed that subjects felt significantly greater RHI effects with temporal discrepancies of less than 300 ms compared with longer temporal discrepancies. The RHI effects on reaching performance (proprioceptive drift showed similar conditional differences. CONCLUSIONS/SIGNIFICANCE: Our results first demonstrated that a temporal discrepancy of less than 300 ms between visual stimulation of the rubber hand and tactile stimulation to the subject's own hand is preferable to induce strong sensation of RHI. We suggest that the time window of less than 300 ms is critical for multi-sensory integration processes constituting the self-body image.

  2. Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback

    Directory of Open Access Journals (Sweden)

    A.F. EL-Bassiouny

    2006-01-01

    Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.

  3. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.

    Science.gov (United States)

    Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André

    2010-01-28

    We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society

  4. Robust control of time-delay chaotic systems

    International Nuclear Information System (INIS)

    Hua Changchun; Guan Xinping

    2003-01-01

    Robust control problem of nonlinear time-delay chaotic systems is investigated. For such uncertain systems, we propose adaptive feedback controller and novel nonlinear feedback controller. They are both independent of the time delay and can render the corresponding closed-loop systems globally uniformly ultimately bounded stable. The simulations on controlling logistic system are made and the results show the controllers are feasible

  5. Eye movements in interception with delayed visual feedback.

    Science.gov (United States)

    Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli

    2018-04-19

    The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.

  6. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    Science.gov (United States)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  7. FEEDBACK AND LOGISTICS CONTROLLING

    Directory of Open Access Journals (Sweden)

    Mehesne Berek Szilvia

    2015-07-01

    Full Text Available The following things led to that the feedback, the supervision and improvement of the processes have become more pronounced: continuous rise in the importance of logistics; increase in complexity of its content; its activity becoming more complex. These activities are necessary for the optimum information supply. The intensification of market competition requires the corporations to possess exact and up-to-date information about their activities. Complexity of the logistics system presumes a parallel application of an effective feedback, supervision and management system simultaneously with the given logistics system. The indispensability of logistics is also proved by the fact that it can be found sporadically (in the form of logistics departments or in a complex way in case of each organization. The logistical approach means a huge support in the management since it contains the complexity, the handling as a unit in order to ensure a harmony of the different corporate departments and part activities. In addition to the professional application of a logistics system, there is an opportunity to coordinate the relations inside an organization as well as between the organizations and to handle them as a unit. The sine qua non of the success of logistical processes is a harmony of the devices applied. The controlling system is a device for feeding back the processes of a corporate system. By means of the checkpoints intercalated into the processes, the logistics controlling provides information for the leadership which contributes even more to the complex approach of logistics system. By dint of the logistics controlling, the monitoring and coordination of every logistical part activity become possible with the help of information supply ensured by the logistics controlling. The logistics controlling reviews, assesses and coordinates; these activities have an effect on the cost and income management. Its reason is to be searched in the built

  8. Chaotification of Quasi-zero Stiffness System Via Direct Time-delay Feedback

    Directory of Open Access Journals (Sweden)

    Shuyong Liu

    2013-03-01

    Full Text Available This paper presents a chaotification method based on direct time-delay feedback control for a quasi-zero-stiffness isolation system. An analytical function of time-delay feedback control is derived based on differential-geometry control theory. Furthermore, the feasibility and effectiveness of this method was verified by numerical simulations. Numerical simulations show that this method holds the favorable aspects including the advantage of using tiny control gain, the capability of chaotifying across a large range of parametric domain and the high feasibility of the control implement.

  9. Dynamics of nonlinear feedback control

    OpenAIRE

    Snippe, H.P.; Hateren, J.H. van

    2007-01-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...

  10. An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules.

    Science.gov (United States)

    Carter, Michael J; Ste-Marie, Diane M

    2017-03-01

    The learning advantages of self-controlled knowledge-of-results (KR) schedules compared to yoked schedules have been linked to the optimization of the informational value of the KR received for the enhancement of one's error-detection capabilities. This suggests that information-processing activities that occur after motor execution, but prior to receiving KR (i.e., the KR-delay interval) may underlie self-controlled KR learning advantages. The present experiment investigated whether self-controlled KR learning benefits would be eliminated if an interpolated activity was performed during the KR-delay interval. Participants practiced a waveform matching task that required two rapid elbow extension-flexion reversals in one of four groups using a factorial combination of choice (self-controlled, yoked) and KR-delay interval (empty, interpolated). The waveform had specific spatial and temporal constraints, and an overall movement time goal. The results indicated that the self-controlled + empty group had superior retention and transfer scores compared to all other groups. Moreover, the self-controlled + interpolated and yoked + interpolated groups did not differ significantly in retention and transfer; thus, the interpolated activity eliminated the typically found learning benefits of self-controlled KR. No significant differences were found between the two yoked groups. We suggest the interpolated activity interfered with information-processing activities specific to self-controlled KR conditions that occur during the KR-delay interval and that these activities are vital for reaping the associated learning benefits. These findings add to the growing evidence that challenge the motivational account of self-controlled KR learning advantages and instead highlights informational factors associated with the KR-delay interval as an important variable for motor learning under self-controlled KR schedules.

  11. Dynamics of nonlinear feedback control

    NARCIS (Netherlands)

    Snippe, H.P.; Hateren, J.H. van

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain

  12. Control and diagnostic uses of feedback

    International Nuclear Information System (INIS)

    Sen, A. K.

    2000-01-01

    Recent results on multimode feedback control of magnetohydrodynamic (MHD) modes and a variety of diagnostic uses of feedback are summarized. First, is the report on reduction and scaling of transport under feedback. By controlling the fluctuation amplitudes and consequently the transport via feedback, it is found that the scaling of the diffusion coefficient is linear with root-mean-square rms fluctuation level. The scaling appears not to agree with any generic theory. A variety of other diagnostic uses of feedback have been developed. The primary goal is an experimental methodology for the determination of dynamic models of plasma turbulence, both for better transport understanding and more credible feedback controller designs. A specific motivation is to search for a low-order dynamic model, suitable for the convenient study of both transport and feedback. First, the time series analysis method is used for the determination of chaotic attractor dimension of plasma fluctuations. For ExB rotational flute modes it is found to be close to three, indicating that a low-order dynamic model may be adequate for transport prediction and feedback controller design. Second, a new method for direct experimental determination of nonlinear dynamical models of plasma turbulence using feedback has been developed. Specifically, the process begins with a standard three-wave coupling model and introduces a variable feedback gain. The power spectrum, delayed power spectrum, and bispectrum of fluctuations are then experimentally obtained. By varying the feedback gain continuously, an arbitrary number of numerical equations for a fixed number of unknowns can be generated. Their numerical solution yields the linear dispersion, as well as nonlinear coupling coefficients. This method has been successfully applied for ExB rotationally driven flute modes. (c) 2000 American Institute of Physics

  13. Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Andrey Dovzhenok

    Full Text Available Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS. This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.

  14. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.

    Science.gov (United States)

    Botzer, Lior; Karniel, Amir

    2013-07-01

    It has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment. In the first experiment, when visual feedback was unexpectedly delayed, the hand movement overshot the end-point target, indicating a vision-based feedback control. Over the ensuing trials, movements gradually adapted and became accurate. When the delay was removed unexpectedly, movements systematically undershot the target, demonstrating that adaptation occurred within the vision-based feedback control mechanism. In a second experiment designed to broaden our understanding of the underlying mechanisms, we revealed similar after-effects for rhythmic reversal (out-and-back) movements. We present a computational model accounting for these results based on two adapted forward models, each tuned for a specific modality delay (proprioception or vision), and a third feedforward controller. The computational model, along with the experimental results, refutes delay representation in a pure forward vision-based predictor and suggests that adaptation occurred in the forward vision-based predictor, and concurrently in the state-based feedforward controller. Understanding how the brain compensates for conductance and processing delays is essential for understanding certain impairments concerning these neural delays as well as for the development of brain-machine interfaces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Delayed feedback on the dynamical model of a financial system

    International Nuclear Information System (INIS)

    Son, Woo-Sik; Park, Young-Jai

    2011-01-01

    Research highlights: → Effect of delayed feedbacks on the financial model. → Proof on the occurrence of Hopf bifurcation by local stability analysis. → Numerical bifurcation analysis on delay differential equations. → Observation of supercritical and subcritical Hopf, fold limit cycle, Neimark-Sacker, double Hopf and generalized Hopf bifurcations. - Abstract: We investigate the effect of delayed feedbacks on the financial model, which describes the time variation of the interest rate, the investment demand, and the price index, for establishing the fiscal policy. By local stability analysis, we theoretically prove the occurrences of Hopf bifurcation. Through numerical bifurcation analysis, we obtain the supercritical and subcritical Hopf bifurcation curves which support the theoretical predictions. Moreover, the fold limit cycle and Neimark-Sacker bifurcation curves are detected. We also confirm that the double Hopf and generalized Hopf codimension-2 bifurcation points exist.

  16. UAVs and Control Delays

    National Research Council Canada - National Science Library

    de Vries, S. C

    2005-01-01

    .... Delays of about 250-300 ms often lead to unacceptable airplane handling qualities. Techniques such as filtering and predictive displays may extend the range of acceptable delays up to about 400 ms...

  17. Direct output feedback control of discrete-time systems

    International Nuclear Information System (INIS)

    Lin, C.C.; Chung, L.L.; Lu, K.H.

    1993-01-01

    An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)

  18. Autonomous learning by simple dynamical systems with delayed feedback.

    Science.gov (United States)

    Kaluza, Pablo; Mikhailov, Alexander S

    2014-09-01

    A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.

  19. Stability and oscillation of two coupled Duffing equations with time delay state feedback

    International Nuclear Information System (INIS)

    El-Bassiouny, A F

    2006-01-01

    This paper presents an analytical study of the simultaneous principal parametric resonances of two coupled Duffing equations with time delay state feedback. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. The method of multiple scales is used to determine a set of ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the frequency-response curves. We analyse the effect of time delay and the other different parameters on these oscillations. The stability of the fixed points is examined by using the variational method. Numerical solutions are carried out and graphical representations of the results are presented and discussed. Increasing in the time delay τ given decreasing and increasing in the regions of definition and stability respectively and the first mode has decreased magnitudes. The multivalued solutions disappear when decreasing the coefficients of cubic nonlinearities of the second mode α 3 and the detuning parameter σ 2 respectively. Both modes shift to the left for increasing linear feedback gain v 1 and the coefficient of parametric excitation f 1 respectively

  20. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    Science.gov (United States)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  1. Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2018-04-01

    The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.

  2. Linear feedback controls the essentials

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtapos

  3. Dynamics of nonlinear feedback control.

    Science.gov (United States)

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  4. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  5. Feedback control of vertical instability in TNS

    International Nuclear Information System (INIS)

    Frantz, E.R.

    1978-05-01

    Due to the unfavorable curvature of the vertical vacuum magnetic field, elongated plasmas are vertically unstable when the elongation, epsilon, becomes too large. The TNS (The Next Step) tokamak, as evolved in the Westinghouse-ORNL studies has an inside-D configuration (epsilon = 1.6, A = 5/1.25 = 4) characterized by an average decay index n approximately equal -0.75 at the plasma flux surface near the magnetic axis and is vertically unstable with a growth rate γ 0 approximately 10 5 sec -1 . Eddy currents produced in the vacuum vessel wall will slow this instability to growth rates γ 0 approximately 10 2 sec -1 provided there are no transverse insulating gaps in the vessel wall. A matrix equation has been developed for calculating the eddy currents induced in the EF coils and their stabilizing effect. Control theory for feedback systems with and without delay time is presented and possible plasma position detectors are discussed. For a plasma current of 6.1 MA, the controller peak power requirements using separate controller circuits are approximately 1 MW depending upon EF coil configurations and time delay. This feedback system is designed to stabilize a maximum plasma excursion of 10 cm from the midplane with delay times up to 2 sec

  6. LHC beam stability and feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Ralph

    2007-07-20

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  7. LHC beam stability and feedback control

    International Nuclear Information System (INIS)

    Steinhagen, Ralph

    2007-01-01

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a proportional

  8. Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Wei-Wei Qin

    2014-01-01

    Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.

  9. Duration reproduction with sensory feedback delay: Differential involvement of perception and action time

    Directory of Open Access Journals (Sweden)

    Stephanie eGanzenmüller

    2012-10-01

    Full Text Available Previous research has shown that voluntary action can attract subsequent, delayed feedback events towards the action, and adaptation to the sensorimotor delay can even reverse motor-sensory temporal-order judgments. However, whether and how sensorimotor delay affects duration reproduction is still unclear. To investigate this, we injected an onset- or offset-delay to the sensory feedback signal from a duration reproduction task. We compared duration reproductions within (visual, auditory modality and across audiovisual modalities with feedback signal onset- and offset-delay manipulations. We found that the reproduced duration was lengthened in both visual and auditory feedback signal onset-delay conditions. The lengthening effect was evident immediately, on the first trial with the onset delay. However, when the onset of the feedback signal was prior to the action, the lengthening effect was diminished. In contrast, a shortening effect was found with feedback signal offset-delay, though the effect was weaker and manifested only in the auditory offset-delay condition. These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction. Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration was independent of the delay manipulation.

  10. Self-Recognition in Young Children Using Delayed versus Live Feedback: Evidence of a Developmental Asynchrony.

    Science.gov (United States)

    Povinelli, Daniel J.; And Others

    1996-01-01

    Investigated the ability of young children to recognize themselves in delayed videotapes and recent photographs. Results suggested a significant developmental delay in young children's success on mark tests of self-recognition using delayed feedback as compared to live feedback, which may have important implications for characterizing the…

  11. Delayed Stochastic Linear-Quadratic Control Problem and Related Applications

    Directory of Open Access Journals (Sweden)

    Li Chen

    2012-01-01

    stochastic differential equations (FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the optimal feedback regulator for the time delay system via a new type of Riccati equations and also apply to a population optimal control problem.

  12. PID control with robust disturbance feedback control

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle

    2015-01-01

    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....

  13. Effects of Delayed Auditory Feedback in Stuttering Patterns

    Directory of Open Access Journals (Sweden)

    Janeth Hernández Jaramillo

    2014-05-01

    Full Text Available The present study corresponds to a single subject design, analyzes the patterns of stuttering in the speech corpus in various oral language tasks, under the conditions of use or non-use of Delayed Auditory Feedback (DAF, in order to establish the effect of the DAF in the frequency of occur¬rence and type of dysrhythmia. The study concludes the positive effect of the DAF, with a rate of return of 25 % on the errors of fluency, with variation depending on the type of oral production task. This in turn suggests that 75 % of the disfluency or linked with top encode failures or not susceptible to resolve or compensated by the DAF. The authors discuss the implications of these findings for therapeutic intervention in stuttering.

  14. Feedback control of resistive instabilities

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Liu Chen

    1986-01-01

    Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of Tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m ≥ 2 is fairly straighforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles

  15. Feedback control of resistive instabilities

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Chen, L.

    1985-12-01

    Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m greater than or equal to 2 is fairly straightforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles. 20 refs., 3 figs

  16. H-infty Control of systems with multiple i/o delays

    NARCIS (Netherlands)

    Agoes Ariffin Moelja, A.A.; Meinsma, Gjerrit; Mirkin, Leonid

    2003-01-01

    In this paper the standard (four-block) H-infty control problem for systems with multiple i/o delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators. The adobe delay

  17. Controlling chaotic systems via nonlinear feedback control

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived

  18. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback

    Science.gov (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy

    2017-11-01

    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  19. Timing matters: The impact of immediate and delayed feedback on artificial language learning

    Directory of Open Access Journals (Sweden)

    Bertram Opitz

    2011-02-01

    Full Text Available In the present experiment, we used event-related potentials (ERP to investigate the role of immediate and delayed feedback in an artificial grammar learning task. Two groups of participants were engaged in classifying non-word strings according to an underlying rule system, not known to the participants. Visual feedback was provided after each classification either immediately or with a short delay of one second. Both groups were able to learn the artificial grammar system as indicated by an increase in classification performance. However, the gain in performance was significantly larger for the group receiving immediate feedback as compared to the group receiving delayed feedback. Learning was accompanied by an increase in P300 activity in the ERP for delayed as compared to immediate feedback. Irrespective of feedback delay, both groups exhibited learning related decreases in the feedback-related positivity (FRP elicited by positive feedback only. The feedback-related negativity (FRN, however, remained constant over the course of learning. These results suggest, first, that delayed feedback is less effective for artificial grammar learning as task requirements are very demanding, and second, that the FRP elicited by positive prediction errors decreases with learning while the FRN to negative prediction errors is elicited in an all-or-none fashion by negative feedback throughout the entire experiment.

  20. Effects of linear and nonlinear time-delayed feedback on the noise-enhanced stability phenomenon in a periodically driven bistable system

    International Nuclear Information System (INIS)

    Jia, Zheng-Lin; Mei, Dong-Cheng

    2011-01-01

    We investigate numerically the effects of time delay on the phenomenon of noise-enhanced stability (NES) in a periodically modulated bistable system. Three types of time-delayed feedback, including linear delayed feedback, nonlinear delayed feedback and global delayed feedback, are considered. We find a non-monotonic behaviour of the mean first-passage time (MFPT) as a function of the delay time τ, with a maximum in the case of linear delayed feedback and with a minimum in the case of nonlinear delayed feedback. There are two peculiar values of τ around which the NES phenomenon is enhanced or weakened. For the case of global delayed feedback, the increase of τ always weakens the NES phenomenon. Moreover, we also show that the amplitude A and the frequency Ω of the periodic forcing play an opposite role in the NES phenomenon, i.e. the increase of A weakens the NES effect while the increase of Ω enhances it. These observations demonstrate that the time-delayed feedback can be used as a feasible control scheme for the NES phenomenon

  1. Delay-based virtual congestion control in multi-tenant datacenters

    Science.gov (United States)

    Liu, Yuxin; Zhu, Danhong; Zhang, Dong

    2018-03-01

    With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.

  2. A simple time-delayed method to control chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2004-01-01

    Based on the adaptive iterative learning strategy, a simple time-delayed controller is proposed to stabilize unstable periodic orbits (UPOs) embedded in chaotic attractors. This controller includes two parts: one is a linear feedback part; the other is an adaptive iterative learning estimation part. Theoretical analysis and numerical simulation show the effectiveness of this controller

  3. Learning from Feedback: Spacing and the Delay-Retention Effect

    Science.gov (United States)

    Smith, Troy A.; Kimball, Daniel R.

    2010-01-01

    Most modern research on the effects of feedback during learning has assumed that feedback is an error correction mechanism. Recent studies of feedback-timing effects have suggested that feedback might also strengthen initially correct responses. In an experiment involving cued recall of trivia facts, we directly tested several theories of…

  4. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator

    Science.gov (United States)

    González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  5. Sliding Intermittent Control for BAM Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Jianqiang Hu

    2013-01-01

    Full Text Available This paper addresses the exponential stability problem for a class of delayed bidirectional associative memory (BAM neural networks with delays. A sliding intermittent controller which takes the advantages of the periodically intermittent control idea and the impulsive control scheme is proposed and employed to the delayed BAM system. With the adjustable parameter taking different particular values, such a sliding intermittent control method can comprise several kinds of control schemes as special cases, such as the continuous feedback control, the impulsive control, the periodically intermittent control, and the semi-impulsive control. By using analysis techniques and the Lyapunov function methods, some sufficient criteria are derived for the closed-loop delayed BAM neural networks to be globally exponentially stable. Finally, two illustrative examples are given to show the effectiveness of the proposed control scheme and the obtained theoretical results.

  6. Feedforward/feedback control synthesis for performance and robustness

    Science.gov (United States)

    Wie, Bong; Liu, Qiang

    1990-01-01

    Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.

  7. Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback" [Chaos 18, 033122 (2008)].

    Science.gov (United States)

    Zhang, Yinping; Wang, Qing-Guo

    2008-12-01

    In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.

  8. Improving the security of optoelectronic delayed feedback system by parameter modulation and system coupling

    Science.gov (United States)

    Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing

    2016-02-01

    A coupled system with varying parameters is proposed to improve the security of optoelectronic delayed feedback system. This system is coupled by two parameter-varied optoelectronic delayed feedback systems with chaotic modulation. Dynamics performance results show that this system has a higher complexity compared to the original one. Furthermore, this system can conceal the time delay effectively against the autocorrelation function and delayed mutual information method and can increase the dimension space of secure parameters to resist brute-force attack by introducing the digital chaotic systems.

  9. Equilibrium of a two-route system with delayed information feedback strategies

    International Nuclear Information System (INIS)

    Zhao, Xiao-mei; Xie, Dong-fan; Gao, Zi-you; Gao, Liang

    2013-01-01

    In intelligent transport system, some advanced information feedback strategies have been developed to reduce the oscillations and enhance the capacity on the road level. However, seldom strategies have considered the information delay and user equilibrium (UE) objective. Here, a derivative cost feedback strategy (DCFS) is proposed to reduce the influence of the delay, based on the UE principle. The simulation results show that in both no-delay and delay information cases, DCFS are the best and can make the system reaching the UE. Because DCFS can predict the trend of the travel cost.

  10. Equilibrium of a two-route system with delayed information feedback strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao-mei, E-mail: xmzhao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Xie, Dong-fan, E-mail: dfxie@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Gao, Zi-you, E-mail: zygao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Gao, Liang, E-mail: lianggao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2013-12-09

    In intelligent transport system, some advanced information feedback strategies have been developed to reduce the oscillations and enhance the capacity on the road level. However, seldom strategies have considered the information delay and user equilibrium (UE) objective. Here, a derivative cost feedback strategy (DCFS) is proposed to reduce the influence of the delay, based on the UE principle. The simulation results show that in both no-delay and delay information cases, DCFS are the best and can make the system reaching the UE. Because DCFS can predict the trend of the travel cost.

  11. Anticontrol of chaos in continuous-time systems via time-delay feedback.

    Science.gov (United States)

    Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo

    2000-12-01

    In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.

  12. Optimal feedback control of the forced van der Pol system

    International Nuclear Information System (INIS)

    Chagas, T.P.; Toledo, B.A.; Rempel, E.L.; Chian, A.C.-L.; Valdivia, J.A.

    2012-01-01

    A simple feedback control strategy for chaotic systems is investigated using the forced van der Pol system as an example. The strategy regards chaos control as an optimization problem, where the maximum magnitude Floquet multiplier of a target unstable periodic orbit (UPO) is used as a cost function that needs to be minimized. Thus, the method obtains the optimal control gain in terms of the stability of the target UPO. This strategy was recently proposed for the proportional feedback control (PFC) method. Here, it is extended to the highly popular delayed feedback control (DFC) method. Since the DFC method treats the system as a delay-differential equation whose phase space is infinite-dimensional, the characteristic multipliers are found through a truncation in the number of delayed states. Control of a target UPO is achieved for several values of the forcing amplitude. We compare the DFC and PFC methods in terms of stability of the controlled orbit, steady state error and control effort.

  13. Time-delayed feedback technique for suppressing instabilities in time-periodic flow

    Science.gov (United States)

    Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz

    2017-11-01

    A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.

  14. Nonlinear H-ininity state feedback controllers:

    DEFF Research Database (Denmark)

    Cromme, Marc; Møller-Pedersen, Jens; Pagh Petersen, Martin

    1997-01-01

    From a general point of view the state feedback H∞ suboptimal control problem is reasonably well understood. Important problems remain with regard to a priori information of the size of the neighbourhood where the local state feedback H∞ problem is solvable. This problem is solved regionally (sem...... (semiglobally) in this paper, and the obtained control laws are implemented in MAPLE...

  15. Feedback control of plasma configuration in JT-60

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Kikuchi, Mitsuru; Yoshino, Ryuji; Hosogane, Nobuyuki; Kimura, Toyoaki; Kurihara, Kenichi; Takahashi, Minoru; Hayashi, Kazuo.

    1986-08-01

    Plasma current, plasma position (center of the outermost magnetic surface), decay index n index and width of the divertor throat are feedback controlled by using 5 kinds of poloidal field coils in JT-60. 5 control commands are calculated in a feedback control computer in each 1 msec. These feedback control functions are checked in ohmically heated plasma. The control characteristics of the plasma are well understood by the simplified control analysis and are consistent with the precise matrix transfer function analysis in the frequency domain and the simulation analysis which include the effects of eddy currents, delay time elements and mutual interactions between controllers. The usefulness of these analyses is experimentally confirmed. Each controlled variable is well feedback controlled to the command and the experimentally realized equilibrium configuration is checked by the well calibrated magnetic probes. Fast boundary identification code is used for the identification of the equilibrium and results are consistent with the precalculated plasma equilibria. By using this feedback control system of the plasma configuration and the equilibrium identification method, we have obtained the stable limiter and divertor configuration. The maximum parameters obtained during OH(I) experimental period are plasma current I p = 1.8 MA, the effective safety factor q eff e = 5.7 x 10 19 m -3 (Murakami parameter of 4.5) and the pulse length of 5 ∼ 10 sec. (author)

  16. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen

    1982-07-01

    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  17. Guaranteed cost control of time-delay chaotic systems

    International Nuclear Information System (INIS)

    Park, Ju H.; Kwon, O.M.

    2006-01-01

    This article studies a guaranteed cost control problem for a class of time-delay chaotic systems. Attention is focused on the design of memory state feedback controllers such that the resulting closed-loop system is asymptotically stable and an adequate level of performance is also guaranteed. Using the Lyapunov method and LMI (linear matrix inequality) framework, two criteria for the existence of the controller are derived in terms of LMIs. A numerical example is given to illustrate the proposed method

  18. Learning monopolies with delayed feedback on price expectations

    Science.gov (United States)

    Matsumoto, Akio; Szidarovszky, Ferenc

    2015-11-01

    We call the intercept of the price function with the vertical axis the maximum price and the slope of the price function the marginal price. In this paper it is assumed that a monopolistic firm has full information about the marginal price and its own cost function but is uncertain on the maximum price. However, by repeated interaction with the market, the obtained price observations give a basis for an adaptive learning process of the maximum price. It is also assumed that the price observations have fixed delays, so the learning process can be described by a delayed differential equation. In the cases of one or two delays, the asymptotic behavior of the resulting dynamic process is examined, stability conditions are derived. Three main results are demonstrated in the two delay learning processes. First, it is possible to stabilize the equilibrium which is unstable in the one delay model. Second, complex dynamics involving chaos, which is impossible in the one delay model, can emerge. Third, alternations of stability and instability (i.e., stability switches) occur repeatedly.

  19. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  20. Control of Thermodynamical System with Input-Dependent State Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Krstic, Miroslav

    2013-01-01

    We consider control of a cooling system with several consumers that require cooling from a common source. The flow feeding coolant to the consumers can be controlled, but due to significant physical distances between the common source and the consumers, the coolant flow takes a non......-negligible amount of time to travel to the consumers, giving rise to input-dependent state delays. We first present a simple bilinear model of the system, followed by a state feedback control design that is able to stabilize the system at a chosen equilibrium in spite of the delays. We also present a heuristic...

  1. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    International Nuclear Information System (INIS)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier

  2. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    Science.gov (United States)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.

  3. Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback

    Science.gov (United States)

    Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain

    2017-10-01

    A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.

  4. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  5. Hopf bifurcation analysis of Chen circuit with direct time delay feedback

    International Nuclear Information System (INIS)

    Hai-Peng, Ren; Wen-Chao, Li; Ding, Liu

    2010-01-01

    Direct time delay feedback can make non-chaotic Chen circuit chaotic. The chaotic Chen circuit with direct time delay feedback possesses rich and complex dynamical behaviours. To reach a deep and clear understanding of the dynamics of such circuits described by delay differential equations, Hopf bifurcation in the circuit is analysed using the Hopf bifurcation theory and the central manifold theorem in this paper. Bifurcation points and bifurcation directions are derived in detail, which prove to be consistent with the previous bifurcation diagram. Numerical simulations and experimental results are given to verify the theoretical analysis. Hopf bifurcation analysis can explain and predict the periodical orbit (oscillation) in Chen circuit with direct time delay feedback. Bifurcation boundaries are derived using the Hopf bifurcation analysis, which will be helpful for determining the parameters in the stabilisation of the originally chaotic circuit

  6. Stochastic resonance in a bistable system subject to multi-time-delayed feedback and aperiodic signal

    International Nuclear Information System (INIS)

    Li Jianlong; Zeng Lingzao

    2010-01-01

    We discuss in detail the effects of the multi-time-delayed feedback driven by an aperiodic signal on the output of a stochastic resonance (SR) system. The effective potential function and dynamical probability density function (PDF) are derived. To measure the performance of the SR system in the presence of a binary random signal, the bit error rate (BER) defined by the dynamical PDF is employed, as is commonly used in digital communications. We find that the delay time, strength of the feedback, and number of time-delayed terms can change the effective potential function and the effective amplitude of the signal, and then affect the BER of the SR system. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the multi-time-delayed feedback on SR and give a guidance to nonlinear systems in the application of information processing.

  7. Feedback control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.

    1993-05-01

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques

  8. Persistent disturbance rejection via state feedback for networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Yue Dong [Institute of Information and Control Engineering Technology, Nanjing Normal University, 78 Bancang Street, Nanjing, Jiangsu 210042 (China)], E-mail: medongy@njnu.edu.cn; Lam, James [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Wang Zidong [Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk

    2009-04-15

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  9. Persistent disturbance rejection via state feedback for networked control systems

    International Nuclear Information System (INIS)

    Yue Dong; Lam, James; Wang Zidong

    2009-01-01

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  10. Artificial proprioceptive feedback for myoelectric control.

    Science.gov (United States)

    Pistohl, Tobias; Joshi, Deepak; Ganesh, Gowrishankar; Jackson, Andrew; Nazarpour, Kianoush

    2015-05-01

    The typical control of myoelectric interfaces, whether in laboratory settings or real-life prosthetic applications, largely relies on visual feedback because proprioceptive signals from the controlling muscles are either not available or very noisy. We conducted a set of experiments to test whether artificial proprioceptive feedback, delivered noninvasively to another limb, can improve control of a two-dimensional myoelectrically-controlled computer interface. In these experiments, participants were required to reach a target with a visual cursor that was controlled by electromyogram signals recorded from muscles of the left hand, while they were provided with an additional proprioceptive feedback on their right arm by moving it with a robotic manipulandum. Provision of additional artificial proprioceptive feedback improved the angular accuracy of their movements when compared to using visual feedback alone but did not increase the overall accuracy quantified with the average distance between the cursor and the target. The advantages conferred by proprioception were present only when the proprioceptive feedback had similar orientation to the visual feedback in the task space and not when it was mirrored, demonstrating the importance of congruency in feedback modalities for multi-sensory integration. Our results reveal the ability of the human motor system to learn new inter-limb sensory-motor associations; the motor system can utilize task-related sensory feedback, even when it is available on a limb distinct from the one being actuated. In addition, the proposed task structure provides a flexible test paradigm by which the effectiveness of various sensory feedback and multi-sensory integration for myoelectric prosthesis control can be evaluated.

  11. Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System

    Directory of Open Access Journals (Sweden)

    Wen-Qing Zhang

    2013-01-01

    Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.

  12. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...

  13. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Directory of Open Access Journals (Sweden)

    Mohamad Arif Fahmi Ismail

    Full Text Available The rubber hand illusion (RHI is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI, which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms, and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  14. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Science.gov (United States)

    Ismail, Mohamad Arif Fahmi; Shimada, Sotaro

    2016-01-01

    The rubber hand illusion (RHI) is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI), which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms), and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  15. Quantum feedback for rapid state preparation in the presence of control imperfections

    International Nuclear Information System (INIS)

    Combes, Joshua; Wiseman, Howard M

    2011-01-01

    Quantum feedback control protocols can improve the operation of quantum devices. Here we examine the performance of a purification protocol when there are imperfections in the controls. The ideal feedback protocol produces an x-eigenstate from a mixed state in the minimum time, and is known as rapid state preparation. The imperfections we examine include time delays in the feedback loop, finite strength feedback, calibration errors and inefficient detection. We analyse these imperfections using the Wiseman-Milburn feedback master equation and related formalism. We find that the protocol is most sensitive to time delays in the feedback loop. For systems with slow dynamics, however, our analysis suggests that inefficient detection would be the bigger problem. We also show how system imperfections, such as dephasing and damping, can be included in a model via the feedback master equation.

  16. An adaptive robust controller for time delay maglev transportation systems

    Science.gov (United States)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  17. Consistency properties of chaotic systems driven by time-delayed feedback

    Science.gov (United States)

    Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.

    2018-04-01

    Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.

  18. Control of an atom laser using feedback

    International Nuclear Information System (INIS)

    Haine, S.A.; Ferris, A.J.; Close, J.D.; Hope, J.J.

    2004-01-01

    A generalized method of using feedback to control multimode behavior in Bose-Einstein condensates is introduced. We show that for any available control, there is an associated moment of the atomic density and a feedback scheme that will remove energy from the system while there are oscillations in that moment. We demonstrate these schemes by considering a condensate trapped in a harmonic potential that can be modulated in strength and position. The formalism of our feedback scheme also allows the inclusion of certain types of nonlinear controls. If the nonlinear interaction between the atoms can be controlled via a Feshbach resonance, we show that the feedback process can operate with a much higher efficiency

  19. Bifurcation analysis of Rössler system with multiple delayed feedback

    Directory of Open Access Journals (Sweden)

    Meihong Xu

    2010-10-01

    Full Text Available In this paper, regarding the delay as parameter, we investigate the effect of delay on the dynamics of a Rössler system with multiple delayed feedback proposed by Ghosh and Chowdhury. At first we consider the stability of equilibrium and the existence of Hopf bifurcations. Then an explicit algorithm for determining the direction and the stability of the bifurcating periodic solutions is derived by using the normal form theory and center manifold argument. Finally, we give a numerical simulation example which indicates that chaotic oscillation is converted into a stable steady state or a stable periodic orbit when the delay passes through certain critical values.

  20. Feedback control strategies for the Liu chaotic system

    International Nuclear Information System (INIS)

    Zhu Congxu; Chen Zhigang

    2008-01-01

    This Letter proposed three strategies of the dislocated feedback control, enhancing feedback control and speed feedback control of the Liu chaotic system to its unstable equilibrium points. It is found that the coefficients of enhancing feedback control and speed feedback control are smaller than those of ordinary feedback control, so, the complexity and cost of the system control are reduced. Theoretical analysis and numerical simulation are given, revealing the effectiveness of these strategies

  1. Controllability of nonlinear delay oscillating systems

    Directory of Open Access Journals (Sweden)

    Chengbin Liang

    2017-05-01

    Full Text Available In this paper, we study the controllability of a system governed by second order delay differential equations. We introduce a delay Gramian matrix involving the delayed matrix sine, which is used to establish sufficient and necessary conditions of controllability for the linear problem. In addition, we also construct a specific control function for controllability. For the nonlinear problem, we construct a control function and transfer the controllability problem to a fixed point problem for a suitable operator. We give a sufficient condition to guarantee the nonlinear delay system is controllable. Two examples are given to illustrate our theoretical results by calculating a specific control function and inverse of a delay Gramian matrix.

  2. Delay-Dependent Guaranteed Cost Control of an Interval System with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Xiao Min

    2009-01-01

    Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.

  3. MARTe at FTU: The new feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM - ENEA Fusion Association, Frascati Research Centre, Division of Fusion Physics, Rome, Frascati (Italy); Sadeghi, Yahya; Carnevale, Daniele; Di Geronimo, Andrea; Varano, Gianluca; Vitelli, Riccardo [Department of Computer Science, Systems and Production, University of Rome Tor Vergata, Rome (Italy); Galperti, Critsian [Istituto di Fisica del Plasma, CNR, EURATOM-ENEA Association, Milan (Italy); Zarfati, Emanuele; Pucci, Daniele [Department Antonio Ruberti, University of Rome La Sapienza, Rome (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We show that the MARTe is a candidate for ITER PSH. Black-Right-Pointing-Pointer We replace the old real-time feedback software using the MARTe framework. Black-Right-Pointing-Pointer We describe all the work done for the integration. - Abstract: Keeping in mind the necessities of a modern control system for fusion devices, such as modularity and a distributed architecture, an upgrade of the present FTU feedback control system was planned, envisaging also a possible reutilization in the proposed FAST experiment [1]. For standardization and efficiency purposes we decided to adopt a pre-existent ITER-relevant framework called MARTe [2], already used with success in other European Tokamak devices [3]. Following the developments shown in [4], in this paper we report on the structure of the new feedback system, and how it was integrated in the current control structure and pulse programming interface, and in the other MARTe systems already in FTU: RT-ODIN [5] and the ECRH and LH [6] satellite stations. The new feedback system has been installed in the FTU backup station (known as 'Feedback B'), which shares the input signals with the actual feedback system, in order to simplify the validation and debug of the new controller by testing it in parallel with the current one. Experimental results are then presented.

  4. Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram

    Directory of Open Access Journals (Sweden)

    YangBeibei Ji

    2016-01-01

    Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.

  5. Gender by assertiveness interaction in delayed auditory feedback.

    Science.gov (United States)

    Elias, J W; Rosenzweig, C M; Dippel, R L

    1981-04-01

    The College Self-Expression and the Marlowe-Crowne Social Desirability Scales were given to 144 undergraduates. High (N; 10 M; 10 F) and Low (N; 10 M 10 F) Assertiveness Ss were given a DAF test with a 'Phonic Mirror" and the Stroop test (naming the color of a word printed in a different color). DAF performance did not differ among the 4 subgroups (M and F, High and Low Assertiveness), except that Low Assertiveness women showed significantly greater DAF interference than the other subgroups. There was no significant correlation between the continuous interference of the DAF vs the discontinuous of the Stroop test. The difference may reside in the time available and the consequent reduction in anxiety, for the next stimulus in the Stroop test. These data show that, under certain circumstances, personality factors such as assertiveness can interact with gender to affect speech fluency and production. The ability to overcome feedback-related disfluencies in speech may be partially aided by improvement in self-concept or specific training in such behaviors as assertiveness, and this may be more important for females than males.

  6. $H^\\infty$ control of systems with multiple I/O delays via decomposition to adobe problems

    NARCIS (Netherlands)

    Meinsma, Gjerrit; Mirkin, Leonid

    In this paper, the standard (four-block) $H^\\infty$ control problem for systems with multiple input-output delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators.

  7. Feedback and control for everyone

    CERN Document Server

    Albertos, Pedro

    2010-01-01

    This intriguing and motivating book presents the basic ideas and understanding of control, signals and systems for readers interested in engineering and science. Through a series of examples, the book explores both the theory and the practice of control.

  8. The fast correction coil feedback control system

    International Nuclear Information System (INIS)

    Coffield, F.; Caporaso, G.; Zentler, J.M.

    1989-01-01

    A model-based feedback control system has been developed to correct beam displacement errors in the Advanced Test Accelerator (ATA) electron beam accelerator. The feedback control system drives an X/Y dipole steering system that has a 40-MHz bandwidth and can produce ±300-Gauss-cm dipole fields. A simulator was used to develop the control algorithm and to quantify the expected performance in the presence of beam position measurement noise and accelerator timing jitter. The major problem to date has been protecting the amplifiers from the voltage that is inductively coupled to the steering bars by the beam. 3 refs., 8 figs

  9. The Effect of Delayed Visual Feedback on Synchrony Perception in a Tapping Task

    Directory of Open Access Journals (Sweden)

    Mirjam Keetels

    2011-10-01

    Full Text Available Sensory events following a motor action are, within limits, interpreted as a causal consequence of those actions. For example, the clapping of the hands is initiated by the motor system, but subsequently visual, auditory, and tactile information is provided and processed. In the present study we examine the effect of temporal disturbances in this chain of motor-sensory events. Participants are instructed to tap a surface with their finger in synchrony with a chain of 20 sound clicks (ISI 750 ms. We examined the effect of additional visual information on this ‘tap-sound’-synchronization task. During tapping, subjects will see a video of their own tapping hand on a screen in front of them. The video can either be in synchrony with the tap (real-time recording, or can be slightly delayed (∼40–160 ms. In a control condition, no video is provided. We explore whether ‘tap-sound’ synchrony will be shifted as a function of the delayed visual feedback. Results will provide fundamental insights into how the brain preserves a causal interpretation of motor actions and their sensory consequences.

  10. Delay Reduction for Instantly Decodable Network Coding in Persistent Channels With Feedback Imperfections

    KAUST Repository

    Douik, Ahmed S.

    2015-11-05

    This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.

  11. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    Science.gov (United States)

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  12. Delay Reduction for Instantly Decodable Network Coding in Persistent Channels With Feedback Imperfections

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.

  13. Non interacting control by measurement feedback

    NARCIS (Netherlands)

    Woude, van der J.W.

    1987-01-01

    In this paper we shall solve the problem of non interacting control by measurement feedback for systems that in addition to a control input and a measurement output have two exogenous inputs and two exogenous outputs. That is, we shall derive necessary and sufficient conditions that can actually be

  14. Feedback Control of MEMS to Atoms

    CERN Document Server

    Shapiro, Benjamin

    2012-01-01

    Feedback Control of MEMS to Atoms illustrates the use of control and control systems as an essential part of functioning integrated miniaturized systems. The book is organized according to the dimensional scale of the problem, starting with microscale systems and ending with atomic-scale systems. Similar to macroscale machines and processes, control systems can play a major role in improving the performance of micro- and nanoscale systems and in enabling new capabilities that would otherwise not be possible. The majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control theory and engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry. This book: Shows how the utilization of feedback control in nanotechnology instrumentation can yield results far better than passive systems can Discusses the application of control systems to problems...

  15. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback.

    Science.gov (United States)

    Gaudreault, Mathieu; Drolet, François; Viñals, Jorge

    2010-11-01

    Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear stochastic differential delay equation with feedback. Our results assume that the delay time τ is small compared to other characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line is found, the location of which depends on the conditional average , where x(t) is the dynamical variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deterministic limit and hence that the interaction between fluctuation correlations and delay affect the stability of the solutions of the model equation studied.

  16. Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

    2014-01-01

    Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical. (paper)

  17. Entanglement-assisted quantum feedback control

    Science.gov (United States)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  18. Overt vs. covert speed cameras in combination with delayed vs. immediate feedback to the offender.

    Science.gov (United States)

    Marciano, Hadas; Setter, Pe'erly; Norman, Joel

    2015-06-01

    Speeding is a major problem in road safety because it increases both the probability of accidents and the severity of injuries if an accident occurs. Speed cameras are one of the most common speed enforcement tools. Most of the speed cameras around the world are overt, but there is evidence that this can cause a "kangaroo effect" in driving patterns. One suggested alternative to prevent this kangaroo effect is the use of covert cameras. Another issue relevant to the effect of enforcement countermeasures on speeding is the timing of the fine. There is general agreement on the importance of the immediacy of the punishment, however, in the context of speed limit enforcement, implementing such immediate punishment is difficult. An immediate feedback that mediates the delay between the speed violation and getting a ticket is one possible solution. This study examines combinations of concealment and the timing of the fine in operating speed cameras in order to evaluate the most effective one in terms of enforcing speed limits. Using a driving simulator, the driving performance of the following four experimental groups was tested: (1) overt cameras with delayed feedback, (2) overt cameras with immediate feedback, (3) covert cameras with delayed feedback, and (4) covert cameras with immediate feedback. Each of the 58 participants drove in the same scenario on three different days. The results showed that both median speed and speed variance were higher with overt than with covert cameras. Moreover, implementing a covert camera system along with immediate feedback was more conducive to drivers maintaining steady speeds at the permitted levels from the very beginning. Finally, both 'overt cameras' groups exhibit a kangaroo effect throughout the entire experiment. It can be concluded that an implementation strategy consisting of covert speed cameras combined with immediate feedback to the offender is potentially an optimal way to motivate drivers to maintain speeds at the

  19. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  20. Structural learning in feedforward and feedback control.

    Science.gov (United States)

    Yousif, Nada; Diedrichsen, Jörn

    2012-11-01

    For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control.

  1. Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  2. Synchronization of Coupled FitzHugh-Nagumo Neurons Using Self-Feedback Time Delay

    Science.gov (United States)

    Fan, Denggui; Song, Xinle; Liao, Fucheng

    Many neurological diseases are characterized by abnormally synchronous oscillations of neuronal populations. However, how the neurons can synchronize with each other is still not fully understood, which may have potentially hampered the understanding and diagnosis for these dynamical diseases. In this paper, the self-feedback time delay (SFTD) and adaptive control theory are employed to control the onset of synchronization in the coupled FitzHugh-Nagumo (FHN) neurons. It is found that the larger SFTD can induce the complete synchronization of coupled neuronal system. Further investigation reveals that the reinforcing SFTD can significantly postpone the synchronization onsets. In addition, for the case that synchronization cannot be achieved by adjusting SFTD, the parameter estimation update laws and adaptive controller with respect to SFTD of coupled system are investigated to deduce the sufficient condition for complete synchronization. Simulations are also provided to illustrate the effectiveness of the proposed methods. In particular, we observed the fascinating dynamical synchronization transitions, such as chaotic synchronization and bursting synchronization transitions, as well as the transition from anti-synchronization to complete synchronization.

  3. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Ai-Naffouri, Tareq Y.

    2013-01-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  4. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2013-10-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  5. The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems.

    Science.gov (United States)

    Zhang, Xingye; Wang, Shaoqian; Hoagg, Jesse B; Seigler, T Michael

    2018-02-01

    We present results from an experiment in which human subjects interact with an unknown dynamic system 40 times during a two-week period. During each interaction, subjects are asked to perform a command-following (i.e., pursuit tracking) task. Each subject's performance at that task improves from the first trial to the last trial. For each trial, we use subsystem identification to estimate each subject's feedforward (or anticipatory) control, feedback (or reactive) control, and feedback time delay. Over the 40 trials, the magnitudes of the identified feedback controllers and the identified feedback time delays do not change significantly. In contrast, the identified feedforward controllers do change significantly. By the last trial, the average identified feedforward controller approximates the inverse of the dynamic system. This observation provides evidence that a fundamental component of human learning is updating the anticipatory control until it models the inverse dynamics.

  6. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  7. Microcontroller-based Feedback Control Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2014-06-01

    Full Text Available this paper is a result of the implementation of the recommendations on enhancing hands-on experience of control engineering education using single chip, small scale computers such as microcontrollers. A set of microcontroller-based feedback control experiments was developed for the Electrical Engineering curriculum at the University of North Florida. These experiments provided hands-on techniques that students can utilize in the development of complete solutions for a number of servo control problems. Significant effort was devoted to software development of feedback controllers and the associated signal conditioning circuits interfacing between the microcontroller and the physical plant. These experiments have stimulated the interest of our students in control engineering.

  8. Nonholonomic feedback control among moving obstacles

    Science.gov (United States)

    Armstrong, Stephen Gregory

    A feedback controller is developed for navigating a nonholonomic vehicle in an area with multiple stationary and possibly moving obstacles. Among other applications the developed algorithms can be used for automatic parking of a passenger car in a parking lot with complex configuration or a ground robot in cluttered environment. Several approaches are explored which combine nonholonomic systems control based on sliding modes and potential field methods.

  9. Adaptation to Delayed Speech Feedback Induces Temporal Recalibration between Vocal Sensory and Auditory Modalities

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    2011-10-01

    Full Text Available We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. Participants read some sentences with specific delay times of DAF (0, 30, 75, 120 ms during three minutes to induce ‘Lag Adaptation’. After the adaptation, they then judged the simultaneity between motor sensation and vocal sound given feedback in producing simple voice but not speech. We found that speech production with lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  10. Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback

    Science.gov (United States)

    Wei, Xin; Wei, Junjie

    2017-09-01

    A diffusive autocatalytic bimolecular model with delayed feedback subject to Neumann boundary conditions is considered. We mainly study the stability of the unique positive equilibrium and the existence of periodic solutions. Our study shows that diffusion can give rise to Turing instability, and the time delay can affect the stability of the positive equilibrium and result in the occurrence of Hopf bifurcations. By applying the normal form theory and center manifold reduction for partial functional differential equations, we investigate the stability and direction of the bifurcations. Finally, we give some simulations to illustrate our theoretical results.

  11. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  12. The Effect of Delayed Auditory Feedback on Activity in the Temporal Lobe while Speaking: A Positron Emission Tomography Study

    Science.gov (United States)

    Takaso, Hideki; Eisner, Frank; Wise, Richard J. S.; Scott, Sophie K.

    2010-01-01

    Purpose: Delayed auditory feedback is a technique that can improve fluency in stutterers, while disrupting fluency in many nonstuttering individuals. The aim of this study was to determine the neural basis for the detection of and compensation for such a delay, and the effects of increases in the delay duration. Method: Positron emission…

  13. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator

    International Nuclear Information System (INIS)

    Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.

    2004-01-01

    Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed

  14. Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-12-01

    Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.

  15. Noise-induced attractor annihilation in the delayed feedback logistic map

    International Nuclear Information System (INIS)

    Pisarchik, A.N.; Martínez-Zérega, B.E.

    2013-01-01

    We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.

  16. Theoretical model for ultracold molecule formation via adaptive feedback control

    International Nuclear Information System (INIS)

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P; Kosloff, Ronnie

    2006-01-01

    We theoretically investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose, a perturbative model for light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85 Rb 2 molecules in a magneto-optical trap. We find that optimized pulse shapes may maximize the formation of ground state molecules in a specific vibrational state at a pump-dump delay time for which unshaped pulses lead to a minimum of the formation rate. Compared to the maximum formation rate obtained for unshaped pulses at the optimum pump-dump delay, the optimized pulses lead to a significant improvement of about 40% for the target level population. Since our model yields the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

  17. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities

    Science.gov (United States)

    Yang, Tao; Cao, Qingjie

    2018-03-01

    This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.

  18. Single generation cycles and delayed feedback cycles are not separate phenomena.

    Science.gov (United States)

    Pfaff, T; Brechtel, A; Drossel, B; Guill, C

    2014-12-01

    We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Microscopic Control Delay Modeling at Signalized Arterials Using Bluetooth Technology

    OpenAIRE

    Rajasekhar, Lakshmi

    2011-01-01

    Real-time control delay estimation is an important performance measure for any intersection to improve the signal timing plans dynamically in real-time and hence improve the overall system performance. Control delay estimates helps to determine the level-of-service (LOS) characteristics of various approaches at an intersection and takes into account deceleration delay, stopped delay and acceleration delay. All kinds of traffic delay calculation especially control delay calculation has always ...

  20. Synchronization of cellular neural networks of neutral type via dynamic feedback controller

    International Nuclear Information System (INIS)

    Park, Ju H.

    2009-01-01

    In this paper, we aim to study global synchronization for neural networks with neutral delay. A dynamic feedback control scheme is proposed to achieve the synchronization between drive network and response network. By utilizing the Lyapunov function and linear matrix inequalities (LMIs), we derive simple and efficient criterion in terms of LMIs for synchronization. The feedback controllers can be easily obtained by solving the derived LMIs.

  1. Parametrically Excited Oscillations of Second-Order Functional Differential Equations and Application to Duffing Equations with Time Delay Feedback

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2014-01-01

    Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.

  2. Criterial noise effects on rule-based category learning: the impact of delayed feedback.

    Science.gov (United States)

    Ell, Shawn W; Ing, A David; Maddox, W Todd

    2009-08-01

    Variability in the representation of the decision criterion is assumed in many category-learning models, yet few studies have directly examined its impact. On each trial, criterial noise should result in drift in the criterion and will negatively impact categorization accuracy, particularly in rule-based categorization tasks, where learning depends on the maintenance and manipulation of decision criteria. In three experiments, we tested this hypothesis and examined the impact of working memory on slowing the drift rate. In Experiment 1, we examined the effect of drift by inserting a 5-sec delay between the categorization response and the delivery of corrective feedback, and working memory demand was manipulated by varying the number of decision criteria to be learned. Delayed feedback adversely affected performance, but only when working memory demand was high. In Experiment 2, we built on a classic finding in the absolute identification literature and demonstrated that distributing the criteria across multiple dimensions decreases the impact of drift during the delay. In Experiment 3, we confirmed that the effect of drift during the delay is moderated by working memory. These results provide important insights into the interplay between criterial noise and working memory, as well as providing important constraints for models of rule-based category learning.

  3. Electrotactile EMG feedback improves the control of prosthesis grasping force

    Science.gov (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).

  4. Design of Distributed Engine Control Systems with Uncertain Delay.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    Full Text Available Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS. Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  5. Design of Distributed Engine Control Systems with Uncertain Delay.

    Science.gov (United States)

    Liu, Xiaofeng; Li, Yanxi; Sun, Xu

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  6. Incentives for Delay-Constrained Data Query and Feedback in Mobile Opportunistic Crowdsensing

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-07-01

    Full Text Available In this paper, we propose effective data collection schemes that stimulate cooperation between selfish users in mobile opportunistic crowdsensing. A query issuer generates a query and requests replies within a given delay budget. When a data provider receives the query for the first time from an intermediate user, the former replies to it and authorizes the latter as the owner of the reply. Different data providers can reply to the same query. When a user that owns a reply meets the query issuer that generates the query, it requests the query issuer to pay credits. The query issuer pays credits and provides feedback to the data provider, which gives the reply. When a user that carries a feedback meets the data provider, the data provider pays credits to the user in order to adjust its claimed expertise. Queries, replies and feedbacks can be traded between mobile users. We propose an effective mechanism to define rewards for queries, replies and feedbacks. We formulate the bargain process as a two-person cooperative game, whose solution is found by using the Nash theorem. To improve the credit circulation, we design an online auction process, in which the wealthy user can buy replies and feedbacks from the starving one using credits. We have carried out extensive simulations based on real-world traces to evaluate the proposed schemes.

  7. Optimal Control for Stochastic Delay Evolution Equations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.

  8. Grid-Current-Feedback Control for LCL-Filtered Grid Converters With Enhanced Stability

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2017-01-01

    This paper proposes a Second-Order-Generalized- Integrator (SOGI)-based time delay compensation method for extending the stable region of dual-loop Grid-Current-Feedback (GCF) control system. According to the analysis, stable region of the dual-loop system should be designed below a certain...... critical frequency, before time delay compensation method can be applied. To always meet the requirement, relationship between single-loop converter-current-feedback and dual-loop GCF control is clarified, before a robust inner-loop gain for the dualloop GCF scheme is determined. Enforcing this gain allows...

  9. Smart building temperature control using occupant feedback

    Science.gov (United States)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  10. Analysis and control of issues that delay pharmaceutical projects

    Directory of Open Access Journals (Sweden)

    Nallam Sai Nandeswara Rao

    2015-10-01

    Full Text Available Every project will have certain objectives and service levels to be achieved. The success of a project depends on several dimensions like time, cost/budget, quality, etc. and managing a project involves completing the project within time, within budget and with quality to satisfy the users. Because of the significance of health, pharmaceutical companies realized the importance of project management methods and techniques to make available the life saving drugs in time to the needy patients and hospitals. In literature, there is meager information about pharmaceutical project management oriented towards analysis of issues and factors that contribute to the failure or success of projects. This study attempts to analyse different issues that contribute to time delays in pharmaceutical product-based projects, group them under a finite set of prominent factors and identify remedial measures to control those delays. The feedback of project people of some big pharmaceutical firms of Indian sub-continent was collected for this purpose. Exploratory factor analysis (EFA has been used to reduce the reasons for time delays to a limited number of prominent factors and the EFA model has been further examined by confirmatory factor analysis (CFA for its validation. Remedial measures under each factor of time delays have been gathered and a framework designed to mitigate the time delays in pharmaceutical projects. The derived factors that delay the pharmaceutical projects include resource, monitoring & control, scheduling and planning problems. Important remedial measures like blended resource approach, estimation and forecast of shortage of labour and skills, regular quality training, etc. have been recommended.

  11. Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids

    Science.gov (United States)

    Efimov, Denis; Schiffer, Johannes; Ortega, Romeo

    2016-05-01

    Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given.

  12. Reliable Memory Feedback Design for a Class of Nonlinear Fuzzy Systems with Time-varying Delay

    Institute of Scientific and Technical Information of China (English)

    You-Qing Wang; Dong-Hua Zhou; Li-Heng Liu

    2007-01-01

    This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with time-varying delay. The system under consideration is more general than those in other existent works. The controller, which is dependent on the magnitudes and derivative of the delay, is proposed in terms of linear matrix inequality (LMI). The closed-loop system is asymptotically stable for all admissible uncertainties as well as actuator faults. A numerical example is presented for illustration.

  13. H∞ Control for a Networked Control Model of Systems with Two Additive Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Hanyong Shao

    2014-01-01

    Full Text Available This paper is concerned with H∞ control for a networked control model of systems with two additive time-varying delays. A new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays instead of the upper bounds of them. Then the convex polyhedron method is proposed to check the upper bound of the derivative of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is asymptotically stable with a prescribed H∞ disturbance attenuation level. Finally examples are given to show the advantages of the stability criteria and the effectiveness of the proposed control method.

  14. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    Science.gov (United States)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  15. Factorization and the synthesis of optimal feedback kernels for differential-delay systems

    Science.gov (United States)

    Milman, Mark M.; Scheid, Robert E.

    1987-01-01

    A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.

  16. Theoretical and experimental study of Chen chaotic system with notch filter feedback control

    International Nuclear Information System (INIS)

    Ming, Zhang Xiao; Jian-Hua, Peng; Ju-Fang, Chen

    2010-01-01

    Since the past two decades, the time delay feedback control method has attracted more and more attention in chaos control studies because of its simplicity and efficiency compared with other chaos control schemes. Recently, it has been proposed to suppress low-dimensional chaos with the notch filter feedback control method, which can be implemented in a laser system. In this work, we have analytically determined the controllable conditions for notch filter feedback controlling of Chen chaotic system in terms of the Hopf bifurcation theory. The conditions for notch filter feedback controlled Chen chaoitc system having a stable limit cycle solution are given. Meanwhile, we also analysed the Hopf bifurcation direction, which is very important for parameter settings in notch filter feedback control applications. Finally, we apply the notch filter feedback control methods to the electronic circuit experiments and numerical simulations based on the theoretical analysis. The controlling results of notch filter feedback control method well prove the feasibility and reliability of the theoretical analysis. (general)

  17. Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback

    CERN Document Server

    Krisztin, Tibor; Wu, Jianhong

    1998-01-01

    This book contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. The authors describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behavior of solution curves on it. The approach makes use of advanced tools which in recent years have been developed for the investigation of infinite-dimensional dynamical systems: local invariant manifolds and inclination lemmas f

  18. Plasma control techniques of the ASDEX feedback system

    International Nuclear Information System (INIS)

    Schneider, F.

    1981-01-01

    In the ASDEX tokamak the shots are exactly preprogrammed and most of the disturbances are reproducible. So a computer can learn from one shot how to correct the next one. With this sort of disturbance feedforward one can also introduce a 'negative delay' in the program to compensate even fast and strong disturbances withous unwanted overswing or oscillations. The feedforward in conjunction with feedback control allows production of a magnetically limited plasma from the very beginning without any wall or limiter contact. This is a reason why in ASDEX the loop voltage on breakdown can be as low as 5 V/sup 2/. The plasma column can be controlled in the vacuum vessel even after disruptions have occurred

  19. Detecting delay in visual feedback of an action as a monitor of self recognition.

    Science.gov (United States)

    Hoover, Adria E N; Harris, Laurence R

    2012-10-01

    How do we distinguish "self" from "other"? The correlation between willing an action and seeing it occur is an important cue. We exploited the fact that this correlation needs to occur within a restricted temporal window in order to obtain a quantitative assessment of when a body part is identified as "self". We measured the threshold and sensitivity (d') for detecting a delay between movements of the finger (of both the dominant and non-dominant hands) and visual feedback as seen from four visual perspectives (the natural view, and mirror-reversed and/or inverted views). Each trial consisted of one presentation with minimum delay and another with a delay of between 33 and 150 ms. Participants indicated which presentation contained the delayed view. We varied the amount of efference copy available for this task by comparing performances for discrete movements and continuous movements. Discrete movements are associated with a stronger efference copy. Sensitivity to detect asynchrony between visual and proprioceptive information was significantly higher when movements were viewed from a "plausible" self perspective compared with when the view was reversed or inverted. Further, we found differences in performance between dominant and non-dominant hand finger movements across the continuous and single movements. Performance varied with the viewpoint from which the visual feedback was presented and on the efferent component such that optimal performance was obtained when the presentation was in the normal natural orientation and clear efferent information was available. Variations in sensitivity to visual/non-visual temporal incongruence with the viewpoint in which a movement is seen may help determine the arrangement of the underlying visual representation of the body.

  20. Design Of Combined Stochastic Feedforward/Feedback Control

    Science.gov (United States)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  1. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  2. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG.

    Science.gov (United States)

    Wang, Daming; Wang, Longsheng; Zhao, Tong; Gao, Hua; Wang, Yuncai; Chen, Xianfeng; Wang, Anbang

    2017-05-15

    Time delay signature (TDS) of a semiconductor laser subject to dispersive optical feedback from a chirped fibre Bragg grating (CFBG) is investigated experimentally and numerically. Different from mirror, CFBG provides additional frequency-dependent delay caused by dispersion, and thus induces external-cavity modes with irregular mode separation rather than a fixed separation induced by mirror feedback. Compared with mirror feedback, the CFBG feedback can greatly depress and even eliminate the TDS, although it leads to a similar quasi-period route to chaos with increases of feedback. In experiments, by using a CFBG with dispersion of 2000ps/nm, the TDS is decreased by 90% to about 0.04 compared with mirror feedback. Furthermore, both numerical and experimental results show that the TDS evolution is quite different: the TDS decreases more quickly down to a lower plateau (even background noise level of autocorrelation function) and never rises again. This evolution tendency is also different from that of FBG feedback, of which the TDS first decreases to a minimal value and then increases again as feedback strength increases. In addition, the CFBG feedback has no filtering effects and does not require amplification for feedback light.

  3. Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas

    Science.gov (United States)

    Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.

    2006-10-01

    In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.

  4. Delayed Antiwindup Control Using a Decoupling Structure

    Directory of Open Access Journals (Sweden)

    Huawei Zhu

    2013-01-01

    Full Text Available This paper investigates the antiwindup (AW control problem for plants with input saturation. The AW compensator is not activated as soon as input saturation occurs as usual. A delayed decoupling structure is first proposed. Then, appropriate linear matrix inequalities (LMIs are developed to determine a plant-order AW compensator. Effectiveness of the presented AW technique is illustrated by a fighter aircraft model.

  5. Stability result of the Timoshenko system with delay and boundary feedback

    KAUST Repository

    Said-Houari, Belkacem; Soufyane, Abdelaziz

    2012-01-01

    Our interest in this paper is to analyse the asymptotic behaviour of a Timoshenko beam system together with two boundary controls, with delay terms in the first and second equation. Assuming the weights of the delay are small enough, we show that the system is well-posed using the semigroup theory. Furthermore, we introduce a Lyapunov functional that gives the exponential decay of the total energy. © 2012 The author.

  6. Stability result of the Timoshenko system with delay and boundary feedback

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-06

    Our interest in this paper is to analyse the asymptotic behaviour of a Timoshenko beam system together with two boundary controls, with delay terms in the first and second equation. Assuming the weights of the delay are small enough, we show that the system is well-posed using the semigroup theory. Furthermore, we introduce a Lyapunov functional that gives the exponential decay of the total energy. © 2012 The author.

  7. Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2015-01-01

    Full Text Available Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI. Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents.

  8. Combined feedforward and feedback control of end milling system

    OpenAIRE

    Čuš, Franc; Župerl, Uroš; Balič, Jože

    2012-01-01

    Purpose: Purpose of this paper. An intelligent control system is presented that uses a combination of feedforward and feedback for cutting force control in end milling.Design/methodology/approach: The network is trained by the feedback output that is minimized during training and most control action for disturbance rejection is finally performed by the rapid feedforward action of the network.Findings: The feedback controller corrects for errors caused by external disturbances. The feedforward...

  9. New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2014-01-01

    Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.

  10. Delay-Dependent Guaranteed Cost H∞ Control of an Interval System with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Zhongke Shi

    2009-01-01

    Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost H∞ control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.

  11. Euclidean null controllability of nonlinear infinite delay systems with ...

    African Journals Online (AJOL)

    Sufficient conditions for the Euclidean null controllability of non-linear delay systems with time varying multiple delays in the control and implicit derivative are derived. If the uncontrolled system is uniformly asymptotically stable and if the control system is controllable, then the non-linear infinite delay system is Euclidean null ...

  12. Relative controllability and null controllability of linear delay systems ...

    African Journals Online (AJOL)

    Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...

  13. Minimal-Inversion Feedforward-And-Feedback Control System

    Science.gov (United States)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  14. Dynamic IQC-Based Control of Uncertain LFT Systems With Time-Varying State Delay.

    Science.gov (United States)

    Yuan, Chengzhi; Wu, Fen

    2016-12-01

    This paper presents a new exact-memory delay control scheme for a class of uncertain systems with time-varying state delay under the integral quadratic constraint (IQC) framework. The uncertain system is described as a linear fractional transformation model including a state-delayed linear time-invariant (LTI) system and time-varying structured uncertainties. The proposed exact-memory delay controller consists of a linear state-feedback control law and an additional term that captures the delay behavior of the plant. We first explore the delay stability and the L 2 -gain performance using dynamic IQCs incorporated with quadratic Lyapunov functions. Then, the design of exact-memory controllers that guarantee desired L 2 -gain performance is examined. The resulting delay control synthesis conditions are formulated in terms of linear matrix inequalities, which are convex on all design variables including the scaling matrices associated with the IQC multipliers. The IQC-based exact-memory control scheme provides a novel approach for delay control designs via convex optimization, and advances existing control methods in two important ways: 1) better controlled performance and 2) simplified design procedure with less computational cost. The effectiveness and advantages of the proposed approach have been demonstrated through numerical studies.

  15. The Effect of Feedback Delay on Perceptual Category Learning and Item Memory: Further Limits of Multiple Systems.

    Science.gov (United States)

    Stephens, Rachel G; Kalish, Michael L

    2018-02-01

    Delayed feedback during categorization training has been hypothesized to differentially affect 2 systems that underlie learning for rule-based (RB) or information-integration (II) structures. We tested an alternative possibility: that II learning requires more precise item representations than RB learning, and so is harmed more by a delay interval filled with a confusable mask. Experiments 1 and 2 examined the effect of feedback delay on memory for RB and II exemplars, both without and with concurrent categorization training. Without the training, II items were indeed more difficult to recognize than RB items, but there was no detectable effect of delay on item memory. In contrast, with concurrent categorization training, there were effects of both category structure and delayed feedback on item memory, which were related to corresponding changes in category learning. However, we did not observe the critical selective impact of delay on II classification performance that has been shown previously. Our own results were also confirmed in a follow-up study (Experiment 3) involving only categorization training. The selective influence of feedback delay on II learning appears to be contingent on the relative size of subgroups of high-performing participants, and in fact does not support that RB and II category learning are qualitatively different. We conclude that a key part of successfully solving perceptual categorization problems is developing more precise item representations, which can be impaired by delayed feedback during training. More important, the evidence for multiple systems of category learning is even weaker than previously proposed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Control of systems with I/O delay via reduction to a one-block problem

    NARCIS (Netherlands)

    Meinsma, Gjerrit; Mirkin, Leonid; Zhong, Qing-Chang

    2002-01-01

    In this paper, the standard (four-block) H/sup /spl infin// control problem for systems with a single delay in the feedback loop is studied. A simple procedure of the reduction of the problem to an equivalent one-block problem having particularly simple structure is proposed. The one-block problem

  17. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

    DEFF Research Database (Denmark)

    Fossen, T. I.; Blanke, Mogens

    2000-01-01

    Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...

  18. Design of output feedback controller for a unified chaotic system

    International Nuclear Information System (INIS)

    Li Wenlin; Chen Xiuqin; Shen Zhiping

    2008-01-01

    In this paper, the synchronization of a unified chaotic system is investigated by the use of output feedback controllers; a two-input single-output feedback controller and single-input single-output feedback controller are presented to synchronize the unified chaotic system when the states are not all measurable. Compared with the existing results, the controllers designed in this paper have some advantages such as small feedback gain, simple structure and less conservation. Finally, numerical simulations results are provided to demonstrate the validity and effectiveness of the proposed method

  19. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Cipriani, Christian; Segil, Jacob L; Clemente, Francesco; ff Weir, Richard F; Edin, Benoni

    2014-11-01

    Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.

  20. Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback

    Science.gov (United States)

    Tiberkevich, Vasil S.; Khymyn, Roman S.; Tang, Hong X.; Slavin, Andrei N.

    2014-01-01

    For auto-oscillators of different nature (e.g. active cells in a human heart under the action of a pacemaker, neurons in brain, spin-torque nano-oscillators, micro and nano-mechanical oscillators, or generating Josephson junctions) a critically important property is their ability to synchronize with each other. The synchronization properties of an auto oscillator are directly related to its sensitivity to external signals. Here we demonstrate that a non-isochronous (having generation frequency dependent on the amplitude) auto-oscillator with delayed feedback can have an extremely high sensitivity to external signals and unusually large width of the phase-locking band near the boundary of the stable auto-oscillation regime. This property could be used for the development of synchronized arrays of non-isochronous auto-oscillators in physics and engineering, and, for instance, might bring a better fundamental understanding of ways to control a heart arrythmia in medicine.

  1. A new modelling and identification scheme for time-delay systems with experimental investigation: a relay feedback approach

    Science.gov (United States)

    Pandey, Saurabh; Majhi, Somanath; Ghorai, Prasenjit

    2017-07-01

    In this paper, the conventional relay feedback test has been modified for modelling and identification of a class of real-time dynamical systems in terms of linear transfer function models with time-delay. An ideal relay and unknown systems are connected through a negative feedback loop to bring the sustained oscillatory output around the non-zero setpoint. Thereafter, the obtained limit cycle information is substituted in the derived mathematical equations for accurate identification of unknown plants in terms of overdamped, underdamped, critically damped second-order plus dead time and stable first-order plus dead time transfer function models. Typical examples from the literature are included for the validation of the proposed identification scheme through computer simulations. Subsequently, the comparisons between estimated model and true system are drawn through integral absolute error criterion and frequency response plots. Finally, the obtained output responses through simulations are verified experimentally on real-time liquid level control system using Yokogawa Distributed Control System CENTUM CS3000 set up.

  2. Transmission Delay Based Control over Networks with Wireless Links

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To achieve the mobility of computers during communication, the TCP connections between fixed host and mobile host may often traverse wired and wireless networks, and the recovery of losses due to wireless transmission error is much different from congestion control. The paper analyzes the side effect of RTT estimation while making the TCP source to handle congestion and wireless error losses properly. Then present a strategy using information feedback by the last hop acknowledgement and monitoring the queuing level of the wired bottleneck link by calculating the changes in transmission delay along the path. With the identification of the early stage of congestion, it can respond to wired congestion quickly while keeping wireless link more reliable, and make TCP react to the different packets losses more appropriately.

  3. Time delay effects on large-scale MR damper based semi-active control strategies

    International Nuclear Information System (INIS)

    Cha, Y-J; Agrawal, A K; Dyke, S J

    2013-01-01

    This paper presents a detailed investigation on the robustness of large-scale 200 kN MR damper based semi-active control strategies in the presence of time delays in the control system. Although the effects of time delay on stability and performance degradation of an actively controlled system have been investigated extensively by many researchers, degradation in the performance of semi-active systems due to time delay has yet to be investigated. Since semi-active systems are inherently stable, instability problems due to time delay are unlikely to arise. This paper investigates the effects of time delay on the performance of a building with a large-scale MR damper, using numerical simulations of near- and far-field earthquakes. The MR damper is considered to be controlled by four different semi-active control algorithms, namely (i) clipped-optimal control (COC), (ii) decentralized output feedback polynomial control (DOFPC), (iii) Lyapunov control, and (iv) simple-passive control (SPC). It is observed that all controllers except for the COC are significantly robust with respect to time delay. On the other hand, the clipped-optimal controller should be integrated with a compensator to improve the performance in the presence of time delay. (paper)

  4. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    Science.gov (United States)

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  5. Methods of Synthesis of Automatic Control Systems with Delay

    Directory of Open Access Journals (Sweden)

    Aliaksandr Lapeta

    2013-05-01

    Full Text Available The paper investigates the procedure for introduction of systems containing delay elements. Shortcomings and difficulties in the synthesis of regulators and precompensators of control systems with delays in output and control channel where determined. The author focused on two approaches for the formation of promatrix and synthesis of control systems, considering the factor of delay.

  6. Sensory-Feedback Exoskeletal Arm Controller

    Science.gov (United States)

    An, Bin; Massie, Thomas H.; Vayner, Vladimir

    2004-01-01

    An electromechanical exoskeletal arm apparatus has been designed for use in controlling a remote robotic manipulator arm. The apparatus, called a force-feedback exoskeleton arm master (F-EAM) is comfortable to wear and easy to don and doff. It provides control signals from the wearer s arm to a robot arm or a computer simulator (e.g., a virtual-reality system); it also provides force and torque feedback from sensors on the robot arm or from the computer simulator to the wearer s arm. The F-EAM enables the wearer to make the robot arm gently touch objects and finely manipulate them without exerting excessive forces. The F-EAM features a lightweight design in which the motors and gear heads that generate force and torque feedback are made smaller than they ordinarily would be: this is achieved by driving the motors to power levels greater than would ordinarily be used in order to obtain higher torques, and by providing active liquid cooling of the motors to prevent overheating at the high drive levels. The F-EAM (see figure) includes an assembly that resembles a backpack and is worn like a backpack, plus an exoskeletal arm mechanism. The FEAM has five degrees of freedom (DOFs) that correspond to those of the human arm: 1. The first DOF is that of the side-to-side rotation of the upper arm about the shoulder (rotation about axis 1). The reflected torque for this DOF is provided by motor 1 via drum 1 and a planar four-bar linkage. 2. The second DOF is that of the up-and-down rotation of the arm about the shoulder. The reflected torque for this DOF is provided by motor 2 via drum 2. 3. The third DOF is that of twisting of the upper arm about its longitudinal axis. This DOF is implemented in a cable remote-center mechanism (CRCM). The reflected torque for this DOF is provided by motor 3, which drives the upper-arm cuff and the mechanism below it. A bladder inflatable by gas or liquid is placed between the cuff and the wearer s upper arm to compensate for misalignment

  7. Performance investigation of stochastic resonance in bistable systems with time-delayed feedback and three types of asymmetries

    Science.gov (United States)

    Liu, Jian; Wang, Youguo

    2018-03-01

    The simultaneous influence of potential asymmetries and time-delayed feedback on stochastic resonance (SR) subject to both periodic force and additive Gaussian white noise is investigated by using two-state theory and small-delay approximation, where three types of asymmetries include well-depth, well-width, and both well-depth and well-width asymmetries, respectively. The asymmetric types and time-delayed feedback determine the behaviors of SR, especially output signal-to-noise ratio (SNR) peaks, optimal additive noise intensity and feedback intensity. Moreover, the largest SNR in asymmetric SR is found to be relatively larger than symmetric one in some cases, whereas in other cases the symmetric SR is superior to asymmetric one, which is of dependence on time delay and feedback intensity. In addition, the SR with well-width asymmetry can suppress stronger noise than that with well-depth asymmetry under the action of same time delay, which is beneficial to weak signal detection.

  8. Delay-Dependent Control for Networked Control Systems with Large Delays

    Directory of Open Access Journals (Sweden)

    Yilin Wang

    2013-01-01

    Full Text Available We consider the problems of robust stability and control for a class of networked control systems with long-time delays. Firstly, a nonlinear discrete time model with mode-dependent time delays is proposed by converting the uncertainty of time delay into the uncertainty of parameter matrices. We consider a probabilistic case where the system is switched among different subsystems, and the probability of each subsystem being active is defined as its occurrence probability. For a switched system with a known subsystem occurrence probabilities, we give a stochastic stability criterion in terms of linear matrix inequalities (LMIs. Then, we extend the results to a more practical case where the subsystem occurrence probabilities are uncertain. Finally, a simulation example is presented to show the efficacy of the proposed method.

  9. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.

    Science.gov (United States)

    Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W

    2017-06-22

    Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.

  10. Robust synchronization of delayed neural networks based on adaptive control and parameters identification

    International Nuclear Information System (INIS)

    Zhou Jin; Chen Tianping; Xiang Lan

    2006-01-01

    This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique

  11. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  12. Reward acts as a signal to control delay-period activity in delayed-response tasks.

    Science.gov (United States)

    Ichihara-Takeda, Satoe; Takeda, Kazuyoshi; Funahashi, Shintaro

    2010-03-31

    Prefrontal delay-period activity represents a neural mechanism for the active maintenance of information and needs to be controlled by some signal to appropriately operate working memory. To examine whether reward-delivery acts as this signal, the effects of delay-period activity in response to unexpected reward-delivery were examined by analyzing single-neuron activity recorded in the primate dorsolateral prefrontal cortex. Among neurons that showed delay-period activity, 34% showed inhibition of this activity in response to unexpected reward-delivery. The delay-period activity of these neurons was affected by the expectation of reward-delivery. The strength of the reward signal in controlling the delay-period activity is related to the strength of the effect of reward information on the delay-period activity. These results indicate that reward-delivery acts as a signal to control delay-period activity.

  13. Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    F. Yıldız Tascikaraoglu

    2014-01-01

    Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.

  14. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    International Nuclear Information System (INIS)

    Sun, Z.; Sen, A.K.; Longman, R.W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used

  15. Coherent-feedback-induced controllable optical bistability and photon blockade

    International Nuclear Information System (INIS)

    Liu, Yu-Long; Liu, Zhong-Peng; Zhang, Jing

    2015-01-01

    It is well known that some nonlinear phenomena such as strong photon blockade are difficult to observe in optomechanical systems with current experimental technology. Here we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers quantum nonlinearity from the controller to the controlled cavity causing destructive quantum interference to occur, and making it possible to observe strong nonlinear effects. With the help of the coherent feedback loop, large and tunable bistability and strong photon blockade of the cavity modes can be achieved even in the optomechanical weak coupling regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomena. We hope that our work can give new perspectives on engineering nonlinear interactions in quantum systems. (paper)

  16. Stabilization of Networked Control Systems with Variable Delays and Saturating Inputs

    Directory of Open Access Journals (Sweden)

    M. Mahmodi Kaleybar

    2014-06-01

    Full Text Available In this paper, improved conditions for the synthesis of static state-feedback controller are derived to stabilize networked control systems (NCSs subject to actuator saturation. Both of the data packet latency and dropout which deteriorate the performance of the closed-loop system are considered in the NCS model via variable delays. Two different techniques are employed to incorporate actuator saturation in the system description. Utilizing Lyapunov-Krasovskii Theorem, delay-dependent conditions are obtained in terms of linear matrix inequalities (LMIs to determine the static feedback gain. Moreover, an optimization problem is formulated in order to find the less conservative estimate for the region of attraction corresponding to different maximum allowable delays. Numerical examples are introduced to demonstrate the effectiveness and advantages of the proposed schemes.

  17. Beam closed orbit feedback based on PID control

    International Nuclear Information System (INIS)

    Xuan Ke; Wang Lin; Liu Gongfa; Li Weimin; Li Chuan; Wang Jigang; Bao Xun; Xu Hongliang

    2013-01-01

    The algorithm in the feedback system has important influence on the performance of the beam orbit. Good feedback algorithm can greatly improve the beam orbit stability. In this paper, the theory of beam closed orbit correction, the principle of PID control and the beam closed orbit feedback correction using PID control were introduced. The simulation results were given. Compared with least-square method, the PID feedback algorithm makes the steady-state error smaller and more accurate, and enhances the beam orbit stability. (authors)

  18. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    Science.gov (United States)

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  19. Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control.

    Science.gov (United States)

    Cai, Shuiming; Zhou, Peipei; Liu, Zengrong

    2014-09-01

    This paper concerns the problem of exponential synchronization for a class of general delayed dynamical networks with hybrid coupling via pinning periodically intermittent control. Both the internal delay and coupling delay are taken into account in the network model. Meanwhile, the transmission delay and self-feedback delay are involved in the delayed coupling term. By establishing a new differential inequality, several simple and useful exponential synchronization criteria are derived analytically. It is shown that the controlled synchronization state can vary in comparison with the conventional synchronized solution, and the degree of the node and the inner delayed coupling matrix play important roles in the controlled synchronization state. By choosing different inner delayed coupling matrices and the degrees of the node, different controlled synchronization states can be obtained. Furthermore, the detail pinning schemes deciding what nodes should be chosen as pinned candidates and how many nodes are needed to be pinned for a fixed coupling strength are provided. The simple procedures illuminating how to design suitable intermittent controllers in real application are also given. Numerical simulations, including an undirected scale-free network and a directed small-world network, are finally presented to demonstrate the effectiveness of the theoretical results.

  20. Controlling flow time delays in flexible manufacturing cells

    NARCIS (Netherlands)

    Slomp, J.; Caprihan, R.; Bokhorst, J. A. C.

    2009-01-01

    Flow time delays in Flexible Manufacturing Cells (FMCs) are caused by transport and clamping/reclamping activities. This paper shows how dynamic scheduling parameters may control the flow times of jobs and the available task windows for flow time delays.

  1. Role of measurement in feedback-controlled quantum engines

    Science.gov (United States)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  2. On control of systems delays in economics

    Science.gov (United States)

    Kim, A. V.; Kormyshev, V. M.; Novikov, M. Yu.; Nikonov, M. A.

    2017-11-01

    The paper continues presentation of the differential game theory for systems with delays and is devoted to the solution of an approach problem in application to economic problems (Dockner E.J., et all, 2000; R. Isaacs, 1999). The results are obtained in the framework of the positional differential game theory (N.N. Krasovskii, A.I. Subbotin, 1988; A.V. Kryazhimskii, Yu.S. Osipov, 1973; Yu.S. Osipov, J. Appl. Math. Mech. Vol. 35, № 1, № 6, 1971) with application of the i-smooth analysis methodology (A.V. Kim, 2015). Effective construction of extremal positional control is based on the utilization of the so called u-stable sets The necessary and sufficient conditions of high u-stability are presented in the paper.

  3. The Application of Time-Delay Dependent H∞ Control Model in Manufacturing Decision Optimization

    Directory of Open Access Journals (Sweden)

    Haifeng Guo

    2015-01-01

    Full Text Available This paper uses a time-delay dependent H∞ control model to analyze the effect of manufacturing decisions on the process of transmission from resources to capability. We establish a theoretical framework of manufacturing management process based on three terms: resource, manufacturing decision, and capability. Then we build a time-delay H∞ robust control model to analyze the robustness of manufacturing management. With the state feedback controller between manufacturing resources and decision, we find that there is an optimal decision to adjust the process of transmission from resources to capability under uncertain environment. Finally, we provide an example to prove the robustness of this model.

  4. Requirements for active resistive wall mode (RWM) feedback control

    International Nuclear Information System (INIS)

    In, Y; Kim, J S; Chu, M S; Jackson, G L; La Haye, R J; Strait, E J; Liu, Y Q; Marrelli, L; Okabayashi, M; Reimerdes, H

    2010-01-01

    The requirements for active resistive wall mode (RWM) feedback control have been systematically investigated and established using highly reproducible current-driven RWMs in ohmic discharges in DIII-D. The unambiguous evaluation of active RWM feedback control was not possible in previous RWM studies primarily due to the variability of the onset of the pressure-driven RWMs; the stability of the pressure-driven RWM is thought to be sensitive to various passive stabilization mechanisms. Both feedback control specifications and physics requirements for RWM stabilization have been clarified using the current-driven RWMs in ohmic discharges, when little or no passive stabilization effects are present. The use of derivative gain on top of proportional gain is found to be advantageous. An effective feedback control system should be equipped with a power supply with bandwidth greater than the RWM growth rate. It is beneficial to apply a feedback field that is toroidally phase-shifted from the measured RWM phase in the same direction as the plasma current. The efficacy of the RWM feedback control will ultimately be determined by the plasma fluctuations on internal diagnostics, as well as on external magnetics. The proximity of the feedback coils to the plasma appears to be an important factor in determining the effectiveness of the RWM feedback coils. It is desirable that an RWM feedback control system simultaneously handles error field correction at a low frequency, along with direct RWM feedback at a high frequency. There is an indication of the influence of a second least stable RWM, which had been theoretically predicted but never identified in experiments. A preliminary investigation based on active MHD spectroscopic measurement showed a strong plasma response around 400 Hz where the typical plasma response associated with the first least stable RWM was expected to be negligible. Present active feedback control requirements are based on a single mode assumption, so the

  5. The Effect of Online Gaming, Cognition and Feedback Type in Facilitating Delayed Achievement of Different Learning Objectives

    Science.gov (United States)

    Cameron, Brian; Dwyer, Francis

    2005-01-01

    Online and computer-based instructional gaming is becoming a viable instructional strategy at all levels of education. The purpose of this study was to examine the effect of (a) gaming, (b) gaming plus embedded questions, and (c) gaming plus questions plus feedback on delayed retention of different types of educational objectives for students…

  6. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.

    1999-01-01

    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...

  7. Event-Triggered Faults Tolerant Control for Stochastic Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2016-01-01

    Full Text Available This paper is concerned with the state-feedback controller design for stochastic networked control systems (NCSs with random actuator failures and transmission delays. Firstly, an event-triggered scheme is introduced to optimize the performance of the stochastic NCSs. Secondly, stochastic NCSs under event-triggered scheme are modeled as stochastic time-delay systems. Thirdly, some less conservative delay-dependent stability criteria in terms of linear matrix inequalities for the codesign of both the controller gain and the trigger parameters are obtained by using delay-decomposition technique and convex combination approach. Finally, a numerical example is provided to show the less sampled data transmission and less conservatism of the proposed theory.

  8. Feedback control for a train-like vehicle

    International Nuclear Information System (INIS)

    Micaelli, A.

    1994-01-01

    This paper presents a feedback nonlinear control law for a train-like vehicle (TLV) used in nuclear power-station maintenance. The front cart is either manual or automated guided. The rear carts are feedback controlled. The control objective is to ensure that the rear carts track the path produced (on-line) by the front cart. This controller was experimentally tested on the TLV-prototype. (authors). 4 figs., 4 refs

  9. Time delay control of power converters: Mixed frame and stationary-frame variants

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Tang, Y.

    2008-01-01

    In this paper, a mixed-frame and a stationary-frame time delay current controller are proposed for high precision reference tracking and disturbance rejection of power converters. In particular, the controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure can be proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed time delay controllers function by introducing multiple resonant peaks at only those harmonic frequencies...

  10. Analysis of Time Delay Simulation in Networked Control System

    OpenAIRE

    Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun

    2016-01-01

    The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...

  11. Proportional Retarded Controller to Stabilize Underactuated Systems with Measurement Delays: Furuta Pendulum Case Study

    Directory of Open Access Journals (Sweden)

    T. Ortega-Montiel

    2017-01-01

    Full Text Available The design and tuning of a simple feedback strategy with delay to stabilize a class of underactuated mechanical systems with dead time are presented. A linear time-invariant (LTI model with time delay of fourth order and a Proportional Retarded (PR controller are considered. The PR controller is shown as an appealing alternative to the application of observer-based controllers. This paper gives a step forward to obtain a better understanding of the effect of output delays and related phenomena in mechatronic systems, making it possible to design resilient control laws under the presence of uncertain time delays in measurements and obtain an acceptable performance without using a derivative action. The Furuta pendulum is a standard two-degrees-of-freedom benchmark example from the class of underactuated mechanical systems. The configuration under study includes an inherent output delay due to wireless communication used to transmit measurements of the pendulum’s angular position. Our approach offers a constructive design and a procedure based on a combination of root loci and Mikhailov methods for the analysis of stability. Experiments over a laboratory platform are reported and a comparison with a standard linear state feedback control law shows the advantages of the proposed scheme.

  12. Auditory reafferences: The influence of real-time feedback on movement control

    Directory of Open Access Journals (Sweden)

    Christian eKennel

    2015-01-01

    Full Text Available Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with nonartificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  13. Auditory reafferences: the influence of real-time feedback on movement control.

    Science.gov (United States)

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  14. Semiglobal H-infinity State Feedback Control

    DEFF Research Database (Denmark)

    Cromme, Marc; Stoustrup, Jakob

    1996-01-01

    Semi-global set-stabilizing H-infinity controlis a local within some given compact set such that all statetrajectories are bounded inside the set, and are approaching an openloop invariant subset as time approaches infinity. Sufficientconditions for the existence of a continuous state feedback law...

  15. An Industrial Model Based Disturbance Feedback Control Scheme

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Nakazawa, Chikashi; Vinther, Kasper

    2014-01-01

    This paper presents a model based disturbance feedback control scheme. Industrial process systems have been traditionally controlled by using relay and PID controller. However these controllers are affected by disturbances and model errors and these effects degrade control performance. The authors...... propose a new control method that can decrease the negative impact of disturbance and model errors. The control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a conventional PID controller and the disturbance feedback control. The simulation results...

  16. Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system

    International Nuclear Information System (INIS)

    Zhao Junchan; Lu Junan

    2008-01-01

    This paper investigates control and synchronization of a new hyperchaotic system which was proposed by [Chen A, Lu J-A, Lue J, Yu S. Generating hyperchaotic Lue attractor via state feedback control. Physica A 2006;364:103-10]. Firstly, we give different sampled-data feedback control schemes with the variation of system parameter d. Specifically, we only use one controller to drive the system to the origin when d element of (-0.35, 0), and use two controllers if d element of [0, 1.3]. Next, we combine PC method with linear feedback approach to realize synchronization, and derive similar conclusions with varying d. Numerical simulations are also given to validate the proposed approaches

  17. Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems

    International Nuclear Information System (INIS)

    Yan Zhenya; Yu Pei

    2007-01-01

    In this paper, we study chaos (lag) synchronization of a new LC chaotic system, which can exhibit not only a two-scroll attractor but also two double-scroll attractors for different parameter values, via three types of state feedback controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a combination of linear feedback and adaptive feedback controls. As a consequence, ten families of new feedback control laws are designed to obtain global chaos lag synchronization for τ < 0 and global chaos synchronization for τ = 0 of the LC system. Numerical simulations are used to illustrate these theoretical results. Each family of these obtained feedback control laws, including two linear (adaptive) functions or one linear function and one adaptive function, is added to two equations of the LC system. This is simpler than the known synchronization controllers, which apply controllers to all equations of the LC system. Moreover, based on the obtained results of the LC system, we also derive the control laws for chaos (lag) synchronization of another new type of chaotic system

  18. Optimal centralized and decentralized velocity feedback control on a beam

    International Nuclear Information System (INIS)

    Engels, W P; Elliott, S J

    2008-01-01

    This paper considers the optimization of a velocity feedback controller with a collocated force actuator, to minimize the kinetic energy of a simply supported beam. If the beam is excited at a single location, the optimum feedback gain varies with the position of the control system. It is shown that this variation depends partly on the location of the control force relative to the exciting force. If a distributed excitation is assumed, that is random in both time and space, a unique optimum value of the feedback gain can be found for a given control location. The effect of the control location on performance and the optimal feedback gain can then be examined and is found to be limited provided the control locations are not close to the ends of the beam. The optimization can also be performed for a multichannel velocity feedback system. Both a centralized and a decentralized controller are considered. It is shown that the difference in performance between a centralized and a decentralized controller is small, unless the control locations are closely spaced. In this case the centralized controller effectively feeds back a moment proportional to angular velocity as well as a force proportional to a velocity. It is also shown that the optimal feedback gain can be approximated on the basis of a limited model and that similar results can be achieved

  19. Feedback control using only quantum back-action

    International Nuclear Information System (INIS)

    Jacobs, Kurt

    2010-01-01

    The traditional approach to feedback control is to apply deterministic forces to a system by modifying the Hamiltonian. Here we show that finite-dimensional quantum systems can be controlled purely by exploiting the random quantum back-action of a continuous weak measurement. We demonstrate that, quite remarkably, the quantum back-action of such an adaptive measurement is just as effective at controlling quantum systems as traditional feedback.

  20. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    Science.gov (United States)

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. PD-like controller for delayed bilateral teleoperation of wheeled robots

    Science.gov (United States)

    Slawiñski, E.; Mut, V.; Santiago, D.

    2016-08-01

    This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.

  2. Receding Horizon H∞ Control for Input-Delayed Systems

    Directory of Open Access Journals (Sweden)

    Han Woong Yoo

    2012-01-01

    Full Text Available We propose the receding horizon H∞ control (RHHC for input-delayed systems. A new cost function for a finite horizon dynamic game problem is first introduced, which includes two terminal weighting terms parameterized by a positive definite matrix, called a terminal weighing matrix. Secondly, the RHHC is obtained from the solution to the finite dynamic game problem. Thirdly, we propose an LMI condition under which the saddle point value satisfies the nonincreasing monotonicity. Finally, we show the asymptotic stability and H∞ boundedness of the closed-loop system controlled by the proposed RHHC. The proposed RHHC has a guaranteed H∞ performance bound for nonzero external disturbances and the quadratic cost can be improved by adjusting the prediction horizon length for nonzero initial condition and zero disturbance, which is not the case for existing memoryless state-feedback controllers. It is shown through a numerical example that the proposed RHHC is stabilizing and satisfies the infinite horizon H∞ performance bound. Furthermore, the performance in terms of the quadratic cost is shown to be improved by adjusting the prediction horizon length when there exists no external disturbance with nonzero initial condition.

  3. Modeling and simulation of Indus-2 RF feedback control system

    International Nuclear Information System (INIS)

    Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)

  4. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern

    2015-01-01

    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  5. Impulsive control of time-delay systems using delayed impulse and its application to impulsive master-slave synchronization

    International Nuclear Information System (INIS)

    Sun Jitao; Han Qinglong; Jiang Xiefu

    2008-01-01

    This Letter is concerned with impulsive control of a class of nonlinear time-delay systems. Some uniform stability criteria for the closed-loop time-delay system under delayed impulsive control are derived by using piecewise Lyapunov functions. Then the criteria are applied to impulsive master-slave synchronization of some secure communication systems with transmission delays and sample delays under delayed impulsive control. Two numerical examples are given to illustrate the effectiveness of the derived results

  6. Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch.

    Science.gov (United States)

    Ermakov, I V; Tronciu, V Z; Colet, Pere; Mirasso, Claudio R

    2009-05-25

    We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.

  7. Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch

    OpenAIRE

    Ermakov, Ilya; Tronciu, Vasile; Colet, Pere; Mirasso, Claudio R.

    2009-01-01

    We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.

  8. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Effect of feedback on delaying deterioration in quality of compressions during 2 minutes of continuous chest compressions: a randomized manikin study investigating performance with and without feedback

    Directory of Open Access Journals (Sweden)

    Lyngeraa Tobias

    2012-02-01

    Full Text Available Abstract Background Good quality basic life support (BLS improves outcome following cardiac arrest. As BLS performance deteriorates over time we performed a parallel group, superiority study to investigate the effect of feedback on quality of chest compression with the hypothesis that feedback delays deterioration of quality of compressions. Methods Participants attending a national one-day conference on cardiac arrest and CPR in Denmark were randomized to perform single-rescuer BLS with (n = 26 or without verbal and visual feedback (n = 28 on a manikin using a ZOLL AED plus. Data were analyzed using Rescuenet Code Review. Blinding of participants was not possible, but allocation concealment was performed. Primary outcome was the proportion of delivered compressions within target depth compared over a 2-minute period within the groups and between the groups. Secondary outcome was the proportion of delivered compressions within target rate compared over a 2-minute period within the groups and between the groups. Performance variables for 30-second intervals were analyzed and compared. Results 24 (92% and 23 (82% had CPR experience in the group with and without feedback respectively. 14 (54% were CPR instructors in the feedback group and 18 (64% in the group without feedback. Data from 26 and 28 participants were analyzed respectively. Although median values for proportion of delivered compressions within target depth were higher in the feedback group (0-30 s: 54.0%; 30-60 s: 88.0%; 60-90 s: 72.6%; 90-120 s: 87.0%, no significant difference was found when compared to without feedback (0-30 s: 19.6%; 30-60 s: 33.1%; 60-90 s: 44.5%; 90-120 s: 32.7% and no significant deteriorations over time were found within the groups. In the feedback group a significant improvement was found in the proportion of delivered compressions below target depth when the subsequent intervals were compared to the first 30 seconds (0-30 s: 3.9%; 30-60 s: 0.0%; 60-90 s: 0

  10. Decoding Delay Controlled Completion Time Reduction in Instantly Decodable Network Coding

    KAUST Repository

    Douik, Ahmed

    2016-06-27

    For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to act completely against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. This paper investigates the effect of controlling the decoding delay to reduce the completion time below its currently best-known solution in both perfect and imperfect feedback with persistent erasure channels. To solve the problem, the decodingdelay- dependent expressions of the users’ and overall completion times are derived in the complete feedback scenario. Although using such expressions to find the optimal overall completion time is NP-hard, the paper proposes two novel heuristics that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Afterward, the paper extends the study to the imperfect feedback scenario in which uncertainties at the sender affects its ability to anticipate accurately the decoding delay increase at each user. The paper formulates the problem in such environment and derives the expression of the minimum increase in the completion time. Simulation results show the performance of the proposed solutions and suggest that both heuristics achieves a lower mean completion time as compared to the best-known heuristics for the completion time reduction in perfect and imperfect feedback. The gap in performance becomes more significant as the erasure of the channel increases.

  11. Decoding Delay Controlled Completion Time Reduction in Instantly Decodable Network Coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to act completely against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. This paper investigates the effect of controlling the decoding delay to reduce the completion time below its currently best-known solution in both perfect and imperfect feedback with persistent erasure channels. To solve the problem, the decodingdelay- dependent expressions of the users’ and overall completion times are derived in the complete feedback scenario. Although using such expressions to find the optimal overall completion time is NP-hard, the paper proposes two novel heuristics that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Afterward, the paper extends the study to the imperfect feedback scenario in which uncertainties at the sender affects its ability to anticipate accurately the decoding delay increase at each user. The paper formulates the problem in such environment and derives the expression of the minimum increase in the completion time. Simulation results show the performance of the proposed solutions and suggest that both heuristics achieves a lower mean completion time as compared to the best-known heuristics for the completion time reduction in perfect and imperfect feedback. The gap in performance becomes more significant as the erasure of the channel increases.

  12. Delayed sleep phase cases and controls

    Directory of Open Access Journals (Sweden)

    Nievergelt Caroline M

    2008-04-01

    Full Text Available Abstract Background Delayed sleep phase disorder (DSPD is a condition in which patients have difficulty falling asleep before the early morning hours and commonly have trouble awakening before late morning or even early afternoon. Several studies have suggested that variations in habitual bedtime are 40–50% heritable. Methods We recruited a case series of 205 participants, along with 221 controls (DSPD-C with normal sleep, roughly matched for age, gender, and ancestry. A representative sample of San Diego adults recruited some years before was already available to confirm the control group. Both DSPD and DSPD-C provided blood or saliva samples for DNA and completed extensive questionnaires about sleep habits, sleep history, family history, sleep quality, morningness-eveningness traits, depression, mania, and seasonality of symptoms. The DSPD group wore wrist actigraphs for a median of 13.2 days. The representative sample collected previously had undergone actigraphic recordings, from which 48 hours of data were generally available. Results The DSPD and DSPD-C samples showed almost no overlap on morningness-eveningness scores. DSPD cases went to bed and arose about 3 hours later than the DSPD-C and the representative sample. DSPD cases reported more difficulties with sleep, poorer sleep quality, and more depression, but there was no significant difference in a history of mania. DSPD cases reported more family history of late bedtimes, but female DSPD reported that their fathers' bedtimes were later than the fathers of male DSPD. Conclusion These results indicate a DSPD phenotype is familial and associated with unipolar depression.

  13. Relative controllability of nonlinear systems with delays in state and ...

    African Journals Online (AJOL)

    In this work, sufficient conditions are developed for the relative controllability of perturbed nonlinear systems with time varying multiple delays in control with the perturbation function having implicit derivative with delays depending on both state and control variable, using Darbo's fixed points theorem. Journal of the Nigerian ...

  14. Controlling uncertain neutral dynamic systems with delay in control input

    International Nuclear Information System (INIS)

    Park, Ju H.; Kwon, O.

    2005-01-01

    This article gives a novel criterion for the asymptotic stabilization of the zero solutions of a class of neutral systems with delays in control input. By constructing Lyapunov functionals, we have obtained the criterion which is expressed in terms of matrix inequalities. The solutions of the inequalities can be easily solved by efficient convex optimization algorithms. A numerical example is included to illustrate the design procedure of the proposed method

  15. Feedback-linearization and feedback-feedforward decentralized control for multimachine power system

    Energy Technology Data Exchange (ETDEWEB)

    De Tuglie, Enrico [Dipartimento di Ingegneria dell' Ambiente, e per lo Sviluppo Sostenibile - DIASS, Politecnico di Bari, Viale del Turismo 8, 74100 Taranto (Italy); Iannone, Silvio Marcello; Torelli, Francesco [Dipartimento di Elettrotecnica, ed Elettronica - DEE, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy)

    2008-03-15

    In this paper a decentralized nonlinear controller for large-scale power systems is investigated. The proposed controller design is based on the input-output feedback linearization methodology. In order to overcome computational difficulties in adopting such methodology, the overall interconnected nonlinear system, given as n-order, is analyzed as a cascade connection of an n{sub 1}-order nonlinear subsystem and an n{sub 2}-order linear subsystem. The controller design is obtained by applying input-output feedback linearization to the nonlinear subsystem and adopting a tracking control scheme, based on feedback-feedforward technique, for the linear subsystem. In the assumed system model, which is characterised by an interconnected structure between generating units, a decentralised adaptive controller is implemented by decentralizing these constraints. The use of a totally decentralised controller implies a system performance decay with respect to performance when the system is equipped with a centralised controller. Fortunately, the robustness of the proposed controller, based on input-output feedback procedure, guarantees good performance in terms of disturbance even when disturbances are caused by decentralization of interconnection constraints. Test results, provided on the IEEE 30 bus test system, demonstrate the effectiveness and practical applicability of proposed methodology. (author)

  16. Stability and bifurcation of numerical discretization of a second-order delay differential equation with negative feedback

    International Nuclear Information System (INIS)

    Ding Xiaohua; Su Huan; Liu Mingzhu

    2008-01-01

    The paper analyzes a discrete second-order, nonlinear delay differential equation with negative feedback. The characteristic equation of linear stability is solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The existence of local Hopf bifurcations is investigated, and the direction and stability of periodic solutions bifurcating from the Hopf bifurcation of the discrete model are determined by the Hopf bifurcation theory of discrete system. Finally, some numerical simulations are performed to illustrate the analytical results found

  17. Experience with feedback and feedforward for plasma control in ASDEX

    International Nuclear Information System (INIS)

    Schneider, F.

    1983-01-01

    Experimental results of vertical and radial position feedback are shown and discussed. In particular, stability problems of vertical position control are studied in detail. A feedforward procedure for the process computer is described and proved by measurements. (author)

  18. Dynamical control of chaos by slave-master feedback

    International Nuclear Information System (INIS)

    Behnia, S.; Akhshani, A.

    2009-01-01

    Techniques for stabilizing unstable state in nonlinear dynamical systems using small perturbations fall into three general categories: feedback, non-feedback schemes, and a combination of feedback and non-feedback. However, the general problem of finding conditions for creation or suppression of chaos still remains open. We describe a method for dynamical control of chaos. This method is based on a definition of the hierarchy of solvable chaotic maps with dynamical parameter as a control parameter. In order to study the new mechanism of control of chaotic process, Kolmogorov-Sinai entropy of the chaotic map with dynamical parameter based on discussion the properties of invariant measure have been calculated and confirmed by calculation of Lyapunov exponents. The introduced chaotic maps can be used as dynamical control.

  19. Relative null controllability of linear systems with multiple delays in ...

    African Journals Online (AJOL)

    varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...

  20. Feedback control of resistive wall modes in toroidal devices

    International Nuclear Information System (INIS)

    Liu Yueqiang; Bondeson, A.; Gregoratto, D.; Fransson, C.M.; Gribov, Y.; Paccagnella, R.

    2003-01-01

    Feedback of nonaxisymmetric resistive wall modes (RWM) is studied analytically for cylindrical plasmas and computationally for high beta tokamaks. Internal poloidal sensors give superior performance to radial sensors, and this is explained by the distribution of poles and residues for the transfer functions. A single poloidal array of feedback coils allows robust control with respect to variations in plasma pressure, current and rotation velocity. The control analysis is applied to advanced scenarios for ITER. Studies are also shown of configurations with multiple poloidal coils and of feedback systems for nonresonant MHD instabilities in reversed field pinches. (author)

  1. Wide-beam sensors for controlling dual-delay systems

    Science.gov (United States)

    Edwards, J. B.; Twemlow, J. K.

    1982-09-01

    A class of dual delay feedback systems of open loop transfer function G(s) = k exp(-Xs)/l - exp(-Ws) is shown to be unstable if ratio X/W is noninteger. By means of z-transform techniques it is shown that, by using a feedback transducer that senses over a substantial distance either side of its central axis, closed-loop stability may be restored. Such transducers, termed widebeam sensors, include transmission, backscatter and natural radiation types as well as electromechanical conveyor belt weighers. Designing transducers for very narrow beams may not be desirable from the overall system viewpoint.

  2. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    Science.gov (United States)

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  3. Singlet oxygen feedback delayed fluorescence of protoporphyrin IX in organic solutions.

    Science.gov (United States)

    Vinklárek, Ivo S; Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-04-12

    Delayed fluorescence (DF) of protoporphyrin IX (PpIX) has been recently proposed as a tool for monitoring of mitochondrial oxygen tension in vivo as well as for observation of the effectiveness of photodynamic therapy (PDT) [E. G. Mik, Anesth. Analg., 2013, 117, 834-346; F. Piffaretti et al., J. Biomed. Opt., 2012, 17, 115007]. However, the efficiency of the mechanism of thermal activation (E-type DF), which was considered in the papers, is limited due to a large energy gap between the first excited singlet and the first triplet state of PpIX at room or body temperatures. Moreover, the energy gap is roughly equal to other porphyrinoid photosensitizers that generate DF mostly through the Singlet Oxygen Feedback-Induced mechanism (SOFDF) under certain conditions [M. Scholz and R. Dědic, Singlet Oxygen: Applications in Biosciences and Nanosciences, 2016, vol. 2, pp. 63-81]. The mechanisms of delayed fluorescence of PpIX dissolved either in dimethylformamide (DMF) or in the mixture of DMF with ethylene glycol (EG) were investigated at atmospheric partial pressure of oxygen by means of a simultaneous time-resolved detection of 1 O 2 phosphorescence and PpIX DF which makes a direct comparison of the kinetics and lifetimes of both the luminescence channels possible. Samples of PpIX (100 μM) exhibit concave DF kinetics, which is a typical footprint of the SOFDF mechanism. The dramatic decrease in the DF intensity after adding a selective 1 O 2 quencher sodium azide (NaN 3 , 10 mM) proves that >90% of DF is indeed generated through SOFDF. Moreover, the analysis of the DF kinetics in the presence of NaN 3 implies that the second significant mechanism of DF generation is the triplet-triplet annihilation (P-type DF). The bimolecular mechanism of DF was further confirmed by the decrease of the DF intensity in the more viscous mixture DMF/EG and by the increase of the ratio of DF to the prompt fluorescence (PF) intensity with the increasing excitation intensity. These results

  4. Rotating and standing waves in a diffractive nonlinear optical system with delayed feedback under O(2) Hopf bifurcation

    Science.gov (United States)

    Budzinskiy, S. S.; Razgulin, A. V.

    2017-08-01

    In this paper we study one-dimensional rotating and standing waves in a model of an O(2)-symmetric nonlinear optical system with diffraction and delay in the feedback loop whose dynamics is governed by a system of coupled delayed parabolic equation and linear Schrodinger-type equation. We elaborate a two-step approach: transition to a rotating coordinate system to obtain the profiles of the waves as small parameter expansions and the normal form technique to study their qualitative dynamic behavior and stability. Theoretical results stand in a good agreement with direct computer simulations presented.

  5. Adaptive control of chaotic continuous-time systems with delay

    Science.gov (United States)

    Tian, Yu-Chu; Gao, Furong

    1998-06-01

    A simple delay system governed by a first-order differential-delay equation may behave chaotically, but the conditions for the system to have such behaviors have not been well recognized. In this paper, a set of rules is postulated first for the conditions for the delay system to display chaos. A model-reference adaptive control scheme is then proposed to control the chaotic system state to converge to an arbitrarily given reference trajectory with certain and uncertain system parameters. Numerical examples are given to analyze the chaotic behaviors of the delay system and to demonstrate the effectiveness of the proposed adaptive control scheme.

  6. Orbit stability and feedback control in synchrotron radiation rings

    International Nuclear Information System (INIS)

    Yu, L.H.

    1989-01-01

    Stability of the electron orbit is essential for the utilization of a low emittance storage ring as a high brightness radiation source. We discuss the development of the measurement and feedback control of the closed orbit, with emphasis on the activities as the National Synchrotron Light Source of BNL. We discuss the performance of the beam position detectors in use and under development: the PUE rf detector, split ion chamber detector, photo-emission detector, solid state detector, and the graphite detector. Depending on the specific experiments, different beamlines require different tolerances on the orbit motion. Corresponding to these different requirements, we discuss two approaches to closed orbit feedback: the global and local feedback systems. Then we describe a new scheme for the real time global feedback by implementing a feedback system based upon a harmonic analysis of both the orbit movements and the correction magnetic fields. 14 refs., 6 figs., 2 tabs

  7. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan

    2016-03-01

    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  8. A multipoint feedback control system for scanned focussed ultrasound hyperthermia

    International Nuclear Information System (INIS)

    Johnson, C.; Kress, R.; Roemer, R.; Hynynen, K.

    1987-01-01

    A multipoint feedback control system has been developed and tested for use with a scanned focussed ultrasound hyperthermia system. Extensive in-vivo tests (using a perfused organ model) have been made to evaluate the basic performance characteristics of the feedback control scheme for control of temperature in perfused media. The results of these tests are presented and compared with the predictions of a simulation routine. The control scheme was also tested in vivo using dogs' thighs and kidneys. Thigh experiments show the control scheme responds well to the affects of vasodilation and is able to maintain the targeted temperatures. In kidney experiments, where the rate of perfusion was controllable, the power adjusting algorithm successfully maintained uniform temperature distributions across regions of varying rates of perfusion. As a conclusion, the results show that this multipoint feedback controller scheme induces uniform temperature distributions when used with scanned focussed ultrasound systems

  9. Outage probability of dual-hop partial relay selection with feedback delay in the presence of interference

    KAUST Repository

    Al-Qahtani, Fawaz S.

    2011-09-01

    In this paper, we investigate the outage performance of a dual-hop relaying systems with partial relay selection and feedback delay. The analysis considers the case of Rayleigh fading channels when the relaying station as well as the destination undergo mutually independent interfering signals. Particularly, we derive the cumulative distribution function (c.d.f.) of a new type of random variable involving sum of multiple independent exponential random variables, based on which, we present closed-form expressions for the exact outage probability of a fixed amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols. Numerical results are provided to illustrate the joint effect of the delayed feedback and co-channel interference on the outage probability. © 2011 IEEE.

  10. Virtual grasping: closed-loop force control using electrotactile feedback.

    Science.gov (United States)

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  11. Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Nikola Jorgovanovic

    2014-01-01

    Full Text Available Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously “unseen” objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  12. Time-delayed autosynchronous swarm control.

    Science.gov (United States)

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  13. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution

    Science.gov (United States)

    Li, Jimeng; Li, Ming; Zhang, Jinfeng

    2017-08-01

    Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.

  14. A robust control strategy for a class of distributed network with transmission delays

    DEFF Research Database (Denmark)

    Vahid Naghavi, S.; A. Safavi, A.; Khooban, Mohammad Hassan

    2016-01-01

    Purpose The purpose of this paper is to concern the design of a robust model predictive controller for distributed networked systems with transmission delays. Design/methodology/approach The overall system is composed of a number of interconnected nonlinear subsystems with time-varying transmission...... as an optimization problem of a “worst-case” objective function over an infinite moving horizon. Findings The aim is to propose control synthesis approach that depends on nonlinearity and time varying delay characteristics. The MPC problem is represented in a time varying delayed state feedback structure....... Then the synthesis sufficient condition is provided in the form of a linear matrix inequality (LMI) optimization and is solved online at each time instant. In the rest, an LMI-based decentralized observer-based robust model predictive control strategy is proposed. Originality/value The authors develop RMPC...

  15. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....

  16. Laser cooling in a feedback-controlled optical shaker

    International Nuclear Information System (INIS)

    Vilensky, Mark Y.; Averbukh, Ilya Sh.; Prior, Yehiam

    2006-01-01

    We explore the prospects of optical shaking, a recently suggested generic approach to laser cooling of neutral atoms and molecules. Optical shaking combines elements of Sisyphus cooling and of stochastic cooling techniques and is based on feedback-controlled interaction of particles with strong nonresonant laser fields. The feedback loop guarantees a monotonous energy decrease without a loss of particles. We discuss two types of feedback algorithms and provide an analytical estimation of their cooling rate. We study the robustness of optical shaking against noise and establish minimal stability requirements for the lasers. The analytical predictions are in a good agreement with the results of detailed numerical simulations

  17. Outer synchronization of complex networks with internal delay and coupling delay via aperiodically intermittent pinning control

    Science.gov (United States)

    Zhang, Chuan; Wang, Xingyuan; Wang, Chunpeng; Xia, Zhiqiu

    This paper concerns the outer synchronization problem between two complex delayed networks via the method of aperiodically intermittent pinning control. Apart from previous works, internal delay and coupling delay are both involved in this model, and the designed intermittent controllers can be aperiodic. The main work in this paper can be summarized as follows: First, two cases of aperiodically intermittent control with constant gain and adaptive gain are implemented, respectively. The intermittent control and pinning control are combined to reduce consumptions further. Then, based on the Lyapunov stability theory, synchronization protocols are given by strict derivation. Especially, the designed controllers are indeed simple and valid in application of theory to practice. Finally, numerical examples put the proposed control methods to the test.

  18. Linear-control-based synchronization of coexisting attractor networks with time delays

    International Nuclear Information System (INIS)

    Yun-Zhong, Song

    2010-01-01

    This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, but also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme. (general)

  19. Feedback control of nonlinear quantum systems: a rule of thumb.

    Science.gov (United States)

    Jacobs, Kurt; Lund, Austin P

    2007-07-13

    We show that in the regime in which feedback control is most effective - when measurements are relatively efficient, and feedback is relatively strong - then, in the absence of any sharp inhomogeneity in the noise, it is always best to measure in a basis that does not commute with the system density matrix than one that does. That is, it is optimal to make measurements that disturb the state one is attempting to stabilize.

  20. Feedback linearizing control of a MIMO power system

    Science.gov (United States)

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  1. Force Feedback Control Method of Active Tuned Mass Damper

    Directory of Open Access Journals (Sweden)

    Xiuli Wang

    2017-01-01

    Full Text Available Active tuned mass dampers as vibration-control devices are widely used in many fields for their good stability and effectiveness. To improve the performance of such dampers, a control method based on force feedback is proposed. The method offers several advantages such as high-precision control and low-performance requirements for the actuator, as well as not needing additional compensators. The force feedback control strategy was designed based on direct-velocity feedback. The effectiveness of the method was verified in a single-degree-of-freedom system, and factors such as damping effect, required active force, actuator stroke, and power consumption of the damper were analyzed. Finally, a simulation study was performed by configuring a main complex elastic-vibration-damping system. The results show that the method provides effective control over modal resonances of multiple orders of the system and improves its dynamics performance.

  2. Self-Controlled Feedback for a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Wolf Peter

    2011-12-01

    Full Text Available Self-controlled augmented feedback enhances learning of simple motor tasks. Thereby, learners tend to request feedback after trials that were rated as good by themselves. Feedback after good trials promotes positive reinforcement, which enhances motor learning. The goal of this study was to investigate when naïve learners request terminal visual feedback in a complex motor task, as conclusions drawn on simple tasks can hardly be transferred to complex tasks. Indeed, seven of nine learners stated to have intended to request feedback predominantly after good trials, but in contrast to their intention, kinematic analysis showed that feedback was rather requested randomly (23% after good, 44% after intermediate, 33% after bad trials. Moreover, requesting feedback after good trials did not correlate with learning success. It seems that self-estimation of performance in complex tasks is challenging. As a consequence, learners might have focused on certain movement aspects rather than on the overall movement. Further studies should assess the current focus of the learner in detail to gain more insight in self-estimation capabilities during complex motor task learning.

  3. Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances

    Science.gov (United States)

    Juang, Jer-Nan; Eure, Kenneth W.

    1998-01-01

    Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.

  4. Comparison of Meaning and Graphophonemic Feedback Strategies for Guided Reading Instruction of Children with Language Delays

    Science.gov (United States)

    Kouri, Theresa A.; Selle, Carrie A.; Riley, Sarah A.

    2006-01-01

    Purpose: Guided reading is a common practice recommended for children in the early stages of literacy development. While experts agree that oral reading facilitates literacy skills, controversy exists concerning which corrective feedback strategies are most effective. The purpose of this study was to compare feedback procedures stemming from 2…

  5. Feedback control of thermal instability by compression and decompression

    International Nuclear Information System (INIS)

    Okamoto, M.; Hirano, K.; Amano, T.; Ohnishi, M.

    1983-01-01

    Active feedback control of the fusion output power by means of plasma compression-decompression is considered with the purpose of achieving steady-state plasma ignition in a tokamak. A simple but realistic feedback control system is modelled and zero-dimensional energy balance equations are solved numerically by taking into account the errors in the measurements, a procedure that is necessary for the feedback control. It is shown that the control can stabilize the thermal runaway completely and maintain steady-state operation without any significant change in major radius or thermal output power. Linear stability is analysed for a general type of scaling law, and the dependence of the stability conditions on the scaling law is studied. The possibility of load-following operation is considered. Finally, a one-dimensional analysis is applied to the large-aspect-ratio case. (author)

  6. On spatial spillover in feedforward and feedback noise control

    Science.gov (United States)

    Xie, Antai; Bernstein, Dennis

    2017-03-01

    Active feedback noise control for rejecting broadband disturbances must contend with the Bode integral constraint, which implies that suppression over some frequency range gives rise to amplification over another range at the performance microphone. This is called spectral spillover. The present paper deals with spatial spillover, which refers to the amplification of noise at locations where no microphone is located. A spatial spillover function is defined, which is valid for both feedforward and feedback control with scalar and vector control inputs. This function is numerically analyzed and measured experimentally. Obstructions are introduced in the acoustic space to investigate their effect on spatial spillover.

  7. Event-triggered output feedback control for distributed networked systems.

    Science.gov (United States)

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  9. The Role of Locus of Control and Feedback on Performance of ...

    African Journals Online (AJOL)

    This study examined Students' Locus of Control and Teacher Feedback using a 2x3 factorial to measure the performance of thirty-six (36) primary school students utilizing the two locus of control types and three levels of teacher feedback: no feedback, attributional feedback, and progressive feedback. No significant ...

  10. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    Science.gov (United States)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  11. Delayed, but not immediate, feedback after multiple-choice questions increases performance on a subsequent short-answer, but not multiple-choice, exam: evidence for the dual-process theory of memory.

    Science.gov (United States)

    Sinha, Neha; Glass, Arnold Lewis

    2015-01-01

    Three experiments, two performed in the laboratory and one embedded in a college psychology lecture course, investigated the effects of immediate versus delayed feedback following a multiple-choice exam on subsequent short answer and multiple-choice exams. Performance on the subsequent multiple-choice exam was not affected by the timing of the feedback on the prior exam; however, performance on the subsequent short answer exam was better following delayed than following immediate feedback. This was true regardless of the order in which immediate versus delayed feedback was given. Furthermore, delayed feedback only had a greater effect than immediate feedback on subsequent short answer performance following correct, confident responses on the prior exam. These results indicate that delayed feedback cues a student's prior response and increases subsequent recollection of that response. The practical implication is that delayed feedback is better than immediate feedback during academic testing.

  12. Stability Analysis of Networked Control Systems with Random Time Delays and Packet Dropouts Modeled by Markov Chains

    Directory of Open Access Journals (Sweden)

    Li Qiu

    2013-01-01

    unified Markov jump model. The random time delays and packet dropouts existed in feedback communication link are modeled by two independent Markov chains; the resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays. Sufficient conditions of the stochastic stability for NCSs is obtained by constructing a novel Lyapunov functional, and the mode-dependent output feedback controller design method is presented based on linear matrix inequality (LMI technique. A numerical example is given to illustrate the effectiveness of the proposed method.

  13. Control of District Heating System with Flow-dependent Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Ledesma, Jorge Val; Kallesøe, Carsten Skovmose

    2017-01-01

    All flow systems are subject to transport delays, which are governed by the flow rates in the system. When the flow rates themselves are control inputs, the system becomes subject to input-dependent state delays, which poses significant theoretical problems. In an earlier paper, we proposed...

  14. Reducing feedback requirements of workload control

    NARCIS (Netherlands)

    Henrich, Peter; Land, Martin; van der Zee, Durk; Gaalman, Gerard

    2004-01-01

    The workload control concept is known as a robust shop floor control concept. It is especially suited for the dynamic environment of small- and medium-sized enterprises (SMEs) within the make-to-order sector. Before orders are released to the shop floor, they are collected in an ‘order pool’. To

  15. Iterative feedback tuning of wind turbine controllers

    NARCIS (Netherlands)

    van Solingen, E.; Mulders, S.P.; van Wingerden, J.W.

    2017-01-01

    Traditionally, wind turbine controllers are designed using first principles or linearized or identified models. The aim of this paper is to show that with an automated, online, and model-free tuning strategy, wind turbine control performance can be significantly increased. For this purpose,

  16. Semiglobal H-infty state feedback control

    DEFF Research Database (Denmark)

    Cromme, Marc

    1997-01-01

    semi-global set-stabilizing H-infty control is local H-infty control within some given compact set O such that all state trajectories are bounded inside O, and are approaching an open loop invariant set S subset O as t -> infinity. Sufficient conditions for the existance of a continuous statefeed...

  17. Feedback control of plasma position in the HL-1 tokamak

    International Nuclear Information System (INIS)

    Yuan Baoshan; Jiao Boliang; Yang Kailing

    1991-01-01

    In the HL-1 tokamak with a thick copper shell, the control of plasma position is successfully performed by a feedback-feedforward system with dual mode regulator and the equilibrium field coils outside the shell. The plasma position can be controlled within ±2 mm in both vertical and horizontal directions under the condition that the iron core of transformer is not saturated

  18. Sensory feedback in artificial control of human mobility

    NARCIS (Netherlands)

    Veltink, Petrus H.

    1999-01-01

    Artificial motor control systems may reduce the handicap of motor impaired individuals. Sensors are essential components in feedback control of these systems and in the information exchange with the user. The objective of this paper is to give an overview of the applications of sensors in the

  19. MATLAB simulation for an experimental setup of digital feedback control

    International Nuclear Information System (INIS)

    Zheng Lifang; Liu Songqiang

    2005-01-01

    This paper describes the digital feedback simulation using MATLAB for an experimental accelerator control setup. By analyzing the plant characteristic in time-domain and frequency-domain, a guideline for design of digital filter and PID controller is derived. (authors)

  20. Stabilising falling liquid film flows using feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Alice B., E-mail: alice.thompson1@imperial.ac.uk; Gomes, Susana N.; Pavliotis, Grigorios A.; Papageorgiou, Demetrios T. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

  1. Force control in the absence of visual and tactile feedback

    NARCIS (Netherlands)

    Mugge, W.; Abbink, D.A.; Schouten, Alfred Christiaan; van der Helm, F.C.T.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Motor control tasks like stance or object handling require sensory feedback from proprioception, vision and touch. The distinction between tactile and proprioceptive sensors is not frequently made in dynamic motor control tasks, and if so, mostly based on signal latency. We previously found that

  2. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Science.gov (United States)

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  3. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Directory of Open Access Journals (Sweden)

    Jinxiang Dong

    2008-07-01

    Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.

  4. Quaternion Feedback Control for Rigid-body Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...

  5. Euclidean null controllability of linear systems with delays in state ...

    African Journals Online (AJOL)

    Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...

  6. Low-complexity controllers for time-delay systems

    CERN Document Server

    Özbay, Hitay; Bonnet, Catherine; Mounier, Hugues

    2014-01-01

    This volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically ...

  7. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  8. Linearizing feedforward/feedback attitude control

    Science.gov (United States)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  9. Adaptive Feedfoward Feedback Control Framework, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for the suppression of the aircraft's structural vibration to increase the resilience of the flight control law in the presence of the...

  10. Time-optimal feedback control for linear systems

    International Nuclear Information System (INIS)

    Mirica, S.

    1976-01-01

    The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

  11. Neural Feedback Scheduling of Real-Time Control Tasks

    OpenAIRE

    Xia, Feng; Tian, Yu-Chu; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    Many embedded real-time control systems suffer from resource constraints and dynamic workload variations. Although optimal feedback scheduling schemes are in principle capable of maximizing the overall control performance of multitasking control systems, most of them induce excessively large computational overheads associated with the mathematical optimization routines involved and hence are not directly applicable to practical systems. To optimize the overall control performance while minimi...

  12. Chaos synchronization in autonomous chaotic system via hybrid feedback control

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang

    2009-01-01

    This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.

  13. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    Science.gov (United States)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  14. Robust stability bounds for multi-delay networked control systems

    Science.gov (United States)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  15. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....

  16. Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller

    International Nuclear Information System (INIS)

    Chen Shihua; Wang Feng; Wang Changping

    2004-01-01

    We present a systematic design procedure to synchronize a class of chaotic systems in a so-called strict-feedback form based on back-stepping procedure. This approach needs only a single controller to realize synchronization no matter how many dimensions the chaotic system contains. Furthermore, we point out that the method does not work for general strict-feedback chaotic systems, for instance, Lorenz system. Therefore, we propose three kinds of synchronization schemes for Lorenz system using the Lyapunov function method. All the three schemes avoid including divergence factor as in Ref. [Chaos, Solitons and Fractals 16 (2003) 37]. Especially in the last two schemes, we need only one state variable in controller, which has important significance in chaos synchronization used for communication purposes. Finally numerical simulations are provided to show the effectiveness and feasibility of the developed methods

  17. Regulating vacuum pump speed with feedback control

    International Nuclear Information System (INIS)

    Ludington, D.C.; Aneshansley, D.J.; Pellerin, R.; Guo, F.

    1992-01-01

    Considerable energy is wasted by the vacuum pump/motor on dairy farms. The output capacity (m 3 /min or cfm) of the vacuum pump always exceeds the capacity needed to milk cows and wash pipelines. Vacuum pumps run at full speed and load regardless of actual need for air. Excess air is admitted through a controller. Energy can be saved from electrical demand reduced by regulating vacuum pump speed according to air based on air usage. An adjustable speed drive (ASD) on the motor and controlled based upon air usage, can reduce the energy used by the vacuum pump. However, the ASD unit tested could not maintain vacuum levels within generally accepted guidelines when air usage changed. Adding a high vacuum reserve and a dual vacuum controller between the vacuum pump and the milking pipeline brought vacuum stability within guidelines. The ASD/dual vacuum system can reduce energy consumption and demand by at least 50 percent during milking and provide better vacuum stability than conventional systems. Tests were not run during washing cycles. Using 1990 costs and only the energy saved during milking, the simple payback on investment in new equipment for a 5 hp motor, speed controller and vacuum regulator would be about 5 years

  18. A stochastic optimal feedforward and feedback control methodology for superagility

    Science.gov (United States)

    Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.

    1992-01-01

    A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.

  19. Control for delayed bilateral teleoperation of a quadrotor.

    Science.gov (United States)

    Slawiñski, E; Santiago, D; Mut, V

    2017-11-01

    This paper proposes a cascade control scheme for delayed bilateral teleoperation of a quadcopter. The strategy transforms a 6D real quadcopter to an easy-to-teleoperate 3D virtual quadcopter. The scheme is formed by a P+d plus PID controller for each dof. The analysis based on Lyapunov theory gets as result the way to set the control parameters depending on the magnitude of the asymmetric time delays (forward and backward delays). This technic aims to reach stability, simplicity and good performance in practice. Besides, experimental tests about delayed bilateral teleoperation of a quadcopter including the proposed control scheme are shown in order to evaluate the system performance. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Euclidean null controllability of perturbed infinite delay systems with ...

    African Journals Online (AJOL)

    Euclidean null controllability of perturbed infinite delay systems with limited control. ... Open Access DOWNLOAD FULL TEXT ... The results are established by placing conditions on the perturbation function which guarantee that, if the linear control base system is completely Euclidean controllable, then the perturbed system ...

  1. Theory of feedback controlled brain stimulations for Parkinson's disease

    Science.gov (United States)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  2. Feedback control architecture and the bacterial chemotaxis network.

    Directory of Open Access Journals (Sweden)

    Abdullah Hamadeh

    2011-05-01

    Full Text Available Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  3. Stability of digital feedback control systems

    Directory of Open Access Journals (Sweden)

    Larkin Eugene

    2018-01-01

    Lag time characteristics are used for investigation of stability of linear systems. Digital PID controller is divided onto linear part, which is realized with a soft and pure lag unit, which is realized with both hardware and software. With use notions amplitude and phase margins, condition for stability of system functioning are obtained. Theoretical results are confirm with computer experiment carried out on the third-order system.

  4. Effect of feedback on delaying deterioration in quality of compressions during 2 minutes of continuous chest compressions

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias S; Hjortrup, Peter Buhl; Wulff, Nille B

    2012-01-01

    delays deterioration of quality of compressions. METHODS: Participants attending a national one-day conference on cardiac arrest and CPR in Denmark were randomized to perform single-rescuer BLS with (n = 26) or without verbal and visual feedback (n = 28) on a manikin using a ZOLL AED plus. Data were...... analyzed using Rescuenet Code Review. Blinding of participants was not possible, but allocation concealment was performed. Primary outcome was the proportion of delivered compressions within target depth compared over a 2-minute period within the groups and between the groups. Secondary outcome...... was the proportion of delivered compressions within target rate compared over a 2-minute period within the groups and between the groups. Performance variables for 30-second intervals were analyzed and compared. RESULTS: 24 (92%) and 23 (82%) had CPR experience in the group with and without feedback respectively. 14...

  5. Feedback control of edge turbulence in a tokamak

    International Nuclear Information System (INIS)

    Kan, Zhai; Yi-zhi, Wen; Chang-xuan, Yu; Wan-dong, Liu; Chao, Wang; Ge, Zhuang; Kan, Zhai; Zhi-Zhan, Yu

    1997-01-01

    An experiment on feedback control of edge turbulence has been undertaken on the KT-5C tokamak. The results indicate that the edge turbulence could be suppressed or enhanced depending on the phase shift of the feedback network. In a typical case of 90 degree phase shift feedback, the turbulence amplitudes of both T e and n e were reduced by about 25% when the gain of the feedback network was 15. Correspondingly the radial particle flux decreased to about 75% level of the background. Through bispectral analysis it is found that there exists a substantial nonlinear coupling between various modes comprised in edge turbulence, especially in the frequency range from about 10 kHz to 100 kHz, which contains the large part of the edge turbulence energy in KT-5C tokamak. In particular, by actively controlling the turbulence amplitude using feedback, a direct experimental evidence of the link between the nonlinear wave-wave coupling over the whole spectrum in turbulence, the saturated turbulence amplitude, and the radial particle flux was provided. copyright 1997 The American Physical Society

  6. Feedback Control Design for a Walking Athlete Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vu Trien Nguyen

    2017-06-01

    Full Text Available In the paper, authors generalized the dynamic model of an athlete robot with elastic legs through Lagrange method. Then, a feed-back controller was designed to control the robot through a step-walking. The research just focused on stance phase – the period that robot just touched one leg on the ground. The simulation results showed that system worked well with the designed controller.

  7. Feedback brake distribution control for minimum pitch

    Science.gov (United States)

    Tavernini, Davide; Velenis, Efstathios; Longo, Stefano

    2017-06-01

    The distribution of brake forces between front and rear axles of a vehicle is typically specified such that the same level of brake force coefficient is imposed at both front and rear wheels. This condition is known as 'ideal' distribution and it is required to deliver the maximum vehicle deceleration and minimum braking distance. For subcritical braking conditions, the deceleration demand may be delivered by different distributions between front and rear braking forces. In this research we show how to obtain the optimal distribution which minimises the pitch angle of a vehicle and hence enhances driver subjective feel during braking. A vehicle model including suspension geometry features is adopted. The problem of the minimum pitch brake distribution for a varying deceleration level demand is solved by means of a model predictive control (MPC) technique. To address the problem of the undesirable pitch rebound caused by a full-stop of the vehicle, a second controller is designed and implemented independently from the braking distribution in use. An extended Kalman filter is designed for state estimation and implemented in a high fidelity environment together with the MPC strategy. The proposed solution is compared with the reference 'ideal' distribution as well as another previous feed-forward solution.

  8. Nonlinear Feedback Control of the Rotary Inverted Pendulum

    Science.gov (United States)

    2017-06-01

    Feedback linearization has advantages over linearized control because of the ability to operate over a wider range of motion than the small...1sin 2 sin 2 sin 02 2 sin( )1 sin 2 2 xb J x J x x m Ll x x x D x gm l xJ x b f f x

  9. Feedback control for magnetic island suppression in tokamaks

    NARCIS (Netherlands)

    Hennen, B.A.

    2011-01-01

    A real-time feedback control system has been developed that finds, tracks, suppresses and/or stabilizes resistive magnetic instabilities in a nuclear fusion plasma. In a tokamak, magnetic fields confine a fusion plasma in a topology of toroidally nested magnetic surfaces. The power produced by the

  10. Kinematic feedback control laws for generating natural arm movements

    International Nuclear Information System (INIS)

    Kim, Donghyun; Jang, Cheongjae; Park, Frank C

    2014-01-01

    We propose a stochastic optimal feedback control law for generating natural robot arm motions. Our approach, inspired by the minimum variance principle of Harris and Wolpert (1998 Nature 394 780–4) and the optimal feedback control principles put forth by Todorov and Jordan (2002 Nature Neurosci. 5 1226–35) for explaining human movements, differs in two crucial respects: (i) the endpoint variance is minimized in joint space rather than Cartesian hand space, and (ii) we ignore the dynamics and instead consider only the second-order differential kinematics. The feedback control law generating the motions can be straightforwardly obtained by backward integration of a set of ordinary differential equations; these equations are obtained exactly, without any linear–quadratic approximations. The only parameters to be determined a priori are the variance scale factors, and for both the two-DOF planar arm and the seven-DOF spatial arm, a table of values is constructed based on the given initial and final arm configurations; these values are determined via an optimal fitting procedure, and consistent with existing findings about neuromuscular motor noise levels of human arm muscles. Experiments conducted with a two-link planar arm and a seven-DOF spatial arm verify that the trajectories generated by our feedback control law closely resemble human arm motions, in the sense of producing nearly straight-line hand trajectories, having bell-shaped velocity profiles, and satisfying Fitts Law. (paper)

  11. Synchronization of spatiotemporal chaotic systems by feedback control

    International Nuclear Information System (INIS)

    Lai, Y.; Grebogi, C.

    1994-01-01

    We demonstrate that two identical spatiotemporal chaotic systems can be synchronized by (1) linking one or a few of their dynamical variables, and (2) applying a small feedback control to one of the systems. Numerical examples using the diffusively coupled logistic map lattice are given. The effect of noise and the limitation of the technique are discussed

  12. Feedback control and adaptive control of the energy resource chaotic system

    International Nuclear Information System (INIS)

    Sun Mei; Tian Lixin; Jiang Shumin; Xu Jun

    2007-01-01

    In this paper, the problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh-Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results

  13. Time-delay-induced amplitude death in chaotic map lattices and its avoiding control

    International Nuclear Information System (INIS)

    Konishi, Keiji; Kokame, Hideki

    2007-01-01

    The present Letter deals with amplitude death in chaotic map lattices coupled with a diffusive delay connection. It is shown that if a fixed point of the individual map satisfies an odd-number property, then amplitude death never occurs at the fixed point for any number of the maps, coupling strength, and delay time. From the viewpoint of engineering applications that utilize oscillatory behavior in coupled oscillators, death would be undesirable. This Letter proposes a feedback controller, which is added to each chaotic map, such that the fixed point of the individual map satisfies the odd-number property. Accordingly, it is guaranteed that death never occurs in the controlled chaotic-map-lattice. It is verified that the proposed controller works well in numerical simulations

  14. Feedback Control of a Class of Nonholonomic Hamiltonian Systems

    DEFF Research Database (Denmark)

    Sørensen, Mathias Jesper

    Feedback control of nonholonomic systems has always been problematic due to the nonholonomic constraints that limit the space of possible system velocities. This property is very basic, and Brockett proved that a nonholonomic system cannot be asymptotically stabilized by a time-invariant smooth...... turns out to be useful when stabilizing the nonholonomic system. If the system is properly actuated it is possible to asymptotically stabilize the primary part of the configuration coordinates via a passive energy shaping and damping injecting feedback. The feedback is smooth and time......-invariant, but since it does not asymptotically stabilize the secondary part of the configuration coordinates, it does not violate Brockett’s obstruction. The results fromthe general class of nonholonomicHamiltonian systems with kinematic inputs are applied to a real implementation of a four wheel steered, four wheel...

  15. Control of delay dominant systems with costs related to switching

    DEFF Research Database (Denmark)

    Deng, Honglian; Larsen, Lars Finn Sloth; Stoustrup, Jakob

    2010-01-01

    The objective of this paper is to extend a novel low complexity method for optimizing switch control developed by the authors earlier to work with delay dominant systems and demonstrate that the method works in practice with a refrigeration test system. The extended method solves switching problems...... controller with fixed bounds shows that the optimizing switch control outperforms the baseline....

  16. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    Science.gov (United States)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.

  17. Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.

    Science.gov (United States)

    Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei

    2018-06-01

    This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.

  18. Output feedback control of a quadrotor UAV using neural networks.

    Science.gov (United States)

    Dierks, Travis; Jagannathan, Sarangapani

    2010-01-01

    In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.

  19. Feedback control of chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Lin Chaung; Leou, K.-C.; Shiao, K.-M.

    2005-01-01

    Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2 2 factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained

  20. Non-predictor control of a class of feedforward nonlinear systems with unknown time-varying delays

    Science.gov (United States)

    Koo, Min-Sung; Choi, Ho-Lim

    2016-08-01

    This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.

  1. Dynamic Evaluation of LCL-type Grid-Connected Inverters with Different Current Feedback Control Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Li, Zipeng; Guerrero, Josep M.

    2015-01-01

    typical current feedback control schemes in LCL grid-connected system are analyzed and compared systematically. Analysis in s-domain take the effect of the digital computation and modulation delay into account. The stability analysis is presented by root locus in the discrete domain, the optimal values......Proportional-resonant (PR) compensator and LCL filter becomes a better choice in grid-connected inverter system with high performance and low costs. However, the resonance phenomenon caused by LCL filter affect the system stability significantly. In this paper, the stability problem of three...

  2. Real-time control systems: feedback, scheduling and robustness

    Science.gov (United States)

    Simon, Daniel; Seuret, Alexandre; Sename, Olivier

    2017-08-01

    The efficient control of real-time distributed systems, where continuous components are governed through digital devices and communication networks, needs a careful examination of the constraints arising from the different involved domains inside co-design approaches. Thanks to the robustness of feedback control, both new control methodologies and slackened real-time scheduling schemes are proposed beyond the frontiers between these traditionally separated fields. A methodology to design robust aperiodic controllers is provided, where the sampling interval is considered as a control variable of the system. Promising experimental results are provided to show the feasibility and robustness of the approach.

  3. Exponential Antisynchronization Control of Stochastic Memristive Neural Networks with Mixed Time-Varying Delays Based on Novel Delay-Dependent or Delay-Independent Adaptive Controller

    Directory of Open Access Journals (Sweden)

    Minghui Yu

    2017-01-01

    Full Text Available The global exponential antisynchronization in mean square of memristive neural networks with stochastic perturbation and mixed time-varying delays is studied in this paper. Then, two kinds of novel delay-dependent and delay-independent adaptive controllers are designed. With the ability of adapting to environment changes, the proposed controllers can modify their behaviors to achieve the best performance. In particular, on the basis of the differential inclusions theory, inequality theory, and stochastic analysis techniques, several sufficient conditions are obtained to guarantee the exponential antisynchronization between the drive system and response system. Furthermore, two numerical simulation examples are provided to the validity of the derived criteria.

  4. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Directory of Open Access Journals (Sweden)

    Maryam M Shanechi

    Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  5. Experience feedback of computerized controlled nuclear power plants

    International Nuclear Information System (INIS)

    Poizat, F.

    2004-01-01

    The N4 step of French PWR-type nuclear power plants is characterized by an instrumentation and control system entirely computerized (operation procedures including normal and accidental operation). Four power plants of this type (Chooz and Civaux sites) of 1450 MWe each were connected to the power grid between August 1996 and December 1999. The achievement of this program make it possible and necessary to carry out an experience feedback about the development, successes and difficulties encountered in order to draw out some lessons for future realizations. This is the aim of this article: 1 - usefulness and difficulties of such an experience feedback: evolution of instrumentation and control systems, necessary cautions; 2 - a successful computerized control: checking of systems operation, advantages, expectations; 3 - efficiency of computerized systems: demonstration of operation safety, profitability; 4 - conclusions and interrogations: system approach instead of 'micro-software' approach, commercial or 'made to measure' products, contract agreement with a supplier, when and how upgrading. (J.S.)

  6. Quantized Passive Dynamic Output Feedback Control with Actuator Failure

    Directory of Open Access Journals (Sweden)

    Zu-Xin Li

    2016-01-01

    Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.

  7. Full State Feedback Control for Virtual Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Tillay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimal control commands to the DERs of the VPP.

  8. Autonomous Congestion Control in Delay-Tolerant Networks

    Science.gov (United States)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  9. A Robust Longitudinal Control Strategy of Platoons under Model Uncertainties and Time Delays

    Directory of Open Access Journals (Sweden)

    Na Chen

    2018-01-01

    Full Text Available Automated vehicles are designed to free drivers from driving tasks and are expected to improve traffic safety and efficiency when connected via vehicle-to-vehicle communication, that is, connected automated vehicles (CAVs. The time delays and model uncertainties in vehicle control systems pose challenges for automated driving in real world. Ignoring them may render the performance of cooperative driving systems unsatisfactory or even unstable. This paper aims to design a robust and flexible platooning control strategy for CAVs. A centralized control method is presented, where the leader of a CAV platoon collects information from followers, computes the desired accelerations of all controlled vehicles, and broadcasts the desired accelerations to followers. The robust platooning is formulated as a Min-Max Model Predictive Control (MM-MPC problem, where optimal accelerations are generated to minimize the cost function under the worst case, where the worst case is taken over the possible models. The proposed method is flexible in such a way that it can be applied to both homogeneous platoon and heterogeneous platoon with mixed human-driven and automated controlled vehicles. A third-order linear vehicle model with fixed feedback delay and stochastic actuator lag is used to predict the platoon behavior. Actuator lag is assumed to vary randomly with unknown distributions but a known upper bound. The controller regulates platoon accelerations over a time horizon to minimize a cost function representing driving safety, efficiency, and ride comfort, subject to speed limits, plausible acceleration range, and minimal net spacing. The designed strategy is tested by simulating homogeneous and heterogeneous platoons in a number of typical and extreme scenarios to assess the system stability and performance. The test results demonstrate that the designed control strategy for CAV can ensure the robustness of stability and performance against model uncertainties

  10. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  11. COA based robust output feedback UPFC controller design

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-12-15

    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.

  12. State-feedback control of fuzzy discrete-event systems.

    Science.gov (United States)

    Lin, Feng; Ying, Hao

    2010-06-01

    In a 2002 paper, we combined fuzzy logic with discrete-event systems (DESs) and established an automaton model of fuzzy DESs (FDESs). The model can effectively represent deterministic uncertainties and vagueness, as well as human subjective observation and judgment inherent to many real-world problems, particularly those in biomedicine. We also investigated optimal control of FDESs and applied the results to optimize HIV/AIDS treatments for individual patients. Since then, other researchers have investigated supervisory control problems in FDESs, and several results have been obtained. These results are mostly derived by extending the traditional supervisory control of (crisp) DESs, which are string based. In this paper, we develop state-feedback control of FDESs that is different from the supervisory control extensions. We use state space to describe the system behaviors and use state feedback in control. Both disablement and enforcement are allowed. Furthermore, we study controllability based on the state space and prove that a controller exists if and only if the controlled system behavior is (state-based) controllable. We discuss various properties of the state-based controllability. Aside from novelty, the proposed new framework has the advantages of being able to address a wide range of practical problems that cannot be effectively dealt with by existing approaches. We use the diabetes treatment as an example to illustrate some key aspects of our theoretical results.

  13. Efficient method for time-domain simulation of the linear feedback systems containing fractional order controllers.

    Science.gov (United States)

    Merrikh-Bayat, Farshad

    2011-04-01

    One main approach for time-domain simulation of the linear output-feedback systems containing fractional-order controllers is to approximate the transfer function of the controller with an integer-order transfer function and then perform the simulation. In general, this approach suffers from two main disadvantages: first, the internal stability of the resulting feedback system is not guaranteed, and second, the amount of error caused by this approximation is not exactly known. The aim of this paper is to propose an efficient method for time-domain simulation of such systems without facing the above mentioned drawbacks. For this purpose, the fractional-order controller is approximated with an integer-order transfer function (possibly in combination with the delay term) such that the internal stability of the closed-loop system is guaranteed, and then the simulation is performed. It is also shown that the resulting approximate controller can effectively be realized by using the proposed method. Some formulas for estimating and correcting the simulation error, when the feedback system under consideration is subjected to the unit step command or the unit step disturbance, are also presented. Finally, three numerical examples are studied and the results are compared with the Oustaloup continuous approximation method. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Stabilization of wave equations with variable coefficient and delay in the dynamical boundary feedback

    Directory of Open Access Journals (Sweden)

    Dandan Guo

    2017-08-01

    Full Text Available In this article we consider the boundary stabilization of a wave equation with variable coefficients. This equation has an acceleration term and a delayed velocity term on the boundary. Under suitable geometric conditions, we obtain the exponential decay for the solutions. Our proof relies on the geometric multiplier method and the Lyapunov approach.

  15. MRI feedback temperature control for focused ultrasound surgery

    International Nuclear Information System (INIS)

    Vanne, A; Hynynen, K

    2003-01-01

    A temperature feedback controller routine using a physical model for temperature evolution was developed for use with focused ultrasound surgery. The algorithm for the controller was a multi-input, single-output linear quadratic regulator (LQR) derived from Pennes' bioheat transfer equation. The controller was tested with simulated temperature data that had the same characteristics as those obtained with magnetic resonance imaging (MRI). The output of the controller was the appropriate power level to be used by the transducer. Tissue parameters estimated prior to the simulated treatments were used to determine the controller parameters. The controller performance was simulated in three dimensions with varying system parameters, and sufficient temperature tracking was achieved. The worst-case overshoot was 7 deg. C and the steady-state error was 5 deg. C. The simulated behaviour of the controller suggests satisfactory performance and that the controller may be useful in controlling the power output during MRI-monitored ultrasound surgery

  16. Negative derivative feedback for vibration control of flexible structures

    International Nuclear Information System (INIS)

    Cazzulani, G; Resta, F; Ripamonti, F; Zanzi, R

    2012-01-01

    In this paper a resonant control technique, called negative derivative feedback (NDF), for structural vibration control is presented. Resonant control is a class of control logics, based on the modal approach, which calculates the control action through a dynamic compensator in order to achieve a damping increase on a certain number of system modes. The NDF compensator is designed to work as a band-pass filter, cutting off the control action far from the natural frequencies associated with the controlled modes and reducing the so-called spillover effect. In the paper the proposed control logic is compared both theoretically and experimentally with the most common state-of-the-art resonant control techniques. (paper)

  17. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    Science.gov (United States)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  18. Masked and unmasked error-related potentials during continuous control and feedback

    Science.gov (United States)

    Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.

    2018-06-01

    The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the

  19. Decoherence control in open quantum systems via classical feedback

    International Nuclear Information System (INIS)

    Ganesan, Narayan; Tarn, Tzyh-Jong

    2007-01-01

    In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations

  20. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  1. Improved Position Sensor for Feedback Control of Levitation

    Science.gov (United States)

    Hyers, Robert; Savage, Larry; Rogers, Jan

    2004-01-01

    An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.

  2. Theoretical model for ultracold molecule formation via adaptive feedback control

    OpenAIRE

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie

    2006-01-01

    We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than ...

  3. Feedback-Controlled LED Photobioreactor for Photophysiological Studies of Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Stolyar, Sergey; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.

    2013-04-09

    A custom photobioreactor (PBR) was designed to enable automatic light adjustments using computerized feedback control. A black anodized aluminum enclosure, constructed to surround the borosilicate reactor vessel, prevents the transmission of ambient light and serves as a mount for arrays of light-emitting diodes (LEDs). The high-output LEDs provide narrow-band light of either 630 or 680 nm for preferential excitation of the cyanobacterial light-harvesting pigments, phycobilin or chlorophyll a, respectively. Custom developed software BioLume provides automatic control of optical properties and a computer feedback loop can automatically adjust the incident irradiance as necessary to maintain a fixed transmitted light through the culture, based on user-determined set points. This feedback control serves to compensate for culture dynamics which have optical effects, (e.g., changing cell density, pigment adaptations) and thus can determine the appropriate light conditions for physiological comparisons or to cultivate light-sensitive strains, without prior analyses. The LED PBR may also be controlled as a turbidostat, using a feedback loop to continuously adjust the rate of media-dilution based on the transmitted light measurements, with a fast and precise response. This cultivation system gains further merit as a high-performance analytical device, using non-invasive tools (e.g., dissolved gas sensors, online mass spectrometry) to automate real-time measurements, thus permitting unsupervised experiments to search for optimal growth conditions, to monitor physiological responses to perturbations, as well as to quantitate photophysiological parameters using an in situ light-saturation response routine.

  4. Accelerator and feedback control simulation using neural networks

    International Nuclear Information System (INIS)

    Nguyen, D.; Lee, M.; Sass, R.; Shoaee, H.

    1991-05-01

    Unlike present constant model feedback system, neural networks can adapt as the dynamics of the process changes with time. Using a process model, the ''Accelerator'' network is first trained to simulate the dynamics of the beam for a given beam line. This ''Accelerator'' network is then used to train a second ''Controller'' network which performs the control function. In simulation, the networks are used to adjust corrector magnetics to control the launch angle and position of the beam to keep it on the desired trajectory when the incoming beam is perturbed. 4 refs., 3 figs

  5. Practical Loop-Shaping Design of Feedback Control Systems

    Science.gov (United States)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the

  6. Anticontrol of Hopf bifurcation and control of chaos for a finance system through washout filters with time delay.

    Science.gov (United States)

    Zhao, Huitao; Lu, Mengxia; Zuo, Junmei

    2014-01-01

    A controlled model for a financial system through washout-filter-aided dynamical feedback control laws is developed, the problem of anticontrol of Hopf bifurcation from the steady state is studied, and the existence, stability, and direction of bifurcated periodic solutions are discussed in detail. The obtained results show that the delay on price index has great influences on the financial system, which can be applied to suppress or avoid the chaos phenomenon appearing in the financial system.

  7. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration.

    Science.gov (United States)

    Parrell, Benjamin; Agnew, Zarinah; Nagarajan, Srikantan; Houde, John; Ivry, Richard B

    2017-09-20

    The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control. SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of

  8. Control Rod Driveline Reactivity Feedback Model for Liquid Metal Reactors

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Chang, Won-Pyo; Cho, Chung-Ho; Lee, Yong-Bum

    2008-01-01

    The thermal expansion of the control rod drivelines (CRDL) is one important passive mitigator under all unprotected accident conditions in the metal and oxide cores. When the CRDL are washed by hot sodium in the coolant outlet plenum, the CRDL thermally expands and causes the control rods to be inserted further down into the active core region, providing a negative reactivity feedback. Since the control rods are attached to the top of the vessel head and the core attaches to the bottom of the reactor vessel (RV), the expansion of the vessel wall as it heats will either lower the core or raise the control rods supports. This contrary thermal expansion of the reactor vessel wall pulls the control rods out of the core somewhat, providing a positive reactivity feedback. However this is not a safety factor early in a transient because its time constant is relatively large. The total elongated length is calculated by subtracting the vessel expansion from the CRDL expansion to determine the net control rod expansion into the core. The system-wide safety analysis code SSC-K includes the CRDL/RV reactivity feedback model in which control rod and vessel expansions are calculated using single-nod temperatures for the vessel and CRDL masses. The KALIMER design has the upper internal structures (UIS) in which the CRDLs are positioned outside the structure where they are exposed to the mixed sodium temperature exiting the core. A new method to determine the CRDL expansion is suggested. Two dimensional hot pool thermal hydraulic model (HP2D) originally developed for the analysis of the stratification phenomena in the hot pool is utilized for a detailed heat transfer between the CRDL mass and the hot pool coolant. However, the reactor vessel wall temperature is still calculated by a simple lumped model

  9. Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics

    Science.gov (United States)

    Belavkin, V. P.

    2009-02-01

    A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  10. Effect of State Feedback Coupling and System Delays on the Transient Performance of Stand-Alone VSI with LC Output Filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    The influence of state feedback coupling in the dynamics performance of power converters for stand-alone microgrids is investigated. Computation and PWM delays are the main factors that limit the achievable bandwidth of current regulators in digital implementations. In particular, the performance...... of state feedback decoupling is degraded because of these delays. Two decoupling techniques to improve the transient response of the system are investigated, named non-ideal and ideal capacitor voltage decoupling respectively. In particular, the latter solution consists in leading the capacitor voltage...... on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. A design methodology for the voltage loop, that considers the closed loop transfer functions developed for the inner loop, is also...

  11. Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2012-01-01

    This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.

  12. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  13. Integration of advanced feedback control techniques on Tore Supra

    International Nuclear Information System (INIS)

    Barana, O.; Basiuk, V.; Bucalossi, J.

    2006-01-01

    Tore Supra tokamak plays an important role in development and optimisation of steady-state scenarios. Its real-time feedback control system is a key instrument to improve plasma performances. For this reason, new feedback control schemes have been recently put into operation and others are being developed. This work deals with the implementation in Tore Supra of these advanced algorithms, reports the technical details and shows the first positive results that have been achieved. For instance, encouraging results have been obtained in the field of profiles control. Controls of the full width at half maximum of the suprathermal electrons local emission profile at very low loop voltage and of the maximum of the thermal Larmor radius, normalised to the characteristic length of the electron temperature gradient, have been attained. While the first quantity can be directly associated to the current profile, the second one characterises the pressure profile. A new feedback control algorithm, employed to maximise a given quantity by means of a '' Search Optimisation '' technique, has been effectively tested too: the hard X-ray width has been maximised with simultaneous use of lower hybrid heating power and wave parallel index as actuators. These and other promising results, whose detailed description will be given in the article, have been obtained thanks to the real-time availability of several diagnostic systems. Using a shared memory network as communication layer, they send their measurements to a central computing unit that, in its turn, dispatches the necessary requirements to the actuators. A key issue is the possibility to integrate these controls in such a way as to cope with different requests at the same time. As an example, simultaneous control of the plasma current by means of the lower hybrid heating power, of the loop voltage by means of the poloidal field system and of the hard X-ray width through the lower hybrid heating phase shift has been successfully

  14. Distributed estimation and control for mobile sensor networks with coupling delays.

    Science.gov (United States)

    Su, Housheng; Chen, Xuan; Chen, Michael Z Q; Wang, Lei

    2016-09-01

    This paper deals with the issue of distributed estimation and control for mobile sensor networks with coupling delays. Based on the Kalman-Consensus filter and the flocking algorithm, all mobile sensors move to a target to increase the quality of gathered data, and achieve consensus on the estimation values of the target in the presence of time-delay and noises. By applying an effective cascading Lyapunov method and matrix theory, stability analysis is carried out. Furthermore, a necessary condition for the convergence is presented via the boundary conditions of feedback coefficients. Some numerical examples are provided to validate the effectiveness of theoretical results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Design of feedback controller for TCP/AQM networks

    Directory of Open Access Journals (Sweden)

    Sukant Kishoro Bisoy

    2017-02-01

    Full Text Available In this paper, we propose a novel proportional-differential-type feedback controller called Novel-PD as new active queue management (AQM to regulate the queue length with small oscillation. It measures the current queue length and uses the current queue length and differential error signals to adjust packet drop probability dynamically. We provide control theoretic analysis of system stability and develop guidelines to select control gain parameters of Novel-PD. The design of Novel-PD for TCP/AQM system is given in details. NS2 is used for conducting extensive simulation. The proposed controller is compared with random early detection (RED, random exponential marking (REM, proportional integrator (PI and proportional derivative (PD controller. Result shows that, Novel-PD is stable and achieves faster response in dynamic environments where number of TCP connections, bottleneck capacity, round trip time (RTT keeps changing. The proposed controller outperforms other AQM schemes.

  16. Auto-control experiments on DIDO using discontinuous feedback

    International Nuclear Information System (INIS)

    Lawrence, L.A.J.

    1959-12-01

    Experiments on auto-controlling the reactor DIDO are described and the equipment design discussed in some detail. The experiments are carried out to show the suitability of an on/off type of control for the maintenance of: (a) a constant flux level in the presence of noise. (b) constant period during power change. The controlling signals stem from measurement of neutron flux computed to give deviation from demanded power, and period respectively. These signals are fed to a D.C. amplifier with variable deadbang whose output is used to control relays, these in turn control the coarse control arms by means of three-phase motors. The system is designed on the basis of locus diagrams, a conventional non-linear technique being used to handle the relay performance. Calculation of the reactor transfer function at high and low power respectively shows that the stability margin is not appreciably affected by the inherent thermodynamic feedback in the reactor core. (author)

  17. Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels

    CERN Document Server

    Bielawski, S; Szwaj, C

    2005-01-01

    Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3].

  18. Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.

    Science.gov (United States)

    Pan, Yongping; Yu, Haoyong

    2017-06-01

    This brief presents a biomimetic hybrid feedback feedforward neural-network learning control (NNLC) strategy inspired by the human motor learning control mechanism for a class of uncertain nonlinear systems. The control structure includes a proportional-derivative controller acting as a feedback servo machine and a radial-basis-function (RBF) NN acting as a feedforward predictive machine. Under the sufficient constraints on control parameters, the closed-loop system achieves semiglobal practical exponential stability, such that an accurate NN approximation is guaranteed in a local region along recurrent reference trajectories. Compared with the existing NNLC methods, the novelties of the proposed method include: 1) the implementation of an adaptive NN control to guarantee plant states being recurrent is not needed, since recurrent reference signals rather than plant states are utilized as NN inputs, which greatly simplifies the analysis and synthesis of the NNLC and 2) the domain of NN approximation can be determined a priori by the given reference signals, which leads to an easy construction of the RBF-NNs. Simulation results have verified the effectiveness of this approach.

  19. A Feedback Optimal Control Algorithm with Optimal Measurement Time Points

    Directory of Open Access Journals (Sweden)

    Felix Jost

    2017-02-01

    Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.

  20. Semantically Enhanced Online Configuration of Feedback Control Schemes.

    Science.gov (United States)

    Milis, Georgios M; Panayiotou, Christos G; Polycarpou, Marios M

    2018-03-01

    Recent progress toward the realization of the "Internet of Things" has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms.

  1. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  2. Hybrid viscous damper with filtered integral force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan; Brodersen, Mark L.

    2016-01-01

    In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...... is controlled by a filtered integral force feedback strategy, where the main feature is the filter, which is designed to render a damper force that in a phase-plane representation operates in front of the corresponding damper velocity. It is demonstrated that in the specific parameter regime where the damper...

  3. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  4. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback

    Science.gov (United States)

    Wang, Zhaoyou; Safavi-Naeini, Amir H.

    2017-07-01

    A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon-photon interactions mediated by mechanical motion may be within experimental reach.

  5. A time-delayed method for controlling chaotic maps

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2005-01-01

    Combining the repetitive learning strategy and the optimality principle, this Letter proposes a time-delayed method to control chaotic maps. This method can effectively stabilize unstable periodic orbits within chaotic attractors in the sense of least mean square. Numerical simulations of some chaotic maps verify the effectiveness of this method

  6. Delays at signalised intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2010-01-01

    In this paper we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under Heavy Traffic (HT) conditions,

  7. A current controlled variable delay superconducting transmission line

    International Nuclear Information System (INIS)

    Anlage, S.M.; Snortland, H.J.; Beasley, M.R.

    1989-01-01

    The authors present a device concept for a current-controlled variable delay for superconducting transmission line. The device makes use of the change in kinetic inductance of a superconducting transmission line under the application of a DC bias current. The relevant materials parameters and several promising superconducting materials have been identified

  8. Delays at signalized intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2012-01-01

    In this paper, we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under heavy traffic (HT) conditions.

  9. Delays at signalised intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2012-01-01

    In this paper, we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under heavy traffic (HT) conditions.

  10. Design and Implementation of Output Feedback Control for Piezo Actuated Structure Using Embedded System

    Directory of Open Access Journals (Sweden)

    R.Maheswari

    2008-06-01

    Full Text Available This paper presents the design of periodic output feedback control using state feedback gain to control the vibration of piezo actuated cantilever beam. The effectiveness of the controller is evaluated through simulation and experimentally by exciting the structure at resonance. Real time implementation of the controller is done using microcontroller. The closed loop eigen values of the system with periodic output feedback and state feedback are identical.

  11. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells.

    Science.gov (United States)

    Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F

    2015-01-07

    Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    Science.gov (United States)

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control

  13. Finite-Dimensional Representations for Controlled Diffusions with Delay

    Energy Technology Data Exchange (ETDEWEB)

    Federico, Salvatore, E-mail: salvatore.federico@unimi.it [Università di Milano, Dipartimento di Economia, Management e Metodi Quantitativi (Italy); Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr [Université Paris Diderot, Laboratoire de Probabilités et Modèles Aléatoires (France)

    2015-02-15

    We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.

  14. Closed loop kinesthetic feedback for postural control rehabilitation.

    Science.gov (United States)

    Vérité, Fabien; Bachta, Wael; Morel, Guillaume

    2014-01-01

    Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels. This allows implementing rehabilitation exercises where the patients control their posture with the help of additional sensory inputs. In this paper, a closed loop control of the Center-Of-Pressure (CoP) based on kinesthetic feedback is proposed as a new form of biofeedback. The motion of a one Degree of Freedom (DoF) translational device, lightly touched by the patient's forefinger, is servoed to the patient's CoP position extracted from the measurements of a force plate on which he/she stands. As a result, the patient's CoP can be controllably displaced. A first set of experiments is used to prove the feasibility of this closed-loop control under ideal conditions favoring the perception of the kinesthetic feedback, while the subject is totally unaware of the context. A second set of experiments is then proposed to evaluate the robustness of this approach under experimental conditions that are more realistic with regards to the clinical context of a rehabilitation program involving biofeedback-based exercises.

  15. Laser Soldering of Rat Skin Using a Controlled Feedback System

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Nourbakhsh

    2009-03-01

    Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.

  16. Aeroassisted orbital maneuvering using Lyapunov optimal feedback control

    Science.gov (United States)

    Grantham, Walter J.; Lee, Byoung-Soo

    1987-01-01

    A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.

  17. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  18. Ion anomalous transport and feedback control. Final technical report, September 1, 1987 - August 31, 1997

    International Nuclear Information System (INIS)

    Sen, A.K.

    1998-01-01

    This final report is comprised of the following six progress reports: Ion Temperature Gradient Instability and Anomalous Transport, July 1989; Ion Temperature Gradient Instability and Anomalous Transport, August 1991; Ion Temperature Gradient Instability and Anomalous Transport, July 1993; Ion Anomalous Transport and Feedback Control, May 1994; Ion Anomalous Transport and Feedback Control, April 1995; and Ion Anomalous Transport and Feedback Control, December 1997

  19. Comparison between hybrid feedforward-feedback, feedforward, and feedback structures for active noise control of fMRI noise.

    Science.gov (United States)

    Reddy, Rajiv M; Panahi, Issa M S

    2008-01-01

    The performance of FIR feedforward, IIR feedforward, FIR feedback, hybrid FIR feedforward--FIR feedback, and hybrid IIR feedforward - FIR feedback structures for active noise control (ANC) are compared for an fMRI noise application. The filtered-input normalized least squares (FxNLMS) algorithm is used to update the coefficients of the adaptive filters in all these structures. Realistic primary and secondary paths of an fMRI bore are used by estimating them on a half cylindrical acrylic bore of 0.76 m (D)x1.52 m (L). Detailed results of the performance of the ANC system are presented in the paper for each of these structures. We find that the IIR feedforward structure produces most of the performance improvement in the hybrid IIR feedforward - FIR feedback structure and adding the feedback structure becomes almost redundant in the case of fMRI noise.

  20. On Tuning PI Controllers for Integrating Plus Time Delay Systems

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2010-10-01

    Full Text Available Some analytical results concerning PI controller tuning based on integrator plus time delay models are worked out and presented. A method for obtaining PI controller parameters, Kp=alpha/(k*tau, and, Ti=beta*tau, which ensures a given prescribed maximum time delay error, dtau_max, to time delay, tau, ratio parameter delta=dau_max/tau, is presented. The corner stone in this method, is a method product parameter, c=alpha*beta. Analytical relations between the PI controller parameters, Ti, and, Kp, and the time delay error parameter, delta, is presented, and we propose the setting, beta=c/a*(delta+1, and, alpha=a/(delta+1, which gives, Ti=c/a*(delta+1*tau, and Kp=a/((delta+1*k*tau, where the parameter, a, is constant in the method product parameter, c=alpha*beta. It also turns out that the integral time, Ti, is linear in, delta, and the proportional gain, Kp, inversely proportional to, delta+1. For the original Ziegler Nichols (ZN method this parameter is approximately, c=2.38, and the presented method may e.g., be used to obtain new modified ZN parameters with increased robustness margins, also documented in the paper.

  1. Decentralized H∞ Control of Interconnected Systems with Time-varying Delays

    Directory of Open Access Journals (Sweden)

    Amal Zouhri

    2017-01-01

    Full Text Available This paper focuses on the problem of delay dependent stability/stabilization of interconnected systems with time-varying delays. The approach is based on a new Lyapunov-Krasovskii functional. A decentralized delay-dependent stability analysis is performed to characterize linear matrix inequalities (LMIs based on the conditions under which every local subsystem of the linear interconnected delay system is asymptotically stable. Then we design a decentralized state-feedback stabilization scheme such that the family of closedloop feedback subsystems enjoys the delay-dependent asymptotic stability for each subsystem. The decentralized feedback gains are determined by convex optimization over LMIs. All the developed results are tested on a representative example and compared with some recent previous ones.

  2. Asymmetric positive feedback loops reliably control biological responses.

    Science.gov (United States)

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  3. A differential-delay control for ramped magnet current

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Electrical Engineering; Olsen, R. [Brookhaven National Lab., Upton, NY (United States)

    1992-11-01

    A differential-delay control system has been designed and implemented for the main dipole magnet power supply of the booster ring at the National Synchrotron Light Source at Brookhaven National Lab. The control algorithm was implemented on a floating-point digital signal processor; in tests, the use of digital signal-processing techniques gave a factor of ten improvement in the tracking response time, together with a modest improvement in tracking accuracy.

  4. A differential-delay control for ramped magnet current

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Electrical Engineering); Olsen, R. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    A differential-delay control system has been designed and implemented for the main dipole magnet power supply of the booster ring at the National Synchrotron Light Source at Brookhaven National Lab. The control algorithm was implemented on a floating-point digital signal processor; in tests, the use of digital signal-processing techniques gave a factor of ten improvement in the tracking response time, together with a modest improvement in tracking accuracy.

  5. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-04-20

    We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagram dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.

  6. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  7. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  8. Design of Gain Scheduling Control Using State Derivative Feedback

    Directory of Open Access Journals (Sweden)

    Lázaro Ismael Hardy Llins

    2017-01-01

    Full Text Available In recent years, the study of systems subject to time-varying parameters has awakened the interest of many researchers. The gain scheduling control strategy guarantees a good performance for systems of this type and also is considered as the simplest to deal with problems of this nature. Moreover, the class of systems in which the state derivative signals are easier to obtain than the state signals, such as in the control for reducing vibrations in a mechanical system, has gained an important hole in control theory. Considering those ideas, we propose sufficient conditions via LMI for designing a gain scheduling controller using state derivative feedback. The D-stability methodology was used for improving the performance of the transitory response. Practical implementation in an active suspension system and comparison with other methods validates the efficiency of the proposed strategy.

  9. Decoupling suspension controller based on magnetic flux feedback.

    Science.gov (United States)

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  10. Proportional feedback control of laminar flow over a hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Il [Dept. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of); Son, Dong Gun [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)

    2016-08-15

    In the present study, we perform a proportional feedback control of laminar flow over a hemisphere at Re = 300 to reduce its lift fluctuations by attenuating the strength of the vortex shedding. As a control input, blowing/suction is distributed on the surface of hemisphere before the separation, and its strength is linearly proportional to the transverse velocity at a sensing location in the centerline of the wake. The sensing location is determined based on a correlation function between the lift force and the time derivative of sensing velocity. The optimal proportional gains for the proportional control are obtained for the sensing locations considered. The present control successfully attenuates the velocity fluctuations at the sensing location and three dimensional vertical structures in the wake, resulting in the reduction of lift fluctuations of hemisphere.

  11. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  12. Thalidomide for control delayed vomiting in cancer patients receiving chemotherapy

    International Nuclear Information System (INIS)

    Han, Z.; Sun, X.; Du, X.

    2016-01-01

    To explore the efficacy and safety of thalidomide for the treatment of delayed vomiting, induced by chemotherapy in cancer patients. Study Design: Randomized, double-blind controlled study. Place and Duration of Study: The Oncology Department of Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China, from January 2012 to January 2014. Methodology: A total of 78 cancer patients, who had delayed vomiting observed from 24 hours to 1 week after chemotherapy, were included in the study. Patients were divided in a treatment group (40 patients, 51.28%) and a control group (38 patients, 48.71%). The treatment group received thalidomide at an oral dose of 100 mg per night; 50 mg was added daily up to a dose of 200 mg per night, if the curative effect was suboptimal and the medicine was tolerated. Both the treatment and the control groups received a drip of 10 mg azasetron 30 minutes before chemotherapy. The control group only proportions of antiemetic effects and adverse reactions were compared using the ?2 test. Antiemetic effects and adverse reactions were assessed from Odds Ratios (OR) with 95% Confidence Intervals(95% CI). Results: The effective control rate of delayed vomiting in the treatment group was significantly higher than that in the control group (?2=5.174, p=0.023). No significant difference was found between the two groups in other adverse effects of chemotherapy. Karnofsky scores or the overall self-evaluation of the patients (p>0.05). Conclusion: Thalidomide can effectively control the delayed vomiting of cancer patients receiving chemotherapy and the adverse reactions of the agent can be tolerated.

  13. Acquisition and Retention of Esperanto: The Case for Error Correction and Immediate Feedback

    Science.gov (United States)

    Brosvic, Gary M.; Epstein, Michael L.; Dihoff, Roberta E.; Cook, Michael J.

    2006-01-01

    Participants completed 5 laboratory examinations during which the number of responses permitted (1 response, up to 4 responses) and the timing of feedback (no feedback control: Scantron form; delayed feedback: end-of-test, 24-hr delay; immediate feedback: assistant, response form) were manipulated. Participants completed a 100-item cumulative…

  14. Feedback Control in Quantum Optics: An Overview of Experimental Breakthroughs and Areas of Application

    OpenAIRE

    Alessio Serafini

    2012-01-01

    We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback str...

  15. Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-01-01

    Full Text Available Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to derive and not suitable for practical application, a digital inverse model is established based on the input and output data of a piezoelectric actuator. Moreover, to mitigate the compensation error of the feedforward control, a feedback control scheme is implemented using different types of control algorithms in terms of PID control, fuzzy control, and fuzzy PID control. Extensive simulation studies are carried out using the three kinds of control systems. Comparative investigation reveals that the fuzzy PID control system with feedforward compensation is capable of providing quicker response and better control accuracy than the other two ones. It provides a promising way of precision control for piezoelectric actuator.

  16. Optimal control for parabolic-hyperbolic system with time delay

    International Nuclear Information System (INIS)

    Kowalewski, A.

    1985-07-01

    In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)

  17. Single-temperature quantum engine without feedback control.

    Science.gov (United States)

    Yi, Juyeon; Talkner, Peter; Kim, Yong Woon

    2017-08-01

    A cyclically working quantum-mechanical engine that operates at a single temperature is proposed. Its energy input is delivered by a quantum measurement. The functioning of the engine does not require any feedback control. We analyze work, heat, and the efficiency of the engine for the case of a working substance that is governed by the laws of quantum mechanics and that can be adiabatically compressed and expanded. The obtained general expressions are exemplified for a spin in an adiabatically changing magnetic field and a particle moving in a potential with slowly changing shape.

  18. On Optimal Feedback Control for Stationary Linear Systems

    International Nuclear Information System (INIS)

    Russell, David L.

    2010-01-01

    We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.

  19. Modular networks with delayed coupling: Synchronization and frequency control

    Science.gov (United States)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  20. Designing a stable feedback control system for blind image deconvolution.

    Science.gov (United States)

    Cheng, Shichao; Liu, Risheng; Fan, Xin; Luo, Zhongxuan

    2018-05-01

    Blind image deconvolution is one of the main low-level vision problems with wide applications. Many previous works manually design regularization to simultaneously estimate the latent sharp image and the blur kernel under maximum a posterior framework. However, it has been demonstrated that such joint estimation strategies may lead to the undesired trivial solution. In this paper, we present a novel perspective, using a stable feedback control system, to simulate the latent sharp image propagation. The controller of our system consists of regularization and guidance, which decide the sparsity and sharp features of latent image, respectively. Furthermore, the formational model of blind image is introduced into the feedback process to avoid the image restoration deviating from the stable point. The stability analysis of the system indicates the latent image propagation in blind deconvolution task can be efficiently estimated and controlled by cues and priors. Thus the kernel estimation used for image restoration becomes more precision. Experimental results show that our system is effective on image propagation, and can perform favorably against the state-of-the-art blind image deconvolution methods on different benchmark image sets and special blurred images. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Optimal design of PID controller for second order plus time delay systems

    International Nuclear Information System (INIS)

    Srivastava, S.; Misra, A.; Kumar, Y.; Thakur, S.K.

    2015-01-01

    It is well known that the effect of time delay in the forward path of control loop deteriorates the system performance and at the same time makes it difficult to compute the optimum PID controller parameters of the feedback control systems. PI/PID controller is most popular and used more than 80% in industries as well as in accelerators lab due to its simple structure and appropriate robustness. At VECC we have planned to use a PID controller for the speed control of DC motor which will be used to adjust the solenoid coil position of the 2.45 GHz microwave ion source for optimum performance during the online operation. In this paper we present a comparison of the two methods which have been used to design the optimum PID controller parameters: one by optimizing different time domain performance indices such as lAE, ITSE etc. and other using analytical formulation based on Linear Quadratic Regulator (LQR). We have performed numerical simulations using MATLAB and compare the closed loop time response performance measures using the PID parameters obtained from above mentioned two methods on a second order transfer function of a DC motor with time delay. (author)

  2. Neural network based approach for tuning of SNS feedback and feedforward controllers

    International Nuclear Information System (INIS)

    Kwon, Sung-Il; Prokop, Mark S.; Regan, Amy H.

    2002-01-01

    The primary controllers in the SNS low level RF system are proportional-integral (PI) feedback controllers. To obtain the best performance of the linac control systems, approximately 91 individual PI controller gains should be optimally tuned. Tuning is time consuming and requires automation. In this paper, a neural network is used for the controller gain tuning. A neural network can approximate any continuous mapping through learning. In a sense, the cavity loop PI controller is a continuous mapping of the tracking error and its one-sample-delay inputs to the controller output. Also, monotonic cavity output with respect to its input makes knowing the detailed parameters of the cavity unnecessary. Hence the PI controller is a prime candidate for approximation through a neural network. Using mean square error minimization to train the neural network along with a continuous mapping of appropriate weights, optimally tuned PI controller gains can be determined. The same neural network approximation property is also applied to enhance the adaptive feedforward controller performance. This is done by adjusting the feedforward controller gains, forgetting factor, and learning ratio. Lastly, the automation of the tuning procedure data measurement, neural network training, tuning and loading the controller gain to the DSP is addressed.

  3. Genetic test feedback with weight control advice: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Meisel Susanne F

    2012-12-01

    Full Text Available Abstract Background Genetic testing for risk of weight gain is already available over the internet despite uncertain benefits and concerns about adverse emotional or behavioral effects. Few studies have assessed the effect of adding genetic test feedback to weight control advice, even though one of the proposed applications of genetic testing is to stimulate preventive action. This study will investigate the motivational effect of adding genetic test feedback to simple weight control advice in a situation where weight gain is relatively common. Methods/design First-year university students (n = 800 will be randomized to receive either 1 their personal genetic test result for a gene (FTO related to weight gain susceptibility in addition to a leaflet with simple weight control advice (‘Feedback + Advice’ group, FA, or 2 only the leaflet containing simple weight control advice (‘Advice Only’ group, AO. Motivation to avoid weight gain and active use of weight control strategies will be assessed one month after receipt of the leaflet with or without genetic test feedback. Weight and body fat will be measured at baseline and eight months follow-up. We will also assess short-term psychological reactions to the genetic test result. In addition, we will explore interactions between feedback condition and gene test status. Discussion We hope to provide a first indication of the clinical utility of weight-related genetic test feedback in the prevention context. Trial registration Current controlled trials ISRCTN91178663

  4. Feedback control in deep drawing based on experimental datasets

    Science.gov (United States)

    Fischer, P.; Heingärtner, J.; Aichholzer, W.; Hortig, D.; Hora, P.

    2017-09-01

    In large-scale production of deep drawing parts, like in automotive industry, the effects of scattering material properties as well as warming of the tools have a significant impact on the drawing result. In the scope of the work, an approach is presented to minimize the influence of these effects on part quality by optically measuring the draw-in of each part and adjusting the settings of the press to keep the strain distribution, which is represented by the draw-in, inside a certain limit. For the design of the control algorithm, a design of experiments for in-line tests is used to quantify the influence of the blank holder force as well as the force distribution on the draw-in. The results of this experimental dataset are used to model the process behavior. Based on this model, a feedback control loop is designed. Finally, the performance of the control algorithm is validated in the production line.

  5. Shared internal models for feedforward and feedback control.

    Science.gov (United States)

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  6. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    Science.gov (United States)

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  7. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  8. Application of Time Delay Consideration on Bridge Vibration Control Method with Active Tendons

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2010-12-01

    Full Text Available For many years bridge structures have been designed or constructed as passive structures that rely on their mass and solidity to resist external forces, while being incapable of adapting to the dynamics of an ever-changing environment. When the rigidity assumption is not met in particular for high-rise structures like bridge towers, a proper dynamic model should be established and conclusions made on the differential vibration of the tower when it is investigated out of the bridge system. The present work outlines a vibration control method by tendons on the tower of cable supported structures considering time delay effects, based on the discrete-time Linearization of the Feedback Gain Matrix. The efficiency of this vibration control method first proposed on the design process of a local bridge in Cameroon, is more compatible to the control of civil structures and is of great interest in accordance with simulation results.

  9. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation

    KAUST Repository

    Gaffney, E. A.

    2013-10-01

    © The authors 2013. Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing\\'s ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing\\'s model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106, 8429-8434; Yamaguchi et al., 2007, PNAS, 104, 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge.

  10. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation.

    Science.gov (United States)

    Gaffney, E A; Lee, S Seirin

    2015-03-01

    Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  11. Output Feedback Tracking Control of an Underactuated Quad-Rotor UAV

    National Research Council Canada - National Science Library

    Lee, DongBin; Burg, Timothy; Xian, Bin; Dawson, Darren

    2006-01-01

    ...) using output feedback (OFB). Specifically, an observer is designed to estimate the velocities and an output feedback controller is designed for a nonlinear UAV system in which only position and angles are measurable...

  12. ORBIT FEEDBACK CONTROL FOR THE LHC Prototyping at the SPS

    CERN Document Server

    Steinhagen, Ralph J

    2004-01-01

    The Large Hadron Collider (LHC) is the next generation proton collider that is presently built at CERN. The LHC will be installed in the former LEP (Large Electron Positron Collider) tunnel. The presence of a high intensity beam in an environment of cryogenic magnets requires an excellent control of particle losses from the beam. Eventually the performance of the LHC may be limited by the ability to control the beam losses. The performance of the LHC cleaning system depends critically on the beam position stability. Ground motion, field and alignment imperfections and beam manipulations may cause orbit movements. The role of the future LHC Orbit Feedback System is the minimisation of closed orbit perturbations by periodically measuring and steering the transverse beam position back to its reference position. This diploma thesis focuses on the design and prototyping of an orbit feedback system at the SPS. The design is based on a separation of the steering problem into space and time. While the correction in s...

  13. Automatic Overset Grid Generation with Heuristic Feedback Control

    Science.gov (United States)

    Robinson, Peter I.

    2001-01-01

    An advancing front grid generation system for structured Overset grids is presented which automatically modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved. The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system which iteratively modifies the input specifications for Overset control line and surface grids. It is developed as an extension of modern control theory, production rules systems and subsumption architectures. The methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge representation, and knowledge execution. The vector/matrix framework of modern control theory systematically acquires and represents expert system knowledge. Missing matrix elements imply missing expert knowledge. The execution of the expert system knowledge is performed through symbolic execution of the matrix algebra equations of modern control theory. The dot product operation of matrix algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.

  14. Voluntarily controlled but not merely observed visual feedback affects postural sway

    Science.gov (United States)

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  15. Design of EAST LHCD high power supply feedback control system based on PLC

    International Nuclear Information System (INIS)

    Hu Huaichuan; Shan Jiafang

    2009-01-01

    Design of EAST LHCD -35kV/5.6MW high power supply feedback control system based on PLC is described. Industrial computer and PLC are used to control high power supply in the system. PID arithmetic is adopted to achieve the feedback control of voltage of high power supply. Operating system is base on real-time operating system of QNX. Good controlling properties and reliable protective properties of the feedback control system are proved by the experiment results. (authors)

  16. Controllability and stability of primary frequency control from thermostatic loads with delays

    DEFF Research Database (Denmark)

    Ziras, Charalampos; Vrettos, Evangelos; You, Shi

    2017-01-01

    There is an increasing interest in exploiting the flexibility of loads to provide ancillary services to the grid. In this paper we study how response delays and lockout constraints affect the controllability of an aggregation of refrigerators offering primary frequency control (PFC). First we...... examine the effect of delays in PFC provision from an aggregation of refrigerators, using a two-area power system. We propose a framework to systematically address frequency measurement and response delays and we determine safe values for the total delays via simulations. We introduce a controllability...... index to evaluate PFC provision under lockout constraints of refrigerators compressors. We conduct extensive simulations to study the effects of measurement delay, ramping times, lockout durations and rotational inertia on the controllability of the aggregation and system stability. Finally, we discuss...

  17. Delay-Range-Dependent H∞ Control for Automatic Mooring Positioning System with Time-Varying Input Delay

    Directory of Open Access Journals (Sweden)

    Xiaoyu Su

    2014-01-01

    Full Text Available Aiming at the economy and security of the positioning system in semi-submersible platform, the paper presents a new scheme based on the mooring line switching strategy. Considering the input delay in switching process, H∞ control with time-varying input delay is designed to calculate the control forces to resist disturbing forces. In order to reduce the conservativeness, the information of the lower bound of delay is taken into account, and a Lyapunov function which contains the range of delay is constructed. Besides, the input constraint is considered to avoid breakage of mooring lines. The sufficient conditions for delay-range-dependent stabilization are derived in terms of LMI, and the controller is also obtained. The effectiveness of the proposed approach is illustrated by a realistic design example.

  18. Modelling of Rotor-gas bearings for Feedback Controller Design

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik

    2014-01-01

    Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which ca...... and are shown to accurately describe the dynamical behaviour of the rotor-gas bearing. Design of a controller using the identied models is treated and experiments verify the improvement of the damping properties of the rotor-gas bearing.......Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which can...... be designed from suitable models describing the relation from actuator input to measured shaft position. Current state of the art models of controllable gas bearings however do not provide such relation, which calls for alternative strategies. The present contribution discusses the challenges for feedback...

  19. Feedback control of resistive wall modes in toroidal devices

    International Nuclear Information System (INIS)

    Liu, Y.Q.

    2002-01-01

    Active feedback of resistive wall modes is investigated using cylindrical theory and toroidal calculations. For tokamaks, good performance is obtained by using active coils with one set of coils in the poloidal direction and sensors detecting the poloidal field inside the first wall, located at the outboard mid-plane. With suitable width of the feedback coil such a system can give robust control with respect to variations in plasma current, pressure and rotation. Calculations are shown for ITER-like geometry with a double wall. The voltages and currents in the active coils are well within the design limits for ITER. Calculations for RFP's are presented for a finite number of coils both in the poloidal and toroidal directions. With 4 coils in the poloidal and 24 coils in the toroidal direction, all non-resonant modes can be stabilized both at high and low theta. Several types of sensors, including radial and internal poloidal or toroidal sensors, can stabilize the RWM, but poloidal sensors give the most robust performance. (author)

  20. Online feedback-controlled renal constant infusion clearances in rats.

    Science.gov (United States)

    Schock-Kusch, Daniel; Shulhevich, Yury; Xie, Qing; Hesser, Juergen; Stsepankou, Dzmitry; Neudecker, Sabine; Friedemann, Jochen; Koenig, Stefan; Heinrich, Ralf; Hoecklin, Friederike; Pill, Johannes; Gretz, Norbert

    2012-08-01

    Constant infusion clearance techniques using exogenous renal markers are considered the gold standard for assessing the glomerular filtration rate. Here we describe a constant infusion clearance method in rats allowing the real-time monitoring of steady-state conditions using an automated closed-loop approach based on the transcutaneous measurement of the renal marker FITC-sinistrin. In order to optimize parameters to reach steady-state conditions as fast as possible, a Matlab-based simulation tool was established. Based on this, a real-time feedback-regulated approach for constant infusion clearance monitoring was developed. This was validated by determining hourly FITC-sinistrin plasma concentrations and the glomerular filtration rate in healthy and unilaterally nephrectomized rats. The transcutaneously assessed FITC-sinistrin fluorescence signal was found to reflect the plasma concentration. Our method allows the precise determination of the onset of steady-state marker concentration. Moreover, the steady state can be monitored and controlled in real time for several hours. This procedure is simple to perform since no urine samples and only one blood sample are required. Thus, we developed a real-time feedback-based system for optimal regulation and monitoring of a constant infusion clearance technique.

  1. Feedback control of a cupola - concepts and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K.L. [Idaho State Univ., Pocatello, ID (United States); Abdelrahman, M.A. [Tenn. Technological Univ., Cookeville, TN (United States); Larsen, E.; Clark, D. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); King, P. [US Dept. of Energy Albany Research Center, Albany, OR (United States)

    1998-10-01

    In this paper we present some final results from a research project focused on introducing automatic control to the operation of cupola iron furnaces. The main aim of this research is to improve the operational efficiency and performance of the cupola furnace, an important foundry process used to melt iron. Previous papers have described the development of appropriate control system architectures for the cupola. These results are summarized. Then we describe the experimental results obtained with the U.S. Department of Energy Albany Research Center`s research cupola. First, experimental data is used to calibrate the model, which is taken as a first-order multivariable system with time delay. Then relative gain analysis is used to select loop pairings to be used in a multi-loop controller. The resulting controller pairs meltrate with blast volume, iron temperature with oxygen addition, and carbon composition with percent coke. Special (nonlinear) filters are used to compute meltrate from actual scale readings of the amount of iron produced and to smooth the temperature measurement. The temperature and meltrate loops use single-loop PI control. The composition loop uses a Smith predictor to discount the deadtime associated with mass transport through the furnace. Experimental results validate the conceptual controller design and provide proof-of-concept of the idea of controlling a foundry cupola. Future research directions are discussed, including the concept of an integrated, intelligent industrial process controller, or I{sup 3}PC.

  2. Complex-Vector Time-Delay Control of Power Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P. C.; Tang, Y.

    2008-01-01

    Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation...... since only a small amount of memory space for storing time-delayed values and simple arithmetic computations are needed for its physical realization. In addition to that, other advantages of the scheme include its abilities to compensate for negative-sequence, load and grid harmonic components using...

  3. Prediction-Based Control for Nonlinear Systems with Input Delay

    Directory of Open Access Journals (Sweden)

    I. Estrada-Sánchez

    2017-01-01

    Full Text Available This work has two primary objectives. First, it presents a state prediction strategy for a class of nonlinear Lipschitz systems subject to constant time delay in the input signal. As a result of a suitable change of variable, the state predictor asymptotically provides the value of the state τ units of time ahead. Second, it proposes a solution to the stabilization and trajectory tracking problems for the considered class of systems using predicted states. The predictor-controller convergence is proved by considering a complete Lyapunov functional. The proposed predictor-based controller strategy is evaluated using numerical simulations.

  4. Amplitude based feedback control for NTM stabilisation at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, Christopher, E-mail: chris.rapson@ipp.mpg.de; Giannone, Louis; Maraschek, Marc; Reich, Matthias; Stober, Joerg; Treutterer, Wolfgang

    2014-05-15

    Highlights: • Two algorithms have been developed which use the NTM amplitude to control ECCD deposition and stabilise NTMs. • Both algorithms were tested and tuned in a simulation of the full feedback loop including an MRE. • Both algorithms have been successfully deployed in ASDEX Upgrade experiments. • Use of the NTM amplitude adds considerable robustness, which is necessary when trying to target ECCD to within 1 cm of the island location. • This is part of ongoing work to reliably and quickly stabilise NTMs in any plasma scenario. - Abstract: Neoclassical Tearing Modes (NTMs) degrade the confinement in tokamak plasmas at high beta, placing a major limitation on the projected fusion performance. Furthermore, NTMs can lead to disruptions with even more severe consequences. Therefore methods to stabilise NTMs are being developed with high priority at several research institutes worldwide. The favoured method is to deposit Electron Cyclotron Current Drive (ECCD) precisely at the mode location by controlling a movable mirror in the ECCD launcher. This method requires both the mode location and the deposition location to be known with high accuracy in real time. The required accuracy is given by half of the marginal island width, or approximately 1 cm for a m/n = 3/2 NTM at ASDEX Upgrade. Despite considerable development on a range of diagnostics, it remains challenging to provide the necessary accuracy reliably and in real time. To relax the accuracy requirements and add robustness, the feedback controller can additionally consider the effect of ECCD on the NTM amplitude directly. Then the optimal deposition location is simply where the NTM amplitude is minimised. The simplest implementation sweeps the ECCD beam across the expected NTM location. After the sweep, the beam can be returned to the optimal location and held there to stabilise the NTM. Unfortunately, waiting for a full sweep takes too long. Therefore a second method assesses the NTM growth every

  5. Engineering Sensorial Delay to Control Phototaxis and Emergent Collective Behaviors

    Directory of Open Access Journals (Sweden)

    Mite Mijalkov

    2016-01-01

    Full Text Available Collective motions emerging from the interaction of autonomous mobile individuals play a key role in many phenomena, from the growth of bacterial colonies to the coordination of robotic swarms. For these collective behaviors to take hold, the individuals must be able to emit, sense, and react to signals. When dealing with simple organisms and robots, these signals are necessarily very elementary; e.g., a cell might signal its presence by releasing chemicals and a robot by shining light. An additional challenge arises because the motion of the individuals is often noisy; e.g., the orientation of cells can be altered by Brownian motion and that of robots by an uneven terrain. Therefore, the emphasis is on achieving complex and tunable behaviors from simple autonomous agents communicating with each other in robust ways. Here, we show that the delay between sensing and reacting to a signal can determine the individual and collective long-term behavior of autonomous agents whose motion is intrinsically noisy. We experimentally demonstrate that the collective behavior of a group of phototactic robots capable of emitting a radially decaying light field can be tuned from segregation to aggregation and clustering by controlling the delay with which they change their propulsion speed in response to the light intensity they measure. We track this transition to the underlying dynamics of this system, in particular, to the ratio between the robots’ sensorial delay time and the characteristic time of the robots’ random reorientation. Supported by numerics, we discuss how the same mechanism can be applied to control active agents, e.g., airborne drones, moving in a three-dimensional space. Given the simplicity of this mechanism, the engineering of sensorial delay provides a potentially powerful tool to engineer and dynamically tune the behavior of large ensembles of autonomous mobile agents; furthermore, this mechanism might already be at work within

  6. Adaptive landing gear concept—feedback control validation

    Science.gov (United States)

    Mikulowski, Grzegorz M.; Holnicki-Szulc, Jan

    2007-12-01

    The objective of this paper is to present an integrated feedback control concept for adaptive landing gears (ALG) and its experimental validation. Aeroplanes are subjected to high dynamic loads as a result of the impact during each landing. Classical landing gears, which are in common use, are designed in accordance with official regulations in a way that ensures the optimal energy dissipation for the critical (maximum) sink speed. The regulations were formulated in order to ensure the functional capability of the landing gears during an emergency landing. However, the landing gears, whose characteristics are optimized for these critical conditions, do not perform well under normal impact conditions. For that situation it is reasonable to introduce a system that would adapt the characteristics of the landing gears according to the sink speed of landing. The considered system assumes adaptation of the damping force generated by the landing gear, which would perform optimally in an emergency situation and would adapt itself for regular landings as well. This research covers the formulation and design of the control algorithms for an adaptive landing gear based on MR fluid, implementation of the algorithms on an FPGA platform and experimental verification on a lab-scale landing gear device. The main challenge of the research was to develop a control methodology that could operate effectively within 50 ms, which is assumed to be the total duration of the phenomenon. The control algorithm proposed in this research was able to control the energy dissipation process on the experimental stand.

  7. Jump resonant frequency islands in nonlinear feedback control systems

    Science.gov (United States)

    Koenigsberg, W. D.; Dunn, J. C.

    1975-01-01

    A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.

  8. On the maximum Q in feedback controlled subignited plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    High Q operation in feedback controlled subignited fusion plasma requires the operating temperature to be close to the ignition temperature. In the present work we discuss technological and physical effects which may restrict this temperature difference. The investigation is based on a simplified, but still accurate, 0=D analytical analysis of the maximum Q of a subignited system. Particular emphasis is given to sawtooth ocsillations which complicate the interpretation of diagnostic neutron emission data into plasma temperatures and may imply an inherent lower bound on the temperature deviation from the ignition point. The estimated maximum Q is found to be marginal (Q = 10-20) from the point of view of a fusion reactor. (authors)

  9. Output Feedback Stabilization with Nonlinear Predictive Control: Asymptotic properties

    Directory of Open Access Journals (Sweden)

    Lars Imsland

    2003-07-01

    Full Text Available State space based nonlinear model predictive control (NM PC needs the state for the prediction of the system behaviour. Unfortunately, for most applications, not all states are directly measurable. To recover the unmeasured states, typically a stable state observer is used. However, this implies that the stability of the closed-loop should be examined carefully, since no general nonlinear separation principle exists. Recently semi-global practical stability results for output feedback NMPC using a high-gain observer for state estimation have been established. One drawback of this result is that (in general the observer gain must be increased, if the desired set the state should converge to is made smaller. We show that under slightly stronger assumptions, not only practical stability, but also convergence of the system states and observer error to the origin for a sufficiently large but bounded observer gain can be achieved.

  10. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling

    Science.gov (United States)

    Cepeda-Gomez, Rudy; Olgac, Nejat

    2016-01-01

    We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol. In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively within this domain. The creation of these loci is done in a new surrogate coordinate system, called the 'spectral delay space (SDS)'. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads to a paradoxical control design concept, called the 'delay scheduling', which highlights the fact that the group behaviour may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.

  11. Chaos control for the family of Roessler systems using feedback controllers

    International Nuclear Information System (INIS)

    Liao Xiaoxin; Yu Pei

    2006-01-01

    This paper presents a new method for controlling chaos in several classical chaotic Roessler systems using feedback control strategy. In particular, for an arbitrarily given equilibrium point of a Roessler system, we design explicit and simple feedback control laws by which the equilibrium point is globally and exponentially stabilized. Six typical Roessler systems are studied, and explicit formulas are derived for estimating the convergence rate of these systems. Numerical examples are presented to illustrate the theoretical results. A mistake has been found in the existing literature, and a correct result is given

  12. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  13. Feedback control of acoustic musical instruments: collocated control using physical analogs.

    Science.gov (United States)

    Berdahl, Edgar; Smith, Julius O; Niemeyer, Günter

    2012-01-01

    Traditionally, the average professional musician has owned numerous acoustic musical instruments, many of them having distinctive acoustic qualities. However, a modern musician could prefer to have a single musical instrument whose acoustics are programmable by feedback control, where acoustic variables are estimated from sensor measurements in real time and then fed back in order to influence the controlled variables. In this paper, theory is presented that describes stable feedback control of an acoustic musical instrument. The presentation should be accessible to members of the musical acoustics community who may have limited or no experience with feedback control. First, the only control strategy guaranteed to be stable subject to any musical instrument mobility is described: the sensors and actuators must be collocated, and the controller must emulate a physical analog system. Next, the most fundamental feedback controllers and the corresponding physical analog systems are presented. The effects that these controllers have on acoustic musical instruments are described. Finally, practical design challenges are discussed. A proof explains why changing the resonance frequency of a musical resonance requires much more control power than changing the decay time of the resonance. © 2012 Acoustical Society of America.

  14. Simulation and design of feedback control on resistive wall modes in Keda Torus eXperiment

    International Nuclear Information System (INIS)

    Li, Chenguang; Liu, Wandong; Li, Hong

    2014-01-01

    The feedback control of resistive wall modes (RWMs) in Keda Torus eXperiment (KTX) (Liu et al., Plasma Phys. Controlled Fusion 56, 094009 (2014)) is investigated by simulation. A linear model is built to describe the growth of the unstable modes in the absence of feedback and the resulting mode suppression due to feedback, given the typical reversed field pinch plasma equilibrium. The layout of KTX with two shell structures (the vacuum vessel and the stabilizing shell) is taken into account. The feedback performance is explored both in the scheme of “clean mode control” (Zanca et al., Nucl. Fusion 47, 1425 (2007)) and “raw mode control.” The discrete time control model with specific characteristic times will mimic the real feedback control action and lead to the favored control cycle. Moreover, the conceptual design of feedback control system is also presented, targeting on both RWMs and tearing modes

  15. Neural networks for feedback feedforward nonlinear control systems.

    Science.gov (United States)

    Parisini, T; Zoppoli, R

    1994-01-01

    This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.

  16. A Feed-forward Geometrical Compensation and Adaptive Feedback Control Algorithm for Hydraulic Robot Manipulators

    DEFF Research Database (Denmark)

    Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej

    1998-01-01

    Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....

  17. On optimal feedforward and ILC : the role of feedback for optimal performance and inferential control

    NARCIS (Netherlands)

    van Zundert, J.C.D.; Oomen, T.A.E

    2017-01-01

    The combination of feedback control with inverse model feedforward control or iterative learning control is known to yield high performance. The aim of this paper is to clarify the role of feedback in the design of feedforward controllers, with specific attention to the inferential situation. Recent

  18. Control oriented system analysis and feedback control of a numerical sawtooth instability model

    NARCIS (Netherlands)

    Witvoet, G.; Westerhof, E.; Steinbuch, M.; Baar, de M.R.; Doelman, N.J.; Prater, R.

    2010-01-01

    A combined Porcelli-Kadomtsev numerical sawtooth instability model is analyzed using control oriented identification techniques. The resulting discrete time linear models describe the system’s behavior from crash to crash and is used in the design of a simple discrete time feedback controller, which

  19. Sensitivity to plant modelling uncertainties in optimal feedback control of sound radiation from a panel

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    1997-01-01

    Optimal feedback control of broadband sound radiation from a rectangular baffled panel has been investigated through computer simulations. Special emphasis has been put on the sensitivity of the optimal feedback control to uncertainties in the modelling of the system under control.A model...... in terms of a set of radiation filters modelling the radiation dynamics.Linear quadratic feedback control applied to the panel in order to minimise the radiated sound power has then been simulated. The sensitivity of the model based controller to modelling uncertainties when using feedback from actual...

  20. Time-delay effects and simplified control fields in quantum Lyapunov control

    International Nuclear Information System (INIS)

    Yi, X X; Wu, S L; Wu, Chunfeng; Feng, X L; Oh, C H

    2011-01-01

    Lyapunov-based quantum control has the advantage that it is free from the measurement-induced decoherence and it includes the instantaneous information of the system in the control. The Lyapunov control is often confronted with time delay in the control fields and difficulty in practical implementations of the control. In this paper, we study the effect of time delay on the Lyapunov control and explore the possibility of replacing the control field with a pulse train or a bang-bang signal. The efficiency of the Lyapunov control is also presented through examining the convergence time of the system. These results suggest that the Lyapunov control is robust against time delay, easy to realize and effective for high-dimensional quantum systems.

  1. Feedback control of atomic motion in an optical lattice

    International Nuclear Information System (INIS)

    Morrow, N.V.; Dutta, S.K.; Raithel, G.

    2002-01-01

    We demonstrate a real-time feedback scheme to manipulate wave-packet oscillations of atoms in an optical lattice. The average position of the atoms in the lattice wells is measured continuously and nondestructively. A feedback loop processes the position signal and translates the lattice potential. Depending on the feedback loop characteristics, we find amplification, damping, or an entire alteration of the wave-packet oscillations. Our results are well supported by simulations

  2. Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays.

    Science.gov (United States)

    Mejias, Jorge F; Payeur, Alexandre; Selin, Erik; Maler, Leonard; Longtin, André

    2014-01-01

    The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry-also known as "open-loop feedback"-, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain.

  3. Non-fragile robust stabilization and H{sub {infinity}} control for uncertain stochastic nonlinear time-delay systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinhui [Department of Automatic Control, Beijing Institute of Technology, Beijing 100081 (China)], E-mail: jinhuizhang82@gmail.com; Shi Peng [Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); ILSCM, School of Science and Engineering, Victoria University, Melbourne, Vic. 8001 (Australia); School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: pshi@glam.ac.uk; Yang Hongjiu [Department of Automatic Control, Beijing Institute of Technology, Beijing 100081 (China)], E-mail: yanghongjiu@gmail.com

    2009-12-15

    This paper deals with the problem of non-fragile robust stabilization and H{sub {infinity}} control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are real time-varying as well as norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square and the effect of the disturbance input on the controlled output is less than a prescribed level for all admissible parameter uncertainties. New sufficient conditions for the existence of such controllers are presented based on the linear matrix inequalities (LMIs) approach. Numerical example is given to illustrate the effectiveness of the developed techniques.

  4. Empirical Reduced-Order Modeling for Boundary Feedback Flow Control

    Directory of Open Access Journals (Sweden)

    Seddik M. Djouadi

    2008-01-01

    Full Text Available This paper deals with the practical and theoretical implications of model reduction for aerodynamic flow-based control problems. Various aspects of model reduction are discussed that apply to partial differential equation- (PDE- based models in general. Specifically, the proper orthogonal decomposition (POD of a high dimension system as well as frequency domain identification methods are discussed for initial model construction. Projections on the POD basis give a nonlinear Galerkin model. Then, a model reduction method based on empirical balanced truncation is developed and applied to the Galerkin model. The rationale for doing so is that linear subspace approximations to exact submanifolds associated with nonlinear controllability and observability require only standard matrix manipulations utilizing simulation/experimental data. The proposed method uses a chirp signal as input to produce the output in the eigensystem realization algorithm (ERA. This method estimates the system's Markov parameters that accurately reproduce the output. Balanced truncation is used to show that model reduction is still effective on ERA produced approximated systems. The method is applied to a prototype convective flow on obstacle geometry. An H∞ feedback flow controller is designed based on the reduced model to achieve tracking and then applied to the full-order model with excellent performance.

  5. Output-feedback control of combined sewer networks through receding horizon control with moving horizon estimation

    OpenAIRE

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2015-01-01

    An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solv...

  6. A normalized PID controller in networked control systems with varying time delays.

    Science.gov (United States)

    Tran, Hoang-Dung; Guan, Zhi-Hong; Dang, Xuan-Kien; Cheng, Xin-Ming; Yuan, Fu-Shun

    2013-09-01

    It requires not only simplicity and flexibility but also high specified stability and robustness of system to design a PI/PID controller in such complicated networked control systems (NCSs) with delays. By gain and phase margins approach, this paper proposes a novel normalized PI/PID controller for NCSs based on analyzing the stability and robustness of system under the effect of network-induced delays. Specifically, We take into account the total measured network delays to formulate the gain and phase margins of the closed-loop system in the form of a set of equations. With pre-specified values of gain and phase margins, this set of equations is then solved for calculating the closed forms of control parameters which enable us to propose the normalized PI/PID controller simultaneously satisfying the following two requirements: (1) simplicity without re-solving the optimization problem for a new process, (2) high flexibility to cope with large scale of random delays and deal with many different processes in different conditions of network. Furthermore, in our method, the upper bound of random delay can be estimated to indicate the operating domain of proposed PI/PID controller. Finally, simulation results are shown to demonstrate the advantages of our proposed controller in many situations of network-induced delays. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Movement goals and feedback and feedforward control mechanisms in speech production.

    Science.gov (United States)

    Perkell, Joseph S

    2012-09-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences.

  8. Walking Flexibility after Hemispherectomy: Split-Belt Treadmill Adaptation and Feedback Control

    Science.gov (United States)

    Choi, Julia T.; Vining, Eileen P. G.; Reisman, Darcy S.; Bastian, Amy J.

    2009-01-01

    Walking flexibility depends on use of feedback or reactive control to respond to unexpected changes in the environment, and the ability to adapt feedforward or predictive control for sustained alterations. Recent work has demonstrated that cerebellar damage impairs feedforward adaptation, but not feedback control, during human split-belt treadmill…

  9. Systematic design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Nuij, Pwjm; M.R. de Baar,; Steinbuch, M.

    2012-01-01

    Suppression of tearing modes is essential for the operation of tokamaks. This paper describes the design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak. The two main control tasks of this feedback control system are the radial alignment of electron

  10. Pulsed klystrons with feedback controlled mod-anode modulators

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Jerry, Davis L [Los Alamos National Laboratory; Rees, Daniel E [Los Alamos National Laboratory

    2009-01-01

    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  11. Feedback controlled electrical nerve stimulation: a computer simulation.

    Science.gov (United States)

    Doruk, R Ozgur

    2010-07-01

    The role of repetitive firing in neurophysiologic or neuropsychiatric disorders, such as Parkinson, epilepsy and bipolar type disorders, has always been a topic of medical research as therapies target either the cease of firing or a decrease in its frequency. In electrotherapy, one of the mechanisms to achieve the purpose in point is to apply a low density electric current to the nervous system. In this study, a computer simulation is provided of a treatment in which the stimulation current is computed by nerve fiber cell membrane potential feedback so that the level of the current is automatically instead of manually adjusted. The behavior of the nerve cell is represented by the Hodgkin-Huxley (HH) model, which is slightly modified into a linear model with state dependent coefficients. Due to this modification, the algebraic and differential Riccati equations can be applied, which allows an optimal controller minimizing a quadratic performance index given by the user. Using a controlled current injection can decrease unnecessarily long current injection times that may be harmful to the neuronal network. This study introduces a prototype for a possible future application to a network of neurons as it is more realistic than a single neuron. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  13. Periodic synchronization control of discontinuous delayed networks by using extended Filippov-framework.

    Science.gov (United States)

    Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting

    2015-08-01

    This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Temperature feedback control for long-term carrier-envelope phase locking

    Science.gov (United States)

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS

    2012-07-24

    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  15. Design and Validation of Optimized Feedforward with Robust Feedback Control of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Shaffer, Roman; He Weidong; Edwards, Robert M.

    2004-01-01

    Design applications for robust feedback and optimized feedforward control, with confirming results from experiments conducted on the Pennsylvania State University TRIGA reactor, are presented. The combination of feedforward and feedback control techniques complement each other in that robust control offers guaranteed closed-loop stability in the presence of uncertainties, and optimized feedforward offers an approach to achieving performance that is sometimes limited by overly conservative robust feedback control. The design approach taken in this work combines these techniques by first designing robust feedback control. Alternative methods for specifying a low-order linear model and uncertainty specifications, while seeking as much performance as possible, are discussed and evaluated. To achieve desired performance characteristics, the optimized feedforward control is then computed by using the nominal nonlinear plant model that incorporates the robust feedback control

  16. Learning feedback and feedforward control in a mirror-reversed visual environment.

    Science.gov (United States)

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  17. Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control

    International Nuclear Information System (INIS)

    Chen, C.-C.; Hsu, C.-H.; Chen, Y.-J.; Lin, Y.-F.

    2007-01-01

    The almost disturbance decoupling and trajectory tracking of nonlinear control systems using an observer-based fuzzy feedback linearization control (FLC) is developed. Because not all of the state variables of the nonlinear dynamic equations are available, a nonlinear state observer is employed to estimate the state variables. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. In order to demonstrate the practical applicability, the study has investigated a pendulum control system

  18. Chaos Control and Synchronization of Cellular Neural Network with Delays Based on OPNCL Control

    International Nuclear Information System (INIS)

    Qian, Tang; Xing-Yuan, Wang

    2010-01-01

    The problem of chaos control and complete synchronization of cellular neural network with delays is studied. Based on the open plus nonlinear closed loop (OPNCL) method, the control scheme and synchronization scheme are designed. Both the schemes can achieve the chaos control and complete synchronization of chaotic neural network respectively, and their validity is further verified by numerical simulation experiments. (general)

  19. PC-based digital feedback control for scanning force microscope

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2002-01-01

    In the past, most digital feedback implementation for scanned-probe microscope were based on a digital signal processor (DSP). At present DSP plug-in card with the input-output interface module is still expensive compared to a fast pentium PC motherboard. For a magnetic force microscope (MFM) digital feedback has an advantage where the magnetic signal can be easily separated from the topographic signal. In this paper, a simple low-cost PC-based digital feedback and imaging system for Scanning Force Microscope (SFM) is presented. (Author)

  20. Active sound transmission control of an experimental double-panel partition using decoupled, dual-channel, analog feedback control

    OpenAIRE

    Sagers, Jason; Blotter, Jonathan

    2008-01-01

    This paper addresses the construction, measurement, and analysis of a double panel active partition (DPAP) and its accompanying analog feedback controllers. The DPAP was constructed by attaching an aluminum cone loudspeaker at each end of a short segment of a circular duct. Two analog feedback controllers were designed and built using the measured frequency response function of each panel. Two independent (decoupled) feedback controllers were then used to minimize the vibration amplitude of e...