Directory of Open Access Journals (Sweden)
Rachael K Walsh
Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.
Li, Jiqiu; Fenton, Andy; Kettley, Lee; Roberts, Phillip; Montagnes, David J S
2013-10-07
We propose that delayed predator-prey models may provide superficially acceptable predictions for spurious reasons. Through experimentation and modelling, we offer a new approach: using a model experimental predator-prey system (the ciliates Didinium and Paramecium), we determine the influence of past-prey abundance at a fixed delay (approx. one generation) on both functional and numerical responses (i.e. the influence of present : past-prey abundance on ingestion and growth, respectively). We reveal a nonlinear influence of past-prey abundance on both responses, with the two responding differently. Including these responses in a model indicated that delay in the numerical response drives population oscillations, supporting the accepted (but untested) notion that reproduction, not feeding, is highly dependent on the past. We next indicate how delays impact short- and long-term population dynamics. Critically, we show that although superficially the standard (parsimonious) approach to modelling can reasonably fit independently obtained time-series data, it does so by relying on biologically unrealistic parameter values. By contrast, including our fully parametrized delayed density dependence provides a better fit, offering insights into underlying mechanisms. We therefore present a new approach to explore time-series data and a revised framework for further theoretical studies.
Li, Haiyin; Meng, Gang; She, Zhikun
In this paper, we investigate the stability and Hopf bifurcation of a delayed density-dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered such that the studied predator-prey system conforms to the realistically biological environment. We start with the geometric criterion introduced by Beretta and Kuang [2002] and then investigate the stability of the positive equilibrium and the stability switches of the system with respect to the delay parameter τ. Especially, we generalize the geometric criterion in [Beretta & Kuang, 2002] by introducing the condition (i‧) which can be assured by the condition (H2‧), and adopting the technique of lifting to define the function S˜n(τ) for alternatively determining stability switches at the zeroes of S˜n(τ)s. Afterwards, by the Poincaré normal form for Hopf bifurcation in [Kuznetsov, 1998] and the bifurcation formulae in [Hassard et al., 1981], we qualitatively analyze the properties for the occurring Hopf bifurcations of the system (3). Finally, an example with numerical simulations is given to illustrate the obtained results.
Tripathi, Jai Prakash; Abbas, Syed; Thakur, Manoj
2015-05-01
This paper describes a predator-prey model incorporating a prey refuge. The feeding rate of consumers (predators) per consumer (i.e. functional response) is considered to be of Beddington-DeAngelis type. The Beddington-DeAngelis functional response is similar to the Holling-type II functional response but contains an extra term describing mutual interference by predators. We investigate the role of prey refuge and degree of mutual interference among predators in the dynamics of system. The dynamics of the system is discussed mainly from the point of view of permanence and stability. We obtain conditions that affect the persistence of the system. Local and global asymptotic stability of various equilibrium solutions is explored to understand the dynamics of the model system. The global asymptotic stability of positive interior equilibrium solution is established using suitable Lyapunov functional. The dynamical behaviour of the delayed system is further analyzed through incorporating discrete type gestation delay of predator. It is found that Hopf bifurcation occurs when the delay parameter τ crosses some critical value. The analytical results found in the paper are illustrated with the help of numerical examples.
Density dependent neurodynamics.
Halnes, Geir; Liljenström, Hans; Arhem, Peter
2007-01-01
The dynamics of a neural network depends on density parameters at (at least) two different levels: the subcellular density of ion channels in single neurons, and the density of cells and synapses at a network level. For the Frankenhaeuser-Huxley (FH) neural model, the density of sodium (Na) and potassium (K) channels determines the behaviour of a single neuron when exposed to an external stimulus. The features of the onset of single neuron oscillations vary qualitatively among different regions in the channel density plane. At a network level, the density of neurons is reflected in the global connectivity. We study the relation between the two density levels in a network of oscillatory FH neurons, by qualitatively distinguishing between three regions, where the mean network activity is (1) spiking, (2) oscillating with enveloped frequencies, and (3) bursting, respectively. We demonstrate that the global activity can be shifted between regions by changing either the density of ion channels at the subcellular level, or the connectivity at the network level, suggesting that different underlying mechanisms can explain similar global phenomena. Finally, we model a possible effect of anaesthesia by blocking specific inhibitory ion channels.
Institute of Scientific and Technical Information of China (English)
Lowell L. GETZ; Laura E. SIMMS; Joyce E. HOFMANN; Betty McGUIRE
2004-01-01
We tested for delayed density-dependent effects on survival and reproduction in a fluctuating population of the prairie vole Microtus ochrogaster monitored at 3.5-day intervals for 63 months. The population underwent four fluctuations in density during the study; all peaked November-January, with winter declines. Survival and reproduction displayed negative density-dependent effects, with an approximate 2-month lag time for maximum effects. There was a 2-month lag for maximum positive effects of increased survival on population density and a 3-month lag in respect to increased reproduction. Extrinsic factors, winter, may have been involved in the delayed density-dependent effects on reproduction, but we could not test for role of intrinsic factors. Seasonal effects did not appear to be responsible for the delayed density-dependent effects on survival. The net effect of the negative delayed density-dependent effects on survival and reproduction are suggested to moderate amplitudes, but not prevent, population fluctuations of M. Ochrogaster.%检验了延迟的密度依赖对橙腹田鼠(Microtus ochrogaster)一个波动种群的生存和生殖的影响,研究持续了63个月,取样间隔为3.5天.在研究期间,该种群的密度经历了4次波动,每次波动的高峰都在11月至次年1月,种群数量在冬季下降.生存和生殖都有负面的密度依赖效应,最大效应具有2个月的时滞.种群存活率增长对种群密度最大的正面效应具有2个月的时滞,而对与增加生殖则有3个月的时滞.内部因素和冬季都可能推延对生殖的密度依赖效应,但是本文未能检验这些内部因素的影响.季节性影响看来与对生存的延缓性密度依赖效应无关.负面的延缓性密度依赖效应对生存和生殖的净作用可能在于减少、而不是阻止橙腹田鼠种群波动的幅度.
Texting Dependence, iPod Dependence, and Delay Discounting.
Ferraro, F Richard; Weatherly, Jeffrey N
2016-01-01
We gave 127 undergraduates questionnaires about their iPod and texting dependence and 2 hypothetical delay discounting scenarios related to free downloaded songs and free texting for life. Using regression analyses we found that when iPod dependence was the dependent variable, Text2-excessive use, Text4-psychological and behavioral symptoms, iPod2-excessive use, and iPod3-relationship disruption were significant predictors of discounting. When texting dependence was the dependent variable, Text4-psychological and behavioral symptoms and iPod3-relationship disruption were significant predictors of discounting. These are the first data to show that delay discounting relates to certain aspects of social media, namely iPod and texting dependence. These data also show that across these 2 dependencies, both psychological and behavioral symptoms and relationship disruptions are affected.
dependent time-delay: Stability and stabilizability
Directory of Open Access Journals (Sweden)
E. K. Boukas
2002-01-01
Full Text Available This paper considers stochastic stability and stochastic stabilizability of linear discrete-time systems with Markovian jumps and mode-dependent time-delays. Linear matrix inequality (LMI techniques are used to obtain sufficient conditions for the stochastic stability and stochastic stabilizability of this class of systems. A control design algorithm is also provided. A numerical example is given to demonstrate the effectiveness of the obtained theoretical results.
H∞ State Feedback Delay-dependent Control for Discrete Systems with Multi-time-delay
Institute of Scientific and Technical Information of China (English)
Bai-Da Qu
2005-01-01
In this paper,H∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H∞ performance indices is induced, and then a strategy for H∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach.
Energy Technology Data Exchange (ETDEWEB)
Kwon, O.M., E-mail: madwind@chungbuk.ac.k [School of Electrical Engineering, Chungbuk National University, Cheongju (Korea, Republic of); Lee, S.M., E-mail: moony@daegu.ac.k [School of Electronics Engineering, Daegu University, Kyongsan (Korea, Republic of); Park, Ju H., E-mail: jessie@ynu.ac.k [Department of Electrical Engineering, Yeungnam University, Kyongsan (Korea, Republic of)
2010-02-22
This Letter investigates the problem of delay-dependent exponential stability analysis for uncertain stochastic neural networks with time-varying delay. Based on the Lyapunov stability theory, improved delay-dependent exponential stability criteria for the networks are established in terms of linear matrix inequalities (LMIs).
Delay-dependent robust passivity control for uncertain time-delay systems
Institute of Scientific and Technical Information of China (English)
Li Guifang; Li Huiying; Yang Chengwu
2007-01-01
The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient condition is obtained for the nominal system, and then, based-on the former, the delay-dependent robust passivity criteria is provided and the corresponding controller is designed in terms of linear matrix inequalities. Finally, a numerical example is given to demonstrate the validity of the proposed approach.
Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad
2014-11-01
This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Temperature Dependent Wire Delay Estimation in Floorplanning
DEFF Research Database (Denmark)
Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto;
2011-01-01
Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability. In this w......Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability...
Angular dependence of Wigner time delay: Relativistic Effects
Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.
2016-05-01
Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).
On delay-dependent robust stability of neutral systems
Institute of Scientific and Technical Information of China (English)
Renxin ZHONG; Zhi YANG; Guoli WANG
2006-01-01
The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria will be developed. The proposed stability criteria are formulated in the form of linear matrix inequalities and it is easy to check the robust stability of the considered systems. By introducing certain Lyapunov-Krasovskii functional the mathematical development of our result avoids model transformation and bounding for cross terms, which lead to conservatism. Finally, numerical example is given to indicate the improvement over some existing results.
Delay-Dependent Observers for Uncertain Nonlinear Time-Delay Systems
Directory of Open Access Journals (Sweden)
Dongmei Yan
2013-05-01
Full Text Available This paper is concerned with the observer design problem for a class of discrete-time uncertain nonlinear systems with time-varying delay. The nonlinearities are assumed to satisfy global Lipschitz conditions which appear in both the state and measurement equations. The uncertainties are assumed to be time-varying but norm-bounded. Two Luenberger-like observers are proposed. One is delay observer and the other is delay-free observer. The delay observer which has an internal time delay is applicable when the time delay is known. The delay-free observer which does not use delayed information is especially applicable when the time delay is not known explicitly. Delay-dependent conditions for the existences of these two observers are derived based on Lyapunpv functional approach. Based on these conditions, the observer gains are obtained using the cone complementarity linearization algorithm. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
Relativistic calculations of angular dependent photoemission time delay
Kheifets, A S; Deshmukh, P C; Dolmatov, V K; Manson, S T
2016-01-01
Angular dependence of photoemission time delay for the valence $np_{3/2}$ and $np_{1/2}$ subshells of Ar, Kr and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.
Relativistic calculations of angle-dependent photoemission time delay
Kheifets, Anatoli; Mandal, Ankur; Deshmukh, Pranawa C.; Dolmatov, Valeriy K.; Keating, David A.; Manson, Steven T.
2016-07-01
Angular dependence of photoemission time delay for the valence n p3 /2 and n p1 /2 subshells of Ar, Kr, and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.
Institute of Scientific and Technical Information of China (English)
Dejin WANG
2003-01-01
This article concerns a coupled LMIs approach to delay-dependent observer-based output feedback stabilizing controller design for linear continuous-time systems with multiple state delays. The advantage of our proposed delay-dependent coupled LMIs criterion lies in that: (1) it can optimize one of multiple time delays with others selected properly, and at the same time, the feedback-gain and observer-gain can be obtained, respectively. (2) it is less conservative than the existing delay-independent ones in the literature. Algorithm to solve the coupled LMIs is also given. Numerical examples illustrate the effectiveness of our method.
The population dynamical consequences of density-dependent prophylaxis.
Reynolds, Jennifer J H; White, Andrew; Sherratt, Jonathan A; Boots, Mike
2011-11-07
When infectious disease transmission is density-dependent, the risk of infection will tend to increase with host population density. Since host defence mechanisms can be costly, individual hosts may benefit from increasing their investment in immunity in response to increasing population density. Such "density-dependent prophylaxis" (DDP) has now indeed been demonstrated experimentally in several species. However, it remains unclear how DDP will affect the population dynamics of the host-pathogen interaction, with previous theoretical work making conflicting predictions. We develop a general host-pathogen model and assess the role of DDP on the population dynamics. The ability of DDP to drive population cycles is critically dependent on the time delay between the change in density and the subsequent phenotypic change in the level of resistance. When the delay is absent or short, DDP destabilises the system. As the delay increases, its destabilising effect first diminishes and then DDP becomes increasingly stabilising. Our work highlights the significance of the time delay and suggests that it must be estimated experimentally or varied in theoretical investigations in order to understand the implications of DDP for the population dynamics of particular systems.
Delay-dependent state feedback robust stabilization for uncertain singular time-delay systems
Institute of Scientific and Technical Information of China (English)
Gao Huanli; Xu Bugong
2008-01-01
The problem of robust stabilization for uncertain singular time-delay systems is studied.First,a new delay-dependent asymptotic stability criteria for normal singular time-delay systems is given,which is less conservative.Using this result,the problem of state feedback robust stabilization for uncertain singular time-delay systems is discussed.Finally,two examples are given to illustrate the effectiveness of the results.
Mixed delay-independent/delay-dependent stability of uncertain linear time-delayed systems
Institute of Scientific and Technical Information of China (English)
LI Wenlin; DONG Rui
2004-01-01
@@ Consider uncertain linear time delay systems described by the following state equation: x(t)=[A0+Δ A0(t)]x(t)+∑ri=1[Ai+ΔAi(t)]x(t-τi).(1) x(t)=(t)t∈[-,0];=maxri=1{τi}(2) where Δ A0(*) and Δ Ai(*)(i=1,…,r) are real matrix functions.Δ Ai(t)=LiFi(t)Ei,ΔA0(t)=L0F0(t)E0, where Li,Ei are known real constant matrices and Fi(t) are unknown real time-varying matrices with Lebesgue measurable elements satisfying ‖Fi(t)‖I,t(i=0,1,…,r). In this note, we develop the methods of robust stability which is dependent on the size of some delays but independent on the size of the others and is based on the solution of linear matrix inequalities.
Delay-dependent H-infinity control for continuous time-delay systems via state feedback
Institute of Scientific and Technical Information of China (English)
Xinchun JIA; Yibo GAO; Jingmei ZHANG; Nanning ZHENG
2007-01-01
The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-dependent stability with H-infinity performance for such systems is presented, and a criterion of existence and some design methods of delay-dependent H-infinity controller for such systems are proposed in term of a set of matrix inequalities, which is solved efficiently by an iterative algorithm. Further, the corresponding results for the delay-dependent robust H-infinity analysis and robust H-infinity control problems for continuous time-delay uncertain systems are given. Finally, two numerical examples are given to illustrate the efficiency of the proposed method by comparing with the other existing results.
Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Wei Qian
2013-01-01
Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.
An, Jiyao; Li, Zhiyong; Wang, Xiaomei
2014-03-01
This paper considers the problem of delay-fractional-dependent stability analysis of linear systems with interval time-varying state delay. By developing a delay variable decomposition approach, both the information of the variable dividing subinterval delay, and the information of the lower and upper bound of delay can be taken into full consideration. Then a new delay-fractional-dependent stability criterion is derived without involving any direct approximation in the time-derivative of the Lyapunov-Krasovskii (LK) functional via some suitable Jensen integral inequalities and convex combination technique. The merits of the proposed result lie in less conservatism, which are realized by choosing different Lyapunov matrices in the variable delay subintervals and estimating the upper bound of some cross term in LK functional more exactly. At last, two well-known numerical examples are employed to show the effectiveness and less conservatism of the proposed method.
Density Dependence of Nuclear Symmetry Energy
Behera, B; Tripathy, S K
2016-01-01
High density behaviour of nuclear symmetry energy is studied on the basis of a stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral $n+p+e+\\mu$ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars
Density dependence of nuclear symmetry energy
Behera, B.; Routray, T. R.; Tripathy, S. K.
2016-10-01
High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.
Delay-dependent criteria for the robust stability of systems with time-varying delay
Institute of Scientific and Technical Information of China (English)
Min WU; Yong HE; Jinhua SHE
2003-01-01
The problem of delay-dependent robust stability for systems with titne-varying delay has been considered. By using the S-procedure and the Park' s inequality in the recent issue, a delay-dependent robust stability criterion which is less conservative than the previous results has been derived for time-delay systems with time-varying structured uncertainties. The same idea has also been easily extended to the systems with nonlinear perturbations. Numerical examples illustrated the effectiveness and the improvement of the proposed approach.
Delay dependent stability criteria for recurrent neural networks with time varying delays
Institute of Scientific and Technical Information of China (English)
Zhanshan WANG; Huaguang ZHANG
2009-01-01
This paper aims to present some delay-dependent global asymptotic stability criteria for recurrent neural networks with time varying delays.The obtained results have no restriction on the magnitude of derivative of time varying delay,and can be easily checked due to the form of linear matrix inequality.By comparison with some previous results,the obtained results are less conservative.A numerical example is utilized to demonstrate the effectiveness of the obtained results.
Delay-dependent guaranteed cost control for uncertain systems with both state and input delays
Institute of Scientific and Technical Information of China (English)
Xuanfang YANG; Wuhua CHEN; Huajing FANG
2004-01-01
This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays.By representing the time-delay system in the descriptor system form and using a recent result on bounding of cross products of vectors,we obtain new delay-dependent sufficient conditions for the existence of the guaranteed cost controller in terms of linear matrix inequalities.Two examples are presented which show the effectiveness of our approach.
State-dependent neutral delay equations from population dynamics.
Barbarossa, M V; Hadeler, K P; Kuttler, C
2014-10-01
A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.
Delay-dependent robust H∞ control for uncertain discrete time-delay fuzzy systems
Institute of Scientific and Technical Information of China (English)
Gong Cheng; Su Baoku
2009-01-01
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy tems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust H∞ controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
Delay-Dependent Exponential Stability Criterion for BAM Neural Networks with Time-Varying Delays
Institute of Scientific and Technical Information of China (English)
Wei-Wei Su; Yi-Ming Chen
2008-01-01
By employing the Lyapunov stability theory and linear matrix inequality (LMI) technique, delay dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory (BAM) neural networks with time-varying delays. The proposed condition can be checked easily by LMI control toolbox in Matlab. A numerical example is given to demonstrate the effectiveness of our results.
A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Niu Yuanling; Zhang Chengjian; Duan Jinqiao
2011-01-01
A type of complex systems under both random influence and memory effects is considered.The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations.A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough.Numerical simulations are presented to illustrate the theoretical result.
Delay-dependent robust H∞ control for uncertain fuzzy hyperbolic systems with multiple delays
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The robust H∞ control problem was considered for a class of fuzzy hyperbolic model (FHM) systems with parametric uncertainties and multiple delays. First, FHM modeling method was presented for time-delay nonlinear systems. Then, by using Lyapunov-Krasovskii approaches, delay-dependent sufficient condition for the existence of a kind of state feedback controller was proposed, which was expressed as linear matrix inequalities (LMIs). The controller can guarantee that the resulting closed-loop system is robustly asymptotically stable with a prescribed H∞ performance level for all admissible uncertainties and time-delay. Finally, a simulation example was provided to illustrate the effectiveness of the proposed approach.
Robust delay-dependent feedforward control of neutral time-delay systems via dynamic IQCs
Ucun, L.; Küçükdemiral, I. B.
2014-05-01
This paper studies the design problem of delay-dependent ? based robust and optimal feedforward controller design for a class of time-delay control systems having state, control and neutral type delays which are subject to norm-bounded uncertainties and ? type measurable or observable disturbance signals. Two independent loops which include state-feedback and dynamic feedforward controller form the basis of the proposed control scheme in this study. State-feedback controller is generally used in stabilisation of the nominal delay-free system, whereas the feedforward controller is used for improving disturbance attenuation performance of the overall system. In order to obtain less conservative results, the delay and parametric uncertainty effects are treated in operator view point and represented by frequency-dependent (dynamic) integral quadratic constraints (IQCs). Moreover, sufficient delay-dependent criterion is developed in terms of linear matrix inequalities (LMIs) such that the time-delay system having parametric uncertainties is guaranteed to be asymptotically stable with minimum achievable disturbance attenuation level. Plenty of numerical examples are provided at the end, in order to illustrate the efficiency of the proposed technique. The achieved results on minimum achievable disturbance attenuation level and maximum allowable delay bounds are exhibited to be less conservative in comparison to those of controllers having only feedback loop.
Institute of Scientific and Technical Information of China (English)
Huaicheng YAN; Xinhan HUANG; Min WANG
2007-01-01
In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs)with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with networkinduced delays and uncertainties through new methods are proposed. Some new stability criteria in terms of LMIs are derived by using Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques. We analyze the delay-dependent asymptotic stability and obtain maximum allowable delay bound (MADB) for the NCSs with the proposed methods. Compared with the reported results, the proposed results obtain a much less conservative MADB which are more general. Numerical example and simulation is used to illustrate the effectiveness of the proposed methods.
Institute of Scientific and Technical Information of China (English)
Huaicheng YAN; Xinhan HUANG; Min WANG
2006-01-01
This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.
Delay-slope-dependent stability results of recurrent neural networks.
Li, Tao; Zheng, Wei Xing; Lin, Chong
2011-12-01
By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.
Institute of Scientific and Technical Information of China (English)
Zhengguang WU; Wuneng ZHOU
2008-01-01
This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality(LMI)approach.Based on a delay-dependent stability condition for the nominal system,a state feedback controller is designed,which guarantees the resultant closedloop system to be robustly stable.An explicit expression for the desired controller is also given by solving a set of matrix inequalities.Some numerical examples are provided to illustrate the less conservativeness of the proposed methods.
Delay-dependent stabilization of singular Markovian jump systems with state delay
Institute of Scientific and Technical Information of China (English)
Zhengguang WU; Hongye SU; Jian CHU
2009-01-01
This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays.A delay-dependent condition is established for the considered system to be regular,impulse free and stochastically stable.Based on the condition,a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular,impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs).Numerical examples show the effectiveness of the proposed methods.
Delay-Dependent H∞ Filtering for Singular Time-Delay Systems
Directory of Open Access Journals (Sweden)
Zhenbo Li
2011-01-01
Full Text Available This paper deals with the problem of delay-dependent H∞ filtering for singular time-delay systems. First, a new delay-dependent condition which guarantees that the filter error system has a prescribed H∞ performance γ is given in terms of linear matrix inequalities (LMIs. Then, the sufficient condition is obtained for the existence of the H∞ filter, and the explicit expression for the desired H∞ filter is presented by using LMIs and the cone complementarity linearization iterative algorithm. A numerical example is provided to illustrate the effectiveness of the proposed method.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Based on an appropriate Lyapunov function,this paper analyzes the design of a delay-dependent robust H∞ state feedback control,with a focus on a class of non linear uncertainty linear time-delay systems with input delay using linear matrix inequalities.Under the condition that the nonlinear uncertain functions are gain bounded,a sufficient condition dependent on the delays of the state and input is presented for the existence of H∞ controller.The proposed controller not only stabilized closed-loop uncertain systems but also guaranteed a prescribed H∞ norm bound of closed-loop transfer matrix from the disturbance to controlled output.By solving a linear matrix inequation,we can obtain the robust H∞ controller.An example is given to show the effectiveness of the proposed method.
Delay-dependent robust stability for neutral systems with mixed discrete-and-neutral delays
Institute of Scientific and Technical Information of China (English)
Yong HE; Min WU; Jinhua SHE
2004-01-01
This paper focuses on the problem of delay-dependent robust stability of neutral systems with different discrete-and-neutral delays and time-varying structured uncertainties.Some new criteria are presented,in which some free weighting matrices are used to express the relationships between the terms in the Leibniz-Newton formula.The criteria include the information on the size of both neutral-and-discrete delays.It is shown that the present results also include the results for identical discrete-and-neutral delays as special cases.A numerical example illustrates the improvement of the proposed methods over the previous methods and the influences between the discrete and neutral delays.
New delay-dependent stability criteria for neural networks with time-varying interval delay
Energy Technology Data Exchange (ETDEWEB)
Chen Jie, E-mail: chenjie@bit.edu.c [School of Automation, Beijing Institute of Technology, Beijing, 100081 (China); Sun Jian, E-mail: helios1225@yahoo.com.c [School of Automation, Beijing Institute of Technology, Beijing, 100081 (China); Liu, G.P., E-mail: gpliu@glam.ac.u [Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); CTGT Center in Harbin Institute of Technology, Harbin, 150001 (China); Rees, D., E-mail: drees@glam.ac.u [Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom)
2010-09-27
The problem of stability analysis of neural networks with time-varying delay in a given range is investigated in this Letter. By introducing a new Lyapunov functional which uses the information on the lower bound of the delay sufficiently and an augmented Lyapunov functional which contains some triple-integral terms, some improved delay-dependent stability criteria are derived using the free-weighting matrices method. Numerical examples are presented to illustrate the less conservatism of the obtained results and the effectiveness of the proposed method.
Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays
Directory of Open Access Journals (Sweden)
Xiaofeng Liao
2007-01-01
Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
A simple analysis of halo density profiles using gravitational lensing time delays
2006-01-01
Gravitational lensing time delays depend upon the Hubble constant and the density distribution of the lensing galaxies. This allows one to either model the lens and estimate the Hubble constant, or to use a prior on the Hubble constant from other studies and investigate what the preferred density distribution is. Some studies have required compact dark matter halos (constant M/L ratio) in order to reconcile gravitational lenses with the HST/WMAP value of the Hubble constant (72 +/- 8 km/s /Mp...
On delay-dependent robust stability for uncertain neutral systems
Institute of Scientific and Technical Information of China (English)
He Yong; Wu Min
2005-01-01
The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-eal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some freeweighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.
Institute of Scientific and Technical Information of China (English)
黄祖达
2012-01-01
In this paper, we study a generalized Nicholson' s blowflies model with a nonlinear density-dependent mortality term. Under the admissible initial conditions, by using continuous dependence theorem, some criteria to guarantee the positivity and global existence of solutions are obtained. Then, by applying differential inequality techniques, we give the positive lower bound and upper bound of solutions, and get the permanence of this model. Moreover, we present an example to illustrate our main results.%研究了一类具有非线性死亡率的广义时滞Nicholson飞蝇方程.在容许初值的条件下,利用解的延拓定理,首先证明了该方程的所有解是正的并且是整体存在的,然后利用微分不等式的技巧,证明了该方程所有解具有正的上下确界,获得了该方程所有解具有持久性的充分条件.由于所考虑的模型比同类文献中的模型更加广泛,从而改进和推广了已有文献中的相关结果,并给出了一个具体的例子.
Angular dependence of photoemission time delay in helium
Heuser, Sebastian; Jiménez Galán, Álvaro; Cirelli, Claudio; Marante, Carlos; Sabbar, Mazyar; Boge, Robert; Lucchini, Matteo; Gallmann, Lukas; Ivanov, Igor; Kheifets, Anatoli S.; Dahlström, J. Marcus; Lindroth, Eva; Argenti, Luca; Martín, Fernando; Keller, Ursula
2016-12-01
Time delays of electrons emitted from an isotropic initial state with the absorption of a single photon and leaving behind an isotropic ion are angle independent. Using an interferometric method involving XUV attosecond pulse trains and an IR-probe field in combination with a detection scheme, which allows for full three-dimensional momentum resolution, we show that measured time delays between electrons liberated from the 1 s2 spherically symmetric ground state of helium depend on the emission direction of the electrons relative to the common linear polarization axis of the ionizing XUV light and the IR-probing field. Such time delay anisotropy, for which we measure values as large as 60 as, is caused by the interplay between final quantum states with different symmetry and arises naturally whenever the photoionization process involves the exchange of more than one photon. With the support of accurate theoretical models, the angular dependence of the time delay is attributed to small phase differences that are induced in the laser-driven continuum transitions to the final states. Since most measurement techniques tracing attosecond electron dynamics involve the exchange of at least two photons, this is a general and significant effect that must be taken into account in all measurements of time delays involving photoionization processes.
Delay-dependent H-infinity filtering for neutral time-delay systems
Institute of Scientific and Technical Information of China (English)
Huiying LI; Guifang LI; Chengwu YANG
2006-01-01
This paper deals with the robust delay-dependent H-infinity filtering problem for neutral delay differential systems. The resulting filter is of the Luenberger observer type, and it guarantees that the filtering systems remains asymptotically stable and satisfies a prescribed H-infinity performance level. The Lyapunov stability theory and the descriptor model transformation are used for analysis of the system and are expected to be least conservative as compared with existing design methods. Some examples are provided to demonstrate the validity of proposed design approach.
Delay and Its Time-Derivative Dependent Bounded Real Lemma for Linear Time-Delay Systems
Institute of Scientific and Technical Information of China (English)
JIANGXiefu; XUWenli
2004-01-01
Based on an appropriate Lyapunov-Krasovskii functional, this paper deals with the problem of the bounded real lemma for linear continuous-time systems with state delay. The system under consideration involves state time-varying time-delay. A sufficient condition for the system to possess a H∞-norm that is less than a prescribed level, is presented in a Linear matrix inequality(LMI) form which is dependent on both the size of timedelay and the size of its time-derivative. Due to that fewercross terms should be bounded, our result is less conservative. Finally, an example is presented to demonstrate the effectiveness of our result.
Delay-dependent stability analysis for discrete-time systems with time varying state delay
Directory of Open Access Journals (Sweden)
Stojanović Sreten B.
2011-01-01
Full Text Available The stability of discrete systems with time-varying delay is considered. Some sufficient delaydependent stability conditions are derived using an appropriate model transformation of the original system. The criteria are presented in the form of LMI, which are dependent on the minimum and maximum delay bounds. It is shown that the stability criteria are approximately the same conservative as the existing ones, but have much simpler mathematical form. The numerical example is presented to illustrate the applicability of the developed results.
Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems.
Wang, Ting; Li, Tao; Zhang, Guobao; Fei, Shumin
2017-09-01
This paper studies the asymptotic stability for a class of neutral systems with mixed time-varying delays. Through utilizing some Wirtinger-based integral inequalities and extending the convex combination technique, the upper bound on derivative of Lyapunov-Krasovskii (L-K) functional can be estimated more tightly and three mixed-delay-dependent criteria are proposed in terms of linear matrix inequalities (LMIs), in which the nonlinearity and parameter uncertainties are also involved, respectively. Different from those existent works, based on the interconnected relationship between neutral delay and state one, some novel triple integral functional terms are constructed and the conservatism can be effectively reduced. Finally, two numerical examples are given to show the benefits of the proposed criteria. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Host range expansion is density dependent.
Castagneyrol, Bastien; Jactel, Hervé; Brockerhoff, Eckehard G; Perrette, Nicolas; Larter, Maximilien; Delzon, Sylvain; Piou, Dominique
2016-11-01
The realized host range of herbivores is expected to increase with herbivore population density. Theory also predicts that trait similarity and phylogenetic relatedness between native and exotic plants is expected to increase the susceptibility of introduced plants to feeding by native herbivores. Whether the ability of native herbivores to extend their host range to introduced species is density dependent is still unknown. We addressed this question by monitoring pine processionary moth (PPM, Thaumetopoea pityocampa) attacks during nine consecutive years on 41 pine species (8 native and 33 introduced) planted in an arboretum. The survey encompassed latent and outbreak periods. A total of 28 pine species were attacked by PPM. There was no difference in the probability of attack between native and introduced pine species. Host range increased and was more phylogenetically clustered during outbreak than latent periods. When population density increased, PPM expanded its diet breadth by attacking introduced pine species that were closely related to native hosts. This study demonstrates the density dependence of host range expansion in a common pine herbivore. Importantly, it supports the idea that the degree of phylogenetic proximity between host species can be a better predictor of attacks than the introduction status, which may help to predict the outcomes of new plant-herbivore interactions.
Music-dependent memory in immediate and delayed word recall.
Balch, W R; Bowman, K; Mohler, L
1992-01-01
Undergraduate volunteers rated a series of words for pleasantness while hearing a particular background music. The subjects in Experiment 1 received, immediately or after a 48-h delay, an unexpected word-recall test in one of the following musical cue contexts: same cue (S), different cue (D), or no cue (N). For immediate recall, context dependency (S-D) was significant but same-cue facilitation (S-N) was not. No cue effects at all were found for delayed recall, and there was a significant interaction between cue and retention interval. A similar interaction was also found in Experiment 3, which was designed to rule out an alternative explanation with respect to distraction. When the different musical selection was changed specifically in either tempo or form (genre), only pieces having an altered tempo produced significantly lower immediate recall compared with the same pieces (Experiment 2). The results support a stimulus generalization view of music-dependent memory.
Modelling the Probability Density Function of IPTV Traffic Packet Delay Variation
Directory of Open Access Journals (Sweden)
Michal Halas
2012-01-01
Full Text Available This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function.
Density dependence of clutch size: habitat heterogeneity or individual adjustment?
Both, C.
1998-01-01
1. Two hypotheses have been proposed to explain density- dependent patterns in reproduction. The habitat heterogeneity hypothesis (HHH) explains density-dependent reproduction at the population level from poorer quality territories in heterogeneous environments only being occupied at high densities.
Delay-dependent decentralized H∞ filtering for uncertain interconnected systems
Institute of Scientific and Technical Information of China (English)
Chen Ning; Gui Weihua; Zhang Xiaofeng
2008-01-01
This article considers delay dependent decentralized H∞ filtering for a class of uncertain intercon nected systems,where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions.First,combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices,a sufficient condition of the existence of the robust decentralized H∞ filter is derived,which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties.Then,the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation.Finally,the numerical simulation shows the efficiency of the main results.
Density-dependent cladogenesis in birds.
Directory of Open Access Journals (Sweden)
Albert B Phillimore
2008-03-01
Full Text Available A characteristic signature of adaptive radiation is a slowing of the rate of speciation toward the present. On the basis of molecular phylogenies, studies of single clades have frequently found evidence for a slowdown in diversification rate and have interpreted this as evidence for density dependent speciation. However, we demonstrated via simulation that large clades are expected to show stronger slowdowns than small clades, even if the probability of speciation and extinction remains constant through time. This is a consequence of exponential growth: clades, which, by chance, diversify at above the average rate early in their history, will tend to be large. They will also tend to regress back to the average diversification rate later on, and therefore show a slowdown. We conducted a meta-analysis of the distribution of speciation events through time, focusing on sequence-based phylogenies for 45 clades of birds. Thirteen of the 23 clades (57% that include more than 20 species show significant slowdowns. The high frequency of slowdowns observed in large clades is even more extreme than expected under a purely stochastic constant-rate model, but is consistent with the adaptive radiation model. Taken together, our data strongly support a model of density-dependent speciation in birds, whereby speciation slows as ecological opportunities and geographical space place limits on clade growth.
Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Yonggang Chen
2008-01-01
Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
Zhou, Wuneng; Tong, Dongbing; Gao, Yan; Ji, Chuan; Su, Hongye
2012-04-01
In this brief, the analysis problem of the mode and delay-dependent adaptive exponential synchronization in th moment is considered for stochastic delayed neural networks with Markovian switching. By utilizing a new nonnegative function and the -matrix approach, several sufficient conditions to ensure the mode and delay-dependent adaptive exponential synchronization in th moment for stochastic delayed neural networks are derived. Via the adaptive feedback control techniques, some suitable parameters update laws are found. To illustrate the effectiveness of the -matrix-based synchronization conditions derived in this brief, a numerical example is provided finally.
Institute of Scientific and Technical Information of China (English)
Xianming ZHANG; Min WU; Jinhua SHE; Dongsheng HAN
2006-01-01
This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms is first established. Then, some new delay-dependent criteria are derived by employing the new inequality to guarantee the robust stability of a closed-loop system with a prescribed H-infinity norm bound for all admissible uncertainties and bounded time-vary delays. A numerical example demonstrates that the proposed method is an improvement over existing ones.
Wildlife disease elimination and density dependence
Potapov, A.
2012-05-16
Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent (DD) transmission, is ineffective for controlling diseases that are subject to frequency-dependent (FD) transmission. We investigate control for horizontally transmitted diseases with FD transmission where the control is via culling or harvest that is non-selective with respect to infection and the population can compensate through DD recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are FD. Eradication can be achieved under FD transmission when DD birth or recruitment induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination, and there is high enough transmission coefficient, application of both controls may be less efficient than vaccination alone. We illustrate the effects of these control approaches on disease prevalence for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment.
A Stability Condition with Delay-Dependence for a Class of Switched Large-Scale Time-Delay Systems
Directory of Open Access Journals (Sweden)
Chi-Jo Wang
2013-01-01
Full Text Available By using the time-switched method and the comparison theorem, we derived a criterion of delay-dependent stability for the switched large-scale time-delay systems. To guarantee the exponential stability for the switched large-scale time-delay systems with stability margin λ, the total activation time ratio of the switching law is determined. An example is used to illustrate the effectiveness of our result.
Delay time dependence of thermal effect of combined pulse laser machining
Yuan, Boshi; Jin, Guangyong; Ma, Yao; Zhang, Wei
2016-10-01
The research focused on the effect of delay time in combined pulse laser machining on the material temperature field. Aiming at the parameter optimization of pulse laser machining aluminum alloy, the combined pulse laser model based on heat conduction equation was introduced. And the finite element analysis software, COMSOL Multiphysics, was also utilized in the research. Without considering the phase transition process of aluminum alloy, the results of the numerical simulation was shown in this paper. By the simulation study of aluminum alloy's irradiation with combined pulse, the effect of the change in delay time of combined pulse on the temperature field of the aluminum alloy and simultaneously the quantized results under the specific laser spot conditions were obtained. Based on the results, several conclusions could be reached, the delay time could affect the rule of temperature changing with time. The reasonable delay time controlling would help improving the efficiency. In addition, when the condition of the laser pulse energy density is constant, the optimal delay time depends on pulse sequence.
Delay-dependent robust H∞ control of convex polyhedral uncertain fuzzy systems
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with time-varying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.
Factors influencing delay time and coronary arterial density during coronary angiography with DSCT
Energy Technology Data Exchange (ETDEWEB)
Lijun Tang; Xiaomei Zhu; Yi Xu; Tongfu Yu; Hai Xu; Jinhua Tang; Dehang Wang (Dept. of Radiology, the First Affiliated Hospital of Nanjing Medical Univ., Nanjing, Jiangsu (China)), e-mail: wangdehang@hotmail.com; Dogra, Vikram (Dept. of Radiology, Univ. of Rochester, NY (United States))
2011-02-15
Background: CT angiography (CTA) plays an important role in diagnosing coronary arterial disease. Delay time and density of the coronary arteries related with patient-specific factors are essential for getting an optimal CTA image. Purpose: To investigate various factors influencing delay time and coronary arterial density during coronary CTA with dual source CT. Material and Methods: One hundred and sixteen consecutive subjects who underwent cardiac DSCT with retrospective ECG-gating were included. Factors including gender, age, height, weight, transversal cardiac diameter (TCD), transversal thoracic diameter (TTD), heart rate (HR), body surface area (BSA = [weight x height/3600]1/2) and cardiothoracic ratio (CTR = TCD/TTD) were recorded, measured and calculated before administration of contrast media during coronary CT angiography. Delay time was determined as duration from the beginning of the injection to the density in the descending aorta at the level of right main pulmonary artery reaching a threshold of 100 HU. Coronary arterial density was measured at the mid portion of the right coronary artery. Regression analysis and stepwise regression analysis were used to investigate the influence of these factors on delay time and coronary arterial density. Results: Delay time decreased with an increasing HR and it was shorter in women than men. Delay time increased with an increasing TCD. Delay time could be predicted by the formula: DT = 16.651-0.110 x HR + 1.902 x gender + 0.394 x TCD (where DT is abbreviation for delay time, gender is 0 for women and 1 for men). Coronary arterial density decreased with an increasing HR and weight. Coronary arterial density could be predicted by the formula: CAD = 923.42-4.099 x HR-3.293 x weight (CAD = coronary arterial density). There was no relationship between the other factors mentioned above and delay time or coronary arterial density. Conclusion: Delay time is influenced by HR, gender and TCD. Coronary arterial density
New Delay-Dependent Stability of Uncertain Discrete-Time Switched Systems with Time-Varying Delays
Institute of Scientific and Technical Information of China (English)
Liang Lin XIONG; Shou Ming ZHONG; Mao YE
2011-01-01
This paper deals with the issues of robust stability for uncertain discrete-time switched systems with mode-dependent time delays. Based on a novel difference inequality and a switched Lyapunov function, new delay-dependent stability criteria are formulated in terms of linear matrix inequalities (LMIs) which are not contained in known literature. A numerical example is given to demonstrate that the proposed criteria improves some existing results significantly with much less computational effort.
Delay-Dependent Absolute Stability ofUncertain Lur′e Systems with Time-Delays1）
Institute of Scientific and Technical Information of China (English)
CHENWu-Hua; GUANZhi-Hong; LUXiao-Mei; YANGXuan-Fang
2004-01-01
This paper is concerned with delay dependent absolute stability for a class of uncertain Lur′e systems with multiple time-delays. By using a descriptor model transformation of the sys-tem and by applying a recent result on bounding of cross products of vectors, a new type of Lya-punov-Krasovskii functional is constructed. Based on the new functional, delay-dependent suffi-cient conditions for absolute stability are derived in terms of linear matrix inequalities. These con-ditions do not require any parameter tuning, and can be solved numerically using the software LMI Lab. A numerical example is presented which shows that the proposed method can substantiallyimprove the delay bound for absolute stability of Lur′e system with time-delays, compared to theexisting ones.
A mechanistic analysis of density dependence in algal population dynamics
Directory of Open Access Journals (Sweden)
Adrian eBorlestean
2015-04-01
Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.
A model for thin layer formation by delayed particle settling at sharp density gradients
Prairie, Jennifer C.; White, Brian L.
2017-02-01
Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.
Directory of Open Access Journals (Sweden)
Hamid Reza Karimi
2009-01-01
Full Text Available The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method.
Density dependence triggers runaway selection of reduced senescence.
Directory of Open Access Journals (Sweden)
Robert M Seymour
2007-12-01
Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.
Stimulus-dependent synchronization in delayed-coupled neuronal networks.
Esfahani, Zahra G; Gollo, Leonardo L; Valizadeh, Alireza
2016-03-22
Time delay is a general feature of all interactions. Although the effects of delayed interaction are often neglected when the intrinsic dynamics is much slower than the coupling delay, they can be crucial otherwise. We show that delayed coupled neuronal networks support transitions between synchronous and asynchronous states when the level of input to the network changes. The level of input determines the oscillation period of neurons and hence whether time-delayed connections are synchronizing or desynchronizing. We find that synchronizing connections lead to synchronous dynamics, whereas desynchronizing connections lead to out-of-phase oscillations in network motifs and to frustrated states with asynchronous dynamics in large networks. Since the impact of a neuronal network to downstream neurons increases when spikes are synchronous, networks with delayed connections can serve as gatekeeper layers mediating the firing transfer to other regions. This mechanism can regulate the opening and closing of communicating channels between cortical layers on demand.
Density dependent catchability in bottom trawl surveys
Aglen, Asgeir; Engås, Arill; Godø, Olav Rune; McCallum, Barry R.; Stansbury, Don; Walsh, Stephen J.
1997-01-01
Fish form schools, layer or patches in which the individual fish's behaviour is not independent of its neighbours movements. On the other hand, at low densities fish may have the freedom to act as single individuals independently of what other fish are doing. Potentially, if these contrasts occur in nature, they may give rise to behavioural differences of fish in front of the trawl at high and low densities with successive effects on catchability and bottom trawl indices of stock ...
H∞control for uncertain Markovian jump systems with mode-dependent mixed delays
Institute of Scientific and Technical Information of China (English)
Yingchun Wang; Huaguang Zhang
2008-01-01
We study the problem of H∞ control for a class of Markovian jump systems with norm-bounded parameter uncertainties and mode-dependent mixed delays including discrete delays and distributed delays in this paper. Our aim is to present a new delay-dependent control approach such that the resulting closed-loop system is robust mean-square (MS) exponentially stable and satisfies a prescribed H∞ performance level, irrespective of the parameter uncertainties. Such delay-dependent approach does not require system transformation or free-weighting matrix. A numerical example shows that the results are less conservative and more effective.
Institute of Scientific and Technical Information of China (English)
Wang Shen-Quan; Feng Jian; Zhao Qing
2012-01-01
In this paper,the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay.Different from the common assumptions on time delays,it is assumed that the probability distribution of the delay taking values in some intervals is known a priori.By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method),less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs).Two numerical examples show that our results are better than the existing ones.
Density dependence in Caenorhabditis larval starvation
Artyukhin, Alexander B.; Schroeder, Frank C.; Avery, Leon
2013-01-01
Availability of food is often a limiting factor in nature. Periods of food abundance are followed by times of famine, often in unpredictable patterns. Reliable information about the environment is a critical ingredient of successful survival strategy. One way to improve accuracy is to integrate information communicated by other organisms. To test whether such exchange of information may play a role in determining starvation survival strategies, we studied starvation of L1 larvae in C. elegans and other Caenorhabditis species. We found that some species in genus Caenorhabditis, including C. elegans, survive longer when starved at higher densities, while for others survival is independent of the density. The density effect is mediated by chemical signal(s) that worms release during starvation. This starvation survival signal is independent of ascarosides, a class of small molecules widely used in chemical communication of C. elegans and other nematodes. PMID:24071624
Directory of Open Access Journals (Sweden)
Weihua Mao
2012-01-01
Full Text Available This paper discusses the mean-square exponential stability of uncertain neutral linear stochastic systems with interval time-varying delays. A new augmented Lyapunov-Krasovskii functional (LKF has been constructed to derive improved delay-dependent robust mean-square exponential stability criteria, which are forms of linear matrix inequalities (LMIs. By free-weight matrices method, the usual restriction that the stability conditions only bear slow-varying derivative of the delay is removed. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.
Delay-dependent H2 control for discrete time-delay systems with D-stability constraints
Institute of Scientific and Technical Information of China (English)
Man Sun; Yingmin Jia; Junping Du; Shiying Yuan
2008-01-01
This paper studies the problem of H2 control for a class of discrete time-delay systems with D-stability constraints. The corresponding sufficient conditions are given in terms of linear matrix inequalities. In particular, the conditions are delay-dependent, and so they are less conservative. The obtained controller can provide an upper bound for the H2 cost function. A numerical example is given to illustrate the proposed method.
Liu, Pin-Lin
2013-11-01
This paper provides an improved delay-range-dependent stability criterion for linear systems with interval time-varying delays. No model transformation and no slack matrix variable are introduced. Furthermore, overly bounding for some cross term is avoided. The resulting criterion has advantages over some previous ones in that it involves fewer matrix variables but has less conservatism, which is established theoretically. Finally, two numerical examples are given to show the effectiveness of the proposed results.
Directory of Open Access Journals (Sweden)
Xing Yin
2011-01-01
uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.
Adaptive density dependence of avian clutch size
Both, C; Tinbergen, JM; Visser, ME
2000-01-01
In birds, the annual mean clutch size is often negatively correlated with population density. This relationship is at least in part due to adjustment by individuals. We investigated whether this response is adaptive in two ways. First we used an optimality model to predict how optimal clutch size
Size-dependent density of nanoparticles and nanostructured materials
Energy Technology Data Exchange (ETDEWEB)
Nanda, Karuna Kar, E-mail: nanda@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 12 (India)
2012-10-01
We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature. -- Highlights: ► Density of nanoparticles depends mainly on the size-dependent lattice parameter. ► Density is predicted to increase with decreasing size for nanoparticles. ► Density decreases with size for nanostructured materials.
Aging-dependent reduction in glyoxalase 1 delays wound healing.
Fleming, Thomas H; Theilen, Till-Martin; Masania, Jinit; Wunderle, Marius; Karimi, Jamshid; Vittas, Spiros; Bernauer, Rainer; Bierhaus, Angelika; Rabbani, Naila; Thornalley, Paul J; Kroll, Jens; Tyedmers, Jens; Nawrotzki, Ralph; Herzig, Stephan; Brownlee, Michael; Nawroth, Peter P
2013-01-01
Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice. Copyright © 2013 S. Karger AG, Basel.
Wavelength dependent delay in the onset of FEL tissue ablation
Energy Technology Data Exchange (ETDEWEB)
Tribble, J.A.; Edwards, G.S. [Vanderbilt Univ., Nashville, TN (United States); Lamb, J.A. [Massachusetts General Hospital, Boston, MA (United States)] [and others
1995-12-31
We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 {mu}m and 6.45 {mu}m pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 {mu}m as compared to 6.45 {mu}m. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process.
Dependence of quartz wettability on fluid density
Al-Yaseri, Ahmed Zarzor; Roshan, Hamid; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan
2016-04-01
Wettability is one of the most important parameters in multiphase flow through porous rocks. However, experimental measurements or theoretical predictions are difficult and open to large uncertainty. In this work we demonstrate that gas densities (which are much simpler to determine than wettability and typically well known) correlate remarkably well with wettability. This insight can significantly improve wettability predictions, thus derisking subsurface operations (e.g., CO2 geostorage or hydrocarbon recovery), and significantly enhance fundamental understanding of natural geological processes.
Density dependence in demography and dispersal generates fluctuating invasion speeds.
Sullivan, Lauren L; Li, Bingtuan; Miller, Tom E X; Neubert, Michael G; Shaw, Allison K
2017-05-09
Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities-i.e., an Allee effect-combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting.
Density-dependent growth in invasive Lionfish (Pterois volitans.
Directory of Open Access Journals (Sweden)
Cassandra E Benkwitt
Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.
Experimental evidence for density dependence of reproduction in great tits
Both, Christiaan
1998-01-01
1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not
Experimental evidence for density dependence of reproduction in great tits
Both, C.
1998-01-01
1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not
Experimental evidence for density dependence of reproduction in great tits
Both, Christiaan
1998-01-01
1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not sup
Experimental evidence for density dependence of reproduction in great tits
Both, Christiaan
1998-01-01
1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not sup
Multicomponent density-functional theory for time-dependent systems
Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.
2007-01-01
We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried ou
Density dependence of clutch size : habitat heterogeneity or individual adjustment?
Both, Christiaan
1998-01-01
1. Two hypotheses have been proposed to explain density-dependent patterns in reproduction. The habitat heterogeneity hypothesis (HHH) explains density-dependent reproduction at the population level from poorer quality territories in hetero geneous environments only being occupied at high
Viscosity and density dependence during maximal flow in man.
Staats, B A; Wilson, T A; Lai-Fook, S J; Rodarte, J R; Hyatt, R E
1980-02-01
Maximal expiratory flow curves were obtained from ten healthy subjects white breathing air and three other gas mixtures with different densities and viscosities. From these data, the magnitudes of the dependence of maximal flow on gas density and viscosity were obtained. The scaling laws of fluid mechanics, together with a model for the flow-limiting mechanism, were used to obtain a prediction of the relationship between the density dependence and the viscosity dependence of maximal flow. Although the data for individual subjects were too variable to allow a precise comparison with this prediction, the relationship between the mean density dependence and the mean viscosity dependence of all usbjects agreed with the theoretic prediction. This agreement supports the assumption, which is frequently made, that flow resistance rather than tissue visoelasticity is the dominant contributor to peripheral resistance. Information on the relationships between the pressure drop to the flow-limiting segment and flow, gas density and viscosity, and lung volume were also obtained.
Phased-Array Antenna Beam Squinting Related to Frequency Dependency of Delay Circuits
Garakoui, S.K.; Klumperink, E.A.M.; Nauta, B.; Vliet, F.E. van
2011-01-01
Practical time delay circuits do not have a perfectly linear phase-frequency characteristic. When these delay circuits are applied in a phased-array system, this frequency dependency shows up as a frequency dependent beam direction (“beam squinting”). This paper quantifies beam squinting for a linea
Routing Strategy Based on Local Density Sensing in Delay Tolerant Network
Directory of Open Access Journals (Sweden)
Fucai Wang
2014-02-01
Full Text Available Aiming at the interval connectivity and the limitation of available storage and internodes throughput in delay tolerant network, this paper designs a kind of Density-Aware Routing Scheme (DARS for its messaging service. According to the density of nodes, the direction that messages are forwarded to the dense area is decided. The change of correlation time between networks is used to evaluate local density and decide how to exchange information with a certain node met in the process of moving. Simulation results show that the proposed scheme has simplicity and low complexity. In the delay tolerant network of non-uniform node distribution, the message transfer rate and communication overhead get fairly good effect.
Directory of Open Access Journals (Sweden)
Xuepeng Li
2009-01-01
Full Text Available Sufficient conditions for permanence of a semi-ratio-dependent predator-prey system with nonmonotonic functional response and time delay ̇1(=1([1(−11(1(−(−12(2(/(2+21(], ̇2(=2([2(−21(2(/1(], are obtained, where 1( and 2( stand for the density of the prey and the predator, respectively, and ≠0 is a constant. (≥0 stands for the time delays due to negative feedback of the prey population.
Firing statistics of inhibitory neuron with delayed feedback. I. Output ISI probability density.
Vidybida, A K; Kravchuk, K G
2013-06-01
Activity of inhibitory neuron with delayed feedback is considered in the framework of point stochastic processes. The neuron receives excitatory input impulses from a Poisson stream, and inhibitory impulses from the feedback line with a delay. We investigate here, how does the presence of inhibitory feedback affect the output firing statistics. Using binding neuron (BN) as a model, we derive analytically the exact expressions for the output interspike intervals (ISI) probability density, mean output ISI and coefficient of variation as functions of model's parameters for the case of threshold 2. Using the leaky integrate-and-fire (LIF) model, as well as the BN model with higher thresholds, these statistical quantities are found numerically. In contrast to the previously studied situation of no feedback, the ISI probability densities found here both for BN and LIF neuron become bimodal and have discontinuity of jump type. Nevertheless, the presence of inhibitory delayed feedback was not found to affect substantially the output ISI coefficient of variation. The ISI coefficient of variation found ranges between 0.5 and 1. It is concluded that introduction of delayed inhibitory feedback can radically change neuronal output firing statistics. This statistics is as well distinct from what was found previously (Vidybida and Kravchuk, 2009) by a similar method for excitatory neuron with delayed feedback.
Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation
DEFF Research Database (Denmark)
Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto
2015-01-01
Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length ...
Delay-dependent asymptotic stability for neural networks with time-varying delays
Directory of Open Access Journals (Sweden)
Xiaofeng Liao
2006-01-01
ensure local and global asymptotic stability of the equilibrium of the neural network. Our results are applied to a two-neuron system with delayed connections between neurons, and some novel asymptotic stability criteria are also derived. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua
2011-08-28
We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.
Institute of Scientific and Technical Information of China (English)
Renji Han; Wei Jiang
2009-01-01
The problem of delay-dependent robust stability for uncertain linear singular neu-tral systems with time-varying and distributed delays is investigated. The uncertain-ties under consideration are norm bounded, and possibly time varying. Some new stability criteria, which are simpler and less conservative than existing results, are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coefficient matrix and formulated in the form of a linear matrix inequalitys (LMIs). Also, the criteria can be easily checked by the Matlab LMI toolbox.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper proposed a design method for delay-dependent robust H-infinity filter of linear systems with uncertainty and time-varying interval delay.The proposed method was shown to be much simpler than existing ones while giving significant improvement to the existing results.The key step in the method was to construct a special type of Lyapunov functional for the filter design problem.Unlike the existing techniques,the proposed method employed neither free weighting matrices nor any model transformation,le...
Zhong, Qishui; Cheng, Jun; Zhao, Yuqing
2015-07-01
In this paper, a novel method is developed for delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays. New sufficient condition for stochastic boundness of Markovian jumping neural networks is presented and proved by an newly augmented stochastic Lyapunov-Krasovskii functional and novel activation function conditions, the state trajectory remains in a bounded region of the state space over a given finite-time interval. Finally, a numerical example is given to illustrate the efficiency and less conservative of the proposed method.
Institute of Scientific and Technical Information of China (English)
LIU Hai-feng; WANG Chun-hua; WEI Guo-liang
2008-01-01
The exponential stability problem is investigated fora class of stochastic recurrent neural networks with time delay and Markovian switching.By using It(o)'s differential formula and the Lyapunov stabifity theory,sufficient condition for the solvability of this problem is derived in telm of linear matrix inequalities,which can be easily checked by resorting to available software packages.A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results.
Density-dependent acoustic properties of PBX 9502
Energy Technology Data Exchange (ETDEWEB)
Brown, Geoffrey W [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Hartline, Ernest L [Los Alamos National Laboratory; Hagelberg, Stephanie I [Los Alamos National Laboratory
2009-07-31
We have measured the longitudinal and shear acoustic velocities of PBX 9502 as a function of density for die-pressed samples over the range 1.795 g/cc to 1.888 g/cc. The density dependence of the velocities is linear. Thermal cycling of PBX 9502 is known to induce irreversible volume growth. We have measured this volume growth dependence on density for a subset of the pressed parts and find that the most growth occurs for the samples with lowest initial density. The acoustic velocity changes due to the volume growth are significant and reflect damage in the samples.
Robust Delay-dependent H∞ Consensus Control for Multi-agent Systems with Input Delays
Institute of Scientific and Technical Information of China (English)
LI Zhen-Xing; JI Hai-Bo
2014-01-01
This paper investigates the consensus control for multi-agent systems subject to external disturbances, input delays and model uncertainties of networks. By defining an appropriate controlled output, we transform this question into a robust H∞control problem. Then, we give two criteria to judge the consensusability of closed-loop multi-agent systems and present a cone-complementary linearization algorithm to get the state feedback controller′s parameters. Finally, numerical examples are given to show the effectiveness of the proposed consensus protocols.
Dynamical properties induced by state-dependent delays in photonic systems
Martínez-Llinàs, Jade; Porte, Xavier; Soriano, Miguel C.; Colet, Pere; Fischer, Ingo
2015-06-01
In many dynamical systems and complex networks time delays appear naturally in feedback loops or coupling connections of individual elements. Moreover, in a whole class of systems, these delay times can depend on the state of the system. Nevertheless, so far the understanding of the impact of such state-dependent delays remains poor with a particular lack of systematic experimental studies. Here we fill this gap by introducing a conceptually simple photonic system that exhibits dynamics of self-organised switching between two loops with two different delay times, depending on the state of the system. On the basis of experiments and modelling on semiconductor lasers with frequency-selective feedback mirrors, we characterize the switching between the states defined by the individual delays. Our approach opens new perspectives for the study of this class of dynamical systems and enables applications in which the self-organized switching can be exploited.
Cotter, Sheena; Hails, R. S.; Cory, J S; Wilson, K.
2004-01-01
1. The risk of parasitism and infectious disease is expected to increase with population density as a consequence of positive density-dependent transmission rates. Therefore, species that encounter large fluctuations in population density are predicted to exhibit plasticity in their immune system, such that investment in costly immune defences is adjusted to match the probability of exposure to parasites and pathogens (i.e. density-dependent prophylaxis).
Yuan, Rong
2007-06-01
In this paper, we study almost periodic logistic delay differential equations. The existence and module of almost periodic solutions are investigated. In particular, we extend some results of Seifert in [G. Seifert, Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence, J. Differential Equations 164 (2000) 451-458].
Dependence of polar hole density on magnetic and solar conditions
Hoegy, W. R.; Grebowsky, J. M.
1991-01-01
Electron densities from the Langmuir probes on the Atmospheric Explorer C and Dynamics Explorer 2 are used for analyzing the behavior of the high-altitude night-side F region polar hole as a function of solar and magnetic activity and of universal time (UT). The polar region of invariant latitude from 70 deg to 80 deg and MLT from 22 to 03 hours is examined. The strongest dependencies are observed in F10.7 and UT; a strong hemispherical difference due to the offset of the magnetic poles from the earth's rotation axis is observed in the UT dependence of the ionization hole. A seasonal variation in the dependence of ion density on solar flux is indicated, and an overall asymmetry in the density level between hemispheres is revealed, with the winter-hole density about a factor of 10 greater in the north than in the south.
Density-dependence as a size-independent regulatory mechanism
De Vladar, H.P.
2006-01-01
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which
Density-dependence as a size-independent regulatory mechanism
De Vladar, H.P.
2006-01-01
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which
Delayed Proton Emission in the A=70 Region, a Strobe for Level Density and Particle Width
2002-01-01
The delayed particle emission, which is a characteristic signature of the most exotic nuclei decay, provides a wide variety of spectroscopic information among which level density, and gives in some cases access to selected microscopic structures. In regard to these two aspects the $\\beta^+$-EC delayed proton emission in the A=70 neutron deficient mass region is of special interest to be investigated. Indeed, in this area located close to the proton drip line and along the N=Z line, the delayed proton emission constitutes an access to level density in the Q$_{EC}$-S$_p$ window of the emitting nucleus. Moreover, the unbound states populated by the EC process are expected to exhibit lifetimes in the vicinity of the K electronic shell filling time ($\\tau\\!\\sim\\!2\\times10^{-16}$s) and so the particle widths can be reached via proton X-ray coincidence measurements (PXCT). From theoretical approaches strongly deformed low-spin proton unbound levels which may be populated in the T$_Z$ = 1/2 precursors decay are predi...
Temperature Dependence Viscosity and Density of Different Biodiesel Blends
Directory of Open Access Journals (Sweden)
Vojtěch Kumbár
2015-01-01
Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.
Derebaşı, Muhammet Burak
2015-01-01
Worldwide, there is an increasing interest to study social media dependency. Currently, most of the researches compare social media dependency with other dependencies such as substance abuse and gambling. Although, there is limited research to investigate the effect of personality on social media dependency. Therefore, the main aim of the current study was to examine the predictor roles of narcissism, perceived parenting styles and delay of gratification on social media dependency. A total of...
Wu, Qianqian; Tian, Tianhai
2016-08-24
To deal with the growing scale of molecular systems, sophisticated modelling techniques have been designed in recent years to reduce the complexity of mathematical models. Among them, a widely used approach is delayed reaction for simplifying multistep reactions. However, recent research results suggest that a delayed reaction with constant time delay is unable to describe multistep reactions accurately. To address this issue, we propose a novel approach using state-dependent time delay to approximate multistep reactions. We first use stochastic simulations to calculate time delay arising from multistep reactions exactly. Then we design algorithms to calculate time delay based on system dynamics precisely. To demonstrate the power of proposed method, two processes of mRNA degradation are used to investigate the function of time delay in determining system dynamics. In addition, a multistep pathway of metabolic synthesis is used to explore the potential of the proposed method to simplify multistep reactions with nonlinear reaction rates. Simulation results suggest that the state-dependent time delay is a promising and accurate approach to reduce model complexity and decrease the number of unknown parameters in the models.
Time dependent density functional calculation of plasmon response in clusters
Institute of Scientific and Technical Information of China (English)
Wang Feng(王锋); Zhang Feng-Shou(张丰收); Eric Suraud
2003-01-01
We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged timedependent local density approximation scheme, which is solved directly in the time domain without any linearization.As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.
Effect of the density dependent symmetry energy on fragmentation
Vinayak, Karan Singh
2011-01-01
The effect of the density dependence of symmetry energy on fragmentation is studied using isospin-dependent quantum molecular dynamics model(IQMD) Model. We have used the reduced isospin-dependent cross-section with soft equation of state to explain the experimental findings for the system 79_Au^197 + 79_Au^197 for the full colliding geometry. In addition to that we have tried to study the collective response of the momentum dependent interactions(MDI) and symmetry energy towards the multifragmentation
Energy Technology Data Exchange (ETDEWEB)
Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)
2013-07-01
Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.
Delay-dependent passive control of linear systems with nonlinear perturbation
Institute of Scientific and Technical Information of China (English)
Li Caina; Cui Baotong
2008-01-01
The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such that for a time-varying delay in states, the linear system with nonlinear perturbation remains robustly stable and passive.In the system, the delay is time-varying. And the derivation of delay has the maximum and minimum value. The time-varying nonlinear perturbation is allowed to be norm-bounded. Using the effective linear matrix inequality methodology, the sufficient condition is primarily obtained for the system to have robust stability and passivity.Subsequently the existent condition of a state feedback controller is given, and the explicit expression of the controller is obtained by means of the solution of linear matrix inequalities (LMIs). In the end, a numerical example is given to demonstrate the validity and applicability of the proposed approach.
Muralisankar, S; Manivannan, A; Balasubramaniam, P
2015-09-01
The aim of this manuscript is to investigate the mean square delay dependent-probability-distribution stability analysis of neutral type stochastic neural networks with time-delays. The time-delays are assumed to be interval time-varying and randomly occurring. Based on the new Lyapunov-Krasovskii functional and stochastic analysis approach, a novel sufficient condition is obtained in the form of linear matrix inequality such that the delayed stochastic neural networks are globally robustly asymptotically stable in the mean-square sense for all admissible uncertainties. Finally, the derived theoretical results are validated through numerical examples in which maximum allowable upper bounds are calculated for different lower bounds of time-delay.
Ackerman, Joshua T.; Ringelman, Kevin M.; Eadie, J.M.
2012-01-01
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for “dispersion-dependent” predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.
Differential Frequency-dependent Delay from the Pulsar Magnetosphere
Hassall, T E; Weltevrede, P; Hessels, J W T; Alexov, A; Coenen, T; Karastergiou, A; Kramer, M; Keane, E F; Kondratiev, V I; van Leeuwen, J; Noutsos, A; Pilia, M; Serylak, M; Sobey, C; Zagkouris, K; Fender, R; Bell, M E; Broderick, J; Eisloffel, J; Falcke, H; Griessmeier, J -M; Kuniyoshi, M; Miller-Jones, J C A; Wise, M W; Wucknitz, O; Zarka, P; Asgekar, A; Batejat, F; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Bruggen, M; Butcher, H R; Ciardi, B; de Gasperin, F; de Reijer, J -P; Duscha, S; Fallows, R A; Ferrari, C; Frieswijk, W; Garrett, M A; Gunst, A W; Heald, G; Hoeft, M; Juette, E; Maat, P; McKean, J P; Norden, M J; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Rottgering, H; Sluman, J; Tang, Y; Tasse, C; Vermeulen, R; van Weeren, R J; Wijnholds, S J; Yatawatta, S
2013-01-01
Some radio pulsars show clear drifting subpulses, in which subpulses are seen to drift in pulse longitude in a systematic pattern. Here we examine how the drifting subpulses of PSR B0809+74 evolve with time and observing frequency. We show that the subpulse period (P3) is constant on timescales of days, months and years, and between 14-5100 MHz. Despite this, the shapes of the driftbands change radically with frequency. Previous studies have concluded that, while the subpulses appear to move through the pulse window approximately linearly at low frequencies ( 820 MHz) near to the peak of the average pulse profile. We use LOFAR, GMRT, GBT, WSRT and Effelsberg 100-m data to explore the frequency-dependence of this phase step. We show that the size of the subpulse phase step increases gradually, and is observable even at low frequencies. We attribute the subpulse phase step to the presence of two separate driftbands, whose relative arrival times vary with frequency - one driftband arriving 30 pulses earlier at 2...
Cuticular antifungals in spiders: density- and condition dependence.
González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur
2014-01-01
Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.
Hopf bifurcation of a ratio-dependent predator-prey system with time delay
Energy Technology Data Exchange (ETDEWEB)
Celik, Canan [TOBB Economics and Technology University, Faculty of Arts and Sciences, Department of Mathematics, Soeguetoezue 06560, Ankara (Turkey)], E-mail: canan.celik@etu.tr
2009-11-15
In this paper, we consider a ratio dependent predator-prey system with time delay where the dynamics is logistic with the carrying capacity proportional to prey population. By considering the time delay as bifurcation parameter, we analyze the stability and the Hopf bifurcation of the system based on the normal form approach and the center manifold theory. Finally, we illustrate our theoretical results by numerical simulations.
Effective Maxwell Equations from Time-dependent Density Functional Theory
Institute of Scientific and Technical Information of China (English)
Weinan E; Jianfeng LU; Xu YANG
2011-01-01
The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.
Linear-response thermal time-dependent density functional theory
Pribram-Jones, Aurora; Burke, Kieron
2015-01-01
The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation (XC) approximations.
Rapidity dependence of particle densities in pp and AA collisions
Bautista, Irais; Milhano, Jose Guilherme; Dias de Deus, Jorge
2012-01-01
We use multiple scattering and energy conservation arguments to describe $dn/d\\eta_{NANA}$ as a function of $dn/d\\eta_{pp}$ in the framework of string percolation. We discuss the pseudo-rapidity $\\eta$? and beam rapidity Y dependence of particle densities. We present our results for pp, Au- Au, and Pb-Pb collisions at RHIC and LHC.
Delay-dependent asymptotic stability of mobile ad-hoc networks: A descriptor system approach
Yang, Juan; Yang, Dan; Huang, Bin; Zhang, Xiao-Hong; Luo, Jian-Lu
2014-07-01
In order to analyze the capacity stability of the time-varying-propagation and delay-dependent of mobile ad-hoc networks (MANETs), in this paper, a novel approach is proposed to explore the capacity asymptotic stability for the delay-dependent of MANETs based on non-cooperative game theory, where the delay-dependent conditions are explicitly taken into consideration. This approach is based on the Lyapunov—Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique. A corresponding Lyapunov—Krasovskii functional is introduced for the stability analysis of this system with use of the descriptor and “neutral-type” model transformation without producing any additional dynamics. The delay-dependent stability criteria are derived for this system. Conditions are given in terms of linear matrix inequalities, and for the first time referred to neutral systems with the time-varying propagation and delay-dependent stability for capacity analysis of MANETs. The proposed criteria are less conservative since they are based on an equivalent model transformation. Furthermore, we also provide an effective and efficient iterative algorithm to solve the constrained stability control model. Simulation experiments have verified the effectiveness and efficiency of our algorithm.
Temperature dependence of densities of Sb and Bi melts
Institute of Scientific and Technical Information of China (English)
GENG HaoRan; SUN ChunJing; WANG Rui; QI XiaoGang; ZHANG Ning
2007-01-01
The densities of Sb and Bi melts were investigated by an improved Archimedean method. The results show that the density of the Sb melt decreases linearly with increasing temperature, but the density of the Bi melt firstly increases and then decreases as the temperature increases. There is a maximum density value of 10.002 g/cm3 at 310℃, about 39℃ above the melting point. The temperature dependence of the Sb melt is well fitted with the expression ρ= 6.8590-5.8105×10-4T, and that of the Bi melt is fitted with ρ=10.3312-1.18×10-3T. The results were discussed from a microstructure viewpoint.
Density of biogas digestate depending on temperature and composition.
Gerber, Mandy; Schneider, Nico
2015-09-01
Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data.
Eigenstates of the time-dependent density-matrix theory
Energy Technology Data Exchange (ETDEWEB)
Tohyama, M. [Kyorin University School of Medicine, 181-8611, Mitaka, Tokyo (Japan); Schuck, P. [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris-Sud, F-91406, Orsay Cedex (France)
2004-02-01
An extended time-dependent Hartree-Fock theory, known as the time-dependent density-matrix theory (TDDM), is solved as a time-independent eigenvalue problem for low-lying 2{sup +} states in {sup 24}O to understand the foundation of the rather successful time-dependent approach. It is found that the calculated strength distribution of the 2{sup +} states has physically reasonable behavior and that the strength function is practically positive definite though the non-Hermitian Hamiltonian matrix obtained from TDDM does not guarantee it. A relation to an Extended RPA theory with hermiticity is also investigated. It is found that the density-matrix formalism is a good approximation to the Hermitian Extended RPA theory. (orig.)
Jan Ohlberger; Rogers, Lauren A.; Nils Chr. Stenseth
2014-01-01
A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength of the processes, the timing of density regulation may affect how stochastic variation, for instance through climate, translates into changes in adult abundance. In this study, we develop a lif...
Ohlberger, Jan; Rogers, Lauren A; Stenseth, Nils Chr
2014-01-01
A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength of the processes, the timing of density regulation may affect how stochastic variation, for instance through climate, translates into changes in adult abundance. In this study, we develop a life-cycle model for the population dynamics of a large marine fish population, Northeast Arctic cod, to disentangle the effects of density-independent and density-dependent processes on early life-stages, and to quantify the strength of compensatory density dependence in the population. The model incorporates information from scientific surveys and commercial harvest, and dynamically links multiple effects of intrinsic and extrinsic factors on all life-stages, from eggs to spawners. Using a state-space approach we account for observation error and stochasticity in the population dynamics. Our findings highlight the importance of density-dependent survival in juveniles, indicating that this period of the life cycle largely determines the compensatory capacity of the population. Density regulation at the juvenile life-stage dampens the impact of stochastic processes operating earlier in life such as environmental impacts on the production of eggs and climate-dependent survival of larvae. The timing of stochastic versus regulatory processes thus plays a crucial role in determining variability in adult abundance. Quantifying the contribution of environmental stochasticity and compensatory mechanisms in determining population abundance is essential for assessing population responses to climate change and exploitation by humans.
Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures
Energy Technology Data Exchange (ETDEWEB)
Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang [College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, Sichuan (China)
2014-07-07
We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height or incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.
Saturating interactions in /sup 4/He with density dependence
Energy Technology Data Exchange (ETDEWEB)
Bloom, S.D.; Resler, D.A.; Moszkowski, S.A.
1989-05-03
With the advent of larger and faster computers, as well as modern shell model codes, nuclear structure calculations for the light nuclei (A<16) which include full 2/bar h/..omega.. model spaces are quite feasible. However, there can be serious problems in the mixing of 2/bar h/..omega.. and higher excitations into the low-lying spectra if the effective interaction is non-saturating. Furthermore, effective interactions which are both saturating and density dependent have not generally been used in previous nuclear structure calculations. Therefore, we have undertaken studies of /sup 4/He using two-body potential interactions which incorporate both saturation and density-dependence. Encouraging initial results in remedying the mixing of 0 and 2/bar h/..omega.. excitations have been obtained. We have also considered the effects of our interaction on the /sup 4/He compressibility and the centroid of the breathing mode strength. First indications are that a saturating effective interaction, with a short-range density dependent part and a long-range density independent part, comes close to matching crude predictions for the compressibility of /sup 4/He. 11 refs., 6 tabs.
Formation of Los Angeles's low density and high car dependence
Institute of Scientific and Technical Information of China (English)
DAI Te-qi; JIN Feng-jun
2009-01-01
As a typical car-dependent city, Los Angeles (LA) is extensively used as an example in research to illustrate car influences on city form. Focusing on the features of LA's geologic conditions and civil circumstances, we argued that the relationship between LA's low-density pattern and car dependence is more involved than previously deemed simple causality. The low density should be primarily credited to the spacious requirement of the mining industry, frequent earthquakes and multiethnic population of the city. Oil reserves in LA fueled its economic boom and fast urbanization that coincided with the start of mass production of cheap cars, and cars became medium-priced consumables for average families. Politicians preference for short construction-peried projects enabled fast establishment of LA's highway infrastructure. The popularity of car use in return faciliatated further development of the low-density pattern of the city. The low-density urban form and car dependence created environmental and social problems for LA. Looking at P. R. China's motorization and urban development, we found that the trajectory of Beijing's motorization between 1978 and 2003 coincides with that of the U.S. in the 1910s and 1920s. Lessons from LA's urban and transportation development should be suggestive to China's urban and transportation planning.
Time-dependent density-functional theory for extended systems
Energy Technology Data Exchange (ETDEWEB)
Botti, Silvana [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Schindlmayr, Arno [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Del Sole, Rodolfo [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Reining, Lucia [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown)
2007-03-15
For the calculation of neutral excitations, time-dependent density functional theory (TDDFT) is an exact reformulation of the many-body time-dependent Schroedinger equation, based on knowledge of the density instead of the many-body wavefunction. The density can be determined in an efficient scheme by solving one-particle non-interacting Schroedinger equations-the Kohn-Sham equations. The complication of the problem is hidden in the-unknown-time-dependent exchange and correlation potential that appears in the Kohn-Sham equations and for which it is essential to find good approximations. Many approximations have been suggested and tested for finite systems, where even the very simple adiabatic local-density approximation (ALDA) has often proved to be successful. In the case of solids, ALDA fails to reproduce optical absorption spectra, which are instead well described by solving the Bethe-Salpeter equation of many-body perturbation theory (MBPT). On the other hand, ALDA can lead to excellent results for loss functions (at vanishing and finite momentum transfer). In view of this and thanks to recent successful developments of improved linear-response kernels derived from MBPT, TDDFT is today considered a promising alternative to MBPT for the calculation of electronic spectra, even for solids. After reviewing the fundamentals of TDDFT within linear response, we discuss different approaches and a variety of applications to extended systems.
Density-functional perturbation theory goes time-dependent
Gebauer, Ralph; Rocca, Dario; Baroni, Stefano
2009-01-01
The scope of time-dependent density-functional theory (TDDFT) is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most). In the static regime, density-functional perturbation theory (DFPT) allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix e...
Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
Institute of Scientific and Technical Information of China (English)
Wan-Yong Wang; Li-Jun Pei
2011-01-01
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria,and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluctuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover
The dependence of natural graphite anode performance on electrode density
Energy Technology Data Exchange (ETDEWEB)
Shim, Joongpyo; Striebel, Kathryn A.
2003-11-01
The effect of electrode density for lithium intercalation and irreversible capacity loss on the natural graphite anode in lithium ion batteries was studied by electrochemical methods. Both the first-cycle reversible and irreversible capacities of the natural graphite anode decreased with an increase in the anode density though compression. The reduction in reversible capacity was attributed to a reduction in the chemical diffusion coefficient for lithium though partially agglomerated particles with a larger stress. For the natural graphite in this study the potentials for Li (de)insertion shifted between the first and second formation cycles and the extent of this shift was dependent on electrode density. The relation between this peak shift and the irreversible capacity loss are probably both due to the decrease in graphite surface area with compression.
Density-dependent potential for multi-neutron halo nuclei
Institute of Scientific and Technical Information of China (English)
CHEN Shuang; CHU Yan-Yun; REN Zhong-Zhou
2009-01-01
We apply a simple density-dependent potential model to the three-body calculation of the ground-state structure of drip-line nuclei with a weakly bound core. The hyperspherical harmonics method is used to solve the Faddeev equations. There are no undetermined potential parameters in this calculation. We find that for the halo nuclei with a weakly-bound core, the calculated properties of the ground-state structure are in better agreement with experimental data than the results calculated from the standard Woods-Saxon and Gauss type potentials. We also successfully reproduce the experimental cross sections by using the density calculated from this method. This may be explained by the fact that the simple Fermi or Gaussian function can not exactly describe the density distribution of the drip-line nuclei.
Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview
Directory of Open Access Journals (Sweden)
Hojun Song
2011-01-01
Full Text Available Although the specific mechanisms of locust phase transformation are wellunderstood for model locust species such as the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, the expressions of density-dependent phase polyphenism in other nonmodel locust species are not wellknown. The present paper is an attempt to review and synthesize what we know about these nonmodel locusts. Based on all available data, I find that locust phase polyphenism is expressed in many different ways in different locust species and identify a pattern that locust species often belong to large taxonomic groups which contain mostly nonswarming grasshopper species. Although locust phase polyphenism has evolved multiple times within Acrididae, I argue that its evolution should be studied from a phylogenetic perspective because I find similar density-dependent phenotypic plasticity among closely related species. Finally, I emphasize the importance of comparative analyses in understanding the evolution of locust phase and propose a phylogeny-based research framework.
Limit Theorems for Competitive Density Dependent Population Processes
Parsons, Todd L
2010-01-01
Near the beginning of the century, Wright and Fisher devised an elegant, mathematically tractable model of gene reproduction and replacement that laid the foundation for contemporary population genetics. The Wright-Fisher model and its extensions have given biologists powerful tools of statistical inference that enabled the quantification of genetic drift and selection. Given the utility of these tools, we often forget that their model - for mathematical, and not biological reasons - makes assumptions that are violated in most real-world populations. In this paper, I consider an alternative framework that merges P. A. P. Moran's continuous-time Markov chain model of allele frequency with the density dependent models of ecological competition proposed by Gause, Lotka and Volterra, that, unlike Moran's model allow for a stochastically varying -- but bounded -- population size. I require that allele numbers vary according to a density-dependent population process, for which the limiting law of large numbers is a...
Directory of Open Access Journals (Sweden)
Kaibo Shi
2014-01-01
Full Text Available This paper is concerned with the problem of delay-dependent robust stability analysis for a class of uncertain neutral type Lur’e systems with mixed time-varying delays. The system has not only time-varying uncertainties and sector-bounded nonlinearity, but also discrete and distributed delays, which has never been discussed in the previous literature. Firstly, by employing one effective mathematical technique, some less conservative delay-dependent stability results are established without employing the bounding technique and the mode transformation approach. Secondly, by constructing an appropriate new type of Lyapunov-Krasovskii functional with triple terms, improved delay-dependent stability criteria in terms of linear matrix inequalities (LMIs derived in this paper are much brief and valid. Furthermore, both nonlinearities located in finite sector and infinite one have been also fully taken into account. Finally, three numerical examples are presented to illustrate lesser conservatism and the advantage of the proposed main results.
Temperature and temporal dependence of neutral density transmittance standards
Koo, A.; Hamlin, J. D.
2012-04-01
The Schott series of NG glasses are frequently used to manufacture neutral density transmittance standards for validation of spectrophotometer systems as well as for comparisons of regular spectral transmittance scales. A study has been made of the temperature and temporal dependence of transmittance in these types of filters. The temperature dependence of transmittance is found to scale as -ln(T). The filter transmittance was found to vary significantly with time shortly after manufacture but appears to be stabilizing nine months after beginning measurements.
Numerical density-to-potential inversions in time-dependent density functional theory.
Jensen, Daniel S; Wasserman, Adam
2016-08-01
We treat the density-to-potential inverse problem of time-dependent density functional theory as an optimization problem with a partial differential equation constraint. The unknown potential is recovered from a target density by applying a multilevel optimization method controlled by error estimates. We employ a classical optimization routine using gradients efficiently computed by the discrete adjoint method. The inverted potential has both a real and imaginary part to reduce reflections at the boundaries and other numerical artifacts. We demonstrate this method on model one-dimensional systems. The method can be straightforwardly extended to a variety of numerical solvers of the time-dependent Kohn-Sham equations and to systems in higher dimensions.
Approximate particle number projection for finite range density dependent forces
Valor, A; Robledo, L M
1996-01-01
The Lipkin-Nogami method is generalized to deal with finite range density dependent forces. New expressions are derived and realistic calculations with the Gogny force are performed for the nuclei ^{164}Er and ^{168}Er. The sharp phase transition predicted by the mean field approximation is washed out by the Lipkin-Nogami approach; a much better agreement with the experimental data is reached with the new approach than with the Hartree-Fock_Bogoliubov one, specially at high spins.
Delay-Dependent Response in Weakly Electric Fish under Closed-Loop Pulse Stimulation.
Forlim, Caroline Garcia; Pinto, Reynaldo Daniel; Varona, Pablo; Rodríguez, Francisco B
2015-01-01
In this paper, we apply a real time activity-dependent protocol to study how freely swimming weakly electric fish produce and process the timing of their own electric signals. Specifically, we address this study in the elephant fish, Gnathonemus petersii, an animal that uses weak discharges to locate obstacles or food while navigating, as well as for electro-communication with conspecifics. To investigate how the inter pulse intervals vary in response to external stimuli, we compare the response to a simple closed-loop stimulation protocol and the signals generated without electrical stimulation. The activity-dependent stimulation protocol explores different stimulus delivery delays relative to the fish's own electric discharges. We show that there is a critical time delay in this closed-loop interaction, as the largest changes in inter pulse intervals occur when the stimulation delay is below 100 ms. We also discuss the implications of these findings in the context of information processing in weakly electric fish.
Does spacecraft potential depend on the ambient electron density?
Lai, S. T.; Martinez-Sanchez, M.; Cahoy, K.; Thomsen, M. F.; Shprits, Y.; Lohmeyer, W. Q.; Wong, F.
2014-12-01
In a Maxwellian space plasma model, the onset of spacecraft charging at geosynchronous altitudes is due to the ambient electron, ambient ions, and secondary electrons. By using current balance, one can show that the onset of spacecraft charging depends not on the ambient electron density but instead on the critical temperature of the ambient electrons. If the ambient plasma deviates significantly from equilibrium, a non-Maxwellian electron distribution results. For a kappa distribution, the onset of spacecraft charging remains independent of ambient electron density. However, for double Maxwellian distributions, the densities do have a role in the onset of spacecraft charging. For a dielectric spacecraft in sunlight, the trapping of photoelectrons on the sunlit side enhances the local electron density. Using the coordinated environmental satellite data from the Los Alamos National Laboratory geosynchronous satellites, we have obtained results that confirm that the observed spacecraft potential is independent of the ambient electron density during eclipse and that in sunlight charging the low-energy population around the sunlit side of the spacecraft is enhanced by photoelectrons trapped inside the potential barrier.
Seitenzahl, I R; Roepke, F K
2010-01-01
Delayed detonations of Chandrasekhar-mass white dwarfs (WDs) have been very successful in explaining the spectra, light curves, and the width-luminosity relation of spectroscopically normal Type Ia supernovae (SNe Ia). The ignition of the thermonuclear deflagration flame at the end of the convective carbon "simmering" phase in the core of the WD is still not well understood and much about the ignition kernel distribution remains unknown. Furthermore, the central density at the time of ignition depends on the still uncertain screened carbon fusion reaction rates, the accretion history and cooling time of the progenitor, and the composition. We present the results of twelve high-resolution three-dimensional delayed detonation SN Ia explosion simulations that employ a new criterion to trigger the deflagration to detonation transition (DDT). All simulations trigger our DDT criterion and the resulting delayed detonations unbind the star. We find a trend of increasing iron group element (IGE) production with increa...
Liu, Pin-Lin
2015-07-01
This paper studies the problem of the stability analysis of interval time-varying delay systems with nonlinear perturbations. Based on the Lyapunov-Krasovskii functional (LKF), a sufficient delay-range-dependent criterion for asymptotic stability is derived in terms of linear matrix inequality (LMI) and integral inequality approach (IIA) and delayed decomposition approach (DDA). Further, the delay range is divided into two equal segments for stability analysis. Both theoretical and numerical comparisons have been provided to show the effectiveness and efficiency of the present method. Two well-known examples are given to show less conservatism of our obtained results and the effectiveness of the proposed method.
On the angular dependence of the photoemission time delay in helium
Ivanov, I A; Lindroth, E; Kheifets, A S
2016-01-01
We investigate an angular dependence of the photoemission time delay in helium as measured by the RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) technique. The measured time delay $ \\tau_a=\\tau_W+\\tau_{cc} $ contains two distinct components: the Wigner time delay $\\tau_W$ and the continuum-continuum CC) correction $\\tau_{cc}$. In the case of helium with only one $1s\\to Ep$ photoemission channel, the Wigner time delay $\\tau_W$ does not depend on the photoelectron detection angle relative to the polarization vector. However, the CC correction $\\tau_{cc}$ shows a noticeable angular dependence. We illustrate these findings by performing two sets of calculations. In the first set, we solve the time-dependent Schr\\"odinger equation for the helium atom ionized by an attosecond pulse train and probed by an IR pulse. In the second approach, we employ the lowest order perturbation theory which describes absorption of the XUV and IR photons. Both calculations produce close resul...
An age-dependent population equation with diffusion and delayed birth process
Directory of Open Access Journals (Sweden)
G. Fragnelli
2005-01-01
Full Text Available We propose a new age-dependent population equation which takes into account not only a delay in the birth process, but also other events that may take place during the time between conception and birth. Using semigroup theory, we discuss the well posedness and the asymptotic behavior of the solution.
PERIODICITY IN A DELAYED SEMI-RATIO-DEPENDENT PREDATOR-PREY SYSTEM
Institute of Scientific and Technical Information of China (English)
DingXiaoquan
2005-01-01
A delayed semi-ratio-dependent predator-prey system in a periodic environment is investigated in this paper. By using a continuation theorem based on Gaines and Mawhin's coincidence degree,the global existence of positive periodic solution is studied. A set of easily verifiable sufficient conditions are obtained.
Hopf bifurcation in a partial dependent predator-prey system with delay
Energy Technology Data Exchange (ETDEWEB)
Zhao Huitao [Department of Applied Mathematics, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Department of Mathematics and Information Science, Zhoukou Normal University, Zhoukou, Henan 466001 (China)], E-mail: taohuiz@sohu.com; Lin Yiping [Department of Applied Mathematics, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China)], E-mail: linyiping689@sohu.com
2009-10-30
In this paper, a partial dependent predator-prey model with time delay is studied by using the theory of functional differential equation and Hassard's method, the condition on which positive equilibrium exists and Hopf bifurcation occurs are given. Finally, numerical simulations are performed to support the analytical results, and the chaotic behaviors are observed.
Hernandez, Eduardo; Pierri, Michelle; Wu, Jianhong
2016-12-01
We study the existence and uniqueness of C 1 + α-strict solutions for a general class of abstract differential equations with state dependent delay. We also study the local well-posedness of this type of problems on subspaces of C 1 + α ([ - p , 0 ] ; X). Some examples involving partial differential equations are presented.
EXISTENCE RESULTS FOR IMPULSIVE NEUTRAL EVOLUTION DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper is mainly concerned with the existence of mild solutions to a first order impulsive neutral evolution differential equations with state-dependent delay. By suitable fixed point theorems combined with theories of evolution systems,we prove some existence theorems. As an application,an example is also given to illustrate the obtained results.
MULTIPLE POSITIVE PERIODIC SOLUTIONS TO SINGULAR DIFFERENTIAL EQUATION WITH STATE-DEPENDENT DELAY
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
By virtue of the fixed point indices, we discuss the existence of the multiple positive periodic solutions to singular differential equation with state-dependent delay under the conditions concerning the first eigenvalue of the relevant linear operator. The results in this paper are optimal and totally generalize many present results.
PERSISTENCE AND STABILITY IN A RATIO-DEPENDENT FOOD-CHAIN SYSTEM WITH TIME DELAYS
Institute of Scientific and Technical Information of China (English)
XuRui; FengHanying; YangPinghua; WangZhiqiang
2002-01-01
A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions, and sufficient conditions are obtained for the local asymptotic stability of a positive equilibrium of the system.
Parameter-dependent Lyapunov functional for systems with multiple time delays
Institute of Scientific and Technical Information of China (English)
Min WU; Yong HE
2004-01-01
The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties.The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional.The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between the terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices.In addition,the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived.Numerical examples demonstrate that the proposed criteria are more effective than the previous results.
Quark matter at high density based on an extended confined isospin-density-dependent mass model
Qauli, A. I.; Sulaksono, A.
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.
Time-dependent density functional theory for quantum transport.
Zheng, Xiao; Chen, GuanHua; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing
2010-09-21
Based on our earlier works [X. Zheng et al., Phys. Rev. B 75, 195127 (2007); J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.
Pernal, Katarzyna
2012-05-14
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other
Implementation Strategies for Orbital-dependent Density Functionals
Bento, Marsal E.; Vieira, Daniel
2016-12-01
The development of density functional theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems. Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains.
Implementation Strategies for Orbital-dependent Density Functionals
Bento, Marsal E.; Vieira, Daniel
2016-10-01
The development of density functional theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems. Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains.
The Application of Time-Delay Dependent H∞ Control Model in Manufacturing Decision Optimization
Directory of Open Access Journals (Sweden)
Haifeng Guo
2015-01-01
Full Text Available This paper uses a time-delay dependent H∞ control model to analyze the effect of manufacturing decisions on the process of transmission from resources to capability. We establish a theoretical framework of manufacturing management process based on three terms: resource, manufacturing decision, and capability. Then we build a time-delay H∞ robust control model to analyze the robustness of manufacturing management. With the state feedback controller between manufacturing resources and decision, we find that there is an optimal decision to adjust the process of transmission from resources to capability under uncertain environment. Finally, we provide an example to prove the robustness of this model.
Bifurcation and chaos in a ratio-dependent predator-prey system with time delay
Energy Technology Data Exchange (ETDEWEB)
Gan Qintao [Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003 (China)], E-mail: ganqintao@sina.com; Xu Rui [Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003 (China); Department of Applied Mathematics, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Pinghua [Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003 (China)
2009-02-28
In this paper, a ratio-dependent predator-prey model with time delay is investigated. We first consider the local stability of a positive equilibrium and the existence of Hopf bifurcations. By using the normal form theory and center manifold reduction, we derive explicit formulae which determine the stability, direction and other properties of bifurcating periodic solutions. Finally, we consider the effect of impulses on the dynamics of the above time-delayed population model. Numerical simulations show that the system with constant periodic impulsive perturbations admits rich complex dynamic, such as periodic doubling cascade and chaos.
Exploration of a modified density dependence in the Skyrme functional
Erler, J; Reinhard, P -G
2010-01-01
A variant of the basic Skyrme-Hartree-Fock (SHF) functional is considered dealing with a new form of density dependence. It employs only integer powers and thus will allow a more sound basis for projection schemes (particle number, angular momentum). We optimize the new functional with exactly the same adjustment strategy as used in an earlier study with a standard Skyrme functional. This allows direct comparisons of the performance of the new functional relative to the standard one. We discuss various observables: bulk properties of finite nuclei, nuclear matter, giant resonances, super-heavy elements, and energy systematics. The new functional performs at least as well as the standard one, but offers a wider range of applicability (e.g. for projection) and more flexibility in the regime of high densities.
Time-dependent density-functional description of nuclear dynamics
Nakatsukasa, Takashi; Matsuo, Masayuki; Yabana, Kazuhiro
2016-01-01
We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, we treat the quantum fluctuations associated with slow collective motions assuming that time evolution of...
Density dependence of the saturated velocity in graphene
Ferry, D. K.
2016-11-01
The saturated velocity of a semiconductor is an important measure in bench-marking performance for either logic or microwave applications. Graphene has been of interest for such applications due to its apparently high value of the saturated velocity. Recent experiments have suggested that this value is very density dependent and can even exceed the band limiting Fermi velocity. Some of these measurements have also suggested that the scattering is dominated by the low energy surface polar mode of the SiO2 substrate. Here, we show that the saturated velocity of graphene on SiO2 is relatively independent of the density and that the scattering is dominated by the high energy surface polar mode of the substrate.
The pasta phase within density dependent hadronic models
Avancini, S S; Marinelli, J R; Peres-Menezes, D; Watanabe de Moraes, M M; Providência, C; Santos, A M
2008-01-01
In the present paper we investigate the onset of the pasta phase with different parametrisations of the density dependent hadronic model and compare the results with one of the usual parametrisation of the non-linear Walecka model. The influence of the scalar-isovector virtual delta meson is shown. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in beta-equilibrium are studied. We compare our results with restrictions imposed on the the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.
Balancing selection shapes density-dependent foraging behaviour.
Greene, Joshua S; Brown, Maximillian; Dobosiewicz, May; Ishida, Itzel G; Macosko, Evan Z; Zhang, Xinxing; Butcher, Rebecca A; Cline, Devin J; McGrath, Patrick T; Bargmann, Cornelia I
2016-11-10
The optimal foraging strategy in a given environment depends on the number of competing individuals and their behavioural strategies. Little is known about the genes and neural circuits that integrate social information into foraging decisions. Here we show that ascaroside pheromones, small glycolipids that signal population density, suppress exploratory foraging in Caenorhabditis elegans, and that heritable variation in this behaviour generates alternative foraging strategies. We find that natural C. elegans isolates differ in their sensitivity to the potent ascaroside icas#9 (IC-asc-C5). A quantitative trait locus (QTL) regulating icas#9 sensitivity includes srx-43, a G-protein-coupled icas#9 receptor that acts in the ASI class of sensory neurons to suppress exploration. Two ancient haplotypes associated with this QTL confer competitive growth advantages that depend on ascaroside secretion, its detection by srx-43 and the distribution of food. These results suggest that balancing selection at the srx-43 locus generates alternative density-dependent behaviours, fulfilling a prediction of foraging game theory.
Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model
Qauli, A I
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...
Liu, Hongyang; Ou, Yan; Hu, Jun; Liu, Tingting
2010-04-01
This paper investigates the problem of stability analysis for bidirectional associative memory (BAM) neural networks with Markovian jumping parameters. Some new delay-dependent stochastic stability criteria are derived based on a novel Lyapunov-Krasovskii functional (LKF) approach. These new criteria based on the delay partitioning idea prove to be less conservative, since the conservatism could be notably reduced by thinning the delay partitioning. It is shown that the addressed stochastic BAM neural networks with Markovian jumping parameters are stochastically stable if three linear matrix inequalities (LMIs) are feasible. The feasibility of the LMIs can be readily checked by the Matlab LMI toolbox. A numerical example is provided to show the effectiveness and advantage of the proposed technique.
Constraints on frequency-dependent violations of Shapiro delay from GW150914
Directory of Open Access Journals (Sweden)
Emre O. Kahya
2016-05-01
Full Text Available On 14th September 2015, a transient gravitational wave (GW150914 was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 experienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 200 Hz within a 0.2 s window allows us to constrain any violations of Shapiro delay and Einstein's equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of O(10−9.
Perspective: Fundamental aspects of time-dependent density functional theory
Maitra, Neepa T.
2016-06-01
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Time-dependent density-functional theory concepts and applications
Ullrich, Carsten A
2011-01-01
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s
Time-dependent density functional theory: Causality and other problems
Energy Technology Data Exchange (ETDEWEB)
Ruggenthaler, Michael; Bauer, Dieter [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)
2007-07-01
Time-dependent density functional theory (TDDFT) is a reformulation of the time dependent many-body problem in quantum mechanics which is capable of reducing the computational cost to calculate, e.g., strongly driven many-electron systems enormously. Recent developments were able to overcome fundamental problems associated with ionization processes. Still vital issues have to be clarified. Besides the construction of the underlying functionals we investigate the causality problem of TDDFT by general considerations and by studying a exactly solvable system of two correlated electrons in an intense laser-pulse. For the latter system, the two alternative approaches to the construction of the action functional or a constrained functional derivative by van Leeuwen and Gal, respectively, are explored.
Zheng, Cheng-De; Shan, Qi-He; Zhang, Huaguang; Wang, Zhanshan
2013-05-01
The globally exponential stabilization problem is investigated for a general class of stochastic Cohen-Grossberg neural networks with both Markovian jumping parameters and mixed mode-dependent time-delays. The mixed time-delays consist of both discrete and distributed delays. This paper aims to design a memoryless state feedback controller such that the closed-loop system is stochastically exponentially stable in the mean square sense. By introducing a new Lyapunov-Krasovskii functional that accounts for the mode-dependent mixed delays, stochastic analysis is conducted in order to derive delay-dependent criteria for the exponential stabilization problem. Three numerical examples are carried out to demonstrate the feasibility of our delay-dependent stabilization criteria.
Altitude dependence of plasma density in the auroral zone
Directory of Open Access Journals (Sweden)
P. Janhunen
Full Text Available We study the altitude dependence of plasma depletions above the auroral region in the 5000–30 000 km altitude range using five years of Polar spacecraft potential data. We find that besides a general decrease of plasma density with altitude, there frequently exist additional density depletions at 2–4 R_{E} radial distance, where R_{E} is the Earth radius. The position of the depletions tends to move to higher altitude when the ionospheric footpoint is sunlit as compared to darkness. Apart from these cavities at 2–4 R_{E} radial distance, separate cavities above 4 R_{E} occur in the midnight sector for all K_{p} and also in the morning sector for high K_{p}. In the evening sector our data remain inconclusive in this respect. This holds for the ILAT range 68–74. These additional depletions may be substorm-related. Our study shows that auroral phenomena modify the plasma density in the auroral region in such a way that a nontrivial and interesting altitude variation results, which reflects the nature of the auroral acceleration processes.
Key words. Magnetospheric physics (auroral phenomena; magnetosphere–ionosphere interactions
Stochastic Time-Dependent Current-Density Functional Theory
D'Agosta, Roberto
2008-03-01
Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) [1]: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation [2], we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.[1] M. Di Ventra and R. D'Agosta, Physical Review Letters 98, 226403 (2007)[2] N.G. van Kampen, Stochastic processes in Physics and Chemistry, (North Holland, 2001), 2nd ed.
Development and application of a density dependent matrix ...
Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Matrix population models are useful tools for ecological risk assessment because they integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for many generations in the future. We developed a density dependent matrix population model for Atlantic killifish by modifying a model developed for fathead minnow (Pimephales promelas) that has proved to be extremely useful, e.g. to incorporate data from laboratory studies and project effects of endocrine disrupting chemicals. We developed a size-structured model (as opposed to one that is based upon developmental stages or age class structure) so that we could readily incorporate output from a Dynamic Energy Budget (DEB) model, currently under development. Due to a lack of sufficient data to accurately define killifish responses to density dependence, we tested a number of scenarios realistic for other fish species in order to demonstrate the outcome of including this ecologically important factor. We applied the model using published data for killifish exposed to dioxin-like compounds, and compared our results to those using
KARAT-LAMBDA - frequency dependent ray-traced troposphere delays for space applications
Hobiger, Thomas; Baron, Philippe
2014-05-01
Space-geodetic microwave techniques work under the assumption that the only dispersive, i.e. frequency dependent delay contribution is caused by the ionosphere. In general, the refractivity, even for the troposphere, is a complex quantity which can be denoted as N = N0 + (N'(f) + i N''(f)) where N0 is a frequency independent term, and N'(f) and N''(f) represent the complex frequency dependence. Thereby, the imaginary part can be used to derive the loss of energy (absorption) and the real part can be assigned to the changes in the propagation velocity (refraction) and thus describes the delay of an electromagnetic wave which propagates through that medium. Although the frequency dependent delay contribution appears to be of small order, one has to consider that signals are propagating through few kilometers of troposphere at high elevations to hundredths of kilometers at low elevations. Therefore, the Kashima Ray-Tracing package (Hobiger et al., 2008) has been modified (and named KARAT-LAMBDA) to enable the consideration of a frequency dependent refractivity. By using this tool, it was studied if and to which extent future space geodetic instruments are affected from dispersive troposphere delays. Moreover, a semi-empirical correction model for the microwave link of the Atomic Clock Ensemble in Space (ACES) has been developed, based on ray-tracing calculations with KARAT-LAMBDA. The proposed model (Hobiger et al., 2013) has been tested with simulated ISS overflights at different potential ACES ground station sites and it could be demonstrated that this model is capable to remove biases and elevation dependent features caused by the dispersive troposphere delay difference between the up-link and down-link. References: T. Hobiger, R. Ichikawa, T. Kondo, and Y. Koyama (2008), Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models, Journal of Geophysical Research, vol. 113, iss. D203027, pp. 1-14. T. Hobiger, D
Liu, Qun
2015-02-01
In this paper, a stochastic Lotka-Volterra competitive model with time-dependent delays is investigated. Sufficient conditions for global asymptotic stability of the positive equilibrium are established. The obtained result demonstrates that time-dependent delays have important impacts on the global asymptotic stability of the positive equilibrium of the considered system.
A differential equation with state-dependent delay from cell population biology
Getto, Philipp; Waurick, Marcus
2016-04-01
We analyze a differential equation, describing the maturation of a stem cell population, with a state-dependent delay, which is implicitly defined via the solution of an ODE. We elaborate smoothness conditions for the model ingredients, in particular vital rates, that guarantee the existence of a local semiflow and allow to specify the linear variational equation. The proofs are based on theoretical results of Hartung et al. combined with implicit function arguments in infinite dimensions. Moreover we elaborate a criterion for global existence for differential equations with state-dependent delay. To prove the result we adapt a theorem by Hale and Lunel to the C1-topology and use a result on metric spaces from Diekmann et al.
Energy Technology Data Exchange (ETDEWEB)
Waldo, R.W.
1980-05-01
Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of /sup 232/U, /sup 237/Np, /sup 238/Pu, /sup 241/Am, /sup 242m/Am, /sup 245/Cm, and /sup 249/Cf were studied for the first time. The delayed neutron emission from /sup 232/Th, /sup 233/U, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 241/Pu, and /sup 242/Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from /sup 232/Th to /sup 252/Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables.
Stability and Bifurcation in a State-Dependent Delayed Predator-Prey System
Hou, Aiyu; Guo, Shangjiang
In this paper, we consider a class of predator-prey equations with state-dependent delayed feedback. Firstly, we investigate the local stability of the positive equilibrium and the existence of the Hopf bifurcation. Then we use perturbation methods to determine the sub/supercriticality of Hopf bifurcation and hence the stability of Hopf bifurcating periodic solutions. Finally, numerical simulations supporting our theoretical results are also provided.
Global stability for delay-dependent HTLV-I model with CTL immune response
Wang, Yan; Liu, Jun
2016-06-01
We present a delay-dependent HTLV-I model with CTL immune response. The basic reproduction number is obtained for the existence of positive steady state. By constructing suitable Lyapunov functions, when the basic reproduction number is less than one, the infection-free steady state is globally asymptotically stable; when the basic reproduction number is greater than one, the infected steady state is globally asymptotically stable.
Directory of Open Access Journals (Sweden)
Sirada Pinjai
2013-01-01
Full Text Available This paper is concerned with the problem of robust exponential stability for linear parameter-dependent (LPD neutral systems with mixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchy’s inequality, modified version of Jensen’s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robust exponential stability criteria are established in terms of linear matrix inequalities (LMIs. Numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.
Superdeformed rotational bands with density dependent pairing interactions
Energy Technology Data Exchange (ETDEWEB)
Terasaki, J. [Service de Physique Nucleaire Theorique, Brussels (Belgium); Heenen, P.H. [Service de Physique Nucleaire Theorique, Brussels (Belgium); Bonche, P. [SPhT - CE Saclay, 91191 Gif-sur-Yvette Cedex (France); Dobaczewski, J. [Institute of Theoretical Physics, Warsaw University, Hoza 69, PL-00-681 Warsaw (Poland); Flocard, H. [Division de Physique Theorique, Institut de Physique Nucleaire, 91406 Orsay Cedex (France)
1995-10-09
The cranked Hartree-Fock-Bogoliubov method, applied in a previous study to SD bands of even Hg and Pb isotopes, is extended by including pairing correlations described by a zero-range density-dependent interaction. This more realistic description of the pairing channel modifies the balance between the neutron and proton pairing energies and introduces an orbital variation of the pairing gaps. This results in a retarded alignment, significantly improving the agreement with data in both the A=150 and 190 mass regions. The behavior expected for SD bands in odd-N or odd-Z nuclei is discussed on the basis of the quasiparticle routhians calculated for the even-even isotopes. (orig.).
Superdeformed rotational bands with density dependent pairing interactions
Terasaki, J.; Heenen, P.-H.; Bonche, P.; Dobaczewski, J.; Flocard, H.
1995-02-01
The cranked Hartree-Fock-Bogoliubov method, applied in a previous study to SD bands of even Hg and Pb isotopes, is extended by including pairing correlations described by a zero-range density-dependent interaction. This more realistic description of the pairing channel modifies the balance between the neutron and proton pairing energies and introduces an orbital variation of the pairing gaps. This results in a retarded alignment, significantly improving the agreement with data in both the A = 150 and 190 mass regions. The behavior expected for SD bands in odd- N or odd- Z nuclei is discussed on the basis of the quasiparticle routhians calculated for the even-even isotopes.
Density-functional perturbation theory goes time-dependent
Directory of Open Access Journals (Sweden)
Gebauer, Ralph
2008-05-01
Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.
Survival kinetics of starving bacteria is biphasic and density-dependent.
Directory of Open Access Journals (Sweden)
Andy Phaiboun
2015-04-01
Full Text Available In the lifecycle of microorganisms, prolonged starvation is prevalent and sustaining life during starvation periods is a vital task. In the literature, it is commonly assumed that survival kinetics of starving microbes follows exponential decay. This assumption, however, has not been rigorously tested. Currently, it is not clear under what circumstances this assumption is true. Also, it is not known when such survival kinetics deviates from exponential decay and if it deviates, what underlying mechanisms for the deviation are. Here, to address these issues, we quantitatively characterized dynamics of survival and death of starving E. coli cells. The results show that the assumption--starving cells die exponentially--is true only at high cell density. At low density, starving cells persevere for extended periods of time, before dying rapidly exponentially. Detailed analyses show intriguing quantitative characteristics of the density-dependent and biphasic survival kinetics, including that the period of the perseverance is inversely proportional to cell density. These characteristics further lead us to identification of key underlying processes relevant for the perseverance of starving cells. Then, using mathematical modeling, we show how these processes contribute to the density-dependent and biphasic survival kinetics observed. Importantly, our model reveals a thrifty strategy employed by bacteria, by which upon sensing impending depletion of a substrate, the limiting substrate is conserved and utilized later during starvation to delay cell death. These findings advance quantitative understanding of survival of microbes in oligotrophic environments and facilitate quantitative analysis and prediction of microbial dynamics in nature. Furthermore, they prompt revision of previous models used to analyze and predict population dynamics of microbes.
Incorporating density dependence into the directed-dispersal hypothesis.
Spiegel, Orr; Nathan, Ran
2010-05-01
The directed-dispersal (DrD) hypothesis, one of the main explanations for the adaptive value of seed dispersal, asserts that enhanced (nonrandom) arrival to favorable establishment sites is advantageous for plant fitness. However, as anticipated by the ideal free distribution theory, enhanced seed deposition may impair site suitability by increasing density-dependent mortality, thus negating the advantage postulated by the DrD hypothesis. Although the role of density effects is thoroughly discussed in the seed-dispersal literature, this DrD paradox remains largely overlooked. The paradox, however, may be particularly pronounced in animal-mediated dispersal systems, in which DrD is relatively common, because animals tend to generate local seed aggregations due to their nonrandom movements. To investigate possible solutions to the DrD paradox, we first introduce a simple analytical model that calculates the optimal DrD level at which seed arrival to favorable establishment sites yields maximal fitness gain in comparison to a null model of random arrival. This model predicts intermediate optimal DrD levels that correspond to various attributes of the plants, the dispersers, and the habitat. We then use a simulation model to explore the temporal dynamics of the invasion process of the DrD strategy in a randomly dispersed population, and the resistance of a DrD population against invasion of other dispersal strategies. This model demonstrates that some properties of the invasion process (e.g., mutant persistence ratio in the population and generations until initial establishment) are facilitated by high DrD levels, and not by intermediate levels as expected from the analytical model. These results highlight the need to revise the DrD hypothesis to include the countering effects of density-dependent mortality inherently imposed by enhanced arrival of seeds to specific sites. We illustrate how the revised hypothesis can elucidate previous results from empirical studies
New delay-dependent criterion for the stability of recurrent neural networks with time-varying delay
Institute of Scientific and Technical Information of China (English)
ZHANG HuaGuang; WANG ZhanShan
2009-01-01
This paper is concerned with the global asymptotic stability of a class of recurrent neural networks with interval time-varying delay. By constructing a suitable Lyapunov functional, a new criterion is established to ensure the global asymptotic stability of the concerned neural networks, which can be expressed in the form of linear matrix inequality and independent of the size of derivative of time varying delay. Two numerical examples show the effectiveness of the obtained results.
Directory of Open Access Journals (Sweden)
Emmanuel Tremblay
Full Text Available In the past decades, multiple studies have been interested in developmental patterns of the visual system in healthy infants. During the first year of life, differential maturational changes have been observed between the Magnocellular (P and the Parvocellular (P visual pathways. However, few studies investigated P and M system development in infants born prematurely. The aim of the present study was to characterize P and M system maturational differences between healthy preterm and fullterm infants through a critical period of visual maturation: the first year of life. Using a cross-sectional design, high-density electroencephalogram (EEG was recorded in 31 healthy preterms and 41 fullterm infants of 3, 6, or 12 months (corrected age for premature babies. Three visual stimulations varying in contrast and spatial frequency were presented to stimulate preferentially the M pathway, the P pathway, or both systems simultaneously during EEG recordings. Results from early visual evoked potentials in response to the stimulation that activates simultaneously both systems revealed longer N1 latencies and smaller P1 amplitudes in preterm infants compared to fullterms. Moreover, preterms showed longer N1 and P1 latencies in response to stimuli assessing the M pathway at 3 months. No differences between preterms and fullterms were found when using the preferential P system stimulation. In order to identify the cerebral generator of each visual response, distributed source analyses were computed in 12-month-old infants using LORETA. Source analysis demonstrated an activation of the parietal dorsal region in fullterm infants, in response to the preferential M pathway, which was not seen in the preterms. Overall, these findings suggest that the Magnocellular pathway development is affected in premature infants. Although our VEP results suggest that premature children overcome, at least partially, the visual developmental delay with time, source analyses reveal
Delay-Dependent Response in Weakly Electric Fish under Closed-Loop Pulse Stimulation.
Directory of Open Access Journals (Sweden)
Caroline Garcia Forlim
Full Text Available In this paper, we apply a real time activity-dependent protocol to study how freely swimming weakly electric fish produce and process the timing of their own electric signals. Specifically, we address this study in the elephant fish, Gnathonemus petersii, an animal that uses weak discharges to locate obstacles or food while navigating, as well as for electro-communication with conspecifics. To investigate how the inter pulse intervals vary in response to external stimuli, we compare the response to a simple closed-loop stimulation protocol and the signals generated without electrical stimulation. The activity-dependent stimulation protocol explores different stimulus delivery delays relative to the fish's own electric discharges. We show that there is a critical time delay in this closed-loop interaction, as the largest changes in inter pulse intervals occur when the stimulation delay is below 100 ms. We also discuss the implications of these findings in the context of information processing in weakly electric fish.
Zeng, L.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A.; Bobrek, M.
2016-11-01
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.
Smoothness of semiflows for parabolic partial differential equations with state-dependent delay
Lv, Yunfei; Yuan, Rong; Pei, Yongzhen
2016-04-01
In this paper, the smoothness properties of semiflows on C1-solution submanifold of a parabolic partial differential equations with state-dependent delay are investigated. The problem is formulated as an abstract ordinary retarded functional differential equation of the form du (t) / dt = Au (t) + F (ut) with a continuously differentiable map G from an open subset U of the space C1 ([ - h , 0 ] ,L2 (Ω)), where A is the infinitesimal generator of a compact C0-semigroup. The present study is continuation of a previous work [14] that highlights the classical solutions and C1-smoothness of solution manifold. Here, we further prove the continuous differentiability of the semiflow. We finally verify all hypotheses by a biological example which describes a stage structured diffusive model where the delay, which is the time taken from birth to maturity, is assumed as a function of a immature species population.
Xinghua Liu; Hongsheng Xi
2013-01-01
The exponential stability of neutral Markovian jump systems with interval mode-dependent time-varying delays, nonlinear perturbations, and partially known transition rates is investigated. A novel augmented stochastic Lyapunov functional is constructed, which employs the improved bounding technique and contains triple-integral terms to reduce conservativeness; then the delay-range-dependent and rate-dependent exponential stability criteria are developed by Lyapunov stability theory, reciproca...
Moustafa, Ahmed A; Wufong, Ella; Servatius, Richard J; Pang, Kevin C H; Gluck, Mark A; Myers, Catherine E
2013-02-01
A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning.
Gendreau-Berthiaume, Benoit; Macdonald, S Ellen; Stadt, J John
2016-07-01
Understanding processes driving mortality in forests is important for comprehension of natural stand dynamics and for informing natural disturbance-based ecosystem management. There has been considerable study of mortality in forests during the self-thinning phase but we know much less about processes driving mortality in stands at later successional stages. We addressed this through study of five 1-ha spatially explicit permanent plots in mature (111-186 yr old in 2012) Pinus contorta stands in the Canadian Rocky Mountains using data from repeated measurements over a 45-yr period, dendrochronological information, and point pattern analysis. We tested the hypothesis that these stands had completed the self-thinning/density-dependent mortality stage of succession. Contrary to our expectations, the self-thinning phase can persist for more than 140 yr following stand establishment. Our findings suggest this was attributable to prolonged post-fire establishment periods due to surface fires in three of the plots while in the other two plots moist conditions and slow growth most likely delayed the onset of competition. Several pieces of evidence indicated the importance of density-dependent mortality in these stands over the study period: (1) The diameter distribution of individuals changed from initially right-skewed toward normality as a result of mortality of smaller-diameter stems. (2) Individuals of lower canopy positions were proportionally more affected by mortality. (3) When compared to the pre-mortality pattern, surviving stems in all stands had an increasingly uniform spatial distribution. In two of the plots, recent windthrow and/or ingrowth initially hindered our ability to detect density-dependent mortality but our dendrochronological sampling and permanent plot data allowed us to untangle the different processes at play; in doing so we demonstrate for the first time how density-independent processes can mask underlying density-dependent mortality
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Keiji, E-mail: kzsuzuki@nagasaki-u.ac.jp [Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Kodama, Seiji [Research Institute for Advanced Science and Technology, Osaka Prefecture University, 1-2 Gakuen-machi, Sakai 599-8570 (Japan); Watanabe, Masami [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun, Osaka 590-0494 (Japan)
2010-01-05
Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell death was absent in Ku80-deficient Chinese hamster ovary (CHO) cells, however, the mechanism of their defect has not been determined. We found that delayed induction of DNA double strand breaks and chromosomal breaks were intact in Ku80-deficient cells surviving X-irradiation, whereas there was no sign for the production of chromosome bridges between divided daughter cells. Moreover, delayed induction of dicentric chromosomes was significantly compromised in those cells compared to the wild-type CHO cells. Reintroduction of the human Ku86 gene complimented the defective DNA repair and recovered delayed induction of dicentric chromosomes and delayed cell death, indicating that defective Ku80-dependent dicentric induction was the cause of the absence of delayed cell death. Since DNA-PKcs-defective cells showed delayed phenotypes, Ku80-dependent illegitimate rejoining is involved in delayed impairment of the integrity of the genome in radiation-survived cells.
Row, Jeffrey R; Wilson, Paul J; Murray, Dennis L
2014-07-01
Determining the causes of cyclic fluctuations in population size is a central tenet in population ecology and provides insights into population regulatory mechanisms. We have a firm understanding of how direct and delayed density dependence affects population stability and cyclic dynamics, but there remains considerable uncertainty in the specific processes contributing to demographic variability and consequent change in cyclic propensity. Spatiotemporal variability in cyclic propensity, including recent attenuation or loss of cyclicity among several temperate populations and the implications of habitat fragmentation and climate change on this pattern, highlights the heightened need to understand processes underlying cyclic variation. Because these stressors can differentially impact survival and productivity and thereby impose variable time delays in density dependence, there is a specific need to elucidate how demographic vital rates interact with the type and action of density dependence to contribute to population stability and cyclic variation. Here, we address this knowledge gap by comparing the stability of time series derived from general and species-specific (Canada lynx: Lynx canadensis; small rodents: Microtus, Lemmus and Clethrionomys spp.) matrix population models, which vary in their demographic rates and the direct action of density dependence. Our results reveal that density dependence acting exclusively on survival as opposed to productivity is destabilizing, suggesting that a shift in the action of population regulation toward reproductive output may decrease cyclic propensity and cycle amplitude. This result was the same whether delayed density dependence was pulsatile and acted on a single time period (e.g. t-1, t-2 or t-3) vs. more constant by affecting a successive range of years (e.g. t-1,…, t-3). Consistent with our general models, reductions in reproductive potential in both the lynx and small rodent systems led to notably large drops in
Experimental evidence for density-dependent reproduction in a cooperatively breeding passerine
Brouwer, Lyanne; Tinbergen, Joost M.; Both, Christiaan; Bristol, Rachel; Richardson, David S.; Komdeur, Jan; Sauer, J.R.
Temporal variation in survival, fecundity, and dispersal rates is associated with density-dependent and density-independent processes. Stable natural populations are expected to be regulated by density-dependent factors. However, detecting this by investigating natural variation in density is
Truncation scheme of time-dependent density-matrix approach
Energy Technology Data Exchange (ETDEWEB)
Tohyama, Mitsuru [Kyorin University School of Medicine, Mitaka, Tokyo (Japan); Schuck, Peter [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay Cedex (France); Laboratoire de Physique et de Modelisation des Milieux Condenses et Universite Joseph Fourier, Grenoble Cedex 9 (France)
2014-04-15
A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by the antisymmetrized products of two-body density matrices, is proposed. This truncation scheme is tested for three model Hamiltonians. It is shown that the obtained results are in good agreement with the exact solutions. (orig.)
Kao, Yonggui; Wang, Changhong; Xie, Jing; Karimi, Hamid Reza
2016-08-01
This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates (GUTRs). In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the ? integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.
Charge transfer in time-dependent density functional theory
Maitra, Neepa T.
2017-10-01
Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.
A density-dependent endochronic plasticity for powder compaction processes
Bakhshiani, A.; Khoei, A. R.; Mofid, M.
This paper is concerned with the numerical modeling of powder cold compaction process using a density-dependent endochronic plasticity model. Endochronic plasticity theory is developed based on a large strain plasticity to describe the nonlinear behavior of powder material. The elastic response is stated in terms of hypoelastic model and endochronic plasticity constitutive equations are stated in unrotated frame of reference. A trivially incrementally objective integration scheme for rate constitutive equations is established. Algorithmic modulus consistent with numerical integration algorithm of constitutive equations is extracted. It is shown how the endochronic plasticity describes the behavior of powder material from the initial stage of compaction to final stage, in which material behaves as solid metals. It is also shown that some commonly used plasticity models for powder material can be derived as special cases of the proposed endochronic theory. Finally, the numerical schemes are examined for efficiency in the modeling of a plain bush, a rotational-flanged and a shaped tablet powder compaction component.
Simple preconditioning for time-dependent density functional perturbation theory
Lehtovaara, Lauri; Marques, Miguel A. L.
2011-07-01
By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states — such as the Sternheimer method — as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach.
Louihi, M.; Hbid, M. L.
2007-05-01
In this paper we are concerned with the exponential asymptotic stability of the solution of a class of differential equations with state dependent delays. Our approach is based on the Crandall-Liggett approximation and the properties of semigroups.
Time-dependent study of radiation trapping by time-delayed two-photon absorption
Energy Technology Data Exchange (ETDEWEB)
Molander, W.; Belsley, M.; Streater, A.; Burnett, K.
1983-10-01
The transport of resonance radiation through an optically thick vapor of Sr atoms is studied. A pulsed dye laser tuned to the 461 nm resonance line excites a narrow (approx. 60 ..mu..m diam) column of Sr atoms along the axis of a cylindrical oven containing Sr vapor and Ar buffer gas. After a delay of less than or equal to 80 ns, a second dye laser excites the atom from the first excited state (5s5p) to a higher excited state (5s7s). The fluorescence from this latter transition is monitored as the second laser is translated parallel to the first. Since the excited state-excited state fluorescence is not trapped the result is a plot of density of atoms in the 5s5p state as a function of position from the originally excited volume. The results are discussed qualitatively.
Louihi, M.; Hbid, M. L.; Arino, O.
2002-05-01
We present an approach for the resolution of a class of differential equations with state-dependent delays by the theory of strongly continuous nonlinear semigroups. We show that this class determines a strongly continuous semigroup in a closed subset of C0, 1. We characterize the infinitesimal generator of this semigroup through its domain. Finally, an approximation of the Crandall-Liggett type for the semigroup is obtained in a dense subset of (C, ‖·‖∞). As far as we know this approach is new in the context of state-dependent delay equations while it is classical in the case of constant delay differential equations.
Continuous Dependence on the Density for Stratified Steady Water Waves
Chen, Robin Ming; Walsh, Samuel
2016-02-01
There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function. Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L ∞ neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.
Studies of Spuriously Time-dependent Resonances in Time-dependent Density Functional Theory
Luo, Kai; Maitra, Neepa T
2016-01-01
Adiabatic approximations in time-dependent density functional theory (TDDFT) will in general yield unphysical time-dependent shifts in the resonance positions of a system driven far from its ground-state. This spurious time-dependence is rationalized in [J. I. Fuks, K. Luo, E. D. Sandoval and N. T. Maitra, Phys. Rev. Lett. {\\bf 114}, 183002 (2015)] in terms of the violation of an exact condition by the non-equilibrium exchange-correlation kernel of TDDFT. Here we give details on the derivation and discuss reformulations of the exact condition that apply in special cases. In its most general form, the condition states that when a system is left in an arbitrary state, in the absence of time-dependent external fields nor ionic motion, the TDDFT resonance position for a given transition is independent of the state. Special cases include the invariance of TDDFT resonances computed with respect to any reference interacting stationary state of a fixed potential, and with respect to any choice of appropriate stationa...
Local Bifurcations Analysis of a State-Dependent Delay Diﬀerential Equation
Directory of Open Access Journals (Sweden)
V. O. Golubenets
2015-01-01
Full Text Available In this paper, a ﬁrst-order equation with state-dependent delay and with a nonlinear right-hand side is considered. Conditions of existence and uniqueness of the solution of initial value problem aresupposed to be executed. The task is to study the behavior of solutions of the considered equation in a small neighborhood of its zero equilibrium. Local dynamics depends on real parameters which are coeﬃcients of equation right-hand side decomposition in a Taylor series. The parameter which is a coeﬃcient at the linear part of this decomposition has two critical values which determine a stability domain of zero equilibrium. We introduce a small positive parameter and use the asymtotic method of normal forms in order to investigate local dynamics modiﬁcations of the equation near each two critical values. We show that the stability exchange bifurcation occurs in the considered equation near the ﬁrst of these critical values, and the supercritical Andronov – Hopf bifurcation occurs near the second of them (if the suﬃcient condition is executed. Asymptotic decompositions according to correspondent small parameters are obtained for each stable solution. Next, a logistic equation with state-dependent delay is considered as an example. The bifurcation parameter of this equation has one critical value. A simple suﬃcient condition of Andronov – Hopf bifurcation occurence in the considered equation near a critical value is obtained as a result of applying the method of normal forms.
Density-dependent vulnerability of forest ecosystems to drought
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.
2017-01-01
1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades
Energy Technology Data Exchange (ETDEWEB)
Ansarifar, G.R., E-mail: ghr.ansarifar@ast.ui.ac.ir; Nasrabadi, M.N.; Hassanvand, R.
2016-01-15
Highlights: • We present a S.M.C. system based on the S.M.O for control of a fast reactor power. • A S.M.O has been developed to estimate the density of delayed neutron precursor. • The stability analysis has been given by means Lyapunov approach. • The control system is guaranteed to be stable within a large range. • The comparison between S.M.C. and the conventional PID controller has been done. - Abstract: In this paper, a nonlinear controller using sliding mode method which is a robust nonlinear controller is designed to control a fast nuclear reactor. The reactor core is simulated based on the point kinetics equations and one delayed neutron group. Considering the limitations of the delayed neutron precursor density measurement, a sliding mode observer is designed to estimate it and finally a sliding mode control based on the sliding mode observer is presented. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. Sliding Mode Control (SMC) is one of the robust and nonlinear methods which have several advantages such as robustness against matched external disturbances and parameter uncertainties. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability.
Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.
Pearce, John A
2015-12-01
The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented
Exact conditions on the temperature dependence of density functionals
Burke, Kieron; Grabowski, Paul E; Pribram-Jones, Aurora
2015-01-01
Universal exact conditions guided the construction of most ground-state density functional approximations in use today. We derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.
Exact conditions on the temperature dependence of density functionals
Burke, K.; Smith, J. C.; Grabowski, P. E.; Pribram-Jones, A.
2016-05-01
Universal exact conditions guided the construction of most ground-state density functional approximations in use today. We derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.
Quantum Drude friction for time-dependent density functional theory
Neuhauser, Daniel; Lopata, Kenneth
2008-10-01
way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.
Institute of Scientific and Technical Information of China (English)
M.Syed Ali
2012-01-01
This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi-Sugeno (T-S) model.The main results given here focus on the stability criteria using a new Lyapunov functional.New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature.Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.
Directory of Open Access Journals (Sweden)
Ylönen Hannu
2011-07-01
Full Text Available Abstract Background A territory as a prerequisite for breeding limits the maximum number of breeders in a given area, and thus lowers the proportion of breeders if population size increases. However, some territorially breeding animals can have dramatic density fluctuations and little is known about the change from density-dependent processes to density-independence of breeding during a population increase or an outbreak. We suggest that territoriality, breeding suppression and its break-down can be understood with an incomplete-control model, developed for social breeders and social suppression. Results We studied density dependence in an arvicoline species, the bank vole, known as a territorial breeder with cyclic and non-cyclic density fluctuations and periodically high densities in different parts of its range. Our long-term data base from 38 experimental populations in large enclosures in boreal grassland confirms that breeding rates are density-regulated at moderate densities, probably by social suppression of subordinate potential breeders. We conducted an experiment, were we doubled and tripled this moderate density under otherwise the same conditions and measured space use, mortality, reproduction and faecal stress hormone levels (FGM of adult females. We found that mortality did not differ among the densities, but the regulation of the breeding rate broke down: at double and triple densities all females were breeding, while at the low density the breeding rate was regulated as observed before. Spatial overlap among females increased with density, while a minimum territory size was maintained. Mean stress hormone levels were higher in double and triple densities than at moderate density. Conclusions At low and moderate densities, breeding suppression by the dominant breeders, But above a density-threshold (similar to a competition point, the dominance of breeders could not be sustained (incomplete control. In our experiment, this point
Kelley M. Stewart; R. Terry Bowyer; Brian L. Dick; Bruce K. Johnson; John G. Kie
2005-01-01
Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density...
Invariant Hermitian Operator and Density Operator for the Adiabatically Time-Dependent System
Institute of Scientific and Technical Information of China (English)
YAN Feng-Li; YANG Lin-Guang
2001-01-01
The density operator is approximately expressed as a function of the invariant Hermitian operator for the adiabatically time-dependent system. Using this method, the calculation of the density operator for the Heisenberg spin system in a weakly time-dependent magnetic field is exemplified. By virtue of the density operator, we obtain equilibrium.``
Institute of Scientific and Technical Information of China (English)
XIAO Shen-ping; WU Min; SHE Jin-hua
2008-01-01
The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=[1 0 -1]T and h=0.8 time-delay boundary.
Electromagnetic two-body problem: recurrent dynamics in the presence of state-dependent delay
Energy Technology Data Exchange (ETDEWEB)
De Luca, Jayme [Departamento de Fisica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, Sao Paulo 13565-905 (Brazil); Guglielmi, Nicola [Dipartimento di Matematica Pura ed Applicata, Universita degli Studi di L' Aquila, I-67010, L' Aquila (Italy); Humphries, Tony [Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 2K6 (Canada); Politi, Antonio, E-mail: deluca@df.ufscar.b [Istituto dei Sistemi Complessi, CNR Via Madonna del Piano 10-Sesto, Fiorentino I-50019 (Italy)
2010-05-21
We study the electromagnetic two-body problem of classical electrodynamics as a prototype dynamical system with state-dependent delays. The equations of motion are analysed with reference to motion along a straight line in the presence of an electrostatic field. We consider the general electromagnetic equations of motion for point charges with advanced and retarded interactions and study two limits, (a) retarded-only interactions (Dirac electrodynamics) and (b) half-retarded plus half-advanced interactions (Wheeler-Feynman electrodynamics). A fixed point is created where the electrostatic field balances the Coulombian attraction, and we use local analysis near this fixed point to derive necessary conditions for a Hopf bifurcation. In case (a), we study a Hopf bifurcation about an unphysical fixed point and find that it is subcritical. In case (b), there is a Hopf bifurcation about a physical fixed point and we study several families of periodic orbits near this point. The bifurcating periodic orbits are illustrated and simulated numerically, by introducing a surrogate dynamical system into the numerical analysis which transforms future data into past data by exploiting the periodicity, thus obtaining systems with only delays.
Electromagnetic two-body problem: recurrent dynamics in the presence of state-dependent delay
De Luca, Jayme; Guglielmi, Nicola; Humphries, Tony; Politi, Antonio
2010-05-01
We study the electromagnetic two-body problem of classical electrodynamics as a prototype dynamical system with state-dependent delays. The equations of motion are analysed with reference to motion along a straight line in the presence of an electrostatic field. We consider the general electromagnetic equations of motion for point charges with advanced and retarded interactions and study two limits, (a) retarded-only interactions (Dirac electrodynamics) and (b) half-retarded plus half-advanced interactions (Wheeler-Feynman electrodynamics). A fixed point is created where the electrostatic field balances the Coulombian attraction, and we use local analysis near this fixed point to derive necessary conditions for a Hopf bifurcation. In case (a), we study a Hopf bifurcation about an unphysical fixed point and find that it is subcritical. In case (b), there is a Hopf bifurcation about a physical fixed point and we study several families of periodic orbits near this point. The bifurcating periodic orbits are illustrated and simulated numerically, by introducing a surrogate dynamical system into the numerical analysis which transforms future data into past data by exploiting the periodicity, thus obtaining systems with only delays.
Age-specific density-dependent survival in Mediterranean Gulls Larus melanocephalus
te Marvelde, Luc; Meininger, Peter L.; Flamant, Renaud; Dingemanse, Niels J.
2009-01-01
Survival and reproductive rates often decrease with increasing population density. Such negative density dependence reflects a changing net balance between the benefits and costs of presence of others with increasing density. When densities are low, however, survival and reproductive rates might
Age-specific density-dependent survival in Mediterranean Gulls Larus melanocephalus
te Marvelde, Luc; Meininger, Peter L.; Flamant, Renaud; Dingemanse, Niels J.
2009-01-01
Survival and reproductive rates often decrease with increasing population density. Such negative density dependence reflects a changing net balance between the benefits and costs of presence of others with increasing density. When densities are low, however, survival and reproductive rates might inc
Xie, Huijuan; Gong, Yubing; Wang, Qi
2016-06-01
In this paper, we numerically study how time delay induces multiple coherence resonance (MCR) and synchronization transitions (ST) in adaptive Hodgkin-Huxley neuronal networks with spike-timing dependent plasticity (STDP). It is found that MCR induced by time delay STDP can be either enhanced or suppressed as the adjusting rate Ap of STDP changes, and ST by time delay varies with the increase of Ap, and there is optimal Ap by which the ST becomes strongest. It is also found that there are optimal network randomness and network size by which ST by time delay becomes strongest, and when Ap increases, the optimal network randomness and optimal network size increase and related ST is enhanced. These results show that STDP can either enhance or suppress MCR and optimal STDP can enhance ST induced by time delay in the adaptive neuronal networks. These findings provide a new insight into STDP's role for the information processing and transmission in neural systems.
Periodicity in a Nonlinear Predator-prey System with State Dependent Delays
Institute of Scientific and Technical Information of China (English)
Feng-de Chen; Jin-lin Shi
2005-01-01
With the help of a continuation theorem based on Gainesand Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of the following nonlinear state dependent delays predator-prey system{dN1(t)/dt=N1(t)[b1(t)-n∑i=1 ai(t)(N1(t-Ti(t,N1(t), N2(t))))ai-m∑cj(t)(N2(t-σj(t,Ni(t),N2(t))))βj],dN2(t)/dt=N2(t)[b2(t)-n∑i=1 di(t)(N1(t-Pi(t,N1(t), N2(t))))γi],where ai (t), cj (t), di(t) are continuous positive periodic functions with periodic ω＞ 0, b1 (t), b2 (t) are continuousare positive constants.
Anderson, David F
2007-12-01
Chemical reaction systems with a low to moderate number of molecules are typically modeled as discrete jump Markov processes. These systems are oftentimes simulated with methods that produce statistically exact sample paths such as the Gillespie algorithm or the next reaction method. In this paper we make explicit use of the fact that the initiation times of the reactions can be represented as the firing times of independent, unit rate Poisson processes with internal times given by integrated propensity functions. Using this representation we derive a modified next reaction method and, in a way that achieves efficiency over existing approaches for exact simulation, extend it to systems with time dependent propensities as well as to systems with delays.
Gary D. Grossman; Gary Sundin; Robert E. Ratajczak
2016-01-01
SummaryWe used long-term population data for rosyside dace (Clinostomus funduloides), a numerically dominant member of a stochastically organised fish assemblage, to evaluate the relative importance of density-dependent and density-independent processes to population...
Dependence of Reaction Rate Constants on Density in Supercritical Fluids
Institute of Scientific and Technical Information of China (English)
WANGTao; SHENZhongyao
2002-01-01
A new method,which correlates rate constants of chemical reactions and density or pressure in supercritical fluids,was developed.Based on the transition state theory and thermodynamic principles, the rate constant can be reasonably correlated with the density of the supercritical fluid,and a correlation equation was obtained. Coupled with the equation of state (EOS) of a supercritical solvent,the effect of pressure on reaction rate constant could be represented.Two typical systems were used to test this method.The result indicates that this method is suitable for dilute supercritical fluid solutions.
Density dependence, whitebark pine, and vital rates of grizzly bears
van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M; White, Gary C.
2016-01-01
Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the
Fattoyev, F J; Li, Bao-An
2014-01-01
According to the Hugenholtz-Van Hove theorem, the nuclear symmetry energy $S(\\rho)$ and its slope $L(\\rho)$ at arbitrary densities can be decomposed in terms of the density and momentum dependence of the single-nucleon potentials in isospin-asymmetric nuclear matter which are potentially accessible to experiment. We quantify the correlations between several well-known isovector observables and $L(\\rho)$ to locate the density range in which each isovector observable is most sensitive to the density dependence of the $S(\\rho)$. We then study the correlation coefficients between those isovector observables and all the components of the $L(\\rho)$. The neutron skin thickness of $^{208}$Pb is found to be strongly correlated with the $L(\\rho)$ at a subsaturation density of $\\rho = 0.59 \\rho_0$ through the density dependence of the first-order symmetry potential. Neutron star radii are found to be strongly correlated with the $L(\\rho)$ over a wide range of supra-saturation densities mainly through both the density an...
Effects of density dependence in a temperate forest in northeastern China
Yao, Jie; Zhang, Xinna; Zhang, Chunyu; Zhao, Xiuhai; von Gadow, Klaus
2016-09-01
Negative density dependence may cause reduced clustering among individuals of the same species, and evidence is accumulating that conspecific density-dependent self-thinning is an important mechanism regulating the spatial structure of plant populations. This study evaluates that specific density dependence in three very large observational studies representing three successional stages in a temperate forest in northeastern China. The methods include standard spatial point pattern analysis and a heterogeneous Poisson process as the null model to eliminate the effects of habitat heterogeneity. The results show that most of the species exhibit conspecific density-dependent self-thinning. In the early successional stage 11 of the 16 species, in the intermediate successional stage 18 of the 21 species and in the old growth stage all 21 species exhibited density dependence after removing the effects of habitat heterogeneity. The prevalence of density dependence thus varies among the three successional stages and exhibits an increase with increasing successional stage. The proportion of species showing density dependence varied depending on whether habitat heterogeneity was removed or not. Furthermore, the strength of density dependence is closely related with species abundance. Abundant species with high conspecific aggregation tend to exhibit greater density dependence than rare species.
Stocking density-dependent growth of Dover sole (Solea solea)
Schram, E.; Heul, van der J.W.; Kamstra, A.; Verdegem, M.C.J.
2006-01-01
Dover sole were reared at 6 different stocking densities between 0.56 and 12.6 kg/m2 with duplicate tanks for each treatment. The experiment lasted for 55 days. Water quality effects on growth were minimised by making the flow rate per tank proportional to the feeding load. Individual initial and
Johnson, Darren W
2006-05-01
Density dependence in demographic rates can strongly affect the dynamics of populations. However, the mechanisms generating density dependence (e.g., predation) are also dynamic processes and may be influenced by local conditions. Understanding the manner in which local habitat features affect the occurrence and/or strength of density dependence will increase our understanding of population dynamics in heterogeneous environments. In this study I conducted two separate field experiments to investigate how local predator density and habitat complexity affect the occurrence and form of density-dependent mortality of juvenile rockfishes (Sebastes spp.). I also used yearly censuses of rockfish populations on nearshore reefs throughout central California to evaluate mortality of juvenile rockfish at large spatial scales. Manipulations of predators (juvenile bocaccio, S. paucispinus) and prey (kelp, gopher, and black-and-yellow [KGB] rockfish, Sebastes spp.) demonstrated that increasing the density of predators altered their functional response and thus altered patterns of density dependence in mortality of their prey. At low densities of predators, the number of prey consumed per predator was a decelerating function, and mortality of prey was inversely density dependent. However, at high densities of predators, the number of prey killed per predator became an accelerating response, and prey mortality was directly density dependent. Results of field experiments and large-scale surveys both indicated that the strength of density-dependent mortality may also be affected by the structural complexity of the habitat. In small-scale field experiments, increased habitat complexity increased the strength of density-dependent mortality. However, at large scales, increasing complexity resulted in a decrease in the strength of density dependence. I suggest that these differences resulted from scale-dependent changes in the predatory response that generated mortality. Whether
Dependence of the critical current density on the first matching field density
Energy Technology Data Exchange (ETDEWEB)
Obaidat, I.M. [Department of Physics, United Arab Emirates University, Al-Ain 17551 (United Arab Emirates)], E-mail: iobaidat@uaeu.ac.ae; Benkraouda, M.; Khawaja, U. Al [Department of Physics, United Arab Emirates University, Al-Ain 17551 (United Arab Emirates)
2008-10-01
Molecular dynamic simulations were carried out to investigate the properties of the critical depinning force in high temperature superconductors at several vortex densities at the first matching field. The study was conducted on samples with periodic square arrays of vortices and pinning sites. The variables in the simulations were the vortex density, the pinning sites density, the temperature, the pinning strength, the size of pinning sites. The critical depinning force is found to decrease with temperature for all first matching field densities. The rate of this decrease was found to be slower as the pinning strength and size of pinning site gets larger. At low temperatures and for large pinning strengths, the critical depinning force was found to decrease with increasing the first matching field density. But very interesting results were obtained at moderate temperatures where the critical depinning force was found to increase as the first matching field density increases. The same behavior of the critical depinning force was found at low temperatures, for small pinning strengths. These unexpected results were attributed to a vortex structural phase transition from a disordered state to an ordered state.
Density-dependent photoabsorption cross sections of atomic Xe
Institute of Scientific and Technical Information of China (English)
Ma Xiao-Guang
2009-01-01
The evolution of the photoabsorption cross sections of atomic xenon with number densities varying from ideal gas to condensed matter has been studied by an alternative view in the present work. The alternative expressions of the photoabsorption cross sections presented by Sun et al recently were used with the local field models that has proven to be generalized easily to multiatomic systems including molecules and condensed phase systems. The present results show that the variation of the photoabsorption cross sections of atomic xenon in the giant resonance region from the isolated to the condensed conditions is very small, which agrees well with the variation law of the solid and gas experiments.
Institute of Scientific and Technical Information of China (English)
Zhihu WU; Run PEI
2009-01-01
This paper proposes a delay-dependent guaranteed cost control scheme for engine idle speed control (ISC) with induction-to-torque delay and external load disturbance.An augmented linearization model of engine at idle speed operating mode was developed based on physical principle and experiment data.To provide a compromise between disturbance rejection and other performance requirements of ISC,a multi-objective cost function upper bound was given,which can help us to take into account the fuel economy and disturbance rejection performance together in ISC.Poles constraint was added to the closed-loop system to guarantee convergence rates of state.The whole optimization solution to ISC can be solved under the framework of LMI.A commercial engine model was utilized to assess the performance of the controller.Simulation results on this model show us that designed controller can achieve desired performance.
Directory of Open Access Journals (Sweden)
Lu Hongying
2011-01-01
Full Text Available Abstract A discrete semi-ratio-dependent predator-prey system with Holling type IV functional response and time delay is investigated. It is proved the general nonautonomous system is permanent and globally attractive under some appropriate conditions. Furthermore, if the system is periodic one, some sufficient conditions are established, which guarantee the existence and global attractivity of positive periodic solutions. We show that the conditions for the permanence of the system and the global attractivity of positive periodic solutions depend on the delay, so, we call it profitless.
Yan, Zhiguo; Song, Yunxia; Park, Ju H
2017-05-01
This paper is concerned with the problems of finite-time stability and stabilization for stochastic Markov systems with mode-dependent time-delays. In order to reduce conservatism, a mode-dependent approach is utilized. Based on the derived stability conditions, state-feedback controller and observer-based controller are designed, respectively. A new N-mode algorithm is given to obtain the maximum value of time-delay. Finally, an example is used to show the merit of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Density-dependence of functional spiking networks in vitro
Energy Technology Data Exchange (ETDEWEB)
Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS
2008-01-01
During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.
Ruggenthaler, Michael; Penz, Markus; van Leeuwen, Robert
2015-05-27
In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn-Sham construction. We first present detailed conditions such that a mapping from potentials to densities is defined by solving the time-dependent Schrödinger equation. We specifically discuss intricacies connected with the unboundedness of the Hamiltonian and derive the local-force equation. This equation is then used to set up an iterative sequence that determines a potential that generates a specified density via time propagation of an initial state. This fixed-point procedure needs the invertibility of a certain Sturm-Liouville problem, which we discuss for different situations. Based on these considerations we then present a discussion of the famous Runge-Gross theorem which provides a density-potential mapping for time-analytic potentials. Further we give conditions such that the general fixed-point approach is well-defined and converges under certain assumptions. Then the application of such a fixed-point procedure to lattice Hamiltonians is discussed and the numerical realization of the density-potential mapping is shown. We conclude by presenting an extension of the density-potential mapping to include vector-potentials and photons.
Electronic density of states in sequence dependent DNA molecules
de Oliveira, B. P. W.; Albuquerque, E. L.; Vasconcelos, M. S.
2006-09-01
We report in this work a numerical study of the electronic density of states (DOS) in π-stacked arrays of DNA single-strand segments made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, forming a Rudin-Shapiro (RS) as well as a Fibonacci (FB) polyGC quasiperiodic sequences. Both structures are constructed starting from a G nucleotide as seed and following their respective inflation rules. Our theoretical method uses Dyson's equation together with a transfer-matrix treatment, within an electronic tight-binding Hamiltonian model, suitable to describe the DNA segments modelled by the quasiperiodic chains. We compared the DOS spectra found for the quasiperiodic structure to those using a sequence of natural DNA, as part of the human chromosome Ch22, with a remarkable concordance, as far as the RS structure is concerned. The electronic spectrum shows several peaks, corresponding to localized states, as well as a striking self-similar aspect.
广义时滞系统时滞依赖H∞控制的改进结果%Improved Results on Delay-dependent H∞ Control for Singular Time-delay Systems
Institute of Scientific and Technical Information of China (English)
吴争光; 苏宏业; 褚健
2009-01-01
The problem of delay-dependent H∞ control for singular systems with state delay is discussed. In terms of linear matrix inequality (LMI) approach, a delay-dependent bounded real lemma (BRL) is presented to ensure the system to be regular,impulse free, and stable with H∞ performance condition via an augmented Lyapunov functional. Based on the BRL obtained, the delay-dependent condition for the existence of H∞ state feedback controller is presented via strict LMI. An explicit expression for the desired state feedback controller is also given. Numerical examples are presented to illustrate the significant improvement on the conservativeness of some reported results in the literature.
Effects of Density-Dependent Bag Constant and Strange Star Rotation
Institute of Scientific and Technical Information of China (English)
ZHOU Qiao-Er; GUO Hua
2003-01-01
With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.
The importance of spatial models for estimating the strength of density dependence
DEFF Research Database (Denmark)
Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper;
2014-01-01
Identifying the existence and magnitude of density dependence is one of the oldest concerns in ecology. Ecologists have aimed to estimate density dependence in population and community data by fitting a simple autoregressive (Gompertz) model for density dependence to time series of abundance...... for an entire population. However, it is increasingly recognized that spatial heterogeneity in population densities has implications for population and community dynamics. We therefore adapt the Gompertz model to approximate local densities over continuous space instead of population-wide abundance......, and to allow productivity to vary spatially. Using simulated data generated from a spatial model, we show that the conventional (nonspatial) Gompertz model will result in biased estimates of density dependence, e.g., identifying oscillatory dynamics when not present. By contrast, the spatial Gompertz model...
Phase-Space Explorations in Time-Dependent Density Functional Theory
Rajam, Arun K.; Hessler, Paul; Gaun, Christian; Maitra, Neepa T.
2009-01-01
We discuss two problems which are particularly challenging for approximations in time-dependent density functional theory (TDDFT) to capture: momentum-distributions in ionization processes, and memory-dependence in real-time dynamics. We propose an extension of TDDFT to phase-space densities, discuss some formal aspects of such a "phase-space density functional theory" and explain why it could ameliorate the problems in both cases. For each problem, a two-electron model system is exactly nume...
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare Ne in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual Ne /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the Ne /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Control of Parameter-Dependent Systems, Spatially-Distributed Systems, and Systems with Delays.
1983-12-01
commensurate time delays: Stability and stabilization independent of delay," IEEE Transactions on Automatic Control , Vol. AC-27, pp. 367-375, April 1952. 2...34 IEEE Transactions * on Automatic Control , Vol. AC-29, January 1984 (to appear). I 5. E. W. Kamen, P. P. Khargonekar, and A. Tannenbaum, "Pointwise
Institute of Scientific and Technical Information of China (English)
Rui Xu; Lan-sun Chen; M.A.J. Chaplain
2003-01-01
A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions, and sufficient conditions are derived for the global attractivity of the positive equilibrium of the system.
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care
Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B.; Klug, Hope
2016-01-01
Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism’s entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.
Directory of Open Access Journals (Sweden)
Elijah Reyes
Full Text Available Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1 egg survival is density dependent or 2 adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.
Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope
2016-01-01
Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.
Li, Xingfeng; Tian, Jie; Wang, Xiaoxiang; Dai, Jianping; Ai, Lin
2004-04-01
The aim of this study was to assess the validation of the local density random walk (LDRW) function to correct the delayed and dispersed arterial input function (AIF) data derived from dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). Instead of using the gamma-variate function to smooth and extrapolate the AIF curves, we suggested a method which was based on diffusion with drift approach. Forty-seven AIF curves from ten patients were segmented to test the effectiveness of the proposed method. The results of the comparisons with the gamma-variate function showed that the LDRW distribution function may provide a new means for more accurate correction of AIF curves.
Leathers, Andrew S.; Micha, David A.; Kilin, Dmitri S.
2009-10-01
The interaction of an excited adsorbate with a medium undergoing electronic and vibrational transitions leads to fast dissipation due to electronic energy relaxation and slow (or delayed) dissipation from vibrational energy relaxation. A theoretical and computational treatment of these phenomena has been done in terms of a reduced density matrix satisfying a generalized Liouville-von Neumann equation, with instantaneous dissipation constructed from state-to-state transition rates, and delayed dissipation given by a memory term derived from the time-correlation function (TCF) of atomic displacements in the medium. Two representative applications are presented here, where electronic excitation may enhance vibrational relaxation of an adsorbate. They involve femtosecond excitation of (a) a CO molecule adsorbed on the Cu(001) metal surface and (b) a metal cluster on a semiconductor surface, Ag3Si(111):H, both electronically excited by visible light and undergoing electron transfer and dissipative dynamics by electronic and vibrational relaxations. Models have been parametrized in both cases from electronic structure calculations and known TCFs for the medium, which are slowly decaying in case (a) and fast decaying in case (b). This requires different numerical procedures in the solution of the integrodifferential equations for the reduced density matrix, which have been solved with an extension of the Runge-Kutta algorithm. Results for the populations of vibronic states versus time show that they oscillate due to vibrational coupling through dissipative interaction with the substrate and show quantum coherence. The total population of electronic states is, however, little affected by vibrational motions. Vibrational relaxation is important only at very long times to establish thermal equilibrium.
Robinson, Orin J.; McGowan, Conor; Devers, Patrick K.
2017-01-01
Density dependence regulates populations of many species across all taxonomic groups. Understanding density dependence is vital for predicting the effects of climate, habitat loss and/or management actions on wild populations. Migratory species likely experience seasonal changes in the relative influence of density dependence on population processes such as survival and recruitment throughout the annual cycle. These effects must be accounted for when characterizing migratory populations via population models.To evaluate effects of density on seasonal survival and recruitment of a migratory species, we used an existing full annual cycle model framework for American black ducks Anas rubripes, and tested different density effects (including no effects) on survival and recruitment. We then used a Bayesian model weight updating routine to determine which population model best fit observed breeding population survey data between 1990 and 2014.The models that best fit the survey data suggested that survival and recruitment were affected by density dependence and that density effects were stronger on adult survival during the breeding season than during the non-breeding season.Analysis also suggests that regulation of survival and recruitment by density varied over time. Our results showed that different characterizations of density regulations changed every 8–12 years (three times in the 25-year period) for our population.Synthesis and applications. Using a full annual cycle, modelling framework and model weighting routine will be helpful in evaluating density dependence for migratory species in both the short and long term. We used this method to disentangle the seasonal effects of density on the continental American black duck population which will allow managers to better evaluate the effects of habitat loss and potential habitat management actions throughout the annual cycle. The method here may allow researchers to hone in on the proper form and/or strength of
Analyzing Density Operator in Thermal State for Complicated Time-Dependent Optical Systems
Directory of Open Access Journals (Sweden)
Jeong Ryeol Choi
2014-01-01
Full Text Available Density operator of oscillatory optical systems with time-dependent parameters is analyzed. In this case, a system is described by a time-dependent Hamiltonian. Invariant operator theory is introduced in order to describe time-varying behavior of the system. Due to the time dependence of parameters, the frequency of oscillation, so-called a modified frequency of the system, is somewhat different from the natural frequency. In general, density operator of a time-dependent optical system is represented in terms of the modified frequency. We showed how to determine density operator of complicated time-dependent optical systems in thermal state. Usually, density operator description of quantum states is more general than the one described in terms of the state vector.
Van Buskirk, J
1987-05-01
Several features of dragonfly population biology suggest that population regulation occurs in the larval stage. This study was designed to determine if density-dependent interactions among larval odonates can affect survival, growth and emergence. First-instar larvae of the dragonfly Pachydiplax longipennis were raised in outdoor experimental ponds at initial densities of 38, 152, and 608 larvae · m(-2), under two levels of food availability. Food availability was supplemented in half the pools by volumetric addition of zooplankton every other day. Pools in the low food treatment did not receive the zooplankton supplement.There was a strong negative effect of density on the mean growth rate of survivors, which included both emerging tenerals and individuals overwintering in the larval stage. A higher proportion emerged from low density than high density pools. Metamorphs from high density populations were smaller and emerged slightly later than those from low density, but the absolute number of metamorphs did not differ significantly among density treatments. Food supplementation significantly increased the proportion of overwintering larvae. There were no significant food-by-density interactions, indicating that food and density acted independently on larval population dynamics. Density-dependent mechanisms can clearly contribute to odonate population regulation, especially by controlling the number of larvae which emerge and the average age at reproduction. Population-level responses to density may be a result of interference among larvae.
Effects of distance-dependent delay on small-world neuronal networks.
Zhu, Jinjie; Chen, Zhen; Liu, Xianbin
2016-04-01
We study firing behaviors and the transitions among them in small-world noisy neuronal networks with electrical synapses and information transmission delay. Each neuron is modeled by a two-dimensional Rulkov map neuron. The distance between neurons, which is a main source of the time delay, is taken into consideration. Through spatiotemporal patterns and interspike intervals as well as the interburst intervals, the collective behaviors are revealed. It is found that the networks switch from resting state into intermittent firing state under Gaussian noise excitation. Initially, noise-induced firing behaviors are disturbed by small time delays. Periodic firing behaviors with irregular zigzag patterns emerge with an increase of the delay and become progressively regular after a critical value is exceeded. More interestingly, in accordance with regular patterns, the spiking frequency doubles compared with the former stage for the spiking neuronal network. A growth of frequency persists for a larger delay and a transition to antiphase synchronization is observed. Furthermore, it is proved that these transitions are generic also for the bursting neuronal network and the FitzHugh-Nagumo neuronal network. We show these transitions due to the increase of time delay are robust to the noise strength, coupling strength, network size, and rewiring probability.
Robledo, L. M.
2010-06-01
I discuss the inadequacy of the 'projected density' prescription to be used in density-dependent forces/functionals when calculations beyond mean field are pursued. The case of calculations aimed at the symmetry restoration of mean fields obtained with effective realistic forces of the Skyrme or Gogny type is considered in detail. It is shown that, at least for the restoration of spatial symmetries like rotations, translations or parity, the above prescription yields catastrophic results for the energy that drive the intrinsic wave-function to configurations with infinite deformation, thereby preventing its use both in projection after and before variation.
Robledo, L M
2010-01-01
I discuss the inadequacy of the "projected density" prescription to be used in density dependent forces/functionals when calculations beyond mean field are pursued. The case of calculations aimed at the symmetry restoration of mean fields obtained with effective realistic forces of the Skyrme or Gogny type is considered in detail. It is shown that at least for the restoration of spatial symmetries like rotations, translations or parity the above prescription yields catastrophic results for the energy that drive the intrinsic wave function to configurations with infinite deformation, preventing thereby its use both in projection after and before variation.
Directory of Open Access Journals (Sweden)
Tripathi R.P.
2013-01-01
Full Text Available This study develops an inventory model for determining an optimal ordering policy for non-deteriorating items and time-dependent holding cost with delayed payments permitted by the supplier under inflation and time-discounting. The discounted cash flows approach is applied to study the problem analysis. Mathematical models have been derived under two different situations i.e. case I: The permissible delay period is less than cycle time for settling the account and case II: The permissible delay period is greater than or equal to cycle time for settling the account. An algorithm is used to obtain minimum total present value of the costs over the time horizon H. Finally, numerical example and sensitivity analysis demonstrate the applicability of the proposed model. The main purpose of this paper is to investigate the optimal cycle time and optimal payment time for an item so that annual total relevant cost is minimized.
Nuclear Density-Dependent Effective Coupling Constants in the Mean-Field Theory
Lee, J H; Lee, S J; Lee, Jae Hwang; Lee, Young Jae; Lee, Suk-Joon
1996-01-01
It is shown that the equation of state of nuclear matter can be determined within the mean-field theory of $\\sigma \\omega$ model provided only that the nucleon effective mass curve is given. We use a family of the possible nucleon effective mass curves that reproduce the empirical saturation point in the calculation of the nuclear binding energy curves in order to obtain density-dependent effective coupling constants. The resulting density-dependent coupling constants may be used to study a possible equation of state of nuclear system at high density or neutron matter. Within the constraints used in this paper to $M^*$ of nuclear matter at saturation point and zero density, neutron matter of large incompressibility is strongly bound at high density while soft neutron matter is weakly bound at low density. The study also exhibits the importance of surface vibration modes in the study of nuclear equation of state.
Regional differences in density-dependent mortality and reproduction in Finnish reindeer
Directory of Open Access Journals (Sweden)
Ilpo Kojola
1993-10-01
Full Text Available Reindeer in the southern and central regions of reindeer husbandry in Finland feed on arboreal lichens or are given supplementary rations from midwinter whereas in the northern region reindeer use snow-covered forage throughout winter. Rates of mortality and reproduction were examined using data from population crashes of semi-domesticated reindeer that occurred in Northern Finland during 1960-1987. The mortality and reproductive rate were density-dependent in the southern region and the mortality was density-dependent in the central region. The density-dependence was most probably due to food competition in forest cutting areas where reindeer gather to feed on arboreal lichens from felled trees. In the northern region mortality was not density-dependent indicating that where reindeer feed on over-utilized winter range the effects of increased feeding competition are masked by very large changes in the availability of forage.
Negative density-dependent emigration of males in an increasing red deer population
National Research Council Canada - National Science Library
Leif Egil Loe; Atle Mysterud; Vebjørn Veiberg; Rolf Langvatn
2009-01-01
...), possibly caused by increasing saturation of deer in areas surrounding the marking sites. Our study highlights that pattern of density dependence in dispersal rates may differ markedly between sexes in highly polygynous species...
Density-dependent resistance of the gypsy moth, Lymantria dispar, to its nucleopolyhedrovirus
James R. Reilly; Ann E. Hajek
2007-01-01
The processes controlling disease resistance can strongly influence the population dynamics of insect outbreaks. Evidence that disease resistance is density-dependent is accumulating, but the exact form of this relationship is highly variable from species to species.
Ouma, B.O.; Amin, R.; Langevelde, van F.; Leader-Williams, N.
2010-01-01
Density-dependent feedback mechanisms provide insights into the population dynamics and interactions of large herbivores with their ecosystem. Sex ratio also has particularly important implications for growth rates of many large mammal populations through its influence on reproductive potential.
Zhang, Ting; Fang, Daoyuan
2008-03-01
In this paper, we study the free boundary problem for 1D compressible Navier-Stokes equations with density-dependent viscosity. We focus on the case where the viscosity coefficient vanishes on vacuum. We prove the global existence and uniqueness for discontinuous solutions to the Navier-Stokes equations when the initial density is a bounded variation function, and give a decay result for the density as t-->+[infinity].
Density-dependent nerve growth factor regulation of Gs-alpha RNA in pheochromocytoma 12 cells.
Tjaden, G; Aguanno, A; Kumar, R; Benincasa, D; Gubits, R M; Yu, H; Dolan, K P
1990-01-01
Nerve growth factor (NGF) affects levels of the alpha subunit of the stimulatory G protein (Gs-alpha) in pheochromocytoma 12 cells in a bidirectional, density-dependent manner. Cells grown at high density responded to NGF treatment with increased levels of Gs-alpha mRNA and protein. Conversely, in cells grown in low-density cultures, levels of this mRNA were lowered by NGF treatment. Images PMID:2160599
Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.
2009-01-01
Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both
Bingi, Jayachandra; Nair, Radhika V.; Vijayan, C.
2017-02-01
Light propagation and localization in a random structure with a periodic background is an upcoming paradigm for novel photonic applications. This paper demonstrates the phenomenon of time dependent transmittance of evanescent Bloch modes (EBM) in ZnS random photonic crystal (RPC) which forms the basis for photonic delay switching. The RPC is fabricated by colloidal self-assembly with ZnS nanospheres of size 215 nm. An anomalous reciprocity and time dependent transmission at EBM (mid band gap wavelength) are observed in coherent back scattering and transmission studies respectively. These are explained on the basis of restricted propagation of EBMs through random channels in the periodic background and enhanced field storage inside RPC. The channelized propagation of EBMs is evident from decreasing time delay of transmittance at reduced thicknesses. The proportionality between transmission time delay and incident power confirms photon (field) storage within the RPC. The results indicate that structures with systematically engineered EBM channels can work as wavelength selective delay switch and further provide a short time photon storage system under non-absorbing conditions.
Explaining density-dependent regulation in earthworm populations using life-history analysis
Kammenga, J.E.; Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.
2003-01-01
At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based oil experimental observations and life-history modeling for
Population-level consequences of heterospecific density-dependent movements in predator-prey systems
2013-01-01
In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patches depend on the local densities of heterospecifics, giving rise to one reaction norm for each of th...
Time-dependent density functional theory for strong-field ionization by circularly polarized pulses
Chirilă, Ciprian C.; Lein, Manfred
2017-03-01
By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.
Habitat- and density-dependent demography of a colonial raptor in Mediterranean agro-ecosystems
2016-01-01
Agricultural intensification is considered the major cause of decline in farmland bird populations, especially in the Mediterranean region. Food shortage increased by the interaction between agricultural intensification and density-dependent mechanisms could influence the population dynamics of colonial birds.Weused demographic data on lesser kestrels (Falco naumanni), a key species of Mediterranean pseudo-steppes, to understand the importance of land-use changes and density-dependent mechani...
Assessing the impact of density dependence in field populations of Aedes aegypti.
Walsh, R K; Facchinelli, L; Ramsey, J M; Bond, J G; Gould, F
2011-12-01
Although many laboratory studies of intra-specific competition have been conducted with Ae. aegypti, there have been few studies in natural environments and none that examined density dependence in natural containers at normal field densities. Additionally, current mathematical models that predict Ae. aegypti population dynamics lack empirically-based functions for density-dependence. We performed field experiments in Tapachula, Mexico, where dengue is a significant public health concern. Twenty-one containers with natural food and water that already contained larvae were collected from local houses. Each container was divided in half and the naturally occurring larvae were apportioned in a manner that resulted in one side of the container (high density) having four times the density of the second side (low density). Larvae were counted and pupae were removed daily. Once adults emerged, wing span was measured to estimate body size. Density had a significant impact on larval survival, adult body size, and the time taken to transition from 4(th) instar to pupation. Increased density decreased larval survival by 20% and decreased wing length by an average of 0.19 mm. These results provide a starting point for a better understanding of density dependence in field populations of Ae. aegypti.
Duan, Ran; Guo, Ai; Zhu, Changjiang
2017-04-01
We obtain existence and uniqueness of global strong solution to one-dimensional compressible Navier-Stokes equations for ideal polytropic gas flow, with density dependent viscosity and temperature dependent heat conductivity under stress-free and thermally insulated boundary conditions. Here we assume viscosity coefficient μ (ρ) = 1 +ρα and heat conductivity coefficient κ (θ) =θβ for all α ∈ [ 0 , ∞) and β ∈ (0 , + ∞).
Density dependent growth in adult brown frogs Rana arvalis and Rana temporaria - A field experiment
Loman, Jon; Lardner, Björn
2009-11-01
In species with complex life cycles, density regulation can operate on any of the stages. In frogs there are almost no studies of density effects on the performance of adult frogs in the terrestrial habitat. We therefore studied the effect of summer density on the growth rate of adult frogs during four years. Four 30 by 30 m plots in a moist meadow were used. In early summer, when settled after post-breeding migration, frogs ( Rana arvalis and Rana temporaria that have a very similar ecology and potentially compete) were enclosed by erecting a fence around the plots. Frogs were captured, measured, marked and partly relocated to create two high density and two low density plots. In early autumn the frogs were again captured and their individual summer growth determined. Growth effects were evaluated in relation to two density measures: density by design (high/low manipulation), and actual (numerical) density. R. arvalis in plots with low density by design grew faster than those in high density plots. No such effect was found for R. temporaria. For none of the species was growth related to actual summer density, determined by the Lincoln index and including the density manipulation. The result suggests that R. arvalis initially settled according to an ideal free distribution and that density had a regulatory effect (mediated through growth). The fact that there were no density effects on R. temporaria (and a significant difference in its response to that of R. arvalis) suggests it is a superior competitor to R. arvalis during the terrestrial phase. There were no density effects on frog condition index, suggesting that the growth rate modifications may actually be an adaptive trait of R. arvalis. The study demonstrates that density regulation may be dependent on resources in frogs' summer habitat.
Directory of Open Access Journals (Sweden)
M. Mallika Arjunan
2014-01-01
Full Text Available In this paper, we investigate the existence and controllability of mild solutions for a damped second order impulsive functional differential equation with state-dependent delay in Banach spaces. The results are obtained by using Sadovskii's fixed point theorem combined with the theories of a strongly continuous cosine family of bounded linear operators. Finally, an example is provided to illustrate the main results.
Furukawa, Yukio
2000-03-01
The modulation-frequency dependencies of the intensity and the phase delay of photoinduced infrared absorption from poly(p-phenylene) have been observed and simulated numerically on the basis of a model based on second-order kinetics involving a neutralization recombination process between the positive and negative charge carriers (polarons) that are formed from a photogenerated polaron pair (interchain charge-transfer exciton). The rate constant of the bimolecular recombination has been obtained.
Zhang, Guodong; Shen, Yi
2015-11-01
This paper is concerned with the global exponential stability on a class of delayed neural networks with state-dependent switching. Under the novel conditions, some sufficient criteria ensuring exponential stability of the proposed system are obtained. In particular, the obtained conditions complement and improve earlier publications on conventional neural networks with continuous or discontinuous right-hand side. Numerical simulations are also presented to illustrate the effectiveness of the obtained results.
Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels
DEFF Research Database (Denmark)
Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri;
2013-01-01
A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the propos...
Both Trace and Delay Conditioning of Evaluative Responses Depend on Contingency Awareness
Kattner, Florian; Ellermeier, Wolfgang; Tavakoli, Paniz
2012-01-01
Whereas previous evaluative conditioning (EC) studies produced inconsistent results concerning the role of contingency knowledge, there are classical eye-blink conditioning studies suggesting that declarative processes are involved in trace conditioning but not in delay conditioning. In two EC experiments pairing neutral sounds (conditioned…
Temperature dependence of Hall electron density of GaN-based heterostructures
Institute of Scientific and Technical Information of China (English)
Zhang Jin-Feng; Zhang Jin-Cheng; Hao Yue
2004-01-01
The theoretic calculation and analysis of the temperature dependence of Hall electron density of a sample AlGaN/GaN heterostructure has been carried out in the temperature range from 77 to 300K. The densities of the twodimensional electron gas and the bulk electrons are solved by self-consistent calculation of one-dimensional Schrodinger and Poisson equations at different temperatures, which allow for the variation of energy gap and structure strain, and are used for evaluation of the temperature dependence of Hall electron density. The calculated Hall electron density agrees with the measured one quite well with the appropriate bulk mobility data. Analysis revealed that for the temper ature range considered, even in the heterostructures with a small bulk conductance the factors that determine the Hall mobility and electron density could be of different sources, and not just the two-dimensional electron gas as generally supposed.
A coarse-grain force field for RDX: Density dependent and energy conserving
Moore, Joshua D.; Barnes, Brian C.; Izvekov, Sergei; Lísal, Martin; Sellers, Michael S.; Taylor, DeCarlos E.; Brennan, John K.
2016-03-01
We describe the development of a density-dependent transferable coarse-grain model of crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX) that can be used with the energy conserving dissipative particle dynamics method. The model is an extension of a recently reported one-site model of RDX that was developed by using a force-matching method. The density-dependent forces in that original model are provided through an interpolation scheme that poorly conserves energy. The development of the new model presented in this work first involved a multi-objective procedure to improve the structural and thermodynamic properties of the previous model, followed by the inclusion of the density dependency via a conservative form of the force field that conserves energy. The new model accurately predicts the density, structure, pressure-volume isotherm, bulk modulus, and elastic constants of the RDX crystal at ambient pressure and exhibits transferability to a liquid phase at melt conditions.
DEFF Research Database (Denmark)
Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.
1997-01-01
no information on actual demographic rates(9,10). Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammute rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models, Both effects occur simultaneously, but we also demonstrate......Ecology has long been troubled by the controversy over how populations are regulated(1,2). Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central(3-6). The relative importance of both processes is still hotly debated......, but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...
Density dependence of the /s-wave repulsion in pionic atoms
Friedman, E.
2002-11-01
Several mechanisms of density dependence of the s-wave repulsion in pionic atoms, beyond the conventional model, are tested by parameter fits to a large (106 points) set of data from 16O to 238U, including 'deeply bound' states in 205Pb. Special attention is paid to the proper choice of nuclear density distributions. A density-dependent isovector scattering amplitude suggested recently by Weise to result from a density dependence of the pion decay constant is introduced and found to account for most of the so-called anomalous repulsion. The presence of such an effect might indicate partial chiral symmetry restoration in dense matter. The anomalous repulsion is fully accounted for when an additional relativistic impulse approximation term is included in the potential.
Gamelon, Marlène; Grøtan, Vidar; Engen, Steinar; Bjørkvoll, Eirin; Visser, Marcel E; Saether, Bernt-Erik
2016-09-01
Classical approaches for the analyses of density dependence assume that all the individuals in a population equally respond and equally contribute to density dependence. However, in age-structured populations, individuals of different ages may differ in their responses to changes in population size and how they contribute to density dependence affecting the growth rate of the whole population. Here we apply the concept of critical age classes, i.e., a specific scalar function that describes how one or a combination of several age classes affect the demographic rates negatively, in order to examine how total density dependence acting on the population growth rate depends on the age-specific population sizes. In a 38-yr dataset of an age-structured great tit (Parus major) population, we find that the age classes, including the youngest breeding females, were the critical age classes for density regulation. These age classes correspond to new breeders that attempt to take a territory and that have the strongest competitive effect on other breeding females. They strongly affected population growth rate and reduced recruitment and survival rates of all breeding females. We also show that depending on their age class, females may differently respond to varying density. In particular, the negative effect of the number of breeding females was stronger on recruitment rate of the youngest breeding females. These findings question the classical assumptions that all the individuals of a population can be treated as having an equal contribution to density regulation and that the effect of the number of individuals is age independent. Our results improve our understanding of density regulation in natural populations.
Density dependence in a recovering osprey population: demographic and behavioural processes.
Bretagnolle, V; Mougeot, F; Thibault, J-C
2008-09-01
1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.
Doropoulos, Christopher; Evensen, Nicolas R; Gómez-Lemos, Luis A; Babcock, Russell C
2017-05-01
Population growth involves demographic bottlenecks that regulate recruitment success during various early life-history stages. The success of each early life-history stage can vary in response to population density, interacting with intrinsic (e.g. behavioural) and environmental (e.g. competition, predation) factors. Here, we used the common reef-building coral Acropora millepora to investigate how density-dependence influences larval survival and settlement in laboratory experiments that isolated intrinsic effects, and post-settlement survival in a field experiment that examined interactions with environmental factors. Larval survival was exceptionally high (greater than 80%) and density-independent from 2.5 to 12 days following spawning. By contrast, there was a weak positive effect of larval density on settlement, driven by gregarious behaviour at the highest density. When larval supply was saturated, settlement was three times higher in crevices compared with exposed microhabitats, but a negative relationship between settler density and post-settlement survival in crevices and density-independent survival on exposed surfaces resulted in similar recruit densities just one month following settlement. Moreover, a negative relationship was found between turf algae and settler survival in crevices, whereas gregarious settlement improved settler survival on exposed surfaces. Overall, our findings reveal divergent responses by coral larvae and newly settled recruits to density-dependent regulation, mediated by intrinsic and environmental interactions.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth
2016-09-01
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
Wu, Yanan; Gong, Yubing; Xu, Bo
2013-12-01
Recently, multiple coherence resonance induced by time delay has been observed in neuronal networks with constant coupling strength. In this paper, by employing Newman-Watts Hodgkin-Huxley neuron networks with time-periodic coupling strength, we study how the temporal coherence of spiking behavior and coherence resonance by time delay change when the frequency of periodic coupling strength is varied. It is found that delay induced coherence resonance is dependent on periodic coupling strength and increases when the frequency of periodic coupling strength increases. Periodic coupling strength can also induce multiple coherence resonance, and the coherence resonance occurs when the frequency of periodic coupling strength is approximately multiple of the spiking frequency. These results show that for periodic coupling strength time delay can more frequently optimize the temporal coherence of spiking activity, and periodic coupling strength can repetitively optimize the temporal coherence of spiking activity as well. Frequency locking may be the mechanism for multiple coherence resonance induced by periodic coupling strength. These findings imply that periodic coupling strength is more efficient for enhancing the temporal coherence of spiking activity of neuronal networks, and thus it could play a more important role in improving the time precision of information processing and transmission in neural networks.
Negative density dependence of seed dispersal and seedling recruitment in a neotropical palm.
Jansen, Patrick A; Visser, Marco D; Joseph Wright, S; Rutten, Gemma; Muller-Landau, Helene C
2014-09-01
Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.
Directory of Open Access Journals (Sweden)
Xueliang Liu
2012-01-01
Full Text Available This paper is concerned with a containment problem of networked fractional-order system with multiple leaders under a fixed directed interaction graph. Based on the neighbor rule, a distributed protocol is proposed in delayed communication channels. By employing the algebraic graph theory, matrix theory, Nyquist stability theorem, and frequency domain method, it is analytically proved that the whole follower agents will flock to the convex hull which is formed by the leaders. Furthermore, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is obtained. As a special case, the interconnection topology under the undirected case is also discussed. Finally, some numerical examples with simulations are presented to demonstrate the effectiveness and correctness of the theoretical results.
Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim
2014-11-01
Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high
Delay-dependent robust stabilization for a class of neutral systems with nonlinear perturbations
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations.A new stabilization/stability scheme is presented.Using improved Lyapunov functionals.less conservative stabilization/stability conditions are derived for such systems based on linear matrix inequalities(LMI).Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.
Institute of Scientific and Technical Information of China (English)
吴争光; 周武能
2007-01-01
This paper considers the problem of delay-dependent robust stabilization for uncertain singular delay systems. In terms of linear matrix inequality (LMI) approach, a delay-dependent stability criterion is given to ensure that the nominal system is regular, impulse free, and stable. Based on the criterion, the problem is solved via state feedback controller, which guarantees that the resultant closed-loop system is regular, impulse free, and stable for all admissible uncertainties. An explicit expression for the desired controller is also given. Some numerical examples are provided to illustrate the validity of the proposed methods.
Institute of Scientific and Technical Information of China (English)
杜昭平; 张庆灵; 刘丽丽
2009-01-01
In this paper, the problem of delay-dependent robust stabilization is investigated for singular systems with multiple input delays and admissible uncertainties. First, an improved delay-dependent stabilization criterion for the nominal system is established in terms of linear matrix inequalities (LMIs). Then, based on this criterion, the problem is solved via state feedback controller, which guarantees that the resultant closed-loop system is regular, impulse free, and stable for all admissible uncertainties. Numerical examples are provided to illustrate the effectiveness of the proposed method.
Debecker, Sara; Dinh, Khuong V; Stoks, Robby
2017-02-21
As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.
Leaf damage and density-dependent effects on six Inga species in a neotropical forest
Directory of Open Access Journals (Sweden)
Tania Brenes-Arguedas
2012-12-01
Full Text Available Many models have been proposed to explain the possible role of pests in the coexistence of a high diversity of plant species in tropical forests. Prominent among them is the Janzen-Connell model. This model suggests that specialized herbivores and pathogens limit tree recruitment as a function of their density or proximity to conspecifics. A large number of studies have tested the predictions of this model with respect to patterns of recruitment and mortality at different life stages, yet only a few have directly linked those density or distance-dependent effects to pest attack. If pest-attack is an important factor in density or distance-dependent mortality, there should be spatial heterogeneity in pest pressure. I studied the spatial distribution of leaf damage in saplings of six common Inga species (Fabaceae: Mimosoideae in the 50ha forest dynamic plot of Barro Colorado Island, Panama. The percent leaf damage of Inga saplings was not heterogeneous in space, and the density of conspecific, congener or confamilial neighbors was uncorrelated with the observed damage levels in focal plants. One of the focal species did suffer density-dependent mortality, suggesting that spatial variation in plant performance in these species is not directly driven by leaf damaging agents. While multiple studies suggest that density-dependent effects on performance are common in tropical plant communities, our understanding of the mechanisms that drive those effects is still incomplete and the underlying assumption that these patterns result from differential herbivore attack deserves more scrutiny.
Directory of Open Access Journals (Sweden)
Ulrike Schara
Full Text Available Besides progressive muscle weakness cognitive deficits have been reported in patients with Duchenne muscular dystrophy (DMD. Cerebellar dysfunction has been proposed to explain cognitive deficits at least in part. In animal models of DMD disturbed Purkinje cell function has been shown following loss of dystrophin. Furthermore there is increasing evidence that the lateral cerebellum contributes to cognitive processing. In the present study cerebellar-dependent delay eyeblink conditioning, a form of associative learning, was used to assess cerebellar function in DMD children.Delay eyeblink conditioning was examined in eight genetically defined male patients with DMD and in ten age-matched control subjects. Acquisition, timing and extinction of conditioned eyeblink responses (CR were assessed during a single conditioning session.Both groups showed a significant increase of CRs during the course of learning (block effect p < 0.001. CR acquisition was not impaired in DMD patients (mean total CR incidence 37.4 ± 17.6% as compared to control subjects (36.2 ± 17.3%; group effect p = 0.89; group by block effect p = 0.38; ANOVA with repeated measures. In addition, CR timing and extinction was not different from controls.Delay eyeblink conditioning was preserved in the present DMD patients. Because eyeblink conditioning depends on the integrity of the intermediate cerebellum, this older part of the cerebellum may be relatively preserved in DMD. The present findings agree with animal model data showing that the newer, lateral cerebellum is primarily affected in DMD.
Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria
Muriu, Simon M.; Coulson, Tim; Mbogo, Charles M.; Godfray, H. Charles J.
2017-01-01
Summary Anopheles gambiae sensu stricto is the most important vector of malaria in Africa although relatively little is known about the density-dependent processes determining its population size.Mosquito larval density was manipulated under semi-natural conditions using artificial larval breeding sites placed in the field in coastal Kenya; two experiments were conducted: one manipulating the density of a single cohort of larvae across a range of densities and the other employing fewer densities but with the treatments crossed with four treatments manipulating predator access.In the first experiment, larval survival, development rate and the size of the adult mosquito all decreased with larval density (controlling for block effects between 23% and 31% of the variance in the data could be explained by density).In the second experiment, the effects of predator manipulation were not significant, but again we observed strong density dependence in larval survival (explaining 30% of the variance).The results are compared with laboratory studies of A. gambiae larval competition and the few other studies conducted in the field, and the consequences for malaria control are discussed PMID:23163565
DEFF Research Database (Denmark)
Kolby, Nanna; Busch, Alexander Siegfried; Juul, Anders
2017-01-01
Delayed puberty can be a source of great concern and anxiety, although it usually is caused by a self-limiting variant of the normal physiological timing named constitutional delay of growth and puberty (CDGP). Delayed puberty can, however, also be the first presentation of a permanent condition ...... mineral density) and psychological (e.g., low self-esteem) and underline the importance of careful clinical assessment of the patients.......Delayed puberty can be a source of great concern and anxiety, although it usually is caused by a self-limiting variant of the normal physiological timing named constitutional delay of growth and puberty (CDGP). Delayed puberty can, however, also be the first presentation of a permanent condition...
DEFF Research Database (Denmark)
Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.;
2008-01-01
Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...... moments are computed using the same geometries (MP2/6-31G*) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio...
Institute of Scientific and Technical Information of China (English)
De-li DONG; Yan LIU; Yu-hong ZHOU; Wei-hua SONG; He WANG; Bao-feng YANG
2004-01-01
AIM: To determine the changes of delayed rectifier K+ currents (Ik) and inward rectifier K+ currents (Ik1) in the ventricular myocytes of guinea pigs during the gradual apoptotic process by the chronic oxidant stress treatment.METHODS: H2O250 μmol/L (24 h) was used for inducing apoptosis in the cardiomyocytes culture of neonatal rats and to treat the isolated ventricular myocytes of adult guinea pigs in vitro for 24 h. Apoptosis was evaluated by TUNEL methods and voltage-dependent K+ currents were recorded by patch-clamp techniques. RESULTS: H2O250 μmol/L (24 h) induced cell apoptosis in the cardiomyocytes culture of neonatal rats. This concentration was used to treat the isolated ventricular myocytes of adult guinea pigs in vitro for 24 h and the voltage-dependent K+currents densities (Ik, Ik1) were down-regulated. The densities of the delayed rectifier K+ currents (Ik) in 50 μmol/L H2O2 group were 2.52±0.57 pA/pF vs 5.73±1.84 pA/pF in the control group at +50 mV (n=8, P＜0.01). The densities of the inward rectifier K+ currents (Ik1) in 50 μmol/L H2O2 group were -13.9±2.70 pA/pF, 2.52±0.57 pA/pF vs -59.7± 11.9 pA/pF, 5.73± 1.84 pA/pF in the control group at -120 mV (n=8, P＜0.01) and -40 mV (n=8, P＜0.05), respectively. The extent of inward rectifier property of Ik1 was weakened by 50μmol/L H2O2 treatment. CONCLUSION: The densities of Ik, Ik1 in the cardiomyocytes of guinea pigs were downregulated and the inward rectifier property of Ik1 was weakened during the gradual apoptotic process after 50 μmol/L H2O2 treatment for 24 h.
Braghin, F L
2004-01-01
Symmetry energy terms from macroscopic mass formulae are investigated as generalized polarizabilities of nuclear matter. Besides the neutron-proton (n-p) symmetry energy the spin dependent symmetry energies and a scalar one are also defined. They depend on the nuclear densities ($\\rho$), neutron-proton asymmetry ($b$), temperature ($T$) and exchanged energy and momentum ($q$). Based on a standard expression for the generalized polarizabilities, a differential equation is proposed to constrain the dependence of the symmetry energy on the n-p asymmetry and on the density. Some solutions are discussed. The q-dependence (zero frequence) of the symmetry energy coefficients with Skyrme-type forces is investigated in the four channels of the particle-hole interaction. Spin dependent symmetry energies are also investigated indicating much stronger differences in behavior with $q$ for each Skyrme force than the results for the neutron-proton one.
Ge, Hong-xia; Meng, Xiang-pei; Cheng, Rong-jun; Lo, Siu-Ming
2011-10-01
In this paper, an extended car-following model considering the delay of the driver's response in sensing headway is proposed to describe the traffic jam. It is shown that the stability region decreases when the driver's physical delay in sensing headway increases. The phase transition among the freely moving phase, the coexisting phase, and the uniformly congested phase occurs below the critical point. By applying the reductive perturbation method, we get the time-dependent Ginzburg-Landau (TDGL) equation from the car-following model to describe the transition and critical phenomenon in traffic flow. We show the connection between the TDGL equation and the mKdV equation describing the traffic jam.
Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara
2014-09-09
Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.
Indian Academy of Sciences (India)
Amita Wadehra; B M Deb
2007-09-01
A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on the femtosecond dynamics of the electron density in the hydrogen molecule interacting with high-intensity laser fields. For this purpose, the GNLSE is solved numerically for many time-steps over a total interaction time of 100 fs, by employing a finite-difference scheme. Various time-dependent (TD) quantities, namely, electron density, ground-state survival probability and dipole moment have been obtained for two laser wavelengths and four different intensities. The high-order harmonics generation (HHG) is also examined. The present approach goes beyond the linear response formalism and, in principle, calculates the TD electron density to all orders of change.
Polarization dependence of the quasi-Talbot effect of the high-density grating.
Teng, Shuyun; Guo, Wenzhen; Cheng, Chuanfu
2010-03-01
Diffractions by the one-dimensional high-density grating in the near field with TM and TE polarization illuminations are studied, and the diffraction intensity distributions are calculated with the finite-difference time-domain technique. The calculation results show that the diffractions of the high-density grating with different polarization illuminations are different. The quasi-Talbot image of the grating depends on the polarization of the incident wave, and the existence condition of the quasi-Talbot image of the grating in the near field also changes with the polarization of the incident wave. We present explanations based on the vector distribution of the energy flow density. These studies on the polarization dependence of the quasi-Talbot imaging of the high-density grating are helpful for the application of the grating to near-field photolithography.
Avancini, S S; Chiapparini, M; Peres-Menezes, D
2004-01-01
In this work we study in a formal way the density dependent hadron field theory at finite temperature for nuclear matter. The thermodynamical potential and related quantities, as energy density and pressure are derived in two different ways. We first obtain the thermodynamical potential from the grand partition function, where the Hamiltonian depends on the density operator and is truncated at first order. We then reobtain the thermodynamical potential by calculating explicitly the energy density in a Thomas-Fermi approximation and considering the entropy of a fermi gas. The distribution functions for particles and antiparticles are the output of the minimization of the thermodynamical potential. It is shown that in the mean field theory the thermodynamical consistency is achieved. The connection with effective chiral lagrangians with Brown-Rho scaling is discussed.
DEFF Research Database (Denmark)
Koons, David; Colchero, Fernando; Hersey, Kent
2015-01-01
Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... applied a Bayesian state-space model to a 72-year time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited strong potential to grow from low density (β0 = 0.26; Bayesian credible...... interval based on 95% of the highest posterior density: BCI = 0.19 to 0.33), and weak but statistically significant density dependence (β1 = -0.02, BCI = -0.04 to -0.004). Early spring temperatures also had strong positive effects on population growth (βfebaprtemp1 = 0.09, BCI = 0.04 to 0.14), much more so...
Density-dependent selection on mate search and evolution of Allee effects.
Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M
2017-02-27
Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness
Chamberlain, Scott A; Holland, J Nathaniel
2008-05-01
Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant
Density dependent magnetic field and the equation of state of hyperonic matter
Casali, Rudiney Hoffmann
2013-01-01
We are interested on the effects, caused by strong variable density dependent magnetic fields, on hyperonic matter, its symmetry energy, equations of state and mass-radius relations. The inclusion of the anomalous magnetic moment of the particles involved in a stellar system is performed, and some results are compared with the cases that do not take this correction under consideration. The Lagrangian density used follows the nonlinear Walecka model plus the leptons subjected to an external magnetic field.
Density-dependent prey mortality is determined by the spatial scale of predator foraging.
McCarthy, Erin K; White, J Wilson
2016-02-01
Foraging theory predicts which prey patches predators should target. However, in most habitats, what constitutes a 'patch' and how prey density is calculated are subjective concepts and depend on the spatial scale at which the predator (or scientist) is observing. Moreover, the predator's 'foraging scale' affects prey population dynamics: predators should produce directly density-dependent (DDD) prey mortality at the foraging scale, but inversely density-dependent (IDD) mortality (safety-in-numbers) at smaller scales. We performed the first experimental test of these predictions using behavioral assays with guppies (Poecilia reticulata) feeding on bloodworm 'prey' patches. The guppy's foraging scale had already been estimated in a prior study. Our experimental results confirmed theoretical predictions: predation was IDD when prey were aggregated at a scale smaller than the foraging scale, but not when prey were aggregated at larger scales. These results could be used to predict outcomes of predator-prey interactions in continuous, non-discrete habitats in the field.
Photobiomodulation delays the onset of skeletal muscle fatigue in a dose-dependent manner.
Larkin-Kaiser, Kelly A; Borsa, Paul A; Baweja, Harsimran S; Moore, Molly A; Tillman, Mark D; George, Steven Z; Christou, Evangelos A
2016-09-01
Photobiomodulation (PBM) therapy has been implicated as an effective ergogenic aid to delay the onset of muscle fatigue. The purpose of this study was to examine the dose-response ergogenic properties of PBM therapy and its ability to prolong time to task failure by enhancing muscle activity and delaying the onset of muscle fatigue using a static positioning task. Nine participants (24.3 ± 4.9 years) received three doses of near-infrared (NIR) light therapy randomly on three separate sessions (sham, 240, and 480 J). For the positioning task, participants held a 30 % one-repetition maximum (1-RM) load using the index finger until volitional fatigue. Surface electromyography (sEMG) of the first dorsal interosseous muscle was recorded for the length of the positioning task. Outcomes included time to task failure (TTF), muscle fatigue, movement accuracy, motor output variability, and muscle activity (sEMG). The 240-J dose significantly extended TTF by 26 % (p = 0.032) compared with the sham dose. TTF for the 240-J dose was strongly associated with a decrease in muscle fatigue (R (2) = 0.54, p = 0.024). Our findings show that a 240-J dose of NIR light therapy is efficacious in delaying the onset and extent of muscle fatigue during submaximal isometric positioning tasks. Our findings suggest that NIR light therapy may be used as an ergogenic aid during functional tasks or post-injury rehabilitation.
Temperature dependence of the liquid eutectic lead-lithium alloy density
Institute of Scientific and Technical Information of China (English)
Alchagirov; Boris; B.; Mozgovoi; Alexandr; G.; Taova; Tamara; M.
2005-01-01
Lead-lithium alloys are of great interest for practice as the advanced materials to be used in new technique, nuclear energetics, and so forth. Terefore, study on the physico-chemical properties of the latter is of major significance. An analysis of the available literature shows that there are a few works, devoted to study of Pb-Li alloys densities. However, temperature dependence of the density ρ(T), and its temperature coefficientK=dρ/dT for eutectic alloy were obtained by either extrapolation of the density data up to the eutectic alloy's composition, or calculation method. There is a certain discrepancy amounting to as high as 4%, while the allowable error in the density measurements is less than 0.5%. The discrepancy between the results for the temperature coefficients of density amounts to 80%.In this work we present the experimental data on the temperature dependence of Ph0.83 Li0.17 eutectic alloy's density in the temperature range 520K to 643 K. The alloys were prepared using Pb and Li with 99. 999% and 99.8% contents of the basic elements, respectively. We use the improved device, which permits to get the results with error less than 0. 15%. The results of 115 measurements of density in 520K to 643K temperature range were processed by the least-square method. Density polytherm of Pb0.83 Li0. 17 eutectic alloy is described by linear equation ρ(T) =9507.89-0. 79813(T-508) , kg/m3 ,where T is the absolute temperature by K. Mearsurement error was 0. 12% at 95% reliability.Discrepancy in the temperature coefficient data was 1.08%.Thus, the temperature dependence of the Pb-Li eutectic alloy density was studied by the precise two-capillary method. The obtained results may be recommended as the most reliable reference data.
Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E.; Colchero, Fernando
2014-01-01
Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation. PMID:25514510
Indian Academy of Sciences (India)
Amitabh Joshi; N. G. Prasad; Mallikarjun Shakarad
2001-08-01
In the Drosophila literature, selection for faster development and selection for adapting to high density are often confounded, leading, for example, to the expectation that selection for faster development should also lead to higher competitive ability. At the same time, results from experimental studies on evolution at high density do not agree with many of the predictions from classical density-dependent selection theory. We put together a number of theoretical and empirical results from the literature, and some new experimental results on Drosophila populations successfully subjected to selection for faster development, to argue for a broader interpretation of density-dependent selection. We show that incorporating notions of -selection, and the division of competitive ability into effectiveness and tolerance components, into the concept of density-dependent selection yields a formulation that allows for a better understanding of the empirical results. We also use this broader formulation to predict that selection for faster development in Drosophila should, in fact, lead to the correlated evolution of decreased competitive ability, even though it does lead to the evolution of greater efficiency and higher population growth rates at high density when in monotypic culture.
Dependence of ion-induced Pd-silicide formation on nuclear energy deposition density
Energy Technology Data Exchange (ETDEWEB)
Horino, Yuji; Matsunami, Noriaki; Itoh, Noriaki
1986-05-01
Pd/sub 2/Si formation at the Pd-Si interface induced by irradiation with ions having a wide range of nuclear energy of deposition density has been investigated. It is found that the thickness of the silicide layer formed by irradiation is proportional to the ion fluence for irradiation with ions having low energy-deposition densities, while it is proportional to the square root of the fluence for irradiation with ions having energy-deposition densities. The results indicate that Pd/sub 2/Si formation is reaction limited when the energy-deposition density at the interface is low and is diffusion limited when it is high. The results are compared with the phenomenological theory developed by Horino et al. and it is shown that such a dependence of the limiting processes on the energy depositon density is induced when the diffusion is thermally activated while the reaction at the interface is radiation-enhanced.
DEFF Research Database (Denmark)
Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas;
2009-01-01
Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....
Bhambure, Rahul; Angelo, James M; Gillespie, Christopher M; Phillips, Michael; Graalfs, Heiner; Lenhoff, Abraham M
2017-07-14
The effect of ligand density was studied on protein adsorption and transport behavior in tentacular cation-exchange sorbents at different ionic strengths. Results were obtained for lysozyme, lactoferrin and a monoclonal antibody (mAb) in order to examine the effects of protein size and charge. The combination of ligand density and ionic strength results in extensive variability of the static and dynamic binding capacities, transport rate and binding affinity of the proteins. Uptake and elution experiments were performed to quantify the transport behavior of selected proteins, specifically to estimate intraparticle protein diffusivities. The observed trend of decreasing uptake diffusivities with an increase in ligand density was correlated to structural properties of the ligand-density variants, particularly the accessible porosity. Increasing the ionic strength of the equilibration buffer led to enhanced mass transfer during uptake, independent of the transport model used, and specifically for larger proteins like lactoferrin and mAb, the most significant effects were evident in the sorbent of the highest ligand density. For lysozyme, higher ligand density leads to higher static and dynamic binding capacities whereas for lactoferrin and the mAb, the binding capacity is a complex function of accessible porosity due to ionic strength-dependent changes. Ligand density has a less pronounced effect on the elution rate, presumably due to ionic strength-dependent changes in the pore architecture of the sorbents. Copyright © 2017 Elsevier B.V. All rights reserved.
Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas
2016-01-01
We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the harmonic approximation. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, excellent agreement with TD-DFT calculations using local functionals was achieved.
Time-dependent renormalized Redfield theory II for off-diagonal transition in reduced density matrix
Kimura, Akihiro
2016-09-01
In our previous letter (Kimura, 2016), we constructed time-dependent renormalized Redfield theory (TRRT) only for diagonal transition in a reduced density matrix. In this letter, we formulate the general expression for off-diagonal transition in the reduced density matrix. We discuss the applicability of TRRT by numerically comparing the dependencies on the energy gap of the exciton relaxation rate by using the TRRT and the modified Redfield theory (MRT). In particular, we roughly show that TRRT improves MRT for the detailed balance about the excitation energy transfer reaction.
Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas
2016-01-01
We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon (AH|FC) method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) ...
Indian Academy of Sciences (India)
V K Gupta; Asha Gupta; S Singh; J D Anand
2003-10-01
We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modiﬁcation, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We ﬁnd that the effect of magnetic ﬁeld, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.
Power Optimization of Multimode Mobile Embedded Systems with Workload-Delay Dependency
Directory of Open Access Journals (Sweden)
Hoeseok Yang
2016-01-01
Full Text Available This paper proposes to take the relationship between delay and workload into account in the power optimization of microprocessors in mobile embedded systems. Since the components outside a device continuously change their values or properties, the workload to be handled by the systems becomes dynamic and variable. This variable workload is formulated as a staircase function of the delay taken at the previous iteration in this paper and applied to the power optimization of DVFS (dynamic voltage-frequency scaling. In doing so, a graph representation of all possible workload/mode changes during the lifetime of a device, Workload Transition Graph (WTG, is proposed. Then, the power optimization problem is transformed into finding a cycle (closed walk in WTG which minimizes the average power consumption over it. Out of the obtained optimal cycle of WTG, one can derive the optimal power management policy of the target device. It is shown that the proposed policy is valid for both continuous and discrete DVFS models. The effectiveness of the proposed power optimization policy is demonstrated with the simulation results of synthetic and real-life examples.
Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest.
Directory of Open Access Journals (Sweden)
Julien Fattebert
Full Text Available Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the 'mate competition', 'resource competition' and 'resident fitness' hypotheses predict density-dependent dispersal patterns, while the 'inbreeding avoidance' hypothesis posits density-independent dispersal. In a leopard (Panthera pardus population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km generally dispersed further than females (2.7 ± 0.4 km, some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration. Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A ratio-dependent predator-prey system with stage structure and time delays for both prey and predator is considered in this paper. Both the predator and prey have two stages,immature stage and mature stage,and the growth of them is of Lotka-Volterra nature. It is assumed that immature individuals and mature individuals of each species are divided by a fixed age,and that mature predators attack immature prey only. The global stability of three nonnegative equilibria and permanence are presented.
Time-dependent wave packet approach to the pulse delay effect upon RbI photoelectron spectrum
Institute of Scientific and Technical Information of China (English)
LIU Chunhua; MENG Qingtian; ZHANG Qinggang
2006-01-01
The time-resolved photoelectron spectrum (TRPES) of Rbl molecule is simulated using the time-dependent wave-packet method. Both the normal three-photon ionization process and auto-ionization process are involved in the simulation. The calculated results show that the change of delay time will influence the shape of the photoelectron spectrum (PES), and the influence is substantially due to the existence of the crossing between excited states and the strong laser field which will change the position of relevant curves.
Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.
2008-07-01
We derive an analytic form of the Wang-Govind-Carter (WGC) [Wang , Phys. Rev. B 60, 16350 (1999)] kinetic energy density functional (KEDF) with the density-dependent response kernel. A real-space aperiodic implementation of the WGC KEDF is then described and used in linear scaling orbital-free density functional theory (OF-DFT) calculations.
von Rüden, E L; Bogdanovic, R M; Wotjak, C T; Potschka, H
2015-05-01
Endocannabinoids, including 2-arachidonoylglycerol (2-AG), activate presynaptic cannabinoid type 1 receptors (CB1R) on inhibitory and excitatory neurons, resulting in a decreased release of neurotransmitters. The event-specific activation of the endocannabinoid system by inhibition of the endocannabinoid degrading enzymes may offer a promising strategy to selectively activate CB1Rs at the site of excessive neuronal activation with the overall goal to prevent the development epilepsy. The aim of this study was to investigate the impact of monoacylglycerol lipase (MAGL) inhibition on the development and progression of epileptic seizures in the kindling model of temporal lobe epilepsy. Therefore, we selectively blocked MAGL by JZL184 (8mg/kg, i.p.) in mice to analyze the effects of increased 2-AG levels on kindling acquisition and to exclude an anticonvulsive potential. Our results showed that JZL184 treatment significantly delayed the development of generalized seizures (p=0.0066) and decreased seizure (pkindling model of temporal lobe epilepsy, but caused only modest effects in fully kindled mice. Moreover, we proved that JZL184 treatment had no effects in conditional CB1R knockout mice lacking expression of the receptor in principle neurons of the forebrain. In conclusion, the data demonstrate that indirect CB1R agonism delays the development of generalized epileptic seizures but has no relevant acute anticonvulsive effects. Furthermore, we confirmed that the effects of JZL184 on kindling progression are CB1R mediated. Thus, the data indicate that the endocannabinoid 2-AG might be a promising target for an anti-epileptogenic approach.
Salbutamol delays human eosinophil apoptosis via a cAMP-dependent mechanism.
Kankaanranta, Hannu; Parkkonen, Jouni; Ilmarinen-Salo, Pinja; Giembycz, Mark A; Moilanen, Eeva
2011-08-01
Eosinophils play a major role in asthma. One described mechanism leading to the impaired clearance of these cells from the lung is the delay in their programmed cell death (apoptosis). β(2)-Adrenoceptor agonists have been shown to prolong survival and delay apoptosis of eosinophils. The aim of the present study was to evaluate the mechanisms, especially the role of cAMP pathway, in the prolongation of human eosinophil survival by a selective β(2)-agonist salbutamol. Isolated human peripheral blood eosinophils were cultured in the absence or presence of a β(2)-agonist salbutamol and the indicated antagonists/inhibitors under sterile conditions. Apoptosis was measured by using the relative DNA fragmentation assay and Annexin-V binding. Salbutamol prolonged survival of human eosinophils and it was inhibited by a β-receptor antagonist propranolol and mimicked by cell-permeant cAMP analogues dibutyryl- and 8-bromo-cAMP. Pharmacological inhibitors of adenylyl cyclase (SQ-22,536) and protein kinase A (Rp-8-CPT-cAMPS) antagonized the effects of salbutamol. The survival-prolonging action of salbutamol was potentiated by a phosphodiesterase inhibitor rolipram (EC(50) for the salbutamol effect was 13.6 ± 4.0 and 8.1 ± 3.1 nM in the absence and presence of rolipram, respectively; p=0.0142, n=10). In contrast, inhibition of Ca(2+)-activated K(+)-channels by apamin, charybdotoxin, iberiotoxin or paxilline did not affect the ability of salbutamol to prolong eosinophil survival. Taken together, the present results suggest that salbutamol at clinically relevant concentrations decreases apoptosis in human eosinophils by activating the cannonical β(2)-receptor-adenylyl cyclase-cAMP-protein kinase A pathway.
Both, C.
2000-01-01
The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One
Directory of Open Access Journals (Sweden)
Karsten Schönrogge
Full Text Available Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource.
Sjödin, Henrik; Brännström, Ke; Söderquist, Mårten; Englund, Göran
2014-02-07
In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density-dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patches depend on the local densities of heterospecifics, giving rise to one reaction norm for each of the two species. Movement rates are assumed to be much faster than demographics rates. A spatial structure of predators and prey emerges which affects the global population dynamics. We derive a criterion which reveals how demographic stability depends on the relationships between the per capita covariance and densities of predators and prey. Specifically, we establish that a positive relationship with prey density and a negative relationship with predator density tend to be stabilizing. On a more mechanistic level we show how these relationships are linked to the movement reaction norms of predators and prey. Numerical results show that these findings hold both for local and global movements, i.e., both when migration is biased towards neighbouring patches and when all patches are reached with equal probability. © 2013 Published by Elsevier Ltd. All rights reserved.
Puckett, Brandon J.; Theuerkauf, Kathrynlynn W.; Theuerkauf, Ethan J.; Eggleston, David B.
2017-01-01
Invasive species can positively, neutrally, or negatively affect the provision of ecosystem services. The direction and magnitude of this effect can be a function of the invaders’ density and the service(s) of interest. We assessed the density-dependent effect of an invasive marsh grass, Phragmites australis, on three ecosystem services (plant diversity and community structure, shoreline stabilization, and carbon storage) in two oligohaline marshes within the North Carolina Coastal Reserve and National Estuarine Research Reserve System (NCNERR), USA. Plant species richness was equivalent among low, medium and high Phragmites density plots, and overall plant community composition did not vary significantly by Phragmites density. Shoreline change was most negative (landward retreat) where Phragmites density was highest (-0.40 ± 0.19 m yr-1 vs. -0.31 ± 0.10 for low density Phragmites) in the high energy marsh of Kitty Hawk Woods Reserve and most positive (soundward advance) where Phragmites density was highest (0.19 ± 0.05 m yr-1 vs. 0.12 ± 0.07 for low density Phragmites) in the lower energy marsh of Currituck Banks Reserve, although there was no significant effect of Phragmites density on shoreline change. In Currituck Banks, mean soil carbon content was approximately equivalent in cores extracted from low and high Phragmites density plots (23.23 ± 2.0 kg C m-3 vs. 22.81 ± 3.8). In Kitty Hawk Woods, mean soil carbon content was greater in low Phragmites density plots (36.63 ± 10.22 kg C m-3) than those with medium (13.99 ± 1.23 kg C m-3) or high density (21.61 ± 4.53 kg C m-3), but differences were not significant. These findings suggest an overall neutral density-dependent effect of Phragmites on three ecosystem services within two oligohaline marshes in different environmental settings within a protected reserve system. Moreover, the conceptual framework of this study can broadly inform an ecosystem services-based approach to invasive species management
Theuerkauf, Seth J; Puckett, Brandon J; Theuerkauf, Kathrynlynn W; Theuerkauf, Ethan J; Eggleston, David B
2017-01-01
Invasive species can positively, neutrally, or negatively affect the provision of ecosystem services. The direction and magnitude of this effect can be a function of the invaders' density and the service(s) of interest. We assessed the density-dependent effect of an invasive marsh grass, Phragmites australis, on three ecosystem services (plant diversity and community structure, shoreline stabilization, and carbon storage) in two oligohaline marshes within the North Carolina Coastal Reserve and National Estuarine Research Reserve System (NCNERR), USA. Plant species richness was equivalent among low, medium and high Phragmites density plots, and overall plant community composition did not vary significantly by Phragmites density. Shoreline change was most negative (landward retreat) where Phragmites density was highest (-0.40 ± 0.19 m yr-1 vs. -0.31 ± 0.10 for low density Phragmites) in the high energy marsh of Kitty Hawk Woods Reserve and most positive (soundward advance) where Phragmites density was highest (0.19 ± 0.05 m yr-1 vs. 0.12 ± 0.07 for low density Phragmites) in the lower energy marsh of Currituck Banks Reserve, although there was no significant effect of Phragmites density on shoreline change. In Currituck Banks, mean soil carbon content was approximately equivalent in cores extracted from low and high Phragmites density plots (23.23 ± 2.0 kg C m-3 vs. 22.81 ± 3.8). In Kitty Hawk Woods, mean soil carbon content was greater in low Phragmites density plots (36.63 ± 10.22 kg C m-3) than those with medium (13.99 ± 1.23 kg C m-3) or high density (21.61 ± 4.53 kg C m-3), but differences were not significant. These findings suggest an overall neutral density-dependent effect of Phragmites on three ecosystem services within two oligohaline marshes in different environmental settings within a protected reserve system. Moreover, the conceptual framework of this study can broadly inform an ecosystem services-based approach to invasive species management.
Institute of Scientific and Technical Information of China (English)
何勇; 吴敏
2005-01-01
Some delay-dependent absolute stability criteria for Lurie control systems with timevarying delay are derived, in which some free-weighting matrices are used to express the relationships between the terms in the Leibniz-Newton formula. These criteria are based on linear matrix inequality(LMI) such that the upper bound of time-delay guaranteeing the absolute stability and the free-weighting matrices can be obtained through the solutions of the LMI. Moreover, the Lyapunov functional constructed by the solutions of these LMIs is adopted to guarantee the absolute stability of the systems. Finally, some examples axe provided to demonstrate the effectiveness of the proposed methods.
Density-dependent state-space model for population-abundance data with unequal time intervals.
Dennis, Brian; Ponciano, José Miguel
2014-08-01
The Gompertz state-space (GSS) model is a stochastic model for analyzing time-series observations of population abundances. The GSS model combines density dependence, environmental process noise, and observation error toward estimating quantities of interest in biological monitoring and population viability analysis. However, existing methods for estimating the model parameters apply only to population data with equal time intervals between observations. In the present paper, we extend the GSS model to data with unequal time intervals, by embedding it within a state-space version of the Ornstein-Uhlenbeck process, a continuous-time model of an equilibrating stochastic system. Maximum likelihood and restricted maximum likelihood calculations for the Ornstein-Uhlenbeck state-space model involve only numerical maximization of an explicit multivariate normal likelihood, and so the extension allows for easy bootstrapping, yielding confidence intervals for model parameters, statistical hypothesis testing of density dependence, and selection among sub-models using information criteria. Ecologists and managers previously drawn to models lacking density dependence or observation error because such models accommodated unequal time intervals (for example, due to missing data) now have an alternative analysis framework incorporating density dependence, process noise, and observation error.
Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime
DEFF Research Database (Denmark)
Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.;
2013-01-01
In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...
Time-dependent current-density-functional theory for the metallic response of solids
Romaniello, P; de Boeij, PL
2005-01-01
We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both interba
Density dependent hadron field theory for asymmetric nuclear matter and exotic nuclei
Hofmann, F. Keil; Lenske, H.
2001-01-01
Published in: Phys. Rev. C 64 (2001) , pp.034314 citations recorded in [Science Citation Index] Abstract: The density dependent relativistic hadron field (DDRH) theory is applied to strongly asymmetric nuclear matter and finite nuclei far off stability. A new set of in-medium meson-nucleon vertices
Time-dependent current-density-functional theory for the metallic response of solids
Romaniello, P; de Boeij, PL
We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both
Plant diversity increases with the strength of negative density dependence at the global scale
Joseph A. LaManna; Scott A. Mangan; Alfonso Alonso; Norman A. Bourg; Warren Y. Brockelman; Sarayudh Bunyavejchewin; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Keith Clay; Richard Condit; Susan Cordell; Stuart J. Davies; Tucker J. Furniss; Christian P. Giardina; I. A. U. Nimal Gunatilleke; C. V. Savitri Gunatilleke; Fangliang He; Robert W. Howe; Stephen P. Hubbell; Chang-Fu Hsieh; Faith M. Inman-Narahari; David Janík; Daniel J. Johnson; David Kenfack; Lisa Korte; Kamil Král; Andrew J. Larson; James A. Lutz; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Anuttara Nathalang; Vojtech Novotny; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; I-Fang Sun; J. Sebastián Tello; Duncan W. Thomas; Benjamin L. Turner; Dilys M. Vela Díaz; Tomáš Vrška; George D. Weiblen; Amy Wolf; Sandra Yap; Jonathan A. Myers
2017-01-01
Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only...
Brunel, T.P.A.
2015-01-01
This report presents a framework to model density dependent growth for the North East Atlantic mackerel. The model used is the classical von Bertalanffy equation, but modified so that growth is reduced when stock size increases. The model developed was able to reproduce quite closely the trends in t
Brunel, T.P.A.
2015-01-01
This report presents a framework to model density dependent growth for the North East Atlantic mackerel. The model used is the classical von Bertalanffy equation, but modified so that growth is reduced when stock size increases. The model developed was able to reproduce quite closely the trends in
Density dependent state space model for population abundance data with unequal time intervals
Dennis, Brian; Ponciano, José Miguel
2014-01-01
The Gompertz state-space (GSS) model is a stochastic model for analyzing time series observations of population abundances. The GSS model combines density dependence, environmental process noise, and observation error toward estimating quantities of interest in biological monitoring and population viability analysis. However, existing methods for estimating the model parameters apply only to population data with equal time intervals between observations. In the present paper, we extend the GSS model to data with unequal time intervals, by embedding it within a state-space version of the Ornstein-Uhlenbeck process, a continuous-time model of an equilibrating stochastic system. Maximum likelihood and restricted maximum likelihood calculations for the Ornstein-Uhlenbeck state-space model involve only numerical maximization of an explicit multivariate normal likelihood, and so the extension allows for easy bootstrapping, yielding confidence intervals for model parameters, statistical hypothesis testing of density dependence, and selection among sub-models using information criteria. Ecologists and managers previously drawn to models lacking density dependence or observation error because such models accommodated unequal time intervals (for example, due to missing data) now have an alternative analysis framework incorporating density dependence, process noise and observation error. PMID:25230459
Time-dependent density-functional theory in the projector augmented-wave method
DEFF Research Database (Denmark)
Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri
2008-01-01
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...
The Keldysh formalism applied to time-dependent current-density-functional theory
Gidopoulos, NI; Wilson, S
2003-01-01
In this work we demonstrate how to derive the Kohn-Sham equations of time-dependent current-density functional theory from a generating action functional defined on a Keldysh time contour. These Kohn-Sham equations contain an exchange-correlation contribution to the vector potential. For this
A spatial interpretation of the density dependence model in industrial demography
van Wissen, L
2004-01-01
In this paper the density dependence model, which was developed in organizational ecology, is compared to the economic-geographical notion of agglomeration economies. There is a basic resemblance: both involve some form of positive feedback between size of the population and growth. The paper explor
Energy and Centrality Dependences of Charged Multiplicity Density in Relativistic Nuclear Collisions
Institute of Scientific and Technical Information of China (English)
SA; Ben-hao; Bonasera; A; TAI; An
2002-01-01
Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of chargedparticle pseudo rapidity density in relativistic nuclear collisions were studied. Within the framework ofthis model, both the relativistic p + p experimental data and the PHOBOS and PHENIX Au + Au data at
A spatial interpretation of the density dependence model in industrial demography
van Wissen, L
2004-01-01
In this paper the density dependence model, which was developed in organizational ecology, is compared to the economic-geographical notion of agglomeration economies. There is a basic resemblance: both involve some form of positive feedback between size of the population and growth. The paper explor
Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm
Jansen, Patrick A.; Visser, Marco D.; Wright, S. Joseph; Rutten, Gemma; Muller-Landau, Helene C.
2014-01-01
Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a
Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm
Jansen, Patrick A.; Visser, Marco D.; Wright, S. Joseph; Rutten, Gemma; Muller-Landau, Helene C.
2014-01-01
Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a
A spatial interpretation of the density dependence model in industrial demography
van Wissen, L
2004-01-01
In this paper the density dependence model, which was developed in organizational ecology, is compared to the economic-geographical notion of agglomeration economies. There is a basic resemblance: both involve some form of positive feedback between size of the population and growth. The paper
Maxwell equation violation by density dependent magnetic fields in neutron stars
Menezes, Débora P
2016-01-01
We show that the widely used density dependent magnetic field prescriptions, necessary to account for the variation of the field intensity from the crust to the core of neutron stars violate one of the Maxwell equations. We estimate how strong the violation is when different equations of state are used and check for which cases the pathological problem can be cured.
Ouma, B.O.; Amin, R.; Langevelde, van F.; Leader-Williams, N.
2010-01-01
Density-dependent feedback mechanisms provide insights into the population dynamics and interactions of large herbivores with their ecosystem. Sex ratio also has particularly important implications for growth rates of many large mammal populations through its influence on reproductive potential. The
Bietti, Sergio; Sanguinetti, Stefano
2012-10-04
: We have shown that it is possible to tune, up to complete suppression, the photoluminescence superlinear dependence on the excitation density in quantum dot samples at high temperatures by annealing treatments. The effect has been attributed to the reduction of the defectivity of the material induced by annealing.
Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm
Jansen, Patrick A.; Visser, Marco D.; Wright, S. Joseph; Rutten, Gemma; Muller-Landau, Helene C.
Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a
DEFF Research Database (Denmark)
Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.
1997-01-01
, but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...
BONE-DENSITY IN NON-INSULIN-DEPENDENT DIABETES-MELLITUS - THE ROTTERDAM STUDY
VANDAELE, PLA; STOLK, RP; BURGER, H; ALGRA, D; GROBBEE, DE; HOFMAN, A; BIRKENHAGER, JC; POLS, HAP
1995-01-01
Objective: To investigate the relation between noninsulin-dependent diabetes mellitus and bone mineral density at the lumbar spine and hip. Design: Population-based study with a cross-sectional survey, Setting: A district of Rotterdam, the Netherlands. Participants: 5931 residents (2481 men, 3450
Bordbar, G H; Taghizade, M
2015-01-01
In this work, we have done a completely microscopic calculation using a many-body variational method based on the cluster expansion of energy to compute the asymmetry energy of nuclear matter. In our calculations, we have employed the $AV_{18}$ nuclear potential. We have also investigated the temperature and density dependence of asymmetry energy. Our results show that the asymmetry energy of nuclear matter depends on both density and temperature. We have also studied the effects of different terms in the asymmetry energy of nuclear matter. These investigations indicate that at different densities and temperatures, the contribution of parabolic term is very substantial with respect to the other terms. Therefore, we can conclude that the parabolic approximation is a relatively good estimation, and our calculated binding energy of asymmetric nuclear matter is in a relatively good agreement with that of semi-empirical mass formula. However, for the accurate calculations, it is better to consider the effects of o...
DEFF Research Database (Denmark)
Koons, David; Colchero, Fernando; Hersey, Kent
2015-01-01
Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...... applied a Bayesian state-space model to a 72-year time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited strong potential to grow from low density (β0 = 0.26; Bayesian credible...
Time-dependent density functional theory for many-electron systems interacting with cavity photons.
Tokatly, I V
2013-06-07
Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.
Hybrid stars Spin polarised nuclear matter and density dependent quark masses
Maheswari, V S U; Samaddar, S K
1998-01-01
The possibility of formation of a droplet phase (DP) inside a star and its consequences on the structural properties of the star are investigated. For nuclear matter (NM), an equation of state (EOS) based on finite range, momentum and density dependent interaction, and which predicts that neutron matter undergoes ferromagnetic transition at densities realisable inside the neutron star is employed. An EOS for quark matter (QM) with density dependent quark masses, the so-called effective mass model, is constructed by correctly treating the quark chemical potentials. It is then found that a droplet phase consisting of strange quark matter and unpolarised nuclear matter sandwiched between a core of polarised nuclear matter and a crust containing unpolarised nuclear matter exists. Moreover, we could explain the mass and surface magnetic field satisfactorily, and as well allow, due to the presence of a droplet phase, the direct URCA process to happen.
Density dependence of microscopic nucleon optical potential in first order Brueckner theory
Saliem, S. M.; Haider, W.
2002-06-01
In the present work we apply the lowest order Brueckner theory of infinite nuclear matter to obtain nucleon-nucleus optical potential for p-40Ca elastic scattering at 200 MeV using Urbana V14 soft core internucleon potential. We have investigated the effect of target density on the calculated nucleon-nucleus optical potential. We find that the calculated optical potentials depend quite sensitively on the density distribution of the target nucleus. The important feature is that the real part of calculated central optical potential for all densities shows a wine-bottle-bottom type behaviour at this energy. We also discuss the effect of our new radial dependent effective mass correction. Finally, we compare the prediction of our calculated nucleon optical potential using V14 with the prediction using older hard core Hamada-Johnston internucleon potential for p-40Ca elastic scattering at 200 MeV.
Energy Technology Data Exchange (ETDEWEB)
Lim, Jongtae; Choi, Oklim; Boo, Doo Wan; Choi, Joonggill [Yonsei Univ., Seoul (Korea, Republic of)
2014-03-15
The wavelength dependence of the photoacoustic signal for n-type GaAs semiconductors in the region of the band-gap energies was investigated. The significant changes in the phase and amplitude of the photoacoustic signal near the band-gap absorption wavelengths were observed to occur when the Si-doping densities in GaAs were varied. Particularly, the first derivatives of the photoacoustic phase vs. wavelength graphs were evaluated and fitted with single Gaussian functions. The peak centers and the widths of the Gaussian curves clearly showed linear relationships with the log values of the Si-doping densities in n-type GaAs semiconductors. It is proposed that the wavelength-dependent PA spectroscopy can be used as a simple and nondestructive method for measuring the doping densities in bulk semiconductors.
Yamilov, A; Sarma, R; Cao, H
2015-01-01
The universal bimodal distribution of transmission eigenvalues in lossless diffusive systems un- derpins such celebrated phenomena as universal conductance fluctuations, quantum shot noise in condensed matter physics and enhanced transmission in optics and acoustics. Here, we show that in the presence of absorption, density of the transmission eigenvalues depends on the confinement geometry of scattering media. Furthermore, in an asymmetric waveguide, densities of the reflection and absorption eigenvalues also depend of the side from which the waves are incident. With increas- ing absorpotion, the density of absorption eigenvalues transforms from single-peak to double-peak function. Our findings open a new avenue for coherent control of wave transmission, reflection and absorption in random media.
Half lives of spherical proton emitters using density dependent M3Y interaction
Chowdhury, P R; Basu, D N
2005-01-01
The proton radioactivity lifetimes of spherical proton emitters from the ground and the isomeric states are calculated using the microscopic nucleon-nucleus interaction potentials. The daughter nuclei density distributions are folded with a realistic density dependent M3Y effective interaction supplemented by a zero-range pseudo-potential. The density dependence parameters of the interaction are extracted from the nuclear matter calculations. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe-Weizsacker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi-Wapstra-Thibault atomic mass table by minimizing the mean square deviation. The quantum mechanical tunneling probability is calculated within the WKB approximation. Spherical charge distributions are used for calculating the Coulomb interaction potentials. These calculations provide good estimates for the observed pro...
Competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$ interaction
Isaka, M; Rijken, T h A
2016-01-01
Competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$-interaction in $\\Lambda$ binding energies $B_\\Lambda$ of hypernuclei are studied systematically on the basis of the baryon-baryon interaction model ESC including many-body effects. By using the $\\Lambda\\!N$ G-matrix interaction derived from ESC, we perform microscopic calculations of $B_\\Lambda$ in $\\Lambda$ hypernuclei within the framework of the antisymmetrized molecular dynamics under the averaged-density approximation. The calculated values of $B_\\Lambda$ reproduce experimental data within a few hundred keV in the wide mass regions from 9 to 51. It is found that competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$-interaction work decisively for fine tuning of $B_\\Lambda$ values.
Nuclear level density of even-even nuclei with temperature-dependent pairing energy
Energy Technology Data Exchange (ETDEWEB)
Dehghani, V.; Alavi, S.A. [University of Sistan and Baluchestan, Physics Department, Faculty of Sciences, Zahedan (Iran, Islamic Republic of)
2016-10-15
The influence of using a temperature-dependent pairing term on the back-shifted Fermi gas (BSFG) model of nuclear level density of some even-even nuclei has been investigated. We have chosen an approach to determine the adjustable parameters from theoretical calculations, directly. The exact Ginzburg-Landau (EGL) theory was used to determine the temperature-dependent pairing energy as back-shifted parameter of the BSFG model. The level density parameter of the BSFG model has been determined through the Thomas-Fermi approximation. The level densities of {sup 96}Mo, {sup 106,112}Cd, {sup 106,108}Pd, {sup 164}Dy, {sup 232}Th, {sup 238}U and heat capacities of {sup 96}Mo and {sup 164}Dy nuclei were calculated. Good agreement between theory and experiment was observed. (orig.)
Directory of Open Access Journals (Sweden)
Cheng Gong
2014-01-01
Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.
Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout
Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.
2016-01-01
Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.
Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices
Gui, Yang; Yuanhong, Li; Fengying, Zhang; Yuqi, Li
2012-09-01
A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes.
Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices
Institute of Scientific and Technical Information of China (English)
Yang Gui; Li Yuanhong; Zhang Fengying; Li Yuqi
2012-01-01
A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices.Driven by the DC bias,the system exhibits selfsustained current oscillations induced by the period motion of the unstable electric field domain,and an electrical hysteresis in the loop of current density voltage curve is deduced.It is found that the hysteresis range strongly depends on the doping density,and the width of the hysteresis loop increases with increasing the doping density.By adding an external driving ac voltage,more complicated nonlinear behaviors are observed including quasiperiodicity,period-3,and the route of an inverse period-doubling to chaos when the driving frequency changes.
From density to interface fluctuations: the origin of wavelength dependence in surface tension.
Hiester, Thorsten
2008-12-01
The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension gamma(q) can be defined and expressed in terms of the direct correlation function c(r,r;{'}) , the equilibrium density profile rho_{0}(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or gamma(q) , respectively. This result generalizes the Mecke-Dietrich surface tension gamma_{MD}(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning gamma_{MD}(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].
Is contextual-potentiated eating dependent on caloric density of food?
Directory of Open Access Journals (Sweden)
Fernando Fernández-Aranda
2009-01-01
Full Text Available One experiment tested whether a specific context could elicit eating in rats as a result of Pavlovian conditioning and whether this effect depended on the caloric density of food. Thirty two deprived rats experienced two contexts. They had access to food in context A, but no food was available in context B. During conditioning, half of the animals received high density caloric food (HD groups whereas the other half, low density caloric food (LD groups. Then, half of the rats in each type of food group was tested in context A and the other half in context B. The results demonstrated an effect of context conditioning only in HD groups. These findings suggest the relevance of both contextual conditioning and caloric density of food in eating behaviour. Implications for the aetiology of binge eating will be discussed.
Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator
Energy Technology Data Exchange (ETDEWEB)
Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.
2009-05-21
We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.
Mangeard, P.-S.; Ruffolo, D.; Sáiz, A.; Nuntiyakul, W.; Bieber, J. W.; Clem, J.; Evenson, P.; Pyle, R.; Duldig, M. L.; Humble, J. E.
2016-12-01
Neutron monitors are the premier instruments for precisely tracking time variations in the Galactic cosmic ray flux at GeV-range energies above the geomagnetic cutoff at the location of measurement. Recently, a new capability has been developed to record and analyze the neutron time delay distribution (related to neutron multiplicity) to infer variations in the cosmic ray spectrum as well. In particular, from time delay histograms we can determine the leader fraction L, defined as the fraction of neutrons that did not follow a previous neutron detection in the same tube from the same atmospheric secondary particle. Using data taken during 2000-2007 by a shipborne neutron monitor latitude survey, we observe a strong dependence of the count rate and L on the geomagnetic cutoff. We have modeled this dependence using Monte Carlo simulations of cosmic ray interactions in the atmosphere and in the neutron monitor. We present new yield functions for the count rate of a neutron monitor at sea level. The simulation results show a variation of L with geomagnetic cutoff as observed by the latitude survey, confirming that these changes in L can be attributed to changes in the cosmic ray spectrum arriving at Earth's atmosphere. We also observe a variation in L with time at a fixed cutoff, which reflects the evolution of the cosmic ray spectrum with the sunspot cycle, known as solar modulation.
Robust fault detection for discrete-time Markovian jump systems with mode-dependent time-delays
Institute of Scientific and Technical Information of China (English)
Hongru WANG; Changhong WANG; Shaoshuai MOU; Huijun GAO
2007-01-01
This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual generator based on the filter of which its parameters matrices are dependent on the system mode, that is, the fault detection filter is a Markovian jump system as well. The design of fault detection filter is reduced to H-infinity filtering problem by using H-infinity control theory, which can guarantee the difference between the residual and the fault (or, more generally weighted fault) as small as possible in the context of enhancing the robustness of residual to modeling errors, control inputs and unknown inputs. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities, which can be readily solved by using standard numerical software. A numerical example is given to illustrate the feasibility of the proposed method.
A case of extreme prematurity and delayed diagnosis of pyridoxine-dependent epilepsy.
Al-Saman, Abdulaziz S; Rizk, Tamer M
2012-10-01
Pyridoxine-dependent epilepsy presents early in life, even in utero. It is usually refractory to conventional antiepileptic medications and responds only to lifelong pyridoxine supplementation. Seizures are usually generalized tonic clonic. We report a 3-year-old child that was born prematurely at 25 weeks of gestation. He presented with abnormal movements in the second month of life. At 10 months of age he presented with status epilepticus, which was refractory to multiple antiepileptic medications and was controlled with intravenous pyridoxine. An elevated level of a-aminoadipic semialdehyde excretion in the urine supported the diagnosis of pyridoxine-dependent epilepsy. Subsequently, a c.1195G>C homozygous mutation in the 5q31 aldehyde dehydrogenase 7A1 gene was confirmed. This case calls for considering pyridoxine-dependent epilepsy and its early management in cases with resistant seizures; even in the presence of extreme prematurity with its neurological consequences.
Mair, Christina; Freisthler, Bridget; Ponicki, William R; Gaidus, Andrew
2015-09-01
As an increasing number of states liberalize cannabis use and develop laws and local policies, it is essential to better understand the impacts of neighborhood ecology and marijuana dispensary density on marijuana use, abuse, and dependence. We investigated associations between marijuana abuse/dependence hospitalizations and community demographic and environmental conditions from 2001 to 2012 in California, as well as cross-sectional associations between local and adjacent marijuana dispensary densities and marijuana hospitalizations. We analyzed panel population data relating hospitalizations coded for marijuana abuse or dependence and assigned to residential ZIP codes in California from 2001 through 2012 (20,219 space-time units) to ZIP code demographic and ecological characteristics. Bayesian space-time misalignment models were used to account for spatial variations in geographic unit definitions over time, while also accounting for spatial autocorrelation using conditional autoregressive priors. We also analyzed cross-sectional associations between marijuana abuse/dependence and the density of dispensaries in local and spatially adjacent ZIP codes in 2012. An additional one dispensary per square mile in a ZIP code was cross-sectionally associated with a 6.8% increase in the number of marijuana hospitalizations (95% credible interval 1.033, 1.105) with a marijuana abuse/dependence code. Other local characteristics, such as the median household income and age and racial/ethnic distributions, were associated with marijuana hospitalizations in cross-sectional and panel analyses. Prevention and intervention programs for marijuana abuse and dependence may be particularly essential in areas of concentrated disadvantage. Policy makers may want to consider regulations that limit the density of dispensaries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Quorum sensing and density-dependent dispersal in an aquatic model system.
Directory of Open Access Journals (Sweden)
Simon Fellous
Full Text Available Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i the number of cells per microcosm and (ii the origin of their culture medium (supernatant from high- or low-density populations. We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density - and as a result, the decision to disperse - in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.
Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density
Energy Technology Data Exchange (ETDEWEB)
Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il [Department of Physics, Kangwon National University, Chuncheon (Korea, Republic of)
2012-10-15
Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.
Pernal, Katarzyna; Giesbertz, Klaas J H
2016-01-01
Recent advances in reduced density matrix functional theory (RDMFT) and linear response time-dependent reduced density matrix functional theory (TD-RDMFT) are reviewed. In particular, we present various approaches to develop approximate density matrix functionals which have been employed in RDMFT. We discuss the properties and performance of most available density matrix functionals. Progress in the development of functionals has been paralleled by formulation of novel RDMFT-based methods for predicting properties of molecular systems and solids. We give an overview of these methods. The time-dependent extension, TD-RDMFT, is a relatively new theory still awaiting practical and generally useful functionals which would work within the adiabatic approximation. In this chapter we concentrate on the formulation of TD-RDMFT response equations and various adiabatic approximations. None of the adiabatic approximations is fully satisfactory, so we also discuss a phase-dependent extension to TD-RDMFT employing the concept of phase-including-natural-spinorbitals (PINOs). We focus on applications of the linear response formulations to two-electron systems, for which the (almost) exact functional is known.
Krykunov, Mykhaylo; Autschbach, Jochen
2007-01-14
We report implementations and results of time-dependent density functional calculations (i) of the frequency-dependent magnetic dipole-magnetic dipole polarizability, (ii) of the (observable) translationally invariant linear magnetic response, and (iii) of a linear intensity differential (LID) which includes the dynamic dipole magnetizability. The density functional calculations utilized density fitting. For achieving gauge-origin independence we have employed time-periodic magnetic-field-dependent basis functions as well as the dipole velocity gauge, and have included explicit density-fit related derivatives of the Coulomb potential. We present the results of calculations of static and dynamic magnetic dipole-magnetic dipole polarizabilities for a set of small molecules, the LID for the SF6 molecule, and dispersion curves for M-hexahelicene of the origin invariant linear magnetic response as well as of three dynamic polarizabilities: magnetic dipole-magnetic dipole, electric dipole-electric dipole, and electric dipole-magnetic dipole. We have also performed comparison of the linear magnetic response and magnetic dipole-magnetic dipole polarizability over a wide range of frequencies for H2O and SF6.
A Holling Type II Pest and Natural Enemy Model with Density Dependent IPM Strategy
Directory of Open Access Journals (Sweden)
Xia Wang
2017-01-01
Full Text Available Resource limitations and density dependent releasing of natural enemies during the pest control and integrated pest management will undoubtedly result in nonlinear impulsive control. In order to investigate the effects of those nonlinear control strategies on the successful pest control, we have proposed a pest-natural enemy system concerning integrated pest management with density dependent instant killing rate and releasing rate. In particular, the releasing rate depicts how the number of natural enemy populations released was guided by their current density at the fixed moment. The threshold condition which ensures the existence and global stability of pest-free periodic solution has been discussed first, and the effects of key parameters on the threshold condition reveal that reducing the pulse period does not always benefit pest control; that is, frequent releasing of natural enemies may not be beneficial to the eradication of pests when the density dependent releasing method has been implemented. Moreover, the forward and backward bifurcations could occur once the pest-free periodic solution becomes unstable, and the system could exist with very complex dynamics. All those results confirm that the control actions should be carefully designed once the nonlinear impulsive control measures have been taken for pest management.
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
Energy Technology Data Exchange (ETDEWEB)
Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Reza, Shahed; Chumbes, Eduardo M. [Raytheon Integrated Defense Systems, Andover, Massachusetts 01810 (United States); Khurgin, Jacob [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-10-12
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.
A consumer-resource approach to the density-dependent population dynamics of mutualism.
Holland, J Nathaniel; DeAngelis, Donald L
2010-05-01
Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.
A consumer-resource approach to the density-dependent population dynamics of mutualism
Holland, J. Nathaniel; DeAngelis, Donald L.
2010-01-01
Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.
Temperature dependence of the optical properties of high-density GaAs quantum dots
Energy Technology Data Exchange (ETDEWEB)
Smith, Ryan P.; Kim, Jongsu [Yeungnam University, Gyeongsan (Korea, Republic of); Lee, Sangjun; Noh, Samkyu [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jinsoo [Chonbuk National University, Jeonju (Korea, Republic of); Leem, Jaeyoung [Inje University, Gimhae (Korea, Republic of); Song, Jindong [Korea Institute of Science and Technology, Seoul (Korea, Republic of)
2012-05-15
We investigate the effect of the quantum dot (QD) density on the thermal escape and the retrapping processes of carriers for unstrained GaAs/AlGaAs QDs through temperature-dependent photoluminescence measurements. We fabricated high-density GaAs QDs (8.4 x 10{sup 10}/cm{sup 2}, dot-dot distance ∼34 nm) on an Al{sub 0.3}Ga{sub 0.7}As/GaAs (111)A surface by using droplet epitaxy. The average lateral size and height of the GaAs QDs are 24 and 6 nm, respectively. Temperature-dependent photoluminescence (PL) studies show that high-density GaAs QDs undergo a sigmoidal-shape energy shift. The sigmoidal dependence of the PL peak energy can be explained by thermal escaping of carriers followed by re-trapping by QDs. Our analysis indicates that the re-trapping probability of thermally-escaped carriers increases with decreasing dot-to-dot distance (corresponding to an increase in the QD density).
Towards time-dependent current-density-functional theory in the non-linear regime.
Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Jackson, Aaron P.; Calder, Alan C.; Townsley, Dean M.; Chamulak, David A.; Brown, Edward F.; Timmes, F. X.
2010-09-01
We explore the effects of the deflagration to detonation transition (DDT) density on the production of 56Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of 56Ni masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of 56Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) ×107 g cm-3. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 ± 0.004 M sun for a 1 Z sun increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 ± 0.004 M sun decrease in the 56Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.
Chaves, C. A. M.; Ussami, N.; Ritsema, J.
2014-12-01
The Parana Magmatic Province (PMP) is one of the largest continental igneous provinces (LIP) on Earth. It is well dated at 133 Ma preceding the opening of the South Atlantic Ocean, but the causative geodynamic processes are still poorly understood. Although a low-velocity anomaly has been imaged by seismic tomography in the northeast region of the PMP and interpreted as a fossil conduct of a mantle plume that is related to the flood basalt eruptions, geochemical data indicate that such magmatism is caused by the melting of a heterogeneous and enriched lithospheric mantle with no deep plume participation. Models of density perturbations in the upper mantle estimated from joint inversion of geoid anomalies and P-wave delay times will offer important constraints on mantle dynamics. A new generation of accurate global geopotential models derived from satellite-missions (e.g. GRACE, GOCE) allows us to estimate density distribution within the Earth from geoid inversion. In order to obtain the residual geoid anomaly related to the density structure of the mantle, we use the EGM2008 model removing estimated geoid perturbations owing to variations in crustal structure (i.e., topographical masses, Moho depth, thickness of sediments and basalts). Using a spherical-Earth approximation, the density model space is represented by a set of tesseroids and the velocity model is parameterized in nodes of a spherical grid where cubic B-splines are utilized as an interpolation function. To constrain the density inversion, we add more than 10,000 manually picked teleseismic P-wave delay times. During the inversion procedure, density and P-wave velocity are linked through the optimization of a constant linear factor correlating density and velocity perturbation. Such optimization will be performed using a probability density function (PDF) [Tarantola, 2005]. We will present the preliminary results of this joint inversion scheme and hypothesize on the geodynamic processes responsible for
Hard scale dependent gluon density, saturation and forward-forward dijet production at the LHC
Kutak, Krzysztof
2014-01-01
We propose a method to introduce Sudakov effects to unintegrated gluon density promoting it to be hard scale dependent. The advantage of proposed approach is that it guarantees that the gluon density is positive definite and that on integrated level the Sudakov effects cancel. Besides that the method to introduce the Sudakov effects is convenient since it does not need evaluation of cross section in the process of imposing the effects. As a case study we apply the method to calculate angular correlations in production of forward-forward dijet and $R_{pA}$ ratio for p+p vs. p+Pb collision.
Application of Time-Dependent Density-Functional Theory to C6
Institute of Scientific and Technical Information of China (English)
ZHOU Xiao-Lin; BAI Yu-Lin; CHEN Xiang-Rong; YANG Xiang-Dong
2004-01-01
@@ We employ a real-space pseudopotential method to determine the ground state structure of the carbon cluster C6 via simulated annealing and the corresponding optical absorption spectra from the adiabatic time-dependent density-functional theory (TDDFT) and the local density approximation (TDLDA). It is found that the ground state structure of the carbon cluster C6 belongs to a monocyclic D3h structure and the calculated spectra exhibit a variety of features that can be used for comparison against future experimental investigations.
Strange matter equation of state in the quark mass-density-dependent model
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina)); Lugones, G. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina))
1995-02-15
We study the properties and stability of strange matter at [ital T]=0 in the quark mass-density-dependent model for noninteracting quarks. We found a wide stability window'' for the values of the parameters ([ital C],[ital M][sub [ital s]0]) and the resulting equation of state at low densities is stiffer than that of the MIT bag model. At high densities it tends to the ultrarelativistic behavior expected because of the asymptotic freedom of quarks. The density of zero pressure is near the one predicted by the bag model and [ital not] shifted away as stated before; nevertheless, at these densities the velocity of sound is [approx]50% larger in this model than in the bag model. We have integrated the equations of stellar structure for strange stars with the present equation of state. We found that the mass-radius relation is very much the same as in the bag model, although it extends to more massive objects, due to the stiffening of the equation of state at low densities.
Institute of Scientific and Technical Information of China (English)
Zhang Hua-Guang; Fu Jie; Ma Tie-Dong; Tong Shao-Cheng
2009-01-01
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise.Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach,some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties.An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient.Numerical examples are given to illustrate the effectiveness.
Gintant, G A
1998-06-01
Most class III antiarrhythmic drugs reduce the rapidly activating component of delayed-rectifier current (IKr) without affecting the slowly activating component (IKs). Recently the novel antiarrhythmic agent azimilide (NE-10064) was reported to enhance IKs at low (nanomolar) concentrations and to block both IKr and IKs at higher (micromolar) concentrations. Further to understand the electrophysiologic effects of azimilide, we compared its effects on IKr and IKs (by using whole cell clamp techniques) and action potentials (microelectrode and perforated-patch techniques) on canine ventricular myocytes. A lower azimilide concentration (50 nM) did not enhance IKs. In contrast, a therapeutic azimilide concentration (2 microM) was equieffective in reducing IKr (300-ms isochrones) and IKs (3-s isochrones) by approximately 40% during depolarizing test pulses, as well as reducing IKr (38% decrease) and IKs (33% decrease) tail currents on repolarization. Block of IKs was independent of voltage at positive test potentials. In action-potential studies, 50 nM azimilide had no effect on the action-potential duration (APD), whereas 2 microM azimilide delayed repolarization and caused reverse rate-dependent effects on the APD. Whereas the extent of APD prolongation by azimilide was not correlated with the drug-free APD, azimilide preferentially exaggerated the APD-rate relationship of myocytes displaying the steepest APD-rate relationship under drug-free conditions. In conclusion, therapeutic concentrations of azimilide that cause comparable reduction of canine ventricular IKr and IKs exert reverse rate-dependent effects, which are dependent on the steepness of the APD-rate relationship.
Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus.
Directory of Open Access Journals (Sweden)
Judit Vas
Full Text Available Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance and activity budgets (e.g., resting, feeding, social activities were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period. The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.
Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus).
Vas, Judit; Andersen, Inger Lise
2015-01-01
Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g., resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.
Zhou Dai Mei; Sá Ben-Hao; Li Zhong Dao
2002-01-01
Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of , so it may be hard to use charged particle pseudorapidity density per participant pair as a function of to distinguish various theoretical models for particle production
Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.
2017-05-01
The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.
Wong, Bryan M
2009-01-01
The electronic structure and size-scaling of optoelectronic properties in cycloparaphenylene carbon nanorings are investigated using time-dependent density functional theory (TDDFT). The TDDFT calculations on these molecular nanostructures indicate that the lowest excitation energy surprisingly becomes larger as the carbon nanoring size is increased, in contradiction with typical quantum confinement effects. In order to understand their unusual electronic properties, I performed an extensive investigation of excitonic effects by analyzing electron-hole transition density matrices and exciton binding energies as a function of size in these nanoring systems. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in the nanorings. Based on overall trends in exciton binding energies and their spatial delocalization, I find that excitonic effects play a vital role...
Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation
Energy Technology Data Exchange (ETDEWEB)
Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)
2015-01-21
We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.
Towards efficient orbital-dependent density functionals for weak and strong correlation
Zhang, Igor Ying; Perdew, John P; Scheffler, Matthias
2016-01-01
We present a new paradigm for the design of exchange-correlation functionals in density-functional theory. Electron pairs are correlated explicitly by means of the recently developed second order Bethe-Goldstone equation (BGE2) approach. Here we propose a screened BGE2 (sBGE2) variant that efficiently regulates the coupling of a given electron pair. sBGE2 correctly dissociates H$_2$ and H$_2^+$, a problem that has been regarded as a great challenge in density-functional theory for a long time. The sBGE2 functional is then taken as a building block for an orbital-dependent functional, termed ZRPS, which is a natural extension of the PBE0 hybrid functional. While worsening the good performance of sBGE2 in H$_2$ and H$_2^{+}$, ZRPS yields a remarkable and consistent improvement over other density functionals across various chemical environments from weak to strong correlation.
Hwang, E H; Hu, Ben Yu-Kuang; Das Sarma, S
2007-11-30
We calculate partial differentialmu/ partial differentialn (where mu=chemical potential and n=electron density), which is associated with the compressibility, in graphene as a function of n, within the Hartree-Fock approximation. The exchange-driven Dirac-point logarithmic singularity in the quasiparticle velocity of intrinsic graphene disappears in the extrinsic case. The calculated renormalized partial differentialmu/ partial differentialn in extrinsic graphene on SiO2 has the same n;{-(1/2)} density dependence but is 20% larger than the inverse bare density of states, a relatively weak effect compared to the corresponding parabolic-band case. We predict that the renormalization effect can be enhanced to about 50% by changing the graphene substrate.
Mass dependence of pion-induced fission cross sections on the level density parameter
Institute of Scientific and Technical Information of China (English)
Zafar Yasin; Warda Iram; M.Ikram Shahzad
2012-01-01
Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile.In this research work,a cascade-exciton model (using CEM95 computer code) has been implemented to observe the dependence of pion-induced fission cross sections and fission probabilities on the target mass and ratio of the level density parameter in fission to neutron emission.The analysis has been performed for both the positive and negative pions as the projectile at 80,100 and 150 MeV energies.The computed cross sections satisfactorily reproduced the experimental findings when compared with the available experimental data in the literature.We observed a smooth dependence at 150 MeV,and a sharper dependence at 80 and 100 MeV pion energy,in the fissility region above 29.44.
Adiabatic approximation of time-dependent density matrix functional response theory.
Pernal, Katarzyna; Giesbertz, Klaas; Gritsenko, Oleg; Baerends, Evert Jan
2007-12-07
Time-dependent density matrix functional theory can be formulated in terms of coupled-perturbed response equations, in which a coupling matrix K(omega) features, analogous to the well-known time-dependent density functional theory (TDDFT) case. An adiabatic approximation is needed to solve these equations, but the adiabatic approximation is much more critical since there is not a good "zero order" as in TDDFT, in which the virtual-occupied Kohn-Sham orbital energy differences serve this purpose. We discuss a simple approximation proposed earlier which uses only results from static calculations, called the static approximation (SA), and show that it is deficient, since it leads to zero response of the natural orbital occupation numbers. This leads to wrong behavior in the omega-->0 limit. An improved adiabatic approximation (AA) is formulated. The two-electron system affords a derivation of exact coupled-perturbed equations for the density matrix response, permitting analytical comparison of the adiabatic approximation with the exact equations. For the two-electron system also, the exact density matrix functional (2-matrix in terms of 1-matrix) is known, enabling testing of the static and adiabatic approximations unobscured by approximations in the functional. The two-electron HeH(+) molecule shows that at the equilibrium distance, SA consistently underestimates the frequency-dependent polarizability alpha(omega), the adiabatic TDDFT overestimates alpha(omega), while AA improves upon SA and, indeed, AA produces the correct alpha(0). For stretched HeH(+), adiabatic density matrix functional theory corrects the too low first excitation energy and overpolarization of adiabatic TDDFT methods and exhibits excellent agreement with high-quality CCSD ("exact") results over a large omega range.
Cell-density dependent effects of low-dose ionizing radiation on E. coli cells.
Alipov, E D; Shcheglov, V S; Sarimov, R M; Belyaev, I Ya
2003-01-01
The changes in genome conformational state (GCS) induced by low-dose ionizing radiation in E. coli cells were measured by the method of anomalous viscosity time dependence (AVTD) in cellular lysates. Effects of X-rays at doses 0.1 cGy--1 Gy depended on post-irradiation time. Significant relaxation of DNA loops followed by a decrease in AVTD. The time of maximum relaxation was between 5-80 min depending on the dose of irradiation. U-shaped dose response was observed with increase of AVTD in the range of 0.1-4 Gy and decrease in AVTD at higher doses. No such increase in AVTD was seen upon irradiation of cells at the beginning of cell lysis while the AVTD decrease was the same. Significant differences in the effects of X-rays and gamma-rays at the same doses were observed suggesting a strong dependence of low-dose effects on LET. Effects of 0.01 cGy gamma-rays were studied at different cell densities during irradiation. We show that the radiation-induced changes in GCS lasted longer at higher cell density as compared to lower cell density. Only small amount of cells were hit at this dose and the data suggest cell-to-cell communication in response to low-dose ionizing radiation. This prolonged effect was also observed when cells were irradiated at high cell density and diluted to low cell density immediately after irradiation. These data suggest that cell-to-cell communication occur during irradiation or within 3 min post-irradiation. The cell-density dependent response to low-dose ionizing radiation was compared with previously reported data on exposure of E. coli cells to electromagnetic fields of extremely low frequency and extremely high frequency (millimeter waves). The body of our data show that cells can communicate in response to electromagnetic fields and ionizing radiation, presumably by reemission of secondary photons in infrared-submillimeter frequency range.
Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas
2016-11-01
We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.
Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas
2016-11-14
We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.
Zahn, Jochen
2015-01-01
In the framework of quantum electrodynamics (QED) in external potentials, we introduce a method to compute the time-dependence of the expectation value of the current density for time-dependent homogeneous external electric fields. We apply it to the so-called Sauter pulse. For late times, our results agree with the asymptotic value due to electron-positron pair production. For sub-critical peak field strengths, or results agree very well with the general expression derived by Serber for the linearization in the external field. In particular, the expectation value of the current density at intermediate times can be much greater than at asymptotic times. We comment on consequences of these findings for recent proposals to test the Schwinger effect with high intensity lasers using processes at intermediate times.
Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.
Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Zheng, Xiao; Chen, Guan Hua
2013-12-14
Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.
DEFF Research Database (Denmark)
Lacevic, N.; Starr, F. W.; Schrøder, Thomas
2003-01-01
two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...... simulations of a binary Lennard-Jones mixture approaching the mode coupling temperature from above. We find that the correlations between particles measured by g4(r,t) and S4(q,t) become increasingly pronounced on cooling. The corresponding dynamical correlation length xi4(t) extracted from the small......-q behavior of S4(q,t) provides an estimate of the range of correlated particle motion. We find that xi4(t) has a maximum as a function of time t, and that the value of the maximum of xi4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature...
Magnetic circular dichroism in real-time time-dependent density functional theory
Lee, K -M; Bertsch, G F
2010-01-01
We apply the adiabatic time-dependent density functional theory to magnetic ci the real-space, real-time computational method. The standard formulas for the MCD response and its A and B terms are derived from the observables in the time-dependent wave function. We find the real time method is well suited for calculating the overall spectrum, particularly at higher excitation energies where individual excited states are numerous and overlapping. The MCD sum rules are derived and interpreted in the real-time formalism; we find that they are very useful for normalization purposes and assessing the accuracy of the theory. The method is applied to MCD spectrum of C-60 using the adiabatic energy functional from the local density approximation. The theory correctly predicts the signs of the A and B terms for the lowest allowed excitations. However, the magnitudes of the terms only show qualitative agreement with experiment.
Study of Proto Strange Stars (PSS) in Temperature and Density Dependent Quark Mass Model
Gupta, V K; Singh, S; Anand, J D; Gupta, Asha
2003-01-01
We report on the study of the mass-radius (M-R) relation and the radial oscillations of proto strange stars. For the quark matter we have employed the well known density dependent quark mass model and its very recent modification, the temperature and density dependent quark mass model. We find that the maximum mass the star can support increases significantly with the temperature of the star in this model which implies that transition to a black hole at the early stage of formation of the star is inhibited. As for the neutrinos, we find, contrary to the expectation that the M-R and oscillation frequencies are almost independent of the neutrino chemical potentials.
Postcatastrophe population dynamics and density dependence of an endemic island duck
Seavy, N.E.; Reynolds, M.H.; Link, W.A.; Hatfield, J.S.
2009-01-01
Laysan ducks (Anas laysanensis) are restricted to approximately 9 km2 in the Northwestern Hawaiian Islands, USA. To evaluate the importance of density dependence for Laysan ducks, we conducted a Bayesian analysis to estimate the parameters of a Gompertz model and the magnitude of process variation and observation error based on the fluctuations in Laysan duck abundance on Laysan Island from 1994 to 2007. This model described a stationary distribution for the population at carrying capacity that fluctuates around a long-term mean of 456 ducks and is between 316 to 636 ducks 95% of the time. This range of expected variability can be used to identify changes in population size that warn of catastrophic events. Density-dependent population dynamics may explain the recovery of Laysan duck from catastrophic declines and allow managers to identify population monitoring thresholds.
Density dependence and risk of extinction in a small population of sea otters
Gerber, L.R.; Buenau, K.E.; VanBlaricom, G.
2004-01-01
Sea otters (Enhydra lutris (L.)) were hunted to extinction off the coast of Washington State early in the 20th century. A new population was established by translocations from Alaska in 1969 and 1970. The population, currently numbering at least 550 animals, A major threat to the population is the ongoing risk of majour oil spills in sea otter habitat. We apply population models to census and demographic data in order to evaluate the status of the population. We fit several density dependent models to test for density dependence and determine plausible values for the carrying capacity (K) by comparing model goodness of fit to an exponential model. Model fits were compared using Akaike Information Criterion (AIC). A significant negative relationship was found between the population growth rate and population size (r2=0.27, F=5.57, df=16, pgrowth rate (??). The elasticity values indicate the population is most sensitive to changes in survival rates (particularly adult survival).
Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma
Energy Technology Data Exchange (ETDEWEB)
Yoshida, T.; Ezumi, N. [Nagano National College of Technology, Nagano-city, Nagano (Japan); Sawada, K. [Shinshu University, Nagano-city, Nagano (Japan); Tanaka, Y. [Kanazawa University, Kakuma-cho, Kanzawa-city, Ishikawa (Japan); Tanaka, M.; Nishimura, K. [National Insitute for Fusion Science, Toki-city, Gifu (Japan)
2015-03-15
The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)
Remarks on time-dependent [current]-density functional theory for open quantum systems.
Yuen-Zhou, Joel; Aspuru-Guzik, Alán
2013-08-14
Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.
Energy Dependent Time Delays of kHz Oscillations due to Thermal Comptonization
Kumar, Nagendra
2014-01-01
We study the energy dependent photon variability from a thermal Comptonizing plasma that is oscillating at kHz frequencies. In particular, we solve the linearised time dependent Kompaneets equation and consider the oscillatory perturbation to be either in the soft photon source or in the heating rate of the plasma. For each case, we self consistently consider the energy balance of the plasma and the soft photon source. The model incorporates the possibility of a fraction of the Comptonized photons impinging back into the soft photon source. We find that when the oscillation is due to the soft photon source, the variation of the fractional root mean sqaure (r.m.s) is nearly constant with energy and the time-lags are hard. However, for the case when the oscillation is due to variation in the heating rate of the corona, and when a significant fraction of the photons impinge back into the soft photon source, the r.m.s increases with energy and the time lags are soft. As an example, we compare the results with the...
Frequency-dependent response of a pinned charge-density wave
Vinokur, Valerii; Fogler, Michael
2003-03-01
Recent theoretical advances in the theory of collective pinning [M. M. Fogler, Phys. Rev. Lett. 88, 186402 (2002)] enable us to go beyond the usual phenomenology in the theory of a finite-frequency response of a pinned charge-density wave (CDW) and to calculate ω and T dependences of the complex dielectric function without additional assumptions. According to our estimates, in typical electrical experiments on CDW, the dominant process is a thermal activation over atypically shallow barriers. It gives rise to a novel T^3/4-dependence of the linear response, in agreement with the experiment. A close analogy with acoustic attenuation in glassy dielectrics is noted.
Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor O. [Antwerpen Univ. (Belgium). Dept. Fysica; Veken, Frederik F. van der [CERN, Geneva (Switzerland)
2017-05-01
The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.
Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit
Saptono Duryat, Rahmat; Kim, Choong-Un
2016-04-01
One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces.
Density dependence of electron mobility in the accumulation mode for fully depleted SOI films
Energy Technology Data Exchange (ETDEWEB)
Naumova, O. V., E-mail: naumova@isp.nsc.ru; Zaitseva, E. G.; Fomin, B. I.; Ilnitsky, M. A.; Popov, V. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2015-10-15
The electron mobility µ{sub eff} in the accumulation mode is investigated for undepleted and fully depleted double-gate n{sup +}–n–n{sup +} silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistors (MOSFET). To determine the range of possible values of the mobility and the dominant scattering mechanisms in thin-film structures, it is proposed that the field dependence of the mobility µ{sub eff} be replaced with the dependence on the density N{sub e} of induced charge carriers. It is shown that the dependences µ{sub eff}(N{sub e}) can be approximated by the power functions µ{sub eff}(N{sub e}) ∝ N{sub e}{sup -n}, where the exponent n is determined by the chargecarrier scattering mechanism as in the mobility field dependence. The values of the exponent n in the dependences µ{sub eff}(N{sub e}) are determined when the SOI-film mode near one of its surfaces varies from inversion to accumulation. The obtained results are explained from the viewpoint of the electron-density redistribution over the SOI-film thickness and changes in the scattering mechanisms.
Institute of Scientific and Technical Information of China (English)
HE Xiang; WANG Fan
2006-01-01
@@ Thioaldehydes and thioketones are candidates of new photoluminescence materials. The time-dependent density functional theory is applied to calculate the absorption and emission wavelengths of ten thiocarbonyl compounds using both B3LYP and PBE0 functionals. The theoretical results are in agreement with the measurable ones.Furthermore, it is found that the maximum absorption and emission wavelengths are linearly correlated to the C-S bond lengths.
Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory
2017-04-23
quantitatively and non-empirically within the framework of time-dependent density functional theory (TDDFT), using the recently-developed optimally-tuned...showing that fundamental gaps and optical spectra of molecular solids can be predicted quantitatively and non-empirically within the framework of...II. THEORETICAL AND COMPUTATIONAL APPROACH A. Optimally-tuned range-separated hybrid functionals In the range-separated hybrid (RSH) method, the
Charge carrier density dependence of the hole mobility in poly(p-phenylene vinylene)
Tanase, C; Blom, PWM; De Leeuw, DM; de Meijer, EJ
2004-01-01
The hole transport in various poly(p-phenylene vinylene) (PPV) derivatives has been investigated in field-effect transistors (FETs) and light-emitting diodes (LEDs) as a function of temperature and applied bias. The discrepancy between the experimental hole mobilities extracted from FETs and LEDs based on a single disordered polymeric semiconductor originates from the strong dependence of the hole mobility on the charge carrier density. The microscopic charge transport parameters are directly...
Dependence of critical current density on crystalline direction in thin YBCO films
DEFF Research Database (Denmark)
Paturi, P.; Peurla, M.; Raittila, J.
2005-01-01
The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from ...... indicating that in addition to linear defects also the twin boundaries are very important flux pinning sites. (c) 2005 Elsevier B.V. All rights reserved....
Time-dependent relativistic density functional study of Yb and YbO
Institute of Scientific and Technical Information of China (English)
XU WenHua; ZHANG Yong; LIU WenJian
2009-01-01
The low-lying electronic states of Yb and YbO are investigated by using time-dependent relativistic density functional theory,which is based on the newly developed exact two-component Hamiltonian resulting from symmetrized elimination of the small component.The nature of the excited states is analyzed by using the full molecular symmetry.The calculated results support the previous experimental assignment of the ground and excited states of YbO.
Optical properties of Al nanostructures from time dependent density functional theory
Mokkath, Junais Habeeb
2016-04-05
The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.
Temperature and field dependence of the mobility in 1D for a Gaussian density of states
Pasveer, W. F.; Bobbert, P. A.; Michels, M. A. J.
2004-01-01
The temperature and field-dependent mobility of a charge carrier in a gaussian density of states has been analyzed, based on a numerically exact solution of the Master equation. In this way we get a microscopic insight into the origin of the mobility and find some new features pointing to relevance of the Fermi level and of variable-range hopping to sites further away than nearest ones.
A mass-dependent density profile for dark matter haloes including the influence of galaxy formation
Di Cintio, Arianna; Dutton, Aaron A; Macciò, Andrea V; Stinson, Greg S; Knebe, Alexander
2014-01-01
We introduce a mass dependent density profile to describe the distribution of dark matter within galaxies, which takes into account the stellar-to-halo mass dependence of the response of dark matter to baryonic processes. The study is based on the analysis of hydrodynamically simulated galaxies from dwarf to Milky Way mass, drawn from the MaGICC project, which have been shown to match a wide range of disk scaling relationships. We find that the best fit parameters of a generic double power-law density profile vary in a systematic manner that depends on the stellar-to-halo mass ratio of each galaxy. Thus, the quantity Mstar/Mhalo constrains the inner ($\\gamma$) and outer ($\\beta$) slopes of dark matter density, and the sharpness of transition between the slopes($\\alpha$), reducing the number of free parameters of the model to two. Due to the tight relation between stellar mass and halo mass, either of these quantities is sufficient to describe the dark matter halo profile including the effects of baryons. The ...
Travelling Waves for a Density Dependent Diffusion Nagumo Equation over the Real Line
Institute of Scientific and Technical Information of China (English)
Robert A. Van Gorder
2012-01-01
We consider the density dependent diffusion Nagumo equation, where the diffusion coefficient is a simple power function. This equation is used in modelling electrical pulse propagation in nerve axons and in population genetics （amongst other areas）. In the present paper, the δ-expansion method is applied to a travelling wave reduction of the problem, so that we may obtain globally valid perturbation solutions （in the sense that the perturbation solutions are valid over the entire infinite domain, not just locally; hence the results are a generalization of the local solutions considered recently in the literature）. The resulting boundary value problem is solved on the real line subject to conditions at z →±∞. Whenever a perturbative method is applied, it is important to discuss the accuracy and convergence properties of the resulting perturbation expansions. We compare our results with those of two different numerical methods （designed for initial and boundary value problems, respectively） and deduce that the perturbation expansions agree with the numerical results after a reasonable number of iterations. Finally, we are able to discuss the influence of the wave speed c and the asymptotic concentration value α on the obtained solutions. Upon recasting the density dependent diffusion Nagumo equation as a two-dimensional dynamical system, we are also able to discuss the influence of the nonlinear density dependence （which is governed by a power-law parameter m） on oscillations of the travelling wave solutions.
Extended parameter-dependent H∞filtering for uncer tain continuous-time state-delayed systems
Institute of Scientific and Technical Information of China (English)
Ying Zhang; Aiguo Wu; Guangren Duan
2014-01-01
The design of robust H∞ filtering problem of polytopic uncertain linear time-delay systems is addressed. The uncertain parameters are supposed to reside in a polytope. A parameter-dependent Lyapunov function approach is proposed for the design of filters that ensure a prescribed H∞performance level for al ad-missible uncertain parameters, which is different from the quadratic framework that entails fixed matrices for the entire uncertainty do-main. This idea is realized by careful y selecting the structure of the matrices involved in the products with system matrices. An extended H∞ sufficient condition for the existence of robust esti-mators is formulated in terms of linear matrix inequalities, which can be solved via efficient interior-point algorithms.
Institute of Scientific and Technical Information of China (English)
Ligang WU; Changhong WANG; Huijun GAO; Qingshuang ZENG
2006-01-01
The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system;next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.
Periodic Solutions for a Semi-Ratio-Dependent Predator-Prey System with Delays on Time Scales
Directory of Open Access Journals (Sweden)
Xiaoquan Ding
2012-01-01
Full Text Available This paper is devoted to the existence of periodic solutions for a semi-ratio-dependent predator-prey system with time delays on time scales. With the help of a continuation theorem based on coincidence degree theory, we establish necessary and sufficient conditions for the existence of periodic solutions. Our results show that for the most monotonic prey growth such as the logistic, the Gilpin, and the Smith growth, and the most celebrated functional responses such as the Holling type, the sigmoidal type, the Ivlev type, the Monod-Haldane type, and the Beddington-DeAngelis type, the system always has at least one periodic solution. Some known results are shown to be special cases of the present paper.
Min, Jie; Zhou, Yong-Wu; Liu, Gui-Qing; Wang, Sheng-Dong
2012-06-01
This article develops an inventory model for exponentially deteriorating items under conditions of permissible delay in payments. Unlike the existing related models, we assume that the items are replenished at a finite rate and the demand rate of the items is dependent on the current inventory level. The objective is to determine the optimal replenishment policies in order to maximise the system's average profit per unit of time. A simple method is shown for finding the optimal solution of the model based on the derived properties of the objective function. In addition, we deduce some previously published results as the special cases of the model. Finally, numerical examples are used to illustrate the proposed model. Some managerial insights are also inferred from the sensitive analysis of model parameters.
Density-dependent expression of keratins in transformed rat liver cell lines.
Troyanovsky, S M; Bannikov, G A; Montesano, R; Vasiliev, J M
1986-04-01
Immunomorphological examination of the distribution of three keratins in cultured rat liver-derived epithelial cell lines of the IAR series was performed in order to find out the effects of neoplastic evolution on the expression of these epithelium-specific markers. Specific monoclonal antibodies were used to reveal various intermediate filament proteins: keratins with molecular masses of 55, 49 or 40 kD (K55, K49 or K40), and vimentin. The expression of keratins was negligible in sparse and dense cultures of non-transformed lines, which had typical epithelial morphology. The examined keratins were also absent in the sparse cultures of transformed lines, which have lost partially or completely the morphological features of epithelia. However, cells in dense cultures of most transformed lines contained numerous keratin filaments. It is suggested that the paradoxical increase of keratin expression after transformation is due to increased saturation density of transformed cultures; this high density favours the expression. As shown by the experiments with culture wounding, the effects of density are local and reversible. While K55 was present in all the cells of dense cultures, the expression of the other two keratins was dependent on the cell position within these cultures. It is suggested that the expression of the latter two keratins, besides high cell density, also requires the presence (K40) or the absence (K49) of cell-substratum contacts. Possible mechanisms of the effects of cell density on the expression of keratins are discussed.
Tri-trophic interactions affect density dependence of seed fate in a tropical forest palm.
Visser, Marco D; Muller-Landau, Helene C; Wright, S Joseph; Rutten, Gemma; Jansen, Patrick A
2011-11-01
Natural enemies, especially host-specific enemies, are hypothesised to facilitate the coexistence of plant species by disproportionately inflicting more damage at increasing host abundance. However, few studies have assessed such Janzen-Connell mechanisms on a scale relevant for coexistence and no study has evaluated potential top-down influences on the specialized pests. We quantified seed predation by specialist invertebrates and generalist vertebrates, as well as larval predation on these invertebrates, for the Neotropical palm Attalea butyracea across ten 4-ha plots spanning 20-fold variation in palm density. As palm density increased, seed attack by bruchid beetles increased, whereas seed predation by rodents held constant. But because rodent predation on bruchid larvae increased disproportionately with increasing palm density, bruchid emergence rates and total seed predation by rodents and bruchids combined were both density-independent. Our results demonstrate that top-down effects can limit the potential of host-specific insects to induce negative-density dependence in plant populations.
Directory of Open Access Journals (Sweden)
D T Tyler Flockhart
Full Text Available A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism.
Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan
2012-01-01
A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614
Gotham, Steven; Song, Hojun
2013-11-01
Locusts are well known for exhibiting an extreme form of density-dependent phenotypic plasticity known as locust phase polyphenism. At low density, locust nymphs are cryptically colored and shy, but at high density they transform into conspicuously colored and gregarious individuals. Most of what we know about locust phase polyphenism come from the study of the desert locust Schistocerca gregaria (Forskål), which is a devastating pest species affecting many countries in North Africa and the Middle East. The desert locust belongs to the grasshopper genus Schistocerca Stål, which includes mostly non-swarming, sedentary species. Recent phylogenetic studies suggest that the desert locust is the earliest branching lineage within Schistocerca, which raises a possibility that the presence of density-dependent phenotypic plasticity may be a plesiomorphic trait for the whole genus. In order to test this idea, we have quantified the effect of rearing density in terms of the resulting behavior, color, and morphology in two non-swarming Schistocerca species native to Florida. When reared in both isolated and crowded conditions, the two non-swarming species, Schistocerca americana (Drury) and Schistocerca serialis cubense (Saussure) clearly exhibited plastic reaction norms in all traits measured, which were reminiscent of the desert locust. Specifically, we found that both species were more active and more attracted to each other when reared in a crowded condition than in isolation. They were mainly bright green in color when isolated, but developed strong black patterns and conspicuous background colors when crowded. We found a strong effect of rearing density in terms of size. There were also more mechanoreceptor hairs on the outer face of the hind femora in the crowded nymphs in both species. Although both species responded similarly, there were some clear species-specific differences in terms of color and behavior. Furthermore, we compare and contrast our findings with
Power, Geoffrey A.; Dalton, Brian H.; Rice, Charles L.
2010-01-01
Unaccustomed eccentric exercise has been shown to impair muscle function, although little is known regarding this impairment on muscle power. The purpose of this study was to investigate changes in neuromuscular properties of the ankle dorsiflexors during and after an eccentric contraction task and throughout recovery in 21 (10 men, 11 women) recreationally active young adults (25.8 ± 2.3 yr). All subjects performed 5 sets of 30 eccentric contractions at 80% of maximum isometric voluntary contraction (MVC) torque. Data were recorded at baseline, during the fatigue task, and for 30 min of recovery. There were no significant sex differences for all fatigue measures; thus data were pooled. After the fatigue task, MVC torque declined by 28% (P 99%) during and after the fatigue task (P > 0.05). Peak twitch torque was reduced by 21% at 2 min of recovery and progressively decreased to 35% by 30 min (P concentric power was reduced by 8% immediately after task termination and did not recover fully within 30 min (P contraction coupling and cross-bridge kinetics and reduced the number of functional sarcomeres in series, ultimately leading to velocity-dependent power loss. PMID:20576845
Dependability of the Exemplary Technical System for Assumed Functions of Defect Density
Directory of Open Access Journals (Sweden)
Stępień Sławomir
2016-12-01
Full Text Available The analysis of structural dependability of technical system, especially determining the change in dependability over time, requires knowledge on density function or the understanding of cumulative distribution function of components belonging to the structure. Based on previously registered data concerning component defect, it is relatively easy to establish the average uptime of component as well as the standard deviation for this time. However, defining distribution shape gives rise to some difficulties. Usually, we do not have the sufficient number of data at our disposal to verify the hypothesis regarding the distribution shape. Due to this fact, it is a common practice, depending on the case under consideration, to apply the function of defect density. However, the question arises: Does the incorrect determination of types of distributions of components leads to the big error of estimation results of dependability and system durability? This article will not respond to this question in whole, but one will conduct a comparison of calculation results for a few cases. The calculations were conducted for the exemplary technical system.
Compound nucleus evaporative decay as a probe for the isospin dependence of the level density
Energy Technology Data Exchange (ETDEWEB)
Moro, R.; Brondi, A.; La Rana, G.; Vardaci, E. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Scienze Fisiche, Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Napoli (Italy); Gelli, N. [Istituto Nazionale di Fisica Nucleare, Firenze (Italy); Barbui, M.; Lunardon, M.; Montagnoli, G. [Dipartimento di Fisica, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Boiano, A.; Di Nitto, A.; Ordine, A.; Trotta, M. [Istituto Nazionale di Fisica Nucleare, Napoli (Italy); Cinausero, M.; Fioretto, E.; Prete, G.; Rizzi, V. [Laboratori Nazionali di Legnaro dell' Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); Fabris, D. [Istituto Nazionale di Fisica Nucleare, Padova (Italy); Lucarelli, F. [Dipartimento di Fisica, Firenze (Italy); Istituto Nazionale di Fisica Nucleare, Firenze (Italy)
2012-11-15
The evaporative decay of the compound nucleus {sup 139}Eu produced by the 180MeV {sup 32}S + {sup 107}Ag reaction was studied with the aim to test the empirical isospin expressions of the level density, recently appeared in the literature. We measured light charged particle spectra and angular correlations in coincidence with the evaporation residues and the invariant velocity distribution of the evaporation residues. In addition, an independent experiment was performed on the reaction {sup 32}S + {sup 109}Ag at the same incident energy. Evaporation residue angular distribution was measured and the fusion-evaporation cross-section was determined. All the measured quantities are compared with the predictions of different level density prescriptions: (a) isospin independence, (b) a dependence from N - Z and (c) a dependence from Z-Z{sub 0} as proposed by Al-Quraishi et al. Results show that the predictions of the Z-Z{sub 0} dependence are far off the experimental data for all the measured observables. Regarding the isospin independent prescription and the N - Z dependence, although no great differences appear between their predictions the N - Z prescription seems to better describe the experimental data. (orig.)
Keil, Petr; Herben, Tomás; Rosindell, James; Storch, David
2010-07-07
There has recently been increasing interest in neutral models of biodiversity and their ability to reproduce the patterns observed in nature, such as species abundance distributions. Here we investigate the ability of a neutral model to predict phenomena observed in single-population time series, a study complementary to most existing work that concentrates on snapshots in time of the whole community. We consider tests for density dependence, the dominant frequencies of population fluctuation (spectral density) and a relationship between the mean and variance of a fluctuating population (Taylor's power law). We simulated an archipelago model of a set of interconnected local communities with variable mortality rate, migration rate, speciation rate, size of local community and number of local communities. Our spectral analysis showed 'pink noise': a departure from a standard random walk dynamics in favor of the higher frequency fluctuations which is partly consistent with empirical data. We detected density dependence in local community time series but not in metacommunity time series. The slope of the Taylor's power law in the model was similar to the slopes observed in natural populations, but the fit to the power law was worse. Our observations of pink noise and density dependence can be attributed to the presence of an upper limit to community sizes and to the effect of migration which distorts temporal autocorrelation in local time series. We conclude that some of the phenomena observed in natural time series can emerge from neutral processes, as a result of random zero-sum birth, death and migration. This suggests the neutral model would be a parsimonious null model for future studies of time series data.
Resampling method for applying density-dependent habitat selection theory to wildlife surveys.
Directory of Open Access Journals (Sweden)
Olivia Tardy
Full Text Available Isodar theory can be used to evaluate fitness consequences of density-dependent habitat selection by animals. A typical habitat isodar is a regression curve plotting competitor densities in two adjacent habitats when individual fitness is equal. Despite the increasing use of habitat isodars, their application remains largely limited to areas composed of pairs of adjacent habitats that are defined a priori. We developed a resampling method that uses data from wildlife surveys to build isodars in heterogeneous landscapes without having to predefine habitat types. The method consists in randomly placing blocks over the survey area and dividing those blocks in two adjacent sub-blocks of the same size. Animal abundance is then estimated within the two sub-blocks. This process is done 100 times. Different functional forms of isodars can be investigated by relating animal abundance and differences in habitat features between sub-blocks. We applied this method to abundance data of raccoons and striped skunks, two of the main hosts of rabies virus in North America. Habitat selection by raccoons and striped skunks depended on both conspecific abundance and the difference in landscape composition and structure between sub-blocks. When conspecific abundance was low, raccoons and striped skunks favored areas with relatively high proportions of forests and anthropogenic features, respectively. Under high conspecific abundance, however, both species preferred areas with rather large corn-forest edge densities and corn field proportions. Based on random sampling techniques, we provide a robust method that is applicable to a broad range of species, including medium- to large-sized mammals with high mobility. The method is sufficiently flexible to incorporate multiple environmental covariates that can reflect key requirements of the focal species. We thus illustrate how isodar theory can be used with wildlife surveys to assess density-dependent habitat selection
Energy Technology Data Exchange (ETDEWEB)
Kullie, Ossama, E-mail: kullie@uni-kassel.de [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg (France); Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel (Germany)
2013-03-29
Highlights: ► The achievement of CAMB3LYP functional for excited states in framework of TD-DFT. ► Relativistic 4-components calculations for the excited states of the Cd{sub 2} dimer. ► Relativistic Spin-Free calculations for the excited states of Cd{sub 2} dimer. ► A comparison of the achievements of different types of DFT approximations upon Cd{sub 2}. - Abstract: In this paper we present a time-dependent density functional study for the ground-state as well the 20-lowest laying excited states of the cadmium dimer Cd{sub 2}, we analyze its spectrum obtained from all electrons calculations performed with time-depended density functional for the relativistic Dirac-Coulomb- and relativistic spin-free-Hamiltonian as implemented in DIRAC-PACKAGE. The calculations were obtained with different density functional approximations, and a comparison with the literature is given as far as available. Our result is very encouraging, especially for the lowest excited states of this dimer, and is expected to be enlightened for similar systems. The result shows that only long-range corrected functionals such as CAMB3LYP, gives the correct asymptotic behavior for the higher states. A comparable but less satisfactory results were obtained with B3LYP and PBE0 functionals. Spin-free-Hamiltonian is shown to be very efficient for systems containing heavy elements such as Cd{sub 2} in frameworks of (time-dependent) density functional without introducing large errors.
Li, Ming-De; Ma, Jiani; Su, Tao; Liu, Mingyue; Phillips, David Lee
2013-02-07
The solvent dependent photochemistry of fenofibric acid (FA) was studied by femtosecond transient absorption and nanosecond time-resolved resonance Raman experiments and density functional theory calculations. In acetonitrile-rich solution, a typical nπ* triplet state FA ((3)FA) is formed through a highly efficient intersystem crossing and then the (3)FA species undergoes some reaction with water to generate a ketyl radical intermediate at low water concentrations. In contrast, nπ* (3)FA changes from a reaction with water to generate a ketyl radical intermediate at lower water concentrations to a decarboxylation reaction with the assistance of water molecules to produce a biradical intermediate at higher water concentrations in water-rich solutions. The decarboxylation reaction leads to the formation of the FA carbanion in 50% phosphate buffer solution and the FA carbanion is observed on the picosecond to nanosecond time scale and the cleavage of the FA carbanion gives rise to the enolate 3(-) anion at later nanosecond delay times. As regards fenofibrate (FB), it only exhibits a benzophenone-like photochemistry, which consists of some reaction with water to generate a ketyl radical intermediate, being observed in the different aqueous solutions.
Delay-range-dependent stability for systems with time-varying delays%一类区间时变时滞系统的稳定性分析
Institute of Scientific and Technical Information of China (English)
但松健
2012-01-01
针对一类区间时变时滞系统的稳定性问题,进行了全局渐近稳定性分析.通过引入时滞分段方法和构建恰当的Lyapunov-Krasovskii泛函,得到了新的区间时滞相关稳定性判定准则.该准则以线性矩阵不等式形式给出,便于利用LMI工具箱对系统的稳定性进行判定.新准则具有较少的保守性,并且在一定范围内保守性随着时滞分段增多而减少,即时滞分段越多,保守性越少.数值仿真算结果例表明了新准则所具有的有效性和较少的保守性.%Aimed at the problem of the stability of systems with time-varying delay in a range, the global asymptotic stability a-nalysis of delay-range-dependent systems with time-varying delays is investigated. A new criterion of the delay-range-dependent stability is derived by introducing an appropriate type of Lyapunov-Krasovskii functional with the idea of delay fractioning and is formulated in terms of a linear matrix inequality (LMI), which can be readily solved via LMI Toolbox. This new criterion based on a delay fractioning approach proves to be much less conservative and the conservatism could be notably reduced by thinning the delay fractioning within a certain range. Finally, a numerical example is given to demonstrate the effectiveness and the less conservative of the proposed criterion.
Stocking density affects the growth performance of broilers in a sex-dependent fashion.
Zuowei, S; Yan, L; Yuan, L; Jiao, H; Song, Z; Guo, Y; Lin, H
2011-07-01
The effects of stocking density, sex, and dietary ME concentration on live performance, footpad burns, and leg weakness of broilers were investigated. A total of 876 male and 1,020 female 1-d-old chicks were placed in 24 pens to simulate final stocking density treatments of 26 kg (LSD; 10 males or 12 females/m(2)) and 42 kg (HSD; 16 males or 18 females/m(2)) of BW/m(2) floor space. Two series of experimental diets with a 150 kcal/kg difference in ME concentration (2,800, 2,900, and 3,000 or 2,950, 3,050, and 3,150 kcal of ME/kg) were compared in a 3-phase feeding program. The HSD treatment significantly decreased BW gain and feed conversion ratio (FCR). The HSD chickens consumed less feed by 35 d of age; thereafter, the reverse was true. Male chickens had significantly higher feed intake (FI), BW gain, and FCR compared with females. A significant interaction was found of stocking density and age for FI, BW gain, and FCR. Compared with LSD treatment, HSD broilers had a higher FI and a lower FCR from 36 to 42 d of age. Stocking density, sex, and age had a significant interaction for BW gain and FCR. Female broilers had worse BW gain and FCR when stocked at high density from 36 to 42 d of age. Stocking density had no significant influence on breast, thigh, or abdominal fat yield. Female broilers had significantly higher breast yield and abdominal fat. Male broilers and HSD treatment had high footpad burn and gait scores. A low ME diet increased footpad burn score but had no effect on gait score. The result indicated that stocking density had a more severe effect on the growth of male broilers before 35 d of age. Female broilers need more space than males at similar BW per square meter near marketing age. The incidence and severity of leg weakness are associated with sex, diet, and stocking density. This result suggests that the deteriorated effect of high stocking density is sex and age dependent.
Dependency of the Cusp Density Anomaly on the Variability of Forcing Inside and Outside the Cusp
Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.
2014-12-01
The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs largely determine the neutral density structure in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown a region of strong enhanced density attributed to the combination of cusp particle and Joule heating. The Streak mission (325-123 km), on the other hand, observed a relative depletion in density in the cusp. While particle precipitation in the cusp is comparatively well constrained, the characteristics of the steady and fluctuating components of the electric field in the cusp are poorly constrained. Also, the significance of harder particle precipitation in areas adjacent to the cusp in particular at lower altitudes has not been addressed as it relates to the cusp density anomaly. We address the response of the cusp region to a range electrodynamical forcing with our high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model. We take advantage of our model's high resolution and focus on a more typical cusp width of 2 degrees in latitude. Earlier simulations have also shown a significant contribution from soft particle precipitation. We simulate the atmospheric response to a range of realizable magnitudes of the fluctuating and steady components of the electric field to examine the dependence of the magnitude of the cusp density anomaly on a large range of observed characteristics of the electrodynamical forcing and examine, in particular, the importance of particle heating relative to Joule heating. In addition we investigate the role of harder particle precipitation in areas adjacent to the cusp in determining the lower altitude cusp density and wind structure. We compare
Directory of Open Access Journals (Sweden)
Israel Pagán
2009-07-01
Full Text Available Population density and costs of parasite infection may condition the capacity of organisms to grow, survive and reproduce, i.e. their competitive ability. In host-parasite systems there are different competitive interactions: among uninfected hosts, among infected hosts, and between uninfected and infected hosts. Consequently, parasite infection results in a direct cost, due to parasitism itself, and in an indirect cost, due to modification of the competitive ability of the infected host. Theory predicts that host fitness reduction will be higher under the combined effects of costs of parasitism and competition than under each factor separately. However, experimental support for this prediction is scarce, and derives mostly from animal-parasite systems. We have analysed the interaction between parasite infection and plant density using the plant-parasite system of Arabidopsis thaliana and the generalist virus Cucumber mosaic virus (CMV. Plants of three wild genotypes grown at different densities were infected by CMV at various prevalences, and the effects of infection on plant growth and reproduction were quantified. Results demonstrate that the combined effects of host density and parasite infection may result either in a reduction or in an increase of the competitive ability of the host. The two genotypes investing a higher proportion of resources to reproduction showed tolerance to the direct cost of infection, while the genotype investing a higher proportion of resources to growth showed tolerance to the indirect cost of infection. Our findings show that the outcome of the interaction between host density and parasitism depends on the host genotype, which determines the plasticity of life-history traits and consequently, the host capacity to develop different tolerance mechanisms to the direct or indirect costs of parasitism. These results indicate the high relevance of host density and parasitism in determining the competitive ability of a
BMP-2 Dependent Increase of Soft Tissue Density in Arthrofibrotic TKA.
Pfitzner, Tilman; Röhner, Eric; Krenn, Veit; Perka, Carsten; Matziolis, Georg
2012-01-01
Arthrofibrosis after total knee arthroplasty (TKA) is difficult to treat, as its aetiology remains unclear. In a previous study, we established a connection between the BMP-2 concentration in the synovial fluid and arthrofibrosis after TKA. The hypothesis of the present study was, therefore, that the limited range of motion in arthrofibrosis is caused by BMP-2 induced heterotopic ossifications, the quantity of which is dependent on the BMP-2 concentration in the synovial fluid.Eight patients with arthrofibrosis after TKA were included. The concentration of BMP-2 in the synovial fluid from each patient was determined by ELISA. Radiologically, digital radiographs were evaluated and the grey scale values were determined as a measure of the tissue density of defined areas. Apart from air, cutis, subcutis and muscle, the soft-tissue density in the area of the capsule of the suprapatellar pouch was determined. The connection between the BMP-2 concentration and the soft-tissue density was then investigated.The average BMP-2 concentration in the synovial fluid was 24.3 ± 6.9 pg/ml. The density of the anterior knee capsule was on average 136 ± 35 grey scale values. A linear correlation was shown between the BMP-2 concentration in the synovial fluid and the radiological density of the anterior joint capsule (R=0.84, p = 0.009).We were able to show that there is a connection between BMP-2 concentration and soft-tissue density in arthrofibrosis after TKA. This opens up the possibility of conducting a prophylaxis against arthrofibrosis in risk patients by influencing the BMP-2 pathway.
Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.
Martel, John W; Malcolm, Stephen B
2004-03-01
The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.
Li, Huiping; Shi, Yang
2012-10-01
This article focuses on the state-feedback ℋ∞ control problem for the stochastic nonlinear systems with state and disturbance-dependent noise and time-varying state delays. Based on the maxmin optimisation approach, both the delay-independent and the delay-dependent Hamilton-Jacobi-inequalities (HJIs) are developed for synthesising the state-feedback ℋ∞ controller for a general type of stochastic nonlinear systems. It is shown that the resulting control system achieves stochastic stability in probability and the prescribed disturbance attenuation level. For a class of stochastic affine nonlinear systems, the delay-independent as well as delay-dependent matrix-valued inequalities are proposed; the resulting control system satisfies global asymptotic stability in the mean-square sense and the required disturbance attenuation level. By modelling the nonlinearities as uncertainties in corresponding stochastic time-delay systems, the sufficient conditions in terms of a linear matrix inequality (LMI) and a bilinear matrix inequality (BMI) are derived to facilitate the design of the state-feedback ℋ∞ controller. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed methods.
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Jackson, Aaron P; Townsley, Dean M; Chamulak, David A; Brown, Edward F; Timmes, F X
2010-01-01
We explore the effects of the deflagration to detonation transition (DDT) density on the production of Ni-56 in thermonuclear supernova explosions (type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear supernovae with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of Ni-56 masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of Ni-56 and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range 1-3x10^7 g/cc. We find a quadratic dependence ...
Directory of Open Access Journals (Sweden)
Lampert Winfried
2005-04-01
Full Text Available Abstract Background In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. It has been suggested that zooplankton (Daphnia faced with this trade-off distribute vertically according to an "Ideal Free Distribution (IFD with Costs". An experiment has been designed to test the density (competition dependence of the vertical distribution as this is a basic assumption of IFD theory. Results Experiments were performed in large, indoor mesocosms (Plankton Towers with a temperature gradient of 10°C and a deep-water algal maximum established below the thermocline. As expected, Daphnia aggregated at the interface between the two different habitats when their density was low. The distribution spread asymmetrically towards the algal maximum when the density increased until 80 % of the population dwelled in the cool, food-rich layers at high densities. Small individuals stayed higher in the water column than large ones, which conformed with the model for unequal competitors. Conclusion The Daphnia distribution mimics the predictions of an IFD with costs model. This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability. Fish predation causing diel vertical migrations can be incorporated as additional costs. This is important as the vertical location of grazing zooplankton in a lake affects phytoplankton production and species composition, i.e. ecosystem function.
Is the prevalence of Taenia taeniaeformis in Microtus arvalis dependent on population density?
Fichet-Calvet, Elisabeth; Giraudoux, Patrick; Quéré, Jean-Pierre; Ashford, Richard William; Delattre, Pierre
2003-12-01
Populations of common voles Microtus arvalis were studied as hosts of the tapeworm Taenia taeniaeformis during a 14-yr survey. They were monitored in spring, summer, and autumn in a pastoral ecosystem in eastern France. A total of 7,574 voles were sampled during 2 multiannual population fluctuations. A third fluctuation was sampled during the increase phase only. Overall prevalence was lowest in summer (0.6%), increased by 3 times in autumn (1.5%) and a further 5 times in spring (7.8%). Analysis of prevalence, based on 7,384 voles, by multiple logistic regression revealed that extrinsic factors such as season and intrinsic factors such as host age and host density have a combined effect. In the longer term, host age and host density were positively associated with prevalence in summer. Host density was strongly associated with autumn prevalence. There was no association between the fluctuation phase and prevalence. The study shows that a long timescale (here a multiannual survey) is necessary to demonstrate the positive effect of host density on the prevalence of this indirectly transmitted parasite. The demonstration of this relationship depends on the rodents being intermediate rather than definitive hosts.
Partovi-Azar, Pouya; Kaghazchi, Payam
2017-04-15
We report on real-time time-dependent density functional theory calculations on direction-dependent electron and hole transfer processes in molecular systems. As a model system, we focus on α-sulfur. It is shown that time scale of the electron transfer process from a negatively charged S8 molecule to a neighboring neutral monomer is comparable to that of a strong infrared-active molecular vibrations of the dimer with one negatively charged monomer. This results in a strong coupling between the electrons and the nuclei motion which eventually leads to S8 ring opening before the electron transfer process is completed. The open-ring structure is found to be stable. The similar infrared-active peak in the case of hole transfer, however, is shown to be very weak and hence no significant scattering by the nuclei is possible. The presented approach to study the charge transfer processes in sulfur has direct applications in the increasingly growing research field of charge transport in molecular systems. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Institute of Scientific and Technical Information of China (English)
Qiu Fang; Zhang Quan-Xin; Deng Xue-Hui
2012-01-01
This paper investigates the asymptotical stability problem of a neural system with a constant delay.A new delaydependent stability condition is derived by using the novel augmented Lyapunov-Krasovskii function with triple integral terms,and the additional triple integral terms play a key role in the further reduction of conservativeness.Finally,a numerical example is given to demonstrate the effectiveness and lower conservativeness of the proposed method.
Directory of Open Access Journals (Sweden)
Chien-Yu Lu
2009-01-01
Full Text Available This paper examines a passivity analysis for a class of discrete-time recurrent neural networks (DRNNs with norm-bounded time-varying parameter uncertainties and interval time-varying delay. The activation functions are assumed to be globally Lipschitz continuous. Based on an appropriate type of Lyapunov functional, sufficient passivity conditions for the DRNNs are derived in terms of a family of linear matrix inequalities (LMIs. Two numerical examples are given to illustrate the effectiveness and applicability.
Nagesh, Jayashree; Brumer, Paul; Izmaylov, Artur F
2016-01-01
We extend the localized operator partitioning method (LOPM) [J. Nagesh, A.F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory (TD-DFT) framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Stratman-Scuseria-Frisch atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1-naphthyl)-methyl)-anthracene and 4-((2-naphthyl)-methyl)-benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that are not accessible using simple density difference analysis.
Li, Xiao-Dong; Forero-Romero, Jaime E; Kim, Juhan
2014-01-01
We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the Universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter $\\Omega_m$ or the dark energy equation of state $w$ are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the Universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without...
Energy Technology Data Exchange (ETDEWEB)
Kao, C.H.; Tsou, C.T.; Chen, C.C.; Wang, S.J. (Taichung Veterans General Hospital, Taiwan (China))
1993-05-01
Bone mineral density (BMD) in 38 male patients with noninsulin-dependent diabetes mellitus (NIDDM) was measured by dual photon absorptiometry (DPA) using a M and SE Osteo Tech 300 scanner. The BMD of the second to fourth lumbar vertebrae was measured and the mean density was presented as g cm[sup -2]. The patients were distinguished according to the following three criteria: (1) blood sugar control was good or poor; (2) the duration of diabetes was long or short; (3) renal function was evaluated by effective renal plasma flow (ERPF) as good or poor. The results showed about half the cases of NIDDM had lower BMD. The patients with poor blood sugar control, longer disease duration and poor renal function had lower BMD. However, the difference between any two groups distinguished by the three criteria is not significant. We think that the causes of osteoporosis in patients with NIDDM may not be explained by only a single factor. (author).
Verdict: Time-Dependent Density Functional Theory "Not Guilty" of Large Errors for Cyanines.
Jacquemin, Denis; Zhao, Yan; Valero, Rosendo; Adamo, Carlo; Ciofini, Ilaria; Truhlar, Donald G
2012-04-10
We assess the accuracy of eight Minnesota density functionals (M05 through M08-SO) and two others (PBE and PBE0) for the prediction of electronic excitation energies of a family of four cyanine dyes. We find that time-dependent density functional theory (TDDFT) with the five most recent of these functionals (from M06-HF through M08-SO) is able to predict excitation energies for cyanine dyes within 0.10-0.36 eV accuracy with respect to the most accurate available Quantum Monte Carlo calculations, providing a comparable accuracy to the latest generation of CASPT2 calculations, which have errors of 0.16-0.34 eV. Therefore previous conclusions that TDDFT cannot treat cyanine dyes reasonably accurately must be revised.
Time-dependent current-density functional theory for generalized open quantum systems.
Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán
2009-06-14
In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.
Guido, Ciro A.; Cortona, Pietro; Adamo, Carlo
2014-03-01
We extend our previous definition of the metric Δr for electronic excitations in the framework of the time-dependent density functional theory [C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013)], by including a measure of the difference of electronic position variances in passing from occupied to virtual orbitals. This new definition, called Γ, permits applications in those situations where the Δr-index is not helpful: transitions in centrosymmetric systems and Rydberg excitations. The Γ-metric is then extended by using the Natural Transition Orbitals, thus providing an intuitive picture of how locally the electron density changes during the electronic transitions. Furthermore, the Γ values give insight about the functional performances in reproducing different type of transitions, and allow one to define a "confidence radius" for GGA and hybrid functionals.
Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes
DEFF Research Database (Denmark)
Thorson, James T.; Rindorf, Anna; Gao, Jin
2016-01-01
The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution...... marine regions, to determine whether the BM or PDM provides a better description for sea-bottom-associated fishes. We fit a spatio-temporal model and estimate changes in effective area occupied and abundance, and combine results to estimate the average abundance–area relationship as well as variability...... for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea...
Giesbertz, K J H; Pernal, K; Gritsenko, O V; Baerends, E J
2009-03-21
Time-dependent density functional theory in its current adiabatic implementations exhibits three striking failures: (a) Totally wrong behavior of the excited state surface along a bond-breaking coordinate, (b) lack of doubly excited configurations, affecting again excited state surfaces, and (c) much too low charge transfer excitation energies. We address these problems with time-dependent density matrix functional theory (TDDMFT). For two-electron systems the exact exchange-correlation functional is known in DMFT, hence exact response equations can be formulated. This affords a study of the performance of TDDMFT in the TDDFT failure cases mentioned (which are all strikingly exhibited by prototype two-electron systems such as dissociating H(2) and HeH(+)). At the same time, adiabatic approximations, which will eventually be necessary, can be tested without being obscured by approximations in the functional. We find the following: (a) In the fully nonadiabatic (omega-dependent, exact) formulation of linear response TDDMFT, it can be shown that linear response (LR)-TDDMFT is able to provide exact excitation energies, in particular, the first order (linear response) formulation does not prohibit the correct representation of doubly excited states; (b) within previously formulated simple adiabatic approximations the bonding-to-antibonding excited state surface as well as charge transfer excitations are described without problems, but not the double excitations; (c) an adiabatic approximation is formulated in which also the double excitations are fully accounted for.
D'Angelo, E; Milic-Emili, J; Marazzini, L
1996-11-01
It has been shown that in normal subjects and chronic obstructive pulmonary disease (COPD) patients the maximal expiratory flows and FEV1 are significantly higher if the FVC maneuver is preceded by a rapid inspiration without an end-inspiratory pause (maneuver 1) compared with a slow inspiration with an end-inspiratory pause of approximately 5 s (maneuver 2). This time dependency of FVC was attributed primarily to loss of lung recoil (stress relaxation) during breath-holding at TLC, in association with time constant inequality within the lungs, and changes in bronchomotor tone. To examine the role of bronchomotor tone on time dependency of FVC, 11 COPD and 10 asthmatic patients performed FVC maneuvers 1 and 2 before and after administration of a bronchodilator drug (salbutamol). In addition, using the same approach, the effects of changing airway resistance per se were assessed in another group of 10 COPD patients and 10 normal subjects, while breathing air and after equilibration with 80% helium in oxygen. Main findings were: peak expiratory flow (PEF), FEV1, and maximal midexpiratory flow rate (MMF) were significantly larger with maneuver 1 than 2; after salbutamol administration and during helium-oxygen breathing, all indices increased significantly with both maneuvers but the relative differences between maneuvers 1 and 2 were unchanged. We conclude that time dependency of maximal expiratory flow-volume (MEFV) curves, as indexed by PEF, FEV1, and MMF, is largely independent of bronchomotor tone and gas density, and probably reflects mainly stress relaxation of the respiratory tissues. The relevance of time dependency of FVC maneuver in the assessment of bronchodilator response and density dependence is discussed.
Size-dependent error of the density functional theory ionization potential in vacuum and solution.
Sosa Vazquez, Xochitl A; Isborn, Christine M
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes.
Thorson, James T; Rindorf, Anna; Gao, Jin; Hanselman, Dana H; Winker, Henning
2016-10-12
The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution theory) or the basin model (BM; positive abundance-area relationship, supported by density-dependent habitat selection theory). The BM implies that fishes move towards preferred habitat as the population declines. We estimate the average relationship using bottom trawl data for 92 fish species from six marine regions, to determine whether the BM or PDM provides a better description for sea-bottom-associated fishes. We fit a spatio-temporal model and estimate changes in effective area occupied and abundance, and combine results to estimate the average abundance-area relationship as well as variability among taxa and regions. The average relationship is weak but significant (0.6% increase in area for a 10% increase in abundance), whereas only a small proportion of species-region combinations show a negative relationship (i.e. shrinking area when abundance increases). Approximately one-third of combinations (34.6%) are predicted to increase in area more than 1% for every 10% increase in abundance. We therefore infer that population density generally changes faster than effective area occupied during abundance changes. Gadiformes have the strongest estimated relationship (average 1.0% area increase for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea-bottom-associated fishes, and that many individual populations merit cautious management during population declines, because a compressed range may increase the efficiency of harvest.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Energy Technology Data Exchange (ETDEWEB)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Density determination of nano-layers depending to the thickness by non-destructive method
Energy Technology Data Exchange (ETDEWEB)
Gacem, A. [Département des Sciences Fondamentales, Faculté des Sciences et Sciences de l' Ingénieur, Université 20 Aout.1955, Skikda, BP 26, DZ-21000 Algérie and Laboratoire des Semi-Conducteurs, Département de Physique (Algeria); Doghmane, A.; Hadjoub, Z. [Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, BP 12, Annaba, DZ-23000 (Algeria)
2013-12-16
Non-destructive tests used to characterize and observe the state of the solids near the surface or at depth, without damaging them or damaging them. Density is frequently used to follow the variations of the physical structure of the samples, as well as in the calculation of quantity of material required to fill a given volume, and it is also used to determine the homogeneity of a sample. However, the measurement of the acoustic properties (density, elastic constants,…) of a thin film whose thickness is smaller than several atomic layers is not easy to perform. For that reason, we expose in this work the effects of the thicknesses of thin films on the evolution of the density, where several samples are analyzed. The samples selected structures are thin films deposited on substrates, these coatings have thicknesses varying from a few atomic layers to ten or so micrometers and can change the properties of the substrate on which they are deposited. To do so, we considered a great number of layers (Cr, Al, SiO{sub 2}, ZnO, Cu, AlN, Si{sub 3}N{sub 4}, SiC) deposited on different substrates (Al{sub 2}O{sub 3}, Cu and Quartz). It is first shown that the density exhibits a dispersive behaviour. Such a behaviour is characterized by an initial increase (or decrease) followed by a saturated region. Further investigations of these dependences led to the determination of a semi-empirical universal relations, ρ=f(h/λ{sub T}), for all the investigated layer/substrate combination. Such expression could be of great importance in the density prediction of even layers thicknesses.
Devi, Sharmila; Williams, Daryl R
2014-10-01
Knowledge of the mechanical behaviour of freeze dried biopharmaceutical products is essential for designing of products with physical robustness that will not to crack, crumble or collapse during processing or transportation. The compressive mechanical deformation behaviour for freeze-dried sucrose cakes has been experimentally studied from a relative density (ρf/ρs) of 0.01-0.30 using a novel in-vial indentation test. Cakes exhibited more open like structures at lower densities and more closed structures at higher densities with some faces being present at all densities, as confirmed by SEM. The reduced elastic modulus Ef/Es=0.0044(ρf/ρs)(1) for all cake densities, indicating that face stretching was the dominant deformation mode assuming Gibson and Ashby's closed cell model. This linear scaling for the reduced elastic modulus is in line with various theoretical treatments based on tetrakaidecahedral cells and other experimental studies. Consistently, the wall thickness to cell diameter ratio scaled ρf/ρs with a power constant of 1.05. The maximum crushing stress was given by σmax=3800(ρf/ρs)(1.48) which agrees with a strut bending failure stress, assuming Gibson and Ashby's open cell model. Overall, the freeze dried cakes behaved as neither classic closed cell nor open cell materials, with their compressive elastic moduli reflecting a closed cell elastic response whilst their failure stresses reflecting an open cell failure mode. It was concluded that the mechanical response of freeze dried cellular materials depends upon their complex cellular structures and morphologies, and they cannot be rationalised using simple limiting case models of open or closed cell solids.
Non-formation of vacuum states for Navier-Stokes equations with density-dependent viscosity
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We consider the Cauchy problem, free boundary problem and piston problem for one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. Using the reduction to absurdity method, we prove that the weak solutions to these systems do not exhibit vacuum states, provided that no vacuum states are present initially. The essential requirements on the solutions are that the mass and energy of the fluid are locally integrable at each time, and the Lloc1-norm of the velocity gradient is locally integrable in time.
Noise-amplitude dependence of the invariant density for noisy, fully chaotic one-dimensional maps
Seshadri, S R; Lakshmibala, S
1999-01-01
We present some analytic, non-perturbative results for the invariant density rho(x) for noisy one-dimensional maps at fully developed chaos. Under periodic boundary conditions, the Fourier expansion method is used to show precisely how noise makes rho(x) absolutely continuous and smoothens it out. Simple solvable models are used to illustrate the explicit dependence of rho(x) on the amplitude eta of the noise distribution, all the way from the case of zero noise (eta > 0) to the completely noise-dominated limit (eta=1).
Bulk viscosity of strange quark matter in density dependent quark mass model
Indian Academy of Sciences (India)
J D Anand; N Chandrika Devi; V K Gupta; S Singh
2000-05-01
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and ﬁrst order interactions were taken into account. We ﬁnd that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.
Energy Technology Data Exchange (ETDEWEB)
Quijada, M. [Departamento de Fisica de Materiales, Facultad de Quimicas UPV/EHU, Apartado 1072, 20080 San Sebastian (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Borisov, A.G. [Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Universite Paris-Sud, Laboratoire des Collisions Atomiques et Moleculaires (France); CNRS, UMR 8625, Laboratoire des Collisions Atomiques et Moleculaires, LCAM, Batiment 351, UPS-11, Orsay, 91405 Orsay Cedex (France); Muino, R.D. [Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Centro de Fisica de Materiales, Centro Mixto CSIC-UPV/EHU, Edificio Korta, Avenida de Tolosa 72, 20018 San Sebastian (Spain)
2008-06-15
Time-dependent density functional theory is used to study the interaction between antiprotons and metallic nanoshells. The ground state electronic properties of the nanoshell are obtained in the jellium approximation. The energy lost by the antiproton during the collision is calculated and compared to that suffered by antiprotons traveling in metal clusters. The resulting energy loss per unit path length of material in thin nanoshells is larger than the corresponding quantity for clusters. It is shown that the collision process can be interpreted as the antiproton crossing of two nearly bi-dimensional independent metallic systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Excitons in solids with non-empirical hybrid time-dependent density-functional theory
Ullrich, Carsten; Yang, Zeng-Hui; Sottile, Francesco
2015-03-01
The Bethe-Salpeter equation (BSE) accurately describes the optical properties of solids, but is computationally expensive. Time-dependent density-functional theory (TDDFT) is more efficient, but standard functionals do not produce excitons in extended systems. We present a new, non-empirical hybrid TDDFT approach whose computational cost is much less than BSE, while the accuracy for both bound excitons and the continuum spectra is comparable to that of the BSE. Good performance is observed for both small-gap semiconductors and large-gap insulators. Work supported by NSF Grant DMR-1408904.
Excitons in solids with time-dependent density-functional theory: the bootstrap kernel and beyond
Byun, Young-Moo; Yang, Zeng-Hui; Ullrich, Carsten
Time-dependent density-functional theory (TDDFT) is an efficient method to describe the optical properties of solids. Lately, a series of bootstrap-type exchange-correlation (xc) kernels have been reported to produce accurate excitons in solids, but different bootstrap-type kernels exist in the literature, with mixed results. In this presentation, we reveal the origin of the confusion and show a new empirical TDDFT xc kernel to compute excitonic properties of semiconductors and insulators efficiently and accurately. Our method can be used for high-throughput screening calculations and large unit cell calculations. Work supported by NSF Grant DMR-1408904.