WorldWideScience

Sample records for delayed brittle failure

  1. Sequentially linear analysis for simulating brittle failure

    NARCIS (Netherlands)

    van de Graaf, A.V.

    2017-01-01

    The numerical simulation of brittle failure at structural level with nonlinear finite
    element analysis (NLFEA) remains a challenge due to robustness issues. We attribute these problems to the dimensions of real-world structures combined with softening behavior and negative tangent stiffness at

  2. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  3. Atomistic explanation of brittle failure of thermoelectric skutterudite CoSb3

    International Nuclear Information System (INIS)

    Li, Guodong; An, Qi; Goddard, William A.; Hanus, Riley; Zhai, Pengcheng; Zhang, Qingjie; Snyder, G. Jeffrey

    2016-01-01

    CoSb 3 based skutterudite thermoelectric material has superior thermoelectric properties, but the low fracture toughness prevents its widespread commercial application. To determine the origin of its brittle failure, we examined the response of shear deformation in CoSb 3 along the most plausible slip system (010)/<100>, using large-scale molecular dynamics simulations. We find that the brittle failure of CoSb 3 arises from the formation of shear bands due to the destruction of Sb4-rings and the slippage of Co-octahedraes. This leads to the breakage of Co-octahedraes and cavitation, resulting in the crack opening and mechanical failure.

  4. Nanowire failure: long = brittle and short = ductile.

    Science.gov (United States)

    Wu, Zhaoxuan; Zhang, Yong-Wei; Jhon, Mark H; Gao, Huajian; Srolovitz, David J

    2012-02-08

    Experimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure. We developed a simple model for predicting the critical nanowire length for this failure mode transition and showed that it is in excellent agreement with both the simulation results and the extant experimental data. The present results provide a new paradigm for the design of nanoscale mechanical systems that demarcates graceful and catastrophic failure. © 2012 American Chemical Society

  5. Permeability Evolution and Rock Brittle Failure

    OpenAIRE

    Sun Qiang; Xue Lei; Zhu Shuyun

    2015-01-01

    This paper reports an experimental study of the evolution of permeability during rock brittle failure and a theoretical analysis of rock critical stress level. It is assumed that the rock is a strain-softening medium whose strength can be described by Weibull’s distribution. Based on the two-dimensional renormalization group theory, it is found that the stress level λ c (the ratio of the stress at the critical point to the peak stress) depends mainly on the homogeneity index or shape paramete...

  6. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

    Science.gov (United States)

    Dammyr, Øyvind

    2016-06-01

    Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi- empirical criterion, the Hoek- Brown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

  7. Micromechanics of failure in brittle geomaterials. Final technical report (for 7/1/1994 - 8/31/2000)

    International Nuclear Information System (INIS)

    Wong, Teng-fong

    2000-01-01

    The overall objective was to provide a fundamental understanding of brittle failure processes in porous and compact geomaterials. This information is central to energy-related programs such as oil and gas exploration/production, reservoir engineering, drilling technology, geothermal energy recovery, nuclear waste isolation, and environmental remediation. The effects of key parameters such as grain boundary structure and cementation, damage state, and load path on the deformation and failure model of brittle geomaterials are still largely unknown. The research methodology emphasized the integration of experimental rock mechanical testing, quantitative microscopy, and detailed analysis using fracture mechanics, continuum plasticity theory, and numerical methods. Significant progress was made in elucidating the micromechanics of brittle failure in compact crystalline rocks, as well as high-porosity siliciclastic and carbonate rocks. Substantial effort was expended toward applying a new quantitative three-dimensional imaging technique to geomaterials and for developing enhanced image analysis capabilities. The research is presented under the following topics: technique for imaging the 3-D pore structure of geomaterials; mechanics of compressive failure in sandstone; effect of water on compressive failure of sandstone; micromechanics of compressive failure: observation and model; and the brittle-ductile transition in porous carbonate rocks

  8. Multiaxial brittle failure of a 3D carbon-carbon composite

    International Nuclear Information System (INIS)

    Davy, Catherine

    2001-01-01

    Several industrial equipments, for example in aeronautics, civil or military nuclear applications, imply multi-axially loaded brittle materials for which reliable failure models are needed. In that context, our study focuses on a 3D carbon-carbon composite submitted in service to a triaxial strain state along its orthotropy axes. A failure criterion based on a bibliographical analysis is identified thanks to uniaxial tensile tests, and validated through an original multiaxial experiment. The scatter on its failure characteristics is also identified. (author) [fr

  9. Brittle Creep Failure, Critical Behavior, and Time-to-Failure Prediction of Concrete under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yingchong Wang

    2015-01-01

    Full Text Available Understanding the time-dependent brittle deformation behavior of concrete as a main building material is fundamental for the lifetime prediction and engineering design. Herein, we present the experimental measures of brittle creep failure, critical behavior, and the dependence of time-to-failure, on the secondary creep rate of concrete under sustained uniaxial compression. A complete evolution process of creep failure is achieved. Three typical creep stages are observed, including the primary (decelerating, secondary (steady state creep regime, and tertiary creep (accelerating creep stages. The time-to-failure shows sample-specificity although all samples exhibit a similar creep process. All specimens exhibit a critical power-law behavior with an exponent of −0.51 ± 0.06, approximately equal to the theoretical value of −1/2. All samples have a long-term secondary stage characterized by a constant strain rate that dominates the lifetime of a sample. The average creep rate expressed by the total creep strain over the lifetime (tf-t0 for each specimen shows a power-law dependence on the secondary creep rate with an exponent of −1. This could provide a clue to the prediction of the time-to-failure of concrete, based on the monitoring of the creep behavior at the steady stage.

  10. Some elementary mechanics of explosive and brittle failure modes in prestressed containments

    International Nuclear Information System (INIS)

    Murray, D.W.

    1978-06-01

    Fundamental concepts related to pneumatic pressurization and explosive behaviour of containment structures are reviewed. It is shown that explosive behaviour occurs whenever a pressure equal to the ultimate capacity of the structure is attained. The energy associated with hydraulic pressurization is bounded and shown to be orders of magnitude less than that associated with pneumatic pressurization. It is also shown that structural behaviour prior to attaining the ultimate load capacity is independent of the pressurized medium. The phenomenon of brittle fracture, as it relates to prestressed concrete containments, is explored. A theoretical technique of proportioning cross sections is developed to eliminate the possibility of catastrophic brittle tensile fractures. The possibility of brittle fractures being triggered by failure of some type of 'detail' is also examined. An attempt is made to identify the types of failures for which the state of the art may be inadequate to assess behaviour under overpressure conditions. (author)

  11. Evaluation of strength and failure of brittle rock containing initial cracks under lithospheric conditions

    Science.gov (United States)

    Li, Xiaozhao; Qi, Chengzhi; Shao, Zhushan; Ma, Chao

    2018-02-01

    Natural brittle rock contains numerous randomly distributed microcracks. Crack initiation, growth, and coalescence play a predominant role in evaluation for the strength and failure of brittle rocks. A new analytical method is proposed to predict the strength and failure of brittle rocks containing initial microcracks. The formulation of this method is based on an improved wing crack model and a suggested micro-macro relation. In this improved wing crack model, the parameter of crack angle is especially introduced as a variable, and the analytical stress-crack relation considering crack angle effect is obtained. Coupling the proposed stress-crack relation and the suggested micro-macro relation describing the relation between crack growth and axial strain, the stress-strain constitutive relation is obtained to predict the rock strength and failure. Considering different initial microcrack sizes, friction coefficients and confining pressures, effects of crack angle on tensile wedge force acting on initial crack interface are studied, and effects of crack angle on stress-strain constitutive relation of rocks are also analyzed. The strength and crack initiation stress under different crack angles are discussed, and the value of most disadvantaged angle triggering crack initiation and rock failure is founded. The analytical results are similar to the published study results. Rationality of this proposed analytical method is verified.

  12. Intermittency and roughening in the failure of brittle heterogeneous materials

    International Nuclear Information System (INIS)

    Bonamy, Daniel

    2009-01-01

    Stress enhancement in the vicinity of brittle cracks makes the macro-scale failure properties extremely sensitive to the micro-scale material disorder. Therefore, (i) fracturing systems often display a jerky dynamics, so-called crackling noise, with seemingly random sudden energy release spanning over a broad range of scales, reminiscent of earthquakes; (ii) fracture surfaces exhibit roughness at scales much larger than that of material microstructure. Here, I provide a critical review of experiments and simulations performed in this context, highlighting the existence of universal scaling features, independent of both the material and the loading conditions, reminiscent of critical phenomena. I finally discuss recent stochastic descriptions of crack growth in brittle disordered media that seem to capture qualitatively-and sometimes quantitatively-these scaling features.

  13. Improvement of methods to evaluate brittle failure resistance of the WWER reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A A; Parshutin, E V [Engineering Center of Nuclear Equipment Strength, Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Rogov, M F; Dragunov, U G [Experimenter` s and Designer` s Office ` ` Hydropress` ` (Russian Federation)

    1997-09-01

    At the next 10 years a number of Russian WWER nuclear power plants will complete its design lifetime. Normative methods to evaluate brittle failure resistance of the reactor pressure vessels used in Russia have been intended for design stage. The evaluation of reactor pressure vessel lifetime in operation stage demands to create new methods of calculation and new methods for experimental evaluation of brittle failure resistance degradation. The main objective of the study in this type of reactor is weldment number 4. In this report an analysis is made of methods to determine critical temperature of reactor materials including the results of instrumented Charpy testing. 12 figs.

  14. On Failure in Polycrystalline and Amorphous Brittle Materials

    Science.gov (United States)

    Bourne, N. K.

    2009-12-01

    The performance of behaviour of brittle materials depends upon discrete deformation mechanisms operating during the loading process. The critical mechanisms determining the behaviour of armour ceramics have not been isolated using traditional ballistics. It has recently become possible to measure strength histories in materials under shock. The data gained for the failed strength of the armour are shown to relate directly to the penetration measured into tiles. Further the material can be loaded and recovered for post-mortem examination. Failure is by micro-fracture that is a function of the defects and then cracking activated by plasticity mechanisms within the grains and failure at grain boundaries in the amorphous intergranular phase. Thus it is the shock-induced plastic yielding of grains at the impact face that determines the later time penetration through the tile.

  15. A kinematic measurement for ductile and brittle failure of materials using digital image correlation

    Directory of Open Access Journals (Sweden)

    M.M. Reza Mousavi

    2016-12-01

    Full Text Available This paper addresses some material level test which is done on quasi-brittle and ductile materials in the laboratory. The displacement control experimental program is composed of mortar cylinders under uniaxial compression shows quasi-brittle behavior and seemingly round-section aluminum specimens under uniaxial tension represents ductile behavior. Digital Image Correlation gives full field measurement of deformation in both aluminum and mortar specimens. Likewise, calculating the relative displacement of two points located on top and bottom of virtual LVDT, which is virtually placed on the surface of the specimen, gives us the classical measure of strain. However, the deformation distribution is not uniform all over the domain of specimens mainly due to imperfect nature of experiments and measurement devices. Displacement jumps in the fracture zone of mortar specimens and strain localization in the necking area for the aluminum specimen, which are reflecting different deformation values and deformation gradients, is compared to the other regions. Since the results are inherently scattered, it is usually non-trivial to smear out the stress of material as a function of a single strain value. To overcome this uncertainty, statistical analysis could bring a meaningful way to closely look at scattered results. A large number of virtual LVDTs are placed on the surface of specimens in order to collect statistical parameters of deformation and strain. Values of mean strain, standard deviation and coeffcient of variations for each material are calculated and correlated with the failure type of the corresponding material (either brittle or ductile. The main limiters for standard deviation and coeffcient of variations for brittle and ductile failure, in pre-peak and post-peak behavior are established and presented in this paper. These limiters help us determine whether failure is brittle or ductile without determining of stress level in the material.

  16. Protecting against failure by brittle fracture in ferritic steel shipping containers

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Langland, R.T.

    1983-01-01

    The possible use of ferritic steels for the containment structure of shipping casks has motivated the development of criteria for assuring the integrity of these casks under both normal and hypothetical accident conditions specified in Part 71 of the Code of Federal Regulations. The US Nuclear Regulatory Commission Regulation Guide 7.6 provides design criteria for preventing ductile failure steel shipping containers. The research described in this paper deals with criteria for preventing brittle fracture of ferritic steel shipping containers. Initially guidelines were developed for ferritic steel up to four inches thick (I). This was followed by an investigation of various criteria that might be used for monolithic thick walled casks greater than four inches thick (2). Three categories of safety are identified in the design of shipping containers. Category I, the highest level of safety, is appropriate for containment systems for spent nuclear fuel and high level waste transport packaging. In Category I, containers are designed to the highest level of safety and brittle fracture is essentially not possible. Categories II and III represent levels of safety commensurate with the consequences of release of lower levels of radioactivity. In these latter categories, consideration of factors contributing to brittle fracture, good engineering practice, and careful selection of material make brittle fracture unlikely under environmental conditions encountered during shipping. This paper will deal primarily with Category I containers. The guidelines for Category II and III containers are fully described elsewhere. 5 references, 10 figures, 3 tables

  17. The failure of brittle materials under overall compression: Effects of loading rate and defect distribution

    Science.gov (United States)

    Paliwal, Bhasker

    The constitutive behaviors and failure processes of brittle materials under far-field compressive loading are studied in this work. Several approaches are used: experiments to study the compressive failure behavior of ceramics, design of experimental techniques by means of finite element simulations, and the development of micro-mechanical damage models to analyze and predict mechanical response of brittle materials under far-field compression. Experiments have been conducted on various ceramics, (primarily on a transparent polycrystalline ceramic, aluminum oxynitride or AlON) under loading rates ranging from quasi-static (˜ 5X10-6) to dynamic (˜ 200 MPa/mus), using a servo-controlled hydraulic test machine and a modified compression Kolsky bar (MKB) technique respectively. High-speed photography has also been used with exposure times as low as 20 ns to observe the dynamic activation, growth and coalescence of cracks and resulting damage zones in the specimen. The photographs were correlated in time with measurements of the stresses in the specimen. Further, by means of 3D finite element simulations, an experimental technique has been developed to impose a controlled, homogeneous, planar confinement in the specimen. The technique can be used in conjunction with a high-speed camera to study the in situ dynamic failure behavior of materials under confinement. AlON specimens are used for the study. The statically pre-compressed specimen is subjected to axial dynamic compressive loading using the MKB. Results suggest that confinement not only increases the load carrying capacity, it also results in a non-linear stress evolution in the material. High-speed photographs also suggest an inelastic deformation mechanism in AlON under confinement which evolves more slowly than the typical brittle-cracking type of damage in the unconfined case. Next, an interacting micro-crack damage model is developed that explicitly accounts for the interaction among the micro-cracks in

  18. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth.

    Science.gov (United States)

    Wang, Haoran; Wang, Xueju; Xia, Shuman; Chew, Huck Beng

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of LixSi electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si-Si bonds, while subsequent failure is still brittle-like with the breaking of Si-Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li-Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the LixSi alloys leads to significant strain recovery.

  19. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  20. A quasi-static algorithm that includes effects of characteristic time scales for simulating failures in brittle materials

    KAUST Repository

    Liu, Jinxing; El Sayed, Tamer S.

    2013-01-01

    When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice

  1. Micromechanical local approach to brittle failure in bainite high resolution polycrystals: A short presentation

    International Nuclear Information System (INIS)

    N'Guyen, C.N.; Osipov, N.; Cailletaud, G.; Barbe, F.; Marini, B.; Petry, C.

    2012-01-01

    The problem of determining the probability of failure in a brittle material from a micromechanical local approach has recently been addressed in few works, all related to bainite polycrystals at different temperatures and states of irradiation. They have separately paved the ground for a full-field modelling with high realism in terms of constitutive modelling and microstructural morphology. This work first contributes to enhance this realism by assembling the most pertinent/valuable characteristics (dislocation density based model, large deformation framework, fully controlled triaxiality conditions, explicit microstructure representation of grains and sub-grains,... ) and by accounting for a statistically representative Volume Element; this condition indeed must be fulfilled in order to capture rare events like brittle micro-fractures which, in the stress analysis, correspond to the tails of distribution curves. The second original contribution of this work concerns the methodology for determining fracture probabilities: rather than classically - and abruptly - considering a polycrystal as broken as soon as an elementary link (grain or sub-grain) has failed, the possibility of microcrack arrest at microstructural barriers is introduced, which enables to determine the probability of polycrystal failure according to different scenarios of multiple micro-fractures. (authors)

  2. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    International Nuclear Information System (INIS)

    Wang, Haoran; Chew, Huck Beng; Wang, Xueju; Xia, Shuman

    2015-01-01

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li x Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li x Si alloys leads to significant strain recovery

  3. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haoran; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wang, Xueju; Xia, Shuman [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li{sub x}Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li{sub x}Si alloys leads to significant strain recovery.

  4. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  5. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    Science.gov (United States)

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  6. Failure processes in soft and quasi-brittle materials with nonhomogeneous microstructures

    Science.gov (United States)

    Spring, Daniel W.

    Material failure pervades the fields of materials science and engineering; it occurs at various scales and in various contexts. Understanding the mechanisms by which a material fails can lead to advancements in the way we design and build the world around us. For example, in structural engineering, understanding the fracture of concrete and steel can lead to improved structural systems and safer designs; in geological engineering, understanding the fracture of rock can lead to increased efficiency in oil and gas extraction; and in biological engineering, understanding the fracture of bone can lead to improvements in the design of bio-composites and medical implants. In this thesis, we numerically investigate a wide spectrum of failure behavior; in soft and quasi-brittle materials with nonhomogeneous microstructures considering a statistical distribution of material properties. The first topic we investigate considers the influence of interfacial interactions on the macroscopic constitutive response of particle reinforced elastomers. When a particle is embedded into an elastomer, the polymer chains in the elastomer tend to adsorb (or anchor) onto the surface of the particle; creating a region in the vicinity of each particle (often referred to as an interphase) with distinct properties from those in the bulk elastomer. This interphasial region has been known to exist for many decades, but is primarily omitted in computational investigations of such composites. In this thesis, we present an investigation into the influence of interphases on the macroscopic constitutive response of particle filled elastomers undergoing large deformations. In addition, at large deformations, a localized region of failure tends to accumulate around inclusions. To capture this localized region of failure (often referred to as interfacial debonding), we use cohesive zone elements which follow the Park-Paulino-Roesler traction-separation relation. To account for friction, we present a new

  7. Structural and microstructural design in brittle materials

    International Nuclear Information System (INIS)

    Evans, A.G.

    1979-12-01

    Structural design with brittle materials requires that the stress level in the component correspond to a material survival probability that exceeds the minimum survival probability permitted in that application. This can be achieved by developing failure models that fully account for the probability of fracture from defects within the material (including considerations of fracture statistics, fracture mechanics and stress analysis) coupled with non-destructive techniques that determine the size of the large extreme of critical defects. Approaches for obtaining the requisite information are described. The results provide implications for the microstructural design of failure resistant brittle materials by reducing the size of deleterious defects and enhancing the fracture toughness

  8. A new tablet brittleness index.

    Science.gov (United States)

    Gong, Xingchu; Sun, Changquan Calvin

    2015-06-01

    Brittleness is one of the important material properties that influences the success or failure of powder compaction. We have discovered that the reciprocal of diametrical elastic strain at fracture is the most suitable tablet brittleness indices (TBIs) for quantifying brittleness of pharmaceutical tablets. The new strain based TBI is supported by both theoretical considerations and a systematic statistical analysis of friability data. It is sufficiently sensitive to changes in both tablet compositions and compaction parameters. For all tested materials, it correctly shows that tablet brittleness increases with increasing tablet porosity for the same powder. In addition, TBI increases with increasing content of a brittle excipient, lactose monohydrate, in the mixtures with a plastic excipient, microcrystalline cellulose. A probability map for achieving less than 1% tablet friability at various combinations of tablet tensile strength and TBI was constructed. Data from marketed tablets validate this probability map and a TBI value of 150 is recommended as the upper limit for pharmaceutical tablets. This TBI can be calculated from the data routinely obtained during tablet diametrical breaking test, which is commonly performed for assessing tablet mechanical strength. Therefore, it is ready for adoption for quantifying tablet brittleness to guide tablet formulation development since it does not require additional experimental work. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Investigation into brittle failure of some starter bars

    NARCIS (Netherlands)

    Hordijk, D.A.; Vliet, M.R.A. van

    2002-01-01

    This paper reports on an investigation into the cause and consequences of an observed brittle behaviour of some starter bars on a construction site in the Netherlands. A few bars suddenly failed when they were bent in order to align them. For the investigation firstly a batch of starter bars that

  10. Safety of light-water reactor pressure vessels against brittle fracture

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    The results are surveyed of research by SKODA Trust into brittle failure resistance of materials for WWER type reactor pressure vessels and into pressure vessel operating safety. Conditions are discussed in detail decisive for initiation, propagation and arrest of brittle fracture. The tests on the Cr-Mo-V type steel showed high resistance of the steel to the formation and the propagation of brittle fracture. They also confirmed the high operating reliability and the required service life of the steel. (B.S.)

  11. Mesoscale analysis of failure in quasi-brittle materials: comparison between lattice model and acoustic emission data.

    Science.gov (United States)

    Grégoire, David; Verdon, Laura; Lefort, Vincent; Grassl, Peter; Saliba, Jacqueline; Regoin, Jean-Pierre; Loukili, Ahmed; Pijaudier-Cabot, Gilles

    2015-10-25

    The purpose of this paper is to analyse the development and the evolution of the fracture process zone during fracture and damage in quasi-brittle materials. A model taking into account the material details at the mesoscale is used to describe the failure process at the scale of the heterogeneities. This model is used to compute histograms of the relative distances between damaged points. These numerical results are compared with experimental data, where the damage evolution is monitored using acoustic emissions. Histograms of the relative distances between damage events in the numerical calculations and acoustic events in the experiments exhibit good agreement. It is shown that the mesoscale model provides relevant information from the point of view of both global responses and the local failure process. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.

  12. Defining the Brittle Failure Envelopes of Individual Reaction Zones Observed in CO2-Exposed Wellbore Cement.

    Science.gov (United States)

    Hangx, Suzanne J T; van der Linden, Arjan; Marcelis, Fons; Liteanu, Emilia

    2016-01-19

    To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2 exposure. The cement was exposed to CO2-rich fluid for one to six months at 65 °C and 8 MPa Ptotal. Detailed SEM-EDX analyses showed reaction zones similar to those previously reported in the literature: (1) an outer-reacted, porous silica-rich zone; (2) a dense, carbonated zone; and (3) a more porous, Ca-depleted inner zone. The quantitative mechanical data (brittle compressive strength and friction coefficient) obtained for each of the zones suggest that the heterogeneity of reacted cement leads to a wide range of brittle strength values in any of the reaction zones, with only a rough dependence on exposure time. However, the data can be used to guide numerical modeling efforts needed to assess the impact of reaction-induced mechanical failure of wellbore cement by coupling sensitivity analysis and mechanical predictions.

  13. Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks

    Science.gov (United States)

    Li, Xiaozhao; Shao, Zhushan

    2016-07-01

    The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.

  14. FAILPROB-A Computer Program to Compute the Probability of Failure of a Brittle Component; TOPICAL

    International Nuclear Information System (INIS)

    WELLMAN, GERALD W.

    2002-01-01

    FAILPROB is a computer program that applies the Weibull statistics characteristic of brittle failure of a material along with the stress field resulting from a finite element analysis to determine the probability of failure of a component. FAILPROB uses the statistical techniques for fast fracture prediction (but not the coding) from the N.A.S.A. - CARES/life ceramic reliability package. FAILPROB provides the analyst at Sandia with a more convenient tool than CARES/life because it is designed to behave in the tradition of structural analysis post-processing software such as ALGEBRA, in which the standard finite element database format EXODUS II is both read and written. This maintains compatibility with the entire SEACAS suite of post-processing software. A new technique to deal with the high local stresses computed for structures with singularities such as glass-to-metal seals and ceramic-to-metal braze joints is proposed and implemented. This technique provides failure probability computation that is insensitive to the finite element mesh employed in the underlying stress analysis. Included in this report are a brief discussion of the computational algorithms employed, user instructions, and example problems that both demonstrate the operation of FAILPROB and provide a starting point for verification and validation

  15. The role of post-failure brittleness of soft rocks in the assessment of stability of intact masses: FDEM technique applications to ideal problems

    Science.gov (United States)

    Lollino, Piernicola; Andriani, Gioacchino Francesco; Fazio, Nunzio Luciano; Perrotti, Michele

    2016-04-01

    Strain-softening under low confinement stress, i.e. the drop of strength that occurs in the post-failure stage, represents a key factor of the stress-strain behavior of rocks. However, this feature of the rock behavior is generally underestimated or even neglected in the assessment of boundary value problems of intact soft rock masses. This is typically the case when the stability of intact rock masses is treated by means of limit equilibrium or finite element analyses, for which rigid-plastic or elastic perfectly-plastic constitutive models, generally implementing peak strength conditions of the rock, are respectively used. In fact, the aforementioned numerical techniques are characterized by intrinsic limitations that do not allow to account for material brittleness, either for the method assumptions or due to numerical stability problems, as for the case of the finite element method, unless sophisticated regularization techniques are implemented. However, for those problems that concern the stability of intact soft rock masses at low stress levels, as for example the stability of shallow underground caves or that of rock slopes, the brittle stress-strain response of rock in the post-failure stage cannot be disregarded due to the risk of overestimation of the stability factor. This work is aimed at highlighting the role of post-peak brittleness of soft rocks in the analysis of specific ideal problems by means of the use of a hybrid finite-discrete element technique (FDEM) that allows for the simulation of the rock stress-strain brittle behavior in a proper way. In particular, the stability of two ideal cases, represented by a shallow underground rectangular cave and a vertical cliff, has been analyzed by implementing a post-peak brittle behavior of the rock and the comparison with a non-brittle response of the rock mass is also explored. To this purpose, the mechanical behavior of a soft calcarenite belonging to the Calcarenite di Gravina formation, extensively

  16. Elastic geobarometry and the role of brittle failure on pressure release

    Science.gov (United States)

    Mazzucchelli, Mattia Luca; Angel, Ross John; Rustioni, Greta; Milani, Sula; Nimis, Paolo; Chiara Domeneghetti, Maria; Marone, Federica; Harris, Jeff W.; Nestola, Fabrizio; Alvaro, Matteo

    2016-04-01

    Mineral inclusions trapped in their hosts can provide fundamental information about geological processes. Recent developments in elastic geobarometry, for example, allow the retrieval of encapsulation pressures for host-inclusion pairs. In principle this method can be applied to any mineral-mineral pair so long as both the residual pressure on an inclusion (Pinc), and the equations of state for both host and inclusion are either known or determined (Angel et al., 2015). However, Angel et al. (2014) outlined some boundary conditions, one of which was that deformation in the host-inclusion pair has to be purely elastic. Thus this caveat would exclude from analysis all the inclusions that are surrounded by cracks, indicative of brittle deformation, which may result in partial or complete release of the Pinc. If however the effects of cracks surrounding trapped mineral inclusions could be quantitatively modelled, then the applicability of "elastic" geobarometry might be extended to a much larger number of inclusion-host pairs. We report the results of a pilot experiment in which the stress states (i.e. the residual pressure) have been determined for 10 olivine inclusions still entrapped in 5 diamonds. Inclusion pressures were determined from the unit-cell volumes of the olivines measured in-situ in the diamonds by X-ray diffraction. The olivine equations of state were determined from the olivine compositions by in-situ X-ray structure refinement. Values of Pinc range from 0.19 to 0.53 GPa. In order to quantify the degree of brittle failure surrounding the inclusions, the same set of samples were also investigated by synchrotron X-ray micro-tomography (SRXTM at TOMCAT, Swiss LightSource). Preliminary results showed that at the spatial resolution of our experiments (pixel size of 0.34μm), 90% of the inclusions trapped in our set of diamonds were surrounded by cracks. The volume of the cracks has been determined from 3D reconstruction with an accuracy of about 4%. Our

  17. Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon C. [Arizona State Univ., Tempe, AZ (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sallaberry, Cedric Jean-Marie. [Engineering Mechanics Corp. of Columbus, OH (United States)

    2018-02-01

    Probability of loss of assured safety (PLOAS) is modeled for weak link (WL)/strong link (SL) systems in which one or more WLs or SLs could potentially degrade into a precursor condition to link failure that will be followed by an actual failure after some amount of elapsed time. The following topics are considered: (i) Definition of precursor occurrence time cumulative distribution functions (CDFs) for individual WLs and SLs, (ii) Formal representation of PLOAS with constant delay times, (iii) Approximation and illustration of PLOAS with constant delay times, (iv) Formal representation of PLOAS with aleatory uncertainty in delay times, (v) Approximation and illustration of PLOAS with aleatory uncertainty in delay times, (vi) Formal representation of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, (vii) Approximation and illustration of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, and (viii) Procedures for the verification of PLOAS calculations for the three indicated definitions of delayed link failure.

  18. Development of a subway operation incident delay model using accelerated failure time approaches.

    Science.gov (United States)

    Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang

    2014-12-01

    This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Dislocation dynamics modelling of the ductile-brittle-transition

    International Nuclear Information System (INIS)

    Hennecke, Thomas; Haehner, Peter

    2009-01-01

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  20. Identification of a Suitable 3D Printing Material for Mimicking Brittle and Hard Rocks and Its Brittleness Enhancements

    Science.gov (United States)

    Zhou, T.; Zhu, J. B.

    2018-03-01

    Three-dimensional printing (3DP) is a computer-controlled additive manufacturing technique which is able to repeatedly and accurately fabricate objects with complicated geometry and internal structures. After 30 years of fast development, 3DP has become a mainstream manufacturing process in various fields. This study focuses on identifying the most suitable 3DP material from five targeted available 3DP materials, i.e. ceramics, gypsum, PMMA (poly(methyl methacrylate)), SR20 (acrylic copolymer) and resin (Accura® 60), to simulate brittle and hard rocks. Firstly, uniaxial compression tests were performed to determine the mechanical properties and failure patterns of the 3DP samples fabricated by those five materials. Experimental results indicate that among current 3DP techniques, the resin produced via stereolithography (SLA) is the most suitable 3DP material for mimicking brittle and hard rocks, although its brittleness needs to be improved. Subsequently, three methods including freezing, incorporation of internal macro-crack and addition of micro-defects were adopted to enhance the brittleness of the 3DP resin, followed by uniaxial compression tests on the treated samples. Experimental results reveal that 3DP resin samples with the suggested treatments exhibited brittle properties and behaved similarly to natural rocks. Finally, some prospective improvements which can be used to facilitate the application of 3DP techniques to rock mechanics were also discussed. The findings of this paper could contribute to promoting the application of 3DP technique in rock mechanics.

  1. A Micromechanics-Based Elastoplastic Damage Model for Rocks with a Brittle-Ductile Transition in Mechanical Response

    Science.gov (United States)

    Hu, Kun; Zhu, Qi-zhi; Chen, Liang; Shao, Jian-fu; Liu, Jian

    2018-06-01

    As confining pressure increases, crystalline rocks of moderate porosity usually undergo a transition in failure mode from localized brittle fracture to diffused damage and ductile failure. This transition has been widely reported experimentally for several decades; however, satisfactory modeling is still lacking. The present paper aims at modeling the brittle-ductile transition process of rocks under conventional triaxial compression. Based on quantitative analyses of experimental results, it is found that there is a quite satisfactory linearity between the axial inelastic strain at failure and the confining pressure prescribed. A micromechanics-based frictional damage model is then formulated using an associated plastic flow rule and a strain energy release rate-based damage criterion. The analytical solution to the strong plasticity-damage coupling problem is provided and applied to simulate the nonlinear mechanical behaviors of Tennessee marble, Indiana limestone and Jinping marble, each presenting a brittle-ductile transition in stress-strain curves.

  2. Effect of low fatigue on the ductile-brittle transition of molybdenum

    International Nuclear Information System (INIS)

    Furuya, K.; Nagata, N.; Watanabe, R.; Yoshida, H.

    1982-01-01

    An explicit ductile-brittle transition of molybdenum occurring in both tensile and low cycle fatigue tests was investigated. Tests were performed on several sorts of molybdenum and its alloy TZM, and effects of heat treatment, fabrication method and alloying on the transition behavior and fracture mode are described in detail. All the materials exhibited a brittle failure with degraded fatigue behavior at room temperature, while they became ductile as temperature increased up to 573 K. The tendency of fatigue results was qualitatively in accordance with that of reduction of area in tensile tests. Differences among the materials were minor on the ductile-brittle transition temperature (DBTT), but major on the fatigue life for the embrittled materials. (orig.)

  3. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.

    Science.gov (United States)

    Violay, M; Heap, M J; Acosta, M; Madonna, C

    2017-08-09

    Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.

  4. Study of brittle crack jump rate using acoustic emission method

    International Nuclear Information System (INIS)

    Yasnij, P.V.; Pokrovskij, V.V.; Strizhalo, V.A.; Dobrovol'skij, Yu.V.

    1987-01-01

    A new peocedure is elaborated to detect brittle jumps of small length (0.1...5mm) occuring both inside the specimen and along the crack front under static and cyclic loading using the phenomena of acoustic emission (AE). Recording of the crack start and stop moments with an AE sensor as well as evaluation of the brittle crack jump length by the after-failure specimen fracture make it possible to find the mean crack propagation rate. Experimental dependences are obtained for the crack propagation rate with a brittle crack jump in steel 15Kh2MFA (σ B =1157 MPa, σ 0.2 =100 MPa) at 293 K and under cyclic loading as a function of the jump length and also as a function of the critical stress intensity factor K jc i corresponding to the crack jump

  5. Structure and delayed failure behaviour of 0.25C-Ni-Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Kang, C.H.; Maeng, S.C.

    1980-01-01

    Delayed failure behaviour of the different transformation structures of 0.25C-2.5Ni-2.5Cr-0.5Mo-0.1V low alloy steel has been studied. The studied microstructures are martensite, lower bainite, and mixed structure of 50% martensite and 50% lower bainite. All these structures have been tempered at 450 deg C for 40 min to have the same tensile strength level of 143 kg/mm 2 . Delayed failure testing has been carried out with cantilever bend tester, in distilled water at 25 deg C. By comparing K 1 sub(scc) values, lower bainitic structure has shown the highest value, although it is only slightly higher than that of the martensitic structure. Mixed structure has the lowest resistance to delayed failure. The fracture modes of both martensitic and mixed structures have been observed as intergranular. In the martensitic structure, however, it is noticeable that there is a larger amount of ductile tearing between intergranular facets. The fracture mode of lower bainitic structure is the mixed topography of microplastic tearing and microvoid coalescence. The above experimental results are discussed in terms of Oriani's decohesion theory of hydrogen embrittlement. The lowest resistance of the mixed structure to delayed failure may be due to the enhanced decohesion by hydrogen at the phase boundaries of martensite and lower bainite. (author)

  6. An enriched cohesive zone model for delamination in brittle interfaces

    NARCIS (Netherlands)

    Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.

    2009-01-01

    Application of standard cohesive zone models in a finite element framework to simulate delamination in brittle interfaces may trigger non-smooth load-displacement responses that lead to the failure of iterative solution procedures. This non-smoothness is an artifact of the discretization; and hence

  7. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.

  8. A quasi-static algorithm that includes effects of characteristic time scales for simulating failures in brittle materials

    KAUST Repository

    Liu, Jinxing

    2013-04-24

    When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice, the characteristic relaxation time of the lattice, both of which are infinitesimal compared with Tload, the characteristic loading period. The load-unload (L-U) method is used for one extreme, Telem << Tlattice, whereas the force-release (F-R) method is used for the other, Telem T lattice. For cases between the above two extremes, we develop a new algorithm by combining the L-U and the F-R trial displacement fields to construct the new trial field. As a result, our algorithm includes both L-U and F-R failure characteristics, which allows us to observe the influence of the ratio of Telem to Tlattice by adjusting their contributions in the trial displacement field. Therefore, the material dependence of the snap-back instabilities is implemented by introducing one snap-back parameter γ. Although in principle catastrophic failures can hardly be predicted accurately without knowing all microstructural information, effects of γ can be captured by numerical simulations conducted on samples with exactly the same microstructure but different γs. Such a same-specimen-based study shows how the lattice behaves along with the changing ratio of the L-U and F-R components. © 2013 The Author(s).

  9. Towards sensor array materials: can failure be delayed?

    Science.gov (United States)

    Mekid, Samir; Saheb, Nouari; Khan, Shafique M. A.; Qureshi, Khurram K.

    2015-06-01

    Further to prior development in enhancing structural health using smart materials, an innovative class of materials characterized by the ability to feel senses like humans, i.e. ‘nervous materials’, is discussed. Designed at all scales, these materials will enhance personnel and public safety, and secure greater reliability of products. Materials may fail suddenly, but any system wishes that failure is known in good time and delayed until safe conditions are reached. Nervous materials are expected to be the solution to this statement. This new class of materials is based on the novel concept of materials capable of feeling multiple structural and external stimuli, e.g. stress, force, pressure and temperature, while feeding information back to a controller for appropriate real-time action. The strain-stress state is developed in real time with the identified and characterized source of stimulus, with optimized time response to retrieve initial specified conditions, e.g. shape and strength. Sensors are volumetrically embedded and distributed, emulating the human nervous system. Immediate applications are in aircraft, cars, nuclear energy and robotics. Such materials will reduce maintenance costs, detect initial failures and delay them with self-healing. This article reviews the common aspects and challenges surrounding this new class of materials with types of sensors to be embedded seamlessly or inherently, including appropriate embedding manufacturing techniques with modeling and simulation methods.

  10. Modeling failure in brittle porous ceramics

    Science.gov (United States)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  11. Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires.

    Science.gov (United States)

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-02-14

    The mechanical properties and plastic deformation mechanisms of metal nanowires have been studied intensely for many years. One of the important yet unresolved challenges in this field is to bridge the gap in properties and deformation mechanisms reported for slow strain rate experiments (∼10 -2 s -1 ), and high strain rate molecular dynamics (MD) simulations (∼10 8 s -1 ) such that a complete understanding of strain rate effects on mechanical deformation and plasticity can be obtained. In this work, we use long time scale atomistic modeling based on potential energy surface exploration to elucidate the atomistic mechanisms governing a strain-rate-dependent incipient plasticity and yielding transition for face centered cubic (FCC) copper and silver nanowires. The transition occurs for both metals with both pristine and rough surfaces for all computationally accessible diameters (ductile-to-brittle transition in failure mode similar to previous experimental studies on bicrystalline silver nanowires is observed, which is driven by differences in dislocation activity and grain boundary mobility as compared to the high strain rate case.

  12. Compressive failure with interacting cracks

    International Nuclear Information System (INIS)

    Yang Guoping; Liu Xila

    1993-01-01

    The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack

  13. Value of the post-operative CT in predicting delayed flap failures following head and neck cancer surgery

    International Nuclear Information System (INIS)

    Kim, Bitna; Yoon, Dae Young; Seo, Young Lan; Park, Min Woo; Kwon, Kee Hwan; Rho, Young Soo; Chung, Chul Hoon

    2017-01-01

    To identify post-operative computed tomography (CT) findings associated with delayed flap failures following head and neck cancer surgery. We retrospectively reviewed 60 patients who underwent flap reconstruction after head and neck cancer surgery and post-operative (3–14 days) contrast-enhanced CT scans for suspected complications. Patients were divided into two groups: delayed flap failure patients (patients required flap revision) (n = 18) and flap success patients (n = 42). Clinical data (age, sex, T-stage, type of flap, and time interval between reconstruction surgery and CT) and post-operative CT findings of flap status (maximum dimension of the flap, intra- or peri-flap fluid collection and intra- or peri-flap air collection, fat infiltration within the flap, fistula to adjacent aerodigestive tract or skin, and enhanced vascular pedicle) were assessed and compared between the two groups. CT findings showed that the following flap anomalies were observed more frequently in the delayed flap failure group than in the flap success group: intra- or peri-flap fluid collection > 4 cm (61.1% vs. 23.8%, p 2 cm (61.1% vs. 2.4%, p < 0.001), and fistula to adjacent aerodigestive tract or skin (44.4% vs. 0%, p < 0.001). The maximum dimension of the flap, fat infiltration within the flap, and enhanced vascular pedicle were not associated with delayed flap failures. A large amount of fluid or air collection and fistula are the CT findings that were associated with delayed flap failures in patients with suspected post-operative complications after head and neck cancer surgery

  14. A delay time model with imperfect and failure-inducing inspections

    International Nuclear Information System (INIS)

    Flage, Roger

    2014-01-01

    This paper presents an inspection-based maintenance optimisation model where the inspections are imperfect and potentially failure-inducing. The model is based on the basic delay-time model in which a system has three states: perfectly functioning, defective and failed. The system is deteriorating through these states and to reveal defective systems, inspections are performed periodically using a procedure by which the system fails with a fixed state-dependent probability; otherwise, an inspection identifies a functioning system as defective (false positive) with a fixed probability and a defective system as functioning (false negative) with a fixed probability. The system is correctively replaced upon failure or preventively replaced either at the N'th inspection time or when an inspection reveals the system as defective, whichever occurs first. Replacement durations are assumed to be negligible and costs are associated with inspections, replacements and failures. The problem is to determine the optimal inspection interval T and preventive age replacement limit N that jointly minimise the long run expected cost per unit of time. The system may also be thought of as a passive two-state system subject to random demands; the three states of the model are then functioning, undetected failed and detected failed; and to ensure the renewal property of replacement cycles the demand process generating the ‘delay time’ is then restricted to the Poisson process. The inspiration for the presented model has been passive safety critical valves as used in (offshore) oil and gas production and transportation systems. In light of this the passive system interpretation is highlighted, as well as the possibility that inspection-induced failures are associated with accidents. Two numerical examples are included, and some potential extensions of the model are indicated

  15. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  16. Elastic-Brittle-Plastic Behaviour of Shale Reservoirs and Its Implications on Fracture Permeability Variation: An Analytical Approach

    Science.gov (United States)

    Masoudian, Mohsen S.; Hashemi, Mir Amid; Tasalloti, Ali; Marshall, Alec M.

    2018-05-01

    Shale gas has recently gained significant attention as one of the most important unconventional gas resources. Shales are fine-grained rocks formed from the compaction of silt- and clay-sized particles and are characterised by their fissured texture and very low permeability. Gas exists in an adsorbed state on the surface of the organic content of the rock and is freely available within the primary and secondary porosity. Geomechanical studies have indicated that, depending on the clay content of the rock, shales can exhibit a brittle failure mechanism. Brittle failure leads to the reduced strength of the plastic zone around a wellbore, which can potentially result in wellbore instability problems. Desorption of gas during production can cause shrinkage of the organic content of the rock. This becomes more important when considering the use of shales for CO2 sequestration purposes, where CO2 adsorption-induced swelling can play an important role. These phenomena lead to changes in the stress state within the rock mass, which then influence the permeability of the reservoir. Thus, rigorous simulation of material failure within coupled hydro-mechanical analyses is needed to achieve a more systematic and accurate representation of the wellbore. Despite numerous modelling efforts related to permeability, an adequate representation of the geomechanical behaviour of shale and its impact on permeability and gas production has not been achieved. In order to achieve this aim, novel coupled poro-elastoplastic analytical solutions are developed in this paper which take into account the sorption-induced swelling and the brittle failure mechanism. These models employ linear elasticity and a Mohr-Coulomb failure criterion in a plane-strain condition with boundary conditions corresponding to both open-hole and cased-hole completions. The post-failure brittle behaviour of the rock is defined using residual strength parameters and a non-associated flow rule. Swelling and shrinkage

  17. Value of the post-operative CT in predicting delayed flap failures following head and neck cancer surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bitna; Yoon, Dae Young; Seo, Young Lan; Park, Min Woo; Kwon, Kee Hwan; Rho, Young Soo; Chung, Chul Hoon [Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of)

    2017-06-15

    To identify post-operative computed tomography (CT) findings associated with delayed flap failures following head and neck cancer surgery. We retrospectively reviewed 60 patients who underwent flap reconstruction after head and neck cancer surgery and post-operative (3–14 days) contrast-enhanced CT scans for suspected complications. Patients were divided into two groups: delayed flap failure patients (patients required flap revision) (n = 18) and flap success patients (n = 42). Clinical data (age, sex, T-stage, type of flap, and time interval between reconstruction surgery and CT) and post-operative CT findings of flap status (maximum dimension of the flap, intra- or peri-flap fluid collection and intra- or peri-flap air collection, fat infiltration within the flap, fistula to adjacent aerodigestive tract or skin, and enhanced vascular pedicle) were assessed and compared between the two groups. CT findings showed that the following flap anomalies were observed more frequently in the delayed flap failure group than in the flap success group: intra- or peri-flap fluid collection > 4 cm (61.1% vs. 23.8%, p < 0.05), intra- or peri-flap air collection > 2 cm (61.1% vs. 2.4%, p < 0.001), and fistula to adjacent aerodigestive tract or skin (44.4% vs. 0%, p < 0.001). The maximum dimension of the flap, fat infiltration within the flap, and enhanced vascular pedicle were not associated with delayed flap failures. A large amount of fluid or air collection and fistula are the CT findings that were associated with delayed flap failures in patients with suspected post-operative complications after head and neck cancer surgery.

  18. Bridging micro to macroscale fracture properties in highly heterogeneous brittle solids: weak pinning versus fingering

    Science.gov (United States)

    Vasoya, Manish; Lazarus, Véronique; Ponson, Laurent

    2016-10-01

    The effect of strong toughness heterogeneities on the macroscopic failure properties of brittle solids is investigated in the context of planar crack propagation. The basic mechanism at play is that the crack is locally slowed down or even trapped when encountering tougher material. The induced front deformation results in a selection of local toughness values that reflect at larger scale on the material resistance. To unravel this complexity and bridge micro to macroscale in failure of strongly heterogeneous media, we propose a homogenization procedure based on the introduction of two complementary macroscopic properties: An apparent toughness defined from the loading required to make the crack propagate and an effective fracture energy defined from the rate of energy released by unit area of crack advance. The relationship between these homogenized properties and the features of the local toughness map is computed using an iterative perturbation method. This approach is applied to a circular crack pinned by a periodic array of obstacles invariant in the radial direction, which gives rise to two distinct propagation regimes: A weak pinning regime where the crack maintains a stationary shape after reaching an equilibrium position and a fingering regime characterized by the continuous growth of localized regions of the fronts while the other parts remain trapped. Our approach successfully bridges micro to macroscopic failure properties in both cases and illustrates how small scale heterogeneities can drastically affect the overall failure response of brittle solids. On a broader perspective, we believe that our approach can be used as a powerful tool for the rational design of heterogeneous brittle solids and interfaces with tailored failure properties.

  19. Stress localization in BCC polycrystals and its implications on the probability of brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Ludovic [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France); Gelebart, Lionel, E-mail: lionel.gelebart@cea.fr [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France); Dakhlaoui, Rim; Marini, Bernard [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France)

    2011-07-15

    Highlights: {yields} Intergranular stress distributions in a bainitic steel. {yields} Comparison of local mean stress field with neutron diffraction results. {yields} Application of the local stress distribution in a brittle fracture model. - Abstract: The evaluation of the reliability of pressure vessels in nuclear plants relies on the evaluation of failure probability models. Micromechanical approaches are of great interest to refine their description, to better understand the underlying mechanisms leading to failure, and finally to improve the prediction of these models. The main purpose of this paper is to introduce the stress heterogeneities arising within the polycrystal in a probabilistic modeling of brittle fracture. Stress heterogeneities are evaluated from Finite-Element simulations performed on a large number of Statistical Volume Elements. Results are validated both on the measured averaged behavior and on the averaged stresses measured by neutron diffraction in five specific orientations. A probabilistic model for brittle fracture is then presented accounting for the carbide distribution and the stress distribution evaluated previously inside an elementary volume V{sub 0}. Results are compared to a 'Beremin type' approach, assuming a homogeneous stress state inside V{sub 0}.

  20. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    Science.gov (United States)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  1. THE VISCOUS TO BRITTLE TRANSITION IN CRYSTAL- AND BUBBLE-BEARING MAGMAS

    Directory of Open Access Journals (Sweden)

    Mattia ePistone

    2015-11-01

    Full Text Available The transition from viscous to brittle behaviour in magmas plays a decisive role in determining the style of volcanic eruptions. While this transition has been determined for one- or two-phase systems, it remains poorly constrained for natural magmas containing silicic melt, crystals, and gas bubbles. Here we present new experimental results on shear-induced fracturing of three-phase magmas obtained at high-temperature (673-1023 K and high-pressure (200 MPa conditions over a wide range of strain-rates (5·10-6 s-1 to 4·10-3 s-1. During the experiments bubbles are deformed (i.e. capillary number are in excess of 1 enough to coalesce and generate a porous network that potentially leads to outgassing. A physical relationship is proposed that quantifies the critical stress required for magmas to fail as a function of both crystal (0.24 to 0.65 and bubble volume fractions (0.09 to 0.12. The presented results demonstrate efficient outgassing for low crystal fraction ( 0.44 promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free, crystal-bearing systems is enhanced by the presence of bubbles that lower the critical failure stress in a regime of efficient outgassing, while the failure stress is increased if bubbles remain trapped within the crystal framework. These contrasting behaviours have direct impact on the style of volcanic eruptions. During magma ascent, efficient outgassing reduces the potential for an explosive eruption and favours brittle behaviour, contributing to maintain low overpressures in an active volcanic system resulting in effusion or rheological flow blockage of magma at depth. Conversely, magmas with high crystallinity experience limited loss of exsolved gas, permitting the achievement of larger overpressures prior to a potential sudden transition to brittle behaviour, which could result in an explosive volcanic eruption.

  2. Failures of chain systems

    CSIR Research Space (South Africa)

    James, A

    1997-03-01

    Full Text Available ?C and intermittent exposure at 400--450 ?C. Unlike structural steels, which become softer and more ductile when reheated in service, manga- nese steels become brittle when reheated sufficiently to induce carbide... to form a roughly oval shaped crack until the link section could no longer withstand the applied loading experienced during normal dragline operations, and this resulted in final fast brittle failure. The general...

  3. Brittle diabetes: Psychopathology and personality.

    Science.gov (United States)

    Pelizza, Lorenzo; Pupo, Simona

    The term "brittle" is used to describe an uncommon subgroup of patients with type I diabetes whose lives are disrupted by severe glycaemic instability with repeated and prolonged hospitalization. Psychosocial problems are the major perceived underlying causes of brittle diabetes. Aim of this study is a systematic psychopathological and personological assessment of patients with brittle diabetes in comparison with subjects without brittle diabetes, using specific parameters of general psychopathology and personality disorders following the multi-axial format of the current DSM-IV-TR (Diagnostic and Statistical manual of Mental Disorders - IV Edition - Text Revised) diagnostic criteria for mental disorders. Patients comprised 42 subjects with brittle diabetes and a case-control group of 42 subjects with stable diabetes, matched for age, gender, years of education, and diabetes duration. General psychopathology and the DSM-IV-TR personality disorders were assessed using the Symptom Checklist-90-Revised (SCL-90-R) and the Structured Clinical Interview for axis II personality Disorders (SCID-II). The comparison for SCL-90-R parameters revealed no differences in all primary symptom dimensions and in the three global distress indices between the two groups. However, patients with brittle diabetes showed higher percentages in borderline, histrionic, and narcissistic personality disorder. In this study, patients with brittle diabetes show no differences in terms of global severity of psychopathological distress and specific symptoms of axis I DSM-IV-TR psychiatric diagnoses in comparison with subjects without brittle diabetes. Differently, individuals with brittle diabetes are more frequently affected by specific DSM-IV-TR cluster B personality disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Probing the Statistical Validity of the Ductile-to-Brittle Transition in Metallic Nanowires Using GPU Computing.

    Science.gov (United States)

    French, William R; Pervaje, Amulya K; Santos, Andrew P; Iacovella, Christopher R; Cummings, Peter T

    2013-12-10

    We perform a large-scale statistical analysis (>2000 independent simulations) of the elongation and rupture of gold nanowires, probing the validity and scope of the recently proposed ductile-to-brittle transition that occurs with increasing nanowire length [Wu et al. Nano Lett. 2012, 12, 910-914]. To facilitate a high-throughput simulation approach, we implement the second-moment approximation to the tight-binding (TB-SMA) potential within HOOMD-Blue, a molecular dynamics package which runs on massively parallel graphics processing units (GPUs). In a statistical sense, we find that the nanowires obey the ductile-to-brittle model quite well; however, we observe several unexpected features from the simulations that build on our understanding of the ductile-to-brittle transition. First, occasional failure behavior is observed that qualitatively differs from that predicted by the model prediction; this is attributed to stochastic thermal motion of the Au atoms and occurs at temperatures as low as 10 K. In addition, we also find that the ductile-to-brittle model, which was developed using classical dislocation theory, holds for nanowires as small as 3 nm in diameter. Finally, we demonstrate that the nanowire critical length is higher at 298 K relative to 10 K, a result that is not predicted by the ductile-to-brittle model. These results offer practical design strategies for adjusting nanowire failure and structure and also demonstrate that GPU computing is an excellent tool for studies requiring a large number of independent trajectories in order to fully characterize a system's behavior.

  5. Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.

  6. Fracture statistics of brittle materials with intergranular cracks

    International Nuclear Information System (INIS)

    Batdorf, S.B.

    1975-01-01

    When brittle materials are used for structural purposes, the initial design must take their relatively large dispersion in fracture stress properly into account. This is difficult when failure probabilities must be extremely low, because empirically based statistical theories of fracture, such as that of Weibull, cannot reliably predict the stresses corresponding to failure probabilities much lower than n -1 , where n is the number of specimens tested. Recently McClintock proposed a rational method of predicting the size distribution of intergranular cracks. The method assumed that large cracks are random aggregations of cracked grain boundaries. The present paper employs this method to find the size distribution of penny-shaped cracks, and also P(f), the probability of failure of a specimen of volume V subjected to a tensile stress sigma. The present paper is a pioneering effort, which should be applicable to ceramics and related materials

  7. Brittle-to-ductile transition in a fiber bundle with strong heterogeneity.

    Science.gov (United States)

    Kovács, Kornél; Hidalgo, Raul Cruz; Pagonabarraga, Ignacio; Kun, Ferenc

    2013-04-01

    We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0≤α≤1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition α(c) which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above α(c), however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent μ=2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent μ=9/2. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.

  8. A multi-component and multi-failure mode inspection model based on the delay time concept

    International Nuclear Information System (INIS)

    Wang Wenbin; Banjevic, Dragan; Pecht, Michael

    2010-01-01

    The delay time concept and the techniques developed for modelling and optimising plant inspection practices have been reported in many papers and case studies. For a system comprised of many components and subject to many different failure modes, one of the most convenient ways to model the inspection and failure processes is to use a stochastic point process for defect arrivals and a common delay time distribution for the duration between defect the arrival and failure of all defects. This is an approximation, but has been proven to be valid when the number of components is large. However, for a system with just a few key components and subject to few major failure modes, the approximation may be poor. In this paper, a model is developed to address this situation, where each component and failure mode is modelled individually and then pooled together to form the system inspection model. Since inspections are usually scheduled for the whole system rather than individual components, we then formulate the inspection model when the time to the next inspection from the point of a component failure renewal is random. This imposes some complication to the model, and an asymptotic solution was found. Simulation algorithms have also been proposed as a comparison to the analytical results. A numerical example is presented to demonstrate the model.

  9. Hydrogen effect on tendency to delayed brittle fracture in titanium alloys

    International Nuclear Information System (INIS)

    Nazimov, O.P.; Bunin, L.A.; Il'in, A.A.; Ponomareva, N.A.

    1979-01-01

    The results of investigating hydrogen effetc on the tendency to delayed fracture of the titanium alloys of VT1-0, VT5, VT5-1, OT4, VT6S and VT14 are given. The delayed fracture test data have been compared with the results of fractographic investigations. The notion of structural instability in the initial condition during the tests was suggested as a criterion for evaluating the tendency of metal to delayed fracture

  10. Deterministic and stochastic analysis of size effects and damage evolution in quasi-brittle materials

    NARCIS (Netherlands)

    Gutiérrez, M.A.; Borst, R. de

    1999-01-01

    This study presents some recent results on damage evolution in quasi-brittle materials including stochastic imperfections. The material strength is described as a random field and coupled to the response. The most probable configurations of imperfections leading to failure are sought by means of an

  11. Applying micromechanic failure models for description of failure modes in the ductile-brittle transition region; Einsatz mikromechanischer Schaedigungsmodelle im sproed-duktilen Uebergangsbereich

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, G.

    1997-07-01

    The work reported was to examine whether the modified Gurson model and the Beremin model can be applied to the brittle-ductile transition region of a ferritic steel, and whether the material`s behaviour can be characterized with a failure model integrating the two models mentioned above into one. Any possible improvements of this approach were to be found. The report at first gives a brief list of terminology and formulas used. Chapter 3 explains the microscopic processes typically observed in the transition region in connection with the failure modes of ductile fracture and cleavage fracture, and shows possible approaches for modelling. Chapter 4 defines the specimens and materials, and chapter 5 explains the experiments as well as the microscopic analyses of the fracture surfaces. Chapter 6 presents subsequent calculations representing the processes observed. Based on the stress distributions thus derived, the Beremin model is re-examined for further development. Chapter 7 summarizes the results obtained. (orig./CB) [Deutsch] Ziel der Arbeit ist, zu untersuchen, ob das modifizierte Gurson-Modell und das Beremin-Modell im sproed-duktilen Uebergangsbereich eines ferritischen Stahls einsetzbar sind und ob das Werkstoffverhalten mit einem aus beiden Modellen kombinierten Schaedigungsmodell berechnet werden kann. Gegebenenfalls sind Verbesserungen herbeizufuehren. Die vorliegende Arbeit beginnt mit einer kurzen Einfuehrung der verwendeten Begriffe und Formalismen. In Kap. 3 werden die mikroskopischen Vorgaenge bei den im Uebergangsbereich typischerweise auftretenden Versagensarten duktiler Bruch und Spaltbruch vorgestellt und verschiedene Moeglichkeiten ihrer Modellierung aufgezeigt. Nach der Vorstellung des Probenwerkstoffs werden in Kap. 4 die Experimente beschrieben und die mikroskopischen Untersuchungen der Bruchflaechen in Kap. 5 dargestellt. Die Nachrechnungen der Experimente werden in Kap. 6 vorgestellt. Auf der Grundlage der dadurch bereitgestellten

  12. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  13. Rational temporal predictions can underlie apparent failures to delay gratification

    Science.gov (United States)

    McGuire, Joseph T.; Kable, Joseph W.

    2013-01-01

    An important category of seemingly maladaptive decisions involves failure to postpone gratification. A person pursuing a desirable long-run outcome may abandon it in favor of a short-run alternative that has been available all along. Here we present a theoretical framework in which this seemingly irrational behavior emerges from stable preferences and veridical judgments. Our account recognizes that decision makers generally face uncertainty regarding the time at which future outcomes will materialize. When timing is uncertain, the value of persistence depends crucially on the nature of a decision-maker’s prior temporal beliefs. Certain forms of temporal beliefs imply that a delay’s predicted remaining length increases as a function of time already waited. In this type of situation, the rational, utility-maximizing strategy is to persist for a limited amount of time and then give up. We show empirically that people’s explicit predictions of remaining delay lengths indeed increase as a function of elapsed time in several relevant domains, implying that temporal judgments offer a rational basis for limiting persistence. We then develop our framework into a simple working model and show how it accounts for individual differences in a laboratory task (the well-known “marshmallow test”). We conclude that delay-of-gratification failure, generally viewed as a manifestation of limited self-control capacity, can instead arise as an adaptive response to the perceived statistics of one’s environment. PMID:23458085

  14. Damage-resistant brittle coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lawn, B.R.; Lee, K.S. [National Inst. of Stand. and Technol., Gaithersburg, MD (United States). Mater. Sci. and Eng. Lab.; Chai, H. [Tel Aviv Univ. (Israel). Faculty of Engineering; Pajares, A. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica; Kim, D.K. [Korea Advanced Inst. of Science and Technolgy, Taejon (Korea). Dept. of Materials Science and Engineering; Wuttiphan, S. [National Metal and Materials Technology Center, Bangkok (Thailand); Peterson, I.M. [Corning Inc., NY (United States); Hu Xiaozhi [Western Australia Univ., Nedlands, WA (Australia). Dept. of Mechanical and Materials Engineering

    2000-11-01

    Laminate structures consisting of hard, brittle coatings and soft, tough substrates are important in a wide variety of engineering applications, biological structures, and traditional pottery. In this study the authors introduce a new approach to the design of damage-resistant brittle coatings, based on a combination of new and existing relations for crack initiation in well-defined contact-induced stress fields. (orig.)

  15. Brittle and ductile friction modeling of triggered tremor in Guerrero, Mexico

    Science.gov (United States)

    Zhang, Y.; Daub, E. G.; Wu, C.

    2017-12-01

    Low frequency earthquakes (LFEs), which make up the highest amplitude portions of non-volcanic tremor, are mostly found along subduction zones at a depth of 30-40km which is typically within the brittle-ductile transition zone. Previous studies in Guerrero, Mexico demonstrated a relationship between the bursts of LFEs and the contact states of fault interfaces, and LFEs that triggered by different mechanisms were observed along different parts of the subduction zone. To better understand the physics of fault interfaces at depth, especially the influence of contact states of these asperities, we use a brittle-ductile friction model to simulate the occurrence of LFE families from a model of frictional failure and slip. This model takes the stress state, slip rate, perturbation force, fault area, and brittle-ductile frictional contact characteristics and simulates the times and amplitudes of LFE occurrence for a single family. We examine both spontaneous and triggered tremor occurrence by including stresses due to external seismic waves, such as the 2010 Maule Earthquake, which triggered tremor and slow slip on the Guerrero section of the subduction zone. By comparing our model output with detailed observations of LFE occurrence, we can determine valuable constraints on the frictional properties of subduction zones at depth.

  16. Influence of the static strain ageing on the ductile-to-brittle transition in C-Mn steel

    International Nuclear Information System (INIS)

    Marais, A.

    2012-01-01

    Ferritic steels for industrial structures have a brittle-ductile transition toughness and impact energy with temperature. Their resistance to the brittle fracture plays an essential role in the safety certification of industrial structures. Nowadays, the performance and the durability are key issues for major players such as EDF. In these approaches ductile-to-brittle transition toughness and impact energy, toughness is predicted from resilience. Several previous studies have shown that the probability of cleavage fracture can be adequately described in brittle plateau by a local approach to fracture. However, these studies assume that the material does not undergo strain aging, which is rarely relevant for low carbon steels and low calmed down. The work consisted firstly to characterize the behavior and secondly to propose a robust and explicit modeling of the observed phenomena. Characterization consisted of performing tensile tests between -150 C and 20 C for several strain rates. A model able to simulate the static aging is identified by implementing an appropriate and systematic strategy. Impact resistance test allows us to build the curve of ductile-to-brittle transition of the material for different conditions to understand and observe the influence of static strain aging on the failure. Finally, the modeling of the brittle fracture has been described for all experimental conditions tested using the model developed and identified in the previous section to predict the transition for different material conditions. (author)

  17. Two planar polishing methods by using FIB technique: Toward ultimate top-down delayering for failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. D., E-mail: dandan.wang@globalfoundries.com; Huang, Y. M.; Tan, P. K.; Feng, H.; Low, G. R.; Yap, H. H.; He, R.; Tan, H.; Dawood, M. K.; Zhao, Y. Z.; Lam, J.; Mai, Z. H. [GLOBALFOUNDRIES Singapore Pte. Ltd, 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)

    2015-12-15

    Presently two major limiting factors are hindering the failure analysis (FA) development during the semiconductor manufacturing process and technology improvement: (1) Impossibility of manual polishing on the edge dies due to the amenability of layer peeling off; (2) Abundant demand of multi-locations FA, especially focusing different levels of layers simultaneously. Aiming at resolving these limitations, here we demonstrate two unique high precision polishing methods by using focused ion beam (FIB) technique. One is the vertical top down chemical etching at the aimed location; the other one is the planar top down slicing. Using the FIB for delayering not only solves these problems mentioned above, but also offers significant advantages over physical planar polishing methods such as: (1) having a better control of the delayering progress, (2) enabling precisely milling at a region of interest, (3) providing the prevention of over-delayering and (4) possessing capability to capture images at the region of interest simultaneously and cut into the die directly to expose the exact failure without damaging other sections of the specimen.

  18. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock

    Directory of Open Access Journals (Sweden)

    Nick Barton

    2017-04-01

    Full Text Available The authors investigate the failure modes surrounding over-stressed tunnels in rock. Three lines of investigation are employed: failure in over-stressed three-dimensional (3D models of tunnels bored under 3D stress, failure modes in two-dimensional (2D numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD, both in intact rock and in rock masses with one or two joint sets, and finally, observations in TBM (tunnel boring machine tunnels in hard and medium hard massive rocks. The reason for ‘stress-induced’ failure to initiate, when the assumed maximum tangential stress is approximately (0.4–0.5σc (UCS, uniaxial compressive strength in massive rock, is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect. However, because similar ‘stress/strength’ failure limits are found in mining, nuclear waste research excavations, and deep road tunnels in Norway, one is easily misled into thinking of compressive stress induced failure. Because of this, the empirical SRF (stress reduction factor in the Q-system is set to accelerate as the estimated ratio σθmax/σc >> 0.4. In mining, similar ‘stress/strength’ ratios are used to suggest depth of break-out. The reality behind the fracture initiation stress/strength ratio of ‘0.4’ is actually because of combinations of familiar tensile and compressive strength ratios (such as 10 with Poisson's ratio (say 0.25. We exceed the extensional strain limits and start to see acoustic emission (AE when tangential stress σθ ≈ 0.4σc, due to simple arithmetic. The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by ‘stable’ extensional strain fracturing, but propagation in ‘unstable’ and therefore dynamic shearing. In the case of very deep tunnels (and 3D physical simulations, compressive stresses may be too high for extensional strain fracturing, and

  19. Folded fabric tunes rock deformation and failure mode in the upper crust.

    Science.gov (United States)

    Agliardi, F; Dobbs, M R; Zanchetta, S; Vinciguerra, S

    2017-11-10

    The micro-mechanisms of brittle failure affect the bulk mechanical behaviour and permeability of crustal rocks. In low-porosity crystalline rocks, these mechanisms are related to mineralogy and fabric anisotropy, while confining pressure, temperature and strain rates regulate the transition from brittle to ductile behaviour. However, the effects of folded anisotropic fabrics, widespread in orogenic settings, on the mechanical behaviour of crustal rocks are largely unknown. Here we explore the deformation and failure behaviour of a representative folded gneiss, by combining the results of triaxial deformation experiments carried out while monitoring microseismicity with microstructural and damage proxies analyses. We show that folded crystalline rocks in upper crustal conditions exhibit dramatic strength heterogeneity and contrasting failure modes at identical confining pressure and room temperature, depending on the geometrical relationships between stress and two different anisotropies associated to the folded rock fabric. These anisotropies modulate the competition among quartz- and mica-dominated microscopic damage processes, resulting in transitional brittle to semi-brittle modes under P and T much lower than expected. This has significant implications on scales relevant to seismicity, energy resources, engineering applications and geohazards.

  20. Role of Brittle Behaviour of Soft Calcarenites Under Low Confinement: Laboratory Observations and Numerical Investigation

    Science.gov (United States)

    Lollino, Piernicola; Andriani, Gioacchino Francesco

    2017-07-01

    The strength decay that occurs in the post-peak stage, under low confinement stress, represents a key factor of the stress-strain behaviour of rocks. However, for soft rocks this issue is generally underestimated or even neglected in the solution of boundary value problems, as for example those concerning the stability of underground cavities or rocky cliffs. In these cases, the constitutive models frequently used in limit equilibrium analyses or more sophisticated numerical calculations are, respectively, rigid-plastic or elastic-perfectly plastic. In particular, most of commercial continuum-based numerical codes propose a variety of constitutive models, including elasticity, elasto-plasticity, strain-softening and elasto-viscoplasticity, which are not exhaustive in simulating the progressive failure mechanisms affecting brittle rock materials, these being characterized by material detachment and crack opening and propagation. As a consequence, a numerical coupling with mechanical joint propagation is needed to cope with fracture mechanics. Therefore, continuum-based applications that treat the simulation of the failure processes of intact rock masses at low stress levels may need the adoption of numerical techniques capable of implementing fracture mechanics and rock brittleness concepts, as it is shown in this paper. This work is aimed at highlighting, for some applications of rock mechanics, the essential role of post-peak brittleness of soft rocks by means of the application of a hybrid finite-discrete element method. This method allows for a proper simulation of the brittle rock behaviour and the related mechanism of fracture propagation. In particular, the paper presents two ideal problems, represented by a shallow underground cave and a vertical cliff, for which the evolution of the stability conditions is investigated by comparing the solutions obtained implementing different brittle material responses with those resulting from the assumption of perfectly

  1. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    Science.gov (United States)

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  2. Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile.

    Science.gov (United States)

    Liu, Ning; Hong, Jiawang; Zeng, Xiaowei; Pidaparti, Ramana; Wang, Xianqiao

    2017-05-24

    The outstanding mechanical performance of nacre has stimulated numerous studies on the design of artificial nacres. Phosphorene, a new two-dimensional (2D) material, has a crystalline in-plane structure and non-bonded interaction between adjacent flakes. Therefore, multi-layer phosphorene assemblies (MLPs), in which phosphorene flakes are piled up in a staggered manner, may exhibit outstanding mechanical performance, especially exceptional toughness. Therefore, molecular dynamics simulations are performed to study the dependence of the mechanical properties on the overlap distance between adjacent phosphorene layers and the number of phosphorene flakes per layer. The results indicate that when the flake number is equal to 1, a transition of fracture patterns is observed by increasing the overlap distance, from a ductile failure controlled by interfacial friction to a brittle failure dominated by the breakage of covalent bonds inside phosphorene flakes. Moreover, the failure pattern can be tuned by changing the number of flakes in each phosphorene layer. The results imply that the ultimate strength follows a power law with the exponent -0.5 in terms of the flake number, which is in good agreement with our analytical model. Furthermore, the flake number in each phosphorene layer is optimized as 2 when the temperature is 1 K in order to potentially achieve both high toughness and strength. Moreover, our results regarding the relations between mechanical performance and overlap distance can be explained well using a shear-lag model. However, it should be pointed out that increasing the temperature of MLPs could cause the transition of fracture patterns from ductile to brittle. Therefore, the optimal flake number depends heavily on temperature to achieve both its outstanding strength and toughness. Overall, our findings unveil the fundamental mechanism at the nanoscale for MLPs as well as provide a method to design phosphorene-based structures with targeted properties

  3. A review on ductile mode cutting of brittle materials

    Science.gov (United States)

    Antwi, Elijah Kwabena; Liu, Kui; Wang, Hao

    2018-06-01

    Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

  4. A Critical Review of Landslide Failure Mechanisms

    Science.gov (United States)

    Stead, D.; Wolter, A.; Clague, J. J.

    2011-12-01

    During the last ten years several comprehensive geotechnical studies have been completed on major historic landslides including Randa in Switzerland, Frank in Canada, Aknes in Norway, La Clapiere in France and Vaiont in Italy. In addition, numerous researchers have documented deep-seated gravitational deformations and a wide variety of large prehistoric rock slope failures. The information provided by these studies is evidence of the significant advances made in our ability to map, monitor and model landslides. Over the same period, the mining industry has developed large open pits with slope heights exceeding 1000 m that provide important analogues to high mountain slopes. In this paper we analyse data from the literature to illustrate the importance of brittle fracture, 3D controls, anisotropy, overburden stress, geomorphic processes, groundwater and temperature in major landslides and provide some indicators as to the research required to further understand the complexity of rock slope failure mechanisms. The nature of the landslide failure surface has received inadequate attention in the past, with failure surfaces typically considered in 2D and simulated as discrete, smooth and often planar features. Current work shows that failure surfaces are inherently three-dimensional and have much structural variability across the area of the landslide scarp, reflecting complex structural histories. Such anisotropy and variations may result in multiple events or distinct blocks that move at different rates. Just as most failure surfaces vary spatially, they may also change with depth and thus should more realistically be considered failure zones rather than discrete surfaces. The increasing recognition of the importance of step-path failures, internal dilation and brittle fracture are indicative of the complexity in slope failure surfaces. Related to the variation in failure surface characteristics is the importance of 3D rotational displacements and both the

  5. MANAGEMENT OF ACUTE RENAL FAILURE WITH DELAYED HYPERCALCEMIA SECONDARY TO SARCOCYSTIS NEURONA-INDUCED MYOSITIS AND RHABDOMYOLYSIS IN A CALIFORNIA SEA LION (ZALOPHUS CALIFORNIANUS).

    Science.gov (United States)

    Alexander, Amy B; Hanley, Christopher S; Duncan, Mary C; Ulmer, Kyle; Padilla, Luis R

    2015-09-01

    A 3-yr-old captive-born California sea lion (Zalophus californianus) developed Sarcocystis neurona-induced myositis and rhabdomyolysis that led to acute renal failure. The sea lion was successfully managed with fluid therapy, antiprotozoals, antibiotics, anti-inflammatories, antiemetics, gastroprotectants, and diuretics, but developed severe delayed hypercalcemia, a syndrome identified in humans after traumatic or exertion-induced rhabdomyolysis. Treatment with calcitonin was added to the management, and the individual recovered fully. The case emphasizes that animals with rhabdomyolysis-induced renal failure risk developing delayed hypercalcemia, which may be life threatening, and calcium levels should be closely monitored past the resolution of renal failure.

  6. Mode II brittle fracture: recent developments

    Directory of Open Access Journals (Sweden)

    A. Campagnolo

    2017-10-01

    Full Text Available Fracture behaviour of V-notched specimens is assessed using two energy based criteria namely the averaged strain energy density (SED and Finite Fracture Mechanics (FFM. Two different formulations of FFM criterion are considered for fracture analysis. A new formulation for calculation of the control radius Rc under pure Mode II loading is presented and used for prediction of fracture behaviour. The critical Notch Stress Intensity Factor (NSIF at failure under Mode II loading condition can be expressed as a function of notch opening angle. Different formulations of NSIFs are derived using the three criteria and the results are compared in the case of sharp V-notched brittle components under in-plane shear loading, in order to investigate the ability of each method for the fracture assessment. For this purpose, a bulk of experimental data taken from the literature is employed for the comparison among the mentioned criteria

  7. Testing Bonds Between Brittle And Ductile Films

    Science.gov (United States)

    Wheeler, Donald R.; Ohsaki, Hiroyuki

    1989-01-01

    Simple uniaxial strain test devised to measure intrinsic shear strength. Brittle film deposited on ductile stubstrate film, and combination stretched until brittle film cracks, then separates from substrate. Dimensions of cracked segments related in known way to tensile strength of brittle film and shear strength of bond between two films. Despite approximations and limitations of technique, tests show it yields semiquantitative measures of bond strengths, independent of mechanical properties of substrates, with results reproducible with plus or minus 6 percent.

  8. Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter

    International Nuclear Information System (INIS)

    Andre, Damien; Iordanoff, Ivan; Charles, Jean-luc; Jebahi, Mohamed; Neauport, Jerome

    2013-01-01

    The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, non-continuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the continuum approach. This work uses a discrete element model based on interaction given by 3D beam model. This model has proved to correctly simulate the elastic properties at the macroscopic scale. The simulation of brittle cracks is now tackled. This goal is attained by computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to fit experimental values of the macroscopic failure stress. Then, the simulation results are compared to experimental results of indentation tests in which a spherical indenter is used to load a silica glass, which is considered to be a perfectly brittle elastic material. (authors)

  9. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Schreyer, H.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  10. Strength evaluation code STEP for brittle materials

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Futakawa, Masatoshi.

    1997-12-01

    In a structural design using brittle materials such as graphite and/or ceramics it is necessary to evaluate the strength of component under complex stress condition. The strength of ceramic materials is said to be influenced by the stress distribution. However, in the structural design criteria simplified stress limits had been adopted without taking account of the strength change with the stress distribution. It is, therefore, important to evaluate the strength of component on the basis of the fracture model for brittle material. Consequently, the strength evaluation program, STEP, on a brittle fracture of ceramic materials based on the competing risk theory had been developed. Two different brittle fracture modes, a surface layer fracture mode dominated by surface flaws and an internal fracture mode by internal flaws, are treated in the STEP code in order to evaluate the strength of brittle fracture. The STEP code uses stress calculation results including complex shape of structures analyzed by the generalized FEM stress analysis code, ABAQUS, so as to be possible to evaluate the strength of brittle fracture for the structures having complicate shapes. This code is, therefore, useful to evaluate the structural integrity of arbitrary shapes of components such as core graphite components in the HTTR, heat exchanger components made of ceramics materials etc. This paper describes the basic equations applying to the STEP code, code system with a combination of the STEP and the ABAQUS codes and the result of the verification analysis. (author)

  11. Developmental delay and failure to thrive in a 7-month-old baby boy with spontaneous transient Graves' thyrotoxicosis: a case report.

    Science.gov (United States)

    Yatsuga, Shuichi; Saikusa, Tomoko; Sasaki, Takako; Ushijima, Kikumi; Kitamura, Miyuki; Nishioka, Junko; Koga, Yasutoshi

    2016-08-10

    Thyroid dysfunction can induce developmental delay and failure to thrive in infancy. Congenital hypothyroidism is one of the common causes of these symptoms in infancy. By contrast, hyperthyroidism is a rare cause of these symptoms in infancy. A 7-month-old Japanese baby boy was examined for developmental delay and failure to thrive. Blood tests were performed, which showed low levels of thyroid-stimulating hormone (hyperthyroidism, most likely Graves' disease. His free thyroxine level decreased in the first month after our examination. No increased vascularity of his thyroid gland was noted. The technetium uptake of his thyroid gland in scintigraphy was relatively increased compared to the intake of his salivary gland. We elected to observe rather than treat with anti-thyroid medications. We have to rule out spontaneous transient Graves' thyrotoxicosis when babies have symptoms of developmental delay and fail to thrive.

  12. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses.

    Science.gov (United States)

    Jang, Dongchan; Greer, Julia R

    2010-03-01

    Amorphous metallic alloys, or metallic glasses, are lucrative engineering materials owing to their superior mechanical properties such as high strength and large elastic strain. However, their main drawback is their propensity for highly catastrophic failure through rapid shear banding, significantly undercutting their structural applications. Here, we show that when reduced to 100 nm, Zr-based metallic glass nanopillars attain ceramic-like strengths (2.25 GPa) and metal-like ductility (25%) simultaneously. We report separate and distinct critical sizes for maximum strength and for the brittle-to-ductile transition, thereby demonstrating that strength and ability to carry plasticity are decoupled at the nanoscale. A phenomenological model for size dependence and brittle-to-homogeneous deformation is provided.

  13. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  14. Scaling strength distributions in quasi-brittle materials from micro-to macro-scales: A computational approach to modeling Nature-inspired structural ceramics

    International Nuclear Information System (INIS)

    Genet, Martin; Couegnat, Guillaume; Tomsia, Antoni P.; Ritchie, Robert O.

    2014-01-01

    This paper presents an approach to predict the strength distribution of quasi-brittle materials across multiple length-scales, with emphasis on Nature-inspired ceramic structures. It permits the computation of the failure probability of any structure under any mechanical load, solely based on considerations of the microstructure and its failure properties by naturally incorporating the statistical and size-dependent aspects of failure. We overcome the intrinsic limitations of single periodic unit-based approaches by computing the successive failures of the material components and associated stress redistributions on arbitrary numbers of periodic units. For large size samples, the microscopic cells are replaced by a homogenized continuum with equivalent stochastic and damaged constitutive behavior. After establishing the predictive capabilities of the method, and illustrating its potential relevance to several engineering problems, we employ it in the study of the shape and scaling of strength distributions across differing length-scales for a particular quasi-brittle system. We find that the strength distributions display a Weibull form for samples of size approaching the periodic unit; however, these distributions become closer to normal with further increase in sample size before finally reverting to a Weibull form for macroscopic sized samples. In terms of scaling, we find that the weakest link scaling applies only to microscopic, and not macroscopic scale, samples. These findings are discussed in relation to failure patterns computed at different size-scales. (authors)

  15. Failure assessment techniques to ensure shipping container integrity

    International Nuclear Information System (INIS)

    McConnell, P.

    1986-02-01

    This report discusses several methodologies which may be used to ensure the structural integrity of containment systems to be used for the transport and storage of high-level radioactive substances. For economic reasons, shipping containers constructed of ferritic materials are being considered for manufacture by vendors in the US and Europe. Ferritic show an inherent transition from a ductile, high energy failure mode to a brittle, low energy fracture mode with decreasing temperature. Therefore, formal consideration of means by which to avoid unstable brittle fracture is necessary prior to the licensing of ferritic casks. It is suggested that failure of a shipping container wall be defined as occurring when a flaw extends through the outer wall of the containment system. Crack initiation which may lead to unstable brittle crack growth should therefore be prevented. It is suggested that a fundamental linear elastic fracture mechanics (lefm) approach be adopted on a case-by-case basis, applied perhaps by means of appropriate modifications to ASMA Section III or Section XI. A lefm analysis requires information concerning service temperatures, loading rates, flaw sizes, and applied stresses. Tentative judgments regarding these parameters for typical shipping containers have been made

  16. Failure Criteria for Reinforced Materials

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    Failure of materials is often characterized as ductile yielding, brittle fracture, creep rupture, etc., and different criteria given in terms of different parameters have been used to describe different types of failure. Only criteria expressing failure in terms of stress are considered in what...... place until the matrix, the continuous component of the composite, fails. When an isotropic matrix is reinforced as described above, the result is an anisotropic composite material. Even if the material is anisotropic, it usually exhibits a rather high degree of symmetry and such symmetries place...... certain restrictions on the form of the failure criteria for anisotropic materials. In section 2, some failure criteria for homogenous materials are reviewed. Both isotropic and anisotropic materials are described, and in particular the constraints imposed on the criteria from the symmetries orthotropy...

  17. From brittle to ductile fracture in disordered materials.

    Science.gov (United States)

    Picallo, Clara B; López, Juan M; Zapperi, Stefano; Alava, Mikko J

    2010-10-08

    We introduce a lattice model able to describe damage and yielding in heterogeneous materials ranging from brittle to ductile ones. Ductile fracture surfaces, obtained when the system breaks once the strain is completely localized, are shown to correspond to minimum energy surfaces. The similarity of the resulting fracture paths to the limits of brittle fracture or minimum energy surfaces is quantified. The model exhibits a smooth transition from brittleness to ductility. The dynamics of yielding exhibits avalanches with a power-law distribution.

  18. Brittle and Ductile Behavior in Deep-Seated Landslides: Learning from the Vajont Experience

    Science.gov (United States)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-06-01

    This paper analyzes the mechanical behavior of the unstable Mt. Toc slope before the 1963 catastrophic collapse, considering both the measured data (surface displacements and microseismicity) and the updated geological model of the prehistoric rockslide. From February 1960 up to 9 October 1963, the unstable mass behaved as a brittle-ductile `mechanical system,' characterized by remarkable microseismicity as well as by considerable surface displacements (up to 4-5 m). Recorded microshocks were the result of progressive rock fracturing of distinct resisting stiff parts made up of intact rock (indentations, undulations, and rock bridges). The main resisting stiff part was a large rock indentation located at the NE extremity of the unstable mass that acted as a mechanical constraint during the whole 1960-1963 period, inducing a progressive rototranslation toward the NE. This large constraint failed in autumn 1960, when an overall slope failure took place, as emphasized by the occurrence of the large perimetrical crack in the upper slope. In this circumstance, the collapse was inhibited by a reblocking phenomenon of the unstable mass that had been previously destabilized by the first reservoir filling. Progressive failure of localized intact rock parts progressively propagated westwards as a consequence of the two further filling-drawdown cycles of the reservoir (1962 and 1963). The characteristic brittle-ductile behavior of the Vajont landslide was made possible by the presence of a very thick (40-50 m) and highly deformable shear zone underlying the upper rigid rock mass (100-120 m thick).

  19. 123I-BMIPP delayed scintigraphic imaging in patients with chronic heart failure.

    Science.gov (United States)

    Kida, Keisuke; Akashi, Yoshihiro J; Yoneyama, Kihei; Shimokawa, Mitsuhiro; Musha, Haruki

    2008-11-01

    The objective of the present study was to clarify the ability of 123I-beta-methyl-iodophenylpentadecanoic acid (123I-BMIPP) to evaluate the heart-to-mediastinum (H/M) ratio and myocardial global washout rate (WR) in patients with chronic heart failure (CHF). The severity of CHF was evaluated on the basis of the New York Heart Association (NYHA) classification. Twenty patients with CHF (13 with idiopathic dilated cardiomyopathy and 7 with ischemic cardiomyopathy) and 11 age-matched controls underwent myocardial radionuclide imaging. Scintigraphic images were obtained from each participant at the early (30 min following radio-isotope injection) and late (4 h) phases using 123I-BMIPP. The H/M ratio and WR were calculated from planar images. Concentrations of plasma brain natriuretic peptide (BNP) were measured prior to the scintigraphic study. The 123I-BMIPP uptake of early H/M and global WR did not significantly differ among groups, but uptake of delayed H/M was significantly lower in patients with NYHA class III than in controls (control 2.47 +/- 0.39; class III 1.78 +/- 0.28, P < 0.05). The uptake of delayed H/M and global WR correlated with plasma log BNP in all participants (r = -0.38, P < 0.05; 0.43, P < 0.05, respectively). These data suggest that 123I-BMIPP uptake of delayed H/M enhances the image of CHF severity. The myocardial WR of 123I-BMIPP also effectively depicted the severity of CHF.

  20. Supersonic Localized Excitations Mediate Microscopic Dynamic Failure

    Science.gov (United States)

    Ghaffari, H. O.; Griffith, W. A.; Pec, M.

    2017-12-01

    A moving rupture front activates a fault patch by increasing stress above a threshold strength level. Subsequent failure yields fast slip which releases stored energy in the rock. A fraction of the released energy is radiated as seismic waves carrying information about the earthquake source. While this simplified model is widely accepted, the detailed evolution from the onset of dynamic failure to eventual re-equilibration is still poorly understood. To study dynamic failure of brittle solids we indented thin sheets of single mineral crystals and recorded the emitted ultrasound signals (high frequency analogues to seismic waves) using an array of 8 to 16 ultrasound probes. The simple geometry of the experiments allows us to unravel details of dynamic stress history of the laboratory earthquake sources. A universal pattern of failure is observed. First, stress increases over a short time period (1 - 2 µs), followed by rapid weakening (≈ 15 µs). Rapid weakening is followed by two distinct relaxation phases: a temporary quasi-steady state phase (10 µs) followed by a long-term relaxation phase (> 50 µs). We demonstrate that the dynamic stress history during failure is governed by formation and interaction of local non-dispersive excitations, or solitons. The formation and annihilation of solitons mediates the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e. shortening of solitons' characteristic length. Interestingly, a soliton can propagate as fast as 37 km/s, much faster than the p-wave velocity, implying that a fraction of the energy transmits through soliton excitations. The quasi-steady state phase delays the long-term ageing of the damaged crystal, implying a potentially weaker material. Our results open new horizons for understanding the complexity of earthquake sources, and, more generally, non-equilibrium relaxation of many body systems.

  1. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    Science.gov (United States)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-02-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  2. Athermal brittle-to-ductile transition in amorphous solids.

    Science.gov (United States)

    Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2011-10-01

    Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.

  3. Nickel brittling by hydrogen. Temperature effect

    International Nuclear Information System (INIS)

    Lapitz, P.A; Fernandez, S; Alvarez, M.G

    2006-01-01

    The results of a study on the effect of different variables on the susceptibility to brittling by hydrogen and the velocity of propagation of fissures in nickel wire (99.7% purity) are described. The hydrogen load was carried out by cathodic polarization in H 2 SO 4 0.5m solution. The susceptibility to brittling by hydrogen was determined with traction tests at slow deformation speed and constant cathodic potential, and the later observation of the fracture surface by scanning electron microscopy. The variables studied were: applied cathodic overpower, speed of initial deformation and temperature. The results showed that the speed of fissure propagation in the nickel by brittleness from hydrogen is a function of the applied potential and the speed of deformation used. Without tension, the hydrogen load by cathodic polarization at room temperature leads to the formation of cavities similar to those observed when the hydrogenation is performed in the presence of gaseous hydrogen at high pressure and temperature (CW)

  4. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    Science.gov (United States)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the

  5. Mechanics of Failure Mechanisms in Structures

    CERN Document Server

    Carlson, R L; Craig, J I

    2012-01-01

    This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material.  Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials.  The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthe...

  6. Fracture criterion for brittle materials based on statistical cells of finite volume

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-06-01

    An analytical consideration of the Weibull Statistical Analysis of brittle materials established the necessity of including one additional material constant for a more comprehensive description of the failure behaviour. The Weibull analysis is restricted to infinitesimal volume elements in consequence of the differential calculus applied. It was found that infinitesimally small elements are in conflict with the basic statistical assumption and that the differential calculus is not needed in fact since nowadays most of the stress analyses are based on finite element calculations, and these are most suitable for a subsequent statistical analysis of strength. The size of a finite statistical cell has been introduced as the third material parameter. It should represent the minimum volume containing all statistical features of the material such as distribution of pores, flaws and grains. The new approach also contains a unique treatment of failure under multiaxial stresses. The quantity responsible for failure under multiaxial stresses is introduced as a modified strain energy. Sixteen different tensile specimens including CT-specimens have been investigated experimentally and analyzed with the probabilistic fracture criterion. As a result it can be stated that the failure rates of all types of specimens made from three different grades of graphite are predictable. The accuracy of the prediction is one standard deviation. (orig.) [de

  7. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  8. Failure behavior of single sand grains: theory versus experiment

    NARCIS (Netherlands)

    Brzesowsky, R.H.; Spiers, C.J.; Peach, C.J.; Hangx, S.J.T.

    2011-01-01

    Grain‐scale brittle fracture and grain rearrangement play an important role in controlling the compaction behavior of reservoir rocks during the early stages of burial. Therefore, the understanding of single‐grain failure is important. We performed constant displacement rate crushing tests

  9. Reversible temper brittleness on tensile tests at room temperature

    International Nuclear Information System (INIS)

    Quadros, N.F. de; Cabral, U.Q.

    1976-01-01

    Tensile tests were carried out on unnotched test pieces at room temperature and three strain rates: 2,5x10 -4 , 2,5x10 -3 and 1,0x10 -2 s -1 in a low alloy No-Cr-Mo steel to observe the variation in its mechanical properties with the occurrence of reversible temper brittleness. The brittle samples showed a sensitivity of 50 0 C in a 48 hour heat treatment at 500 0 C. The tests showed that at the strain rate of 2,5x10 -4 s -1 there are statistically significant differences between the elongations of the material in the brittle and the nonbrittle and regenerated states. A short review of reversible temper brittleness is given and a theory suggested for the mechanism [pt

  10. 123I-BMIPP delayed scintigraphic imaging in patients with chronic heart failure

    International Nuclear Information System (INIS)

    Kida, Keisuke; Akashi, Yoshihiro J.; Yoneyama, Kihei; Shimokawa, Mitsuhiro; Musha, Haruki

    2008-01-01

    The objective of the present study was to clarify the ability of 123 I-beta-methyl-iodophenylpentadecanoic acid ( 123 I-BMIPP) to evaluate the heart-to-mediastinum (H/M) ratio and myocardial global washout rate (WR) in patients with chronic heart failure (CHF). The severity of CHF was evaluated on the basis of the New York Heart Association (NYHA) classification. Twenty patients with CHF (13 with idiopathic dilated cardiomyopathy and 7 with ischemic cardiomyopathy) and 11 age-matched controls underwent myocardial radionuclide imaging. Scintigraphic images were obtained from each participant at the early (30 min following radio-isotope injection) and late (4 h) phases using 123 I-BMIPP. The H/M ratio and WR were calculated from planar images. Concentrations of plasma brain natriuretic peptide (BNP) were measured prior to the scintigraphic study. The 123 I-BMIPP uptake of early H/M and global WR did not significantly differ among groups, but uptake of delayed H/M was significantly lower in patients with NYHA class III than in controls (control 2.47±0.39; class III 1.78±0.28 P 123 I-BMIPP uptake of delayed H/M enhances the image of CHF severity. The myocardial WR of 123 I-BMIPP also effectively depicted the severity of CHF. (author)

  11. Temporary brittle bone disease: fractures in medical care.

    Science.gov (United States)

    Paterson, Colin R

    2009-12-01

    Temporary brittle bone disease is the name given to a syndrome first reported in 1990, in which fractures occur in infants in the first year of life. The fractures include rib fractures and metaphyseal fractures which are mostly asymptomatic. The radiological features of this disorder mimic those often ascribed to typical non-accidental injury. The subject has been controversial, some authors suggesting that the disorder does not exist. This study reports five infants with typical features of temporary brittle bone disease in whom all or most of the fractures took place while in hospital. A non-accidental cause can be eliminated with some confidence, and these cases provide evidence in support of the existence of temporary brittle bone disease.

  12. Experimental investigation of incipient shear failure in foliated rock

    NARCIS (Netherlands)

    Ikari, Matt J.; Niemeijer, André R.; Marone, Chris

    It has long been known that rock fabric plays a key role in dictating rock strength and rheology throughout Earth's crust; however the processes and conditions under which rock fabric impacts brittle failure and frictional strength are still under investigation. Here, we report on laboratory

  13. BRITTLE CULM16 (BRITTLE NODE) is required for the formation of secondary cell walls in rice nodes

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; WANG Jiu-lin; GUO Xiu-ping; ZHANG Xin; LEI Cai-lin; CHENG Zhi-jun; WAN Jian-min; REN Yu-long; CHEN Sai-hua; XU Yang; ZHOU Kun-neng; ZHANG Long; MING Ming; WU Fu-qing; LIN Qi-bing

    2017-01-01

    Plant cell walls constitute the skeletal structures of plant bodies, and thus confer lodging resistance for grain crops. While the basic cell wall synthesis machinery is relatively well established now, our understanding of how the process is regulated remains limited and fragmented. In this study, we report the identification and characterization of the novel rice (Oryza sativa L.) brittle culm16 (brittle node; bc16) mutant. The brittle node phenotype of the bc16 mutant appears exclusively at nodes, and resembles the previously reported bc5 mutant. Combined histochemical staining and electron microscopy assays revealed that in the bc16 mutant, the secondary cell wall formation and thickening of node sclerenchyma tissues are seriously affected after heading. Furthermore, cell wall composition assays revealed that the bc16 mutation led to a significant reduction in cellulose and lignin contents. Using a map-based cloning approach, the bc16 locus is mapped to an approximately 1.7-Mb region of chromosome 4. Together, our findings strengthen evidence for discretely spatial differences in the secondary cell wall formation within plant bodies.

  14. Fracturing and Transformation Into Veins Beneath the Crustal Scale Brittle Ductile Transition - a Record of Co-seismic Loading and Post-seismic Relaxation

    Science.gov (United States)

    Nüchter, J. A.; Stöckhert, B.

    2005-12-01

    Metamorphic rocks approaching the crustal scale brittle-ductile transition (BDT) during exhumation are expected to become increasingly affected by short term stress fluctuations related to seismic activity in the overlying seismogenic layer (schizosphere), while still residing in a long-term viscous environment (plastosphere). The structural and microstructural record of quartz veins in low grade - high pressure metamorphic rocks from southern Evia, Greece, yields insight into the processes and conditions just beneath the long-term BDT at temperatures of about 300 to 350°C, which switches between brittle failure and viscous flow as a function of imposed stress or strain rate. The following features are characteristic: (1) The veins have formed from tensile fractures, with a typical length on the order of 10-1 to 101 m; (2) The veins are discordant with respect to foliation and all pre-existing structures, with a uniform orientation over more than 500 km2; (3) The veins show a low aspect ratio of about 10 to 100 and an irregular or characteristic flame shape, which requires distributed ductile deformation of the host rock; (4) Fabrics of the sealing vein quartz indicate that - at a time - the veins were wide open cavities; (5) The sealing quartz crystals reveal a broad spectrum of microstructural features indicative of crystal plastic deformation at high stress and temperatures of about 300 to 350°C. These features indicate that opening and sealing of the fractures commenced immediately after brittle failure, controlled by ductile deformation of the host rock. Vein-parallel shortening was generally less than about 2%. Crystals formed early during sealing were plastically deformed upon progressive deformation and opening of the vein. The structural and microstructural record is interpreted as follows: Brittle failure is proposed to be a consequence of short term co-seismic loading. Subsequent opening of the fracture and sealing to become a vein is interpreted to

  15. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    Science.gov (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  16. The strength and failure of silica optical fibers

    International Nuclear Information System (INIS)

    Yan, C; Bai, R X; Yu, H; Canning, J; Law, S

    2010-01-01

    The mechanical strength and failure behavior of conventional and microstructured silica optical fibers was investigated using a tensile test and fracture mechanics and numerical analyses. The effect of polymer coating on failure behavior was also studied. The results indicate that all these fibers fail in a brittle manner and failure normally starts from fiber surfaces. The failure loads observed in coated fibers are higher than those in bare fibers. The introduction of air holes reduces fiber strength and their geometrical arrangements have a remarkable effect on stress distribution in the longitudinal direction. These results are potentially useful for the design, fabrication and evaluation of optical fibers for a wide range of applications.

  17. Prediction of non-brittle fracture in the welded joint of C-Mn steel in the brittle-ductile transition domain

    International Nuclear Information System (INIS)

    Nguyen, Thai Ha

    2009-11-01

    This work concerns the nuclear safety, specifically the secondary circuit integrity of pressurized water reactors (PWR). The problem is that of the fracture of a thin tubular structure in ferritic steel with many welded joints. The ferritic steel and weld present a brittle/ductile tenacity transition. Moreover, the welds present geometry propitious to the appearance of fatigue cracks, due to vibrations and expansions. These cracks may cause the complete fracture of the structure. The objectives of this work are to establish a criterion of non-fracture by cleavage of thin welded structures in ferritic steel, applicable to actual structures. Therefore, the present study focuses on the fracture behaviour of welded thin structures in brittle/ductile transition. It aims at developing the threshold stress model initially proposed by Chapuliot, to predict the non-brittle-fracture of this welded structure. The model is identified for the welded joint in C-Mn steel for nuclear construction, specifically in the upper part of the transition. A threshold stress, below which the cleavage cannot take place, is identified using tensile tests at low temperature on axis-symmetrical notched specimens taken in welded joint. This threshold stress is used to define the threshold volume where the maximum principal stress exceeds the threshold stress during the test. The analysis by SEM of specimen fracture surfaces shows that the gross solidification molten zone in the weld is the most likely to cleave. The relation between the brittle fracture probability and the threshold volume in the gross solidification molten zone is established via a sensitivity function, using multi-materials simulations. The model thus identified is tested for the prediction of non-brittle-fracture of SENT specimens taken in the welded joint and tested in tension. The results obtained are encouraging with regards to the transferability of the model to the actual structure. (author)

  18. Snow fracture: From micro-cracking to global failure

    Science.gov (United States)

    Capelli, Achille; Reiweger, Ingrid; Schweizer, Jürg

    2017-04-01

    Slab avalanches are caused by a crack forming and propagating in a weak layer within the snow cover, which eventually causes the detachment of the overlying cohesive slab. The gradual damage process leading to the nucleation of the initial failure is still not entirely understood. Therefore, we studied the damage process preceding snow failure by analyzing the acoustic emissions (AE) generated by bond failure or micro-cracking. The AE allow studying the ongoing progressive failure in a non-destructive way. We performed fully load-controlled failure experiments on snow samples presenting a weak layer and recorded the generated AE. The size and frequency of the generated AE increased before failure revealing an acceleration of the damage process with increased size and frequency of damage and/or microscopic cracks. The AE energy was power-law distributed and the exponent (b-value) decreased approaching failure. The waiting time followed an exponential distribution with increasing exponential coefficient λ before failure. The decrease of the b-value and the increase of λ correspond to a change in the event distribution statistics indicating a transition from homogeneously distributed uncorrelated damage producing mostly small AE to localized damage, which cause larger correlated events which leads to brittle failure. We observed brittle failure for the fast experiment and a more ductile behavior for the slow experiments. This rate dependence was reflected also in the AE signature. In the slow experiments the b value and λ were almost constant, and the energy rate increase was moderate indicating that the damage process was in a stable state - suggesting the damage and healing processes to be balanced. On a shorter time scale, however, the AE parameters varied indicating that the damage process was not steady but consisted of a sum of small bursts. We assume that the bursts may have been generated by cascades of correlated micro-cracks caused by localization of

  19. Extended drop testing with precracked DCI-casks and evaluations on safety against brittle fracture

    International Nuclear Information System (INIS)

    Wieser, K.E.; Frenz, H.; Gogolin, B.

    1993-01-01

    This paper is a summary of a research study as part of comparable efforts in Japan, France and the USA aimed at developing principles, procedures and material data for the brittle fracture safe design of thickwalled shipping containers made from ductile cast iron (DCI) and other material susceptible - in principle - to nonductile failure. Furthermore, the application of fracture mechanics was to be qualified as an alternative method, relative to the experimental approach applied in previous licensing procedures in Germany and to be demonstrated by subjecting a full-size precracked prototype to drop tests. (J.P.N.)

  20. Semi-brittle flow of granitoid fault rocks in experiments

    NARCIS (Netherlands)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée; Drury, Martyn

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have

  1. Increase in cellular concrete resistance to brittle fracture

    International Nuclear Information System (INIS)

    Chernyshov, E.M.; Krokhin, A.M.

    1979-01-01

    Considered are theoretical premises of decrease in cellular concrete resistance to brittle fracture at the expense of dispersed reinforcement. It is stated experimentally that the introduction of 3% asbestos fibers permits to increase the ultimate extensibility and strength during cellular concrete tension by 15-30% and to increase in unit rupture work 1.4-1.6 time more and therefore to decrease its brittleness

  2. The Influence of Temperature on Time-Dependent Deformation and Failure in Granite: A Mesoscale Modeling Approach

    Science.gov (United States)

    Xu, T.; Zhou, G. L.; Heap, Michael J.; Zhu, W. C.; Chen, C. F.; Baud, Patrick

    2017-09-01

    An understanding of the influence of temperature on brittle creep in granite is important for the management and optimization of granitic nuclear waste repositories and geothermal resources. We propose here a two-dimensional, thermo-mechanical numerical model that describes the time-dependent brittle deformation (brittle creep) of low-porosity granite under different constant temperatures and confining pressures. The mesoscale model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The mesoscale physico-mechanical parameters for the model were first determined using a trial-and-error method (until the modeled output accurately captured mechanical data from constant strain rate experiments on low-porosity granite at three different confining pressures). The thermo-physical parameters required for the model, such as specific heat capacity, coefficient of linear thermal expansion, and thermal conductivity, were then determined from brittle creep experiments performed on the same low-porosity granite at temperatures of 23, 50, and 90 °C. The good agreement between the modeled output and the experimental data, using a unique set of thermo-physico-mechanical parameters, lends confidence to our numerical approach. Using these parameters, we then explore the influence of temperature, differential stress, confining pressure, and sample homogeneity on brittle creep in low-porosity granite. Our simulations show that increases in temperature and differential stress increase the creep strain rate and therefore reduce time-to-failure, while increases in confining pressure and sample homogeneity decrease creep strain rate and increase time-to-failure. We anticipate that the

  3. A continuous-discontinuous approach to simulate failure of quasi-brittle materials

    NARCIS (Netherlands)

    Moonen, P.; Sluys, L.J.; Carmeliet, J.

    2009-01-01

    A continuous-discontinuous approach to simulate failure is presented. The formulation covers both diffuse damage processes in the bulk material as well as the initiation and propagation of discrete cracks. Comparison with experimental data on layered sandstone shows that the modeling strategy

  4. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    Science.gov (United States)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  5. National conference on brittle fracture of materials and structures

    International Nuclear Information System (INIS)

    1990-12-01

    The proceedings contain full texts of 28 contributions, out of which 10 fall within the INIS subject scope. These deal particularly with the effect of neutron radiation on the brittle fracture properties of structural steels used in nuclear facilities and with theoretical problems of brittle fracture of such steels in cyclic stress conditions. (Z.M.)

  6. Fabrication of brittle materials -- current status

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  7. Experimental demonstration of a semi-brittle origin for crustal strain transients

    Science.gov (United States)

    Reber, J. E.; Lavier, L. L.; Hayman, N. W.

    2015-12-01

    Tectonic motions that give rise to destructive earthquakes and enigmatic transient slip events are commonly explained by friction laws that describe slip on fault surfaces and gouge-filled zones. Friction laws with the added effects of pore fluid pressure, shear heating, and chemical reactions as currently applied do not take into account that over a wide range of pressure and temperature conditions rocks deform following a complex mixed brittle-ductile rheology. In semi-brittle materials, such as polymineralic rocks, elasto-plastic and visco-elastic defamation can be observed simultaneously in different phases of the material. Field observations of such semi-brittle rocks at the mesoscale have shown that for a given range of composition, temperature, and pressure, the formation of fluid-filled brittle fractures and veins can precede and accompany the development of localized ductile flow. We propose that the coexistence of brittle and viscous behavior controls some of the physical characteristics of strain transients and slow slip events. Here we present results from shear experiments on semi-brittle rock analogues investigating the effect of yield stress on fracture propagation and connection, and how this can lead to reoccurring strain transients. During the experiments we monitor the evolution of fractures and flow as well as the force development in the system. We show that the nature of localized slip and flow in semi-brittle materials depends on the initiation and formation of mode I and II fractures and does not involve frictional behavior, supporting an alternative mechanism for the development of tectonic strain transients.

  8. New Therapeutic Approaches to Prevent or Delay Beta-Cell Failure in Diabetes

    Directory of Open Access Journals (Sweden)

    Ionica Floriana Elvira

    2015-09-01

    Full Text Available Background and aims: The most recent estimates of International Diabetes Federation indicate that 382 million people have diabetes, and the incidence of this disease is increasing. While in type 1 diabetes mellitus (T1DM beta-cell death is autoimmunemediated, type 2 diabetes mellitus (T2DM results from an interaction between genetic and environmental factors that impair beta-cell function and insulin action. Many people with T2DM remain unaware of their illness for a long time because symptoms may take years to appear or be recognized, while the body is affected by excess blood glucose. These patients are often diagnosed only when diabetes complications have already developed. The aim of this article was to perform a review based on literature data on therapeutic modalities to prevent/delay beta cell function decline. Material and Methods: We searched MEDLINE from 2000 to the present to identify the therapeutic approaches to prevent or delay beta-cell failure in patients with T2DM. Results and conclusions: Several common polymorphisms in genes linked to monogenic forms of diabetes appear to influence the response to T2DM pharmacotherapy. Recent studies report the role of the G protein coupled receptor 40 (GPR40, also known as Free Fatty Acids Receptor 1 (FFAR1 in the regulation of beta-cell function- CNX-011-67 (a GPR40 agonist has the potential to provide good and durable glycemic control in T2DM patients.

  9. Forced tearing of ductile and brittle thin sheets.

    Science.gov (United States)

    Tallinen, T; Mahadevan, L

    2011-12-09

    Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.

  10. The nature of temper brittleness of high-chromium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V. [Central Scientific-Research Institute for Ferrous Metallurgy, Moscow (Russian Federation)

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  11. Role of core support material in veneer failure of brittle layer structures.

    Science.gov (United States)

    Hermann, Ilja; Bhowmick, Sanjit; Lawn, Brian R

    2007-07-01

    A study is made of veneer failure by cracking in all-ceramic crown-like layer structures. Model trilayers consisting of a 1 mm thick external glass layer (veneer) joined to a 0.5 mm thick inner stiff and hard ceramic support layer (core) by epoxy bonding or by fusion are fabricated for testing. The resulting bilayers are then glued to a thick compliant polycarbonate slab to simulate a dentin base. The specimens are subjected to cyclic contact (occlusal) loading with spherical indenters in an aqueous environment. Video cameras are used to record the fracture evolution in the transparent glass layer in situ during testing. The dominant failure mode is cone cracking in the glass veneer by traditional outer (Hertzian) cone cracks at higher contact loads and by inner (hydraulically pumped) cone cracks at lower loads. Failure is deemed to occur when one of these cracks reaches the veneer/core interface. The advantages and disadvantages of the alumina and zirconia core materials are discussed in terms of mechanical properties-strength and toughness, as well as stiffness. Consideration is also given to the roles of interface strength and residual thermal expansion mismatch stresses in relation to the different joining methods. Copyright 2006 Wiley Periodicals, Inc.

  12. Health care system delay and heart failure in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention: follow-up of population-based medical registry data

    DEFF Research Database (Denmark)

    Terkelsen, Christian Juhl; Jensen, Lisette Okkels; Hansen, Hans-Henrik Tilsted

    2011-01-01

    In patients with ST-segment elevation myocardial infarction (STEMI), delay between contact with the health care system and initiation of reperfusion therapy (system delay) is associated with mortality, but data on the associated risk for congestive heart failure (CHF) among survivors are limited....

  13. Failure analysis of axle shaft of a fork lift

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2015-04-01

    Full Text Available An axle shaft of fork lift failed at operation within 296 h of service. The shaft transmits torque from discrepancy to wheel through planetary gear arrangement. A section of fractured axle shaft made of induction-hardened steel was analyzed to determine the root cause of the failure. Optical microscopies as well as field emission gun scanning electron microscopy (FEG-SEM along with energy dispersive spectroscopy (EDS were carried out to characterize the microstructure. Hardness profile throughout the cross-section was evaluated by micro-hardness measurements. Chemical analysis indicated that the shaft was made of 42CrMo4 steel grade as per specification. Microstructural analysis and micro-hardness profile revealed that the shaft was improperly heat treated resulting in a brittle case, where crack was found to initiate from the case in a brittle mode in contrast to ductile mode within the core. This behaviour was related to differences in microstructure, which was observed to be martensitic within the case with a micro-hardness equivalent to 735 HV, and a mixture of non-homogeneous structure of pearlite and ferrite within the core with a hardness of 210 HV. The analysis suggests that the fracture initiated from the martensitic case as brittle mode due to improper heat treatment process (high hardness. Moreover the inclusions along the hot working direction i.e. in the longitudinal axis made the component more susceptible to failure.

  14. Experimental Evaluation of the Failure of a Seismic Design Category - B Precast Concrete Beam-Column Connection System

    Science.gov (United States)

    2014-12-01

    Precast Concrete Beam - Column Connection ...ERDC TR-14-12 December 2014 Experimental Evaluation of the Failure of a Seismic Design Category – B Precast Concrete Beam - Column Connection ...systems in order to develop a methodology and obtain basic insight for predicting the brittle failure of precast beam - column connections under

  15. Experimental analysis and application of the effect of stress on continental shale reservoir brittleness

    Science.gov (United States)

    Yin, Shuai; Lv, Dawei; Jin, Lin; Ding, Wenlong

    2018-04-01

    Hydraulic fracturing is an effective measure of reservoir modification for the development of shale gas. The evaluation of rock brittleness can provide a basis for the optimization of fracturing. In this paper, the effect of stress on the brittleness of shale is systematically analyzed by designing triaxial mechanics tests. The strain analysis method was used to evaluate the shale brittleness. The research indicates that, with the increase of effective confining pressure, the value of the brittleness index (B 1) decreases. There is a linear and positive correlation between the average reduction ratio of B 1 and the buried depth. The stress has a significant effect on the shale brittleness. Therefore, the rock brittleness can be overestimated without considering the influence of the buried depth or the stress of formation when using the mineral composition method. Being affected by the stress, when the brittle mineral content of the shale reservoir is 70%, 65%, 60%, and 55%, the lower limit depth of the shale gas development is 5000 m, 4400 m, 3000 m, and 1800 m, respectively. However, when the brittle mineral content of the shale is less than 50%, the brittleness index is less than 50% in all of the buried depths. In this case, the shale will not have any commercial development potential. The logging interpretation results of the brittleness index conducted with stress correction are more consistent with the real situation, and thus, this method can be better used to help the optimization of the fracturing intervals of shale gas.

  16. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  17. Impact fragmentation of a brittle metal compact

    Science.gov (United States)

    Tang, Megan; Hooper, Joseph P.

    2018-05-01

    The fragmentation behavior of a metal powder compact which is ductile in compression but brittle in tension is studied via impact experiments and analytical models. Consolidated metal compacts were prepared via cold-isostatic pressing of powder at 380 MPa followed by moderate annealing at 365 °C. The resulting zinc material is ductile and strain-hardening in high-rate uniaxial compression like a traditional metal, but is elastic-brittle in tension with a fracture toughness comparable to a ceramic. Cylindrical samples were launched up to 800 m/s in a gas gun into thin aluminum perforation targets, subjecting the projectile to a complex multiaxial and time-dependent stress state that leads to catastrophic fracture. A soft-catch mechanism using low-density artificial snow was developed to recover the impact debris, and collected fragments were analyzed to determine their size distribution down to 30 μm. Though brittle fracture occurs along original particle boundaries, no power-law fragmentation behavior was observed as is seen in other low-toughness materials. An analytical theory is developed to predict the characteristic fragment size accounting for both the sharp onset of fragmentation and the effect of increasing impact velocity.

  18. Brittle fracture in structural steels: perspectives at different size-scales.

    Science.gov (United States)

    Knott, John

    2015-03-28

    This paper describes characteristics of transgranular cleavage fracture in structural steel, viewed at different size-scales. Initially, consideration is given to structures and the service duty to which they are exposed at the macroscale, highlighting failure by plastic collapse and failure by brittle fracture. This is followed by sections describing the use of fracture mechanics and materials testing in carrying-out assessments of structural integrity. Attention then focuses on the microscale, explaining how values of the local fracture stress in notched bars or of fracture toughness in pre-cracked test-pieces are related to features of the microstructure: carbide thicknesses in wrought material; the sizes of oxide/silicate inclusions in weld metals. Effects of a microstructure that is 'heterogeneous' at the mesoscale are treated briefly, with respect to the extraction of test-pieces from thick sections and to extrapolations of data to low failure probabilities. The values of local fracture stress may be used to infer a local 'work-of-fracture' that is found experimentally to be a few times greater than that of two free surfaces. Reasons for this are discussed in the conclusion section on nano-scale events. It is suggested that, ahead of a sharp crack, it is necessary to increase the compliance by a cooperative movement of atoms (involving extra work) to allow the crack-tip bond to displace sufficiently for the energy of attraction between the atoms to reduce to zero. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Two brittle ductile transitions in subduction wedges, as revealed by topography

    Science.gov (United States)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  20. Brittle materials at high-loading rates: an open area of research

    Science.gov (United States)

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  1. Brittle materials at high-loading rates: an open area of research

    Science.gov (United States)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  2. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  3. Delayed Repolarization Underlies Ventricular Arrhythmias in Rats With Heart Failure and Preserved Ejection Fraction.

    Science.gov (United States)

    Cho, Jae Hyung; Zhang, Rui; Kilfoil, Peter J; Gallet, Romain; de Couto, Geoffrey; Bresee, Catherine; Goldhaber, Joshua I; Marbán, Eduardo; Cingolani, Eugenio

    2017-11-21

    Heart failure with preserved ejection fraction (HFpEF) represents approximately half of heart failure, and its incidence continues to increase. The leading cause of mortality in HFpEF is sudden death, but little is known about the underlying mechanisms. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF (n=38). Rats fed a normal-salt diet (0.3% NaCl) served as controls (n=13). Echocardiograms were performed to assess systolic and diastolic function from 14 weeks of age. HFpEF-verified and control rats underwent programmed electrical stimulation. Corrected QT interval was measured by surface ECG. The mechanisms of ventricular arrhythmias (VA) were probed by optical mapping, whole-cell patch clamp to measure action potential duration and ionic currents, and quantitative polymerase chain reaction and Western blotting to investigate changes in ion channel expression. After 7 weeks of a high-salt diet, 31 of 38 rats showed diastolic dysfunction and preserved ejection fraction along with signs of heart failure and hence were diagnosed with HFpEF. Programmed electric stimulation demonstrated increased susceptibility to VA in HFpEF rats ( P hearts demonstrated prolonged action potentials ( P hearts. Susceptibility to VA was markedly increased in rats with HFpEF. Underlying abnormalities include QT prolongation, delayed repolarization from downregulation of potassium currents, and multiple reentry circuits during VA. Our findings are consistent with the hypothesis that potassium current downregulation leads to abnormal repolarization in HFpEF, which in turn predisposes to VA and sudden cardiac death. © 2017 American Heart Association, Inc.

  4. Challenges in the Japan Beyond-Brittle Project (JBBP) for EGS development beyond the brittle-ductile transition

    Science.gov (United States)

    Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.

    2013-12-01

    Development using Engineered Geothermal System (EGS) technologies is considered to be the best solution to the problems of the localized distribution of geothermal resources. However, it is considered that a number of problems, including low water recovery rate, difficulty in design of the reservoir, and induced earthquake, would appear in Japanese EGS. These problems in the development of EGS reservoirs cannot be readily solved in Japan because they are intrinsically related to the physical characteristics and tectonic setting of the brittle rock mass. Therefore, we have initiated the Japan Beyond-Brittle Project (JBBP), which will take a multidisciplinary scientific approach, including geology, geochemistry, geophysics, water-rock interactions, rock mechanics, seismology, drilling technology, well-logging technology, and reservoir engineering. The science and technology required for the creation and control of geothermal reservoirs in superheated rocks in the ductile zone is at the frontier of modern research in most of the related disciplines. Solutions to the associated problems will not easily be found without international collaboration among researchers and engineers. For this reason, in March, 2013 we held a five-day ICDP-supported workshop in Japan to review and discuss various scientific and technological issues related to the JBBP. Throughout the discussions at the workshop on characteristics of the beyond-brittle rock mass and creation and control of EGS reservoirs in the ductile zone, it has concluded that there are two end-member reservoir models that should be considered (Fig. 1). The JBBP reservoir type-1 would be created near the top of the brittle-ductile transition (BDT) and connected to pre-existing hydrothermal systems, which would increase productivity and provide sustainability. The JBBP reservoir type-2 would be hydraulically or thermally created beyond the BDT, where pre-existing fractures are less permeable, and would be hydraulically

  5. Aggregations of brittle stars can perform similar ecological roles as mussel reefs

    KAUST Repository

    Geraldi, NR

    2016-11-29

    Biogenic habitats, such as coral reefs, facilitate diverse communities. In aquatic systems, aggregations of mobile benthic species may play a similar ecological role to that of typically sessile biogenic habitats; however, this has rarely been considered. We quantified the abundance of sessile horse mussels Modiolus modiolus and aggregating brittle stars Ophiothrix fragilis and tested for correlations between the density of mussels (live and dead) and brittle stars each with (1) abundance, biomass, diversity, and assemblage structure of associated benthic macrofauna; and (2) percent organic matter of the sediment. We found that the abundance of live M. modiolus was positively associated with the abundance and biomass of macrofauna. The positive association between M. modiolus and macrofaunal abundance was further amplified with an increase in brittle stars and a decrease in dead mussel shells. Macrofaunal biomass was lower with a higher percentage of dead mussel shells, and macrofaunal diversity increased with greater abundances of live M. modiolus and brittle stars. Sediment organic matter was positively related to brittle star density, but not to the abundance of live or dead mussels. The positive relationship between brittle stars and sediment organic matter suggests that brittle stars could enhance rates of benthic- pelagic coupling. Given the importance of understanding the functional role of threatened habitats, it is essential that the underlying community patterns be understood through robust observational studies to then derive testable hypotheses to determine drivers. These findings provide novel insight into the ecological role of aggregations of mobile species, which is essential to prioritize conservation and restoration strategies.

  6. Estimating the mechanical properties of the brittle deformation zones at Olkiluoto

    International Nuclear Information System (INIS)

    Hudson, J.A.; Cosgrove, J.W.; Johansson, E.

    2008-09-01

    In rock mechanics modelling to support repository design and safety assessment for the Olkiluoto site, it is necessary to obtain the relevant rock mechanics parameters, these being an essential pre-requisite for the modelling. The parameters include the rock stress state, the properties of the intact rock and the rock mass, and the properties of the brittle deformation zones which represent major discontinuities in the rock mass continuum. However, because of the size and irregularity of the brittle deformation zones, it is not easy to estimate their mechanical properties, i.e. their deformation and strength properties. Following Section 1 explaining the motivation for the work and the objective of the Report, in Sections 2 and 3, the types of fractures and brittle deformation zones that can be encountered are described with an indication of the mechanisms that lead to complex structures. The geology at Olkiluoto is then summarized in Section 4 within the context of this Report. The practical aspects of encountering the brittle deformation zones in outcrops, drillholes and excavations are described in Sections 5 and 6 with illustrative examples of drillhole core intersections in Section 7. The various theoretical, numerical and practical methods for estimating the mechanical properties of the brittle deformation zones are described in Section 8, together with a Table summarizing each method's advantages, disadvantages and utility in estimating the mechanical properties of the zones. We emphasise that the optimal approach to estimating the mechanical properties of the brittle deformation zones cannot be determined without a good knowledge, not only of each estimation method's capabilities and idiosyncrasies, but also of the structural geology background and the specific nature of the brittle deformation zones being characterized. Finally, in Section 9, a Table is presented outlining each method's applicability to the Olkiluoto site. A flowchart is included to

  7. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1986-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-in. and a pressurized 6-in. diameter carbon steel nuclear pipe systems subjected to high level shaking have been accomplished. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occurred in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate very well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules may be appropriate to cover the ratchet-fatigue failure mode

  8. Mechanical Properties and Brittle Behavior of Silica Aerogels

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2015-12-01

    Full Text Available Sets of silica gels: aerogels, xerogels and sintered aerogels, have been studied in the objective to understand the mechanical behavior of these highly porous solids. The mechanical behaviour of gels is described in terms of elastic and brittle materials, like glasses or ceramics. The magnitude of the elastic and rupture modulus is several orders of magnitude lower compared to dense glass. The mechanical behaviours (elastic and brittle are related to the same kinds of gel characteristics: pore volume, silanol content and pore size. Elastic modulus depends strongly on the volume fraction of pores and on the condensation reaction between silanols. Concerning the brittleness features: rupture modulus and toughness, it is shown that pores size plays an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size is related to the pore size. Weibull’s theory is used to show the statistical nature of flaw. Moreover, stress corrosion behaviour is studied as a function of environmental conditions (water and alcoholic atmosphere and temperature.

  9. Brittle fracture of T91 steel in liquid lead–bismuth eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changqing, E-mail: Changqing.ye@ed.univ-lille1.fr; Vogt, Jean-Bernard, E-mail: jean-bernard.vogt@univ-lille1.fr; Proriol-Serre, Ingrid, E-mail: ingrid.proriol-serre@univ-lille1.fr

    2014-12-15

    Highlights: • Tempering temperature is important for LBE embrittlement occurrence. • Brittle behaviour in LBE evidenced by small punch test and fatigue test. • Brittle behaviour in low oxygen LBE observed for low loading rate. - Abstract: The mechanical behaviour of the T91 martensitic steel has been studied in liquid lead–bismuth eutectic (LBE) and in inert atmosphere. Several conditions were considered to point out the most sensitive embrittling factors. Smooth and notched specimens were employed for respectively monotonic and cyclic loadings. The present investigation showed that T91 appeared in general as a ductile material, and became brittle in the considered conditions only if at least tests were performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement of T91 in LBE. For the standard heat treatment condition, loading monotonically the T91 very slowly instead of rapidly in LBE resulted in brittle fracture. Also, under cyclic loading, the crack propagated in a brittle manner in LBE.

  10. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength

    Directory of Open Access Journals (Sweden)

    Kaishi Wang

    2018-03-01

    Full Text Available The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS, a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  11. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength.

    Science.gov (United States)

    Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K

    2018-03-27

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  12. Brittle versus ductile behaviour of nanotwinned copper: A molecular dynamics study

    International Nuclear Information System (INIS)

    Pei, Linqing; Lu, Cheng; Zhao, Xing; Zhang, Liang; Cheng, Kuiyu; Michal, Guillaume; Tieu, Kiet

    2015-01-01

    Nanotwinned copper (Cu) exhibits an unusual combination of ultra-high yield strength and high ductility. A brittle-to-ductile transition was previously experimentally observed in nanotwinned Cu despite Cu being an intrinsically ductile metal. However, the atomic mechanisms responsible for brittle fracture and ductile fracture in nanotwinned Cu are still not clear. In this study, molecular dynamics (MD) simulations at different temperatures have been performed to investigate the fracture behaviour of a nanotwinned Cu specimen with a single-edge-notched crack whose surface coincides with a twin boundary. Three temperature ranges are identified, indicative of distinct fracture regimes, under tensile straining perpendicular to the twin boundary. Below 1.1 K, the crack propagates in a brittle fashion. Between 2 K and 30 K a dynamic brittle-to-ductile transition is observed. Above 40 K the crack propagates in a ductile mode. A detailed analysis has been carried out to understand the atomic fracture mechanism in each fracture regime

  13. Behavior of Brittle Materials Under Dynamic Loading

    National Research Council Canada - National Science Library

    Kanel, G

    2000-01-01

    Dynamic loading of brittle materials is related to many applications, including explosive excavation of rocks, design of ceramic armor, meteor impact on spacecraft windows, particle damage to turbine blades, etc...

  14. Aggregations of brittle stars can perform similar ecological roles as mussel reefs

    KAUST Repository

    Geraldi, NR; Bertolini, C; Emmerson, MC; Roberts, D; Sigwart, JD; O’ Connor, NE

    2016-01-01

    considered. We quantified the abundance of sessile horse mussels Modiolus modiolus and aggregating brittle stars Ophiothrix fragilis and tested for correlations between the density of mussels (live and dead) and brittle stars each with (1) abundance, biomass

  15. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  16. Visualising Three Dimensional Damage and Failure Envelopes: Implications for True Triaxial Deformation

    Science.gov (United States)

    Harland, S. R.; Browning, J.; Healy, D.; Meredith, P. G.; Mitchell, T. M.

    2017-12-01

    Ultimate failure in brittle rocks is commonly accepted to occur as a coalescence of micro-crack damage into a single failure plane. The geometry and evolution with stress of the cracks (damage) within the medium will play a role in dictating the geometry of the ultimate failure plane. Currently, the majority of experimental studies investigating damage evolution and rock failure use conventional triaxial stress states (σ1 > σ2 = σ3). Results from these tests can easily be represented on a Mohr-Coulomb plot (σn - τ), conveniently allowing the user to determine the geometry of the resultant failure plane. In reality however, stress in the subsurface is generally truly triaxial (σ1 > σ2 > σ3) and in this case, the Mohr-Coulomb failure criterion is inadequate as it incorporates no dependence on the intermediate stress (σ2), which has been shown to play an important role in controlling failure. It has recently been shown that differential stress is the key driver in initiating crack growth, regardless of the mean stress. Polyaxial failure criteria that incorporate the effect of the intermediate stress do exist and include the Modified Lade, Modified Wiebols and Cook, and the Drucker-Prager criteria. However, unlike the Mohr-Coulomb failure criterion, these polyaxial criteria do not offer any prediction of, or insight into, the geometry of the resultant failure plane. An additional downfall of all of the common conventional and polyaxial failure criteria is that they fail to describe the geometry of the damage (i.e. pre-failure microcracking) envelope with progressive stress; it is commonly assumed that the damage envelope is parallel to the ultimate brittle failure envelope. Here we use previously published polyaxial failure data for the Shirahama sandstone and Westerley granite to illustrate that the commonly used Mohr-Coulomb and polyaxial failure criteria do not sufficiently describe or capture failure or damage envelopes under true triaxial stress states

  17. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    Science.gov (United States)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  18. Development of a brittle fracture acceptance criterion for the International Atomic Energy Agency (IAEA)

    International Nuclear Information System (INIS)

    Sorenson, K.B.; Salzbrenner, R.; Nickell, R.E.

    1992-01-01

    An effort has been undertaken to develop a brittle fracture acceptance criterion for structural components of nuclear material transportation casks. The need for such a criterion was twofold. First, new generation cask designs have proposed the use of ferritic steels and other materials to replace the austenitic stainless steel commonly used for structural components in transport casks. Unlike austenitic stainless steel which fails in a high-energy absorbing, ductile tearing mode, it is possible for these candidate materials to fail via brittle fracture when subjected to certain combinations of elevated loading rates and low temperatures. Second, there is no established brittle fracture criterion accepted by the regulatory community that covers a broad range of structural materials. Although the existing IAEA Safety Series number-sign 37 addressed brittle fracture, its the guidance was dated and pertained only to ferritic steels. Consultant's Services Meetings held under the auspices of the IAEA have resulted in a recommended brittle fracture criterion. The brittle fracture criterion is based on linear elastic fracture mechanics, and is the result of a consensus of experts from six participating IAEA-member countries. The brittle fracture criterion allows three approaches to determine the fracture toughness of the structural material. The three approaches present the opportunity to balance material testing requirements and the conservatism of the material's fracture toughness which must be used to demonstrate resistance to brittle fracture. This work has resulted in a revised Appendix IX to Safety Series number-sign 37 which will be released as an IAEA Technical Document within the coming year

  19. Statistical Analysis Of Failure Strength Of Material Using Weibull Distribution

    International Nuclear Information System (INIS)

    Entin Hartini; Mike Susmikanti; Antonius Sitompul

    2008-01-01

    In evaluation of ceramic and glass materials strength a statistical approach is necessary Strength of ceramic and glass depend on its measure and size distribution of flaws in these material. The distribution of strength for ductile material is narrow and close to a Gaussian distribution while strength of brittle materials as ceramic and glass following Weibull distribution. The Weibull distribution is an indicator of the failure of material strength resulting from a distribution of flaw size. In this paper, cumulative probability of material strength to failure probability, cumulative probability of failure versus fracture stress and cumulative probability of reliability of material were calculated. Statistical criteria calculation supporting strength analysis of Silicon Nitride material were done utilizing MATLAB. (author)

  20. Flow and Failure in Extension of Monodisperse Polymer Melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    is commonly referred to be of either brittle (e.g. cohesive type) or of liquid (e.g. necking type) nature. Here the focus will be on monodisperse polymers, to study numerically the sample flow dynamics in dual wind-up extensional rheometers. The computations are within the ideas of the microstructural......It is well known that failure or rupture phenomenon appears in the extension of polymer melts. These appear not only as failure in extension rheometers, but also as sharkskin, developments of holes in thin polymeric films etc. Sometime these ruptures appear spontaneous as well. The rupture...... 'interchain pressure' theory based on the molecular stress function constitutive model for the polymer melt flow. The purpose is twofold. Primarily to present to what extend the experimentally observed failure, appearing during or after (e.g. as a spontaneous failure) extension, can be explained within...

  1. An overview of the recent advances in delay-time-based maintenance modelling

    International Nuclear Information System (INIS)

    Wang, Wenbin

    2012-01-01

    Industrial plant maintenance is an area which has enormous potential to be improved. It is also an area attracted significant attention from mathematical modellers because of the random phenomenon of plant failures. This paper reviews the recent advances in delay-time-based maintenance modelling, which is one of the mathematical techniques for optimising inspection planning and related problems. The delay-time is a concept that divides a plant failure process into two stages: from new until the point of an identifiable defect, and then from this point to failure. The first stage is called the normal working stage and the second stage is called the failure delay-time stage. If the distributions of the two stages can be quantified, the relationship between the number of failures and the inspection interval can be readily established. This can then be used for optimizing the inspection interval and other related decision variables. In this review, we pay particular attention to new methodological developments and industrial applications of the delay-time-based models over the last few decades. The use of the delay-time concept and modeling techniques in other areas rather than in maintenance is also reviewed. Future research directions are also highlighted. - Highlights: ► Reviewed the recent advances in delay-time-based maintenance models and applications. ► Compared the delay-time-based models with other models. ► Focused on methodologies and applications. ► Pointed out future research directions.

  2. Earthquake and failure forecasting in real-time: A Forecasting Model Testing Centre

    Science.gov (United States)

    Filgueira, Rosa; Atkinson, Malcolm; Bell, Andrew; Main, Ian; Boon, Steven; Meredith, Philip

    2013-04-01

    Across Europe there are a large number of rock deformation laboratories, each of which runs many experiments. Similarly there are a large number of theoretical rock physicists who develop constitutive and computational models both for rock deformation and changes in geophysical properties. Here we consider how to open up opportunities for sharing experimental data in a way that is integrated with multiple hypothesis testing. We present a prototype for a new forecasting model testing centre based on e-infrastructures for capturing and sharing data and models to accelerate the Rock Physicist (RP) research. This proposal is triggered by our work on data assimilation in the NERC EFFORT (Earthquake and Failure Forecasting in Real Time) project, using data provided by the NERC CREEP 2 experimental project as a test case. EFFORT is a multi-disciplinary collaboration between Geoscientists, Rock Physicists and Computer Scientist. Brittle failure of the crust is likely to play a key role in controlling the timing of a range of geophysical hazards, such as volcanic eruptions, yet the predictability of brittle failure is unknown. Our aim is to provide a facility for developing and testing models to forecast brittle failure in experimental and natural data. Model testing is performed in real-time, verifiably prospective mode, in order to avoid selection biases that are possible in retrospective analyses. The project will ultimately quantify the predictability of brittle failure, and how this predictability scales from simple, controlled laboratory conditions to the complex, uncontrolled real world. Experimental data are collected from controlled laboratory experiments which includes data from the UCL Laboratory and from Creep2 project which will undertake experiments in a deep-sea laboratory. We illustrate the properties of the prototype testing centre by streaming and analysing realistically noisy synthetic data, as an aid to generating and improving testing methodologies in

  3. ADM guidance-Ceramics: guidance to the use of fractography in failure analysis of brittle materials.

    Science.gov (United States)

    Scherrer, Susanne S; Lohbauer, Ulrich; Della Bona, Alvaro; Vichi, Alessandro; Tholey, Michael J; Kelly, J Robert; van Noort, Richard; Cesar, Paulo Francisco

    2017-06-01

    To provide background information and guidance as to how to use fractography accurately, a powerful tool for failure analysis of dental ceramic structures. An extended palette of qualitative and quantitative fractography is provided, both for in vivo and in vitro fracture surface analyses. As visual support, this guidance document will provide micrographs of typical critical ceramic processing flaws, differentiating between pre- versus post sintering cracks, grinding damage related failures and occlusal contact wear origins and of failures due to surface degradation. The documentation emphasizes good labeling of crack features, precise indication of the direction of crack propagation (dcp), identification of the fracture origin, the use of fractographic photomontage of critical flaws or flaw labeling on strength data graphics. A compilation of recommendations for specific applications of fractography in Dentistry is also provided. This guidance document will contribute to a more accurate use of fractography and help researchers to better identify, describe and understand the causes of failure, for both clinical and laboratory-scale situations. If adequately performed at a large scale, fractography will assist in optimizing the methods of processing and designing of restorative materials and components. Clinical failures may be better understood and consequently reduced by sending out the correct message regarding the fracture origin in clinical trials. Copyright © 2017 The Academy of Dental Materials. All rights reserved.

  4. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness.

    Science.gov (United States)

    Ménard, Léa; McKey, Doyle; Mühlen, Gilda S; Clair, Bruno; Rowe, Nick P

    2013-01-01

    Domestication can influence many functional traits in plants, from overall life-history and growth form to wood density and cell wall ultrastructure. Such changes can increase fitness of the domesticate in agricultural environments but may negatively affect survival in the wild. We studied effects of domestication on stem biomechanics in manioc by comparing domesticated and ancestral wild taxa from two different regions of greater Amazonia. We compared mechanical properties, tissue organisation and wood characteristics including microfibril angles in both wild and domesticated plants, each growing in two different habitats (forest or savannah) and varying in growth form (shrub or liana). Wild taxa grew as shrubs in open savannah but as lianas in overgrown and forested habitats. Growth form plasticity was retained in domesticated manioc. However, stems of the domesticate showed brittle failure. Wild plants differed in mechanical architecture between shrub and liana phenotypes, a difference that diminished between shrubs and lianas of the domesticate. Stems of wild plants were generally stiffer, failed at higher bending stresses and were less prone to brittle fracture compared with shrub and liana phenotypes of the domesticate. Biomechanical differences between stems of wild and domesticated plants were mainly due to changes in wood density and cellulose microfibril angle rather than changes in secondary growth or tissue geometry. Domestication did not significantly modify "large-scale" trait development or growth form plasticity, since both wild and domesticated manioc can develop as shrubs or lianas. However, "finer-scale" developmental traits crucial to mechanical stability and thus ecological success of the plant were significantly modified. This profoundly influenced the likelihood of brittle failure, particularly in long climbing stems, thereby also influencing the survival of the domesticate in natural situations vulnerable to mechanical perturbation. We

  5. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness.

    Directory of Open Access Journals (Sweden)

    Léa Ménard

    Full Text Available Domestication can influence many functional traits in plants, from overall life-history and growth form to wood density and cell wall ultrastructure. Such changes can increase fitness of the domesticate in agricultural environments but may negatively affect survival in the wild. We studied effects of domestication on stem biomechanics in manioc by comparing domesticated and ancestral wild taxa from two different regions of greater Amazonia. We compared mechanical properties, tissue organisation and wood characteristics including microfibril angles in both wild and domesticated plants, each growing in two different habitats (forest or savannah and varying in growth form (shrub or liana. Wild taxa grew as shrubs in open savannah but as lianas in overgrown and forested habitats. Growth form plasticity was retained in domesticated manioc. However, stems of the domesticate showed brittle failure. Wild plants differed in mechanical architecture between shrub and liana phenotypes, a difference that diminished between shrubs and lianas of the domesticate. Stems of wild plants were generally stiffer, failed at higher bending stresses and were less prone to brittle fracture compared with shrub and liana phenotypes of the domesticate. Biomechanical differences between stems of wild and domesticated plants were mainly due to changes in wood density and cellulose microfibril angle rather than changes in secondary growth or tissue geometry. Domestication did not significantly modify "large-scale" trait development or growth form plasticity, since both wild and domesticated manioc can develop as shrubs or lianas. However, "finer-scale" developmental traits crucial to mechanical stability and thus ecological success of the plant were significantly modified. This profoundly influenced the likelihood of brittle failure, particularly in long climbing stems, thereby also influencing the survival of the domesticate in natural situations vulnerable to mechanical

  6. Ductile and brittle transition behavior of titanium alloys in ultra-precision machining.

    Science.gov (United States)

    Yip, W S; To, S

    2018-03-02

    Titanium alloys are extensively applied in biomedical industries due to their excellent material properties. However, they are recognized as difficult to cut materials due to their low thermal conductivity, which induces a complexity to their deformation mechanisms and restricts precise productions. This paper presents a new observation about the removal regime of titanium alloys. The experimental results, including the chip formation, thrust force signal and surface profile, showed that there was a critical cutting distance to achieve better surface integrity of machined surface. The machined areas with better surface roughness were located before the clear transition point, defining as the ductile to brittle transition. The machined area at the brittle region displayed the fracture deformation which showed cracks on the surface edge. The relationship between depth of cut and the ductile to brittle transaction behavior of titanium alloys in ultra-precision machining(UPM) was also revealed in this study, it showed that the ductile to brittle transaction behavior of titanium alloys occurred mainly at relatively small depth of cut. The study firstly defines the ductile to brittle transition behavior of titanium alloys in UPM, contributing the information of ductile machining as an optimal machining condition for precise productions of titanium alloys.

  7. The prehospital intravenous access assessment: a prospective study on intravenous access failure and access delay in prehospital emergency medicine.

    Science.gov (United States)

    Prottengeier, Johannes; Albermann, Matthias; Heinrich, Sebastian; Birkholz, Torsten; Gall, Christine; Schmidt, Joachim

    2016-12-01

    Intravenous access in prehospital emergency care allows for early administration of medication and extended measures such as anaesthesia. Cannulation may, however, be difficult, and failure and resulting delay in treatment and transport may have negative effects on the patient. Therefore, our study aims to perform a concise assessment of the difficulties of prehospital venous cannulation. We analysed 23 candidate predictor variables on peripheral venous cannulations in terms of cannulation failure and exceedance of a 2 min time threshold. Multivariate logistic regression models were fitted for variables of predictive value (P0.6) of their respective receiver operating characteristic curve. A total of 762 intravenous cannulations were enroled. In all, 22% of punctures failed on the first attempt and 13% of punctures exceeded 2 min. Model selection yielded a three-factor model (vein visibility without tourniquet, vein palpability with tourniquet and insufficient ambient lighting) of fair accuracy for the prediction of puncture failure (AUC=0.76) and a structurally congruent model of four factors (failure model factors plus vein visibility with tourniquet) for the exceedance of the 2 min threshold (AUC=0.80). Our study offers a simple assessment to identify cases of difficult intravenous access in prehospital emergency care. Of the numerous factors subjectively perceived as possibly exerting influences on cannulation, only the universal - not exclusive to emergency care - factors of lighting, vein visibility and palpability proved to be valid predictors of cannulation failure and exceedance of a 2 min threshold.

  8. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    Science.gov (United States)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  9. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body.

    Science.gov (United States)

    Nawathe, Shashank; Yang, Haisheng; Fields, Aaron J; Bouxsein, Mary L; Keaveny, Tony M

    2015-05-01

    The influence of the ductility of bone tissue on whole-bone strength represents a fundamental issue of multi-scale biomechanics. To gain insight, we performed a computational study of 16 human proximal femurs and 12 T9 vertebral bodies, comparing the whole-bone strength for the two hypothetical bounding cases of fully brittle versus fully ductile tissue-level failure behaviors, all other factors, including tissue-level elastic modulus and yield stress, held fixed. For each bone, a finite element model was generated (60-82 μm element size; up to 120 million elements) and was virtually loaded in habitual (stance for femur, compression for vertebra) and non-habitual (sideways fall, only for femur) loading modes. Using a geometrically and materially non-linear model, the tissue was assumed to be either fully brittle or fully ductile. We found that, under habitual loading, changing the tissue behavior from fully ductile to fully brittle reduced whole-bone strength by 38.3±2.4% (mean±SD) and 39.4±1.9% for the femur and vertebra, respectively (p=0.39 for site difference). These reductions were remarkably uniform across bones, but (for the femur) were greater for non-habitual (57.1±4.7%) than habitual loading (pductile cases. These theoretical results suggest that the whole-bone strength of the proximal femur and vertebra can vary substantially between fully brittle and fully ductile tissue-level behaviors, an effect that is relatively insensitive to bone morphology but greater for non-habitual loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Polarization Raman spectroscopy to explain rodent models of brittle bone

    Science.gov (United States)

    Makowski, Alexander J.; Nyman, Jeffry S.; Mahadevan-Jansen, Anita

    2013-03-01

    Activation Transcription Factor 4 (Atf-4) is essential for osteoblast maturation and proper collagen synthesis. We recently found that these bones demonstrate a rare brittleness phenotype, which is independent of bone strength. We utilized a confocal Renishaw Raman microscope (50x objective; NA=.75) to evaluate embedded, polished cross-sections of mouse tibia from both wild-type and knockout mice at 8 weeks of age (24 mice, nmineral and collagen; however, compositional changes did not fully encompass biomechanical differences. To investigate the impact of material organization, we acquired colocalized spectra aligning the polarization angle parallel and perpendicular to the long bone axis from wet intact femurs. To validate our results, we used MMP9-/- mice, which have a brittleness phenotype that is not explained by compositional Raman measures. Polarization angle difference spectra show marked significant changes in orientation of these compositional differences when comparing wild type to knockout bones. Relative to wild-type, Atf4 -/- and MMP9 -/- bones show significant differences (t-test; pbones. Such findings could have alternate interpretations about net collagen orientation or the angular distribution of collagen molecules. Use of polarization specific Raman measurements has implicated a structural profile that furthers our understanding of models of bone brittleness. Polarization content of Raman spectra may prove significant in future studies of brittle fracture and human fracture risk.

  11. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1987-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-inch and a pressurized 6-inch diameter carbon steel nuclear pipe systems subjected to high-level shaking have been accomplished. The high-level shaking loads needed to cause failure were much higher than ASME Code rules would permit with present design limits. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occured in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate reasonably well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules to reduce unneeded conservatisms and to cover the ratchet-fatigue failure mode may be appropriate

  12. Brittleness and Packing Density Effects on Blast-hole Cuttings Yield of Selected Rocks

    Directory of Open Access Journals (Sweden)

    B. Adebayo

    2016-06-01

    Full Text Available This paper evaluates brittleness and packing density to analysis their effects on blast-hole cutting yield for three selected rocks in Nigeria. Brittleness test (S20 was carried out in accordance with Norwegian Soil and Rock Engineering and the Brittleness Index (BI for the selected rocks were estimated. The packing density determined from the photomicrograph of the rock samples. The grain size of 45 blast-holes drill cuttings collected from three selected while drilling of these rocks were determined using standard method of America Society for Testing and Materials (ASTM D 2487. The brittleness values are 50%, 44% and 42% for micro granite, porphyritic granite and medium biotite granite respectively. The result of BI varied from 10.32 – 11.59 and they are rated as moderately brittle rocks. The values of packing density varied from 92.20 – 94.55%, 91.00 -92.96% and 92.92 – 94.96% for all the rocks. The maximum weights of blast-hole particle size retained at 75 µm are 106.00g, 103.28 g and 99.76 g for medium biotite granite, micro granite and porhyritic granite respectively. Packing density values have correlation to some extent with (S20 values hence, this influence the yield of blast-hole cuttings as drilling progresses. The minimum weight of blast-hole cuttings particle size retained at 150 µm agrees with brittleness index classification for micro granite.

  13. Failure Forecasting in Triaxially Stressed Sandstones

    Science.gov (United States)

    Crippen, A.; Bell, A. F.; Curtis, A.; Main, I. G.

    2017-12-01

    Precursory signals to fracturing events have been observed to follow power-law accelerations in spatial, temporal, and size distributions leading up to catastrophic failure. In previous studies this behavior was modeled using Voight's relation of a geophysical precursor in order to perform `hindcasts' by solving for failure onset time. However, performing this analysis in retrospect creates a bias, as we know an event happened, when it happened, and we can search data for precursors accordingly. We aim to remove this retrospective bias, thereby allowing us to make failure forecasts in real-time in a rock deformation laboratory. We triaxially compressed water-saturated 100 mm sandstone cores (Pc= 25MPa, Pp = 5MPa, σ = 1.0E-5 s-1) to the point of failure while monitoring strain rate, differential stress, AEs, and continuous waveform data. Here we compare the current `hindcast` methods on synthetic and our real laboratory data. We then apply these techniques to increasing fractions of the data sets to observe the evolution of the failure forecast time with precursory data. We discuss these results as well as our plan to mitigate false positives and minimize errors for real-time application. Real-time failure forecasting could revolutionize the field of hazard mitigation of brittle failure processes by allowing non-invasive monitoring of civil structures, volcanoes, and possibly fault zones.

  14. The effect of crack instability/stability on fracture toughness of brittle materials

    International Nuclear Information System (INIS)

    Baratta, F.I.

    1997-01-01

    This paper summarizes three recent experimental works coauthored by the present author regarding the effect of crack instability/stability on fracture toughness, and also includes the necessary formulae for predicting stability. Two recent works have shown that unstable crack extension resulted in apparent increases in fracture toughness compared to that determined during stable crack growth. In the first investigation a quasi-brittle polymer, polymethylmethacrylate, was examined. In the second, a more brittle metallic material, tungsten, was tested. In both cases the transition from unstable to stable behavior was predicted based on stability analyses. The third investigation was conducted on a truly brittle ceramic material, hot pressed silicon nitride. These three papers showed that fracture toughness test results conducted on brittle materials vary according to whether the material fractures in an unstable or stable manner. Suggestions for achieving this important yet difficult phenomenon of stable crack growth, which is necessary when determining the fracture toughness variation occurring during unstable/stable crack advance, are presented, as well as recommendations for further research

  15. Acceleration to failure in geophysical signals prior to laboratory rock failure and volcanic eruptions (Invited)

    Science.gov (United States)

    Main, I. G.; Bell, A. F.; Greenhough, J.; Heap, M. J.; Meredith, P. G.

    2010-12-01

    The nucleation processes that ultimately lead to earthquakes, volcanic eruptions, rock bursts in mines, and landslides from cliff slopes are likely to be controlled at some scale by brittle failure of the Earth’s crust. In laboratory brittle deformation experiments geophysical signals commonly exhibit an accelerating trend prior to dynamic failure. Similar signals have been observed prior to volcanic eruptions, including volcano-tectonic earthquake event and moment release rates. Despite a large amount of effort in the search, no such statistically robust systematic trend is found prior to natural earthquakes. Here we describe the results of a suite of laboratory tests on Mount Etna Basalt and other rocks to examine the nature of the non-linear scaling from laboratory to field conditions, notably using laboratory ‘creep’ tests to reduce the boundary strain rate to conditions more similar to those in the field. Seismic event rate, seismic moment release rate and rate of porosity change show a classic ‘bathtub’ graph that can be derived from a simple damage model based on separate transient and accelerating sub-critical crack growth mechanisms, resulting from separate processes of negative and positive feedback in the population dynamics. The signals exhibit clear precursors based on formal statistical model tests using maximum likelihood techniques with Poisson errors. After correcting for the finite loading time of the signal, the results show a transient creep rate that decays as a classic Omori law for earthquake aftershocks, and remarkably with an exponent near unity, as commonly observed for natural earthquake sequences. The accelerating trend follows an inverse power law when fitted in retrospect, i.e. with prior knowledge of the failure time. In contrast the strain measured on the sample boundary shows a less obvious but still accelerating signal that is often absent altogether in natural strain data prior to volcanic eruptions. To test the

  16. Comparative studies on constitutive models for cohesive interface cracks of quasi-brittle materials

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    In this paper, Concerning on the modelling of quasi-brittle fracture process zone at interface crack of quasi-brittle materials and structures, typical constitutive models of interface cracks were compared. Numerical calculations of the constitutive behaviours of selected models were carried out at local level. Aiming at the simulation of quasi-brittle fracture of concrete-like materials and structures, the emphases of the qualitative comparisons of selected cohesive models are focused on: (1) the fundamental mode I and mode II behaviours of selected models; (2) dilatancy properties of the selected models under mixed mode fracture loading conditions. (authors)

  17. An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs

    Science.gov (United States)

    Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang

    2018-06-01

    There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of

  18. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Prediction of the brittle fracture toughness value of a RPV steel from the analysis of a limited set of Charpy results

    International Nuclear Information System (INIS)

    Forget, P.; Marini, B.; Verdiere, N.

    2001-01-01

    Our objective is to establish a method to be able to determine fracture toughness of a reactor pressure vessel (RPV) by using the small number of Charpy specimens used in the reactor surveillance program. Previous studies have shown that it is possible to determine fracture toughness from Charpy tests. Another point is to determine if statistical effects are compatible with a restricted number of specimens, this paper deals with this point and presents a methodology that is applicable to the case of irradiated materials from the surveillance program. Several conclusions can be drawn from this study: -) When determining failure parameters, we gain most accuracy by increasing the number of samples from 3 to about 6; -) it is possible to evaluate brittle fracture toughness using local approach, either by using Beremin or Renevey model; -) The effect of using a small number of Charpy specimens to determine fracture toughness in brittle fracture is evaluated. The error in the evaluation of fracture toughness is much smaller than the experimental dispersion itself. (A.C.)

  20. State Vector: A New Approach to Prediction of the Failure of Brittle Heterogeneous Media and Large Earthquakes

    Science.gov (United States)

    Yu, Huai-Zhong; Yin, Xiang-Chu; Zhu, Qing-Yong; Yan, Yu-Ding

    2006-12-01

    The concept of state vector stems from statistical physics, where it is usually used to describe activity patterns of a physical field in its manner of coarsegrain. In this paper, we propose an approach by which the state vector was applied to describe quantitatively the damage evolution of the brittle heterogeneous systems, and some interesting results are presented, i.e., prior to the macro-fracture of rock specimens and occurrence of a strong earthquake, evolutions of the four relevant scalars time series derived from the state vectors changed anomalously. As retrospective studies, some prominent large earthquakes occurred in the Chinese Mainland (e.g., the M 7.4 Haicheng earthquake on February 4, 1975, and the M 7.8 Tangshan earthquake on July 28, 1976, etc) were investigated. Results show considerable promise that the time-dependent state vectors could serve as a kind of precursor to predict earthquakes.

  1. A study of unstable rock failures using finite difference and discrete element methods

    Science.gov (United States)

    Garvey, Ryan J.

    Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex

  2. Reactive-brittle dynamics in peridotite alteration

    Science.gov (United States)

    Evans, O.; Spiegelman, M. W.; Kelemen, P. B.

    2017-12-01

    The interactions between reactive fluids and brittle solids are critical in Earth dynamics. Implications of such processes are wide-ranging: from earthquake physics to geologic carbon sequestration and the cycling of fluids and volatiles through subduction zones. Peridotite alteration is a common feature in many of these processes, which - despite its obvious importance - is relatively poorly understood from a geodynamical perspective. In particular, alteration reactions are thought to be self-limiting in nature, contradicting observations of rocks that have undergone 100% hydration/carbonation. One potential explanation of this observation is the mechanism of "reaction-driven cracking": that volume changes associated with these reactions are large enough to fracture the surrounding rock, leading to a positive feedback where new reactive surfaces are exposed and fluid pathways are created. The purpose of this study is to investigate the relative roles of reaction, elastic stresses and surface tension in alteration reactions. In this regard we derive a system of equations describing reactive fluid flow in an elastically deformable porous media, and explore them via a combination of analytic and numerical solutions. Using this model we show that the final stress state of a dry peridotite that has undergone reaction depends strongly on the rates of reaction versus fluid transport: significant fluid flow driven by pressure and/or surface tension gradients implies higher fractions of serpentinization, leaving behind a highly stressed residuum of partially reacted material. Using a model set-up that mimics a cylindrical triaxial apparatus we predict that the resulting stresses would lead to tensile failure and the generation of radially oriented cracks.

  3. Persistence and failure of mean-field approximations adapted to a class of systems of delay-coupled excitable units

    Science.gov (United States)

    Franović, Igor; Todorović, Kristina; Vasović, Nebojša; Burić, Nikola

    2014-02-01

    We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfillment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfillment of the quasi-independence approximation and certain forms of synchronization between the individual units.

  4. Failure criterion of concrete type material and punching failure analysis of thick mortar plate

    International Nuclear Information System (INIS)

    Ohno, T.; Kuroiwa, M.; Irobe, M.

    1979-01-01

    In this paper falure surface of concrete type material is proposed and its validity to structural analysis is examined. The study is an introductory part of evaluation for ultimate strength of reinforced and prestressed concrete structures in reactor technology. The failure surface is expressed in a linear form in terms of octahedral normal and shear stresses. Coefficient of the latter stress is given by a trigonometric series in threefold angle of similarity. Hence, its meridians are multilinear and traces of its deviatoric sections are smooth curves having periodicity of 2π/3 around space diagonal in principal stress space. The mathematical expression of the surface has an arbitraty number of parameters so that material test results are well reflected. To confirm the effectiveness of proposed failure criterion, experiment and numerical analysis by the finite element method on punching failure of thick mortar plate in axial symmetry are compared. In the numerical procedure yield surface of the material is assumed to exist mainly in compression region, since a brittle cleavage or elastic fracture occurs in the concrete type material under stress state with tension, while a ductile or plastic fracture occurs under compressive stress state. (orig.)

  5. Stress corrosion in gaseous environment

    International Nuclear Information System (INIS)

    Miannay, Dominique.

    1980-06-01

    The combined influences of a stress and a gaseous environment on materials can lead to brittleness and to unexpected delayed failure by stress corrosion cracking, fatigue cracking and creep. The most important parameters affering the material, the environment, the chemical reaction and the stress are emphasized and experimental works are described. Some trends for further research are given [fr

  6. Brittle fracture tests at low temperature for transport cask materials

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ito, Chihiro; Arai, Taku; Saegusa, Toshiari

    1993-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material were revised in 1985, and brittle fracture assessment at low temperature for transport packages are now required. This report discusses the applicability of the actual method for brittle fracture assessment of type-B transport cask materials used in JAPAN. The necessity of brittle fracture assessment at low temperature was estimated for each material of type-B transport casks used in Japan and the applicability was investigated. Dynamic fracture toughness values, K Id (J Id ), and RT NDT values of Low-Mn Carbon Steels, that are SA 350 Gr.LF1 Modify and SA 516 Gr.70 material which used in type-B transport cask body, were also obtained to check whether or not an easier and conventional test method, that prescribed in ASME CODE SECTION III, can be substituted for the dynamic fracture test method. And for bolt materials, which include 1.8Ni-0.8Cr-0.3Mo Carbon Steel and type 630 H Stainless Steel, toughness data were obtained for reference. (J.P.N.)

  7. Ionic Liquids as a New Platform for Fiber Brittleness Removal

    Directory of Open Access Journals (Sweden)

    Zhili Zhang

    2015-08-01

    Full Text Available In the present study, three ionic liquids, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl, 1-allyl-3-methylimidazolium ([AMIM]Cl, and 1-ethyl-3-methylimidazolium chloride dimethyphosphate ([EMIM]DMP, were used to eliminate the brittleness of recycled fibers. The results showed that the pretreatments with ionic liquids were able to modify and improve the properties of recycled fibers even at high moisture contents. [EMIM]DMP gave better performance compared to [BMIM]Cl and [AMIM]Cl, which can tolerate higher moisture contents. The optimal conditions of EMIM]DMP pretreatment were moisture content of 65%, [EMIM]DMP dosage of 20 wt-%, 80 °C, and 60 min, for which a higher brittleness removal was obtained. The tensile index, bursting index, and tearing index of handsheets were increased by 32.4%, 57.0%, and 46.5%, respectively. Fiber quality was improved as demonstrated by fiber length, lowered fines content, and increased swellability. Such results imply that ionic liquids pretreatment can promote the swelling of recycled fibers and remove their brittleness.

  8. Probability of brittle failure

    Science.gov (United States)

    Kim, A.; Bosnyak, C. P.; Chudnovsky, A.

    1991-01-01

    A methodology was developed for collecting statistically representative data for crack initiation and arrest from small number of test specimens. An epoxy (based on bisphenol A diglycidyl ether and polyglycol extended diglycyl ether and cured with diethylene triamine) is selected as a model material. A compact tension specimen with displacement controlled loading is used to observe multiple crack initiation and arrests. The energy release rate at crack initiation is significantly higher than that at a crack arrest, as has been observed elsewhere. The difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in statistical strength theory, is usually attributed to the statistics of defects which control the fracture process. Triangular shaped ripples (deltoids) are formed on the fracture surface during the slow subcritical crack growth, prior to the smooth mirror-like surface characteristic of fast cracks. The deltoids are complementary on the two crack faces which excludes any inelastic deformation from consideration. Presence of defects is also suggested by the observed scale effect. However, there are no defects at the deltoid apexes detectable down to the 0.1 micron level.

  9. [Action-oriented versus state-oriented reactions to experimenter-induced failures].

    Science.gov (United States)

    Brunstein, J C

    1989-01-01

    The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.

  10. Delayed recovery of right ventricular systolic function after repair of long-standing tricuspid regurgitation associated with severe right ventricular failure.

    Science.gov (United States)

    Kim, Jong Hun; Kim, Kyung Hwa; Choi, Jong Bum; Kuh, Ja Hong

    2016-03-01

    After tricuspid valve surgery for long-standing tricuspid regurgitation associated with right ventricular failure, reverse remodelling of the enlarged right ventricle, including recovery of right ventricular systolic function, is unpredictable. We present the case of a 31-year old man with early reduction of dilated right ventricular dimensions and delayed recovery of impaired right ventricular systolic function after valve repair for traumatic tricuspid regurgitation lasting 16 years. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  12. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  13. Brittle to Semibrittle Transition in Quartz Sandstone: Energetics

    Science.gov (United States)

    Kanaya, Taka; Hirth, Greg

    2018-01-01

    Triaxial compression experiments were conducted on a quartz sandstone at effective pressures up to 175 MPa and temperatures up to 900°C. Our experiments show a transition from brittle faulting to semibrittle faulting with an increase in both pressure and temperature. The yield behavior of samples deformed in the semibrittle regime follows a compactant elliptical cap at low strain, but evolves to a dilatant Mohr-Coulomb relationship with continued compaction. Optical microscopy indicates that semibrittle deformation involves cataclastic flow through shear-enhanced compaction and grain crushing; however, transmission electron microscopy shows evidence for dislocation glide in limited portions of samples. To constrain the relative contribution of brittle and crystal plastic mechanisms, we estimate the partitioning of the inelastic work into the dissipation energy for microcracking, intergranular frictional slip, and dislocation glide. We conclude that semibrittle deformation is accommodated primarily by cataclastic mechanisms, with only a limited contribution from crystal plasticity. Mechanical data, acoustic emission records, and analysis of surface energy all indicate the activation of subcritical cracking at elevated temperature. Hence, we infer that the enhancement of subcritical cracking is responsible for the transition to semibrittle flow through promoting distributed grain-scale fractures and millimeter-scale shear bands. Subcritical cracking promotes the nucleation of microfractures at lower stresses, and the resulting decrease in flow stress retards the propagation of transgranular microfractures. Our study illuminates the important role of temperature on the micromechanics of the transition from brittle faulting to cataclastic flow in the Earth.

  14. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    Science.gov (United States)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to

  15. Investigation of post-svecofennian brittle structures in Satakunta. Field report 2009

    International Nuclear Information System (INIS)

    Pajunen, M.; Wennerstroem, M.

    2010-09-01

    This report describes the field work in the summer 2009. The task is a part of research entity in which the development of brittle structures in bedrock are acquired. In focus have been the post-Svecofennian rocks of the Satakunta area: rapakivi, sandstone and olivine diabase. We describe the observation methods and the research methods using three target examples: olivine diabase in Pori, Kallo, sandstone in Nakkila, Leistilaenjaervi and rapakivi in the centre of Lappi. We have concentrated on geometry and kinematics of joints in bedrock. Concerning every target we describe the joints and the faults, their orientations and properties, joint fabrics and jointing structures. Our aim is to define orientations of palaeostresses and evolution of brittle structures exploiting joint properties. The study will be continued in Satakunta based on the data collected in the summer 2009 and in a few earlier years. The results can be benefitted also in studies of the Svecofennian brittle structures. (orig.)

  16. Experimental investigation of strain, damage and failure of hydrided zircaloy-4 with various hydride orientations

    International Nuclear Information System (INIS)

    Racine, A; Catherine, C.S.; Cappelaere, C.; Bornert, M.; Caldemaison, D.

    2005-01-01

    This experimental investigation is devoted to the influence of the orientation of hydrides on the mechanical response of Zircaloy-4. Ring tensile tests are performed on unirradiated CWSR Zircaloy-4, charged with about 200 or 500wppm hydrogen. Hydrides are oriented either parallel ('tangential'), or perpendicular ('radial') to the circumferential tensile direction. Tangential hydrides are usually observed in cladding tubes, however, hydrides can be reoriented after cooling under stress to become radial and then trigger brittle behavior. In this investigation, we perform, 'macroscopic' or SEM in-situ tensile tests on smooth rings, at room temperature. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. The results lead to the following conclusions: neither the tensile stress-strain response nor the strain modes are affected by hydrogen content or hydride orientation, but the failure modes are. Indeed, only 200wppm radial hydrides embrittle Zy-4: sample fails in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases samples reach at least 750 MPa before failure, with ductile or brittle mode. (authors)

  17. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

    Science.gov (United States)

    Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio

    2016-01-13

    The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

  18. Micro-structural reliability design of brittle materials

    Czech Academy of Sciences Publication Activity Database

    Strnadel, B.; Byczanski, Petr

    2007-01-01

    Roč. 74, č. 11 (2007), s. 1825-1836 ISSN 0013-7944 R&D Projects: GA ČR(CZ) GA106/06/0646 Institutional research plan: CEZ:AV0Z30860518 Keywords : Cleavage strength * Brittle fracture * Fracture toughness Subject RIV: JJ - Other Materials Impact factor: 1.227, year: 2007 www.elsevier.com/locate/engfracmech

  19. Activation delay-induced mechanical dyssynchrony in single-ventricle heart disease

    DEFF Research Database (Denmark)

    Forsha, Daniel; Risum, Niels; Barker, Piers

    2017-01-01

    We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome.......We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome....

  20. Modeling multiscale evolution of numerous voids in shocked brittle material.

    Science.gov (United States)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  1. Failure and factors of safety in piping system design

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1993-01-01

    An important body of test and performance data on the behavior of piping systems has led to an ongoing reassessment of the code stress allowables and their safety margin. The codes stress allowables, and their factors of safety, are developed from limits on the incipient yield (for ductile materials), or incipient rupture (for brittle materials), of a test specimen loaded in simple tension. In this paper, we examine the failure theories introduced in the B31 and ASME III codes for piping and their inherent approximations compared to textbook failure theories. We summarize the evolution of factors of safety in ASME and B31 and point out that, for piping systems, it is appropriate to reconsider the concept and definition of factors of safety

  2. Method of detecting fuel failure in FBR type reactor and method of estimating fuel failure position

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Tamaoki, Tetsuo

    1989-01-01

    Noise components in a normal state contained in detection signals from delayed neutron monitors disposed to a coolant inlet, etc. of an intermediate heat exchanger are forecast by self-recurring model and eliminated, and resultant detection signals are monitored thereby detecting fuel failure high sensitivity. Subsequently, the reactor is controlled to a low power operation state and a new self-recurring model to the detection signals from the delayed neutron monitors are prepared. Then, noise components in this state are removed and control rods near the delayed neutron monitors are extracted in a short stroke successively to examine the change of response of the delayed neutron monitors. Accordingly, the failed position for each of the fuels can be estimated at a level of one fuel assembly or a level of several assemblies containing the above-mentioned fuel assembly. Since the fuel failure can be detected at a high sensitivity and the position can be estimated, diffusion of abnormality can be prevented and plant shutdown for fuel exchange can be minimized. (I.S.)

  3. Rockfall failure mechanisms in Yosemite Valley, California (USA)

    Science.gov (United States)

    Matasci, Battista; Guerin, Antoine; Carrea, Dario; Stock, Greg M.; Jaboyedoff, Michel; Collins, Brian

    2014-05-01

    Rockfall hazard is especially high in Yosemite Valley, with tens of rockfalls inventoried every year. A rockfall on 5 October 2013 from Ahwiyah Point consisted of a volume of 740 cubic meters and occurred within the perimeter of a larger event on 28 March 2009 that released 25'400 cubic meters of rock (Zimmer et al., 2012). In both events (2009 and 2013), the initial rockfall volumes dislodged a second one approximately equivalent in size by impacting the cliff below the source area during the fall. Rock fragments of up to several cubic meters were deposited on the talus slope, damaging a heavily used and recently reconstructed hiking path. We performed extensive mapping of structural features for several cliffs of Yosemite Valley to improve the assessment of the most susceptible rockfall areas. In particular we mapped and characterized the main brittle structures, the exfoliation joints and the failure mechanisms of the past rockfalls. Several failure mechanisms exist in Yosemite including the propagation of brittle structures that may lead to tensile, planar sliding, wedge sliding or toppling failures. Frequently, topographically-parallel exfoliation joints and topographically-oblique discontinuities coexist, resulting in complex failures. We also developed a methodology to examine how the distribution of joints within the cliff faces of Yosemite Valley affects overall stability with respect to the identified failure mechanisms. For these analyses, we used terrestrial laser scanning (TLS) to collect high resolution point clouds of the vertical and overhanging rock faces throughout the Valley. This provided the necessary 3D data to identify the main joint sets, perform spacing and trace length measurements, and calculate volumes of previous and potential rockfalls. We integrated this information with stability calculations to identify the likely failure mechanisms for each area of cliff and to obtain the number of potential failures per square meter of cliff face

  4. Finite Element Analysis of Reinforced Concrete Beam-Column Connections with Governing Joint Shear Failure Mode

    Directory of Open Access Journals (Sweden)

    M.A. Najafgholipour

    Full Text Available Abstract Reinforced concrete (RC beam-column connections especially those without transverse reinforcement in joint region can exhibit brittle behavior when intensive damage is concentrated in the joint region during an earthquake event. Brittle behavior in the joint region can compromise the ductile design philosophy and the expected overall performance of structure when subjected to seismic loading. Considering the importance of joint shear failure influences on strength, ductility and stability of RC moment resisting frames, a finite element modeling which focuses on joint shear behavior is presented in this article. Nonlinear finite element analysis (FEA of RC beam-column connections is performed in order to investigate the joint shear failure mode in terms of joint shear capacity, deformations and cracking pattern. A 3D finite element model capable of appropriately modeling the concrete stress-strain behavior, tensile cracking and compressive damage of concrete and indirect modeling of steel-concrete bond is used. In order to define nonlinear behavior of concrete material, the concrete damage plasticity is applied to the numerical model as a distributed plasticity over the whole geometry. Finite element model is then verified against experimental results of two non-ductile beam-column connections (one exterior and one interior which are vulnerable to joint shear failure. The comparison between experimental and numerical results indicates that the FE model is able to simulate the performance of the beam-column connections and is able to capture the joint shear failure in RC beam-column connections.

  5. Development of small punch tests for ductile-brittle transition temperature measurement of temper embrittled Ni-Cr steels

    International Nuclear Information System (INIS)

    Baik, J.M.; Kameda, J.; Buck, O.

    1983-01-01

    Small punch tests were developed to determine the ductile-brittle transition temperature of nickel-chromium (Ni-Cr) steels having various degrees of temper embrittlement and various microstructures. It was found that the small punch test clearly shows the ductile-brittle transition behavior of the temper-embrittled steels. The measured values were compared with those obtained from Charpy impact and uniaxial tensile tests. The effects of punch tip shape, a notch, and the strain rate on the ductile-brittle transition behavior were examined. It was found that the combined use of a notch, high strain rates, and a small punch tip strongly affects the ductile-brittle transition behavior. Considerable variations in the data were observed when the small punch tests were performed on coarse-grained steels. Several factors controlling embrittlement measurements of steels are discussed in terms of brittle fracture mechanisms

  6. Estimation of possibility of brittle fracture in high pressure boiler drums

    International Nuclear Information System (INIS)

    Grin', E.A.

    2005-01-01

    Paper presents the results of analysis of the problem to ensure brittle strength of high pressure boiler drums made with application of the present-day methods of linear and nonlinear fracture mechanics. The charts of the temperature boundaries of brittle fracture and of the critical factors of stress intensity plotted depending on the actual properties of the material and on dimensions of flaws are presented for standard size drums made of 22K and 16GNM steels. In the paper there are some examples of the practical application of the given charts [ru

  7. Detecting failure events in buildings: a numerical and experimental analysis

    OpenAIRE

    Heckman, V. M.; Kohler, M. D.; Heaton, T. H.

    2010-01-01

    A numerical method is used to investigate an approach for detecting the brittle fracture of welds associated with beam -column connections in instrumented buildings in real time through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalog of Green’s functions for an instrumented building to detect failure events in the building during a later seismic event by screening continuous data for the presence of wavef...

  8. Effect of High-Temperature Thermomechanical Treatment on the Brittle Fracture of Low-Carbon Steel

    Science.gov (United States)

    Smirnov, M. A.; Pyshmintsev, I. Yu.; Varnak, O. V.; Mal'tseva, A. N.

    2018-02-01

    The effect of high-temperature thermomechanical treatment (HTMT) on the brittleness connected with deformation-induced aging and on the reversible temper brittleness of a low-carbon tube steel with a ferrite-bainite structure has been studied. When conducting an HTMT of a low-alloy steel, changes should be taken into account in the amount of ferrite in its structure and relationships between the volume fractions of the lath and the acicular bainite. It has been established that steel subjected to HTMT undergoes transcrystalline embrittlement upon deformation aging. At the same time, HTMT, which suppresses intercrystalline fracture, leads to a weakening of the development of reversible temper brittleness.

  9. Analysis of a brittle-culm mutant of rice (Oryza sativa) induced bay gamma rays

    International Nuclear Information System (INIS)

    Doat, Jacqueline; Marie, R.

    1977-01-01

    An unexpected ''brittle-culm'' mutant has been screened in the progeny of the rice cultivar ''Balilla 28'' after a seed treatment by gamma rays from a Cobalt-60 source. This property proved hereditable and true-breeding. It does not affect the high resistance to lodging of rice plants. Important difference were pointed out between control and mutant lines in cellulose content and 1 p. cent NaOH extracts: ''brittle-culm'' straw contains less cellulose and shows a degradation of glucid coupounds. The brittleness of plant tissues appears to be correlated with a partial depolymerization of cellulose, associated with a possible transformation from alpha- to beta- or gamma-cellulose [fr

  10. Failure analysis of edge flat-slab column connections with shear reinforcement

    OpenAIRE

    Bompa, Dan V.; Muttoni, Aurelio

    2013-01-01

    Flat-slab column connections are susceptible to brittle failure, which lead to the necessity of improving ductility and ultimate strength. In case of edge connections, the behaviour at ultimate state is highly influenced by nonsymmetrical distribution of stresses originated by a moment transfer between the slab and the column. The paper presents the test results of three full-scale reinforced concrete flat-slab edge connections with stud-rail shear reinforcement subjected to concentrated load...

  11. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    Science.gov (United States)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  12. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was -5 degree F and, with the addition of a 30 degree F safety factor, the minimum safe operating temperature was determined to be 25 degree F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50 degree F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack

  13. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    Science.gov (United States)

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (pstar extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (pstar methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  14. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    International Nuclear Information System (INIS)

    Moinereau, D.; Faidy, C.; Valeta, M.P.; Bhandari, S.; Guichard, D.

    1997-01-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs

  15. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Moinereau, D [Electricite de France, Dept. MTC, Moret-sur-Loing (France); Faidy, C [Electricite de France, SEPTEN, Villeurbanne (France); Valeta, M P [Commisariat a l` Energie Atomique, Dept. DMT, Gif-sur-Yvette (France); Bhandari, S; Guichard, D [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-09-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs.

  16. A continuous time Cournot duopoly with delays

    International Nuclear Information System (INIS)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2015-01-01

    This paper extends the classical repeated duopoly model with quantity-setting firms of Bischi et al. (1998) by assuming that production of goods is subject to some gestation lags but exchanges take place continuously in the market. The model is expressed in the form of differential equations with discrete delays. By using some recent mathematical techniques and numerical experiments, results show some dynamic phenomena that cannot be observed when delays are absent. In addition, depending on the extent of time delays and inertia, synchronisation failure can arise even in the event of homogeneous firms.

  17. Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children

    Directory of Open Access Journals (Sweden)

    Sijuade Abayomi

    2010-02-01

    Full Text Available Abstract Background Drug resistance in Plasmodium falciparum is common in many endemic and other settings but there is no clear recommendation on when to change therapy when there is delay in parasite clearance after initiation of therapy in African children. Methods The factors contributing to delay in parasite clearance, defined as a clearance time > 2 d, in falciparum malaria were characterized in 2,752 prospectively studied children treated with anti-malarial drugs between 1996 and 2008. Results 1,237 of 2,752 children (45% had delay in parasite clearance. Overall 211 children (17% with delay in clearance subsequently failed therapy and they constituted 72% of those who had drug failure, i.e., 211 of 291 children. The following were independent risk factors for delay in parasite clearance at enrolment: age less than or equal to 2 years (Adjusted odds ratio [AOR] = 2.13, 95% confidence interval [CI]1.44-3.15, P 50,000/ul (AOR = 2.21, 95% CI = 1.77-2.75, P 20000/μl a day after treatment began, were independent risk factors for delay in clearance. Non-artemisinin monotherapies were associated with delay in clearance and treatment failures, and in those treated with chloroquine or amodiaquine, with pfmdr 1/pfcrt mutants. Delay in clearance significantly increased gametocyte carriage (P Conclusion Delay in parasite clearance is multifactorial, is related to drug resistance and treatment failure in uncomplicated malaria and has implications for malaria control efforts in sub-Saharan Africa.

  18. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The

  19. Failure behavior investigation of a unidirectional carbon–carbon composite

    International Nuclear Information System (INIS)

    Cheng, Jing; Li, He-jun; Zhang, Shou-yang; Xue, Li-zhen; Luo, Wen-fei; Li, Wei

    2014-01-01

    Highlights: • One unidirectional carbon-carbon composite was manufactured by ICVI. • Failure behavior of the composite material can be described as three stages. • Two kinds of cracks alternately result in deformation evolution of the composite. • Interfacial bonding and cracks orientation play key roles to failure behavior. - Abstract: The failure behavior and morphology of a carbon–carbon composite (C–C composite) manufactured by isothermal chemical vapor infiltration was studied by three-point bending tests, polarized light microscope and scanning electron microscope, respectively. The C–C composite was reinforced by PAN-based carbon fiber aligned in only one direction. Flexural strength and modulus of the composite were 200.9 MPa and 50.5 GPa, respectively. Failure behavior of the unidirectional C–C composite can be described as three stages including brittle fracture behavior at beginning, quasi-ductile behavior finally, and fluctuation behavior between them. Two main kinds of cracks, namely cracks parallel and perpendicular to loading direction alternately resulted in deformation evolution of the composite. The strength of interfacial bonding and cracks orientation played key roles to failure behavior of C–C composite

  20. Brittle to ductile transition in densified silica glass.

    Science.gov (United States)

    Yuan, Fenglin; Huang, Liping

    2014-05-22

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.

  1. Testing smooth and notched samples for identification of brittle material fracture mechanism

    International Nuclear Information System (INIS)

    Barinov, S.M.; Ivanov, V.S.

    1987-01-01

    Mechanical tests of cermet made of LaCrO 3 and Cr powder mixture in 3:2 mass ratio were conducted in LaCrO 3 -Cr system. Powder mixtures were exposed to static pressing and sintering (sintered cermets) or to high-speed pressing with following thermal treatment (high-speed pressing cermets). It is shown, that nonlinear deformation strength at deformation of brittle material smooth and notched samples allows to evaluate properly correlation of microplasticity and microcracking at brittle powder materials fracture

  2. De novo deletion of HOXB gene cluster in a patient with failure to thrive, developmental delay, gastroesophageal reflux and bronchiectasis.

    Science.gov (United States)

    Pajusalu, Sander; Reimand, Tiia; Uibo, Oivi; Vasar, Maire; Talvik, Inga; Zilina, Olga; Tammur, Pille; Õunap, Katrin

    2015-01-01

    We report a female patient with a complex phenotype consisting of failure to thrive, developmental delay, congenital bronchiectasis, gastroesophageal reflux and bilateral inguinal hernias. Chromosomal microarray analysis revealed a 230 kilobase deletion in chromosomal region 17q21.32 (arr[hg19] 17q21.32(46 550 362-46 784 039)×1) encompassing only 9 genes - HOXB1 to HOXB9. The deletion was not found in her mother or father. This is the first report of a patient with a HOXB gene cluster deletion involving only HOXB1 to HOXB9 genes. By comparing our case to previously reported five patients with larger chromosomal aberrations involving the HOXB gene cluster, we can suppose that HOXB gene cluster deletions are responsible for growth retardation, developmental delay, and specific facial dysmorphic features. Also, we suppose that bilateral inguinal hernias, tracheo-esophageal abnormalities, and lung malformations represent features with incomplete penetrance. Interestingly, previously published knock-out mice with targeted heterozygous deletion comparable to our patient did not show phenotypic alterations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Síndrome das unhas frágeis Brittle nail syndrome

    Directory of Open Access Journals (Sweden)

    Izelda Maria Carvalho Costa

    2007-06-01

    Full Text Available A síndrome das unhas frágeis é queixa comum, caracterizada por aumento da fragilidade das lâminas ungueais. Afeta quase 20% da população geral, sendo mais comum em mulheres. Clinicamente se manifesta com onicosquizia e onicorrexe - distúrbios nos fatores de adesão intercelular das unhas se manifestam como a primeira, ao passo que alterações da matriz apresentamse com onicorrexe. Mesmo sendo tão usual e afetando os pacientes de maneira importante em seu cotidiano, o tratamento das unhas frágeis avançou pouco nas últimas décadas e ainda se baseia principalmente no uso da biotina.Brittle nail syndrome is a common condition, characterized by increased fragility of the nail plates. It affects almost 20% of the population, being more usual in women. Clinical manifestations of brittle nails are onychoschizia and onychorexis - disorders of intercellular adhesive factors are expressed as the first, while disorders of the nail matrix manifest as onychorexis. Despite being so common and causing much more than only cosmetic problems to the patient, the treatment of brittle nails has had little improvement over the past decades and is still mainly based on the daily use of biotin.

  4. Takotsubo cardiomyopathy as a delayed complication with a herbicide containing glufosinate ammonium in a suicide attempt: a case report.

    Science.gov (United States)

    Tominaga, Keiichiro; Izumi, Manabu; Suzukawa, Masayuki; Shinjo, Takafumi; Izawa, Yoshimitsu; Yonekawa, Chikara; Ano, Masaki; Yamashita, Keisuke; Muronoi, Tomohiro; Mochiduki, Reiko

    2012-01-01

    Background. Glufosinate ammonium has a famous delayed complication as respiratory failure, however, delayed cardiogenic complication is not well known. Objectives. The aim of this study is to report a takotsubo cardiomyopathy as a delayed complication of glufosinate ammonium for suicide attempt. Case Report. A 75-year-old woman ingested about 90 mL of Basta, herbicide for suicide attempt at arousal during sleep. She came to our hospital at twelve hours after ingesting. She was admitted to our hospital for fear of delayed respiratory failure. Actually, she felt down to respiratory failure, needing a ventilator with intubation at 20 hours after ingesting. Procedure around respiratory management had smoothly done with no delay. Her vital status had been stable, however, she felt down to circulatory failure and diagnosed as Takotsubo cardiomyopathy at about 41 hours after ingestion. There was no trigger activities or events to evoke mental and physical stresses. Conclusion. We could successfully manage takotsubo cardiomyopathy resulted in circulatory failure in a patient with glufosinate poisoning for suicide attempt. Takotsubo cardiomyopathy should be taken into consideration if circulatory failure is observed for unexplained reasons.

  5. Takotsubo Cardiomyopathy as a Delayed Complication with a Herbicide Containing Glufosinate Ammonium in a Suicide Attempt: A Case Report

    Directory of Open Access Journals (Sweden)

    Keiichiro Tominaga

    2012-01-01

    Full Text Available Background. Glufosinate ammonium has a famous delayed complication as respiratory failure, however, delayed cardiogenic complication is not well known. Objectives. The aim of this study is to report a takotsubo cardiomyopathy as a delayed complication of glufosinate ammonium for suicide attempt. Case Report. A 75-year-old woman ingested about 90 mL of Basta, herbicide for suicide attempt at arousal during sleep. She came to our hospital at twelve hours after ingesting. She was admitted to our hospital for fear of delayed respiratory failure. Actually, she felt down to respiratory failure, needing a ventilator with intubation at 20 hours after ingesting. Procedure around respiratory management had smoothly done with no delay. Her vital status had been stable, however, she felt down to circulatory failure and diagnosed as Takotsubo cardiomyopathy at about 41 hours after ingestion. There was no trigger activities or events to evoke mental and physical stresses. Conclusion. We could successfully manage takotsubo cardiomyopathy resulted in circulatory failure in a patient with glufosinate poisoning for suicide attempt. Takotsubo cardiomyopathy should be taken into consideration if circulatory failure is observed for unexplained reasons.

  6. An epidemiological study of urban and rural children in Pakistan: examining the relationship between delayed psychomotor development, low birth weight and postnatal growth failure.

    Science.gov (United States)

    Avan, Bilal I; Raza, Syed A; Kirkwood, Betty R

    2015-03-01

    Low birth weight is known to be associated with postnatal growth failure. It is not yet established that both conditions are determinants of psychomotor development. The study investigated whether or not low birth weight leads to delayed psychomotor development of a child, and whether it can be mitigated by adequate postnatal growth. A cross-sectional study was conducted in 2002 in 15 rural and 11 urban communities of Sindh province, Pakistan. Assessment of 1234 children less than 3 years of age included Bayley's Scale of Infant Development II, socioeconomic questionnaire and anthropometry; WHO standards were used to calculate z-scores of height-for-age, weight-for-height and weight-for-age. The underlying study hypotheses were tested through multiple regression modelling. Out of 1219 children, 283 (23.2%) had delayed psychomotor development and 639 (52.4%) were undernourished according to the composite index of anthropometric failure. Strong negative associations with the psychomotor development index were detected between stunting and being underweight, with a larger magnitude of effect for stunting (pchildren. The psychomotor index increased by 2.07 points with every unit increase in height-for-age z-score. The relationship between low birth weight and psychomotor development appears to be mediated largely by postnatal growth and nutritional status. This association suggests that among undernourished children there is significant likelihood of a group that is developmentally delayed. It is important to emphasize developmental needs in programmes that target underprivileged children. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Delay factors in failed construction projects in southwestern Nigeria ...

    African Journals Online (AJOL)

    This study was carried out with a view to showing the contribution of delay factors in the overall consideration of failed construction projects in south western Nigeria. This is considered necessary because the traditional view of construction project failure as consisting mainly of structural or functional failures tends to excuse ...

  8. Correlation between the electric and acoustic signals emitted during compression of brittle materials

    Directory of Open Access Journals (Sweden)

    Ermioni D. Pasiou

    2017-04-01

    Full Text Available An experimental protocol is described including a series of uni¬axial compression tests of three brittle materials (marble, mortar and glass. The Acoustic Emission (AE technique and the Pressure Stimulated Currents (PSC one are used since the recordings of both techniques are strongly related to the formation of cracking in brittle materials. In the present paper, the correlation of these techniques is investigated, which is finally proven to be very satisfactory.

  9. Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett shale

    Science.gov (United States)

    Perez Altimar, Roderick

    Brittleness is a key characteristic for effective reservoir stimulation and is mainly controlled by mineralogy in unconventional reservoirs. Unfortunately, there is no universally accepted means of predicting brittleness from measures made in wells or from surface seismic data. Brittleness indices (BI) are based on mineralogy, while brittleness average estimations are based on Young's modulus and Poisson's ratio. I evaluate two of the more popular brittleness estimation techniques and apply them to a Barnett Shale seismic survey in order to estimate its geomechanical properties. Using specialized logging tools such as elemental capture tool, density, and P- and S wave sonic logs calibrated to previous core descriptions and laboratory measurements, I create a survey-specific BI template in Young's modulus versus Poisson's ratio or alternatively lambdarho versus murho space. I use this template to predict BI from elastic parameters computed from surface seismic data, providing a continuous estimate of BI estimate in the Barnett Shale survey. Extracting lambdarho-murho values from microseismic event locations, I compute brittleness index from the template and find that most microsemic events occur in the more brittle part of the reservoir. My template is validated through a suite of microseismic experiments that shows most events occurring in brittle zones, fewer events in the ductile shale, and fewer events still in the limestone fracture barriers. Estimated ultimate recovery (EUR) is an estimate of the expected total production of oil and/or gas for the economic life of a well and is widely used in the evaluation of resource play reserves. In the literature it is possible to find several approaches for forecasting purposes and economic analyses. However, the extension to newer infill wells is somewhat challenging because production forecasts in unconventional reservoirs are a function of both completion effectiveness and reservoir quality. For shale gas reservoirs

  10. Factors for failure of nonoperative management of blunt ...

    African Journals Online (AJOL)

    The aim is to evaluate factors for failure of NOM for blunt abdominal ... and contrast blush on the CT scan increase the risk of failure of NOM .... Lung contusion. 23 (16.1) .... abscesses, delayed hepatic or splenic bleeding, bilomas, and missed ...

  11. Failure Mechanism of Rock Bridge Based on Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    2015-01-01

    Full Text Available Acoustic emission (AE technique is widely used in various fields as a reliable nondestructive examination technology. Two experimental tests were carried out in a rock mechanics laboratory, which include (1 small scale direct shear tests of rock bridge with different lengths and (2 large scale landslide model with locked section. The relationship of AE event count and record time was analyzed during the tests. The AE source location technology and comparative analysis with its actual failure model were done. It can be found that whether it is small scale test or large scale landslide model test, AE technique accurately located the AE source point, which reflected the failure generation and expansion of internal cracks in rock samples. Large scale landslide model with locked section test showed that rock bridge in rocky slope has typical brittle failure behavior. The two tests based on AE technique well revealed the rock failure mechanism in rocky slope and clarified the cause of high speed and long distance sliding of rocky slope.

  12. Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock

    Science.gov (United States)

    Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre

    2018-05-01

    This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.

  13. Continuous intraperitoneal insulin infusion in patients with 'brittle' diabetes

    DEFF Research Database (Denmark)

    DeVries, J H; Eskes, S A; Snoek, Frank J

    2002-01-01

    AIMS: To evaluate the effects of continuous intraperitoneal insulin infusion (CIPII) using implantable pumps on glycaemic control and duration of hospital stay in poorly controlled 'brittle' Dutch diabetes patients, and to assess their current quality of life. METHODS: Thirty-three patients were...

  14. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    Science.gov (United States)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  15. Ductile-to-brittle transition behavior of tungsten-copper composites

    International Nuclear Information System (INIS)

    Hiraoka, Y.; Inoue, T.; Akiyoshi, N.; Yoo, M.K.

    2001-01-01

    A series of W-Cu composites were fabricated alternatively by infiltration method (19-48 vol% Cu) or by pressing and sintering method (20-80 vol% Cu), and three-point bend tests were carried out at temperatures between 77 and 363 K. Ductile-to-brittle transition behavior of the composite was investigated and also effects of Cu content as well as fabrication method on the strength and ductility of the composite were discussed. Results were summarized as follows. (1) Composite containing 19-40 vol% of copper demonstrated ductile-to-brittle transition behavior. Transition temperature tended to decrease substantially with increasing Cu content, though ductility of the composite by infiltration method was much better than that by pressing and sintering method. (2) Composite containing 48-80 vol% of copper did not demonstrate transition behavior regardless of fabrication method. (3) These results were well interpreted in terms of microstructure and fractography. (author)

  16. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion.

    Science.gov (United States)

    Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi

    2012-01-01

    Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al(12)W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.

  17. Coexistence of ductile and brittle fracture in metals

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.J.; Park, C.G.; Thomson, R.

    1985-01-01

    It is well known that semibrittle body-centered cubic (bcc) metals fail at low temperatures by cleavage that is preceded by crack tip deformation. Sinclair and Finnis proposed a mechanism by which crack tip deformation may be combined with brittle crack extension. In this model, edge dislocations are emitted from a crack tip on an inclined plane under pure mode I loading conditions. The authors propose a new mechanism of brittle fracture of semibrittle metals preceded by crack tip deformation by extending the model of Sinclair and Finnis and by incorporating experimental evidence on mixed mode crack propagation observed by transmission electron microscopy (TEM). They have shown experimentally that, even when the orientation of the dislocations in the plastic zone indicated pure mode III crack tip deformation, the crack opening displacement determined from the relative displacement of the crack flanks showed the presence of an additional mode I component. They have also shown that zigzag crack propagation observed in many metals can occur only if mode I cleavage is superimposed to mode II crack tip deformation

  18. A new in situ technique for studying deformation and fracture in thin film ductile/brittle laminates

    International Nuclear Information System (INIS)

    Hackney, S.A.; Milligan, W.W.

    1991-01-01

    A new technique for studying deformation and fracture of thin film ductile/brittle laminates is described. The laminates are prepared by sputtering a brittle coating on top of an electropolished TEM thin foil. The composites are then strained in situ in the TEM. In this preliminary investigation, the composites consisted of a ductile aluminum substrate and a brittle silicon coating. Cracks in the brittle film grew discontinuously in bursts several micrometers in length. The crack opening displacement initiated plastic deformation in the ductile film, thus dissipating energy and allowing crack arrest. The interface was well bonded, and delamination was not observed. Due to the good interfacial bond and the crack opening behind the crack tip, it was possible to study very large plastic deformations and ductile fracture in the aluminum in situ, without buckling of the foil. The possibility of micromechanical modeling of the fracture behavior is briefly discussed. (orig.)

  19. Failure Identification of Hacksaw Machine REMOR 400

    International Nuclear Information System (INIS)

    Paidjo; Abdul Hafid; Sagino

    2007-01-01

    REMOR 400 Hack sawing machine is one of machines type has been old age. For arrange of cutting pressure and repeat lifting load after cutting process by using the hydraulic system. Beside of worn-out of hacksaw blade, failure cutting earn also because of leakage from the hydraulic system of machine. Leakage of hydraulic system occurs because of over load factor using or aging. Base on inspection result, hacksaw machine REMOR 400 fault on hydraulic system in the 2006 year. This matter will be seen from its seal brittle from the machine. For activate to return machine so much replacement repeat the seals used by machine. (author)

  20. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  1. Brittle superconducting magnets: an equivilent strain model

    International Nuclear Information System (INIS)

    Barzi, E.; Danuso, M.

    2010-01-01

    To exceed fields of 10 T in accelerator magnets, brittle superconductors like A15 Nb 3 Sn and Nb 3 Al or ceramic High Temperature Superconductors have to be used. For such brittle superconductors it is not their maximum tensile yield stress that limits their structural resistance as much as strain values that provoke deformations in their delicate lattice, which in turn affect their superconducting properties. Work on the sensitivity of Nb 3 Sn cables to strain has been conducted in a number of stress states, including uniaxial and multi-axial, producing usually different results. This has made the need of a constituent design criterion imperative for magnet builders. In conventional structural problems an equivalent stress model is typically used to verify mechanical soundness. In the superconducting community a simple scalar equivalent strain to be used in place of an equivalent stress would be an extremely useful tool. As is well known in fundamental mechanics, there is not one single way to reduce a multiaxial strain state as represented by a 2nd order tensor to a scalar. The conceptual experiment proposed here will help determine the best scalar representation to use in the identification of an equivalent strain model.

  2. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    Science.gov (United States)

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  3. Tuning critical failure with viscoelasticity: How aftershocks inhibit criticality in an analytical mean field model of fracture.

    Science.gov (United States)

    Baro Urbea, J.; Davidsen, J.

    2017-12-01

    The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible of deformation. Avalanche models involving critical failure have determined universality classes in different systems: from slip events in crystalline and amorphous materials to the jamming of granular media or the fracture of brittle materials. However, not all empirical failure processes exhibit the trademarks of critical failure. As an example, the statistical properties of ultrasonic acoustic events recorded during the failure of porous brittle materials are stationary, except for variations in the activity rate that can be interpreted in terms of aftershock and foreshock activity (J. Baró et al., PRL 2013).The rheological properties of materials introduce dissipation, usually reproduced in atomistic models as a hardening of the coarse-grained elements of the system. If the hardening is associated to a relaxation process the same mechanism is able to generate temporal correlations. We report the analytic solution of a mean field fracture model exemplifying how criticality and temporal correlations are tuned by transient hardening. We provide a physical meaning to the conceptual model by deriving the constitutive equation from the explicit representation of the transient hardening in terms of a generalized viscoelasticity model. The rate of 'aftershocks' is controlled by the temporal evolution of the viscoelastic creep. At the quasistatic limit, the moment release is invariant to rheology. Therefore, the lack of criticality is explained by the increase of the activity rate close to failure, i.e. 'foreshocks'. Finally, the avalanche propagation can be reinterpreted as a pure mathematical problem in terms of a stochastic counting process. The statistical properties depend only on the distance to a critical point, which is universal for any

  4. Experimental investigation of the brittle-viscous transition in mafic rocks - Interplay between fracturing, reaction, and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2017-12-01

    Rock deformation experiments are performed on fault gouge fabricated from 'Maryland Diabase' rock powder to investigate the transition from dominant brittle to dominant viscous behaviour. At the imposed strain rates of γ˙ = 3 ·10-5 - 3 ·10-6 s-1, the transition is observed in the temperature range of (600 °C < T < 800 °C) at confining pressures of (0.5 GPa ≤ Pc ≤ 1.5 GPa). The transition thereby takes place by a switch from brittle fracturing and cataclastic flow to viscous dissolution-precipitation creep and grain boundary sliding. Mineral reactions and resulting grain size refinement by nucleation are observed to be critical processes for the switch to viscous deformation, i.e., grain size sensitive creep. In the transitional regime, the mechanical response of the sample is a mixed-mode between brittle and viscous rheology and microstructures associated with both brittle and viscous deformation are observed. As grain size reduction by reaction and nucleation is a time dependent process, the brittle-viscous transition is not only a function of T but to a large extent also of microstructural evolution.

  5. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses

    Science.gov (United States)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-01

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value fcp during tensile extension; (b) the limiting value of fcp, extrapolated to far below the glass transition temperature Tg, is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature

  6. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.

    Science.gov (United States)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-07

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value f(cp) during tensile extension; (b) the limiting value of f(cp), extrapolated to far below the glass transition temperature T(g), is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room

  7. Guidelines for safe design of shipping packages against brittle fracture

    International Nuclear Information System (INIS)

    1993-08-01

    In 1992, the ninth meeting of the Standing Advisory Group on the Safe Transport of Radioactive Materials recommended the publication of this TECDOC in an effort to promote the widest debate on the criteria for the brittle fracture safe design of transport packages. The published IAEA advice on the influence of brittle fracture on material integrity is contained in Appendix IX of the Advisory Material for the IAEA Regulations for the Safety Transport of Radioactive Material (1985 Edition, as amended 1990), Safety Series No. 37. This guidance is limited in scope, dealing only with ferritic steels in general terms. It is becoming more common for designers to specify materials other than austenitic stainless steel for packaging components. The data on ferritic steels cannot be assumed to apply to other metals, hence the need for further guidance on the development of relationships describing material properties at low temperatures. The methods described in this TECDOC will be considered by the Revision Panel for inclusion in the 1996 Edition of the IAEA Regulations for the Safe Transport of Radioactive Material and the supporting documents. If accepted by the Revision Panel, this advice will be a candidate for upgrading to a Safety Practice. In the interim period, this TECDOC offers provisional advice on brittle fracture evaluation. It is acknowledged that, at this stage, the views expressed do not necessarily reflect those of the governments of Member States or organizations under whose auspices this manuscript was produced. Refs and figs

  8. Long-term follow-up of children thought to have temporary brittle bone disease

    Directory of Open Access Journals (Sweden)

    Paterson CR

    2011-06-01

    Full Text Available Colin R Paterson1, Elizabeth A Monk21Department of Medicine (retired, 2School of Accounting and Finance, University of Dundee, Dundee, ScotlandBackground: In addition to nonaccidental injury, a variety of bone disorders may underlie the finding of unexplained fractures in young children. One controversial postulated cause is temporary brittle bone disease, first described in 1990.Methods: Eighty-five patients with fractures showing clinical and radiological features of temporary brittle bone disease were the subject of judicial hearings to determine whether it was appropriate for them to return home. Sixty-three patients did, and follow-up information was available for 61 of these. The mean follow-up period was 6.9 years (range 1–17, median 6.Results: We found that none of the children had sustained any further injuries that were thought to represent nonaccidental injury; no child was re-removed from home. Three children had fractures. In each case there was general agreement that the fractures were accidental. Had the original fractures in these children been the result of nonaccidental injury, it would have been severe and repeated; the average number of fractures was 9.1.Conclusion: The fact that no subsequent suspicious injuries took place after return home is consistent with the view that the fractures were unlikely to have been caused by nonaccidental injury, and that temporary brittle bone disease is a distinctive and identifiable disorder.Keywords: fractures, osteogenesis imperfecta, temporary brittle bone disease, nonaccidental injury

  9. From brittle to ductile: a structure dependent ductility of diamond nanothread.

    Science.gov (United States)

    Zhan, Haifei; Zhang, Gang; Tan, Vincent B C; Cheng, Yuan; Bell, John M; Zhang, Yong-Wei; Gu, Yuantong

    2016-06-07

    As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp(3) bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the "grain size". On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for the creation of extremely strong three-dimensional nano-architectures.

  10. Fracture mechanics applied to the machining of brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  11. Brittle Fracture Behaviors of Large Die Holders Used in Hot Die Forging

    Directory of Open Access Journals (Sweden)

    Weifang Zhang

    2017-05-01

    Full Text Available Brittle fracture of large forging equipment usually leads to catastrophic consequences. To avoid this kind of accident, the brittle fracture behaviors of a large die holder were studied by simulating the practical application. The die holder is used on the large die forging press, and it is made of 55NiCrMoV7 hot-work tool steel. Detailed investigations including mechanical properties analysis, metallographic observation, fractography, transmission electron microscope (TEM analysis and selected area electron diffraction (SAED were conducted. The results reveal that the material generated a large quantity of large size polyhedral M23C6 (M: Fe and Cr mainly and elongated M3C (M: Fe mainly carbides along the martensitic lath boundaries when the die holder was recurrently tempered and water-cooled at 250 °C during the service. The large size carbides lead to the material embrittlement and impact toughness degradation, and further resulted in the brittle fracture of the die holder. Therefore, the operation specification must be emphasized to avoid the die holder being cooled by using water, which is aimed at accelerating the cooling.

  12. Magnitude and factors associated with delayed initiation of ...

    African Journals Online (AJOL)

    Results: In this study, 31.4% mothers delayed initiation of breastfeeding. This was associated with .... occupation, lack of prenatal guidance on advantages of breast feeding, failure to .... shown earlier in increasing uptake of exclusive breast-.

  13. Demand Uncertainty: Exporting Delays and Exporting Failures

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    2012-01-01

    This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of the resolution of uncertainty found in models with heterogeneity...... of firm productivity. This retooling addresses several shortcomings. First, the imperfect correlation of demands reconciles the sales variation observed in and across destinations. Second, since demands for the firm's output are correlated across destinations, a firm can use previously realized demands...... to forecast unknown demands in untested destinations. The option to forecast demands causes firms to delay exporting in order to gather more information about foreign demand. Third, since uncertainty is resolved after entry, many firms enter a destination and then exit after learning that they cannot profit...

  14. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment

    Directory of Open Access Journals (Sweden)

    Watson Shawn N

    2012-08-01

    Full Text Available Abstract Background Cognitive impairment associated with subtle changes in neuron and neuronal network function rather than widespread neuron death is a feature of the normal aging process in humans and animals. Despite its broad evolutionary conservation, the etiology of this aging process is not well understood. However, recent evidence suggests the existence of a link between oxidative stress in the form of progressive membrane lipid peroxidation, declining neuronal electrical excitability and functional decline of the normal aging brain. The current study applies a combination of behavioural and electrophysiological techniques and pharmacological interventions to explore this hypothesis in a gastropod model (Lymnaea stagnalis feeding system that allows pinpointing the molecular and neurobiological foundations of age-associated long-term memory (LTM failure at the level of individual identified neurons and synapses. Results Classical appetitive reward-conditioning induced robust LTM in mature animals in the first quartile of their lifespan but failed to do so in animals in the last quartile of their lifespan. LTM failure correlated with reduced electrical excitability of two identified serotonergic modulatory interneurons (CGCs critical in chemosensory integration by the neural network controlling feeding behaviour. Moreover, while behavioural conditioning induced delayed-onset persistent depolarization of the CGCs known to underlie appetitive LTM formation in this model in the younger animals, it failed to do so in LTM-deficient senescent animals. Dietary supplementation of the lipophilic anti-oxidant α-tocopherol reversed the effect of age on CGCs electrophysiological characteristics but failed to restore appetitive LTM function. Treatment with the SSRI fluoxetine reversed both the neurophysiological and behavioural effects of age in senior animals. Conclusions The results identify the CGCs as cellular loci of age-associated appetitive

  15. Fundamental aspects of brittle damage processes -- discrete systems

    International Nuclear Information System (INIS)

    Krajcinovic, D.; Lubarda, V.

    1993-01-01

    The analysis of cooperative brittle processes are performed on simple discrete models admitting closed form solutions. A connection between the damage and fracture mechanics is derived and utilized to illustrate the relation between two theories. The performed analyses suggest that the stress concentrations (direct interaction between defects) represent a second order effect during the hardening part of the response in the case of disordered solids

  16. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  17. Hugoniot elastic limits and compression parameters for brittle materials

    International Nuclear Information System (INIS)

    Gust, W.H.

    1979-01-01

    The physical properties of brittle materials are of interest because of the rapidly expanding use of these material in high-pressure and shock wave techology, e.g., geophysics and explosive compaction as well as military applications. These materials are characterized by unusually high sonic velocities, have large dynamic impedances and exhibit large dynamic yield strengths

  18. Fractal statistics of brittle fragmentation

    Directory of Open Access Journals (Sweden)

    M. Davydova

    2013-04-01

    Full Text Available The study of fragmentation statistics of brittle materials that includes four types of experiments is presented. Data processing of the fragmentation of glass plates under quasi-static loading and the fragmentation of quartz cylindrical rods under dynamic loading shows that the size distribution of fragments (spatial quantity is fractal and can be described by a power law. The original experimental technique allows us to measure, apart from the spatial quantity, the temporal quantity - the size of time interval between the impulses of the light reflected from the newly created surfaces. The analysis of distributions of spatial (fragment size and temporal (time interval quantities provides evidence of obeying scaling laws, which suggests the possibility of self-organized criticality in fragmentation.

  19. Susceptibility of cold-worked zirconium-2.5 wt% niobium alloy to delayed hydrogen cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.

    1976-01-01

    Notched tensile specimens of cold-worked zirconium-2.5 wt% niobium alloy have been stressed at 350 K and 520 K. At 350 K, above a possible threshold stress of 200 MPa, specimens exhibited delayed failure which was attributed to hydride cracking. Metallography showed that hydrides accumulated at notches and tips of growing cracks. The time to failure appeared to be independent of hydrogen content over the range 7 to 100 ppm hydrogen. Crack growth rates of about 10 -10 m/s deduced from fractography were in the same range as those necessary to fracture pressure tubes. The asymptotic stress intensity for delayed failure, Ksub(1H), appeared to be about 5 MPa√m. With this low value of Ksub(1H) small surface flaws may propagate in pressure tubes which contain large residual stresses. Stress relieving and modified rolling procedures will reduce the residual stresses to such an extent that only flaws 12% of the wall thickness or greater will grow. At 520 K no failures were observed at times a factor of three greater than times to failure at 350 K. Zirconium-2.5 wt% niobium appears to be safe from delayed hydrogen cracking at the reactor operating temperature. (author)

  20. Evolutionary neural network modeling for software cumulative failure time prediction

    International Nuclear Information System (INIS)

    Tian Liang; Noore, Afzel

    2005-01-01

    An evolutionary neural network modeling approach for software cumulative failure time prediction based on multiple-delayed-input single-output architecture is proposed. Genetic algorithm is used to globally optimize the number of the delayed input neurons and the number of neurons in the hidden layer of the neural network architecture. Modification of Levenberg-Marquardt algorithm with Bayesian regularization is used to improve the ability to predict software cumulative failure time. The performance of our proposed approach has been compared using real-time control and flight dynamic application data sets. Numerical results show that both the goodness-of-fit and the next-step-predictability of our proposed approach have greater accuracy in predicting software cumulative failure time compared to existing approaches

  1. Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Andrey Dovzhenok

    Full Text Available Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS. This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.

  2. Internal Progressive Failure in Deep-Seated Landslides

    Science.gov (United States)

    Yerro, Alba; Pinyol, Núria M.; Alonso, Eduardo E.

    2016-06-01

    Except for simple sliding motions, the stability of a slope does not depend only on the resistance of the basal failure surface. It is affected by the internal distortion of the moving mass, which plays an important role on the stability and post-failure behaviour of a landslide. The paper examines the stability conditions and the post-failure behaviour of a compound landslide whose geometry is inspired by one of the representative cross-sections of Vajont landslide. The brittleness of the mobilized rock mass was described by a strain-softening Mohr-Coulomb model, whose parameters were derived from previous contributions. The analysis was performed by means of a MPM computer code, which is capable of modelling the whole instability procedure in a unified calculation. The gravity action has been applied to initialize the stress state. This step mobilizes part of the strength along a shearing band located just above the kink of the basal surface, leading to the formation a kinematically admissible mechanism. The overall instability is triggered by an increase of water level. The increase of pore water pressures reduces the effective stresses within the slope and it leads to a progressive failure mechanism developing along an internal shearing band which controls the stability of the compound slope. The effect of the basal shearing resistance has been analysed during the post-failure stage. If no shearing strength is considered (as predicted by a thermal pressurization analysis), the model predicts a response similar to actual observations, namely a maximum sliding velocity of 25 m/s and a run-out close to 500 m.

  3. Influence of the residual stresses on crack initiation in brittle materials and structures

    International Nuclear Information System (INIS)

    Henninger, C.

    2007-11-01

    Many material assemblies subjected to thermo-mechanical loadings develop thermal residual stresses which modify crack onset conditions. Besides if one of the components has a plastic behaviour, plastic residual deformations may also have a contribution. One of the issues in brittle fracture mechanics is to predict crack onset without any pre-existing defect. Leguillon proposed an onset criterion based on both a Griffth-like energetic condition and a maximum stress criterion. The analysis uses matched asymptotics and the theory of singularity. The good fit between the model and experimental measurements led on homogeneous isotropic materials under pure mechanical loading incited us to take into account residual stresses in the criterion. The comparison between the modified criterion and the experimental measurements carried out on an aluminum/epoxy assembly proves to be satisfying concerning the prediction of failure of the interface between the two components. Besides, it allows, through inversion, identifying the fracture properties of this interface. The modified criterion is also applied to the delamination of the tile/structure interface in the plasma facing components of the Tore Supra tokamak. Indeed thermal and plastic residual stresses appear in the metallic part of these coating tiles. (author)

  4. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method

    Science.gov (United States)

    White, Richard A.; Lu, Chunling; Rodriguez, Carly A.; Bayona, Jaime; Becerra, Mercedes C.; Burgos, Marcos; Centis, Rosella; Cohen, Theodore; Cox, Helen; D'Ambrosio, Lia; Danilovitz, Manfred; Falzon, Dennis; Gelmanova, Irina Y.; Gler, Maria T.; Grinsdale, Jennifer A.; Holtz, Timothy H.; Keshavjee, Salmaan; Leimane, Vaira; Menzies, Dick; Milstein, Meredith B.; Mishustin, Sergey P.; Pagano, Marcello; Quelapio, Maria I.; Shean, Karen; Shin, Sonya S.; Tolman, Arielle W.; van der Walt, Martha L.; Van Deun, Armand; Viiklepp, Piret

    2016-01-01

    Debate persists about monitoring method (culture or smear) and interval (monthly or less frequently) during treatment for multidrug-resistant tuberculosis (MDR-TB). We analysed existing data and estimated the effect of monitoring strategies on timing of failure detection. We identified studies reporting microbiological response to MDR-TB treatment and solicited individual patient data from authors. Frailty survival models were used to estimate pooled relative risk of failure detection in the last 12 months of treatment; hazard of failure using monthly culture was the reference. Data were obtained for 5410 patients across 12 observational studies. During the last 12 months of treatment, failure detection occurred in a median of 3 months by monthly culture; failure detection was delayed by 2, 7, and 9 months relying on bimonthly culture, monthly smear and bimonthly smear, respectively. Risk (95% CI) of failure detection delay resulting from monthly smear relative to culture is 0.38 (0.34–0.42) for all patients and 0.33 (0.25–0.42) for HIV-co-infected patients. Failure detection is delayed by reducing the sensitivity and frequency of the monitoring method. Monthly monitoring of sputum cultures from patients receiving MDR-TB treatment is recommended. Expanded laboratory capacity is needed for high-quality culture, and for smear microscopy and rapid molecular tests. PMID:27587552

  5. Respiratory failure following delayed intrathecal morphine pump refill: a valuable, but costly lesson.

    Science.gov (United States)

    Ruan, Xiulu; Couch, J Patrick; Liu, HaiNan; Shah, Rinoo V; Wang, Frank; Chiravuri, Srinivas

    2010-01-01

    Spinal analgesia, mediated by opioid receptors, requires only a fraction of the opioid dose that is needed systemically. By infusing a small amount of opioid into the cerebrospinal fluid in close proximity to the receptor sites in the spinal cord, profound analgesia may be achieved while sparing some of the side effects due to systemic opioids. Intraspinal drug delivery (IDD) has been increasingly used in patients with intractable chronic pain, when these patients have developed untoward side effects with systemic opioid usage. The introduction of intrathecal opioids has been considered one of the most important breakthroughs in pain management in the past three decades. A variety of side effects associated with the long-term usage of IDD have been recognized. Among them, respiratory depression is the most feared. To describe a severe adverse event, i.e., respiratory failure, following delayed intrathecal morphine pump refill. A 65-year-old woman with intractable chronic low back pain, due to degenerative disc disease, and was referred to our clinic for an intraspinal drug delivery evaluation, after failing to respond to multidisciplinary pain treatment. Following a psychological evaluation confirming her candidacy, she underwent an outpatient patient-controlled continuous epidural morphine infusion trial. The infusion trial lasted 12 days and was beneficial in controlling her pain. The patient reported more than 90% pain reduction with improved distance for ambulation. She subsequently consented and was scheduled for permanent intrathecal morphine pump implantation. The intrathecal catheter was inserted at right paramedian L3-L4, with catheter tip advanced to L1, confirmed under fluoroscopy. Intrathecal catheter placement was confirmed by positive CSF flow and by myelogram. A non-programmable Codman 3000 constant-flow rate infusion pump was placed in the right mid quandrant between right rib cage and right iliac crest. The intrathecal infusion consisted of

  6. Nano finish grinding of brittle materials using electrolytic in-process ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Recent developments in grinding have opened up new avenues for finishing of hard and brittle materials with nano-surface finish, high tolerance and accuracy. Grinding with superabrasive wheels is an excellent way to produce ultraprecision surface finish. However, superabrasive diamond grits need ...

  7. Metallurgical viewpoints on the brittleness of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1960-02-15

    At present the development and use of beryllium metal for structural applications is severely hampered by its brittleness. Reasons for this lack of ductility are reviewed in discussing the deformation behaviour of beryllium in relation to other hexagonal metals. The ease of fracturing in beryllium is assumed to be a consequence of a limited number of deformation modes in combination with high deformation resistance. Models for the nucleation of fracture are suggested. The relation of ductility to elastic constants as well as to grain size, texture and alloying additions is discussed.

  8. Metallurgical viewpoints on the brittleness of beryllium

    International Nuclear Information System (INIS)

    Lagerberg, G.

    1960-02-01

    At present the development and use of beryllium metal for structural applications is severely hampered by its brittleness. Reasons for this lack of ductility are reviewed in discussing the deformation behaviour of beryllium in relation to other hexagonal metals. The ease of fracturing in beryllium is assumed to be a consequence of a limited number of deformation modes in combination with high deformation resistance. Models for the nucleation of fracture are suggested. The relation of ductility to elastic constants as well as to grain size, texture and alloying additions is discussed

  9. Delays in the operating room: signs of an imperfect system.

    Science.gov (United States)

    Wong, Janice; Khu, Kathleen Joy; Kaderali, Zul; Bernstein, Mark

    2010-06-01

    Delays in the operating room have a negative effect on its efficiency and the working environment. In this prospective study, we analyzed data on perioperative system delays. One neurosurgeon prospectively recorded all errors, including perioperative delays, for consecutive patients undergoing elective procedures from May 2000 to February 2009. We analyzed the prevalence, causes and impact of perioperative system delays that occurred in one neurosurgeon's practice. A total of 1531 elective surgical cases were performed during the study period. Delays were the most common type of error (33.6%), and more than half (51.4%) of all cases had at least 1 delay. The most common cause of delay was equipment failure. The first cases of the day and cranial cases had more delays than subsequent cases and spinal cases, respectively. A delay in starting the first case was associated with subsequent delays. Delays frequently occur in the operating room and have a major effect on patient flow and resource utilization. Thorough documentation of perioperative delays provides a basis for the development of solutions for improving operating room efficiency and illustrates the principles underlying the causes of operating room delays across surgical disciplines.

  10. Behavioral Outbursts in a Child with a Deletion Syndrome, Generalized Epilepsy, Global Developmental Delay, and Failure to Thrive.

    Science.gov (United States)

    Lewis, Adam H; Chugh, Ankur; Sobotka, Sarah A

    2018-03-01

    A 7-year-old girl with 20q13.33 deletion and a history of generalized convulsive epilepsy presented to the Developmental and Behavioral Pediatrics Clinic due to concerns about her behavioral outbursts in the context of overall delayed development. Evaluation by the Developmental and Behavioral and Gastroenterology teams revealed failure to thrive (FTT) as the primary cause of the behavioral outbursts and developed a high-calorie, high-fat, high-protein nutritional counseling plan. Children who have FTT and a genetic disorder are often thought to not thrive because of their underlying genetic disorder; however, feeding skills and nutritional intake need to be thoroughly investigated before determining an etiology for FTT. Motoric, communicative, and developmental skills in children with genetic disorders may impede appropriate feeding mechanisms, inducing or exaggerating FTT in these children with developmental disabilities due to genetic etiologies. [Pediatr Ann. 2018;47(3):e130-e134.]. Copyright 2018, SLACK Incorporated.

  11. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking...... and microvoids on the microscopic and macroscopic mechanical response of composite materials. To this end, first a numerical study is carried out to explore ways to stabilize interfacial crack growth under dominant Mode-I fracture using the cohesive zone model. Consequently, this study suggests a method...... composites. In the first approach, the J2 plasticity model is implemented to model the elasto-plastic behavior of the matrix while in the second strategy the modified Drucker-Prager plasticity model is utilized to account for brittle-like and pressure dependent behavior of an epoxy matrix. In addition...

  12. Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials

    Science.gov (United States)

    Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.

    2017-10-01

    Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.

  13. Diastolic Heart Failure

    OpenAIRE

    Wake, Ryotaro; Yoshikawa, Junichi; Yoshiyama, Minoru

    2012-01-01

    Primary diastolic failure is typically seen in patients with hypertensive or valvular heart disease as well as in hypertrophic or restrictive cardiomyopathy but can also occur in a variety of clinical disorders, especially tachycardia and ischemia. Diastolic dysfunction has a particularly high prevalence in elderly patients and is generally associated, with low mortality but high morbidity. The pathophysiology of diastolic dysfunction includes delayed relaxation, impaired LV filling and/or in...

  14. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  15. Determination techniques of characteristics of brittle fracture for materials on the CMEA 1-35 problem

    International Nuclear Information System (INIS)

    Makhutov, N.A.; Tananov, A.I.; Koshelev, P.F.; Zatsarinnyj, V.V.

    1981-01-01

    The problems concerning the development and improvement of the investigation techniques and the evaluation of the resistance to brittle fracture of a wide class of materials (the reactor ones, in particular) under different conditions of loading using modern test means are considered in the review. It is reflected in the plan of works on the theme 1-35.3 ''Development of the methods of determination of resistance to brittle fracture of the materials and elements of construct Specialists from CMEA member-countries took an active part in its implementation. The development of the 1-35.3 theme presupposes the creation of scientific bases of calculation methods of the details of machines and elements of constructions according to the criteria of resistance to brittle fracture. The results obtained when using the methods of fracture mechanics are of significant importance in the substantiation of strength and admissible defectiveness of large-size constructions operating under the extremum conditions [ru

  16. On a Stochastic Failure Model under Random Shocks

    Science.gov (United States)

    Cha, Ji Hwan

    2013-02-01

    In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study a new classes of shock model, where each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behaviour of the failure rate function where it is applicable.

  17. Market failure, policy failure and other distortions in chronic disease markets

    Directory of Open Access Journals (Sweden)

    Segal Leonie

    2009-06-01

    Full Text Available Abstract Background The increasing prevalence of chronic disease represents a significant burden on most health systems. This paper explores the market failures and policy failures that exist in the management of chronic diseases. Discussion There are many sources of market failure in health care that undermine the efficiency of chronic disease management. These include incomplete information as well as information asymmetry between providers and consumers, the effect of externalities on consumer behaviour, and the divergence between social and private time preference rates. This has seen government and policy interventions to address both market failures and distributional issues resulting from the inability of private markets to reach an efficient and equitable distribution of resources. However, these have introduced a series of policy failures such as distorted re-imbursement arrangements across modalities and delivery settings. Summary The paper concludes that market failure resulting from a preference of individuals for 'immediate gratification' in the form of health care and disease management, rather than preventative services, where the benefits are delayed, has a major impact on achieving an efficient allocation of resources in markets for the management of chronic diseases. This distortion is compounded by government health policy that tends to favour medical and pharmaceutical interventions further contributing to distortions in the allocation of resources and inefficiencies in the management of chronic disease.

  18. Editorial Commentary: "Defer No Time, Delays Have Dangerous Ends" (Henry VI, Shakespeare): Delayed Anterior Cruciate Ligament Reconstruction Has Consequences.

    Science.gov (United States)

    Siegel, Mark G

    2018-06-01

    There continues to be controversy over the timing of anterior cruciate ligament (ACL) surgery. Early or delayed intervention after ACL injury is a topic that has not been settled. The issue is whether ACL tears should have surgery performed in an expedient manner. Or is delay an option with no repercussions to the health of the knee? My associates in nonsurgical specialties wave the New England Journal of Medicine to support their view that surgery is not needed. I routinely espouse the literature confirming that delay of surgery may cause future damage. It is now established that a failure to intervene in a timely manner does cause additional damage. I stand vindicated and can affirm to my colleagues that I have found the answer. There is no longer any doubt or equivocation. Delay in reconstructing an unstable knee does cause damage. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. Micro- and macroapproaches in fracture mechanics for interpreting brittle fracture and fatigue crack growth

    International Nuclear Information System (INIS)

    Ekobori, T.; Konosu, S.; Ekobori, A.

    1980-01-01

    Classified are models of the crack growth mechanism, and in the framework of the fracture mechanics suggested are combined micro- and macroapproaches to interpreting the criterion of the brittle fracture and fatigue crack growth as fracture typical examples, when temporal processes are important or unimportant. Under the brittle fracture conditions the crack propagation criterion is shown to be brought with the high accuracy to a form analogous to one of the crack propagation in a linear fracture mechanics although it is expressed with micro- and macrostructures. Obtained is a good agreement between theoretical and experimental data

  20. A big data analysis approach for rail failure risk assessment

    NARCIS (Netherlands)

    Jamshidi, A.; Faghih Roohi, S.; Hajizadeh, S.; Nunez Vicencio, Alfredo; Babuska, R.; Dollevoet, R.P.B.J.; Li, Z.; De Schutter, B.H.K.

    2017-01-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by

  1. Preventing and Treating Brittle Bones and Osteoporosis | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Javascript on. Feature: Osteoporosis Preventing and Treating Brittle Bones and Osteoporosis Past Issues / Winter 2011 Table of ... at high risk due to low bone mass. Bone and Bone Loss Bone is living, growing tissue. ...

  2. An integrated model of statistical process control and maintenance based on the delayed monitoring

    International Nuclear Information System (INIS)

    Yin, Hui; Zhang, Guojun; Zhu, Haiping; Deng, Yuhao; He, Fei

    2015-01-01

    This paper develops an integrated model of statistical process control and maintenance decision. The proposal of delayed monitoring policy postpones the sampling process till a scheduled time and contributes to ten-scenarios of the production process, where equipment failure may occur besides quality shift. The equipment failure and the control chart alert trigger the corrective maintenance and the predictive maintenance, respectively. The occurrence probability, the cycle time and the cycle cost of each scenario are obtained by integral calculation; therefore, a mathematical model is established to minimize the expected cost by using the genetic algorithm. A Monte Carlo simulation experiment is conducted and compared with the integral calculation in order to ensure the analysis of the ten-scenario model. Another ordinary integrated model without delayed monitoring is also established as comparison. The results of a numerical example indicate satisfactory economic performance of the proposed model. Finally, a sensitivity analysis is performed to investigate the effect of model parameters. - Highlights: • We develop an integrated model of statistical process control and maintenance. • We propose delayed monitoring policy and derive an economic model with 10 scenarios. • We consider two deterioration mechanisms, quality shift and equipment failure. • The delayed monitoring policy will help reduce the expected cost

  3. Dynamic Initiation and Propagation of Multiple Cracks in Brittle Materials

    Directory of Open Access Journals (Sweden)

    Xiaodan Ren

    2013-07-01

    Full Text Available Brittle materials such as rock and ceramic usually exhibit apparent increases of strength and toughness when subjected to dynamic loading. The reasons for this phenomenon are not yet well understood, although a number of hypotheses have been proposed. Based on dynamic fracture mechanics, the present work offers an alternate insight into the dynamic behaviors of brittle materials. Firstly, a single crack subjected to stress wave excitations is investigated to obtain the dynamic crack-tip stress field and the dynamic stress intensity factor. Second, based on the analysis of dynamic stress intensity factor, the fracture initiation sizes and crack size distribution under different loading rates are obtained, and the power law with the exponent of −2/3 is derived to describe the fracture initiation size. Third, with the help of the energy balance concept, the dynamic increase of material strength is directly derived based on the proposed multiple crack evolving criterion. Finally, the model prediction is compared with the dynamic impact experiments, and the model results agree well with the experimentally measured dynamic increasing factor (DIF.

  4. Genetic determinants of heart failure: facts and numbers.

    Science.gov (United States)

    Czepluch, Frauke S; Wollnik, Bernd; Hasenfuß, Gerd

    2018-06-01

    The relevance of gene mutations leading to heart diseases and hence heart failure has become evident. The risk for and the course of heart failure depends on genomic variants and mutations underlying the so-called genetic predisposition. Genetic contribution to heart failure is highly heterogenous and complex. For any patient with a likely inherited heart failure syndrome, genetic counselling is recommended and important. In the last few years, novel sequencing technologies (named next-generation sequencing - NGS) have dramatically improved the availability of molecular testing, the efficiency of genetic analyses, and moreover reduced the cost for genetic testing. Due to this development, genetic testing has become increasingly accessible and NGS-based sequencing is now applied in clinical routine diagnostics. One of the most common reasons of heart failure are cardiomyopathies such as the dilated or the hypertrophic cardiomyopathy. Nearly 100 disease-associated genes have been identified for cardiomyopathies. The knowledge of a pathogenic mutation can be used for genetic counselling, risk and prognosis determination, therapy guidance and hence for a more effective treatment. Besides, family cascade screening for a known familial, pathogenic mutation can lead to an early diagnosis in affected individuals. At that timepoint, a preventative intervention could be used to avoid or delay disease onset or delay disease progression. Understanding the cellular basis of genetic heart failure syndromes in more detail may provide new insights into the molecular biology of physiological and impaired cardiac (cell) function. As our understanding of the molecular and genetic pathophysiology of heart failure will increase, this might help to identify novel therapeutic targets and may lead to the development of new and specific treatment options in patients with heart failure. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European

  5. Failure analysis of re-bars during bending operations

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2014-10-01

    Full Text Available Thermo-mechanical treated (TMT rebar is suitable material for reinforcing concrete structures on accounts of similarity in thermal expansion, ability to bond well with concrete and, above all the ability to shoulder most of the tensile stress acting on the structure and also steel manufacturing industry has successfully developed a corrosion-resistant variety of rebar for the construction industry. As the TMT is the finish product thus proper control of rolling parameters and water box is needed to achieve adequate property. Water box plays an important role for achieving the final structure and property of the rebars. Water box is responsible for outer rim formation and which helps to achieve the yield strength of the material. The present paper highlights failure investigation of a failed rebar during bending operations. From fractography and microstructural analysis it is confirmed that the rebar sample failed in brittle manner due to through harden martensitic structure and which indicates that there is some anomaly in water box resulting in these premature failures.

  6. Contribution to the physical study of sheath failure detections

    International Nuclear Information System (INIS)

    Mangin, Jean-Paul

    1968-11-01

    As the study of an installation aimed at the detection of sheath failure requires the knowledge of a great number of data related to all the fields of nuclear technology (fission mechanisms, sheath failure mechanisms, recoil of fission products, distribution of the heat transfer fluid in the reactor, techniques of measurement of beta and gamma neutrons, nuclear safety, and so on), this report aims at highlighting some specific issues, more particularly those related to sensors based on delayed neutrons. After having recalled the principles of sheath failure detection, the author presents the various aspects of the study of the formation of fission products and of their passage into the heat transfer fluid: detection by using delayed neutrons, detection by electrostatic collection, passage of fuel fission products into the coolant (recoil, corrosion, gaseous diffusion in the fuel), formation of fission products in the fuel (fission product efficiency). He reports the study of the transport of fission products by the coolant from their place of birth to the place of measurement. He presents the system of measurement by detection of delayed neutrons and by electrostatic collection, reports a sensitivity calculation, a background noise assessment, the determination of detection threshold, and the application of sensitivity and detection thresholds calculations [fr

  7. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii

    Directory of Open Access Journals (Sweden)

    Vaughn Roy

    2012-09-01

    Full Text Available Abstract Background The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. Methods Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. Results Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared ‘genetic toolkit’ central to the echinoderm gastrula, a key stage in embryonic development, though

  8. Application of a Brittle Damage Model to Normal Plate-on-Plate Impact

    National Research Council Canada - National Science Library

    Raftenberg, Martin N

    2005-01-01

    A brittle damage model presented by Grinfeld and Wright of the U.S. Army Research Laboratory was implemented in the LS-DYNA finite element code and applied to the simulation of normal plate-on-plate impact...

  9. Design of fuel failure detection system for multipurpose reactor GA. Siwabessy

    International Nuclear Information System (INIS)

    Sujalmo Saiful; Kuntoro Iman; Sato, Mitsugu; Isshiki, Masahiko.

    1992-01-01

    A fuel failure detection system (FFDS) has been designed for the Reactor GA. Siwabessy. The FFDS is aimed to detect fuel failure by observing delayed neutron released by fission products such as N-17, I-137, Br-87 and Br-88 in the primary cooling system. The delayed neutrons will be detected by using four neutron detectors, type BF-3, which are located inside a Sampling Tank. The detector location has been determined and the location is associated with the transit time from the reactor core outlet to the Sampling Tank, which is approximately 60 seconds. The neutron detection efficiency was calculated by using a computer code named MORSE. The FFDS has the capability to detect as quickly as possible, even a small failure of a fuel element occurring in the reactor core. Therefore the presence of FFDS in a reactor must be considered, in order to prevent further progress if the fuel failure occurs. (author)

  10. Ultra-sonic testing for brittle-ductile transition temperature of ferritic steels

    International Nuclear Information System (INIS)

    Nomakuchi, Michiyoshi

    1979-01-01

    The ultra-sonic testing for the brittle-ductile transition temperature, the USTB test for short, of ferritic steels is proposed in the present paper. And also the application of the USTB test into the nuclear pressure vessel surveillance is discussed. The USTB test is based upon the experimental results in the present work that the ultrasonic pressure attenuation coefficient of a ferritic steel has the evident transition property with its temperature due to the nature from which the brittle-ductile fracture transition property of the steel come and for four ferritic steels the upper boundary temperatute of the region in which the transition of the attenuation coefficient of a steel takes place is 4 to 5 0 C higher than the sub(D)T sub(E), i.e. the transition temperature of the fracture absorption energy of the steel by the DWTT test. The USTB test estimates the crack arrest temperature which is defined to be the fracture transition elastic temperature by the upper boundary temperature. (author)

  11. Improved Delayed-Neutron Spectroscopy Using Trapped Ions

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Eric

    2018-04-24

    The neutrons emitted following the  decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the -decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the timedependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticality calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved -delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayedneutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality -delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation

  12. Evaluating delay factors in the construction and operation of port ...

    African Journals Online (AJOL)

    In Iran, between 30% and 40% of the total budget of the country `is allocated to this ... improper allocation of resources (24%), cash flows changes(28%), failure to ... Keywords: Delay Factors, Port Construction Projects, Project Management.

  13. Delayed inflation triggerd by regional earthquakes at Campi Flegrei Caldera, Italy.

    Science.gov (United States)

    Lupi, M.; Frehner, M.; Weis, P.; Skelton, A.; Saenger, E.; Tisato, N.; Geiger, S.; Chiodini, G.; Driesner, T.

    2017-12-01

    What if earthquakes were affecting volcanoes more than we currently think because their effects are not immediately visible? Earthquake-volcano interactions promoted by dynamic and static stresses are considered seldom and difficult-to-capture geological processes. The Campi Flegrei caldera, Italy, is one of the best-monitored volcanic systems worldwide. We use a 70-years long time series to suggest a provocative and intriguing hypothesis to explain bradyseismic activity at Campi Flegrei. By comparing ground elevation time series at Campi Flegrei with seismic catalogues we show that uplift events at Campi Flegrei follow within 1.2 years large regional earthquakes. The accelerated uplifts are over-imposed on long-term inflation or deflation trends. Such association is supported by (yet-non definitive) binomial tests. Due to the non-definitive nature of the statistical tests we carried on additional numerical tests. We simulate the propagation of elastic waves showing that passing body waves impose high dynamic strains at the roof of the magmatic reservoir of the Campi Flegrei at about 7 km depth. Such elevated dynamic strains promote a brittle behaviour in an otherwise ductile material (i.e. the crystal mush) at near-lithostatic conditions. Such failure allows magma and exsolved volatiles to be released from the magmatic reservoir. The fluids would ascend through a plastic zone above the magmatic reservoir and inject into the shallow hydrothermal system where they phase-separate and expand causing a delayed effect, i.e. inflation. This mechanism and the associated inherent uncertainties require further investigations. However, the new concept already implies that geological processes triggered by passing seismic waves may become apparent several months after the triggering earthquake.

  14. PAX7 mutation in a syndrome of failure to thrive, hypotonia, and global neurodevelopmental delay.

    Science.gov (United States)

    Proskorovski-Ohayon, Regina; Kadir, Rotem; Michalowski, Analia; Flusser, Hagit; Perez, Yonatan; Hershkovitz, Eli; Sivan, Sara; Birk, Ohad S

    2017-12-01

    PAX7 encodes a transcription factor essential in neural crest formation, myogenesis, and pituitary lineage specification. Pax7 null mice fail to thrive and exhibit muscle weakness, dying within 3 weeks. We describe a human autosomal-recessive syndrome, with failure to thrive, severe global developmental delay, microcephaly, axial hypotonia, pyramidal signs, dystonic postures, seizures, irritability, and self-mutilation. Aside from low blood carnitine levels, biochemical and metabolic screen was normal, with growth hormone deficiency in one patient. Electromyography was normal, with no specific findings in brain MRI/MRS yet nondemonstrable neuropituitary, a finding of unclear significance. Muscle biopsy showed unaffected overall organization of muscle fibers, yet positive fetal alpha myosin staining, suggesting regeneration. Homozygosity mapping with whole-exome sequencing identified a single disease-associated mutation in PAX7, segregating as expected in the kindred with no homozygosity in 200 ethnically matched controls. Transfection experiments showed that the PAX7 splice-site mutation putatively causes nonsense-mediated mRNA decay affecting onlyPAX7 isoform 3. This isoform, expressed specifically in brain, skeletal muscle and testes, is the sole Pax7 variant normally found in mice. The human muscle phenotype is in line with that in conditional Pax7 null mutant mice, where initial aberrant histological findings resolve postnatally through muscle regeneration. © 2017 Wiley Periodicals, Inc.

  15. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  16. Brittle-fracture potential of irradiated Zircaloy-2 pressure tubes

    Science.gov (United States)

    Huang, F. H.

    1993-12-01

    Neutron irradiation can degrade the fracture toughness of Zircaloy-2 and may cause highly irradiated reactor components of this material to fail in a brittle manner. The effects of radiation embrittlement on the structural integrity of N Reactor pressure tubes are studied by performing KIc and JIc fracture toughness testing on samples cut from the Zircaloy-2 tubes periodically removed from the reactor. A fluence of 6 × 10 25n/ m2 ( E > 1 MeV) reduced the fracture toughness of the material by 40 to 50%. The fracture toughness values appear to saturate at 260°C with fluences above 3 × 10 25n/ m2 ( E > 1 MeV), but continue to decline with increasing fluence at temperatures below 177°C. Present and previous results obtained from irradiated pressure tubes indicate that the brittle-fracture potential of Zircaloy-2 increases with decreasing temperature and increasing fluence. Fractographic examinations of the fracture surfaces of irradiated samples reveal that circumferential hydride formation significantly influenced fracture morphology by providing sites for easy crack nucleation and leaving deep cracks. However, the deep cracks created at the hydride platelets in specimens containing less than 220 ppm hydrogen are not believed to be the major cause of degradation in postirradiation fracture toughness.

  17. Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.

    Science.gov (United States)

    Adam, Kirsten C S; Robison, Matthew K; Vogel, Edward K

    2018-01-08

    Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.

  18. Event-Triggered Faults Tolerant Control for Stochastic Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2016-01-01

    Full Text Available This paper is concerned with the state-feedback controller design for stochastic networked control systems (NCSs with random actuator failures and transmission delays. Firstly, an event-triggered scheme is introduced to optimize the performance of the stochastic NCSs. Secondly, stochastic NCSs under event-triggered scheme are modeled as stochastic time-delay systems. Thirdly, some less conservative delay-dependent stability criteria in terms of linear matrix inequalities for the codesign of both the controller gain and the trigger parameters are obtained by using delay-decomposition technique and convex combination approach. Finally, a numerical example is provided to show the less sampled data transmission and less conservatism of the proposed theory.

  19. Determinants of noninvasive ventilation success or failure in morbidly obese patients in acute respiratory failure.

    Science.gov (United States)

    Lemyze, Malcolm; Taufour, Pauline; Duhamel, Alain; Temime, Johanna; Nigeon, Olivier; Vangrunderbeeck, Nicolas; Barrailler, Stéphanie; Gasan, Gaëlle; Pepy, Florent; Thevenin, Didier; Mallat, Jihad

    2014-01-01

    Acute respiratory failure (ARF) is a common life-threatening complication in morbidly obese patients with obesity hypoventilation syndrome (OHS). We aimed to identify the determinants of noninvasive ventilation (NIV) success or failure for this indication. We prospectively included 76 consecutive patients with BMI>40 kg/m2 diagnosed with OHS and treated by NIV for ARF in a 15-bed ICU of a tertiary hospital. NIV failed to reverse ARF in only 13 patients. Factors associated with NIV failure included pneumonia (n = 12/13, 92% vs n = 9/63, 14%; psuccessful response to NIV was idiopathic decompensation of OHS (n = 30, 48% vs n = 0, 0%; p = 0.001). In the NIV success group (n = 63), 33 patients (53%) experienced a delayed response to NIV (with persistent hypercapnic acidosis during the first 6 hours). Multiple organ failure and pneumonia were the main factors associated with NIV failure and death in morbidly obese patients in hypoxemic ARF. On the opposite, NIV was constantly successful and could be safely pushed further in case of severe hypercapnic acute respiratory decompensation of OHS.

  20. A brittle-fracture methodology for three-dimensional visualization of ductile deformation micromechanisms

    NARCIS (Netherlands)

    Tasan, C.C.; Hoefnagels, J.P.M.; Geers, M.G.D.

    2009-01-01

    An improved experimental methodology is developed and successfully evaluated to visualize deformation-induced microevents in ductile sheet metal. This easy-to-use methodology consists in a well-controlled brittle separation of samples previously deformed in a ductile manner, whereby a

  1. Breaking new ground in the mind: an initial study of mental brittle transformation and mental rigid rotation in science experts.

    Science.gov (United States)

    Resnick, Ilyse; Shipley, Thomas F

    2013-05-01

    The current study examines the spatial skills employed in different spatial reasoning tasks, by asking how science experts who are practiced in different types of visualizations perform on different spatial tasks. Specifically, the current study examines the varieties of mental transformations. We hypothesize that there may be two broad classes of mental transformations: rigid body mental transformations and non-rigid mental transformations. We focus on the disciplines of geology and organic chemistry because different types of transformations are central to the two disciplines: While geologists and organic chemists may both confront rotation in the practice of their profession, only geologists confront brittle transformations. A new instrument was developed to measure mental brittle transformation (visualizing breaking). Geologists and organic chemists performed similarly on a measure of mental rotation, while geologists outperformed organic chemists on the mental brittle transformation test. The differential pattern of skill on the two tests for the two groups of experts suggests that mental brittle transformation and mental rotation are different spatial skills. The roles of domain general cognitive resources (attentional control, spatial working memory, and perceptual filling in) and strategy in completing mental brittle transformation are discussed. The current study illustrates how ecological and interdisciplinary approaches complement traditional cognitive science to offer a comprehensive approach to understanding the nature of spatial thinking.

  2. Clinical Impacts of Delayed Diagnosis of Hirschsprung’s Disease in Newborn Infants

    Directory of Open Access Journals (Sweden)

    Chien-Chung Lee

    2012-04-01

    Conclusion: In our study, we found that delayed diagnosis of HD beyond 1 week after birth significantly increases the risk of serious complications in neonatal patients. Patients with long-segment or total colonic aganglionosis have higher risk of postoperative HAEC and failure to thrive. Patients with preoperative HAEC are more likely to have adhesive bowel obstruction and failure to thrive.

  3. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    Science.gov (United States)

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  4. Introduction to snow rheology

    International Nuclear Information System (INIS)

    Montmollin, Vincent de

    1978-01-01

    The tests described in the thesis are rotating shearing tests, with rotational constant speed ranging between 0.00075 rpm and 0.75 rpm. The results obtained are similar to those observed with compression tests at constant speed, except that shearing tests are carried out with densities nearly constant. So, we show three different domains when the rotation speed increases: 1) viscous (without failure) 2) brittle of first type (cycles of brittle failures) and 3) brittle of second type (only one brittle failure and solid friction). These results show clearly that the fundamental mechanism that rules the mechanisms of snow, is fast metamorphosis of bonds, binding ice grains: this metamorphosis is important when solicitation speeds are low (permanent rate of shearing in viscous domain, regeneration of the failure surfaces in the brittle domain of the first type) and this metamorphosis does not exist when speed increases (only one failure and solid friction in the brittle domain of second type). It is also included an important bibliographic analysis of the snow mechanics, and an experimental and theoretical study about shock wave propagation in natural snow covers. (author) [fr

  5. Delays in initiation of acyclovir therapy in herpes simplex encephalitis.

    Science.gov (United States)

    Hughes, Peter S; Jackson, Alan C

    2012-09-01

    Diagnosis of herpes simplex encephalitis (HSE) is based on clinical findings, MRI, and detection of herpes simplex virus (HSV) DNA in cerebrospinal fluid (CSF) using polymerase chain reaction amplification. Delays in starting treatment are associated with poorer clinical outcomes. We assessed the timing of initiation of acyclovir therapy in HSE. Inpatient databases from seven hospitals in Winnipeg, Manitoba were used to identify individuals diagnosed with encephalitis and HSE from 2004 to 2009. The time taken to initiate therapy with acyclovir and the reasons for delays were determined. Seventy-seven patients were identified; 69 (90%) received acyclovir; in the others a non-HSV infection was strongly suspected. Thirteen patients were subsequently confirmed to have HSE. Acyclovir was initiated a median of 21 hours (3-407) after presentation in encephalitis cases, and a median of 11 hours (3-118) in HSE. The most common reason for delay was a failure to consider HSE in the differential diagnosis, despite suggestive clinical features. Where therapy was delayed in HSE patients, the decision to begin acyclovir was prompted by transfer of the patient to a different service (55%), recommendations by consultants (18%), imaging results (18%), and CSF pleocytosis (9%). Delays in initiating acyclovir for HSE are common, and are most often due to a failure to consider HSE in a timely fashion on presentation. In order to improve patient outcomes, physicians should be more vigilant for HSE, and begin acyclovir therapy expeditiously on the basis of clinical suspicion rather than waiting for confirmatory tests.

  6. Change of the mode of failure by interface friction and width-to-height ratio of coal specimens

    Directory of Open Access Journals (Sweden)

    Gamal Rashed

    2015-06-01

    Full Text Available Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings. Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height (W/H ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.

  7. The effect of the pore-fluid factor on strength and failure mechanism of Wilkeson sandstone

    Science.gov (United States)

    Kätker, A. K.; Rempe, M.; Renner, J.

    2016-12-01

    The effective stress law, σn,eff = σn - αpf, is a central tool in analysing phenomena related to hydromechanical coupling, such as fluid-induced seismicity or aftershock activity. The effective-stress coefficient α assumes different values for specific physical properties and may deviate from 1. The limited number of studies suggest that brittle compressive strength obeys an effective-stress law when effective drainage is achieved. Yet, open questions remain regarding, e.g., the role of the loading path. We performed suites of triaxial compression tests on samples of Wilkeson sandstone at a range of pore-fluid pressures but identical effective confining pressure (60, 100, and 120 MPa) maintaining the pore-fluid factor λ = pf / pc constant (0.05, 0.2, 0.4, 0.55) during the isostatic loading stage to ensure uniform loading paths. Samples were shortened with a strain rate of 4×10-7 s-1 yielding drained conditions. All tests were terminated at a total axial strain of 4.5% for comparability of microstructures. The tests also included continuous permeability determination and ultrasonic p-wave-velocity measurements to monitor microstructural evolution. Results from experiments conducted at peff = 100 MPa show that dry samples exhibit a higher peak strength and brittle failure while water-saturated samples tend to deform at lower stress by cataclastic flow indicating physico-chemical weakening. Regardless of pore-fluid factor, the saturated experiments exhibit similar peak and residual strength. Differences in failure mechanism (degree of macroscopic localization) and volumetric strain evolution are however noticed, albeit without systematic relation to pore-fluid factor. Microstructure analyses by optical and scanning electron microscopy revealed an evolution from localized shear zones in dry experiments and experiments with a low pore-fluid factor to rather distributed cataclastic flow for experiments with high pore fluid factors. Yet, mechanical and structural

  8. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    International Nuclear Information System (INIS)

    Kantidis, E.

    1993-08-01

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  9. On the ductile-to-brittle transition behavior of martensitic alloys neutron irradiated to 26 dpa

    International Nuclear Information System (INIS)

    Hu, W.L.; Gelles, D.S.

    1987-01-01

    Charpy impact tests were conducted on specimens made of HT-9 and 9Cr-1Mo in various heat treatment conditions which were irradiated in EBR-II to 26 dpa at 390 to 500 0 C. The results are compared with previous results on specimens irradiated to 13 dpa. HT-9 base metal irradiated at low temperatures showed a small additional increase in ductile brittle transition temperature and a decrease in upper shelf energy from 13 to 26 dpa. No fluence effect was observed in 9Cr-1Mo base metal. The 9Cr-1Mo weldment showed degraded DBTT but improved USE response compared to base metal, contrary to previous findings on HT-9. Significant differences were observed in HT-9 base metal between mill annealed material and normalized and tempered material. The highest DBTT for HT-9 alloys was 50 0 C higher than for the worst case in 9Cr-1Mo alloys. Fractography and hardness measurements were also obtained. Significant differences in fracture appearance were observed in different product forms, although no dependence on fluence was observed. Failure was controlled by the preirradiation microstructure

  10. Causes and remedial measures for construction delays: a case study of pakistan

    International Nuclear Information System (INIS)

    Ali, T.H.; Memon, N.A.

    2009-01-01

    Delays are the most common event that influence the time performance and increase the cost of projects. This paper analyze causes of various delays experienced by three large construction projects in public sector and subsequently to recommend the corrective actions necessitated to safeguard future construction projects from suffering these delays, which result in enormous cost and time over-runs, undermining projects economic viability. The case-study approach has been employed as research method, to analyze construction delays, followed by categorizing them in view of their source. The method employed to collect data included interviews, questionnaire surveys, and analysis of project documents including monthly progress reports, minutes of meeting, and details of correspondence held between the project participants. The data collected was minutely analyzed to identify different delays, and their underlying causes encountered during execution of projects. The analysis reveals serious lapses on part of projects planners, for their failure to take care of the inevitable contingencies (unexpected situations), while conceptualizing projects by resorting to proactive planning at the very outset, incorporating adequate buffers in the projects budgeted costs, and timeframes, to ensure projects economic viability in any eventuality. The failure of owners to establish key performance indicators, followed by their inability in tracking down the indicators, worsened the situation, resulting in projects execution lagging far behind original schedules of construction activities with their estimated costs. (author)

  11. The effect of defects on structural failure: A two-criteria approach

    International Nuclear Information System (INIS)

    Dowling, A.R.; Townley, C.H.A.

    1976-01-01

    The two-criteria approach to the study of defects in structures assumes that failure occurs when the applied load reaches the lower of either a load to cause brittle failure in accordance with the theories of linear elastic fracture mechanics or a collapse load dependent on the ultimate stress of the material and the structural geometry. This simple approach is described and compared with previously published experimental results for various geometries and materials. The simplicity of this method of defect analysis lies in the fact that each criterion is sufficiently well understood to permit scaling and geometry changes to be accommodated readily. It becomes apparent that a sizeable transition region exists between the two criteria but this can be described in an expression relating the criteria. This expression adequately predicts the behaviour of cracked structures of both simple and complex geometry. A design curve for defect assessment is proposed for which it is unnecessary to consider the transition region. (author)

  12. Life Support with Failures and Variable Supply

    Science.gov (United States)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  13. Electrocardiogram classification using delay differential equations.

    Science.gov (United States)

    Lainscsek, Claudia; Sejnowski, Terrence J

    2013-06-01

    Time series analysis with nonlinear delay differential equations (DDEs) reveals nonlinear as well as spectral properties of the underlying dynamical system. Here, global DDE models were used to analyze 5 min data segments of electrocardiographic (ECG) recordings in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. The number of terms and delays in the model as well as the order of nonlinearity of the model have to be selected that are the most discriminative. The DDE model form that best separates the three classes of data was chosen by exhaustive search up to third order polynomials. Such an approach can provide deep insight into the nature of the data since linear terms of a DDE correspond to the main time-scales in the signal and the nonlinear terms in the DDE are related to nonlinear couplings between the harmonic signal parts. The DDEs were able to detect atrial fibrillation with an accuracy of 72%, congestive heart failure with an accuracy of 88%, and normal heart beat with an accuracy of 97% from 5 min of ECG, a much shorter time interval than required to achieve comparable performance with other methods.

  14. The semi-brittle to ductile transition in peridotite on oceanic faults: mechanisms and P-T condition

    Science.gov (United States)

    Prigent, C.; Warren, J. M.; Kohli, A. H.; Teyssier, C. P.

    2017-12-01

    Experimental and geological-petrological studies suggest that the transition from brittle faulting to ductile flow of olivine, i.e. from seismic to aseismic behavior of mantle rocks (peridotites), occurs close to 600°C. However, recent seismological studies on oceanic transform faults (TFs) and ridges have documented earthquakes to temperatures (T) up to 700-800°C. In this study, we carried out a petrological, microstructural and geochemical analysis of natural samples of peridotites dredged at 3 different oceanic TFs of the Southwest Indian Ridge: Shaka, Prince Edward and Atlantis II. We selected samples displaying variable amounts of ductile deformation (from porphyroclastic tectonites to ultramylonites) prior to serpentinization in order to characterize their relatively high-T mechanical behavior. We find that the most deformed samples record cycles of ductile and brittle deformation. Peridotite ductile flow is characterized by drastic grain size reduction and the development of (ultra)mylonitic shear zones. In these zones, a switch in olivine deformation mechanism from dislocation creep to grain-size sensitive creep is associated with dissolution/precipitation processes. Brittle deformation of these samples is evidenced by the presence of (at least centimetric) transgranular and intragranular fractures that fragment coarser grained minerals. Both kinds of fractures are filled with the same phase assemblage as in the ultramylonitic bands: olivine + amphibole ± orthopyroxene ± Al-phase (plagioclase and/or spinel) ± sulfides. The presence of amphibole indicates that this semi-brittle deformation was assisted by hydrous fluids and its composition (e.g. high concentration of chlorine) suggests that the fluids have most likely a hydrothermal origin. We interpret these fractures to have formed under fluid-assisted conditions, recording paleo-seismic activity that alternated with periods of relatively slow interseismic ductile flow. The presence of Mg

  15. [Acute renal failure: a rare presentation of Addison's disease].

    Science.gov (United States)

    Salhi, Houda

    2016-01-01

    Addison's disease is a rare condition. Its onset of symptoms most often is nonspecific contributing to a diagnostic and therapeutic delay. Acute renal failure can be the first manifestation of this disease. We report the case of a patient with Addison's disease who was initially treated for acute renal failure due to multiple myeloma and whose diagnosis was adjusted thereafter. Patient's condition dramatically improved after treatment with intravenous rehydration; injectable hydrocortisone.

  16. Understanding brittle deformation at the Olkiluoto site. Literature Supplement 2010: an Update of Posiva Working Report 2006-25

    Energy Technology Data Exchange (ETDEWEB)

    Milnes, A. (GEA Consulting, Corcelles (CH))

    2011-07-15

    Posiva Working Report 2006-25 arose from the belief that geological modelling at Olkiluoto, Finland, where an underground repository for spent nuclear fuel is at present under construction, could be significantly improved by an increased understanding of the phenomena being modelled, in conjunction with the more sophisticated data acquisition and processing methods which are now being introduced. Since the geological model is the necessary basis for the rock engineering and hydrological models, which in turn provide the foundation for identifying suitable rock volumes underground and for demonstrating long-term safety, its scientific basis is of critical importance. As a contribution to improving this scientific basis, the literature on brittle deformation in the Earth's crust was reviewed up to and including year 2005. The result was a compilation of scientific articles, reports and books on some of the key topics of significance for an improved understanding of brittle deformation of hard, crystalline rocks, particularly heterogeneous migmatitic and metamorphic rocks like those that make up the Olkiluoto bedrock. The present report is a supplement to WR 2006-25, covering the 5-year period 2006-2010, with some key earlier references and an Annotated Bibliography. The present report is subdivided into five chapters, listing recent literature on (1) background subjects and basic principles, (2) the fabric of Olkiluoto-type intact rock (gneisses, migmatites, fault rocks), (3) formation and characteristics of brittle deformation features (fracture mechanics, brittle microtectonics), (4) fracture data acquisition and processing (statistical characterisation and modelling of fracture systems), and (5) the characterisation of brittle deformation zones (for deterministic and dynamic modelling), corresponding to the first five chapters of the earlier report

  17. Understanding brittle deformation at the Olkiluoto site. Literature Supplement 2010: an Update of Posiva Working Report 2006-25

    International Nuclear Information System (INIS)

    Milnes, A.

    2011-07-01

    Posiva Working Report 2006-25 arose from the belief that geological modelling at Olkiluoto, Finland, where an underground repository for spent nuclear fuel is at present under construction, could be significantly improved by an increased understanding of the phenomena being modelled, in conjunction with the more sophisticated data acquisition and processing methods which are now being introduced. Since the geological model is the necessary basis for the rock engineering and hydrological models, which in turn provide the foundation for identifying suitable rock volumes underground and for demonstrating long-term safety, its scientific basis is of critical importance. As a contribution to improving this scientific basis, the literature on brittle deformation in the Earth's crust was reviewed up to and including year 2005. The result was a compilation of scientific articles, reports and books on some of the key topics of significance for an improved understanding of brittle deformation of hard, crystalline rocks, particularly heterogeneous migmatitic and metamorphic rocks like those that make up the Olkiluoto bedrock. The present report is a supplement to WR 2006-25, covering the 5-year period 2006-2010, with some key earlier references and an Annotated Bibliography. The present report is subdivided into five chapters, listing recent literature on (1) background subjects and basic principles, (2) the fabric of Olkiluoto-type intact rock (gneisses, migmatites, fault rocks), (3) formation and characteristics of brittle deformation features (fracture mechanics, brittle microtectonics), (4) fracture data acquisition and processing (statistical characterisation and modelling of fracture systems), and (5) the characterisation of brittle deformation zones (for deterministic and dynamic modelling), corresponding to the first five chapters of the earlier report

  18. Self-repair of cracks in brittle material systems

    Science.gov (United States)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  19. Prediction of fracture toughness based on experiments with sub-size specimens in the brittle and ductile regimes

    Energy Technology Data Exchange (ETDEWEB)

    Mahler, Michael, E-mail: Michael.Mahler@kit.edu; Aktaa, Jarir

    2016-04-15

    For determination of fracture toughness in the brittle regime or ductile fracture in the upper shelf region, special standard specifications are in use e.g. ASTM E399 or ASTM E1820. Due to the rigorous size requirements for specimen testing, it is necessary to use big specimens. To circumvent this problem an approach based on finite element (FE) simulations using the cohesive zone model (CZM) is used. The parameters of the cohesive zone model have been determined using sub-size specimens. With the identified parameters, simulations of standard-size specimens have been performed to successfully predict fracture toughness of standard-size specimens in the brittle and ductile regimes. The objective is to establish small size testing technology for the determination of fracture toughness. - Highlights: • Prediction of fracture toughness on standard-size specimens. • Valid fracture toughness based on sub-size specimens. • Triaxiality dependent cohesive zone model. • Approach works independent on fracture appearance (brittle, ductile).

  20. Numerical simulation of ductile-brittle behaviour of cracks in aluminium and bcc iron

    International Nuclear Information System (INIS)

    Zacharopoulos, Marios

    2017-01-01

    The principal aim of the present dissertation is to investigate the role of sharp cracks on the mechanical behaviour of crystals under load at the atomic scale. The question of interest is how a pure crystal, which contains a single crack in mechanical equilibrium, deforms. Two metals were considered: aluminium, ductile at any temperature below its melting point, and iron, being transformed from ductile to brittle upon decreasing temperature below T=77 K. Cohesive forces in both metals were modeled via phenomenological n-body potentials. A (010)[001] mode I nano-crack was introduced in the perfect crystalline lattice of each of the studied metals by using appropriate displacements ascribed by anisotropic elasticity. At T=0 K, equilibrium crack configurations were obtained via energy minimization with a mixed type of boundary conditions. Both models revealed that the crack configurations remained stable under a finite range of applied stresses due to the lattice trapping effect. The present thesis proposes a novel approach to interpret the intrinsic mechanical behaviour of the two metallic systems under loading. In particular, the ductile or brittle response of a crystalline system can be determined by examining whether the lattice trapping barrier of a pre-existing crack is sufficient to cause the glide of pre-existing static dislocations on the available slip systems. Simulation results along with experimental data demonstrate that, according to the model proposed, aluminium and iron are ductile and brittle at T=0 K, respectively. (author) [fr

  1. Leak-before-break concept for evaluation of flows detected in pressure tubes in a Candu type reactor

    International Nuclear Information System (INIS)

    Crespi, J.C.

    1992-01-01

    This paper reviews the role of the Leak-Before-Break concept for evaluation of flaws detected in cold-worked Zr 2.5% Nb pressure tubes in a CANDU type reactors. The acceptance criteria are intended to prevent failure by brittle fracture, plastic collapse of the ligament and delayed hydride cracking. The methodology developed here was of great help in order to establish the operative conditions for fuel channel garter springs repositioning by means of the SLA Rette tool at Embalse Nuclear Generating Station, Cordoba, Argentina. (author)

  2. Human error recovery failure probability when using soft controls in computerized control rooms

    International Nuclear Information System (INIS)

    Jang, Inseok; Kim, Ar Ryum; Seong, Poong Hyun; Jung, Wondea

    2014-01-01

    Many literatures categorized recovery process into three phases; detection of problem situation, explanation of problem causes or countermeasures against problem, and end of recovery. Although the focus of recovery promotion has been on categorizing recovery phases and modeling recovery process, research related to human recovery failure probabilities has not been perform actively. On the other hand, a few study regarding recovery failure probabilities were implemented empirically. Summarizing, researches that have performed so far have several problems in terms of use in human reliability analysis (HRA). By adopting new human-system interfaces that are based on computer-based technologies, the operation environment of MCRs in NPPs has changed from conventional MCRs to advanced MCRs. Because of the different interfaces between conventional and advanced MCRs, different recovery failure probabilities should be considered in the HRA for advanced MCRs. Therefore, this study carries out an empirical analysis of human error recovery probabilities under an advanced MCR mockup called compact nuclear simulator (CNS). The aim of this work is not only to compile a recovery failure probability database using the simulator for advanced MCRs but also to collect recovery failure probability according to defined human error modes to compare that which human error mode has highest recovery failure probability. The results show that recovery failure probability regarding wrong screen selection was lowest among human error modes, which means that most of human error related to wrong screen selection can be recovered. On the other hand, recovery failure probabilities of operation selection omission and delayed operation were 1.0. These results imply that once subject omitted one task in the procedure, they have difficulties finding and recovering their errors without supervisor's assistance. Also, wrong screen selection had an effect on delayed operation. That is, wrong screen

  3. Effect of chemical composition of copper alloys on their hot-brittleness and weldability

    International Nuclear Information System (INIS)

    Zakharov, M.V.

    1985-01-01

    Effect of different alloying elements on the hot crack formation in argon-arc welding of M1 copper has been studied. It is shown that the effective crystallization interval has a determining influence on hot-brittleness of low-alloyed high-thermal- and electric conducting welded copper alloys. The narrow is this interval the lower is linear schrinkage and the alloys inclined to the formation of crystallization cracks in welding to a lesser degree. Alloying elements with low solubility in copper in solid state broadening the crystallization interval affect negatively the alloy hot-brittleness. Such additives as zirconium are useful at 0.02-0.O5% content and at > 0.1% content are intolerable. As to cadmium, tin, magnesium, cerium and antimony additives they don't practically strengthen copper and its alloys at 700-800 deg C and they should not be introduced

  4. Prediction of non-brittle fracture in the welded joint of C-Mn steel in the brittle-ductile transition domain; Prediction de la non-rupture fragile dans un joint soude en acier C-Mn dans le domaine de la transition fragile/ductile

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thai Ha

    2009-11-15

    This work concerns the nuclear safety, specifically the secondary circuit integrity of pressurized water reactors (PWR). The problem is that of the fracture of a thin tubular structure in ferritic steel with many welded joints. The ferritic steel and weld present a brittle/ductile tenacity transition. Moreover, the welds present geometry propitious to the appearance of fatigue cracks, due to vibrations and expansions. These cracks may cause the complete fracture of the structure. The objectives of this work are to establish a criterion of non-fracture by cleavage of thin welded structures in ferritic steel, applicable to actual structures. Therefore, the present study focuses on the fracture behaviour of welded thin structures in brittle/ductile transition. It aims at developing the threshold stress model initially proposed by Chapuliot, to predict the non-brittle-fracture of this welded structure. The model is identified for the welded joint in C-Mn steel for nuclear construction, specifically in the upper part of the transition. A threshold stress, below which the cleavage cannot take place, is identified using tensile tests at low temperature on axis-symmetrical notched specimens taken in welded joint. This threshold stress is used to define the threshold volume where the maximum principal stress exceeds the threshold stress during the test. The analysis by SEM of specimen fracture surfaces shows that the gross solidification molten zone in the weld is the most likely to cleave. The relation between the brittle fracture probability and the threshold volume in the gross solidification molten zone is established via a sensitivity function, using multi-materials simulations. The model thus identified is tested for the prediction of non-brittle-fracture of SENT specimens taken in the welded joint and tested in tension. The results obtained are encouraging with regards to the transferability of the model to the actual structure. (author)

  5. A Damage Constitutive Model for the Effects of CO2-Brine-Rock Interactions on the Brittleness of a Low-Clay Shale

    Directory of Open Access Journals (Sweden)

    Qiao Lyu

    2018-01-01

    Full Text Available CO2 is a very promising fluid for drilling and nonaqueous fracturing, especially for CO2-enhanced shale gas recovery. Brittleness is a very important characteristic to evaluate the drillability and fracability. However, there is not much relevant research works on the influence of CO2 and CO2-based fluids on shale’s brittleness been carried out. Therefore, a series of strength tests were conducted to obtain the stress-strain characteristics of shale soaked in different phases of CO2 including subcritical or supercritical CO2 with formation of water for different time intervals (10 days, 20 days, and 30 days. Two damage constitutive equations based on the power function distribution and Weibull distribution were established to predict the threshold stress for both intact and soaked shale samples. Based on the results, physical and chemical reactions during the imbibition cause reductions of shales’ peak axial strength (20.79%~61.52% and Young’s modulus (13.14%~62.44%. Weibull distribution-based constitutive model with a damage threshold value of 0.8 has better agreement with the experiments than that of the power function distribution-based constitutive model. The energy balance method together with the Weibull distribution-based constitutive model is applied to calculate the brittleness values of samples with or without soaking. The intact shale sample has the highest BI value of 0.9961, which is in accordance with the high percentage of brittleness minerals of the shale samples. The CO2-NaCl-shale interactions during the imbibition decrease the brittleness values. Among the three soaking durations, the minimum brittleness values occur on samples with 20 days’ imbibition in subcritical and supercritical CO2 + NaCl solutions and the reductions of which are 2.08% and 2.49%, respectively. Subcritical/supercritical CO2 + NaCl imbibition has higher effect on shale’s strength and Young’s modulus than on the brittleness. The

  6. Time-dependent dilatancy for brittle rocks

    Directory of Open Access Journals (Sweden)

    Jie Li

    2017-12-01

    Full Text Available This paper presents a theoretical study on time-dependent dilatancy behaviors for brittle rocks. The theory employs a well-accepted postulation that macroscopically observed dilatancy originates from the expansion of microcracks. The mechanism and dynamic process that microcracks initiate from local stress concentration and grow due to localized tensile stress are analyzed. Then, by generalizing the results from the analysis of single cracks, a parameter and associated equations for its evolution are developed to describe the behaviors of the microcracks. In this circumstance, the relationship between microcracking and dilatancy can be established, and the theoretical equations for characterizing the process of rock dilatancy behaviors are derived. Triaxial compression and creep tests are conducted to validate the developed theory. With properly chosen model parameters, the theory yields a satisfactory accuracy in comparison with the experimental results.

  7. Simulations of tensile failure in glassy polymers: effect of cross-link density

    International Nuclear Information System (INIS)

    Panico, M; Narayanan, S; Brinson, L C

    2010-01-01

    Molecular dynamics simulations are adopted to investigate the failure mechanisms of glassy polymers, particularly with respect to increasing density of cross-links. In our simulations thermosetting polymers, which are cross-linked, exhibit an embrittlement compared with uncross-linked thermoplastics in a similar fashion to several experimental investigations (Levita et al 1991 J. Mater. Sci. 26 2348; Sambasivam et al 1997 J. Appl. Polym. Sci. 65 1001; Iijima et al 1992 Eur. Polym. J. 28 573). We perform a detailed analysis of this phenomenon and propose an interpretation based on the predominance of chain scission process over disentanglement in thermosetting polymers. We also elucidate the brittle fracture response of the thermosetting polymers

  8. Some future directions in computational failure mechanics

    NARCIS (Netherlands)

    Borst, de R.; Carmeliet, J.; Pamin, J.; Sluys, L.J.; Kusters, G.M.A.; Hendriks, M.A.N.

    1994-01-01

    Continuum approaches are reviewed which can properly model localised deformations that act as a precursor to final fracture in quasi-brittle materials. Next, one such higher-order damaging continuum model is combined with a stochastic approach to describe the heterogeneity in quasi-brittle

  9. A systematic concept of assuring structural integrity of components and parts for applying to highly ductile materials through brittle material

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    2007-09-01

    Concepts of assuring structural integrity of plant components have been developed under limited conditions of either highly ductile or brittle materials. There are some cases where operation in more and more severe conditions causes a significant reduction in ductility for materials with a high ductility before service. Use of high strength steels with relatively reduced ductility is increasing as industry applications. Current concepts of structural integrity assurance under the limited conditions of material properties or on the requirement of no significant changes in material properties even after long service will fail to incorporate expected technological innovations. A systematic concept of assuring the structural integrity should be developed for applying to highly ductile materials through brittle materials. Objectives of the on-going research are to propose a detail of the systematic concept by considering how we can develop the concept without restricting materials and for systematic considerations on a broad range of material properties from highly ductile materials through brittle materials. First, background of concepts of existing structural codes for components of highly ductile materials or for structural parts of brittle materials are discussed. Next, issues of existing code for parts of brittle materials are identified, and then resolutions to the issues are proposed. Based on the above-mentioned discussions and proposals, a systematic concept is proposed for application to components with reduced ductility materials and for applying to components of materials with significantly changing material properties due to long service. (author)

  10. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  11. Reliability assessment of slender concrete columns at the stability failure

    Science.gov (United States)

    Valašík, Adrián; Benko, Vladimír; Strauss, Alfred; Täubling, Benjamin

    2018-01-01

    The European Standard for designing concrete columns within the use of non-linear methods shows deficiencies in terms of global reliability, in case that the concrete columns fail by the loss of stability. The buckling failure is a brittle failure which occurs without warning and the probability of its formation depends on the columns slenderness. Experiments with slender concrete columns were carried out in cooperation with STRABAG Bratislava LTD in Central Laboratory of Faculty of Civil Engineering SUT in Bratislava. The following article aims to compare the global reliability of slender concrete columns with slenderness of 90 and higher. The columns were designed according to methods offered by EN 1992-1-1 [1]. The mentioned experiments were used as basis for deterministic nonlinear modelling of the columns and subsequent the probabilistic evaluation of structural response variability. Final results may be utilized as thresholds for loading of produced structural elements and they aim to present probabilistic design as less conservative compared to classic partial safety factor based design and alternative ECOV method.

  12. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    Science.gov (United States)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on

  13. Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme.

    Science.gov (United States)

    Syed Ali, M; Vadivel, R; Saravanakumar, R

    2018-06-01

    This study examines the problem of robust reliable control for Takagi-Sugeno (T-S) fuzzy Markovian jumping delayed neural networks with probabilistic actuator faults and leakage terms. An event-triggered communication scheme. First, the randomly occurring actuator faults and their failures rates are governed by two sets of unrelated random variables satisfying certain probabilistic failures of every actuator, new type of distribution based event triggered fault model is proposed, which utilize the effect of transmission delay. Second, Takagi-Sugeno (T-S) fuzzy model is adopted for the neural networks and the randomness of actuators failures is modeled in a Markov jump model framework. Third, to guarantee the considered closed-loop system is exponential mean square stable with a prescribed reliable control performance, a Markov jump event-triggered scheme is designed in this paper, which is the main purpose of our study. Fourth, by constructing appropriate Lyapunov-Krasovskii functional, employing Newton-Leibniz formulation and integral inequalities, several delay-dependent criteria for the solvability of the addressed problem are derived. The obtained stability criteria are stated in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results over the existing ones, among them one example was supported by real-life application of the benchmark problem. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. The clinical geneticist and the evaluation of failure to thrive versus failure to feed.

    Science.gov (United States)

    Rabago, Jillian; Marra, Kayt; Allmendinger, Nikki; Shur, Natasha

    2015-12-01

    Common clinical genetic referrals for the pediatric patient include a single major or multiple minor anomalies, dysmorphic features, especially when accompanied by developmental delay or intellectual disability, and failure to thrive (FTT). This review provides pediatric definitions of FTT and the genetic differential for FTT, which includes chromosomal disorders, microdeletion/duplication syndromes, uniparental disomy/methylation disorder, disorders of DNA repair, teratogens, metabolic syndromes, and skeletal dysplasias. Three clinical genetics cases highlight challenges in deciphering the cause of FTT. The review concludes with a ten-step approach that might improve diagnostic ability in differentiating FTT cases (those with genetic or other metabolic causes) from "failure to feed," in other words FTT as the direct result of neglect and/or child abuse. © 2015 Wiley Periodicals, Inc.

  15. A fiber bundle-plastic chain model for quasi-brittle materials under uniaxial loading

    International Nuclear Information System (INIS)

    Shan, Zhi; Yu, Zhiwu

    2015-01-01

    A fiber bundle-plastic chain model for quasi-brittle materials under both uniaxial compression and tension conditions is developed. By introducing a plastic chain model into the fiber bundle model, a bundle-chain model for quasi-brittle materials is proposed with physical considerations. The model achieves a novel and convenient approach to describe the stochastic effective stress-driven plasticity. It is found that the numerical solutions obtained with this model agree with experimental results when subjected to both monotonic and cyclic uniaxial loading. The model generates a numerical solution with higher accuracy than the present models, when compared with the experimental results on certain problems. An example is shown which utilizes this model to describe the stochastic properties of a constitutive model given as standard. Furthermore, the difference between the existing plastic fiber bundle models in the literature and this model is also obtained in this work. (paper)

  16. Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin

    Science.gov (United States)

    Morelle, X. P.; Chevalier, J.; Bailly, C.; Pardoen, T.; Lani, F.

    2017-08-01

    The nonlinear deformation and fracture of RTM6 epoxy resin is characterized as a function of strain rate and temperature under various loading conditions involving uniaxial tension, notched tension, uniaxial compression, torsion, and shear. The parameters of the hardening law depend on the strain-rate and temperature. The pressure-dependency and hardening law, as well as four different phenomenological failure criteria, are identified using a subset of the experimental results. Detailed fractography analysis provides insight into the competition between shear yielding and maximum principal stress driven brittle failure. The constitutive model and a stress-triaxiality dependent effective plastic strain based failure criterion are readily introduced in the standard version of Abaqus, without the need for coding user subroutines, and can thus be directly used as an input in multi-scale modeling of fibre-reinforced composite material. The model is successfully validated against data not used for the identification and through the full simulation of the crack propagation process in the V-notched beam shear test.

  17. Ductile-brittle transition of thoriated chromium.

    Science.gov (United States)

    Wilcox, B. A.; Veigel, N. D.; Clauer, A. H.

    1972-01-01

    Unalloyed chromium and chromium containing approximately 3 wt % ThO2 were prepared from powder produced by a chemical vapor deposition process. When rolled to sheet and tested in tension, it was found that the thoriated material had a lower ductile-to-brittle transition temperature (DBTT) than unalloyed chromium. This ductilizing was evident both in the as-rolled condition and after the materials had been annealed for 1 hour at 1200 C. The improved ductility in thoriated chromium may be associated with several possible mechanisms: (1) particles may disperse slip, such that critical stress or strain concentrations for crack nucleation are more difficult to achieve; (2) particles may act as dislocation sources, thus providing mobile dislocations in this normally source-poor material, in a manner similar to prestraining; and (3) particles in grain boundaries may help to transmit slip across the boundaries, thus relieving stress concentrations and inhibiting crack nucleation.

  18. Effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4

    International Nuclear Information System (INIS)

    Bai, J.B.

    1996-01-01

    In this paper, the effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4 has been investigated. The hydriding temperature used is 700degC, strain rates being 4x10 -4 s -1 and 4x10 -3 s -1 . The results show that at same conditions the ductility of hydrides decreases as the hydriding temperature decreases. There exists a critical temperature (transition temperature) of 250degC for hydriding at 700degC, below which the hydrided specimens (and so for the hydrides) are brittle, while above it they are ductile. This transition temperature is lower than the one mentioned by various authors obtained for hydriding at 400degC. For the same hydriding temperature of 700degC, the specimens tested at 4x10 -3 s -1 are less ductile than those tested at 4x10 -4 s -1 . Furthermore, unlike at a strain rate of 4x10 -4 s -1 , there is no more a clear ductile-brittle transition behaviour. (author)

  19. A Study on the Low Temperature Brittleness by Cyclic Cooling-Heating of Low Carbon Hot Rolled Steel Plate

    International Nuclear Information System (INIS)

    Lee, Hyo Bok

    1979-01-01

    The ductile-brittle transition phenomenon of low carbon steel has been investigated using the standard Charpy V-notch specimen. Dry ice and acetone were used as refrigerants. Notched specimens were cut from the hot rolled plate produced at POSCO for the Olsen impact test. The effect of cyclic cooling and heating of 0.14% carbon steel on the embrittlement was extensively examined. The ductile-brittle transition temperature was found to be approximately-30 .deg. C. The transition temperature was gradually increased as the number of cooling-heating cycles increased. On a typical V-notch fracture surface it was found that the ductile fracture surface showed a thick and fibrous structure, while the brittle fracture surface a small and light grain with irregular disposition. As expected, the transition temperature was also increased as the carbon content of steel increased. Compared with the case of 0.14% carbon steel, the transition temperature of 0.17% carbon steel was found to be increased about 12 .deg. C

  20. A physical probabilistic model to predict failure rates in buried PVC pipelines

    International Nuclear Information System (INIS)

    Davis, P.; Burn, S.; Moglia, M.; Gould, S.

    2007-01-01

    For older water pipeline materials such as cast iron and asbestos cement, future pipe failure rates can be extrapolated from large volumes of existing historical failure data held by water utilities. However, for newer pipeline materials such as polyvinyl chloride (PVC), only limited failure data exists and confident forecasts of future pipe failures cannot be made from historical data alone. To solve this problem, this paper presents a physical probabilistic model, which has been developed to estimate failure rates in buried PVC pipelines as they age. The model assumes that under in-service operating conditions, crack initiation can occur from inherent defects located in the pipe wall. Linear elastic fracture mechanics theory is used to predict the time to brittle fracture for pipes with internal defects subjected to combined internal pressure and soil deflection loading together with through-wall residual stress. To include uncertainty in the failure process, inherent defect size is treated as a stochastic variable, and modelled with an appropriate probability distribution. Microscopic examination of fracture surfaces from field failures in Australian PVC pipes suggests that the 2-parameter Weibull distribution can be applied. Monte Carlo simulation is then used to estimate lifetime probability distributions for pipes with internal defects, subjected to typical operating conditions. As with inherent defect size, the 2-parameter Weibull distribution is shown to be appropriate to model uncertainty in predicted pipe lifetime. The Weibull hazard function for pipe lifetime is then used to estimate the expected failure rate (per pipe length/per year) as a function of pipe age. To validate the model, predicted failure rates are compared to aggregated failure data from 17 UK water utilities obtained from the United Kingdom Water Industry Research (UKWIR) National Mains Failure Database. In the absence of actual operating pressure data in the UKWIR database, typical

  1. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  2. Nanoindentation characterization of deformation and failure of aluminum oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.J.; Wang, K.; Fujita, T. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); McCauley, J.W. [US Army Research Laboratory, Aberdeen Proving Ground, MD 21078 (United States); Singh, J.P. [US Army International Technology Center, Tokyo 106-0032 (Japan); Chen, M.W., E-mail: mwchen@wpi-aimr.tohoku.ac.jp [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2011-02-15

    A systematic study of the mechanical deformation and failure of transparent ceramic aluminum oxynitride (AlON) has been conducted using a depth-sensitive nanoindentation technique combined with transmission electron microscopy (TEM) and Raman spectroscopy. Although discrete displacement bursts appear in the load-depth profiles at high applied forces, a detectable high-pressure phase transition has not been found by means of micro-Raman spectroscopy and TEM. Instead, a high density of dissociated <1 1 0> dislocations can be observed underneath the nanoindenters, suggesting that extensive plastic deformation takes place in the brittle ceramic at high contact pressures. Moreover, nanoindentation-induced micro-cracks oriented along well-defined crystallographic planes can also be observed, consistent with the low fracture toughness of AlON evaluated by an indentation method using Laugier's equation.

  3. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    Science.gov (United States)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  4. Clinical usefulness of 123I-MIBG myocardial scintigraphy as a marker of the severity and prognosis of congestive heart failure

    International Nuclear Information System (INIS)

    Shiga, Koji

    1999-01-01

    To evaluate the clinical usefulness of 123 I-MIBG myocardial scintigraphy in patients with congestive heart failure. Myocardial dynamic imaging was performed immediately after 123 I-MIBG administration at 1 frame/sec for 500 sec in 52 patients with or without congestive heart failure. The %uptake/ROI, dynamic heart to mediastinum uptake ratio (H/M) and dynamic washout rate (WR) were calculated from their time activity curves to assess the relationship between the NYHA functional class and these values. In 52 other patients with heart failure, the initial and delayed MIBG anterior planar images were obtained, and H/M in delayed images and WR between initial and delayed images were measured. The patients were followed up for 31.8±16.8 months, and their survival rates were compared among three groups, H/M 123 I-MIBG myocardial scintigraphy is very useful to diagnose the severity and prognosis in patients with congestive heart failure. (K.H.)

  5. Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process

    Directory of Open Access Journals (Sweden)

    M. Ll. Maspoch

    2015-03-01

    Full Text Available The ductile-brittle transition behaviour of organo modified montmorillonite-based Poly(lactic acid films (PLA/o-MMT was analysed using the Essential Work of Fracture (EWF methodology, Small Punch Tests (SPT and Enthalpy relaxation analysis. While the EWF methodology could only be applied successfully to de-aged samples, small punch test (SPT was revealed as more effective for a mechanical characterization during the transient behaviour from ductile to brittle. According to differential scanning calorimetry (DSC results, physical aging at 30°C of PLA/o-MMT samples exhibited slower enthalpy relaxation kinetics as compared to the pristine polymer. Although all samples exhibited an equivalent thermodynamic state after being stored one week at 30°C, significant differences were observed in the mechanical performances. These changes could be attributed to the toughening mechanisms promoted by o-MMT.

  6. Ultrasonic detection of ductile-to-brittle transitions in free-cutting aluminum alloys

    Czech Academy of Sciences Publication Activity Database

    Nejezchlebová, J.; Seiner, Hanuš; Ševčík, Martin; Landa, Michal; Karlík, M.

    2015-01-01

    Roč. 69, January 2015 (2015), s. 40-47 ISSN 0963-8695 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : aluminum alloys * laser ultrasound * ductile-to-brittle * elastic constants * resonant ultrasound spectroscopy Subject RIV: BI - Acoustics Impact factor: 1.871, year: 2015 http://www.sciencedirect.com/science/article/pii/S0963869514001200

  7. Brittle fracture in viscoelastic materials as a pattern-formation process

    Science.gov (United States)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  8. Estimation of integrity of cast-iron cask against impact due to free drop test, (1)

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    1988-01-01

    Ductile cast iron is examined to use for shipping and storage cask from a economic point of view. However, ductile cast iron is considered to be a brittle material in general. Therefore, it is very important to estimate the integrity of cast iron cask against brittle failure due to impact load at 9 m drop test and 1 m derop test on to pin. So, the F.E.M. analysis which takes nonlinearity of materials into account and the estimation against brittle failure by the method which is proposed in this report were carried out. From the analysis, it is made clear that critical flaw depth (the minimum depth to initiate the brittle failure) is 21.1 mm and 13.1 mm in the case of 9 m drop test and 1 m drop test on to pin respectively. These flaw depth can be detected by ultrasonic test. Then, the cask is assured against brittle failure due to impact load at 9 m drop test and 1 m drop test on to pin. (author)

  9. Polymer Reinforced, Non-Brittle, Light-Weight Cryogenic Insulation for Reduced Life Cycle Costs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to fabricate a composite aerogel foam. This material is designed to be impact resistant, non-brittle, non-water-retaining and insulating...

  10. A fracture-controlled path-following technique for phase-field modeling of brittle fracture

    NARCIS (Netherlands)

    Singh, N.; Verhoosel, C.V.; De Borst, R.; Van Brummelen, E.H.

    2016-01-01

    In the phase-field description of brittle fracture, the fracture-surface area can be expressed as a functional of the phase field (or damage field). In this work we study the applicability of this explicit expression as a (non-linear) path-following constraint to robustly track the equilibrium path

  11. Experiments and modeling of ballistic penetration using an energy failure criterion

    Directory of Open Access Journals (Sweden)

    Dolinski M.

    2015-01-01

    Full Text Available One of the most intricate problems in terminal ballistics is the physics underlying penetration and perforation. Several penetration modes are well identified, such as petalling, plugging, spall failure and fragmentation (Sedgwick, 1968. In most cases, the final target failure will combine those modes. Some of the failure modes can be due to brittle material behavior, but penetration of ductile targets by blunt projectiles, involving plugging in particular, is caused by excessive localized plasticity, with emphasis on adiabatic shear banding (ASB. Among the theories regarding the onset of ASB, new evidence was recently brought by Rittel et al. (2006, according to whom shear bands initiate as a result of dynamic recrystallization (DRX, a local softening mechanism driven by the stored energy of cold work. As such, ASB formation results from microstructural transformations, rather than from thermal softening. In our previous work (Dolinski et al., 2010, a failure criterion based on plastic strain energy density was presented and applied to model four different classical examples of dynamic failure involving ASB formation. According to this criterion, a material point starts to fail when the total plastic strain energy density reaches a critical value. Thereafter, the strength of the element decreases gradually to zero to mimic the actual material mechanical behavior. The goal of this paper is to present a new combined experimental-numerical study of ballistic penetration and perforation, using the above-mentioned failure criterion. Careful experiments are carried out using a single combination of AISI 4340 FSP projectiles and 25[mm] thick RHA steel plates, while the impact velocity, and hence the imparted damage, are systematically varied. We show that our failure model, which includes only one adjustable parameter in this present work, can faithfully reproduce each of the experiments without any further adjustment. Moreover, it is shown that the

  12. Calculation of DND-signals in case of fuel pin failures in KNK II with the computer code FICTION III

    International Nuclear Information System (INIS)

    Schmuck, I.

    1990-11-01

    In KNK II two delayed neutron detectors are installed for quick detection of fuel subassembly cladding failures. They record the release of the precursors of the emitters of delayed neutrons into the sodium. The computer code FICTION III calculates the expected delayed neutron signals for certain fuel pin failures, where the user has to set the boundary conditions interactively. In view of FICTION II the advancement of FICTION III consists of the following items: application of the data sets of 105 isotopes, distinction of thermal and fast neutron induced fission, partitioning of the sodium flow into two circuits, consideration of the specific fission rates in 10 fuel pin sections, elaboration of the user's interaction possibilities for input/ output. The capability of FICTION III is shown by means of two applications (UNi-test pin on position 100 and the third KNK fuel subassembly cladding failure). Object of further evaluations will be among other things the analysis of increased delayed neutron signals in regard to the fault location and dimension

  13. Evaluation of the Cytotoxic Effect of the Brittle Star (Ophiocoma Erinaceus) Dichloromethane Extract and Doxorubicin on EL4 Cell Line.

    Science.gov (United States)

    Afzali, Mahbubeh; Baharara, Javad; Nezhad Shahrokhabadi, Khadijeh; Amini, Elaheh

    2017-01-01

    Leukemia is a blood disease that creates from inhibition of differentiation and increased proliferation rate. The nature has been known as a rich source of medically useful substances. High diversity of bioactive molecules, extracted from marine invertebrates, makes them as ideal candidates for cancer research. The study has been done to investigate cytotoxic effects of dichloromethane brittle star extract and doxorubicin on EL4 cancer cells. Blood cancer EL4 cells were cultured and treated at different concentrations of brittle star ( Ophiocoma erinaceus ) dichloromethane extract at 24, 48 and 72 h. Cell toxicity was studied using MTT assay. Cell morphology was examined using an invert microscope. Further, apoptosis was examined using Annexin V-FITC, propodium iodide, DAPI, and Acridine orange/propodium iodide staining. Eventually, the apoptosis pathways were analyzed using measurement of Caspase-3 and -9 activity. The statistical analysis was performed using SPSS, ANOVA software, and Tukey's test. P EL4 proliferation as IC 50 =32 µg/mL. All experiments related to apoptosis analysis confirmed that dichloromethane brittle star extract and doxorubicin have a cytotoxic effect on EL4 cells inIC 50 concentration. The study showed that dichloromethane brittle star extract is as an adjunct to doxorubicin in treatment of leukemia cells.

  14. Impact of sediment organic matter quality on the fate and effects of fluoranthene in the infaunal brittle star Amphiura filiformis

    DEFF Research Database (Denmark)

    Selck, Henriette; Granberg, Maria E; Forbes, Valery E.

    2005-01-01

    Hydrophobic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) readily adsorb to organic matter. The aim of this study was to determine the importance of the quality of sedimentary organic matter for the uptake, biotransformation and toxicity of the PAH, fluoranthene (Flu......), in the infaunal brittle star Amphiura filiformis. Brittle stars were exposed to a base sediment covered by a 2 cm Flu-spiked top layer (30 mug Flu/g dry wt. sed.), enriched to the same total organic carbon content with either refractory or labile organic matter. The labile carbon source was concentrated green...... to equilibrium partitioning between organism lipid content and organic content of the sediment. Biotransformation of Flu by brittle stars was very limited and unaffected by organic matter quality. A. filiformis contributed to the downward transport of Flu from the surface sediment to the burrow lining...

  15. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    International Nuclear Information System (INIS)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S.

    2003-01-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- ε turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential

  16. The Carrier's Liability for Damage Caused by Delay in International Air Transport

    Science.gov (United States)

    Lee, Kang Bin

    2003-01-01

    Delay in the air transport occurs when passengers, baggage or cargo do not arrive at their destination at the time indicated in the contract of carriage. The causes of delay in the carriage of passengers are booking errors or double booking, delayed departure of aircraft, incorrect information regarding the time of departure, failure to land at the scheduled destination and changes in flight schedule or addition of extra landing stops. Delay in the carriage of baggage or cargo may have different causes: no reservation, lack of space, failure to load the baggage or cargo at the right place, or to deliver the covering documents at the right place. The Montreal Convention of 1999 Article 19 provides that 'The carrier is liable for damage occasioned by delay in the carriage by air of passengers, baggage or cargo. Nevertheless, the carder shall not be liable for damage occasioned by delay if it proves that it and its servants and agents took all measures that could reasonably be required to avoid the damage or that it was impossible for it or them to take such measures'. The Montreal Convention Article 22 provides liability limits of the carrier in case of delay for passengers and their baggage and for cargo. In the carriage of persons, the liability of the carrier for each passenger is limited to 4,150 SDR. In the carriage of baggage, the liability of the carrier is limited to 1,000 SDR for each passenger unless a special declaration as to the value of the baggage has been made. In the carriage of cargo, the liability of the carrier is limited to 17 SDR per kilogram unless a special declaration as to the value of the cargo has been made. The Montreal Convention Article 19 has shortcomings: it is silent on the duration of the liability for carriage,andit does not make any distinction between persons and good. It does not give any indication concerning the circumstances to be taken into account in cases of delay, and about the length of delay. In conclusion, it is

  17. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 2400 - 4390 m tunnel chainage

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H.; Rantanen, T.; Kuula, H. [WSP Finland Oy, Helsinki (Finland)

    2012-05-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO area at the Olkiluoto site, western Finland. This report is an extension of the previously published report: Geometrical and Mechanical properties if the fractures and brittle deformation zones based on ONKALO tunnel mapping, 0-2400 m tunnel chainage (Kuula 2010). In this updated report, mapping data are from 2400-4390 m tunnel chainage. Defined rock mechanics parameters of the fractures are associated with the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. There are no new data from laboratory joint shear and normal tests. The fracture wall compressive strength (JCS) data are available from the chainage range 1280-2400 m. Estimation of the mechanics properties of the 24 brittle deformation zones (BDZ) is based on the mapped Q' value, which is transformed to the GSI value in order to estimate strength and deformability properties. A component of the mapped Q' values is from the ONKALO and another component is from the drill cores. In this study, 24 BDZs have been parameterized. The location and size of the brittle deformation are based on the latest interpretation. New data for intact rock strength of the brittle deformation zones are not available. (orig.)

  18. Failure mechanism of shear-wall dominant multi-story buildings

    Science.gov (United States)

    Yuksel, S.B.; Kalkan, E.

    2008-01-01

    The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.

  19. Towards an energetic theory of brittle fracture

    International Nuclear Information System (INIS)

    Francfort, G.; Marigo, J.J.

    2002-01-01

    The drawbacks of the classical theory of brittle fracture, based on Griffith's criterion, - a notion of critical energy release rate -, and a fracture toughness k, are numerous (think for instance the issue of crack initiation) and penalize its validity as a good model. Are all attempts at building a macroscopic theory of fracture doomed? The variety and complexity of micro-mechanical phenomena would suggest that this is indeed the case. We believe however that structural effects still preside over fracture and consequently propose to modify slightly Griffith theory without altering its fundamental components so that it becomes amenable to the widest range of situations. The examples presented here will demonstrate that a revisited energetic framework is a sound basis for a theory which can be used at the engineering level and which reconciles seemingly contradictory viewpoints. (authors)

  20. The Influence of Brittle Daniels System Characteristics on the Value of Load Monitoring Information

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Schneider, Ronald

    This paper addresses the influence of deteriorating brittle Daniels system characteristics on the value of structural health monitoring (SHM). The value of SHM is quantified as the difference between the life cycle benefits with and without SHM. A value of SHM analysis is performed within...

  1. Assessment of Various Risk Factors for Success of Delayed and Immediate Loaded Dental Implants: A Retrospective Analysis.

    Science.gov (United States)

    Prasant, M C; Thukral, Rishi; Kumar, Sachin; Sadrani, Sannishth M; Baxi, Harsh; Shah, Aditi

    2016-10-01

    Ever since its introduction in 1977, a minimum of few months of period is required for osseointegration to take place after dental implant surgery. With the passage of time and advancements in the fields of dental implant, this healing period is getting smaller and smaller. Immediate loading of dental implants is becoming a very popular procedure in the recent time. Hence, we retrospectively analyzed the various risk factors for the failure of delayed and immediate loaded dental implants. In the present study, retrospective analysis of all the patients was done who underwent dental implant surgeries either by immediate loading procedure or by delayed loading procedures. All the patients were divided broadly into two groups with one group containing patients in which delayed loaded dental implants were placed while other consisted of patients in whom immediate loaded dental implants were placed. All the patients in whom follow-up records were missing and who had past medical history of any systemic diseases were excluded from the present study. Evaluation of associated possible risk factors was done by classifying the predictable factors as primary and secondary factors. All the results were analyzed by Statistical Package for the Social Sciences (SPSS) software. Kaplan-Meier survival analyses and chi-square test were used for assessment of level of significance. In delayed and immediate group of dental implants, mean age of the patients was 54.2 and 54.8 years respectively. Statistically significant results were obtained while comparing the clinical parameters of the dental implants in both the groups while demographic parameters showed nonsignificant correlation. Significant higher risk of dental implant failure is associated with immediate loaded dental implants. Tobacco smoking, shorter implant size, and other risk factors play a significant role in predicting the success and failure of dental implants. Delayed loaded dental implant placement should be preferred

  2. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne

    2012-01-01

    We evaluated the association between radiation therapy and severe capsular contracture or reoperation after 717 delayed breast implant reconstruction procedures (288 1- and 429 2-stage procedures) identified in the prospective database of the Danish Registry for Plastic Surgery of the Breast during...... of radiation therapy was associated with a non-significantly increased risk of reoperation after both 1-stage (HR = 1.4; 95% CI: 0.7-2.5) and 2-stage (HR = 1.6; 95% CI: 0.9-3.1) procedures. Reconstruction failure was highest (13.2%) in the 2-stage procedures with a history of radiation therapy. Breast...... reconstruction approaches other than implants should be seriously considered among women who have received radiation therapy....

  3. Asymptotic failure rate of a continuously monitored system

    International Nuclear Information System (INIS)

    Grall, A.; Dieulle, L.; Berenguer, C.; Roussignol, M.

    2006-01-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy

  4. Asymptotic failure rate of a continuously monitored system

    Energy Technology Data Exchange (ETDEWEB)

    Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr

    2006-02-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.

  5. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    Hegron, Lise

    2014-01-01

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO 2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO 2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author) [fr

  6. Modeling of brittle-viscous flow using discrete particles

    Science.gov (United States)

    Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.

    2017-04-01

    Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the

  7. Numerical Analyses of the Influence of Blast-Induced Damaged Rock Around Shallow Tunnels in Brittle Rock

    Science.gov (United States)

    Saiang, David; Nordlund, Erling

    2009-06-01

    Most of the railway tunnels in Sweden are shallow-seated (rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr-Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.

  8. Endovascular management of delayed post-pancreatectomy haemorrhage

    International Nuclear Information System (INIS)

    Pottier, Edwige; Ronot, Maxime; Vilgrain, Valerie; Gaujoux, Sebastien; Cesaretti, Manuela; Barbier, Louise; Sauvanet, Alain

    2016-01-01

    To assess the patient outcome after endovascular treatment of delayed post-pancreatectomy haemorrhage (PPH) as first-line treatment. Between January 2005 and November 2013, all consecutive patients referred for endovascular treatment of PPH were included. Active bleeding, pseudoaneurysms, collections and the involved artery were recorded on pretreatment CT. Endovascular procedures were classified as technical success (source of bleeding identified on angiogram and treated), technical failure (source of bleeding identified but incompletely treated) and abstention (no abnormality identified, no treatment performed). Factors associated with rebleeding were analysed. Sixty-nine patients (53 men) were included (mean 59 years old (32-75)). Pretreatment CT showed 27 (39 %) active bleeding. In 22 (32 %) cases, no involved artery was identified. Technical success, failure and abstention were observed in 48 (70 %), 9 (13 %) and 12 patients (17 %), respectively. Thirty patients (43 %) experienced rebleeding. Rebleeding rates were 29 %, 58 % and 100 % in case of success, abstention and failure (p < 0.001). Treatment failure/abstention was the only factor associated with rebleeding. Overall, 74 % of the patients were successfully treated by endovascular procedure(s) alone. After a first endovascular procedure for PPH, the rebleeding rate is high and depends upon the success of the procedure. Most patients are successfully treated by endovascular approach(es) alone. (orig.)

  9. Endovascular management of delayed post-pancreatectomy haemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, Edwige [Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Department of Radiology, Clichy, Hauts-de-Seine (France); Ronot, Maxime; Vilgrain, Valerie [Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Department of Radiology, Clichy, Hauts-de-Seine (France); University Paris Diderot, Paris (France); INSERM U1149, centre de recherche biomedicale Bichat-Beaujon, CRB3, Paris (France); Gaujoux, Sebastien; Cesaretti, Manuela; Barbier, Louise [APHP, University Hospitals Paris Nord Val de Seine, Beaujon, Department of Surgery, Clichy, Hauts-de-Seine (France); Sauvanet, Alain [University Paris Diderot, Paris (France); APHP, University Hospitals Paris Nord Val de Seine, Beaujon, Department of Surgery, Clichy, Hauts-de-Seine (France)

    2016-10-15

    To assess the patient outcome after endovascular treatment of delayed post-pancreatectomy haemorrhage (PPH) as first-line treatment. Between January 2005 and November 2013, all consecutive patients referred for endovascular treatment of PPH were included. Active bleeding, pseudoaneurysms, collections and the involved artery were recorded on pretreatment CT. Endovascular procedures were classified as technical success (source of bleeding identified on angiogram and treated), technical failure (source of bleeding identified but incompletely treated) and abstention (no abnormality identified, no treatment performed). Factors associated with rebleeding were analysed. Sixty-nine patients (53 men) were included (mean 59 years old (32-75)). Pretreatment CT showed 27 (39 %) active bleeding. In 22 (32 %) cases, no involved artery was identified. Technical success, failure and abstention were observed in 48 (70 %), 9 (13 %) and 12 patients (17 %), respectively. Thirty patients (43 %) experienced rebleeding. Rebleeding rates were 29 %, 58 % and 100 % in case of success, abstention and failure (p < 0.001). Treatment failure/abstention was the only factor associated with rebleeding. Overall, 74 % of the patients were successfully treated by endovascular procedure(s) alone. After a first endovascular procedure for PPH, the rebleeding rate is high and depends upon the success of the procedure. Most patients are successfully treated by endovascular approach(es) alone. (orig.)

  10. Photon emission induced by brittle fracture of borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Sato, Yoshitaka [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kishi, Tetsuo [Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Yasuda, Kouichi [Department of Metallurgy and Ceramic Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-05-15

    Photon emission (PE) at wavelength ranges of 430–490 nm (B-PE), 500–600 nm (G-PE) and 610–680 nm (R-PE) caused by brittle fracture was simultaneously measured in the nanosecond-to-microsecond and millisecond time domains for two types of borosilicate glasses: Pyrex-type Tempax glass and BK7 glass. The results were compared to those for silica and soda lime glasses. The time dependence of the PE of Tempax glass was similar to that of silica glass, while the PE intensity was lower. Because Tempax glass contains both silica-rich and borate-rich amorphous phases, the PE must be mainly produced by the fracture of the silica-rich phase. Moreover, the proportion of B-PE of Tempax glass was higher than that of silica glass. This suggests that the measured B-PE might also include very weak PE caused by the fracture of the borate-rich phase. The PE time dependence of BK7 glass was similar to that of soda lime glass, which was different from the case for Tempax glass. The PE intensity of BK7 glass was slightly higher than that of soda lime glass, but much lower than that of Tempax glass. The result indicates that non-bridging oxygen in the glasses affects crack propagation behavior and reduces the PE. - Highlights: • Photon emission (PE) upon brittle fracture of borosilicate glasses was measured. • Pyrex-type Tempax and BK7 glasses showed different PE characteristics. • The rupture of Si–O bonds produces much stronger PE than that of B–O bonds. • Non-bridging oxygen in glass affects crack propagation behavior and reduces the PE.

  11. The quantification of specimen size effects in the ductile-brittle transition for C-Mn steel

    International Nuclear Information System (INIS)

    Knee, N.; Worthington, P.J.; Moskovic, R.

    1989-02-01

    It is now generally accepted that the temperature range of the brittle to ductile transition, determined using fracture mechanics specimens, is dependent of the specimen size for ferritic steels. This size effect arises through increasing constraint at the crack tip as the specimen thickness increases together with an increasing volume of material sampled. The size effect can be quantified in terms of a shift in temperature for a given toughness level. This was determined in the present work from fracture toughness/temperature curves obtained by performing fracture toughness tests on eight 100 mm thick compact tension specimens and 40 25 mm thick compact tension specimens over the ductile-brittle transition range of a C-Mn steel. The emphasis is on the development of a practical methodology to quantify the size effect from a limited but still appreciable number of tests. (author)

  12. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  13. Micromechanics Based Failure Analysis of Heterogeneous Materials

    Science.gov (United States)

    Sertse, Hamsasew M.

    are performed for both brittle failure/high cycle fatigue (HCF) for negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic strain. The proposed approach is incorporated in SwiftComp and used to predict the initial failure envelope, stress-strain curve for various loading conditions, and fatigue life of heterogeneous materials. The combined effects of strain hardening and progressive fatigue damage on the effective properties of heterogeneous materials are also studied. The capability of the current approach is validated using several representative examples of heterogeneous materials including binary composites, continuous fiber-reinforced composites, particle-reinforced composites, discontinuous fiber-reinforced composites, and woven composites. The predictions of MSG are also compared with the predictions obtained using various micromechanics approaches such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as 3-dimensional finite element analysis (3D FEA) in this document). This study demonstrates that a micromechanics based failure analysis has a great potential to rigorously and more accurately analyze initiation and progression of damage in heterogeneous materials. However, this approach requires material properties specific to damage analysis, which are needed to be independently calibrated for each constituent.

  14. A New Species of Sexually Dimorphic Brittle Star of the Genus Ophiodaphne (Echinodermata: Ophiuroidea).

    Science.gov (United States)

    Tominaga, Hideyuki; Hirose, Mamiko; Igarashi, Hikaru; Kiyomoto, Masato; Komatsu, Miéko

    2017-08-01

    We describe a new species of sexually dimorphic brittle star, Ophiodaphne spinosa, from Japan associated with the irregular sea urchin, Clypeaster japonicus based on its external morphology, and phylogenetic analyses of mitochondrial COI (cytochrome c oxidase subunit I). Females of this new species of Ophiodaphne are characterized mainly by the presence of wavy grooves on the surface of the radial shields, needle-like thorns on the oral skeletal jaw structures, and a low length-to-width ratio of the jaw angle in comparison with those of type specimens of its Ophiodaphne congeners: O. scripta, O. materna, and O. formata. A tabular key to the species characteristics of Ophiodaphne is provided. Phylogenetic analyses indicate that the new species of Ophiodaphne, O. scripta, and O. formata are monophyletic. Our results indicate that the Japanese Ophiodaphne include both the new species and O. scripta, and that there are four Ophiodaphne species of sexually dimorphic brittle stars with androphorous habit.

  15. Atrial fibrillation and delayed gastric emptying.

    Directory of Open Access Journals (Sweden)

    Isadora C Botwinick

    Full Text Available BACKGROUND: Atrial fibrillation and delayed gastric emptying (DGE are common after pancreaticoduodenectomy. Our aim was to investigate a potential relationship between atrial fibrillation and DGE, which we defined as failure to tolerate a regular diet by the 7(th postoperative day. METHODS: We performed a retrospective chart review of 249 patients who underwent pancreaticoduodenectomy at our institution between 2000 and 2009. Data was analyzed with Fisher exact test for categorical variables and Mann-Whitney U or unpaired T-test for continuous variables. RESULTS: Approximately 5% of the 249 patients included in the analysis experienced at least one episode of postoperative atrial fibrillation. Median age of patients with atrial fibrillation was 74 years, compared with 66 years in patients without atrial fibrillation (p = 0.0005. Patients with atrial fibrillation were more likely to have a history of atrial fibrillation (p = 0.03. 92% of the patients with atrial fibrillation suffered from DGE, compared to 46% of patients without atrial fibrillation (p = 0.0007. This association held true when controlling for age. CONCLUSION: Patients with postoperative atrial fibrillation are more likely to experience delayed gastric emptying. Interventions to manage delayed gastric function might be prudent in patients at high risk for postoperative atrial fibrillation.

  16. FFTF fuel failure detection and characterization by cover gas monitoring. Final report

    International Nuclear Information System (INIS)

    Miller, W.C.; Holt, F.E.

    1977-01-01

    The Fast Flux Test Facility (FFTF) will include a Fuel Failure Monitoring (FFM) System designed to detect, characterize, and locate fuel and absorber pin failures (i.e., cladding breaches) using a combination of delayed neutron detection, cover gas radioisotope monitoring, and gas tagging. During the past several years the Hanford Engineering Development Laboratory has been involved in the development, design, procurement, and installation of this integrated system. The paper describes one portion of the FFM System, the Cover Gas Monitoring System (CGMS), which has the primary function of fuel failure detection and characterization in the FFTF. By monitoring the various radioisotopes in the cover gas, the CGMS will both detect fuel and absorber pin failures and characterize those failures as to magnitude and severity

  17. Simulation of seismic waves in the brittle-ductile transition (BDT) using a Burgers model

    Science.gov (United States)

    Poletto, Flavio; Farina, Biancamaria; Carcione, José Maria

    2014-05-01

    The seismic characterization of the brittle-ductile transition (BDT) in the Earth's crust is of great importance for the study of high-enthalpy geothermal fields in the proximity of magmatic zones. It is well known that the BDT can be viewed as the transition between zones with viscoelastic and plastic behavior, i.e., the transition between the upper, cooler, brittle crustal zone, and the deeper ductile zone. Depending on stress and temperature conditions, the BDT behavior is basically determined by the viscosity of the crustal rocks, which acts as a key factor. In situ shear stress and temperature are related to shear viscosity and steady-state creep flow through the Arrhenius equation, and deviatory stress by octahedral stress criterion. We present a numerical approach to simulate the propagation of P-S and SH seismic waves in a 2D model of the heterogeneous Earth's crust. The full-waveform simulation code is based on a Burgers mechanical model (Carcione, 2007), which enables us to describe both the seismic attenuation effects and the steady-state creep flow (Carcione and Poletto, 2013; Carcione et al. 2013). The differential equations of motion are calculated for the Burgers model, and recast in the velocity-stress formulation. Equations are solved in the time domain using memory variables. The approach uses a direct method based on the Runge-Kutta technique, and the Fourier pseudo-spectral methods, for time integration and for spatial derivation, respectively. In this simulation we assume isotropic models. To test the code, the signals generated by the full-waveform simulation algorithm are compared with success to analytic solutions obtained with different shear viscosities. Moreover, synthetic results are calculated to simulate surface and VSP seismograms in a realistic rheological model with a dramatic temperature change, to study the observability of BDT by seismic reflection methods. The medium corresponds to a selected rheology of the Iceland scenario

  18. Nonlocal effects on dynamic damage accumulation in brittle solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  19. Representative Delay Measurements (RDM: Facing the Challenge of Modern Networks

    Directory of Open Access Journals (Sweden)

    Joachim Fabini

    2015-02-01

    Full Text Available Network access technologies have evolved significantly in the last years. They deploy novel mechanisms like reactive capacity allocation and time-slotted operation to optimize overall network capacity. From a single node's perspective, such optimizations decrease network determinism and measurement repeatability. Evolving application fields like machine to machine (M2M communications or real-time gaming often have strict real-time requirements to operate correctly. Highly accurate delay measurements are necessary to monitor network compliance with application demands or to detect deviations of normal network behavior, which may be caused by network failures, misconfigurations or attacks. This paper analyzes factors that challenge active delay measurements in modern networks. It introduces the Representative Delay Measurement tool (RDM that addresses these factors and proposes solutions that conform to requirements of the recently published RFC7312. Delay measurement results acquired using RDM in live networks confirm that advanced measurement methods can significantly improve the quality of measurement samples by isolating systematic network behavior. The resulting high-quality samples are one prerequisite for accurate statistics that support proper operation of subsequent algorithms and applications.

  20. Qualitative evaluation of various models for mechanical analysis of nuclear wastes storage in brittle rocks

    International Nuclear Information System (INIS)

    Millard, A.

    1994-01-01

    In order to appraise the large scale behaviour of high level nuclear wastes underground repositories in brittle rocks, basic models are presented and evaluated in the case of generic repository configurations. Predictive Capabilities of the models are briefly discussed. 7 figs

  1. Failure and fracture of thin film materials for MEMS

    Science.gov (United States)

    Jonnalagadda, Krishna Nagasai

    Design and reliable operation of Microelectromechanical systems (MEMS) depend on the material parameters that influence the failure and fracture properties of brittle and metallic thin films. Failure in brittle materials is quantified by the onset of catastrophic fracture, while in metals, the onset of inelastic deformation is considered as failure as it increases the material compliance. This dissertation research developed new experimental methods to address three aspects on the failure response of these two categories of materials: (a) the role of microstructure and intrinsic stress gradients in the opening mode fracture of mathematically sharp pre-cracks in amorphous and polycrystalline brittle thin films, (b) the critical conditions for mixed mode I/II pre-cracks and their comparison with linear elastic fracture mechanics (LEFM) criteria for crack initiation in homogeneous materials, and (c) the strain rate sensitivity of textured nanocrystalline Au and Pt films with grain sizes of 38 nm and 25 nm respectively. One of the technical objectives of this research was to develop experimental methods and tools that could become standards in MEMS and thin film experimental mechanics. In this regard, a new method was introduced to conduct mode I and mixed mode I/II fracture studies with microscale thin film specimens containing sharp edge pre-cracks. The mode I experiments permitted the direct application of LEFM handbook solutions. On the other hand, the newly introduced mixed mode I/II experiments in thin films were conducted by establishing a new protocol that employs non-standard oblique edge pre-cracks and a numerical analysis based on the J-integral to calculate the stress intensity factors. Similarly, a new experimental protocol has been implemented to carry out experiments with metallic thin films at strain rates that vary by more than six orders of magnitude. The results of mode I fracture experiments concluded that grain inhomogeneity in polycrystalline

  2. Analytical and numerical analysis of frictional damage in quasi brittle materials

    Science.gov (United States)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  3. A probabilistic model of brittle crack formation

    Science.gov (United States)

    Chudnovsky, A.; Kunin, B.

    1987-01-01

    Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.

  4. Micromechanical modelling of quasi-brittle materials behavior

    International Nuclear Information System (INIS)

    Li, V.C.

    1992-01-01

    This special issues on Micromechanical modelling of quasi-brittle materials behavior represents an outgrowth of presentations given at a symposium of the same title held at the 1991 ASME Applied Mechanics and Biomechanics Summer Conference at the Ohio State University. The symposium was organized to promote communication between researchers in three materials groups: rock, cementitious materials, ceramics and related composites. The enthusiastic response of both speakers and attendants at the ASME symposium convinced the organizer that it would be useful to put together a coherent volume which can reach a larger audience. It was decided that the papers individually and as a volume ought to provide a broader view, so that as much as possible, the work contained in each paper would be accessible to readers working in any of the three materials groups. Applied Mechanics Reviews presents an appropriate platform for achieving these objectives

  5. Viscoplasticity and the dynamics of brittle fracture

    International Nuclear Information System (INIS)

    Langer, J. S.

    2000-01-01

    I propose a model of fracture in which the curvature of the crack tip is a relevant dynamical variable and crack advance is governed solely by plastic deformation of the material near the tip. This model is based on a rate-and-state theory of plasticity introduced in earlier papers by Falk, Lobkovsky, and myself. In the approximate analysis developed here, fracture is brittle whenever the plastic yield stress is nonzero. The tip curvature finds a stable steady-state value at all loading strengths, and the tip stress remains at or near the plastic yield stress. The crack speed grows linearly with the square of the effective stress intensity factor above a threshold that depends on the surface tension. This result provides a possible answer to the fundamental question of how breaking stresses are transmitted through plastic zones near crack tips. (c) 2000 The American Physical Society

  6. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  7. Understanding brittle deformation at the Olkiluoto site. Literature compilation for site characterization and geological modelling

    International Nuclear Information System (INIS)

    Millnes, A.G.

    2006-07-01

    The present report arose from the belief that geological modelling at Olkiluoto, Finland, where an underground repository for spent nuclear fuel is at present under construction, could be significantly improved by an increased understanding of the phenomena being modelled, in conjunction with the more sophisticated data acquisition and processing methods which are now being introduced. Since the geological model is the necessary basis for the rock engineering and hydrological models, which in turn provide the foundation for identifying suitable rock volumes underground and for demonstrating longterm safety, its scientific basis is of critical importance. As a contribution to improving this scientific basis, the literature on brittle deformation in the Earth's crust has been reviewed, and key references chosen and arranged, with the particular geology of the Olkiluoto site in mind. The result is a compilation of scientific articles, reports and books on some of the key topics, which are of significance for an improved understanding of brittle deformation of hard, crystalline rocks, such as those typical for Olkiluoto. The report is subdivided into six Chapters, covering (1) background information, (2) important aspects of the fabric of intact rock, (3) fracture mechanics and brittle microtectonics, (4) fracture data acquisition and processing, for the statistical characterisation and modelling of fracture systems, (5) the characterisation of brittle deformation zones for deterministic modelling, and (6) the regional geological framework of the Olkiluoto site. The Chapters are subdivided into a number of Sections, and each Section into a number of Topics. The citations are mainly collected under each Topic, embedded in a short explanatory text or listed chronologically without comment. The systematic arrangement of Chapters, Sections and Topics is such that the Table of Contents can be used to focus quickly on the theme of interest without the necessity of looking

  8. Patterns of failure after iodine-125 seed implantation for prostate cancer

    International Nuclear Information System (INIS)

    Lamb, David S.; Greig, Lynne; Russell, Grant L.; Nacey, John N.; Broome, Kim; Studd, Rod; Delahunt, Brett; Iupati, Douglas; Jain, Mohua; Rooney, Colin; Murray, Judy; Lamb, Peter J.; Bethwaite, Peter B.

    2014-01-01

    Purpose: To determine the site of relapse when biochemical failure (BF) occurs after iodine-125 seed implantation for prostate cancer. Materials and methods: From 2001–2009, 500 men underwent implantation in Wellington, New Zealand. Men who sustained BF were placed on relapse guidelines that delayed restaging and intervention until the prostate-specific antigen (PSA) was ⩾20 ng/mL. Results: Most implants (86%) had a prostate D90 of ⩾90%, and multivariate analysis showed that this parameter was not a variable that affected the risk of BF. Of 21 BFs that occurred, the site of failure was discovered to be local in one case and distant in nine cases. Restaging failed to identify the site of relapse in two cases. In nine cases the trigger for restaging had not been reached. Conclusions: If post-implant dosimetry is generally within the optimal range, distant rather than local failure appears to be the main cause of BF. Hormone treatment is therefore the most commonly indicated secondary treatment intervention (STI). Delaying the start of STI prevents the unnecessary treatment of men who undergo PSA ‘bounce’ and have PSA dynamics initially mimicking those of BF

  9. Determinants of noninvasive ventilation success or failure in morbidly obese patients in acute respiratory failure.

    Directory of Open Access Journals (Sweden)

    Malcolm Lemyze

    Full Text Available Acute respiratory failure (ARF is a common life-threatening complication in morbidly obese patients with obesity hypoventilation syndrome (OHS. We aimed to identify the determinants of noninvasive ventilation (NIV success or failure for this indication.We prospectively included 76 consecutive patients with BMI>40 kg/m2 diagnosed with OHS and treated by NIV for ARF in a 15-bed ICU of a tertiary hospital.NIV failed to reverse ARF in only 13 patients. Factors associated with NIV failure included pneumonia (n = 12/13, 92% vs n = 9/63, 14%; p<0.0001, high SOFA (10 vs 5; p<0.0001 and SAPS2 score (63 vs 39; p<0.0001 at admission. These patients often experienced poor outcome despite early resort to endotracheal intubation (in-hospital mortality, 92.3% vs 17.5%; p<0.001. The only factor significantly associated with successful response to NIV was idiopathic decompensation of OHS (n = 30, 48% vs n = 0, 0%; p = 0.001. In the NIV success group (n = 63, 33 patients (53% experienced a delayed response to NIV (with persistent hypercapnic acidosis during the first 6 hours.Multiple organ failure and pneumonia were the main factors associated with NIV failure and death in morbidly obese patients in hypoxemic ARF. On the opposite, NIV was constantly successful and could be safely pushed further in case of severe hypercapnic acute respiratory decompensation of OHS.

  10. Delayed Failure of Hi-Nicalon and Hi-Nicalon S Multi-filament Tows and Single Filaments at Intermediate Temperatures (500 degrees-800 degrees C)

    International Nuclear Information System (INIS)

    Gauthier, W.; Lamon, J.

    2009-01-01

    Previous results have shown that tows of SiC Nicalon fibers are sensitive to the phenomenon of delayed failure, at temperatures below 700 C. The present paper examines the static fatigue of Hi-Nicalon and Hi-Nicalon S when subjected to constant load, at temperatures between 500 and 800 C in air. Multi-filament tows and single filaments were tested. Experimental data show that the rupture times of tows depend on the applied stress according to the conventional power law tσ n =A. In contrast, the stress-rupture time data obtained on single filaments exhibit significant scatter. A model based on slow crack growth in single filaments shows that the stress-rupture of fiber tows follows the conventional time power law. The dependence on temperature was introduced. The model allowed sound calculations of tow lifetimes and characteristics of the slow crack growth phenomenon to be extracted from the tow stress-rupture time data. (authors)

  11. A Fourth Order Formulation of DDM for Crack Analysis in Brittle Solids

    Directory of Open Access Journals (Sweden)

    Abolfazl Abdollahipour

    2017-01-01

    Full Text Available A fourth order formulation of the displacement discontinuity method (DDM is proposed for the crack analysis of brittle solids such as rocks, glasses, concretes and ceramics. A fourth order boundary collocation scheme is used for the discretization of each boundary element (the source element. In this approach, the source boundary element is divided into five sub-elements each recognized by a central node where the displacement discontinuity components are to be numerically evaluated. Three different formulating procedures are presented and their corresponding discretization schemes are discussed. A new discretization scheme is also proposed to use the fourth order formulation for the special crack tip elements which may be used to increase the accuracy of the stress and displacement fields near the crack ends. Therefore, these new crack tips discretizing schemes are also improved by using the proposed fourth order displacement discontinuity formulation and the corresponding shape functions for a bunch of five special crack tip elements. Some example problems in brittle fracture mechanics are solved for estimating the Mode I and Mode II stress intensity factors near the crack ends. These semi-analytical results are compared to those cited in the fracture mechanics literature whereby the high accuracy of the fourth order DDM formulation is demonstrated.

  12. Computer-aided analysis of cutting processes for brittle materials

    Science.gov (United States)

    Ogorodnikov, A. I.; Tikhonov, I. N.

    2017-12-01

    This paper is focused on 3D computer simulation of cutting processes for brittle materials and silicon wafers. Computer-aided analysis of wafer scribing and dicing is carried out with the use of the ANSYS CAE (computer-aided engineering) software, and a parametric model of the processes is created by means of the internal ANSYS APDL programming language. Different types of tool tip geometry are analyzed to obtain internal stresses, such as a four-sided pyramid with an included angle of 120° and a tool inclination angle to the normal axis of 15°. The quality of the workpieces after cutting is studied by optical microscopy to verify the FE (finite-element) model. The disruption of the material structure during scribing occurs near the scratch and propagates into the wafer or over its surface at a short range. The deformation area along the scratch looks like a ragged band, but the stress width is rather low. The theory of cutting brittle semiconductor and optical materials is developed on the basis of the advanced theory of metal turning. The fall of stress intensity along the normal on the way from the tip point to the scribe line can be predicted using the developed theory and with the verified FE model. The crystal quality and dimensions of defects are determined by the mechanics of scratching, which depends on the shape of the diamond tip, the scratching direction, the velocity of the cutting tool and applied force loads. The disunity is a rate-sensitive process, and it depends on the cutting thickness. The application of numerical techniques, such as FE analysis, to cutting problems enhances understanding and promotes the further development of existing machining technologies.

  13. Centrifuge model test of rock slope failure caused by seismic excitation. Applicability to the stability evaluation method of safety factors against sliding

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2010-01-01

    The purposes of this study are to analyze dynamic failure characteristics of slopes in discontinuous rock mass with brittle fracture by centrifuge model tests and to study applicability to the equivalent linear analysis against dynamic sliding failure of rock slopes. We conducted centrifuge model test using a dip slope model with discontinuities imitated by Teflon sheets. The centrifugal acceleration was 30G, and the acceleration amplitudes of input sin waves were increased gradually at every step. The test results were compared with safety factors of the sliding surface based on the equivalent linear analysis. The following results were obtained: (1) The slope model collapsed when it was excited by the sine wave of 350gal, which was converted to real field scale. (2) Artificial discontinuities considerably affected the collapse, and the type of collapse was plane failure. (3) From response displacement records measured at the slope model, the failure around toe of the slope model probably caused the collapse. (4) The evaluation of safety factors against sliding based on the equivalent linear analysis were conservative compared with the experimental results. (author)

  14. Takotsubo Cardiomyopathy as a Delayed Complication with a Herbicide Containing Glufosinate Ammonium in a Suicide Attempt: A Case Report

    OpenAIRE

    Tominaga, Keiichiro; Izumi, Manabu; Suzukawa, Masayuki; Shinjo, Takafumi; Izawa, Yoshimitsu; Yonekawa, Chikara; Ano, Masaki; Yamashita, Keisuke; Muronoi, Tomohiro; Mochiduki, Reiko

    2012-01-01

    Background. Glufosinate ammonium has a famous delayed complication as respiratory failure, however, delayed cardiogenic complication is not well known. Objectives. The aim of this study is to report a takotsubo cardiomyopathy as a delayed complication of glufosinate ammonium for suicide attempt. Case Report. A 75-year-old woman ingested about 90 mL of Basta, herbicide for suicide attempt at arousal during sleep. She came to our hospital at twelve hours after ingesting. She was admitted to our...

  15. Homozygous EEF1A2 mutation causes dilated cardiomyopathy, failure to thrive, global developmental delay, epilepsy and early death.

    Science.gov (United States)

    Cao, Siqi; Smith, Laura L; Padilla-Lopez, Sergio R; Guida, Brandon S; Blume, Elizabeth; Shi, Jiahai; Morton, Sarah U; Brownstein, Catherine A; Beggs, Alan H; Kruer, Michael C; Agrawal, Pankaj B

    2017-09-15

    Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.

    2010-06-01

    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  17. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites

    International Nuclear Information System (INIS)

    Li, V.C.; Wu, H.W.

    1992-01-01

    Apart from imparting increased fracture toughness, one of the useful purposes of reinforcing brittle matrices with fibers is to create enhanced composite strain capacity. This paper reviews the conditions underwhich such a composite will exhibit the pseudo strain-hardening phenomenon. The presentation is given in a unified manner for both continuous aligned and discontinuous random fiber composites. It is demonstrated that pseudo strain hardening can be practically designed for both gills of composites by proper tailoring of material structures. 18 refs., 8 figs., 2 tabs

  18. Electrical storm after CRT implantation treated by AV delay optimization.

    Science.gov (United States)

    Combes, Nicolas; Marijon, Eloi; Boveda, Serge; Albenque, Jean-Paul

    2010-02-01

    We present a case of symptomatic ischemic heart failure with an indication for cardiac resynchronization and implantable cardiac defibrillator therapy in primary prevention. After implantation, the patient developed a severe electrical storm with multiple shocks. Hemodynamic improvement based only on AV delay, guided by echocardiography and ECG, brought about a dramatic improvement in the situation. We discuss the pathophysiology of electrical storm occurring immediately after LV pacing.

  19. Assessment of brittleness and empirical correlations between physical and mechanical parameters of the Asmari limestone in Khersan 2 dam site, in southwest of Iran

    Science.gov (United States)

    Lashkaripour, Gholam Reza; Rastegarnia, Ahmad; Ghafoori, Mohammad

    2018-02-01

    The determination of brittleness and geomechanical parameters, especially uniaxial compressive strength (UCS) and Young's modulus (ES) of rocks are needed for the design of different rock engineering applications. Evaluation of these parameters are time-consuming processes, tedious, expensive and require well-prepared rock cores. Therefore, compressional wave velocity (Vp) and index parameters such as point load index and porosity are often used to predict the properties of rocks. In this paper, brittleness and other properties, physical and mechanical in type, of 56 Asmari limestones in dry and saturated conditions were analyzed. The rock samples were collected from Khersan 2 dam site. This dam with the height of 240 m is being constructed and located in the Zagros Mountain, in the southwest of Iran. The bedrock and abutments of the dam site consist of Asemari and Gachsaran Formations. In this paper, a practical relation for predicting brittleness and some relations between mechanical and index parameters of the Asmari limestone were established. The presented equation for predicting brittleness based on UCS, Brazilian tensile strength and Vp had high accuracy. Moreover, results showed that the brittleness estimation based on B3 concept (the ratio of multiply compressive strength in tensile strength divided 2) had more accuracy as compared to the B2 (the ratio of compressive strength minus tensile strength to compressive strength plus tensile strength) and B1 (the ratio of compressive strength to tensile strength) concepts.

  20. Failure to thrive in babies and toddlers.

    Science.gov (United States)

    Goh, Lay Hoon; How, Choon How; Ng, Kar Hui

    2016-06-01

    Failure to thrive in a child is defined as 'lack of expected normal physical growth' or 'failure to gain weight'. Diagnosis requires repeated growth measurements over time using local, age-appropriate growth centile charts. Premature babies with appropriate growth velocity and children with 'catch-down' growth, constitutional growth delay or familial short stature show normal growth variants, and usually do not require further evaluation. In Singapore, the most common cause of failure to thrive in children is malnutrition secondary to psychosocial and caregiver factors. 'Picky eating' is common in the local setting and best managed with an authoritative feeding style from caregivers. Other causes are malabsorption and existing congenital or chronic medical conditions. Child neglect or abuse should always be ruled out. Iron deficiency is the most common complication. The family doctor plays a pivotal role in early detection, timely treatment, appropriate referrals and close monitoring of 'catch-up' growth in these children. Copyright: © Singapore Medical Association.

  1. Transcatheter Embolization for Delayed Hemorrhage Caused by Blunt Splenic Trauma

    International Nuclear Information System (INIS)

    Krohmer, Steven J.; Hoffer, Eric K.; Burchard, Kenneth W.

    2010-01-01

    Although the exact benefit of adjunctive splenic artery embolization (SAE) in the nonoperative management (NOM) of patients with blunt splenic trauma has been debated, the role of transcatheter embolization in delayed splenic hemorrhage is rarely addressed. The purpose of this study was to evaluate the effectiveness of SAE in the management of patients who presented at least 3 days after initial splenic trauma with delayed hemorrhage. During a 24-month period 4 patients (all male; ages 19-49 years) presented with acute onset of pain 5-70 days after blunt trauma to the left upper quadrant. Two had known splenic injuries that had been managed nonoperatively. All had computed axial tomography evidence of active splenic hemorrhage or false aneurysm on representation. All underwent successful SAE. Follow-up ranged from 28 to 370 days. These cases and a review of the literature indicate that SAE is safe and effective for NOM failure caused by delayed manifestations of splenic arterial injury.

  2. Experimental and Modelling Investigations of the Coupled Elastoplastic Damage of a Quasi-brittle Rock

    Science.gov (United States)

    Zhang, Jiu-Chang

    2018-02-01

    Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.

  3. Damage law identification of a quasi brittle ceramic from a b ending test using digital image correlation

    Directory of Open Access Journals (Sweden)

    Meille S.

    2010-06-01

    Full Text Available The quasi brittle ceramics show a non linear mechanical behaviour resulting most of the time in a dissymetry between their tensile and compressive stress-strain laws. The characterization of their fracture strengths might be biased if elastic linear formulae are used to analyze classical tests like bending tests. Based on Digital Image Correlation (DIC, a methodology is proposed to characterize materials with dissymmetric behaviours. Applying specific DIC decomposition functions for bending, compressive and tensile tests, a stress-strain model and its damage law are identified for aluminium titanate, a damageable micro cracked ceramic. This identification method using DIC can obviously be applied to other quasi brittle materials.

  4. Failure to thrive in infants with complicated facial hemangiomas.

    Science.gov (United States)

    Thomas, Meghan W; Burkhart, Craig N; Vaghani, Sapna P; Morrell, Dean S; Wagner, Annette M

    2012-01-01

    We have observed that some children with facial hemangiomas of infancy have feeding difficulties coincident with periods of failure to thrive. We evaluated the early oral sensory and feeding experiences of four children with facial hemangiomas through medical record review and parental surveys to investigate their contribution to the patients' failure to thrive. All children with feeding irregularities experienced some degree of oral sensory impairment and required early oral sensory intervention, but there were varying reports of difficulty or delay in the development of oral feeding. The nature of these difficulties is discussed. Infants with complicated facial hemangiomas with perioral and airway involvement may be at higher risk for feeding and oral sensory problems. We recommend close monitoring for failure to thrive and early evaluation by speech or occupational therapists. © 2011 Wiley Periodicals, Inc.

  5. Diencephalic syndrome: a frequently neglected cause of failure to thrive in infants.

    Science.gov (United States)

    Kim, Ahlee; Moon, Jin Soo; Yang, Hye Ran; Chang, Ju Young; Ko, Jae Sung; Seo, Jeong Kee

    2015-01-01

    Diencephalic syndrome is an uncommon cause of failure to thrive in early childhood that is associated with central nervous system neoplasms in the hypothalamic-optic chiasmatic region. It is characterized by complex signs and symptoms related to hypothalamic dysfunction; such nonspecific clinical features may delay diagnosis of the brain tumor. In this study, we analyzed a series of cases in order to define characteristic features of diencephalic syndrome. We performed a retrospective study of 8 patients with diencephalic syndrome (age, 5-38 months). All cases had presented to Seoul National University Children's Hospital between 1995 and 2013, with the chief complaint of poor weight gain. Diencephalic syndrome with central nervous system (CNS) neoplasm was identified in 8 patients. The mean age at which symptoms were noted was 18±10.5 months, and diagnosis after symptom onset was made at the mean age of 11±9.7 months. The mean z score was -3.15±1.14 for weight, -0.12±1.05 for height, 1.01±1.58 for head circumference, and -1.76±1.97 for weight-for-height. Clinical features included failure to thrive (n=8), hydrocephalus (n=5), recurrent vomiting (n=5), strabismus (n=2), developmental delay (n=2), hyperactivity (n=1), nystagmus (n=1), and diarrhea (n=1). On follow-up evaluation, 3 patients showed improvement and remained in stable remission, 2 patients were still receiving chemotherapy, and 3 patients were discharged for palliative care. Diencephalic syndrome is a rare cause of failure to thrive, and diagnosis is frequently delayed. Thus, it is important to consider the possibility of a CNS neoplasm as a cause of failure to thrive and to ensure early diagnosis.

  6. The effect of the dislocation image force on the brittle behaviour of materials

    International Nuclear Information System (INIS)

    Lung, C.W.

    1986-06-01

    The dislocation image force due to the free surface of a finite width specimen makes the plastic zone at a crack tip larger. The effect of the dislocation image force on the fracture behaviour of materials with different geometrical shapes is discussed. It is found that the ratio V/A as an indication of the brittle behaviour of structural components is reasonable for elastic-plastic fracture. (author)

  7. Analysis and control of issues that delay pharmaceutical projects

    Directory of Open Access Journals (Sweden)

    Nallam Sai Nandeswara Rao

    2015-10-01

    Full Text Available Every project will have certain objectives and service levels to be achieved. The success of a project depends on several dimensions like time, cost/budget, quality, etc. and managing a project involves completing the project within time, within budget and with quality to satisfy the users. Because of the significance of health, pharmaceutical companies realized the importance of project management methods and techniques to make available the life saving drugs in time to the needy patients and hospitals. In literature, there is meager information about pharmaceutical project management oriented towards analysis of issues and factors that contribute to the failure or success of projects. This study attempts to analyse different issues that contribute to time delays in pharmaceutical product-based projects, group them under a finite set of prominent factors and identify remedial measures to control those delays. The feedback of project people of some big pharmaceutical firms of Indian sub-continent was collected for this purpose. Exploratory factor analysis (EFA has been used to reduce the reasons for time delays to a limited number of prominent factors and the EFA model has been further examined by confirmatory factor analysis (CFA for its validation. Remedial measures under each factor of time delays have been gathered and a framework designed to mitigate the time delays in pharmaceutical projects. The derived factors that delay the pharmaceutical projects include resource, monitoring & control, scheduling and planning problems. Important remedial measures like blended resource approach, estimation and forecast of shortage of labour and skills, regular quality training, etc. have been recommended.

  8. Fluidized breccias: A record of brittle transitions during ductile deformation

    Science.gov (United States)

    Murphy, F. C.

    1984-05-01

    Unusual breccias, of Caledonian age, are described in relation to the tectonic and metamorphic history of their greywacke sandstone and siltstone parent rocks. The variety of field and textural relationships displayed by the breccias indicate a combination of dilational and non-dilational components in a fluidized system of breccia development. The velocity of the escaping fluid phase and the viscosity of the fluidized suspension are strongly influenced by competency controls. Due to their finer grained nature, the pelite-based breccias allow a greater mobility of the fluid phase and locally record a turbulent expanded bed stage of the fluidized system. However the sandstone-based breccias, lacking the intricate flow patterns, retain a replacive non-dilational fracture network. The breccias occur in a zone of intense D 2 deformation. The age relationships of the breccias indicate a repeated pattern of brecciation with syntectonic temporal and partly genetic affinities to the S 2 cleavage development. The syntectonic dilational elements, involving boudinage and hydraulic fracture, are coupled with intense pressure solution and conjugate cleavage development. Metamorphism to lower greenschist facies is synchronous with deformation and brecciation. A focussing of the metamorphic fluid phase within the breccia zones is indicated, contributing the non-dilational components of the brecciation process. A simple shear model of the D 2 deformation within this zone is proposed. The orientation of the breccia zones suggests that their localization is determined by tensional components within the overall D 2 stress field. The cyclical pattern of the brecciation during the D 2 deformation is considered to represent rapid brittle transitions during the ductile deformation. Stratigraphie controls on the generation of the increased fluid pressures are identified. The presence of an impermeable barrier facilitating the necessary conditions for the excess fluid pressures to

  9. Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Gheorghe Hutiu

    2018-02-01

    Full Text Available Some forensic in situ investigations, such as those needed in transportation (for aviation, maritime, road, or rail accidents or for parts working under harsh conditions (e.g., pipes or turbines would benefit from a method/technique that distinguishes ductile from brittle fractures of metals—as material defects are one of the potential causes of incidents. Nowadays, the gold standard in material studies is represented by scanning electron microscopy (SEM. However, SEM instruments are large, expensive, time-consuming, and lab-based; hence, in situ measurements are impossible. To tackle these issues, we propose as an alternative, lower-cost, sufficiently high-resolution technique, Optical Coherence Tomography (OCT to perform fracture analysis by obtaining the topography of metallic surfaces. Several metals have been considered in this study: low soft carbon steels, lamellar graphite cast iron, an antifriction alloy, high-quality rolled steel, stainless steel, and ductile cast iron. An in-house developed Swept Source (SS OCT system, Master-Slave (MS enhanced is used, and height profiles of the samples’ surfaces were generated. Two configurations were used: one where the dimension of the voxel was 1000 μm3 and a second one of 160 μm3—with a 10 μm and a 4 μm transversal resolution, respectively. These height profiles allowed for concluding that the carbon steel samples were subject to ductile fracture, while the cast iron and antifriction alloy samples were subjected to brittle fracture. The validation of OCT images has been made with SEM images obtained with a 4 nm resolution. Although the OCT images are of a much lower resolution than the SEM ones, we demonstrate that they are sufficiently good to obtain clear images of the grains of the metallic materials and thus to distinguish between ductile and brittle fractures—especially with the higher resolution MS/SS-OCT system. The investigation is finally extended to the most useful case of

  10. Test and Diagnosis for Small-Delay Defects

    CERN Document Server

    Tehranipoor, Mohammad; Chakrabarty, Krishnendu

    2012-01-01

    This book introduces new techniques for detecting and diagnosing small-delay defects (SDD) in integrated circuits. Although this sort of timing defect is commonly found in integrated circuits manufactured with nanometer technology, this will be the first book to introduce effective and scalable methodologies for screening and diagnosing small-delay defects, including important parameters such as process variations, crosstalk, and power supply noise. This book presents new techniques and methodologies to improve overall SDD detection with very small pattern sets. These methods can result in pattern counts as low as a traditional 1-detect pattern set and long path sensitization and SDD detection similar to or even better than n-detect or timing-aware pattern sets. The important design parameters and pattern-induced noises such as process variations,power supply noise (PSN) and crosstalk are taken into account in the methodologies presented. A diagnostic flow is also presented to identify whether the failure is ...

  11. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    Science.gov (United States)

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  12. Capsules with evolving brittleness to resist the preparation of self-healing concrete

    Directory of Open Access Journals (Sweden)

    Gruyaert, E.

    2016-09-01

    Full Text Available Capsules for self-healing concrete have to possess multifunctional properties and it would be an enormous advantage in the valorization process when they could also be mixed in. Therefore, we aimed to develop capsules with evolving brittleness. Capsules with high initial flexibility were prepared by adding a plasticizer to an ethyl cellulose matrix. During hardening of the concrete, the plasticizing agent should leach out to the moist environment yielding more brittle capsules which break upon crack appearance. The tested capsules could easily be mixed in during concrete production. However, incompatibility issues between the capsule wall and the inner polymeric healing agent appeared. Moreover, the capsules became insufficiently brittle and the bond strength to the cementitious matrix was too weak. Consequently, multilayer capsules were tested. These capsules had a high impact resistance to endure concrete mixing and were able to break upon crack formation.Las cápsulas para la auto-reparación del hormigón tienen que poseer propiedades multifuncionales. Una enorme ventaja en el proceso para su valorización se obtendría si aquellas pudieran resistir con éxito el mezclado. Por lo tanto, nos propusimos desarrollar cápsulas cuya fragilidad evoluciona. Cápsulas con una alta flexibilidad inicial se prepararon mediante la adición de un plastificante a una matriz de etil celulosa. Durante el endurecimiento del hormigón, el agente plastificante debe filtrarse hacia el medio ambiente húmedo produciendo cápsulas más frágiles que se rompen con el surgimiento de fisuras. Las cápsulas pudieron ser fácilmente mezcladas durante la producción de hormigón. Sin embargo, aparecieron problemas de incompatibilidad entre la pared de la cápsula y el agente de curación polimérico interior. Por otra parte, las cápsulas se comportaron insuficientemente frágiles y con una baja adherencia hacia la matriz cementicia. En consecuencia, se probaron las c

  13. On the origin of brittle fracture of entangled polymer solutions and melts

    DEFF Research Database (Denmark)

    Wagner, Manfred H.; Narimissa, Esmaeil; Huang, Qian

    2018-01-01

    A novel criterion for brittle fracture of entangled polymer liquids is presented: Crack initiation follows from rupture of primary C-C bonds, when the strain energy of an entanglement segment reaches the energy of the covalent bond. Thermal fluctuations lead to a short-time concentration...... of the strain energy on one C-C bond of the entanglement segment, and the chain ruptures. This limits the maximum achievable stretch of entanglement segments to a critical stretch of f(c)...

  14. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  15. Brittle and ductile rupture of 16MND5 steel. Irradiation effect

    International Nuclear Information System (INIS)

    Al Mundheri, M.; Soulat, P.; Pineau, A.

    1986-06-01

    Toughness tests have been made on 16MND5 steel (A508Cl3 steel) - before and after irradiation at 290 0 C (3.10 19 n/cm 2 , E > 1 MeV). It is shown that toughness is lowered following the irradiation and that it is a decreasing function of the thickness of the test pieces. In parallel, tests on three geometries of entailed specimens, prepared in the non-irradiated material, have been made at different temperatures to apply the methodology of local approach of ductile-brittle rupture [fr

  16. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  17. Shallow-water brittle stars (Echinodermata: Ophiuroidea) from Araçá Bay (Southeastern Brazil), with spatial distribution considerations.

    Science.gov (United States)

    Alitto, Renata A S; Bueno, Maristela L; Guilherme, Pablo D B; Di Domenico, Maikon; Christensen, Ana Beardsley; Borges, Michela

    2018-04-05

    The detailed study of arm ossicles, particularly the lateral arm plates, is providing valuable information in the elucidation of ophiuroid taxonomy. The present study describes in detail 16 species of brittle stars from Araçá Bay, Brazil. This information is used to construct the first interactive electronic key, providing a valuable resource for a broad range of researchers. Brittle stars families were divided into three groups based on their spatial distribution: i) infaunal species of intertidal and shallow subtidal belonging to Amphiuridae and Ophiactidae, ii) epizoic species belonging to Amphiuridae, Ophiactidae, and Ophiotrichidae and, iii) epifaunal species of the subtidal belonging to Ophiodermatidae and Hemieuryalidae. In the global context of recent revisions of ophiuroid taxonomy, the present work provides additional characters for use in future phylogenetic studies.

  18. Failure investigation of super heater tubes of coal fired power plant

    Directory of Open Access Journals (Sweden)

    A.K. Pramanick

    2017-10-01

    Full Text Available Cause of failure of two adjacent super heater tubes made of Cr-Mo steel of a coal based 60 MW thermal power plant has been portrayed in present investigation. Oxide deposits were found on internal surface of tubes. Deposits created significant resistance to heat transfer and resulted in undesirable rise in component temperature. This situation, in turn, aggravated the condition of gas side that was exposed to high temperature. Localized heating coarsened carbides as well as propelled precipitation of new brittle phases along grain boundary resulting in embrittlement of tube material. Continuous exposure to high temperature softened the tube material and tube wall was thinned down with bulging toward outside. Creep void formation along grain boundary was observed and steered intergranular cracking. All these effects contributed synergistically and tubes were failed ultimately due to overload under high Hoop stress.

  19. Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dandan, E-mail: dandan.wang@globalfoundries.com; Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong [Technology Development Department, GLOBALFOUNDRIES Singapore Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

    2014-05-15

    The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

  20. Influence of crackpath roughness on crackresistance in brittle materials

    International Nuclear Information System (INIS)

    Tzschichholz, F.; Pfuff, M.

    1991-01-01

    Using Griffith's criterion for brittle fracture we analyze the effect of an enhanced crack resistance due to scaleinvariant fracture topology. To this end a relation between crack resistance, resp. fracture toughness, and fractal dimension of the fracture surface is derived on the basis of a scaling ansatz for the 'true' crack length. It turns out that this relation depends on the extension of the surface scaling range, the resistance of an ideal smooth crack in the same material, and remaining non-scaling features of the crack morphology. In general, there is no simple exponential dependency of toughness on fractal dimension for different materials. The theoretical predictions of the paper are discussed on the background of experimental results given in the literature. (orig.) With 2 figs [de

  1. Enclosed mechanical seal face design for brittle materials copyright

    International Nuclear Information System (INIS)

    Marsi, J.A.

    1994-01-01

    Metal carbides are widely used as seal face material due to their hardness and wear resistance. Silicon carbide (SiC) has excellent performance as a seal face material, but it is relatively brittle and may break due to accidental overloads outside the boundary of normal operating conditions. In mechanical seals for nuclear primary coolant pumps, the shattered SiC pieces can get into the reactor system and cause serious damage. The conventional method of containing an SiC seal face is to shrink-fit it in a holder, which may lead the seal designer to contend with unwanted seal face deflections. This paper presents a successful, tested design which does not rely on shrink-fits. 5 refs., 9 figs., 4 tabs

  2. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  3. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  4. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  5. A streamlined failure mode and effects analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-01-01

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed

  6. A streamlined failure mode and effects analysis.

    Science.gov (United States)

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  7. A streamlined failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287 (United States)

    2014-06-15

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  8. Brittle-ductile gliding shear zone and its dynamic metallization in uranium deposit No. 3110

    International Nuclear Information System (INIS)

    Fang Shiyi.

    1990-01-01

    A preliminary study on the macroscopic geological structure, microstructures of plastic deformation rotary strain, structural geochemistry and zoning regularity of a brittle-ductile gliding shear zone in uranium deposit No. 3110 is made. Structural dynamic metallization of uranium caused by the strong shearing stress is discussed. It is pointed out that great attention must be paid to in further exploration

  9. Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation

    Science.gov (United States)

    Martí, J.; Soriano, C.; Dingwell, D. B.

    1999-12-01

    Magma fragmentation-the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma-is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood. Several theoretical and laboratory studies on magma degassing and fragmentation have produced a general picture of the sequence of events leading to the fragmentation of silicic magma. But there remains a debate over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice-where extreme bubble elongation is observed-is a well-preserved magmatic `strain marker' of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile-brittle transition and stresses exceed the magma's tensile strength.

  10. Improving the Quality of Recycled Fine Aggregate by Selective Removal of Brittle Defects

    OpenAIRE

    Ogawa, Hideo; Nawa, Toyoharu

    2012-01-01

    Crushed recycled aggregate contains particles with brittle defects such as cracks, pores, and voids. This study presents a method for improving the quality of recycled fine aggregate by selectively removing these defects. Fourteen recycled fine aggregates were manufactured by three types of processors including a jaw crusher, ball mill, and granulator. The influence of the recycled fine aggregate on the flowability and strength of the mortar was evaluated by multivariate analysis. The results...

  11. Response to 'Decades of delay in nuclear waste disposal - a failure to communicate'

    International Nuclear Information System (INIS)

    Nagasaki, S.

    2014-01-01

    In a recent opinion piece on the delay of nuclear waste disposal, Mr. H. Tammemagi asserts that it is important for a nuclear community to include in the Canadian public discourse the presence of natural radiation, comparisons between radioactive and non-radioactive wastes, and nuclear medicine. It is to the first two that I respond to, with the view that the lessons learnt from Japan have merit for addressing the issues in the Canadian context. (author)

  12. Management of Men with Prostate-specific Antigen Failure After Prostate Radiotherapy: The Case Against Early Androgen Deprivation.

    Science.gov (United States)

    Brand, Douglas; Parker, Chris

    2018-04-01

    In men with prostate-specific antigen failure after radical radiotherapy, androgen deprivation therapy should be delayed until the site of recurrence is known to allow consideration of curative treatment options, to delay androgen deprivation therapy-related morbidity, and to enable earlier access to abiraterone and docetaxel. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  13. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  14. Online failed fuel identification using delayed neutron detector signals in pool type reactors

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Sivaramakrishna, M.; Nagaraj, C.P.; Madhusoodanan, K.

    2011-01-01

    In todays world, nuclear reactors are at the forefront of modern day innovation and reactor designs are increasingly incorporating cutting edge technology. It is of utmost importance to detect failure or defects in any part of a nuclear reactor for healthy operation of reactor as well as the safety aspects of the environment. Despite careful fabrication and manufacturing of fuel pins, there is a chance of clad failure. After fuel pin clad rupture takes place, it allows fission products to enter in to sodium pool. There are some potential consequences due to this such as Total Instantaneous Blockage (TIB) of coolant and primary component contamination. At present, the failed fuel detection techniques such as cover gas monitoring (alarming the operator), delayed neutron detection (DND-automatic trip) and standalone failed fuel localization module (FFLM) are exercised in various reactors. The first technique is a quantitative measurement of increase in the cover gas activity background whereas DND system causes automatic trip on detecting certain level of activity during clad wet rupture. FFLM is subsequently used to identify the failed fuel subassembly. The later although accurate, but mainly suffers from downtime and reduction in power during identification process. The proposed scheme, reported in this paper, reduces the operation of FFLM by predicting the faulty sector and therefore reducing reactor down time and thermal shocks. The neutron evolution pattern gets modulated because fission products are the delay neutron precursors. When they travel along with coolant to Intermediate heat Exchangers, experienced three effects i.e. delay; decay and dilution which make the neutron pulse frequency vary depending on the location of failed fuel sub assembly. This paper discusses the method that is followed to study the frequency domain properties, so that it is possible to detect exact fuel subassembly failure online, before the reactor automatically trips. (author)

  15. Prevention of delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Coleman, C.E.; Ambler, J.F.R.

    1987-01-01

    Zirconium alloys are susceptible to a mechanism for crack initiation and propagation called delayed hydride cracking. From a review of component failures and experimental results, we have developed the requirements for preventing this cracking. The important parameters for cracking are hydrogen concentration, flaws, and stress; each should be minimized. At the design and construction stages hydrogen pickup has to be controlled, quality assurance needs to be at a high enough level to ensure the absence of flaws, and residual stresses must be eliminated by careful fabrication and heat treatment

  16. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    Science.gov (United States)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  17. KrF excimer laser precision machining of hard and brittle ceramic biomaterials

    International Nuclear Information System (INIS)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-01-01

    KrF excimer laser precision machining of porous hard–brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse ⋅ J cm −2 ) and 0.048 µm/(pulse ⋅ J cm −2 ), while their threshold fluences are individually 0.72 and 1.5 J cm −2 . The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard–brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. (paper)

  18. 10 CFR 950.14 - Standby Support Contract: Covered events, exclusions, covered delay and covered cost provisions.

    Science.gov (United States)

    2010-01-01

    ... construction problems; (ii) Labor-management disputes; (iii) The sponsor's failure to perform inspections... of the advanced nuclear facility. (3) Normal business risks, including but not limited to the...) Supplier or subcontractor delays in performance; (vi) Litigation, whether initiated by the sponsor or...

  19. Reconstruction of the limit cycles by the delays method

    International Nuclear Information System (INIS)

    Castillo D, R.; Ortiz V, J.; Calleros M, G.

    2003-01-01

    The boiling water reactors (BWRs) are designed for usually to operate in a stable-lineal regime. In a limit cycle the behavior of the one system is no lineal-stable. In a BWR, instabilities of nuclear- thermohydraulics nature can take the reactor to a limit cycle. The limit cycles should to be avoided since the oscillations of power can cause thermal fatigue to the fuel and/or shroud. In this work the employment of the delays method is analyzed for its application in the detection of limit cycles in a nuclear power plant. The foundations of the method and it application to power signals to different operation conditions are presented. The analyzed signals are: to steady state, nuclear-thermohydraulic instability, a non linear transitory and, finally, failure of a controller plant . Among the main results it was found that the delays method can be applied to detect limit cycles in the power monitors of the BWR reactors. It was also found that the first zero of the autocorrelation function is an appropriate approach to select the delay in the detection of limit cycles, for the analyzed cases. (Author)

  20. Attention-deficit/hyperactivity disorder, delay discounting, and risky financial behaviors: A preliminary analysis of self-report data.

    Science.gov (United States)

    Beauchaine, Theodore P; Ben-David, Itzhak; Sela, Aner

    2017-01-01

    Delay discounting-often referred to as hyperbolic discounting in the financial literature-is defined by a consistent preference for smaller, immediate rewards over larger, delayed rewards, and by failure of future consequences to curtail current consummatory behaviors. Previous research demonstrates (1) excessive delay discounting among individuals with attention-deficit/hyperactivity disorder (ADHD), (2) common neural substrates of delay discounting and hyperactive-impulsive symptoms of ADHD, and (3) associations between delay discounting and both debt burden and high interest rate borrowing. This study extends prior research by examining associations between ADHD symptoms, delay discounting, and an array of previously unevaluated financial outcomes among 544 individuals (mean age 35 years). Controlling for age, income, sex, education, and substance use, ADHD symptoms were associated with delay discounting, late credit card payments, credit card balances, use of pawn services, personal debt, and employment histories (less time spent at more jobs). Consistent with neural models of reward processing and associative learning, more of these relations were attributable to hyperactive-impulsive symptoms than inattentive symptoms. Implications for financial decision-making and directions for future research are discussed.

  1. Investigation of the brittle fracture behavior of intermetallic Ti-Al-Si-Nd-alloys

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.

    1995-01-01

    The object of this paper is the fracture behaviour of three Ti-Al-Si-Nb alloys. Fracture mechanical data are experimentally determined and their statistical properties are investigated. To describe the fracture process of disordered heterogeneous brittle materials a statistical model was developed, based on damage mechanics. With the aid of this model it was possible to attribute the fracture behaviour, the fracture mechanical data and their statistical properties to the microstructure of the materials studied. (orig.) [de

  2. Contact mechanics at nanometric scale using nanoindentation technique for brittle and ductile materials.

    Science.gov (United States)

    Roa, J J; Rayon, E; Morales, M; Segarra, M

    2012-06-01

    In the last years, Nanoindentation or Instrumented Indentation Technique has become a powerful tool to study the mechanical properties at micro/nanometric scale (commonly known as hardness, elastic modulus and the stress-strain curve). In this review, the different contact mechanisms (elastic and elasto-plastic) are discussed, the recent patents for each mechanism (elastic and elasto-plastic) are summarized in detail, and the basic equations employed to know the mechanical behaviour for brittle and ductile materials are described.

  3. Scrub typhus causing neonatal hepatitis with acute liver failure-A case series.

    Science.gov (United States)

    Vajpayee, Shailja; Gupta, R K; Gupta, M L

    2017-05-01

    Neonatal hepatitis with acute liver failure due to varied etiology including various infections is reported in the past. Scrub typhus as a cause of neonatal hepatitis has rarely been reported in literature. A high index of clinical suspicion is required for early diagnosis and timely treatment. Severity and prognosis of the disease varies widely because several different strains of Orientia tsutsugamushi exist with different virulence. Delayed diagnosis can result in complication and significant morbidity and mortality. Here, we report three cases of neonatal hepatitis with acute liver failure caused by scrub typhus to increase awareness.

  4. Dynamic fracture initiation in brittle materials under combined mode I/II loading

    International Nuclear Information System (INIS)

    Nakano, M.; Kishida, K.; Yamauchi, Y.; Sogabe, Y.

    1994-01-01

    A new test method has been developed to measure the resistance of dynamic fracture initiation in brittle materials under combined mode I/II loadings. The Brazilian disks with center-cracks have been fractured under oblique impact loadings in diametral-compression. The dynamic stress intensity factors of mode I and II are evaluated from the superposition integrals of the step response functions for the cracked disk. The experimental results are presented to elucidate the influence of loading rate on the combined mode fracture toughness for ceramics and glasses. (orig.)

  5. Connection between twinning and brittle fracture in Fe-Cr-Co-Mo crystals

    International Nuclear Information System (INIS)

    Kirillov, V.A.; Chumlyakov, Yu.I.; Korotaev, A.D.; Aparova, L.A.

    1989-01-01

    Plasticity dependence on crystal orientation, on deformation temperature and structure state of alloy is investigated in Fe-28 % Cr-10 % Co-2 % Mo (at. %) monocrystals. Isostructure decomposition results in increase of critical shearing stresses τ cr , in change of deformation mechanism from slipping into twinning and abrupt reduction of plasticity. Brittleness - ductility transition is detected in high-stable structure states τ cr >280 MPa. Explanation of plasticity abrupt reduction of high-stable crystals using estimation of change of deformation mechanism and of deforming stress high level is given

  6. Experimental research on HEL and failure properties of alumina under impact loading

    Directory of Open Access Journals (Sweden)

    Xiao-wei Feng

    2016-06-01

    Full Text Available A series of plate impact experiments on alumina was conducted using a light gas gun in order to further investigate Hugoniot elastic limit (HEL and failure properties of alumina under shock compression. The velocity interferometer system for any reflector (VISAR was used to record the rear-free surface velocity histories of the alumina samples. According to the experimental results, the HELs of tested alumina samples with different thicknesses were measured, and the decay phenomenon of elastic wave in shocked alumina was studied. A phenomenological expression between HEL and thickness of sample was presented, and the causes of the decay phenomenon were discussed. The propagation of failure wave in shocked alumina was probed. The velocity and delayed time of failure wave propagation were obtained. The physical mechanism of the generation and propagation of failure was further discussed.

  7. Optimal Joint Expected Delay Forwarding in Delay Tolerant Networks

    OpenAIRE

    Jia Xu; Xin Feng; Wen Jun Yang; Ru Chuan Wang; Bing Qing Han

    2013-01-01

    Multicopy forwarding schemes have been employed in delay tolerant network (DTN) to improve the delivery delay and delivery rate. Much effort has been focused on reducing the routing cost while retaining high performance. This paper aims to provide an optimal joint expected delay forwarding (OJEDF) protocol which minimizes the expected delay while satisfying a certain constant on the number of forwardings per message. We propose a comprehensive forwarding metric called joint expected delay (JE...

  8. The results of questionnaire on quantitative assessment of 123I-metaiodobenzylguanidine myocardial scintigraphy in heart failure

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Sugishita, Yasurou; Sasaki, Yasuhito.

    1997-01-01

    This study was done by working group under the cooperation between Japanese Society of Nuclear Medicine and Japanese Circulation Society. We evaluated the usefulness of quantitative assessment of 123 I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy in heart failure by the results of questionnaire. Forty-nine (72.1%) of 68 selected institutions participated in this study. The incidence of MIBG myocardial scintigraphy used in heart failure was 41.1%. The imaging protocol was mostly done by both planar and SPECT at 15 min and 3.6 hr after intravenous injection of 111 MBq of MIBG. The quantitative assessment was mostly done by heart/mediastinum (H/M) ratio and washout rate analysis based on planar imaging. The mean normal value of H/M ratio were 2.34±0.36, and 2.49±0.40, at early and delayed images, respectively. The normal value of washout rate was 27.74±5.34%. On the other hand, those of H/M ratio in heart failure were 1.87±0.27, and 1.75±0.24, at early and delayed images, respectively. That of washout rate was 42.30±6.75%. These parameters were very useful for the evaluation of heart failure. In conclusion, MIBG myocardial scintigraphy was widely used for not only early detection and severity assessment, but also indication for therapy and prognosis evaluation in heart failure patients. (author)

  9. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Directory of Open Access Journals (Sweden)

    E. Ghazvinian

    2014-12-01

    Full Text Available A grain-based distinct element model featuring three-dimensional (3D Voronoi tessellations (random poly-crystals is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric rocks.

  10. Application of Machine Learning for Dragline Failure Prediction

    Directory of Open Access Journals (Sweden)

    Taghizadeh Amir

    2017-01-01

    Full Text Available Overburden stripping in open cast coal mines is extensively carried out by walking draglines. Draglines’ unavailability and unexpected failures result in delayed productions and increased maintenance and operating costs. Therefore, achieving high availability of draglines plays a crucial role for increasing economic feasibility of mining projects. Applications of methodologies which can forecast the failure type of dragline based on the available failure data not only help to reduce the maintenance and operating costs but also increase the availability and the production rate. In this study, Machine Learning approaches have been applied for data which has been gathered from an operating coal mine in Turkey. The study methodology consists of three algorithms as: i implementation of K-Nearest Neighbors, ii implementation of Multi-Layer Perceptron, and iii implementation of Radial Basis Function. The algorithms have been utilized for predicting the draglines’ failure types. In this sense, the input data, which are mean time-to-failure, and the output data, failure types, have been fed to the algorithms. The regression analysis of methodologies have been compared and showed the K- Nearest Neighbors has a higher rate of regression which is around 70 percent. Thus, the K-Nearest Neighbor algorithm can be applied in order to preventive components replacement which causes to minimized preventive and corrective cost parameters. The accurate prediction of failure type, indeed, causes to optimized number of inspections. The novelty of this study is application of machine learning approaches in draglines’ reliability subject for first time.

  11. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    International Nuclear Information System (INIS)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-01-01

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.

  12. Getting around when you're round: quantitative analysis of the locomotion of the blunt-spined brittle star, Ophiocoma echinata.

    Science.gov (United States)

    Astley, Henry C

    2012-06-01

    Brittle stars (Ophiuroidea, Echinodermata) are pentaradially symmetrical echinoderms that use five multi-jointed limbs to locomote along the seafloor. Prior qualitative descriptions have claimed coordinated movements of the limbs in a manner similar to tetrapod vertebrates, but this has not been evaluated quantitatively. It is uncertain whether the ring-shaped nervous system, which lacks an anatomically defined anterior, is capable of generating rhythmic coordinated movements of multiple limbs. This study tested whether brittle stars possess distinct locomotor modes with strong inter-limb coordination as seen in limbed animals in other phyla (e.g. tetrapods and arthropods), or instead move each limb independently according to local sensory feedback. Limb tips and the body disk were digitized for 56 cycles from 13 individuals moving across sand. Despite their pentaradial anatomy, all individuals were functionally bilateral, moving along the axis of a central limb via synchronous motions of contralateral limbs (±~13% phase lag). Two locomotor modes were observed, distinguishable mainly by whether the central limb was directed forwards or backwards. Turning was accomplished without rotation of the body disk by defining a different limb as the center limb and shifting other limb identities correspondingly, and then continuing locomotion in the direction of the newly defined anterior. These observations support the hypothesis that, in spite of their radial body plan, brittle stars employ coordinated, bilaterally symmetrical locomotion.

  13. Intermittent single point machining of brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E

    1999-12-07

    A series of tests were undertaken to explore diamond tool wear in the intermittent cutting of brittle materials, specifically silicon. The tests were carried out on a plain way No. 3 Moore machine base equipped as a flycutter with a motorized Professional Instruments 4R air bearing spindle. The diamond tools were made by Edge Technologies with known crystal orientation and composition and sharpened with either an abrasive or chemical process, depending on the individual test. The flycutting machine configuration allowed precise control over the angle at which the tool engages the anisotropic silicon workpiece. In contrast, the crystallographic orientation of the silicon workpiece changes continuously during on-axis turning. As a result, it is possible to flycut a workpiece in cutting directions that are known to be easy or hard. All cuts were run in the 100 plane of the silicon, with a slight angle deliberately introduced to ensure that the 100 plane is engaged in ''up-cutting'' which lengthens the tool life. A Kistler 9256 dynamometer was used to measure the cutting forces in order to gain insight into the material removal process and tool wear during testing. The dynamometer provides high bandwidth force measurement with milli-Newton resolution and good thermal stability. After many successive passes over the workpiece, it was observed that the cutting forces grow at a rate that is roughly proportional to the degradation of the workpiece surface finish. The exact relationship between cutting force growth and surface finish degradation was not quantified because of the problems associated with measuring surface finish in situ. However, a series of witness marks were made during testing in an aluminum sample that clearly show the development of wear flats on the tool nose profile as the forces grow and the surface finish worsens. The test results show that workpieces requiring on the order of two miles of track length can be made with low tool

  14. Photobiomodulation delays the onset of skeletal muscle fatigue in a dose-dependent manner.

    Science.gov (United States)

    Larkin-Kaiser, Kelly A; Borsa, Paul A; Baweja, Harsimran S; Moore, Molly A; Tillman, Mark D; George, Steven Z; Christou, Evangelos A

    2016-09-01

    Photobiomodulation (PBM) therapy has been implicated as an effective ergogenic aid to delay the onset of muscle fatigue. The purpose of this study was to examine the dose-response ergogenic properties of PBM therapy and its ability to prolong time to task failure by enhancing muscle activity and delaying the onset of muscle fatigue using a static positioning task. Nine participants (24.3 ± 4.9 years) received three doses of near-infrared (NIR) light therapy randomly on three separate sessions (sham, 240, and 480 J). For the positioning task, participants held a 30 % one-repetition maximum (1-RM) load using the index finger until volitional fatigue. Surface electromyography (sEMG) of the first dorsal interosseous muscle was recorded for the length of the positioning task. Outcomes included time to task failure (TTF), muscle fatigue, movement accuracy, motor output variability, and muscle activity (sEMG). The 240-J dose significantly extended TTF by 26 % (p = 0.032) compared with the sham dose. TTF for the 240-J dose was strongly associated with a decrease in muscle fatigue (R (2) = 0.54, p = 0.024). Our findings show that a 240-J dose of NIR light therapy is efficacious in delaying the onset and extent of muscle fatigue during submaximal isometric positioning tasks. Our findings suggest that NIR light therapy may be used as an ergogenic aid during functional tasks or post-injury rehabilitation.

  15. Scanning electron microscopy observations of failures of implant overdenture bars: a case series report.

    Science.gov (United States)

    Waddell, J Neil; Payne, Alan G T; Swain, Michael V; Kieser, Jules A

    2010-03-01

    Soldered or cast bars are used as a standard of care in attachment systems supporting maxillary and mandibular implant overdentures. When failures of these bars occur, currently there is a lack of evidence in relation to their specific etiology, location, or nature. To investigate the failure process of a case series of six failed soldered bars, four intact soldered bars, and one intact cast milled bar, which had been supporting implant overdentures. A total of 11 different overdenture bars were removed from patients with different configuration of opposing arches. A failed bar (FB) group (n = 6) had failed soldered overdenture bars, which were recovered from patients following up to 2 years of wear before requiring prosthodontic maintenance and repair. An intact bar (IB) group (n = 5) had both soldered bars and a single cast milled bar, which had been worn by patients for 2 to 5 years prior to receiving other aspects of prosthodontic maintenance. All bars were examined using scanning electron microscopy to establish the possible mode of failure (FB) or to identify evidence of potential failure in the future (IB). Evidence of a progressive failure mode of corrosion fatigue and creep were observed on all the FB and IB usually around the solder areas and nonoxidizing gold cylinder. Fatigue and creep were also observed in all the IB. Where the level of corrosion was substantial, there was no evidence of wear from the matrices of the attachment system. Evidence of an instantaneous failure mode, ductile and brittle overload, was observed on the fracture surfaces of all the FB, within the solder and the nonoxidizing gold cylinders, at the solder/cylinder interface. Corrosion, followed by corrosion fatigue, appears to be a key factor in the onset of the failure process for overdenture bars in this case series of both maxillary and mandibular overdentures. Limited sample size and lack of standardization identify trends only but prevent broad interpretation of the findings.

  16. A Big Data Analysis Approach for Rail Failure Risk Assessment.

    Science.gov (United States)

    Jamshidi, Ali; Faghih-Roohi, Shahrzad; Hajizadeh, Siamak; Núñez, Alfredo; Babuska, Robert; Dollevoet, Rolf; Li, Zili; De Schutter, Bart

    2017-08-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by analyzing a type of rail surface defect called squats that are detected automatically among the huge number of records from video cameras. We propose an image processing approach for automatic detection of squats, especially severe types that are prone to rail breaks. We measure the visual length of the squats and use them to model the failure risk. For the assessment of the rail failure risk, we estimate the probability of rail failure based on the growth of squats. Moreover, we perform severity and crack growth analyses to consider the impact of rail traffic loads on defects in three different growth scenarios. The failure risk estimations are provided for several samples of squats with different crack growth lengths on a busy rail track of the Dutch railway network. The results illustrate the practicality and efficiency of the proposed approach. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  17. An investigation into factors causing delays in highway construction projects in iraq

    Directory of Open Access Journals (Sweden)

    Al Hadithi Bevian I.

    2018-01-01

    Full Text Available The highways sector is a prominent sector in any country’s economy because of its impact on the well-being and safety of its citizens. The transport sector has an impact on social improvement and investment in the nation on the illustration that allows access to markets, production, jobs, health and other social services.This study investigates the causes of delay of highway construction projects in Iraq, which is frequent occurrence. Data was collected using questionnaires which were distributed to the key project participants; contractors, owners and consultants. The data were analyzed using the Frequency index and Spearman‟s rank correlation. The top seven causes of project delays were observed to be political decisions and political realities, the economic crisis of the country, delays in materials test of and obtaining the results, delay in monthly payments of contractor, failure treatment of the delays when implementing the project, the effects of weather, rain and high temperatures, delay in activities during implementation. It is recommended to establish an appropriate number of laboratories and adopt the field laboratory mechanism for the external and remote screens. Owners should give special attention to pay progress payment to contractors on time. The competent contractor who has prior experience in implementing the high projects should be selected. The contractor must take into consideration the weather conditions when preparing the time plan necessary to implement the project. The project management should identify these reasons and deal with them quickly in order to reduce the total delay of the project.

  18. An Experimental Study of the Fracture Coalescence Behaviour of Brittle Sandstone Specimens Containing Three Fissures

    Science.gov (United States)

    Yang, S. Q.; Yang, D. S.; Jing, H. W.; Li, Y. H.; Wang, S. Y.

    2012-07-01

    To analyse the fracture coalescence behaviour of rock, rectangular prismatic sandstone specimens (80 × 160 × 30 mm in size) containing three fissures were tested under uniaxial compression. The strength and deformation behaviours of the specimens are first analysed by investigating the effects of the ligament angle β2 on the peak strength, peak strain and crack initiation stress of the specimens. To confirm the sequence of crack coalescence, a photographic monitoring technique is used throughout the entire period of deformation. Based on the results, the relationship between the real-time crack coalescence process and the axial stress-strain curve of brittle sandstone specimens is also developed, and this relationship can be used to evaluate the macroscopic deformation characteristics of pre-cracked rock. The equivalent strain evolution fields of the specimen, with α = β1 = 45° and β2 = 90°, are obtained using the digital image correlation technique and show good agreement with the experimental results of pre-cracked brittle sandstone. These experimental results are expected to improve the understanding of fracture mechanisms and be used in rock engineering with intermittent structures, such as deep underground excavated tunnels.

  19. Fracture Mechanics Models for Brittle Failure of Bottom Rails due to Uplift in Timber Frame Shear Walls

    Directory of Open Access Journals (Sweden)

    Joergen L. Jensen

    2016-01-01

    Full Text Available In partially anchored timber frame shear walls, hold-down devices are not provided; hence the uplift forces are transferred by the fasteners of the sheathing-to-framing joints into the bottom rail and via anchor bolts from the bottom rail into the foundation. Since the force in the anchor bolts and the sheathing-to-framing joints do not act in the same vertical plane, the bottom rail is subjected to tensile stresses perpendicular to the grain and splitting of the bottom rail may occur. This paper presents simple analytical models based on fracture mechanics for the analysis of such bottom rails. An existing model is reviewed and several alternative models are derived and compared qualitatively and with experimental data. It is concluded that several of the fracture mechanics models lead to failure load predictions which seem in sufficiently good agreement with the experimental results to justify their application in practical design.

  20. Stability in a fiber bundle model: Existence of strong links and the effect of disorder

    Science.gov (United States)

    Roy, Subhadeep

    2018-05-01

    The present paper deals with a fiber bundle model which consists of a fraction α of infinitely strong fibers. The inclusion of such an unbreakable fraction has been proven to affect the failure process in early studies, especially around a critical value αc. The present work has a twofold purpose: (i) a study of failure abruptness, mainly the brittle to quasibrittle transition point with varying α and (ii) variation of αc as we change the strength of disorder introduced in the model. The brittle to quasibrittle transition is confirmed from the failure abruptness. On the other hand, the αc is obtained from the knowledge of failure abruptness as well as the statistics of avalanches. It is observed that the brittle to quasibrittle transition point scales to lower values, suggesting more quasi-brittle-like continuous failure when α is increased. At the same time, the bundle becomes stronger as there are larger numbers of strong links to support the external stress. High α in a highly disordered bundle leads to an ideal situation where the bundle strength, as well as the predictability in failure process is very high. Also, the critical fraction αc, required to make the model deviate from the conventional results, increases with decreasing strength of disorder. The analytical expression for αc shows good agreement with the numerical results. Finally, the findings in the paper are compared with previous results and real-life applications of composite materials.

  1. Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability

    Directory of Open Access Journals (Sweden)

    Alexandra Krounis

    2015-12-01

    Full Text Available The limit equilibrium method (LEM is widely used for sliding stability evaluation of concrete gravity dams. Failure is then commonly assumed to occur along the entire sliding surface simultaneously. However, the brittle behaviour of bonded concrete-rock contacts, in combination with the varying stress over the interface, implies that the failure of bonded dam-foundation interfaces occurs progressively. In addition, the spatial variation in cohesion may introduce weak spots where failure can be initiated. Nonetheless, the combined effect of brittle failure and spatial variation in cohesion on the overall shear strength of the interface has not been studied previously. In this paper, numerical analyses are used to investigate the effect of brittle failure in combination with spatial variation in cohesion that is taken into account by random fields with different correlation lengths. The study concludes that a possible existence of weak spots along the interface has to be considered since it significantly reduces the overall shear strength of the interface, and implications for doing so are discussed.

  2. Practical guidance on heart failure diagnosis and management in primary care : Recent EPCCS recommendations

    NARCIS (Netherlands)

    Taylor, Clare J; Rutten, Frans H.; Brouwer, Judith R; Hobbs, F. D.Richard

    2017-01-01

    Heart failure (HF) is a common and costly clinical syndrome, associated with significant morbidity and reduced life expectancy, affecting around 1–2% of adults in developed countries.1 Timely diagnosis is important to optimise evidence-based treatment opportunities, which delay mortality and improve

  3. The results of questionnaire on quantitative assessment of {sup 123}I-metaiodobenzylguanidine myocardial scintigraphy in heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko [Osaka Univ., Suita (Japan). Medical school; Sugishita, Yasurou; Sasaki, Yasuhito

    1997-12-01

    This study was done by working group under the cooperation between Japanese Society of Nuclear Medicine and Japanese Circulation Society. We evaluated the usefulness of quantitative assessment of {sup 123}I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy in heart failure by the results of questionnaire. Forty-nine (72.1%) of 68 selected institutions participated in this study. The incidence of MIBG myocardial scintigraphy used in heart failure was 41.1%. The imaging protocol was mostly done by both planar and SPECT at 15 min and 3.6 hr after intravenous injection of 111 MBq of MIBG. The quantitative assessment was mostly done by heart/mediastinum (H/M) ratio and washout rate analysis based on planar imaging. The mean normal value of H/M ratio were 2.34{+-}0.36, and 2.49{+-}0.40, at early and delayed images, respectively. The normal value of washout rate was 27.74{+-}5.34%. On the other hand, those of H/M ratio in heart failure were 1.87{+-}0.27, and 1.75{+-}0.24, at early and delayed images, respectively. That of washout rate was 42.30{+-}6.75%. These parameters were very useful for the evaluation of heart failure. In conclusion, MIBG myocardial scintigraphy was widely used for not only early detection and severity assessment, but also indication for therapy and prognosis evaluation in heart failure patients. (author)

  4. Semi-brittle flow of granitoid fault rocks in experiments

    Science.gov (United States)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée.; Drury, Martyn

    2016-03-01

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have performed an experimental study on synthetic granitoid fault rocks exploring a broad parameter space (temperature, T = 300, 400, 500, and 600°C, confining pressure, Pc ≈ 300, 500, 1000, and 1500 MPa, shear strain rate, γṡ ≈ 10-3, 10-4, 10-5, and 10-6 s-1, to finite shear strains, γ = 0-5). The experiments have been carried out using a granular material with grain size smaller than 200 µm with a little H2O added (0.2 wt %). Only two experiments (performed at the fastest strain rates and lowest temperatures) have failed abruptly right after reaching peak strength (τ ~ 1400 MPa). All other samples reach high shear stresses (τ ~ 570-1600 MPa) then weaken slightly (by Δτ ~ 10-190 MPa) and continue to deform at a more or less steady state stress level. Clear temperature dependence and a weak strain rate dependence of the peak as well as steady state stress levels are observed. In order to express this relationship, the strain rate-stress sensitivity has been fit with a stress exponent, assuming γ˙ ∝ τn and yields high stress exponents (n ≈ 10-140), which decrease with increasing temperature. The microstructures show widespread comminution, strain partitioning, and localization into slip zones. The slip zones contain at first nanocrystalline and partly amorphous material. Later, during continued deformation, fully amorphous material develops in some of the slip zones. Despite the mechanical steady state conditions, the fabrics in the slip zones and outside continue to evolve and do not reach a steady state microstructure below γ = 5. Within the slip zones, the fault rock material progressively transforms from a crystalline solid to an amorphous material. We

  5. Structural signature of a brittle-to-ductile transition in self-assembled networks.

    Science.gov (United States)

    Ramos, Laurence; Laperrousaz, Arnaud; Dieudonné, Philippe; Ligoure, Christian

    2011-09-30

    We study the nonlinear rheology of a novel class of transient networks, made of surfactant micelles of tunable morphology reversibly linked by block copolymers. We couple rheology and time-resolved structural measurements, using synchrotron radiation, to characterize the highly nonlinear viscoelastic regime. We propose the fluctuations of the degree of alignment of the micelles under shear as a probe to identify a fracture process. We show a clear signature of a brittle-to-ductile transition in transient gels, as the morphology of the micelles varies, and provide a parallel between the fracture of solids and the fracture under shear of viscoelastic fluids.

  6. Elimination of the risk of brittle fracture in thick welded pressure vessels

    International Nuclear Information System (INIS)

    Leymonie, C.; Genevray, R.

    1975-01-01

    The builder of welded pressure vessels faces the risk of brittle fracture throughout fabrication. He is forced to observe many precautions, in selecting the following: materials possessing good impact strength in the service conditions of the vessels; filler materials preventing transverse cracking of the welds: welding parameters preventing cold cracking. Fracture mechanics establish the relationships between material characteristics and critical defect size for a given set of service conditions. These principles must be expanded to increase the safety of thick pressure vessels. However, in order to derive maximum benefit, a major effort must be applied to increasing the effectiveness of nondestructive testing [fr

  7. Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback" [Chaos 18, 033122 (2008)].

    Science.gov (United States)

    Zhang, Yinping; Wang, Qing-Guo

    2008-12-01

    In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.

  8. Attention-deficit/hyperactivity disorder, delay discounting, and risky financial behaviors: A preliminary analysis of self-report data.

    Directory of Open Access Journals (Sweden)

    Theodore P Beauchaine

    Full Text Available Delay discounting-often referred to as hyperbolic discounting in the financial literature-is defined by a consistent preference for smaller, immediate rewards over larger, delayed rewards, and by failure of future consequences to curtail current consummatory behaviors. Previous research demonstrates (1 excessive delay discounting among individuals with attention-deficit/hyperactivity disorder (ADHD, (2 common neural substrates of delay discounting and hyperactive-impulsive symptoms of ADHD, and (3 associations between delay discounting and both debt burden and high interest rate borrowing. This study extends prior research by examining associations between ADHD symptoms, delay discounting, and an array of previously unevaluated financial outcomes among 544 individuals (mean age 35 years. Controlling for age, income, sex, education, and substance use, ADHD symptoms were associated with delay discounting, late credit card payments, credit card balances, use of pawn services, personal debt, and employment histories (less time spent at more jobs. Consistent with neural models of reward processing and associative learning, more of these relations were attributable to hyperactive-impulsive symptoms than inattentive symptoms. Implications for financial decision-making and directions for future research are discussed.

  9. Two Contrasting Failure Modes of Enteric Coated Beads.

    Science.gov (United States)

    Shi, Galen H; Dong, Xia; Lytle, Michelle; Kemp, Craig A J; Behme, Robert J; Hinds, Jeremy; Xiao, Zhicheng

    2018-04-09

    This study aimed to elucidate the mechanisms and kinetics of coating failure for enteric coated beads exposed to high-humidity conditions at different storage temperatures. Enteric coated beads were placed on high-humidity conditions (75 to 98% relative humidity (RH)) in the temperature range of 5 to 40°C. These stability samples of beads were tested for acid dissolution and water activity and also analyzed with SEM, X-ray CT, and DMA. Exposure of enteric coated beads to high humidity led to increased gastric release of drug which eventually failed the dissolution specification. SEM showed visible cracks on the surface of beads exposed to 5°C/high humidity and fusion of enteric beads into agglomerates at 40°C/high humidity. In a non-destructive time elapse study, X-ray CT demonstrated swelling of microcrystalline cellulose cores, crack initiation, and propagation through the API layer within days under 5°C/98% RH storage conditions and ultimately fracture through the enteric coating. DMA data showed a marked reduction in T g of the enteric coating materials after exposure to humidity. At 5°C/high humidity, the hygroscopic microcrystalline cellulose core absorbed moisture leading to core swelling and consequent fracture through the brittle API and enteric layers. At 40°C (high humidity) which is above the T g of the enteric polymer, enteric coated beads coalesced into agglomerates due to melt flow of the enteric coating. We believe it is the first report on two distinct failure models of enteric coated dosage forms.

  10. Stability and delay sensitivity of neutral fractional-delay systems.

    Science.gov (United States)

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.

  11. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  12. High mortality during tuberculosis treatment does not indicate long diagnostic delays in Vietnam: a cohort study

    Directory of Open Access Journals (Sweden)

    Sy Dinh N

    2007-08-01

    Full Text Available Abstract Background Delay in tuberculosis diagnosis and treatment initiation may increase disease severity and mortality. In evaluations of tuberculosis control programmes high fatality rates during tuberculosis treatment, are used as an indicator of long delays in low HIV-prevalence settings. However, data for this presumed association between delay and fatality are lacking. We assessed the association between diagnostic delay and mortality of new smear-positive pulmonary tuberculosis patients in Vietnam. Methods Follow-up of a patient cohort included in a survey of diagnostic delay in 70 randomly selected districts. Data on diagnosis and treatment were extracted from routine registers. Patients who had died during the course of treatment were compared to those with reported cure, completed treatment or failure (survivors. Results Complete data were available for 1881/2093 (89.9% patients, of whom 82 (4.4% had died. Fatality was 4.5% for patients with ≤ 4 weeks delay, 5.0% for 5- ≤ 8 weeks delay (aOR 1.11, 95%CI 0.67–1.84 and 3.2% for > 9 weeks delay (aOR 0.69, 95%CI 0.37–1.30. Fatality tended to decline with increasing delay but this was not significant. Fatality was not associated with median diagnostic delay at district level (Spearman's rho = -0.08, P = 0.5. Conclusion Diagnostic delay is not associated with treatment mortality in Vietnam at individual nor district level, suggesting that high case fatality should not be used as an indicator of long diagnostic delay in national tuberculosis programmes.

  13. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception.

    Directory of Open Access Journals (Sweden)

    Jérôme Delroisse

    Full Text Available Next generation sequencing (NGS technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric and mammal (ciliary classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic

  14. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    Science.gov (United States)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the

  15. Analysis of failure modes in multislice computed tomography during primary trauma survey; Analyse von Verzoegerungen der Schockraumdiagnostik bei Einsatz der Mehrschicht-Spiral-Computertomografie

    Energy Technology Data Exchange (ETDEWEB)

    Siebers, C.; Stegmaier, J.; Kirchhoff, C.; Kanz, K.G. [Chirurgische Klinik, Klinikum der Univ. Muenchen (Germany); Wirth, S.; Koerner, M.; Pfeifer, K.J. [Inst. fuer Klinische Radiologie, Klinikum der Univ. Muenchen (Germany); Kay, M.V. [Plansafe GmbH, Muenchen (Germany)

    2008-08-15

    Purpose: in the case of major trauma, immediate recognition and treatment of life-threatening conditions are essential. An increasing number of European trauma centers use MSCT during the primary trauma survey due to its high diagnostic precision and speed. However, there is currently little empirical data about failures in this process to practice quality assurance. The aim of this study was to evaluate this process under operating resuscitation conditions and to identify failure modes that caused delays in completion. Materials and methods: an independent study monitor documented the course of trauma room treatment during a 10-month period. The inclusion criteria were patients who were admitted directly from the accident scene and the study monitor was present at the time of admission. Results: according to our ATLS-based trauma algorithm whole-body CT (WBCT) consists of non-contrast head CT (CCT) and contrast-enhanced trunk CT (TCT). 57 trauma patients receiving 45 WBCT. 5 single CCT and 4 single TCT studies were evaluated. After initial resuscitation, CCT was obtained within 17 min of trauma room admission (IQR 13.0 - 20.0). In 20% (95%CI 9 - 31%) of the cases, a CCT delay of median 5.0 min (IQR 3.8 - 8.0) was observed caused by e.g. earings, piercings and ECG cables in the scan field or intoxicated patients. Contrast-enhanced TCT was performed after 23.0 min (IQR 19.0 - 27.0). Due to preventable errors 12 of the 49 TCT studies were delayed (25%95%CI 12 - 37%) for 5 min (IQR 3.0 - 8.0). Conclusion: under ''front line'' conditions every fifth CCT and every fourth TCT study was completed with a median delay of 5 min. An independent process analysis revealed that unpreventable delays were due to uncooperative patients or system failure. Preventable delays were due to errors such as short intravenous lines or deviation from trauma room algorithms. Preventable delays could be avoided by addressing human and technical aspects such as revising

  16. Evidence of reversible temper brittleness in tension tests at several temperatures

    International Nuclear Information System (INIS)

    Quadros, N.F.de.

    1976-01-01

    Tension tests were conduced at several temperatures and strain rates on a Ni-Cr-Mo low alloy steel to study the change in mechanical properties relationed with the embrittlement. The embrittled specimens had showed a susceptibily degree equal to 50 0 C after a thermal treatment of 48 hours at 500 0 C. Relevant differences were arised between several parameters, specially the elongation. Those differences depend upon the test temperature and the strain rate. It was sugested a model to the mechanism of temper brittleness and this model takes account the equilibrium segregation proposed by McLean and Northcott (1948) and the interation of interstitial atoms with the dislocations and other solute atoms [pt

  17. A homogenization method for ductile-brittle composite laminates at large deformations

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2018-01-01

    -elastic behavior in the reinforcement as well as for the bending stiffness of the reinforcement layers. Additionally to previously proposed models, the present method includes Lemaitre type damage for the reinforcement, making it applicable to a wider range of engineering applications. The capability...... of the proposed method in representing the combined effect of plasticity, damage and buckling at microlevel within a homogenized setting is demonstrated by means of direct comparisons to a reference discrete model.......This paper presents a high fidelity homogenization method for periodically layered composite structures that accounts for plasticity in the matrix material and quasi-brittle damage in the reinforcing layers, combined with strong geometrical nonlinearities. A set of deliberately chosen internal...

  18. Failure to thrive: the prevalence and concurrence of anthropometric criteria in a general infant population

    DEFF Research Database (Denmark)

    Olsen, E M; Petersen, J; Skovgaard, A M

    2007-01-01

    Failure to thrive (FTT) in early childhood is associated with subsequent developmental delay and is recognised to reflect relative undernutrition. Although the concept of FTT is widely used, no consensus exists regarding a specific definition, and it is unclear to what extent different...

  19. Delayed Single Stage Perineal Posterior Urethroplasty.

    Science.gov (United States)

    Ali, Shahzad; Shahnawaz; Shahzad, Iqbal; Baloch, Muhammad Umar

    2015-06-01

    To determine the delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture/distraction defect. Descriptive case series. Department of Urology, Jinnah Postgraduate Medical Centre, Karachi, from January 2009 to December 2011. Patients were selected for delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture / distraction defect. All were initially suprapubically catheterized followed by definitive surgery after at least 3 months. Thirty male patients were analyzed with a mean follow-up of 10 months, 2 patients were excluded as they developed failure in first 3 months postoperatively. Mean patient's age was 26.25 ± 7.9 years. On follow-up, 7 patients (23.3%) experienced recurrent stricture during first 10 months. Five (16.6%) patients were treated successfully with single direct visual internal urethrotomy. Two patients (6.6%) had more than one direct visual internal urethrotomy and considered failed. Re-do perineal urethroplasty was eventually performed. The overall success rate was 93.3% with permissive criteria allowing single direct visual internal urethrotomy and 76.6% with strict criteria allowing no more procedures postoperatively. Posterior anastomotic urethroplasty offers excellent long-term results to patients with posterior urethral trauma and distraction defect even after multiple prior procedures.

  20. Cardiac I123-MIBG Correlates Better than Ejection Fraction with Symptoms Severity in Systolic Heart Failure

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra M.; Moscavitch, Samuel D.; Carestiato, Larissa R. [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Felix, Renata M. [Departamento de Medicina Nuclear, Hospital Pró-Cardíaco, Rio de Janeiro, RJ (Brazil); Rodrigues, Ronaldo C.; Messias, Leandro R. [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Azevedo, Jader C. [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Departamento de Medicina Nuclear, Hospital Pró-Cardíaco, Rio de Janeiro, RJ (Brazil); Nóbrega, Antonio Cláudio L.; Mesquita, Evandro Tinoco [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Mesquita, Claudio Tinoco, E-mail: ctinocom@cardiol.br [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Departamento de Medicina Nuclear, Hospital Pró-Cardíaco, Rio de Janeiro, RJ (Brazil)

    2013-07-15

    The association of autonomic activation, left ventricular ejection fraction (LVEF) and heart failure functional class is poorly understood. Our aim was to correlate symptom severity with cardiac sympathetic activity, through iodine-123-metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy and with LVEF in systolic heart failure (HF) patients without previous beta-blocker treatment. Thirty-one patients with systolic HF, class I to IV of the New York Heart Association (NYHA), without previous beta-blocker treatment, were enrolled and submitted to {sup 123}I-MIBG scintigraphy and to radionuclide ventriculography for LVEF determination. The early and delayed heart/mediastinum (H/M) ratio and the washout rate (WR) were performed. According with symptom severity, patients were divided into group A, 13 patients in NYHA class I/II, and group B, 18 patients in NYHA class III/IV. Compared with group B patients, group A had a significantly higher LVEF (25% ± 12% in group B vs. 32% ± 7% in group A, p = 0.04). Group B early and delayed H/M ratios were lower than group A ratios (early H/M 1.49 ± 0.15 vs. 1.64 ± 0.14, p = 0.02; delayed H/M 1.39 ± 0.13 vs. 1.58 ± 0.16, p = 0.001, respectively). WR was significantly higher in group B (36% ± 17% vs. 30% ± 12%, p= 0.04). The variable that showed the best correlation with NYHA class was the delayed H/M ratio (r= -0.585; p=0.001), adjusted for age and sex. This study showed that cardiac {sup 123}I-MIBG correlates better than ejection fraction with symptom severity in systolic heart failure patients without previous beta-blocker treatment.

  1. Interfacial failure in dissimilar weld joint of high boron 9% chromium steel and nickel-based alloy under high-temperature creep condition

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Tetsuya, E-mail: MATSUNAGA.Tetsuya@nims.go.jp; Hongo, Hiromichi, E-mail: HONGO.Hiromichi@nims.go.jp; Tabuchi, Masaaki, E-mail: TABUCHI.Masaaki@nims.go.jp

    2017-05-17

    The advanced ultra-supercritical (A-USC) power generation system is expected to become the next-generation base-load power station in Japan. Dissimilar weld joints between high-Cr heat-resistant steels and nickel-based alloys with a nickel-based filler metal (Alloy 82) will need to be adopted for this purpose. However, interfacial failure between the steels and weld metal has been observed under high-temperature creep conditions. Fractography and microstructure observations showed the failure initiated in a brittle manner by an oxide notch at the bottom of the U-groove. The fracture then proceeded along the bond line in a ductile manner with shallow dimples, where micro-Vickers hardness tests showed remarkable softening in the steel next to the bond line. In addition, the steel showed a much larger total elongation and reduction of area than the weld metal at low stresses under long-term creep conditions, leading to mismatch deformation at the interface. According to the results, it can be concluded that the interfacial failure between the 9Cr steels and Alloy 82 weld metal is initiated by an oxide notch and promoted by softening and the difference in the plasticity of the steels and weld metal.

  2. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad Taghi; Nikbin, Iman M.; Vaseghi Amiri, Javad; Rabbanifar, Saeed; Rahmani, Ebrahim

    2014-01-01

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G F ) and the value measured through SEM (G f ) (G F = 3.11G f )

  3. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, Morteza H.A., E-mail: M.beygi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Kazemi, Mohammad Taghi, E-mail: Kazemi@sharif.edu [Department of Civil Engineering, Sharif University of Technology, P.O. Box 11155-9313 (Iran, Islamic Republic of); Nikbin, Iman M., E-mail: nikbin@iaurasht.ac.ir [Faculty of Civil Engineering, Islamic Azad University, Rasht Branch, Rasht (Iran, Islamic Republic of); Vaseghi Amiri, Javad, E-mail: Vaseghi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rabbanifar, Saeed, E-mail: Saeed.rabbanifar@yahoo.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rahmani, Ebrahim, E-mail: Ebrahim.rahmani84@gmail.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of)

    2014-12-15

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})

  4. Failure to thrive: the prevalence and concurrence of anthropometric criteria in a general infant population

    DEFF Research Database (Denmark)

    Olsen, E M; Petersen, J; Skovgaard, A M

    2007-01-01

    Failure to thrive (FTT) in early childhood is associated with subsequent developmental delay and is recognised to reflect relative undernutrition. Although the concept of FTT is widely used, no consensus exists regarding a specific definition, and it is unclear to what extent different anthropome...

  5. Numerical Simulation of Hydraulic Fracturing in Low-/High-Permeability, Quasi-Brittle and Heterogeneous Rocks

    Science.gov (United States)

    Pakzad, R.; Wang, S. Y.; Sloan, S. W.

    2018-04-01

    In this study, an elastic-brittle-damage constitutive model was incorporated into the coupled fluid/solid analysis of ABAQUS to iteratively calculate the equilibrium effective stress of Biot's theory of consolidation. The Young's modulus, strength and permeability parameter of the material were randomly assigned to the representative volume elements of finite element models following the Weibull distribution function. The hydraulic conductivity of elements was associated with their hydrostatic effective stress and damage level. The steady-state permeability test results for sandstone specimens under different triaxial loading conditions were reproduced by employing the same set of material parameters in coupled transient flow/stress analyses of plane-strain models, thereby indicating the reliability of the numerical model. The influence of heterogeneity on the failure response and the absolute permeability was investigated, and the post-peak permeability was found to decrease with the heterogeneity level in the coupled analysis with transient flow. The proposed model was applied to the plane-strain simulation of the fluid pressurization of a cavity within a large-scale block under different conditions. Regardless of the heterogeneity level, the hydraulically driven fractures propagated perpendicular to the minimum principal far-field stress direction for high-permeability models under anisotropic far-field stress conditions. Scattered damage elements appeared in the models with higher degrees of heterogeneity. The partially saturated areas around propagating fractures were simulated by relating the saturation degree to the negative pore pressure in low-permeability blocks under high pressure. By replicating previously reported trends in the fracture initiation and breakdown pressure for different pressurization rates and hydraulic conductivities, the results showed that the proposed model for hydraulic fracture problems is reliable for a wide range of

  6. Calculation of adhesive and cohesive fracture toughness of a thin brittle coating on a polymer substrate

    International Nuclear Information System (INIS)

    Jansson, N.E.; Leterrier, Y.; Medico, L.; Manson, J.-A.E.

    2006-01-01

    Determination of fracture parameters for brittle coatings with a sub-micron thickness is not a straightforward task. Since direct evaluation through testing with for instance a double cantilever beam or compact tension tests is hardly applicable due to the extreme thinness of the coating, methods such as the fragmentation test are used. When a structure with a brittle coating on a soft substrate is strained, the coating develops a crack pattern with parallel cracks perpendicular to the loading direction. The crack density (number of cracks per unit length) increases with strain up to a saturation value. Analytical formulas to model the fragmentation process exist but are limited to elastic materials. In this work finite element simulations are applied in order to deduce the adhesive and cohesive fracture properties of the interface and coating respectively from experimental data. The simulations include both the plastic behaviour of the substrate and debonding of the coating from the substrate, the latter achieved by application of a cohesive zone model. The main conclusion is that the plastic dissipation within the substrate must be correctly accounted for to get realistic interfacial and coating fracture toughness values

  7. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann (Clay Technology AB, Lund (Sweden))

    2010-01-15

    Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of rho >= 2,060 kg/m3 or on specimens exposed to high temperature T >= 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr < 90%. Failure at reduced strain was seen in this investigation on specimens exposed to T = 150 deg C, on specimens having a water content of w{sub i} = 0% before saturation, on specimens with a final degree of saturation of S{sub r} <= 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens

  8. Cognitive influences on self-care decision making in persons with heart failure.

    Science.gov (United States)

    Dickson, Victoria V; Tkacs, Nancy; Riegel, Barbara

    2007-09-01

    Despite advances in management, heart failure is associated with high rates of hospitalization, poor quality of life, and early death. Education intended to improve patients' abilities to care for themselves is an integral component of disease management programs. True self-care requires that patients make decisions about symptoms, but the cognitive deficits documented in 30% to 50% of the heart failure population may make daily decision making challenging. After describing heart failure self-care as a naturalistic decision making process, we explore cognitive deficits known to exist in persons with heart failure. Problems in heart failure self-care are analyzed in relation to neural alterations associated with heart failure. As a neural process, decision making has been traced to regions of the prefrontal cortex, the same areas that are affected by ischemia, infarction, and hypoxemia in heart failure. Resulting deficits in memory, attention, and executive function may impair the perception and interpretation of early symptoms and reasoning and, thereby, delay early treatment implementation. There is compelling evidence that the neural processes critical to decision making are located in the same structures that are affected by heart failure. Because self-care requires the cognitive ability to learn, perceive, interpret, and respond, research is needed to discern how neural deficits affects these abilities, decision-making, and self-care behaviors.

  9. Breached fuel location in FFTF by delayed neutron monitor triangulation

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1985-10-01

    The Fast Flux Test Facility (FFTF) features a three-loop, sodium-cooled 400 MWt mixed oxide fueled reactor designed for the irradiation testing of fuels and materials for use in liquid metal cooled fast reactors. To establish the ultimate capability of a particular fuel design and thereby generate information that will lead to improvements, many of the fuel irradiations are continued until a loss of cladding integrity (failure) occurs. When the cladding fails, fission gas escapes from the fuel pin and enters the reactor cover gas system. If the cladding failure permits the primary sodium to come in contact with the fuel, recoil fission products can enter the sodium. The presence of recoil fission products in the sodium can be detected by monitoring for the presence of delayed neutrons in the coolant. It is the present philosophy to not operate FFTF when a failure has occurred that permits fission fragments to enter the sodium. Thus, it is important that the identity and location of the fuel assembly that contains the failed cladding be established in order that it might be removed from the core. This report discusses method of location of fuel element when cladding is breached

  10. Parameter Estimation of a Delay Time Model of Wearing Parts Based on Objective Data

    Directory of Open Access Journals (Sweden)

    Y. Tang

    2015-01-01

    Full Text Available The wearing parts of a system have a very high failure frequency, making it necessary to carry out continual functional inspections and maintenance to protect the system from unscheduled downtime. This allows for the collection of a large amount of maintenance data. Taking the unique characteristics of the wearing parts into consideration, we establish their respective delay time models in ideal inspection cases and nonideal inspection cases. The model parameters are estimated entirely using the collected maintenance data. Then, a likelihood function of all renewal events is derived based on their occurring probability functions, and the model parameters are calculated with the maximum likelihood function method, which is solved by the CRM. Finally, using two wearing parts from the oil and gas drilling industry as examples—the filter element and the blowout preventer rubber core—the parameters of the distribution function of the initial failure time and the delay time for each example are estimated, and their distribution functions are obtained. Such parameter estimation based on objective data will contribute to the optimization of the reasonable function inspection interval and will also provide some theoretical models to support the integrity management of equipment or systems.

  11. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.; Ho, Pin-Han; Wu, Bin; Tapolcai, Janos; Shihada, Basem

    2011-01-01

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  12. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  13. Blood Transfusion Delay and Outcome in County Hospitals in Kenya.

    Science.gov (United States)

    Thomas, Julius; Ayieko, Philip; Ogero, Morris; Gachau, Susan; Makone, Boniface; Nyachiro, Wycliffe; Mbevi, George; Chepkirui, Mercy; Malla, Lucas; Oliwa, Jacquie; Irimu, Grace; English, Mike

    2017-02-08

    Severe anemia is a leading indication for blood transfusion and a major cause of hospital admission and mortality in African children. Failure to initiate blood transfusion rapidly enough contributes to anemia deaths in sub-Saharan Africa. This article examines delays in accessing blood and outcomes in transfused children in Kenyan hospitals. Children admitted with nonsurgical conditions in 10 Kenyan county hospitals participating in the Clinical Information Network who had blood transfusion ordered from September 2013 to March 2016 were studied. The delay in blood transfusion was calculated from the date when blood transfusion was prescribed to date of actual transfusion. Five percent (2,875/53,174) of admissions had blood transfusion ordered. Approximately half (45%, 1,295/2,875) of children who had blood transfusion ordered at admission had a documented hemoglobin transfusions, 82% were administered and documented in clinical records, and three-quarters of these (75%, 1,760/2,352) were given on the same day as ordered but these proportions varied from 71% to 100% across the 10 hospitals. Children who had a transfusion ordered but did not receive the prescribed transfusion had a mortality of 20%, compared with 12% among those transfused. Malaria-associated anemia remains the leading indication for blood transfusion in acute childhood illness admissions. Delays in transfusion are common and associated with poor outcomes. Variance in delay across hospitals may be a useful indicator of health system performance. © The American Society of Tropical Medicine and Hygiene.

  14. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    International Nuclear Information System (INIS)

    Dueck, Ann

    2010-01-01

    Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of ρ ≥ 2,060 kg/m 3 or on specimens exposed to high temperature T ≥ 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr i = 0% before saturation, on specimens with a final degree of saturation of S r ≤ 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens

  15. Pulmonary hypertension and right heart failure due to severe hypernatremic dehydration.

    Science.gov (United States)

    Chiwane, Saurabh; Ahmed, Tageldin M; Bauerfeld, Christian P; Chauhan, Monika

    2017-07-01

    Neonates are at risk of developing hypernatremic dehydration and its associated complications, such as stroke, dural sinus thrombosis and renal vein thrombosis. Pulmonary hypertension has not been described as a complication of hypernatremia. We report a case of a seven-day-old neonate with severe hypernatremic dehydration who went on to develop pulmonary hypertension and right heart failure needing extracorporeal membrane oxygenation (ECMO). Normal or high anion gap metabolic acidosis commonly accompanies hypernatremic dehydration. The presence of acidosis and/or hypoxia can delay the normal drop in pulmonary vascular resistance (PVR) after birth, causing pulmonary hypertension and right ventricular failure. A high index of suspicion is paramount to diagnose pulmonary hypertension and aggressive correction of the acidosis and hypoxia is needed. In the presence of severe right ventricular failure, ECMO can be used as a bridge to recovery while underlying metabolic derangements are being corrected.

  16. Investigation of 12Kh1MF steel resistance to brittle fractures

    International Nuclear Information System (INIS)

    Bologov, G.A.; Rushchits, T.Yu.

    1977-01-01

    The metal of hot-rolled steam pipe made of 12Kh1MF steel, which has been subjected to thermal treatment under laboratory conditions, and metal samples from acting steam pipes after different exploitation periods at 510-565 deg C have been investigated. The dependence of impact v