WorldWideScience

Sample records for delayed auditory feedback

  1. Delayed Auditory Feedback and Movement

    Science.gov (United States)

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  2. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  3. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  4. Effects of Delayed Auditory Feedback in Stuttering Patterns

    Directory of Open Access Journals (Sweden)

    Janeth Hernández Jaramillo

    2014-05-01

    Full Text Available The present study corresponds to a single subject design, analyzes the patterns of stuttering in the speech corpus in various oral language tasks, under the conditions of use or non-use of Delayed Auditory Feedback (DAF, in order to establish the effect of the DAF in the frequency of occur¬rence and type of dysrhythmia. The study concludes the positive effect of the DAF, with a rate of return of 25 % on the errors of fluency, with variation depending on the type of oral production task. This in turn suggests that 75 % of the disfluency or linked with top encode failures or not susceptible to resolve or compensated by the DAF. The authors discuss the implications of these findings for therapeutic intervention in stuttering.

  5. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    Science.gov (United States)

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  6. Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  7. Adaptation to Delayed Speech Feedback Induces Temporal Recalibration between Vocal Sensory and Auditory Modalities

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    2011-10-01

    Full Text Available We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. Participants read some sentences with specific delay times of DAF (0, 30, 75, 120 ms during three minutes to induce ‘Lag Adaptation’. After the adaptation, they then judged the simultaneity between motor sensation and vocal sound given feedback in producing simple voice but not speech. We found that speech production with lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  8. Gender by assertiveness interaction in delayed auditory feedback.

    Science.gov (United States)

    Elias, J W; Rosenzweig, C M; Dippel, R L

    1981-04-01

    The College Self-Expression and the Marlowe-Crowne Social Desirability Scales were given to 144 undergraduates. High (N; 10 M; 10 F) and Low (N; 10 M 10 F) Assertiveness Ss were given a DAF test with a 'Phonic Mirror" and the Stroop test (naming the color of a word printed in a different color). DAF performance did not differ among the 4 subgroups (M and F, High and Low Assertiveness), except that Low Assertiveness women showed significantly greater DAF interference than the other subgroups. There was no significant correlation between the continuous interference of the DAF vs the discontinuous of the Stroop test. The difference may reside in the time available and the consequent reduction in anxiety, for the next stimulus in the Stroop test. These data show that, under certain circumstances, personality factors such as assertiveness can interact with gender to affect speech fluency and production. The ability to overcome feedback-related disfluencies in speech may be partially aided by improvement in self-concept or specific training in such behaviors as assertiveness, and this may be more important for females than males.

  9. The Effect of Delayed Auditory Feedback on Activity in the Temporal Lobe while Speaking: A Positron Emission Tomography Study

    Science.gov (United States)

    Takaso, Hideki; Eisner, Frank; Wise, Richard J. S.; Scott, Sophie K.

    2010-01-01

    Purpose: Delayed auditory feedback is a technique that can improve fluency in stutterers, while disrupting fluency in many nonstuttering individuals. The aim of this study was to determine the neural basis for the detection of and compensation for such a delay, and the effects of increases in the delay duration. Method: Positron emission…

  10. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.

    Science.gov (United States)

    Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W

    2017-06-22

    Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.

  11. Auditory Masking Effects on Speech Fluency in Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback

    Science.gov (United States)

    Jacks, Adam; Haley, Katarina L.

    2015-01-01

    Purpose: To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not…

  12. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  13. Stuttering Inhibition via Altered Auditory Feedback during Scripted Telephone Conversations

    Science.gov (United States)

    Hudock, Daniel; Kalinowski, Joseph

    2014-01-01

    Background: Overt stuttering is inhibited by approximately 80% when people who stutter read aloud as they hear an altered form of their speech feedback to them. However, levels of stuttering inhibition vary from 60% to 100% depending on speaking situation and signal presentation. For example, binaural presentations of delayed auditory feedback…

  14. Reliance on auditory feedback in children with childhood apraxia of speech.

    Science.gov (United States)

    Iuzzini-Seigel, Jenya; Hogan, Tiffany P; Guarino, Anthony J; Green, Jordan R

    2015-01-01

    Children with childhood apraxia of speech (CAS) have been hypothesized to continuously monitor their speech through auditory feedback to minimize speech errors. We used an auditory masking paradigm to determine the effect of attenuating auditory feedback on speech in 30 children: 9 with CAS, 10 with speech delay, and 11 with typical development. The masking only affected the speech of children with CAS as measured by voice onset time and vowel space area. These findings provide preliminary support for greater reliance on auditory feedback among children with CAS. Readers of this article should be able to (i) describe the motivation for investigating the role of auditory feedback in children with CAS; (ii) report the effects of feedback attenuation on speech production in children with CAS, speech delay, and typical development, and (iii) understand how the current findings may support a feedforward program deficit in children with CAS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Altered Sensory Feedbacks in Pianist's Dystonia: the altered auditory feedback paradigm and the glove effect

    Directory of Open Access Journals (Sweden)

    Felicia Pei-Hsin Cheng

    2013-12-01

    Full Text Available Background: This study investigates the effect of altered auditory feedback (AAF in musician's dystonia (MD and discusses whether altered auditory feedback can be considered as a sensory trick in MD. Furthermore, the effect of AAF is compared with altered tactile feedback, which can serve as a sensory trick in several other forms of focal dystonia. Methods: The method is based on scale analysis (Jabusch et al. 2004. Experiment 1 employs synchronization paradigm: 12 MD patients and 25 healthy pianists had to repeatedly play C-major scales in synchrony with a metronome on a MIDI-piano with 3 auditory feedback conditions: 1. normal feedback; 2. no feedback; 3. constant delayed feedback. Experiment 2 employs synchronization-continuation paradigm: 12 MD patients and 12 healthy pianists had to repeatedly play C-major scales in two phases: first in synchrony with a metronome, secondly continue the established tempo without the metronome. There are 4 experimental conditions, among them 3 are the same altered auditory feedback as in Experiment 1 and 1 is related to altered tactile sensory input. The coefficient of variation of inter-onset intervals of the key depressions was calculated to evaluate fine motor control. Results: In both experiments, the healthy controls and the patients behaved very similarly. There is no difference in the regularity of playing between the two groups under any condition, and neither did AAF nor did altered tactile feedback have a beneficial effect on patients’ fine motor control. Conclusions: The results of the two experiments suggest that in the context of our experimental designs, AAF and altered tactile feedback play a minor role in motor coordination in patients with musicians' dystonia. We propose that altered auditory and tactile feedback do not serve as effective sensory tricks and may not temporarily reduce the symptoms of patients suffering from MD in this experimental context.

  16. Duration reproduction with sensory feedback delay: Differential involvement of perception and action time

    Directory of Open Access Journals (Sweden)

    Stephanie eGanzenmüller

    2012-10-01

    Full Text Available Previous research has shown that voluntary action can attract subsequent, delayed feedback events towards the action, and adaptation to the sensorimotor delay can even reverse motor-sensory temporal-order judgments. However, whether and how sensorimotor delay affects duration reproduction is still unclear. To investigate this, we injected an onset- or offset-delay to the sensory feedback signal from a duration reproduction task. We compared duration reproductions within (visual, auditory modality and across audiovisual modalities with feedback signal onset- and offset-delay manipulations. We found that the reproduced duration was lengthened in both visual and auditory feedback signal onset-delay conditions. The lengthening effect was evident immediately, on the first trial with the onset delay. However, when the onset of the feedback signal was prior to the action, the lengthening effect was diminished. In contrast, a shortening effect was found with feedback signal offset-delay, though the effect was weaker and manifested only in the auditory offset-delay condition. These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction. Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration was independent of the delay manipulation.

  17. Rhythmic walking interaction with auditory feedback

    DEFF Research Database (Denmark)

    Maculewicz, Justyna; Jylhä, Antti; Serafin, Stefania

    2015-01-01

    We present an interactive auditory display for walking with sinusoidal tones or ecological, physically-based synthetic walking sounds. The feedback is either step-based or rhythmic, with constant or adaptive tempo. In a tempo-following experiment, we investigate different interaction modes...

  18. The impact of auditory feedback on neuronavigation

    NARCIS (Netherlands)

    Willems, PWA; Noordmans, HJ; van Overbeeke, JJ; Viergever, MA; Tulleken, CAF; van der Sprenkel, JWB

    Object. We aimed to develop an auditory feedback system to be used in addition to regular neuronavigation, in an attempt to improve the usefulness of the information offered by neuronavigation systems. Instrumentation. Using a serial connection, instrument co-ordinates determined by a commercially

  19. Auditory reafferences: The influence of real-time feedback on movement control

    Directory of Open Access Journals (Sweden)

    Christian eKennel

    2015-01-01

    Full Text Available Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with nonartificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  20. Auditory reafferences: the influence of real-time feedback on movement control.

    Science.gov (United States)

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  1. Auditory feedback blocks memory benefits of cueing during sleep.

    Science.gov (United States)

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-10-28

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep.

  2. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to

  3. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  4. Delayed feedback control in quantum transport.

    Science.gov (United States)

    Emary, Clive

    2013-09-28

    Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.

  5. Formant compensation for auditory feedback with English vowels

    DEFF Research Database (Denmark)

    Mitsuya, Takashi; MacDonald, Ewen N; Munhall, Kevin G

    2015-01-01

    Past studies have shown that speakers spontaneously adjust their speech acoustics in response to their auditory feedback perturbed in real time. In the case of formant perturbation, the majority of studies have examined speaker's compensatory production using the English vowel /ɛ/ as in the word...... "head." Consistent behavioral observations have been reported, and there is lively discussion as to how the production system integrates auditory versus somatosensory feedback to control vowel production. However, different vowels have different oral sensation and proprioceptive information due...... to differences in the degree of lingual contact or jaw openness. This may in turn influence the ways in which speakers compensate for auditory feedback. The aim of the current study was to examine speakers' compensatory behavior with six English monophthongs. Specifically, the current study tested to see...

  6. Effect- and Performance-Based Auditory Feedback on Interpersonal Coordination

    Directory of Open Access Journals (Sweden)

    Tong-Hun Hwang

    2018-03-01

    Full Text Available When two individuals interact in a collaborative task, such as carrying a sofa or a table, usually spatiotemporal coordination of individual motor behavior will emerge. In many cases, interpersonal coordination can arise independently of verbal communication, based on the observation of the partners' movements and/or the object's movements. In this study, we investigate how social coupling between two individuals can emerge in a collaborative task under different modes of perceptual information. A visual reference condition was compared with three different conditions with new types of additional auditory feedback provided in real time: effect-based auditory feedback, performance-based auditory feedback, and combined effect/performance-based auditory feedback. We have developed a new paradigm in which the actions of both participants continuously result in a seamlessly merged effect on an object simulated by a tablet computer application. Here, participants should temporally synchronize their movements with a 90° phase difference and precisely adjust the finger dynamics in order to keep the object (a ball accurately rotating on a given circular trajectory on the tablet. Results demonstrate that interpersonal coordination in a joint task can be altered by different kinds of additional auditory information in various ways.

  7. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  8. Analysis of the Auditory Feedback and Phonation in Normal Voices.

    Science.gov (United States)

    Arbeiter, Mareike; Petermann, Simon; Hoppe, Ulrich; Bohr, Christopher; Doellinger, Michael; Ziethe, Anke

    2018-02-01

    The aim of this study was to investigate the auditory feedback mechanisms and voice quality during phonation in response to a spontaneous pitch change in the auditory feedback. Does the pitch shift reflex (PSR) change voice pitch and voice quality? Quantitative and qualitative voice characteristics were analyzed during the PSR. Twenty-eight healthy subjects underwent transnasal high-speed video endoscopy (HSV) at 8000 fps during sustained phonation [a]. While phonating, the subjects heard their sound pitched up for 700 cents (interval of a fifth), lasting 300 milliseconds in their auditory feedback. The electroencephalography (EEG), acoustic voice signal, electroglottography (EGG), and high-speed-videoendoscopy (HSV) were analyzed to compare feedback mechanisms for the pitched and unpitched condition of the phonation paradigm statistically. Furthermore, quantitative and qualitative voice characteristics were analyzed. The PSR was successfully detected within all signals of the experimental tools (EEG, EGG, acoustic voice signal, HSV). A significant increase of the perturbation measures and an increase of the values of the acoustic parameters during the PSR were observed, especially for the audio signal. The auditory feedback mechanism seems not only to control for voice pitch but also for voice quality aspects.

  9. Time-delayed feedback control of diffusion in random walkers

    Science.gov (United States)

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U.

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  10. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. The role of auditory feedback in music-supported stroke rehabilitation: A single-blinded randomised controlled intervention.

    Science.gov (United States)

    van Vugt, F T; Kafczyk, T; Kuhn, W; Rollnik, J D; Tillmann, B; Altenmüller, E

    2016-01-01

    Learning to play musical instruments such as piano was previously shown to benefit post-stroke motor rehabilitation. Previous work hypothesised that the mechanism of this rehabilitation is that patients use auditory feedback to correct their movements and therefore show motor learning. We tested this hypothesis by manipulating the auditory feedback timing in a way that should disrupt such error-based learning. We contrasted a patient group undergoing music-supported therapy on a piano that emits sounds immediately (as in previous studies) with a group whose sounds are presented after a jittered delay. The delay was not noticeable to patients. Thirty-four patients in early stroke rehabilitation with moderate motor impairment and no previous musical background learned to play the piano using simple finger exercises and familiar children's songs. Rehabilitation outcome was not impaired in the jitter group relative to the normal group. Conversely, some clinical tests suggests the jitter group outperformed the normal group. Auditory feedback-based motor learning is not the beneficial mechanism of music-supported therapy. Immediate auditory feedback therapy may be suboptimal. Jittered delay may increase efficacy of the proposed therapy and allow patients to fully benefit from motivational factors of music training. Our study shows a novel way to test hypotheses concerning music training in a single-blinded way, which is an important improvement over existing unblinded tests of music interventions.

  12. Rubber hand illusion under delayed visual feedback.

    Directory of Open Access Journals (Sweden)

    Sotaro Shimada

    Full Text Available BACKGROUND: Rubber hand illusion (RHI is a subject's illusion of the self-ownership of a rubber hand that was touched synchronously with their own hand. Although previous studies have confirmed that this illusion disappears when the rubber hand was touched asynchronously with the subject's hand, the minimum temporal discrepancy of these two events for attenuation of RHI has not been examined. METHODOLOGY/PRINCIPAL FINDINGS: In this study, various temporal discrepancies between visual and tactile stimulations were introduced by using a visual feedback delay experimental setup, and RHI effects in each temporal discrepancy condition were systematically tested. The results showed that subjects felt significantly greater RHI effects with temporal discrepancies of less than 300 ms compared with longer temporal discrepancies. The RHI effects on reaching performance (proprioceptive drift showed similar conditional differences. CONCLUSIONS/SIGNIFICANCE: Our results first demonstrated that a temporal discrepancy of less than 300 ms between visual stimulation of the rubber hand and tactile stimulation to the subject's own hand is preferable to induce strong sensation of RHI. We suggest that the time window of less than 300 ms is critical for multi-sensory integration processes constituting the self-body image.

  13. Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation.

    Directory of Open Access Journals (Sweden)

    Shanqing Cai

    Full Text Available Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking functions abnormally in the speech motor systems of persons who stutter (PWS. Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (∼150 ms, but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05. Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.

  14. Time-delayed feedback control of coherence resonance chimeras

    Science.gov (United States)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  15. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.; Younis, Mohammad I.; Shao, Shuai

    2013-01-01

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller

  16. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    OpenAIRE

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems usingintentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integra...

  17. Effect of auditory feedback differs according to side of hemiparesis: a comparative pilot study

    OpenAIRE

    Robertson, Johanna VG; Hoellinger, Thomas; Lindberg, P?vel; Bensmail, Djamel; Hanneton, Sylvain; Roby-Brami, Agn?s

    2009-01-01

    Abstract Background Following stroke, patients frequently demonstrate loss of motor control and function and altered kinematic parameters of reaching movements. Feedback is an essential component of rehabilitation and auditory feedback of kinematic parameters may be a useful tool for rehabilitation of reaching movements at the impairment level. The aim of this study was to investigate the effect of 2 types of auditory feedback on the kinematics of reaching movements in hemiparetic stroke pati...

  18. Delayed feedback control of fractional-order chaotic systems

    International Nuclear Information System (INIS)

    Gjurchinovski, A; Urumov, V; Sandev, T

    2010-01-01

    We study the possibility to stabilize unstable steady states and unstable periodic orbits in chaotic fractional-order dynamical systems by the time-delayed feedback method. By performing a linear stability analysis, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parameterized by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. We demonstrate that the method can also stabilize unstable periodic orbits for a suitable choice of the feedback gain, providing that the time delay is chosen to coincide with the period of the target orbit. In addition, it is shown numerically that delayed feedback control with a sinusoidally modulated time delay significantly enlarges the stability region of steady states in comparison to the classical time-delayed feedback scheme with a constant delay.

  19. Auditory feedback and memory for music performance: sound evidence for an encoding effect.

    Science.gov (United States)

    Finney, Steven A; Palmer, Caroline

    2003-01-01

    Research on the effects of context and task on learning and memory has included approaches that emphasize processes during learning (e.g., Craik & Tulving, 1975) and approaches that emphasize a match of conditions during learning with conditions during a later test of memory (e.g., Morris, Bransford, & Franks, 1977; Proteau, 1992; Tulving & Thomson, 1973). We investigated the effects of auditory context on learning and retrieval in three experiments on memorized music performance (a form of serial recall). Auditory feedback (presence or absence) was manipulated while pianists learned musical pieces from notation and when they later played the pieces from memory. Auditory feedback during learning significantly improved later recall. However, auditory feedback at test did not significantly affect recall, nor was there an interaction between conditions at learning and test. Auditory feedback in music performance appears to be a contextual factor that affects learning but is relatively independent of retrieval conditions.

  20. Eye movements in interception with delayed visual feedback.

    Science.gov (United States)

    Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli

    2018-04-19

    The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.

  1. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  2. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    Science.gov (United States)

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  3. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  4. Multivoxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    DEFF Research Database (Denmark)

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations...... within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while...... human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during...

  5. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...

  6. Predictor feedback for delay systems implementations and approximations

    CERN Document Server

    Karafyllis, Iasson

    2017-01-01

    This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems’ nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book’s core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (b...

  7. Heteroclinic Bifurcation Behaviors of a Duffing Oscillator with Delayed Feedback

    Directory of Open Access Journals (Sweden)

    Shao-Fang Wen

    2018-01-01

    Full Text Available The heteroclinic bifurcation and chaos of a Duffing oscillator with forcing excitation under both delayed displacement feedback and delayed velocity feedback are studied by Melnikov method. The Melnikov function is analytically established to detect the necessary conditions for generating chaos. Through the analysis of the analytical necessary conditions, we find that the influences of the delayed displacement feedback and delayed velocity feedback are separable. Then the influences of the displacement and velocity feedback parameters on heteroclinic bifurcation and threshold value of chaotic motion are investigated individually. In order to verify the correctness of the analytical conditions, the Duffing oscillator is also investigated by numerical iterative method. The bifurcation curves and the largest Lyapunov exponents are provided and compared. From the analysis of the numerical simulation results, it could be found that two types of period-doubling bifurcations occur in the Duffing oscillator, so that there are two paths leading to the chaos in this oscillator. The typical dynamical responses, including time histories, phase portraits, and Poincare maps, are all carried out to verify the conclusions. The results reveal some new phenomena, which is useful to design or control this kind of system.

  8. Ring a bell? Adaptive Auditory Game Feedback to Sustain Performance in Stroke Rehabilitation

    DEFF Research Database (Denmark)

    Hald, Kasper; Knoche, Hendrik

    2016-01-01

    This paper investigates the effect of adaptive auditory feed- back on continued player performance for stroke patients in a Whack- a-Mole style tablet game. The feedback consisted of accumulatively in- creasing the pitch of positive feedback sounds on tasks with fast reaction time and resetting...... it after slow reaction times. The analysis was based on data was obtained in a field trial with lesion patients during their regular rehabilitation. The auditory feedback events were categorized by feedback type (positive/negative) and the associated pitch change of ei- ther high or low magnitude. Both...... feedback type and magnitude had a significant effect on players performance. Negative feedback improved re- action time on the subsequent hit by 0.42 second and positive feedback impaired performance by 0.15 seconds....

  9. Delayed feedback on the dynamical model of a financial system

    International Nuclear Information System (INIS)

    Son, Woo-Sik; Park, Young-Jai

    2011-01-01

    Research highlights: → Effect of delayed feedbacks on the financial model. → Proof on the occurrence of Hopf bifurcation by local stability analysis. → Numerical bifurcation analysis on delay differential equations. → Observation of supercritical and subcritical Hopf, fold limit cycle, Neimark-Sacker, double Hopf and generalized Hopf bifurcations. - Abstract: We investigate the effect of delayed feedbacks on the financial model, which describes the time variation of the interest rate, the investment demand, and the price index, for establishing the fiscal policy. By local stability analysis, we theoretically prove the occurrences of Hopf bifurcation. Through numerical bifurcation analysis, we obtain the supercritical and subcritical Hopf bifurcation curves which support the theoretical predictions. Moreover, the fold limit cycle and Neimark-Sacker bifurcation curves are detected. We also confirm that the double Hopf and generalized Hopf codimension-2 bifurcation points exist.

  10. Effect of auditory feedback differs according to side of hemiparesis: a comparative pilot study

    Directory of Open Access Journals (Sweden)

    Bensmail Djamel

    2009-12-01

    Full Text Available Abstract Background Following stroke, patients frequently demonstrate loss of motor control and function and altered kinematic parameters of reaching movements. Feedback is an essential component of rehabilitation and auditory feedback of kinematic parameters may be a useful tool for rehabilitation of reaching movements at the impairment level. The aim of this study was to investigate the effect of 2 types of auditory feedback on the kinematics of reaching movements in hemiparetic stroke patients and to compare differences between patients with right (RHD and left hemisphere damage (LHD. Methods 10 healthy controls, 8 stroke patients with LHD and 8 with RHD were included. Patient groups had similar levels of upper limb function. Two types of auditory feedback (spatial and simple were developed and provided online during reaching movements to 9 targets in the workspace. Kinematics of the upper limb were recorded with an electromagnetic system. Kinematics were compared between groups (Mann Whitney test and the effect of auditory feedback on kinematics was tested within each patient group (Friedman test. Results In the patient groups, peak hand velocity was lower, the number of velocity peaks was higher and movements were more curved than in the healthy group. Despite having a similar clinical level, kinematics differed between LHD and RHD groups. Peak velocity was similar but LHD patients had fewer velocity peaks and less curved movements than RHD patients. The addition of auditory feedback improved the curvature index in patients with RHD and deteriorated peak velocity, the number of velocity peaks and curvature index in LHD patients. No difference between types of feedback was found in either patient group. Conclusion In stroke patients, side of lesion should be considered when examining arm reaching kinematics. Further studies are necessary to evaluate differences in responses to auditory feedback between patients with lesions in opposite

  11. Exploring the use of tactile feedback in an ERP-based auditory BCI.

    Science.gov (United States)

    Schreuder, Martijn; Thurlings, Marieke E; Brouwer, Anne-Marie; Van Erp, Jan B F; Tangermann, Michael

    2012-01-01

    Giving direct, continuous feedback on a brain state is common practice in motor imagery based brain-computer interfaces (BCI), but has not been reported for BCIs based on event-related potentials (ERP), where feedback is only given once after a sequence of stimuli. Potentially, direct feedback could allow the user to adjust his strategy during a running trial to obtain the required response. In order to test the usefulness of such feedback, directionally congruent vibrotactile feedback was given during an online auditory BCI experiment. Users received either no feedback, short feedback pulses or continuous feedback. The feedback conditions showed reduced performance both on a behavioral task and in terms of classification accuracy. Several explanations are discussed that give interesting starting points for further research on this topic.

  12. Comparisons of Stuttering Frequency during and after Speech Initiation in Unaltered Feedback, Altered Auditory Feedback and Choral Speech Conditions

    Science.gov (United States)

    Saltuklaroglu, Tim; Kalinowski, Joseph; Robbins, Mary; Crawcour, Stephen; Bowers, Andrew

    2009-01-01

    Background: Stuttering is prone to strike during speech initiation more so than at any other point in an utterance. The use of auditory feedback (AAF) has been found to produce robust decreases in the stuttering frequency by creating an electronic rendition of choral speech (i.e., speaking in unison). However, AAF requires users to self-initiate…

  13. Tap Arduino: An Arduino microcontroller for low-latency auditory feedback in sensorimotor synchronization experiments.

    Science.gov (United States)

    Schultz, Benjamin G; van Vugt, Floris T

    2016-12-01

    Timing abilities are often measured by having participants tap their finger along with a metronome and presenting tap-triggered auditory feedback. These experiments predominantly use electronic percussion pads combined with software (e.g., FTAP or Max/MSP) that records responses and delivers auditory feedback. However, these setups involve unknown latencies between tap onset and auditory feedback and can sometimes miss responses or record multiple, superfluous responses for a single tap. These issues may distort measurements of tapping performance or affect the performance of the individual. We present an alternative setup using an Arduino microcontroller that addresses these issues and delivers low-latency auditory feedback. We validated our setup by having participants (N = 6) tap on a force-sensitive resistor pad connected to the Arduino and on an electronic percussion pad with various levels of force and tempi. The Arduino delivered auditory feedback through a pulse-width modulation (PWM) pin connected to a headphone jack or a wave shield component. The Arduino's PWM (M = 0.6 ms, SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demonstrated significantly lower auditory feedback latencies than the percussion pad (M = 9.1 ms, SD = 2.0), FTAP (M = 14.6 ms, SD = 2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM and wave shield latencies were also significantly less variable than those from FTAP and Max/MSP. The Arduino missed significantly fewer taps, and recorded fewer superfluous responses, than the percussion pad. The Arduino captured all responses, whereas at lower tapping forces, the percussion pad missed more taps. Regardless of tapping force, the Arduino outperformed the percussion pad. Overall, the Arduino is a high-precision, low-latency, portable, and affordable tool for auditory experiments.

  14. Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay

    International Nuclear Information System (INIS)

    Pyragas, V.; Pyragas, K.

    2011-01-01

    We propose a simple adaptive delayed feedback control algorithm for stabilization of unstable periodic orbits with unknown periods. The state dependent time delay is varied continuously towards the period of controlled orbit according to a gradient-descent method realized through three simple ordinary differential equations. We demonstrate the efficiency of the algorithm with the Roessler and Mackey-Glass chaotic systems. The stability of the controlled orbits is proven by computation of the Lyapunov exponents of linearized equations. -- Highlights: → A simple adaptive modification of the delayed feedback control algorithm is proposed. → It enables the control of unstable periodic orbits with unknown periods. → The delay time is varied continuously according to a gradient descend method. → The algorithm is embodied by three simple ordinary differential equations. → The validity of the algorithm is proven by computation of the Lyapunov exponents.

  15. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    Science.gov (United States)

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    Directory of Open Access Journals (Sweden)

    Yan Kun

    2011-01-01

    Full Text Available Abstract Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees.

  17. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2009-04-15

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  18. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Sedigh, Ali Khaki

    2009-01-01

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  19. Investigating the Role of Auditory Feedback in a Multimodal Biking Experience

    DEFF Research Database (Denmark)

    Bruun-Pedersen, Jon Ram; Grani, Francesco; Serafin, Stefania

    2017-01-01

    In this paper, we investigate the role of auditory feedback in affecting perception of effort while biking in a virtual environment. Subjects were biking on a stationary chair bike, while exposed to 3D renditions of a recumbent bike inside a virtual environment (VE). The VE simulated a park...... and was created in the Unity5 engine. While biking, subjects were exposed to 9 kinds of auditory feedback (3 amplitude levels with three different filters) which were continuously triggered corresponding to pedal speed, representing the sound of the wheels and bike/chain mechanics. Subjects were asked to rate...... the perception of exertion using the Borg RPE scale. Results of the experiment showed that most subjects perceived a difference in mechanical resistance from the bike between conditions, but did not consciously notice the variations of the auditory feedback, although these were significantly varied. This points...

  20. Autonomous learning by simple dynamical systems with delayed feedback.

    Science.gov (United States)

    Kaluza, Pablo; Mikhailov, Alexander S

    2014-09-01

    A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.

  1. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  2. Representing delayed force feedback as a combination of current and delayed states.

    Science.gov (United States)

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the

  3. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study.

    Science.gov (United States)

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Sugata, Hisato; Hanaie, Ryuzo; Nagatani, Fumiyo; Yamamoto, Tomoka; Tachibana, Masaya; Tominaga, Koji; Hirata, Masayuki; Mohri, Ikuko; Taniike, Masako

    2017-01-01

    Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD), the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG) to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz) in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years) and 13 typically developing boys (mean age, 9.45 ± 1.51 years). We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  4. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study

    Directory of Open Access Journals (Sweden)

    Junko Matsuzaki

    2017-09-01

    Full Text Available Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD, the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years and 13 typically developing boys (mean age, 9.45 ± 1.51 years. We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  5. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.

    2013-08-04

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.

  6. Auditory feedback affects perception of effort when exercising with a Pulley machine

    DEFF Research Database (Denmark)

    Bordegoni, Monica; Ferrise, Francesco; Grani, Francesco

    2013-01-01

    In this paper we describe an experiment that investigates the role of auditory feedback in affecting the perception of effort when using a physical pulley machine. Specifically, we investigated whether variations in the amplitude and frequency content of the pulley sound affect perception of effo...

  7. Shop 'til you hear it drop - Influence of Interactive Auditory Feedback in a Virtual Reality Supermarket

    DEFF Research Database (Denmark)

    Sikström, Erik; Høeg, Emil Rosenlund; Mangano, Luca

    2016-01-01

    In this paper we describe an experiment aiming to investigate the impact of auditory feedback in a virtual reality supermarket scenario. The participants were asked to read a shopping list and collect items one by one and place them into a shopping cart. Three conditions were presented randomly...

  8. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.

    Science.gov (United States)

    Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André

    2010-01-28

    We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society

  9. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

    OpenAIRE

    Charles R Larson; Donald A Robin

    2016-01-01

    The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor ...

  10. Self-Recognition in Young Children Using Delayed versus Live Feedback: Evidence of a Developmental Asynchrony.

    Science.gov (United States)

    Povinelli, Daniel J.; And Others

    1996-01-01

    Investigated the ability of young children to recognize themselves in delayed videotapes and recent photographs. Results suggested a significant developmental delay in young children's success on mark tests of self-recognition using delayed feedback as compared to live feedback, which may have important implications for characterizing the…

  11. Establishing Auditory-Tactile-Visual Equivalence Classes in Children with Autism and Developmental Delays

    Science.gov (United States)

    Mullen, Stuart; Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb

    2017-01-01

    The current study sought to evaluate the efficacy of a stimulus equivalence training procedure in establishing auditory-tactile-visual stimulus classes with 2 children with autism and developmental delays. Participants were exposed to vocal-tactile (A-B) and tactile-picture (B-C) conditional discrimination training and were tested for the…

  12. Dynamical response of Mathieu–Duffing oscillator with fractional-order delayed feedback

    International Nuclear Information System (INIS)

    Wen, Shao-Fang; Shen, Yong-Jun; Yang, Shao-Pu; Wang, Jun

    2017-01-01

    Highlights: • The analytical solution for Mathieu–Duffing oscillator with fractional-order delayed feedback is obtained. • The fractional-order delayed feedback has both the functions of delayed velocity feedback and delayed displacement feedback. • The special effects of time delay on nonzero periodic solutions are analyzed in detail. • The effects of the fractional-order parameters on system response are characterized. - Abstract: In this paper, the dynamical response of Mathieu–Duffing oscillator under fractional-order delayed feedback is investigated. At first, the approximate analytical solution and the amplitude-frequency equation are obtained based on the averaging method. The equivalent stiffness coefficient and equivalent damping coefficient are defined by the feedback coefficient, fractional order and time delay et al. The effects of feedback coefficient, fractional order and time delay on these two equivalent parameters are analyzed. It is found that the fractional-order delayed feedback has not only the function of delayed velocity feedback, but also the function of delayed displacement feedback. Then, the comparison of the amplitude-frequency curves obtained by the analytical and numerical solutions verifies the correctness and satisfactory precision of the approximate analytical solution. The effects of the parameters in the fractional-order delayed feedback on the complex dynamical behaviors of Mathieu–Duffing oscillator are studied. It could be found that fractional-order delayed feedback has important influences on the dynamical behavior of Mathieu–Duffing oscillator, and the results are very helpful to design, analyze or control in vibration engineering.

  13. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    Directory of Open Access Journals (Sweden)

    Larson Charles R

    2011-06-01

    Full Text Available Abstract Background The motor-driven predictions about expected sensory feedback (efference copies have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs were recorded in response to upward pitch shift stimuli (PSS with five different magnitudes (0, +50, +100, +200 and +400 cents at voice onset during active vocal production and passive listening to the playback. Results Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents, became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli. Conclusions Findings of the present study suggest that the brain utilizes the motor predictions (efference copies to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.

  14. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Larson, Charles R

    2011-06-06

    The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback. Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli. Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.

  15. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control

    Directory of Open Access Journals (Sweden)

    Eric O. Boyer

    2017-04-01

    Full Text Available As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  16. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback

    Science.gov (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy

    2017-11-01

    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  17. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    Science.gov (United States)

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  18. Auditory feedback improves heart rate moderation during moderate-intensity exercise.

    Science.gov (United States)

    Shaykevich, Alex; Grove, J Robert; Jackson, Ben; Landers, Grant J; Dimmock, James

    2015-05-01

    The objective of this study is to determine whether exposure to automated HR feedback can produce improvements in the ability to regulate HR during moderate-intensity exercise and to evaluate the persistence of these improvements after feedback is removed. Twenty healthy adults performed 10 indoor exercise sessions on cycle ergometers over 5 wk after a twice-weekly schedule. During these sessions (FB), participants received auditory feedback designed to maintain HR within a personalized, moderate-intensity training zone between 70% and 80% of estimated maximum HR. All feedback was delivered via a custom mobile software application. Participants underwent an initial assessment (PREFB) to measure their ability to maintain exercise intensity defined by the training zone without use of feedback. After completing the feedback training, participants performed three additional assessments identical to PREFB at 1 wk (POST1), 2 wk (POST2), and 4 wk (POST3) after their last feedback session. Time in zone (TIZ), defined as the ratio of the time spent within the training zone divided by the overall time of exercise, rate of perceived exertion, instrumental attitudes, and affective attitudes were then evaluated to assess results using two-way, mixed-model ANOVA with sessions and gender as factors. Training with feedback significantly improved TIZ (P moderate-intensity exercise in healthy adults.

  19. The Effect of Delayed Visual Feedback on Synchrony Perception in a Tapping Task

    Directory of Open Access Journals (Sweden)

    Mirjam Keetels

    2011-10-01

    Full Text Available Sensory events following a motor action are, within limits, interpreted as a causal consequence of those actions. For example, the clapping of the hands is initiated by the motor system, but subsequently visual, auditory, and tactile information is provided and processed. In the present study we examine the effect of temporal disturbances in this chain of motor-sensory events. Participants are instructed to tap a surface with their finger in synchrony with a chain of 20 sound clicks (ISI 750 ms. We examined the effect of additional visual information on this ‘tap-sound’-synchronization task. During tapping, subjects will see a video of their own tapping hand on a screen in front of them. The video can either be in synchrony with the tap (real-time recording, or can be slightly delayed (∼40–160 ms. In a control condition, no video is provided. We explore whether ‘tap-sound’ synchrony will be shifted as a function of the delayed visual feedback. Results will provide fundamental insights into how the brain preserves a causal interpretation of motor actions and their sensory consequences.

  20. Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays

    International Nuclear Information System (INIS)

    Wen Guilin; Wang Qingguo; Lin Chong; Han Xu; Li Guangyao

    2006-01-01

    Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays

  1. Timing matters: The impact of immediate and delayed feedback on artificial language learning

    Directory of Open Access Journals (Sweden)

    Bertram Opitz

    2011-02-01

    Full Text Available In the present experiment, we used event-related potentials (ERP to investigate the role of immediate and delayed feedback in an artificial grammar learning task. Two groups of participants were engaged in classifying non-word strings according to an underlying rule system, not known to the participants. Visual feedback was provided after each classification either immediately or with a short delay of one second. Both groups were able to learn the artificial grammar system as indicated by an increase in classification performance. However, the gain in performance was significantly larger for the group receiving immediate feedback as compared to the group receiving delayed feedback. Learning was accompanied by an increase in P300 activity in the ERP for delayed as compared to immediate feedback. Irrespective of feedback delay, both groups exhibited learning related decreases in the feedback-related positivity (FRP elicited by positive feedback only. The feedback-related negativity (FRN, however, remained constant over the course of learning. These results suggest, first, that delayed feedback is less effective for artificial grammar learning as task requirements are very demanding, and second, that the FRP elicited by positive prediction errors decreases with learning while the FRN to negative prediction errors is elicited in an all-or-none fashion by negative feedback throughout the entire experiment.

  2. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2011-12-01

    The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Event-related potentials (ERPs) were recorded in response to+200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Learning from Feedback: Spacing and the Delay-Retention Effect

    Science.gov (United States)

    Smith, Troy A.; Kimball, Daniel R.

    2010-01-01

    Most modern research on the effects of feedback during learning has assumed that feedback is an error correction mechanism. Recent studies of feedback-timing effects have suggested that feedback might also strengthen initially correct responses. In an experiment involving cued recall of trivia facts, we directly tested several theories of…

  4. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator

    Science.gov (United States)

    González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  5. Dynamics and control of a financial system with time-delayed feedbacks

    International Nuclear Information System (INIS)

    Chen, W.-C.

    2008-01-01

    Complex behaviors in a financial system with time-delayed feedbacks are discussed in this study via numerical modeling. The system shows complex dynamics such as periodic, quasi-periodic, and chaotic behaviors. Both period doubling and inverse period doubling routes were found in this system. This paper also shows that the attractor merging crisis is a fundamental feature of nonlinear financial systems with time-delayed feedbacks. Control of the deterministic chaos in the financial system can be realized using Pyragas feedbacks

  6. On a new time-delayed feedback control of chaotic systems

    International Nuclear Information System (INIS)

    Tian Lixin; Xu Jun; Sun Mei; Li Xiuming

    2009-01-01

    In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.

  7. Deriving cochlear delays in humans using otoacoustic emissions and auditory evoked potentials

    DEFF Research Database (Denmark)

    Pigasse, Gilles

    A great deal of the processing of incoming sounds to the auditory system occurs within the cochlear. The organ of Corti within the cochlea has differing mechanical properties along its length that broadly gives rise to frequency selectivity. Its stiffness is at maximum at the base and decreases...... relation between frequency and travel time in the cochlea defines the cochlear delay. This delay is directly associated with the signal analysis occurring in the inner ear and is therefore of primary interest to get a better knowledge of this organ. It is possible to estimate the cochlear delay by direct...... and invasive techniques, but these disrupt the normal functioning of the cochlea and are usually conducted in animals. In order to obtain an estimate of the cochlear delay that is closer to the normally functioning human cochlea, the present project investigates non-invasive methods in normal hearing adults...

  8. The dynamics of second-order equations with delayed feedback and a large coefficient of delayed control

    Science.gov (United States)

    Kashchenko, Sergey A.

    2016-12-01

    The dynamics of second-order equations with nonlinear delayed feedback and a large coefficient of a delayed equation is investigated using asymptotic methods. Based on special methods of quasi-normal forms, a new construction is elaborated for obtaining the main terms of asymptotic expansions of asymptotic residual solutions. It is shown that the dynamical properties of the above equations are determined mostly by the behavior of the solutions of some special families of parabolic boundary value problems. A comparative analysis of the dynamics of equations with the delayed feedback of three types is carried out.

  9. Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback

    Directory of Open Access Journals (Sweden)

    A.F. EL-Bassiouny

    2006-01-01

    Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.

  10. Bifurcation Regulations Governed by Delay Self-Control Feedback in a Stochastic Birhythmic System

    Science.gov (United States)

    Ma, Zhidan; Ning, Lijuan

    2017-12-01

    We aim to investigate bifurcation behaviors in a stochastic birhythmic van der Pol (BVDP) system subjected to delay self-control feedback. First, the harmonic approximation is adopted to drive the delay self-control feedback to state variables without delay. Then, Fokker-Planck-Kolmogorov (FPK) equation and stationary probability density function (SPDF) for amplitude are obtained by applying stochastic averaging method. Finally, dynamical scenarios of the change of delay self-control feedback as well as noise that markedly influence bifurcation performance are observed. It is found that: the big feedback strength and delay will suppress the large amplitude limit cycle (LC) while the relatively big noise strength facilitates the large amplitude LC, which imply the proposed regulation strategies are feasible. Interestingly enough, the inner LC is never destroyed due to noise. Furthermore, the validity of analytical results was verified by Monte Carlo simulation of the dynamics.

  11. Improving the security of optoelectronic delayed feedback system by parameter modulation and system coupling

    Science.gov (United States)

    Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing

    2016-02-01

    A coupled system with varying parameters is proposed to improve the security of optoelectronic delayed feedback system. This system is coupled by two parameter-varied optoelectronic delayed feedback systems with chaotic modulation. Dynamics performance results show that this system has a higher complexity compared to the original one. Furthermore, this system can conceal the time delay effectively against the autocorrelation function and delayed mutual information method and can increase the dimension space of secure parameters to resist brute-force attack by introducing the digital chaotic systems.

  12. Equilibrium of a two-route system with delayed information feedback strategies

    International Nuclear Information System (INIS)

    Zhao, Xiao-mei; Xie, Dong-fan; Gao, Zi-you; Gao, Liang

    2013-01-01

    In intelligent transport system, some advanced information feedback strategies have been developed to reduce the oscillations and enhance the capacity on the road level. However, seldom strategies have considered the information delay and user equilibrium (UE) objective. Here, a derivative cost feedback strategy (DCFS) is proposed to reduce the influence of the delay, based on the UE principle. The simulation results show that in both no-delay and delay information cases, DCFS are the best and can make the system reaching the UE. Because DCFS can predict the trend of the travel cost.

  13. Equilibrium of a two-route system with delayed information feedback strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao-mei, E-mail: xmzhao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Xie, Dong-fan, E-mail: dfxie@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Gao, Zi-you, E-mail: zygao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Gao, Liang, E-mail: lianggao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2013-12-09

    In intelligent transport system, some advanced information feedback strategies have been developed to reduce the oscillations and enhance the capacity on the road level. However, seldom strategies have considered the information delay and user equilibrium (UE) objective. Here, a derivative cost feedback strategy (DCFS) is proposed to reduce the influence of the delay, based on the UE principle. The simulation results show that in both no-delay and delay information cases, DCFS are the best and can make the system reaching the UE. Because DCFS can predict the trend of the travel cost.

  14. Quadratic theory and feedback controllers for linear time delay systems

    International Nuclear Information System (INIS)

    Lee, E.B.

    1976-01-01

    Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)

  15. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    Science.gov (United States)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  16. Using periodic modulation to control coexisting attractors induced by delayed feedback

    International Nuclear Information System (INIS)

    Martinez-Zerega, B.E.; Pisarchik, A.N.; Tsimring, L.S.

    2003-01-01

    A delay in feedback can stabilize simultaneously several unstable periodic orbits embedded in a chaotic attractor. We show that by modulating the feedback variable it is possible to lock one of these states and eliminate other coexisting periodic attractors. The method is demonstrated with both a logistic map and a CO 2 laser model

  17. Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Andrey Dovzhenok

    Full Text Available Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS. This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.

  18. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing.

    Science.gov (United States)

    Scheperle, Rachel A; Tejani, Viral D; Omtvedt, Julia K; Brown, Carolyn J; Abbas, Paul J; Hansen, Marlan R; Gantz, Bruce J; Oleson, Jacob J; Ozanne, Marie V

    2017-07-01

    This retrospective review explores delayed-onset hearing loss in 85 individuals receiving cochlear implants designed to preserve acoustic hearing at the University of Iowa Hospitals and Clinics between 2001 and 2015. Repeated measures of unaided behavioral audiometric thresholds, electrode impedance, and electrically evoked compound action potential (ECAP) amplitude growth functions were used to characterize longitudinal changes in auditory status. Participants were grouped into two primary categories according to changes in unaided behavioral thresholds: (1) stable hearing or symmetrical hearing loss and (2) delayed loss of hearing in the implanted ear. Thirty-eight percent of this sample presented with delayed-onset hearing loss of various degrees and rates of change. Neither array type nor insertion approach (round window or cochleostomy) had a significant effect on prevalence. Electrode impedance increased abruptly for many individuals exhibiting precipitous hearing loss; the increase was often transient. The impedance increases were significantly larger than the impedance changes observed for individuals with stable or symmetrical hearing loss. Moreover, the impedance changes were associated with changes in behavioral thresholds for individuals with a precipitous drop in behavioral thresholds. These findings suggest a change in the electrode environment coincident with the change in auditory status. Changes in ECAP thresholds, growth function slopes, and suprathreshold amplitudes were not correlated with changes in behavioral thresholds, suggesting that neural responsiveness in the region excited by the implant is relatively stable. Further exploration into etiology of delayed-onset hearing loss post implantation is needed, with particular interest in mechanisms associated with changes in the intracochlear environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Missing and delayed auditory responses in young and older children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    J. Christopher eEdgar

    2014-06-01

    Full Text Available Background: The development of left and right superior temporal gyrus (STG 50ms (M50 and 100ms (M100 auditory responses in typically developing children (TD and in children with autism spectrum disorder (ASD was examined. It was hypothesized that (1 M50 responses would be observed equally often in younger and older children, (2 M100 responses would be observed more often in older than younger children indicating later development of secondary auditory areas, and (3 M100 but not M50 would be observed less often in ASD than TD in both age groups, reflecting slower maturation of later developing auditory areas in ASD. Methods: 35 typically developing controls, 63 ASD without language impairment (ASD-LI, and 38 ASD with language impairment (ASD+LI were recruited.The presence or absence of a STG M50 and M100 was scored. Subjects were grouped into younger (6 to 10-years-old and older groups (11 to 15-years-old. Results: Although M50 responses were observed equally often in older and younger subjects and equally often in TD and ASD, left and right M50 responses were delayed in ASD-LI and ASD+LI. Group comparisons showed that in younger subjects M100 responses were observed more often in TD than ASD+LI (90% vs 66%, p=0.04, with no differences between TD and ASD-LI (90% vs 76% p=0.14 or between ASD-LI and ASD+LI (76% vs 66%, p=0.53. In older subjects, whereas no differences were observed between TD and ASD+LI, responses were observed more often in ASD-LI than ASD+LI. Conclusions: Although present in all groups, M50 responses were delayed in ASD, suggesting delayed development of earlier developing auditory areas. Examining the TD data, findings indicated that by 11 years a right M100 should be observed in 100% of subjects and a left M100 in 80% of subjects. Thus, by 11years, lack of a left and especially right M100 offers neurobiological insight into sensory processing that may underlie language or cognitive impairment.

  20. Learning monopolies with delayed feedback on price expectations

    Science.gov (United States)

    Matsumoto, Akio; Szidarovszky, Ferenc

    2015-11-01

    We call the intercept of the price function with the vertical axis the maximum price and the slope of the price function the marginal price. In this paper it is assumed that a monopolistic firm has full information about the marginal price and its own cost function but is uncertain on the maximum price. However, by repeated interaction with the market, the obtained price observations give a basis for an adaptive learning process of the maximum price. It is also assumed that the price observations have fixed delays, so the learning process can be described by a delayed differential equation. In the cases of one or two delays, the asymptotic behavior of the resulting dynamic process is examined, stability conditions are derived. Three main results are demonstrated in the two delay learning processes. First, it is possible to stabilize the equilibrium which is unstable in the one delay model. Second, complex dynamics involving chaos, which is impossible in the one delay model, can emerge. Third, alternations of stability and instability (i.e., stability switches) occur repeatedly.

  1. Audiovisual Integration Delayed by Stimulus Onset Asynchrony Between Auditory and Visual Stimuli in Older Adults.

    Science.gov (United States)

    Ren, Yanna; Yang, Weiping; Nakahashi, Kohei; Takahashi, Satoshi; Wu, Jinglong

    2017-02-01

    Although neuronal studies have shown that audiovisual integration is regulated by temporal factors, there is still little knowledge about the impact of temporal factors on audiovisual integration in older adults. To clarify how stimulus onset asynchrony (SOA) between auditory and visual stimuli modulates age-related audiovisual integration, 20 younger adults (21-24 years) and 20 older adults (61-80 years) were instructed to perform an auditory or visual stimuli discrimination experiment. The results showed that in younger adults, audiovisual integration was altered from an enhancement (AV, A ± 50 V) to a depression (A ± 150 V). In older adults, the alterative pattern was similar to that for younger adults with the expansion of SOA; however, older adults showed significantly delayed onset for the time-window-of-integration and peak latency in all conditions, which further demonstrated that audiovisual integration was delayed more severely with the expansion of SOA, especially in the peak latency for V-preceded-A conditions in older adults. Our study suggested that audiovisual facilitative integration occurs only within a certain SOA range (e.g., -50 to 50 ms) in both younger and older adults. Moreover, our results confirm that the response for older adults was slowed and provided empirical evidence that integration ability is much more sensitive to the temporal alignment of audiovisual stimuli in older adults.

  2. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  3. The Effects of Computerized Auditory Feedback on Electronic Article Surveillance Tag Placement in an Auto-Parts Distribution Center

    Science.gov (United States)

    Goomas, David T.

    2008-01-01

    In this report from the field, computerized auditory feedback was used to inform order selectors and order selector auditors in a distribution center to add an electronic article surveillance (EAS) adhesive tag. This was done by programming handheld computers to emit a loud beep for high-priced items upon scanning the item's bar-coded Universal…

  4. Hopf bifurcation analysis of Chen circuit with direct time delay feedback

    International Nuclear Information System (INIS)

    Hai-Peng, Ren; Wen-Chao, Li; Ding, Liu

    2010-01-01

    Direct time delay feedback can make non-chaotic Chen circuit chaotic. The chaotic Chen circuit with direct time delay feedback possesses rich and complex dynamical behaviours. To reach a deep and clear understanding of the dynamics of such circuits described by delay differential equations, Hopf bifurcation in the circuit is analysed using the Hopf bifurcation theory and the central manifold theorem in this paper. Bifurcation points and bifurcation directions are derived in detail, which prove to be consistent with the previous bifurcation diagram. Numerical simulations and experimental results are given to verify the theoretical analysis. Hopf bifurcation analysis can explain and predict the periodical orbit (oscillation) in Chen circuit with direct time delay feedback. Bifurcation boundaries are derived using the Hopf bifurcation analysis, which will be helpful for determining the parameters in the stabilisation of the originally chaotic circuit

  5. Stochastic resonance in a bistable system subject to multi-time-delayed feedback and aperiodic signal

    International Nuclear Information System (INIS)

    Li Jianlong; Zeng Lingzao

    2010-01-01

    We discuss in detail the effects of the multi-time-delayed feedback driven by an aperiodic signal on the output of a stochastic resonance (SR) system. The effective potential function and dynamical probability density function (PDF) are derived. To measure the performance of the SR system in the presence of a binary random signal, the bit error rate (BER) defined by the dynamical PDF is employed, as is commonly used in digital communications. We find that the delay time, strength of the feedback, and number of time-delayed terms can change the effective potential function and the effective amplitude of the signal, and then affect the BER of the SR system. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the multi-time-delayed feedback on SR and give a guidance to nonlinear systems in the application of information processing.

  6. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study.

    Science.gov (United States)

    Gonzalez, Jose; Soma, Hirokazu; Sekine, Masashi; Yu, Wenwei

    2012-06-09

    Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user's mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject's EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. The performance improvements when using auditory cues, along with vision

  7. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study

    Directory of Open Access Journals (Sweden)

    Gonzalez Jose

    2012-06-01

    Full Text Available Abstract Background Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. Methods 10 male subjects (26+/-years old, participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF, Visual Feedback only control (VF, and Audiovisual Feedback control (AVF. For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject’s EEG, ECG, electro-dermal activity (EDA, and respiration rate were measured. Results The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback. Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. Conclusions The performance

  8. Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes

    Directory of Open Access Journals (Sweden)

    Susan Abadi

    2016-09-01

    Full Text Available Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cross-sectional study, we compared click auditory brainstem responses between 261 children who were clinically diagnosed with delayed speech with unknown causes based on normal routine auditory test findings and neurological examinations and had >12 months of speech delay (case group and 261 age- and sex-matched normally developing children (control group. Our results indicated that the case group exhibited significantly higher wave amplitude responses to click stimuli (waves I, III, and V than did the control group (P=0.001. These amplitudes were significantly reduced after 1 year (P=0.001; however, they were still significantly higher than those of the control group (P=0.001. The significant differences were seen regardless of the age and the sex of the participants. There were no statistically significant differences between the 2 groups considering the latency of waves I, III, and V. In conclusion, the higher amplitudes of waves I, III, and V, which were observed in the auditory brainstem responses to click stimuli among the patients with speech delay with unknown causes, might be used as a diagnostic tool to track patients’ improvement after treatment.

  9. A software module for implementing auditory and visual feedback on a video-based eye tracking system

    Science.gov (United States)

    Rosanlall, Bharat; Gertner, Izidor; Geri, George A.; Arrington, Karl F.

    2016-05-01

    We describe here the design and implementation of a software module that provides both auditory and visual feedback of the eye position measured by a commercially available eye tracking system. The present audio-visual feedback module (AVFM) serves as an extension to the Arrington Research ViewPoint EyeTracker, but it can be easily modified for use with other similar systems. Two modes of audio feedback and one mode of visual feedback are provided in reference to a circular area-of-interest (AOI). Auditory feedback can be either a click tone emitted when the user's gaze point enters or leaves the AOI, or a sinusoidal waveform with frequency inversely proportional to the distance from the gaze point to the center of the AOI. Visual feedback is in the form of a small circular light patch that is presented whenever the gaze-point is within the AOI. The AVFM processes data that are sent to a dynamic-link library by the EyeTracker. The AVFM's multithreaded implementation also allows real-time data collection (1 kHz sampling rate) and graphics processing that allow display of the current/past gaze-points as well as the AOI. The feedback provided by the AVFM described here has applications in military target acquisition and personnel training, as well as in visual experimentation, clinical research, marketing research, and sports training.

  10. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.

    Science.gov (United States)

    Botzer, Lior; Karniel, Amir

    2013-07-01

    It has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment. In the first experiment, when visual feedback was unexpectedly delayed, the hand movement overshot the end-point target, indicating a vision-based feedback control. Over the ensuing trials, movements gradually adapted and became accurate. When the delay was removed unexpectedly, movements systematically undershot the target, demonstrating that adaptation occurred within the vision-based feedback control mechanism. In a second experiment designed to broaden our understanding of the underlying mechanisms, we revealed similar after-effects for rhythmic reversal (out-and-back) movements. We present a computational model accounting for these results based on two adapted forward models, each tuned for a specific modality delay (proprioception or vision), and a third feedforward controller. The computational model, along with the experimental results, refutes delay representation in a pure forward vision-based predictor and suggests that adaptation occurred in the forward vision-based predictor, and concurrently in the state-based feedforward controller. Understanding how the brain compensates for conductance and processing delays is essential for understanding certain impairments concerning these neural delays as well as for the development of brain-machine interfaces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    Science.gov (United States)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  12. Stability and oscillation of two coupled Duffing equations with time delay state feedback

    International Nuclear Information System (INIS)

    El-Bassiouny, A F

    2006-01-01

    This paper presents an analytical study of the simultaneous principal parametric resonances of two coupled Duffing equations with time delay state feedback. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. The method of multiple scales is used to determine a set of ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the frequency-response curves. We analyse the effect of time delay and the other different parameters on these oscillations. The stability of the fixed points is examined by using the variational method. Numerical solutions are carried out and graphical representations of the results are presented and discussed. Increasing in the time delay τ given decreasing and increasing in the regions of definition and stability respectively and the first mode has decreased magnitudes. The multivalued solutions disappear when decreasing the coefficients of cubic nonlinearities of the second mode α 3 and the detuning parameter σ 2 respectively. Both modes shift to the left for increasing linear feedback gain v 1 and the coefficient of parametric excitation f 1 respectively

  13. Consistency properties of chaotic systems driven by time-delayed feedback

    Science.gov (United States)

    Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.

    2018-04-01

    Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.

  14. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  15. Bifurcation analysis of Rössler system with multiple delayed feedback

    Directory of Open Access Journals (Sweden)

    Meihong Xu

    2010-10-01

    Full Text Available In this paper, regarding the delay as parameter, we investigate the effect of delay on the dynamics of a Rössler system with multiple delayed feedback proposed by Ghosh and Chowdhury. At first we consider the stability of equilibrium and the existence of Hopf bifurcations. Then an explicit algorithm for determining the direction and the stability of the bifurcating periodic solutions is derived by using the normal form theory and center manifold argument. Finally, we give a numerical simulation example which indicates that chaotic oscillation is converted into a stable steady state or a stable periodic orbit when the delay passes through certain critical values.

  16. Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2018-04-01

    The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.

  17. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Xu Daolin; Zhou Jiaxi; Li Yingli

    2012-01-01

    Highlights: ► A chaotification method based on nonlinear time-delay feedback control is present. ► An analytical function of nonlinear time-delay feedback control is derived. ► A large range of parametric domain for chaotification is obtained. ► The approach allows using small control gain. ► Design of chaotification becomes a standard process without uncertainty. - Abstract: This paper presents a chaotification method based on nonlinear time-delay feedback control for a two-dimensional vibration isolation floating raft system (VIFRS). An analytical function of nonlinear time-delay feedback control is derived. This approach can theoretically provide a systematic design of chaotification for nonlinear VIFRS and completely avoid blind and inefficient numerical search on the basis of trials and errors. Numerical simulations show that with a proper setting of control parameters the method holds the favorable aspects including the capability of chaotifying across a large range of parametric domain, the advantage of using small control and the flexibility of designing control feedback forms. The effects on chaotification performance are discussed in association with the configuration of the control parameters.

  18. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  19. Chaotification of Quasi-zero Stiffness System Via Direct Time-delay Feedback

    Directory of Open Access Journals (Sweden)

    Shuyong Liu

    2013-03-01

    Full Text Available This paper presents a chaotification method based on direct time-delay feedback control for a quasi-zero-stiffness isolation system. An analytical function of time-delay feedback control is derived based on differential-geometry control theory. Furthermore, the feasibility and effectiveness of this method was verified by numerical simulations. Numerical simulations show that this method holds the favorable aspects including the advantage of using tiny control gain, the capability of chaotifying across a large range of parametric domain and the high feasibility of the control implement.

  20. Rehearsal significantly improves immediate and delayed recall on the Rey Auditory Verbal Learning Test.

    Science.gov (United States)

    Hessen, Erik

    2011-10-01

    A repeated observation during memory assessment with the Rey Auditory Verbal Learning Test (RAVLT) is that patients who spontaneously employ a memory rehearsal strategy by repeating the word list more than once achieve better scores than patients who only repeat the word list once. This observation led to concern about the ability of the standard test procedure of RAVLT and similar tests in eliciting the best possible recall scores. The purpose of the present study was to test the hypothesis that a rehearsal recall strategy of repeating the word list more than once would result in improved scores of recall on the RAVLT. We report on differences in outcome after standard administration and after experimental administration on Immediate and Delayed Recall measures from the RAVLT of 50 patients. The experimental administration resulted in significantly improved scores for all the variables employed. Additionally, it was found that patients who failed effort screening showed significantly poorer improvement on Delayed Recall compared with those who passed the effort screening. The general clear improvement both in raw scores and T-scores demonstrates that recall performance can be significantly influenced by the strategy of the patient or by small variations in instructions by the examiner.

  1. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

    Directory of Open Access Journals (Sweden)

    Charles R Larson

    2016-02-01

    Full Text Available The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor control. Another use of this technique requires subjects to voluntarily change the pitch of their voice when they hear a pitch shift stimulus. Under these conditions, short latency responses are produced that change voice pitch to match that of the stimulus. The pitch-shift technique has been used with magnetoencephalography (MEG and electroencephalography (EEG recordings, and has shown that at vocal onset there is normally a suppression of neural activity related to vocalization. However, if a pitch-shift is also presented at voice onset, there is a cancellation of this suppression, which has been interpreted to mean that one way in which a person distinguishes self-vocalization from vocalization of others is by a comparison of the intended voice and the actual voice. Studies of the pitch shift reflex in the fMRI environment show that the superior temporal gyrus (STG plays an important role in the process of controlling voice F0 based on auditory feedback. Additional studies using fMRI for effective connectivity modeling show that the left and right STG play critical roles in correcting for an error in voice production. While both the left and right STG are involved in this process, a feedback loop develops between left and right STG during perturbations, in which the left to right connection becomes stronger, and a new negative right to left connection emerges along with the emergence of other feedback loops within the cortical network tested.

  2. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  3. Eliminating oscillations in the Internet by time-delayed feedback control

    International Nuclear Information System (INIS)

    Liu Chenglin; Tian Yuping

    2008-01-01

    In this paper, a time-delayed feedback control method is applied to congestion control in order to eliminate oscillations in the Internet. The stability of the proposed control method is demonstrated based on frequency-domain analysis. The effectiveness of the method is illustrated using simulation

  4. Delay Reduction for Instantly Decodable Network Coding in Persistent Channels With Feedback Imperfections

    KAUST Repository

    Douik, Ahmed S.

    2015-11-05

    This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.

  5. Eliminating oscillations in the Internet by time-delayed feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Automatic Control, Southeast University, Nanjing 210096 (China); Tian Yuping [Department of Automatic Control, Southeast University, Nanjing 210096 (China)], E-mail: yptian@seu.edu.cn

    2008-03-15

    In this paper, a time-delayed feedback control method is applied to congestion control in order to eliminate oscillations in the Internet. The stability of the proposed control method is demonstrated based on frequency-domain analysis. The effectiveness of the method is illustrated using simulation.

  6. Delay Reduction for Instantly Decodable Network Coding in Persistent Channels With Feedback Imperfections

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.

  7. Fast negative feedback enables mammalian auditory nerve fibers to encode a wide dynamic range of sound intensities.

    Directory of Open Access Journals (Sweden)

    Mark Ospeck

    Full Text Available Mammalian auditory nerve fibers (ANF are remarkable for being able to encode a 40 dB, or hundred fold, range of sound pressure levels into their firing rate. Most of the fibers are very sensitive and raise their quiescent spike rate by a small amount for a faint sound at auditory threshold. Then as the sound intensity is increased, they slowly increase their spike rate, with some fibers going up as high as ∼300 Hz. In this way mammals are able to combine sensitivity and wide dynamic range. They are also able to discern sounds embedded within background noise. ANF receive efferent feedback, which suggests that the fibers are readjusted according to the background noise in order to maximize the information content of their auditory spike trains. Inner hair cells activate currents in the unmyelinated distal dendrites of ANF where sound intensity is rate-coded into action potentials. We model this spike generator compartment as an attenuator that employs fast negative feedback. Input current induces rapid and proportional leak currents. This way ANF are able to have a linear frequency to input current (f-I curve that has a wide dynamic range. The ANF spike generator remains very sensitive to threshold currents, but efferent feedback is able to lower its gain in response to noise.

  8. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback.

    Science.gov (United States)

    Gaudreault, Mathieu; Drolet, François; Viñals, Jorge

    2010-11-01

    Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear stochastic differential delay equation with feedback. Our results assume that the delay time τ is small compared to other characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line is found, the location of which depends on the conditional average , where x(t) is the dynamical variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deterministic limit and hence that the interaction between fluctuation correlations and delay affect the stability of the solutions of the model equation studied.

  9. Overt vs. covert speed cameras in combination with delayed vs. immediate feedback to the offender.

    Science.gov (United States)

    Marciano, Hadas; Setter, Pe'erly; Norman, Joel

    2015-06-01

    Speeding is a major problem in road safety because it increases both the probability of accidents and the severity of injuries if an accident occurs. Speed cameras are one of the most common speed enforcement tools. Most of the speed cameras around the world are overt, but there is evidence that this can cause a "kangaroo effect" in driving patterns. One suggested alternative to prevent this kangaroo effect is the use of covert cameras. Another issue relevant to the effect of enforcement countermeasures on speeding is the timing of the fine. There is general agreement on the importance of the immediacy of the punishment, however, in the context of speed limit enforcement, implementing such immediate punishment is difficult. An immediate feedback that mediates the delay between the speed violation and getting a ticket is one possible solution. This study examines combinations of concealment and the timing of the fine in operating speed cameras in order to evaluate the most effective one in terms of enforcing speed limits. Using a driving simulator, the driving performance of the following four experimental groups was tested: (1) overt cameras with delayed feedback, (2) overt cameras with immediate feedback, (3) covert cameras with delayed feedback, and (4) covert cameras with immediate feedback. Each of the 58 participants drove in the same scenario on three different days. The results showed that both median speed and speed variance were higher with overt than with covert cameras. Moreover, implementing a covert camera system along with immediate feedback was more conducive to drivers maintaining steady speeds at the permitted levels from the very beginning. Finally, both 'overt cameras' groups exhibit a kangaroo effect throughout the entire experiment. It can be concluded that an implementation strategy consisting of covert speed cameras combined with immediate feedback to the offender is potentially an optimal way to motivate drivers to maintain speeds at the

  10. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Ai-Naffouri, Tareq Y.

    2013-01-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  11. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2013-10-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  12. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke.

    Science.gov (United States)

    Secoli, Riccardo; Milot, Marie-Helene; Rosati, Giulio; Reinkensmeyer, David J

    2011-04-23

    Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for the hemiparetic arm, suggesting that the increased demands associated

  13. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke

    Directory of Open Access Journals (Sweden)

    Reinkensmeyer David J

    2011-04-01

    Full Text Available Abstract Background Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Methods Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Results Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Conclusions Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for

  14. Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method

    International Nuclear Information System (INIS)

    Souza de Paula, Aline; Savi, Marcelo Amorim

    2009-01-01

    Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.

  15. Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Wei-Wei Qin

    2014-01-01

    Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.

  16. Controlling chaos in RCL-shunted Josephson junction by delayed linear feedback

    International Nuclear Information System (INIS)

    Feng Yuling; Shen Ke

    2008-01-01

    The resistively-capacitively-inductively-shunted (RCL-shunted) Josephson junction (RCLSJJ) shows chaotic behaviour under some parameter conditions. Here a scheme for controlling chaos in the RCLSJJ is presented based on the linear feedback theory. Numerical simulations show that this scheme can be effectively used to control chaotic states in this junction into stable periodic states. Moreover, the different stable period states with different period numbers can be obtained by appropriately adjusting the feedback intensity and delay time without any pre-knowledge of this system required

  17. Utility estimation of the application of auditory-visual-tactile sense feedback in respiratory gated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jung Hun; KIm, Byeong Jin; Roh, Shi Won; Lee, Hyeon Chan; Jang, Hyeong Jun; Kim, Hoi Nam [Dept. of Radiation Oncology, Biomedical Engineering, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Song, Jae Hoon [Dept. of Biomedical Engineering, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Kim, Young Jae [Dept. of Radiological Technology, Gwang Yang Health Collage, Gwangyang (Korea, Republic of)

    2013-03-15

    The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor and ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam{sub t}ime of the respiratory signal. The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule.

  18. Utility estimation of the application of auditory-visual-tactile sense feedback in respiratory gated radiation therapy

    International Nuclear Information System (INIS)

    Jo, Jung Hun; KIm, Byeong Jin; Roh, Shi Won; Lee, Hyeon Chan; Jang, Hyeong Jun; Kim, Hoi Nam; Song, Jae Hoon; Kim, Young Jae

    2013-01-01

    The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor and ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam t ime of the respiratory signal. The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule

  19. A feedback control model for network flow with multiple pure time delays

    Science.gov (United States)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  20. Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback

    Science.gov (United States)

    Wei, Xin; Wei, Junjie

    2017-09-01

    A diffusive autocatalytic bimolecular model with delayed feedback subject to Neumann boundary conditions is considered. We mainly study the stability of the unique positive equilibrium and the existence of periodic solutions. Our study shows that diffusion can give rise to Turing instability, and the time delay can affect the stability of the positive equilibrium and result in the occurrence of Hopf bifurcations. By applying the normal form theory and center manifold reduction for partial functional differential equations, we investigate the stability and direction of the bifurcations. Finally, we give some simulations to illustrate our theoretical results.

  1. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  2. Spectrum optimization-based chaotification using time-delay feedback control

    International Nuclear Information System (INIS)

    Zhou Jiaxi; Xu Daolin; Zhang Jing; Liu Chunrong

    2012-01-01

    Highlights: ► A time-delay feedback controller is designed for chaotification. ► A spectrum optimization method is proposed to determine chaotification parameters. ► Numerical examples verify the spectrum optimization- based chaotification method. ► Engineering application in line spectrum reconfiguration is demonstrated. - Abstract: In this paper, a spectrum optimization method is developed for chaotification in conjunction with an application in line spectrum reconfiguration. A key performance index (the objective function) based on Fourier spectrum is specially devised with the idea of suppressing spectrum spikes and broadening frequency band. Minimization of the index empowered by a genetic algorithm enables to locate favorable parameters of the time-delay feedback controller, by which a line spectrum of harmonic vibration can be transformed into a broad-band continuous spectrum of chaotic motion. Numerical simulations are carried out to verify the feasibility of the method and to demonstrate its effectiveness of chaotifying a 2-DOFs linear mechanical system.

  3. Bifurcation analysis in delayed feedback Jerk systems and application of chaotic control

    International Nuclear Information System (INIS)

    Zheng Baodong; Zheng Huifeng

    2009-01-01

    Jerk systems with delayed feedback are considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associated characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, the stability and direction of the Hopf bifurcation are determined by applying the normal form method and center manifold theorem. Finally, the application to chaotic control is investigated, and some numerical simulations are carried out to illustrate the obtained results.

  4. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator

    International Nuclear Information System (INIS)

    Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.

    2004-01-01

    Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed

  5. Deterministic and stochastic control of chimera states in delayed feedback oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Maistrenko, Y. [Institute of Mathematics and Center for Medical and Biotechnical Research, NAS of Ukraine, Tereschenkivska Str. 3, 01601 Kyiv (Ukraine)

    2016-06-08

    Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.

  6. Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-12-01

    Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.

  7. Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control

    International Nuclear Information System (INIS)

    Cui Baotong; Lou Xuyang

    2009-01-01

    In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme

  8. Noise-induced attractor annihilation in the delayed feedback logistic map

    International Nuclear Information System (INIS)

    Pisarchik, A.N.; Martínez-Zérega, B.E.

    2013-01-01

    We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.

  9. Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model

    Directory of Open Access Journals (Sweden)

    Troy A Hackett

    2014-04-01

    Full Text Available Our working model of the primate auditory cortex recognizes three major regions (core, belt, parabelt, subdivided into thirteen areas. The connections between areas are topographically ordered in a manner consistent with information flow along two major anatomical axes: core-belt-parabelt and caudal-rostral. Remarkably, most of the connections supporting this model were revealed using retrograde tracing techniques. Little is known about laminar circuitry, as anterograde tracing of axon terminations has rarely been used. The purpose of the present study was to examine the laminar projections of three areas of auditory cortex, pursuant to analysis of all areas. The selected areas were: middle lateral belt (ML; caudomedial belt (CM; and caudal parabelt (CPB. Injections of anterograde tracers yielded data consistent with major features of our model, and also new findings that compel modifications. Results supporting the model were: 1 feedforward projection from ML and CM terminated in CPB; 2 feedforward projections from ML and CPB terminated in rostral areas of the belt and parabelt; and 3 feedback projections typified inputs to the core region from belt and parabelt. At odds with the model was the convergence of feedforward inputs into rostral medial belt from ML and CPB. This was unexpected since CPB is at a higher stage of the processing hierarchy, with mainly feedback projections to all other belt areas. Lastly, extending the model, feedforward projections from CM, ML, and CPB overlapped in the temporal parietal occipital area (TPO in the superior temporal sulcus, indicating significant auditory influence on sensory processing in this region. The combined results refine our working model and highlight the need to complete studies of the laminar inputs to all areas of auditory cortex. Their documentation is essential for developing informed hypotheses about the neurophysiological influences of inputs to each layer and area.

  10. Bifurcation Control of an Electrostatically-Actuated MEMS Actuator with Time-Delay Feedback

    Directory of Open Access Journals (Sweden)

    Lei Li

    2016-10-01

    Full Text Available The parametric excitation system consisting of a flexible beam and shuttle mass widely exists in microelectromechanical systems (MEMS, which can exhibit rich nonlinear dynamic behaviors. This article aims to theoretically investigate the nonlinear jumping phenomena and bifurcation conditions of a class of electrostatically-driven MEMS actuators with a time-delay feedback controller. Considering the comb structure consisting of a flexible beam and shuttle mass, the partial differential governing equation is obtained with both the linear and cubic nonlinear parametric excitation. Then, the method of multiple scales is introduced to obtain a slow flow that is analyzed for stability and bifurcation. Results show that time-delay feedback can improve resonance frequency and stability of the system. What is more, through a detailed mathematical analysis, the discriminant of Hopf bifurcation is theoretically derived, and appropriate time-delay feedback force can make the branch from the Hopf bifurcation point stable under any driving voltage value. Meanwhile, through global bifurcation analysis and saddle node bifurcation analysis, theoretical expressions about the system parameter space and maximum amplitude of monostable vibration are deduced. It is found that the disappearance of the global bifurcation point means the emergence of monostable vibration. Finally, detailed numerical results confirm the analytical prediction.

  11. Single generation cycles and delayed feedback cycles are not separate phenomena.

    Science.gov (United States)

    Pfaff, T; Brechtel, A; Drossel, B; Guill, C

    2014-12-01

    We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Criterial noise effects on rule-based category learning: the impact of delayed feedback.

    Science.gov (United States)

    Ell, Shawn W; Ing, A David; Maddox, W Todd

    2009-08-01

    Variability in the representation of the decision criterion is assumed in many category-learning models, yet few studies have directly examined its impact. On each trial, criterial noise should result in drift in the criterion and will negatively impact categorization accuracy, particularly in rule-based categorization tasks, where learning depends on the maintenance and manipulation of decision criteria. In three experiments, we tested this hypothesis and examined the impact of working memory on slowing the drift rate. In Experiment 1, we examined the effect of drift by inserting a 5-sec delay between the categorization response and the delivery of corrective feedback, and working memory demand was manipulated by varying the number of decision criteria to be learned. Delayed feedback adversely affected performance, but only when working memory demand was high. In Experiment 2, we built on a classic finding in the absolute identification literature and demonstrated that distributing the criteria across multiple dimensions decreases the impact of drift during the delay. In Experiment 3, we confirmed that the effect of drift during the delay is moderated by working memory. These results provide important insights into the interplay between criterial noise and working memory, as well as providing important constraints for models of rule-based category learning.

  13. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Qianhua Zhao

    Full Text Available Delayed recall of words in a verbal learning test is a sensitive measure for the diagnosis of amnestic mild cognitive impairment (aMCI and early Alzheimer's disease (AD. The relative validity of different retention intervals of delayed recall has not been well characterized. Using the Auditory Verbal Learning Test-Huashan version, we compared the differentiating value of short-term delayed recall (AVL-SR, that is, a 3- to 5-minute delay time and long-term delayed recall (AVL-LR, that is, a 20-minute delay time in distinguishing patients with aMCI (n = 897 and mild AD (n = 530 from the healthy elderly (n = 1215. In patients with aMCI, the correlation between AVL-SR and AVL-LR was very high (r = 0.94, and the difference between the two indicators was less than 0.5 points. There was no difference between AVL-SR and AVL-LR in the frequency of zero scores. In the receiver operating characteristic curves analysis, although the area under the curve (AUC of AVL-SR and AVL-LR for diagnosing aMCI was significantly different, the cut-off scores of the two indicators were identical. In the subgroup of ages 80 to 89, the AUC of the two indicators showed no significant difference. Therefore, we concluded that AVL-SR could substitute for AVL-LR in identifying aMCI, especially for the oldest patients.

  14. The Effect of Learning Modality and Auditory Feedback on Word Memory: Cochlear-Implanted versus Normal-Hearing Adults.

    Science.gov (United States)

    Taitelbaum-Swead, Riki; Icht, Michal; Mama, Yaniv

    2017-03-01

    In recent years, the effect of cognitive abilities on the achievements of cochlear implant (CI) users has been evaluated. Some studies have suggested that gaps between CI users and normal-hearing (NH) peers in cognitive tasks are modality specific, and occur only in auditory tasks. The present study focused on the effect of learning modality (auditory, visual) and auditory feedback on word memory in young adults who were prelingually deafened and received CIs before the age of 5 yr, and their NH peers. A production effect (PE) paradigm was used, in which participants learned familiar study words by vocal production (saying aloud) or by no-production (silent reading or listening). Words were presented (1) in the visual modality (written) and (2) in the auditory modality (heard). CI users performed the visual condition twice-once with the implant ON and once with it OFF. All conditions were followed by free recall tests. Twelve young adults, long-term CI users, implanted between ages 1.7 and 4.5 yr, and who showed ≥50% in monosyllabic consonant-vowel-consonant open-set test with their implants were enrolled. A group of 14 age-matched NH young adults served as the comparison group. For each condition, we calculated the proportion of study words recalled. Mixed-measures analysis of variances were carried out with group (NH, CI) as a between-subjects variable, and learning condition (aloud or silent reading) as a within-subject variable. Following this, paired sample t tests were used to evaluate the PE size (differences between aloud and silent words) and overall recall ratios (aloud and silent words combined) in each of the learning conditions. With visual word presentation, young adults with CIs (regardless of implant status CI-ON or CI-OFF), showed comparable memory performance (and a similar PE) to NH peers. However, with auditory presentation, young adults with CIs showed poorer memory for nonproduced words (hence a larger PE) relative to their NH peers. The

  15. Incentives for Delay-Constrained Data Query and Feedback in Mobile Opportunistic Crowdsensing

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-07-01

    Full Text Available In this paper, we propose effective data collection schemes that stimulate cooperation between selfish users in mobile opportunistic crowdsensing. A query issuer generates a query and requests replies within a given delay budget. When a data provider receives the query for the first time from an intermediate user, the former replies to it and authorizes the latter as the owner of the reply. Different data providers can reply to the same query. When a user that owns a reply meets the query issuer that generates the query, it requests the query issuer to pay credits. The query issuer pays credits and provides feedback to the data provider, which gives the reply. When a user that carries a feedback meets the data provider, the data provider pays credits to the user in order to adjust its claimed expertise. Queries, replies and feedbacks can be traded between mobile users. We propose an effective mechanism to define rewards for queries, replies and feedbacks. We formulate the bargain process as a two-person cooperative game, whose solution is found by using the Nash theorem. To improve the credit circulation, we design an online auction process, in which the wealthy user can buy replies and feedbacks from the starving one using credits. We have carried out extensive simulations based on real-world traces to evaluate the proposed schemes.

  16. Effect of an auditory feedback substitution, tactilo-kinesthetic, or visual feedback on kinematics of pouring water from kettle into cup.

    Science.gov (United States)

    Portnoy, Sigal; Halaby, Orli; Dekel-Chen, Dotan; Dierick, Frédéric

    2015-11-01

    Pouring hot water from a kettle into a cup may prove a hazardous task, especially for the elderly or the visually-impaired. Individuals with deteriorating eyesight may endanger their hands by performing this task with both hands, relaying on tactilo-kinesthetic feedback (TKF). Auditory feedback (AF) may allow them to perform the task singlehandedly, thereby reducing the risk for injury. However since relying on an AF is not intuitive and requires practice, we aimed to determine if AF supplied during the task of pouring water can be used naturally as visual feedback (VF) following practice. For this purpose, we quantified, in young healthy sighted subjects (n = 20), the performance and kinematics of pouring water in the presence of three isolated feedbacks: visual, tactilo-kinesthetic, or auditory. There were no significant differences between the weights of spilled water in the AF condition compared to the TKF condition in the first, fifth or thirteenth trials. The subjectively-reported difficulty levels of using the TKF and the AF were significantly reduced between the first and thirteenth trials for both TKF (p = 0.01) and AF (p = 0.001). Trunk rotation during the first trial using the TKF was significantly lower than the trunk rotation while using VF. Also, shoulder adduction during the first trial using the TKF was significantly higher than the shoulder adduction while using the VF. During the AF trials, the median travel distance of the tip of the kettle was significantly reduced in the first trials so that in the thirtieth trial it did not differ significantly from the median travel distance during the thirtieth trial using TKF and VF. The maximal velocity of the tip of the kettle was constant for each of the feedback conditions but was higher in 10 cm s(-1) using VF than TKF, which was higher in 10 cm s(-1) from using AF. The smoothness of movement of the TKF and AF conditions, expressed by the normalized jerk score (NJSM), was one and two orders

  17. Logarithmic temporal axis manipulation and its application for measuring auditory contributions in F0 control using a transformed auditory feedback procedure

    Science.gov (United States)

    Yanaga, Ryuichiro; Kawahara, Hideki

    2003-10-01

    A new parameter extraction procedure based on logarithmic transformation of the temporal axis was applied to investigate auditory effects on voice F0 control to overcome artifacts due to natural fluctuations and nonlinearities in speech production mechanisms. The proposed method may add complementary information to recent findings reported by using frequency shift feedback method [Burnett and Larson, J. Acoust. Soc. Am. 112 (2002)], in terms of dynamic aspects of F0 control. In a series of experiments, dependencies of system parameters in F0 control on subjects, F0 and style (musical expressions and speaking) were tested using six participants. They were three male and three female students specialized in musical education. They were asked to sustain a Japanese vowel /a/ for about 10 s repeatedly up to 2 min in total while hearing F0 modulated feedback speech, that was modulated using an M-sequence. The results replicated qualitatively the previous finding [Kawahara and Williams, Vocal Fold Physiology, (1995)] and provided more accurate estimates. Relations with designing an artificial singer also will be discussed. [Work partly supported by the grant in aids in scientific research (B) 14380165 and Wakayama University.

  18. Modality effects in delayed free recall and recognition: visual is better than auditory.

    Science.gov (United States)

    Penney, C G

    1989-08-01

    During presentation of auditory and visual lists of words, different groups of subjects generated words that either rhymed with the presented words or that were associates. Immediately after list presentation, subjects recalled either the presented or the generated words. After presentation and test of all lists, a final free recall test and a recognition test were given. Visual presentation generally produced higher recall and recognition than did auditory presentation for both encoding conditions. The results are not consistent with explanations of modality effects in terms of echoic memory or greater temporal distinctiveness of auditory items. The results are more in line with the separate-streams hypothesis, which argues for different kinds of input processing for auditory and visual items.

  19. The role of auditory temporal cues in the fluency of stuttering adults

    OpenAIRE

    Furini, Juliana; Picoloto, Luana Altran; Marconato, Eduarda; Bohnen, Anelise Junqueira; Cardoso, Ana Claudia Vieira; Oliveira, Cristiane Moço Canhetti de

    2017-01-01

    ABSTRACT Purpose: to compare the frequency of disfluencies and speech rate in spontaneous speech and reading in adults with and without stuttering in non-altered and delayed auditory feedback (NAF, DAF). Methods: participants were 30 adults: 15 with Stuttering (Research Group - RG), and 15 without stuttering (Control Group - CG). The procedures were: audiological assessment and speech fluency evaluation in two listening conditions, normal and delayed auditory feedback (100 milliseconds dela...

  20. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    Science.gov (United States)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  1. Factorization and the synthesis of optimal feedback kernels for differential-delay systems

    Science.gov (United States)

    Milman, Mark M.; Scheid, Robert E.

    1987-01-01

    A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.

  2. The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control.

    Science.gov (United States)

    Scheerer, Nichole E; Jones, Jeffery A

    2014-12-01

    Speech production requires the combined effort of a feedback control system driven by sensory feedback, and a feedforward control system driven by internal models. However, the factors that dictate the relative weighting of these feedback and feedforward control systems are unclear. In this event-related potential (ERP) study, participants produced vocalisations while being exposed to blocks of frequency-altered feedback (FAF) perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or unpredictable in magnitude (50- and 100-cent perturbations varying randomly within each vocalisation). Vocal and P1-N1-P2 ERP responses revealed decreases in the magnitude and trial-to-trial variability of vocal responses, smaller N1 amplitudes, and shorter vocal, P1 and N1 response latencies following predictable FAF perturbation magnitudes. In addition, vocal response magnitudes correlated with N1 amplitudes, vocal response latencies, and P2 latencies. This pattern of results suggests that after repeated exposure to predictable FAF perturbations, the contribution of the feedforward control system increases. Examination of the presentation order of the FAF perturbations revealed smaller compensatory responses, smaller P1 and P2 amplitudes, and shorter N1 latencies when the block of predictable 100-cent perturbations occurred prior to the block of predictable 50-cent perturbations. These results suggest that exposure to large perturbations modulates responses to subsequent perturbations of equal or smaller size. Similarly, exposure to a 100-cent perturbation prior to a 50-cent perturbation within a vocalisation decreased the magnitude of vocal and N1 responses, but increased P1 and P2 latencies. Thus, exposure to a single perturbation can affect responses to subsequent perturbations. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback

    CERN Document Server

    Krisztin, Tibor; Wu, Jianhong

    1998-01-01

    This book contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. The authors describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behavior of solution curves on it. The approach makes use of advanced tools which in recent years have been developed for the investigation of infinite-dimensional dynamical systems: local invariant manifolds and inclination lemmas f

  4. A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference

    Science.gov (United States)

    Wang, Yunong; Cheng, Rongjun; Ge, Hongxia

    2017-08-01

    In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.

  5. Anticontrol of chaos in continuous-time systems via time-delay feedback.

    Science.gov (United States)

    Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo

    2000-12-01

    In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.

  6. Students' Perceived Preference for Visual and Auditory Assessment with E-Handwritten Feedback

    Science.gov (United States)

    Crews, Tena B.; Wilkinson, Kelly

    2010-01-01

    Undergraduate business communication students were surveyed to determine their perceived most effective method of assessment on writing assignments. The results indicated students' preference for a process that incorporates visual, auditory, and e-handwritten presentation via a tablet PC. Students also identified this assessment process would…

  7. Detecting delay in visual feedback of an action as a monitor of self recognition.

    Science.gov (United States)

    Hoover, Adria E N; Harris, Laurence R

    2012-10-01

    How do we distinguish "self" from "other"? The correlation between willing an action and seeing it occur is an important cue. We exploited the fact that this correlation needs to occur within a restricted temporal window in order to obtain a quantitative assessment of when a body part is identified as "self". We measured the threshold and sensitivity (d') for detecting a delay between movements of the finger (of both the dominant and non-dominant hands) and visual feedback as seen from four visual perspectives (the natural view, and mirror-reversed and/or inverted views). Each trial consisted of one presentation with minimum delay and another with a delay of between 33 and 150 ms. Participants indicated which presentation contained the delayed view. We varied the amount of efference copy available for this task by comparing performances for discrete movements and continuous movements. Discrete movements are associated with a stronger efference copy. Sensitivity to detect asynchrony between visual and proprioceptive information was significantly higher when movements were viewed from a "plausible" self perspective compared with when the view was reversed or inverted. Further, we found differences in performance between dominant and non-dominant hand finger movements across the continuous and single movements. Performance varied with the viewpoint from which the visual feedback was presented and on the efferent component such that optimal performance was obtained when the presentation was in the normal natural orientation and clear efferent information was available. Variations in sensitivity to visual/non-visual temporal incongruence with the viewpoint in which a movement is seen may help determine the arrangement of the underlying visual representation of the body.

  8. Nonlinear free vibration control of beams using acceleration delayed-feedback control

    International Nuclear Information System (INIS)

    Alhazza, Khaled A; Alajmi, Mohammed; Masoud, Ziyad N

    2008-01-01

    A single-mode delayed-feedback control strategy is developed to reduce the free vibrations of a flexible beam using a piezoelectric actuator. A nonlinear variational model of the beam based on the von Kàrmàn nonlinear type deformations is considered. Using Galerkin's method, the resulting governing partial differential equations of motion are reduced to a system of nonlinear ordinary differential equations. A linear model using the first mode is derived and is used to characterize the damping produced by the controller as a function of the controller's gain and delay. Three-dimensional figures showing the damping magnitude as a function of the controller gain and delay are presented. The characteristic damping of the controller as predicted by the linear model is compared to that calculated using direct long-time integration of a three-mode nonlinear model. Optimal values of the controller gain and delay using both methods are obtained, simulated and compared. To validate the single-mode approximation, numerical simulations are performed using a three-mode full nonlinear model. Results of the simulations demonstrate an excellent controller performance in mitigating the first-mode vibration

  9. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG.

    Science.gov (United States)

    Wang, Daming; Wang, Longsheng; Zhao, Tong; Gao, Hua; Wang, Yuncai; Chen, Xianfeng; Wang, Anbang

    2017-05-15

    Time delay signature (TDS) of a semiconductor laser subject to dispersive optical feedback from a chirped fibre Bragg grating (CFBG) is investigated experimentally and numerically. Different from mirror, CFBG provides additional frequency-dependent delay caused by dispersion, and thus induces external-cavity modes with irregular mode separation rather than a fixed separation induced by mirror feedback. Compared with mirror feedback, the CFBG feedback can greatly depress and even eliminate the TDS, although it leads to a similar quasi-period route to chaos with increases of feedback. In experiments, by using a CFBG with dispersion of 2000ps/nm, the TDS is decreased by 90% to about 0.04 compared with mirror feedback. Furthermore, both numerical and experimental results show that the TDS evolution is quite different: the TDS decreases more quickly down to a lower plateau (even background noise level of autocorrelation function) and never rises again. This evolution tendency is also different from that of FBG feedback, of which the TDS first decreases to a minimal value and then increases again as feedback strength increases. In addition, the CFBG feedback has no filtering effects and does not require amplification for feedback light.

  10. Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback

    Science.gov (United States)

    Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain

    2017-10-01

    A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.

  11. Time-delayed feedback technique for suppressing instabilities in time-periodic flow

    Science.gov (United States)

    Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz

    2017-11-01

    A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.

  12. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control

    Science.gov (United States)

    Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming

    2015-05-01

    With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.

  13. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    International Nuclear Information System (INIS)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier

  14. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    Science.gov (United States)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.

  15. Quantifying stimulus-response rehabilitation protocols by auditory feedback in Parkinson's disease gait pattern

    Science.gov (United States)

    Pineda, Gustavo; Atehortúa, Angélica; Iregui, Marcela; García-Arteaga, Juan D.; Romero, Eduardo

    2017-11-01

    External auditory cues stimulate motor related areas of the brain, activating motor ways parallel to the basal ganglia circuits and providing a temporary pattern for gait. In effect, patients may re-learn motor skills mediated by compensatory neuroplasticity mechanisms. However, long term functional gains are dependent on the nature of the pathology, follow-up is usually limited and reinforcement by healthcare professionals is crucial. Aiming to cope with these challenges, several researches and device implementations provide auditory or visual stimulation to improve Parkinsonian gait pattern, inside and outside clinical scenarios. The current work presents a semiautomated strategy for spatio-temporal feature extraction to study the relations between auditory temporal stimulation and spatiotemporal gait response. A protocol for auditory stimulation was built to evaluate the integrability of the strategy in the clinic practice. The method was evaluated in transversal measurement with an exploratory group of people with Parkinson's (n = 12 in stage 1, 2 and 3) and control subjects (n =6). The result showed a strong linear relation between auditory stimulation and cadence response in control subjects (R=0.98 +/-0.008) and PD subject in stage 2 (R=0.95 +/-0.03) and stage 3 (R=0.89 +/-0.05). Normalized step length showed a variable response between low and high gait velocity (0.2> R >0.97). The correlation between normalized mean velocity and stimulus was strong in all PD stage 2 (R>0.96) PD stage 3 (R>0.84) and controls (R>0.91) for all experimental conditions. Among participants, the largest variation from baseline was found in PD subject in stage 3 (53.61 +/-39.2 step/min, 0.12 +/- 0.06 in step length and 0.33 +/- 0.16 in mean velocity). In this group these values were higher than the own baseline. These variations are related with direct effect of metronome frequency on cadence and velocity. The variation of step length involves different regulation strategies and

  16. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Directory of Open Access Journals (Sweden)

    Mohamad Arif Fahmi Ismail

    Full Text Available The rubber hand illusion (RHI is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI, which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms, and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  17. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Science.gov (United States)

    Ismail, Mohamad Arif Fahmi; Shimada, Sotaro

    2016-01-01

    The rubber hand illusion (RHI) is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI), which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms), and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  18. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Maria eHerrojo Ruiz

    2014-09-01

    Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN

  19. Neural basis of the time window for subjective motor-auditory integration

    Directory of Open Access Journals (Sweden)

    Koichi eToida

    2016-01-01

    Full Text Available Temporal contiguity between an action and corresponding auditory feedback is crucial to the perception of self-generated sound. However, the neural mechanisms underlying motor–auditory temporal integration are unclear. Here, we conducted four experiments with an oddball paradigm to examine the specific event-related potentials (ERPs elicited by delayed auditory feedback for a self-generated action. The first experiment confirmed that a pitch-deviant auditory stimulus elicits mismatch negativity (MMN and P300, both when it is generated passively and by the participant’s action. In our second and third experiments, we investigated the ERP components elicited by delayed auditory feedback of for a self-generated action. We found that delayed auditory feedback elicited an enhancement of P2 (enhanced-P2 and a N300 component, which were apparently different from the MMN and P300 components observed in the first experiment. We further investigated the sensitivity of the enhanced-P2 and N300 to delay length in our fourth experiment. Strikingly, the amplitude of the N300 increased as a function of the delay length. Additionally, the N300 amplitude was significantly correlated with the conscious detection of the delay (the 50% detection point was around 200 ms, and hence reduction in the feeling of authorship of the sound (the sense of agency. In contrast, the enhanced-P2 was most prominent in short-delay (≤ 200 ms conditions and diminished in long-delay conditions. Our results suggest that different neural mechanisms are employed for the processing of temporally-deviant and pitch-deviant auditory feedback. Additionally, the temporal window for subjective motor–auditory integration is likely about 200 ms, as indicated by these auditory ERP components.

  20. The Effect of Feedback Delay on Perceptual Category Learning and Item Memory: Further Limits of Multiple Systems.

    Science.gov (United States)

    Stephens, Rachel G; Kalish, Michael L

    2018-02-01

    Delayed feedback during categorization training has been hypothesized to differentially affect 2 systems that underlie learning for rule-based (RB) or information-integration (II) structures. We tested an alternative possibility: that II learning requires more precise item representations than RB learning, and so is harmed more by a delay interval filled with a confusable mask. Experiments 1 and 2 examined the effect of feedback delay on memory for RB and II exemplars, both without and with concurrent categorization training. Without the training, II items were indeed more difficult to recognize than RB items, but there was no detectable effect of delay on item memory. In contrast, with concurrent categorization training, there were effects of both category structure and delayed feedback on item memory, which were related to corresponding changes in category learning. However, we did not observe the critical selective impact of delay on II classification performance that has been shown previously. Our own results were also confirmed in a follow-up study (Experiment 3) involving only categorization training. The selective influence of feedback delay on II learning appears to be contingent on the relative size of subgroups of high-performing participants, and in fact does not support that RB and II category learning are qualitatively different. We conclude that a key part of successfully solving perceptual categorization problems is developing more precise item representations, which can be impaired by delayed feedback during training. More important, the evidence for multiple systems of category learning is even weaker than previously proposed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Act-and-wait time-delayed feedback control of nonautonomous systems

    Science.gov (United States)

    Pyragas, Viktoras; Pyragas, Kestutis

    2016-07-01

    Act-and-wait modification of a time-delayed feedback control (TDFC) algorithm is proposed to stabilize unstable periodic orbits in nonautonomous dynamical systems. Due to periodical switching on and off the control perturbation, an infinite-dimensional function space of the TDFC system is reduced to the finite-dimensional state space. As a result the number of Floquet exponents defining the stability of the controlled orbit remains the same as for the control-free system. The values of these exponents can be effectively manipulated by the variation of control parameters. We demonstrate the advantages of the modification for the chaotic nonautonomous Duffing oscillator with diagonal and nondiagonal control matrices. In both cases very deep minima of the spectral abscissa of Floquet exponents have been attained. The advantage of the modification is particularly remarkable for the nondiagonal coupling; in this case the conventional TDFC fails, whereas the modified version works.

  2. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  3. A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal

    Science.gov (United States)

    Qin, Shunda; Ge, Hongxia; Cheng, Rongjun

    2018-02-01

    In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.

  4. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    Science.gov (United States)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  5. Performance investigation of stochastic resonance in bistable systems with time-delayed feedback and three types of asymmetries

    Science.gov (United States)

    Liu, Jian; Wang, Youguo

    2018-03-01

    The simultaneous influence of potential asymmetries and time-delayed feedback on stochastic resonance (SR) subject to both periodic force and additive Gaussian white noise is investigated by using two-state theory and small-delay approximation, where three types of asymmetries include well-depth, well-width, and both well-depth and well-width asymmetries, respectively. The asymmetric types and time-delayed feedback determine the behaviors of SR, especially output signal-to-noise ratio (SNR) peaks, optimal additive noise intensity and feedback intensity. Moreover, the largest SNR in asymmetric SR is found to be relatively larger than symmetric one in some cases, whereas in other cases the symmetric SR is superior to asymmetric one, which is of dependence on time delay and feedback intensity. In addition, the SR with well-width asymmetry can suppress stronger noise than that with well-depth asymmetry under the action of same time delay, which is beneficial to weak signal detection.

  6. Self-Generated Auditory Feedback as a Cue to Support Rhythmic Motor Stability

    Directory of Open Access Journals (Sweden)

    Gopher Daniel

    2011-12-01

    Full Text Available A goal of the SKILLS project is to develop Virtual Reality (VR-based training simulators for different application domains, one of which is juggling. Within this context the value of multimodal VR environments for skill acquisition is investigated. In this study, we investigated whether it was necessary to render the sounds of virtual balls hitting virtual hands within the juggling training simulator. First, we recorded sounds at the jugglers’ ears and found the sound of ball hitting hands to be audible. Second, we asked 24 jugglers to juggle under normal conditions (Audible or while listening to pink noise intended to mask the juggling sounds (Inaudible. We found that although the jugglers themselves reported no difference in their juggling across these two conditions, external juggling experts rated rhythmic stability worse in the Inaudible condition than in the Audible condition. This result suggests that auditory information should be rendered in the VR juggling training simulator.

  7. Effects of linear and nonlinear time-delayed feedback on the noise-enhanced stability phenomenon in a periodically driven bistable system

    International Nuclear Information System (INIS)

    Jia, Zheng-Lin; Mei, Dong-Cheng

    2011-01-01

    We investigate numerically the effects of time delay on the phenomenon of noise-enhanced stability (NES) in a periodically modulated bistable system. Three types of time-delayed feedback, including linear delayed feedback, nonlinear delayed feedback and global delayed feedback, are considered. We find a non-monotonic behaviour of the mean first-passage time (MFPT) as a function of the delay time τ, with a maximum in the case of linear delayed feedback and with a minimum in the case of nonlinear delayed feedback. There are two peculiar values of τ around which the NES phenomenon is enhanced or weakened. For the case of global delayed feedback, the increase of τ always weakens the NES phenomenon. Moreover, we also show that the amplitude A and the frequency Ω of the periodic forcing play an opposite role in the NES phenomenon, i.e. the increase of A weakens the NES effect while the increase of Ω enhances it. These observations demonstrate that the time-delayed feedback can be used as a feasible control scheme for the NES phenomenon

  8. Speakers' acceptance of real-time speech exchange indicates that we use auditory feedback to specify the meaning of what we say.

    Science.gov (United States)

    Lind, Andreas; Hall, Lars; Breidegard, Björn; Balkenius, Christian; Johansson, Petter

    2014-06-01

    Speech is usually assumed to start with a clearly defined preverbal message, which provides a benchmark for self-monitoring and a robust sense of agency for one's utterances. However, an alternative hypothesis states that speakers often have no detailed preview of what they are about to say, and that they instead use auditory feedback to infer the meaning of their words. In the experiment reported here, participants performed a Stroop color-naming task while we covertly manipulated their auditory feedback in real time so that they said one thing but heard themselves saying something else. Under ideal timing conditions, two thirds of these semantic exchanges went undetected by the participants, and in 85% of all nondetected exchanges, the inserted words were experienced as self-produced. These findings indicate that the sense of agency for speech has a strong inferential component, and that auditory feedback of one's own voice acts as a pathway for semantic monitoring, potentially overriding other feedback loops. © The Author(s) 2014.

  9. Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback" [Chaos 18, 033122 (2008)].

    Science.gov (United States)

    Zhang, Yinping; Wang, Qing-Guo

    2008-12-01

    In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.

  10. The Effect of Online Gaming, Cognition and Feedback Type in Facilitating Delayed Achievement of Different Learning Objectives

    Science.gov (United States)

    Cameron, Brian; Dwyer, Francis

    2005-01-01

    Online and computer-based instructional gaming is becoming a viable instructional strategy at all levels of education. The purpose of this study was to examine the effect of (a) gaming, (b) gaming plus embedded questions, and (c) gaming plus questions plus feedback on delayed retention of different types of educational objectives for students…

  11. Dynamics for a discrete competition and cooperation model of two enterprises with multiple delays and feedback controls

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2017-03-01

    Full Text Available This paper is concerned with a competition and cooperation model of two enterprises with multiple delays and feedback controls. With the aid of the difference inequality theory, we have obtained some sufficient conditions which guarantee the permanence of the model. Under a suitable condition, we prove that the system has global stable periodic solution. The paper ends with brief conclusions.

  12. Self-excited vibration control for axially fast excited beam by a time delay state feedback

    International Nuclear Information System (INIS)

    Hamdi, Mustapha; Belhaq, Mohamed

    2009-01-01

    This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.

  13. Synchronization of Coupled FitzHugh-Nagumo Neurons Using Self-Feedback Time Delay

    Science.gov (United States)

    Fan, Denggui; Song, Xinle; Liao, Fucheng

    Many neurological diseases are characterized by abnormally synchronous oscillations of neuronal populations. However, how the neurons can synchronize with each other is still not fully understood, which may have potentially hampered the understanding and diagnosis for these dynamical diseases. In this paper, the self-feedback time delay (SFTD) and adaptive control theory are employed to control the onset of synchronization in the coupled FitzHugh-Nagumo (FHN) neurons. It is found that the larger SFTD can induce the complete synchronization of coupled neuronal system. Further investigation reveals that the reinforcing SFTD can significantly postpone the synchronization onsets. In addition, for the case that synchronization cannot be achieved by adjusting SFTD, the parameter estimation update laws and adaptive controller with respect to SFTD of coupled system are investigated to deduce the sufficient condition for complete synchronization. Simulations are also provided to illustrate the effectiveness of the proposed methods. In particular, we observed the fascinating dynamical synchronization transitions, such as chaotic synchronization and bursting synchronization transitions, as well as the transition from anti-synchronization to complete synchronization.

  14. Open Touch/Sound Maps: A system to convey street data through haptic and auditory feedback

    Science.gov (United States)

    Kaklanis, Nikolaos; Votis, Konstantinos; Tzovaras, Dimitrios

    2013-08-01

    The use of spatial (geographic) information is becoming ever more central and pervasive in today's internet society but the most of it is currently inaccessible to visually impaired users. However, access in visual maps is severely restricted to visually impaired and people with blindness, due to their inability to interpret graphical information. Thus, alternative ways of a map's presentation have to be explored, in order to enforce the accessibility of maps. Multiple types of sensory perception like touch and hearing may work as a substitute of vision for the exploration of maps. The use of multimodal virtual environments seems to be a promising alternative for people with visual impairments. The present paper introduces a tool for automatic multimodal map generation having haptic and audio feedback using OpenStreetMap data. For a desired map area, an elevation map is being automatically generated and can be explored by touch, using a haptic device. A sonification and a text-to-speech (TTS) mechanism provide also audio navigation information during the haptic exploration of the map.

  15. Auditory short-term memory activation during score reading.

    Science.gov (United States)

    Simoens, Veerle L; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.

  16. Effect of feedback on delaying deterioration in quality of compressions during 2 minutes of continuous chest compressions: a randomized manikin study investigating performance with and without feedback

    Directory of Open Access Journals (Sweden)

    Lyngeraa Tobias

    2012-02-01

    Full Text Available Abstract Background Good quality basic life support (BLS improves outcome following cardiac arrest. As BLS performance deteriorates over time we performed a parallel group, superiority study to investigate the effect of feedback on quality of chest compression with the hypothesis that feedback delays deterioration of quality of compressions. Methods Participants attending a national one-day conference on cardiac arrest and CPR in Denmark were randomized to perform single-rescuer BLS with (n = 26 or without verbal and visual feedback (n = 28 on a manikin using a ZOLL AED plus. Data were analyzed using Rescuenet Code Review. Blinding of participants was not possible, but allocation concealment was performed. Primary outcome was the proportion of delivered compressions within target depth compared over a 2-minute period within the groups and between the groups. Secondary outcome was the proportion of delivered compressions within target rate compared over a 2-minute period within the groups and between the groups. Performance variables for 30-second intervals were analyzed and compared. Results 24 (92% and 23 (82% had CPR experience in the group with and without feedback respectively. 14 (54% were CPR instructors in the feedback group and 18 (64% in the group without feedback. Data from 26 and 28 participants were analyzed respectively. Although median values for proportion of delivered compressions within target depth were higher in the feedback group (0-30 s: 54.0%; 30-60 s: 88.0%; 60-90 s: 72.6%; 90-120 s: 87.0%, no significant difference was found when compared to without feedback (0-30 s: 19.6%; 30-60 s: 33.1%; 60-90 s: 44.5%; 90-120 s: 32.7% and no significant deteriorations over time were found within the groups. In the feedback group a significant improvement was found in the proportion of delivered compressions below target depth when the subsequent intervals were compared to the first 30 seconds (0-30 s: 3.9%; 30-60 s: 0.0%; 60-90 s: 0

  17. Stability and bifurcation of numerical discretization of a second-order delay differential equation with negative feedback

    International Nuclear Information System (INIS)

    Ding Xiaohua; Su Huan; Liu Mingzhu

    2008-01-01

    The paper analyzes a discrete second-order, nonlinear delay differential equation with negative feedback. The characteristic equation of linear stability is solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The existence of local Hopf bifurcations is investigated, and the direction and stability of periodic solutions bifurcating from the Hopf bifurcation of the discrete model are determined by the Hopf bifurcation theory of discrete system. Finally, some numerical simulations are performed to illustrate the analytical results found

  18. Singlet oxygen feedback delayed fluorescence of protoporphyrin IX in organic solutions.

    Science.gov (United States)

    Vinklárek, Ivo S; Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-04-12

    Delayed fluorescence (DF) of protoporphyrin IX (PpIX) has been recently proposed as a tool for monitoring of mitochondrial oxygen tension in vivo as well as for observation of the effectiveness of photodynamic therapy (PDT) [E. G. Mik, Anesth. Analg., 2013, 117, 834-346; F. Piffaretti et al., J. Biomed. Opt., 2012, 17, 115007]. However, the efficiency of the mechanism of thermal activation (E-type DF), which was considered in the papers, is limited due to a large energy gap between the first excited singlet and the first triplet state of PpIX at room or body temperatures. Moreover, the energy gap is roughly equal to other porphyrinoid photosensitizers that generate DF mostly through the Singlet Oxygen Feedback-Induced mechanism (SOFDF) under certain conditions [M. Scholz and R. Dědic, Singlet Oxygen: Applications in Biosciences and Nanosciences, 2016, vol. 2, pp. 63-81]. The mechanisms of delayed fluorescence of PpIX dissolved either in dimethylformamide (DMF) or in the mixture of DMF with ethylene glycol (EG) were investigated at atmospheric partial pressure of oxygen by means of a simultaneous time-resolved detection of 1 O 2 phosphorescence and PpIX DF which makes a direct comparison of the kinetics and lifetimes of both the luminescence channels possible. Samples of PpIX (100 μM) exhibit concave DF kinetics, which is a typical footprint of the SOFDF mechanism. The dramatic decrease in the DF intensity after adding a selective 1 O 2 quencher sodium azide (NaN 3 , 10 mM) proves that >90% of DF is indeed generated through SOFDF. Moreover, the analysis of the DF kinetics in the presence of NaN 3 implies that the second significant mechanism of DF generation is the triplet-triplet annihilation (P-type DF). The bimolecular mechanism of DF was further confirmed by the decrease of the DF intensity in the more viscous mixture DMF/EG and by the increase of the ratio of DF to the prompt fluorescence (PF) intensity with the increasing excitation intensity. These results

  19. Rotating and standing waves in a diffractive nonlinear optical system with delayed feedback under O(2) Hopf bifurcation

    Science.gov (United States)

    Budzinskiy, S. S.; Razgulin, A. V.

    2017-08-01

    In this paper we study one-dimensional rotating and standing waves in a model of an O(2)-symmetric nonlinear optical system with diffraction and delay in the feedback loop whose dynamics is governed by a system of coupled delayed parabolic equation and linear Schrodinger-type equation. We elaborate a two-step approach: transition to a rotating coordinate system to obtain the profiles of the waves as small parameter expansions and the normal form technique to study their qualitative dynamic behavior and stability. Theoretical results stand in a good agreement with direct computer simulations presented.

  20. Outage probability of dual-hop partial relay selection with feedback delay in the presence of interference

    KAUST Repository

    Al-Qahtani, Fawaz S.

    2011-09-01

    In this paper, we investigate the outage performance of a dual-hop relaying systems with partial relay selection and feedback delay. The analysis considers the case of Rayleigh fading channels when the relaying station as well as the destination undergo mutually independent interfering signals. Particularly, we derive the cumulative distribution function (c.d.f.) of a new type of random variable involving sum of multiple independent exponential random variables, based on which, we present closed-form expressions for the exact outage probability of a fixed amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols. Numerical results are provided to illustrate the joint effect of the delayed feedback and co-channel interference on the outage probability. © 2011 IEEE.

  1. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution

    Science.gov (United States)

    Li, Jimeng; Li, Ming; Zhang, Jinfeng

    2017-08-01

    Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.

  2. Frequency adaptation in controlled stochastic resonance utilizing delayed feedback method: two-pole approximation for response function.

    Science.gov (United States)

    Tutu, Hiroki

    2011-06-01

    Stochastic resonance (SR) enhanced by time-delayed feedback control is studied. The system in the absence of control is described by a Langevin equation for a bistable system, and possesses a usual SR response. The control with the feedback loop, the delay time of which equals to one-half of the period (2π/Ω) of the input signal, gives rise to a noise-induced oscillatory switching cycle between two states in the output time series, while its average frequency is just smaller than Ω in a small noise regime. As the noise intensity D approaches an appropriate level, the noise constructively works to adapt the frequency of the switching cycle to Ω, and this changes the dynamics into a state wherein the phase of the output signal is entrained to that of the input signal from its phase slipped state. The behavior is characterized by power loss of the external signal or response function. This paper deals with the response function based on a dichotomic model. A method of delay-coordinate series expansion, which reduces a non-Markovian transition probability flux to a series of memory fluxes on a discrete delay-coordinate system, is proposed. Its primitive implementation suggests that the method can be a potential tool for a systematic analysis of SR phenomenon with delayed feedback loop. We show that a D-dependent behavior of poles of a finite Laplace transform of the response function qualitatively characterizes the structure of the power loss, and we also show analytical results for the correlation function and the power spectral density.

  3. Comparison of Meaning and Graphophonemic Feedback Strategies for Guided Reading Instruction of Children with Language Delays

    Science.gov (United States)

    Kouri, Theresa A.; Selle, Carrie A.; Riley, Sarah A.

    2006-01-01

    Purpose: Guided reading is a common practice recommended for children in the early stages of literacy development. While experts agree that oral reading facilitates literacy skills, controversy exists concerning which corrective feedback strategies are most effective. The purpose of this study was to compare feedback procedures stemming from 2…

  4. Auditory feedback of one’s own voice is used for high-level semantic monitoring: the self-comprehension hypothesis

    Directory of Open Access Journals (Sweden)

    Andreas eLind

    2014-03-01

    Full Text Available What would it be like if we said one thing, and heard ourselves saying something else? Would we notice something was wrong? Or would we believe we said the thing we heard? Is feedback of our own speech only used to detect errors, or does it also help to specify the meaning of what we say? Comparator models of self-monitoring favor the first alternative, and hold that our sense of agency is given by the comparison between intentions and outcomes, while inferential models argue that agency is a more fluent construct, dependent on contextual inferences about the most likely cause of an action. In this paper, we present a theory about the use of feedback during speech. Specifically, we discuss inferential models of speech production that question the standard comparator assumption that the meaning of our utterances is fully specified before articulation. We then argue that auditory feedback provides speakers with a channel for high-level, semantic self-comprehension. In support of this we discuss results using a method we recently developed called Real-time Speech Exchange (RSE. In our first study using RSE (Lind et al, submitted participants were fitted with headsets and performed a computerized Stroop task. We surreptitiously recorded words they said, and later in the test we played them back at the exact same time that the participants uttered something else, while blocking the actual feedback of their voice. Thus, participants said one thing, but heard themselves saying something else. The results showed that when timing conditions were ideal, more than two thirds of the manipulations went undetected. Crucially, in a large proportion of the non-detected manipulated trials, the inserted words were experienced as self-produced by the participants. This indicates that our sense of agency for speech has a strong inferential component, and that auditory feedback of our own voice acts as a pathway for semantic monitoring.

  5. Delayed, but not immediate, feedback after multiple-choice questions increases performance on a subsequent short-answer, but not multiple-choice, exam: evidence for the dual-process theory of memory.

    Science.gov (United States)

    Sinha, Neha; Glass, Arnold Lewis

    2015-01-01

    Three experiments, two performed in the laboratory and one embedded in a college psychology lecture course, investigated the effects of immediate versus delayed feedback following a multiple-choice exam on subsequent short answer and multiple-choice exams. Performance on the subsequent multiple-choice exam was not affected by the timing of the feedback on the prior exam; however, performance on the subsequent short answer exam was better following delayed than following immediate feedback. This was true regardless of the order in which immediate versus delayed feedback was given. Furthermore, delayed feedback only had a greater effect than immediate feedback on subsequent short answer performance following correct, confident responses on the prior exam. These results indicate that delayed feedback cues a student's prior response and increases subsequent recollection of that response. The practical implication is that delayed feedback is better than immediate feedback during academic testing.

  6. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  7. Anti-Swing Control of Gantry and Tower Cranes Using Fuzzy and Time-Delayed Feedback with Friction Compensation

    Directory of Open Access Journals (Sweden)

    H.M. Omar

    2005-01-01

    Full Text Available We designed a feedback controller to automate crane operations by controlling the load position and its swing. First, a PD tracking controller is designed to follow a prescribed trajectory. Then, another controller is added to the control loop to damp the load swing. The anti-swing controller is designed based on two techniques: a time-delayed feedback of the load swing angle and an anti-swing fuzzy logic controller (FLC. The rules of the FLC are generated by mapping the performance of the time-delayed feedback controller. The same mapping method used for generating the rules can be applied to mimic the performance of an expert operator. The control algorithms were designed for gantry cranes and then extended to tower cranes by considering the coupling between the translational and rotational motions. Experimental results show that the controller is effective in reducing load oscillations and transferring the load in a reasonable time. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction and then applied a control action to cancel it. The friction force was estimated by assuming a mathematical model and then estimating the model coefficients using an off-line identification technique, the method of least squares (LS.

  8. Effect of feedback on delaying deterioration in quality of compressions during 2 minutes of continuous chest compressions

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias S; Hjortrup, Peter Buhl; Wulff, Nille B

    2012-01-01

    delays deterioration of quality of compressions. METHODS: Participants attending a national one-day conference on cardiac arrest and CPR in Denmark were randomized to perform single-rescuer BLS with (n = 26) or without verbal and visual feedback (n = 28) on a manikin using a ZOLL AED plus. Data were...... analyzed using Rescuenet Code Review. Blinding of participants was not possible, but allocation concealment was performed. Primary outcome was the proportion of delivered compressions within target depth compared over a 2-minute period within the groups and between the groups. Secondary outcome...... was the proportion of delivered compressions within target rate compared over a 2-minute period within the groups and between the groups. Performance variables for 30-second intervals were analyzed and compared. RESULTS: 24 (92%) and 23 (82%) had CPR experience in the group with and without feedback respectively. 14...

  9. Global output feedback control for a class of high-order feedforward nonlinear systems with input delay.

    Science.gov (United States)

    Zha, Wenting; Zhai, Junyong; Fei, Shumin

    2013-07-01

    This paper investigates the problem of output feedback stabilization for a class of high-order feedforward nonlinear systems with time-varying input delay. First, a scaling gain is introduced into the system under a set of coordinate transformations. Then, the authors construct an observer and controller to make the nominal system globally asymptotically stable. Based on homogeneous domination approach and Lyapunov-Krasovskii functional, it is shown that the closed-loop system can be rendered globally asymptotically stable by the scaling gain. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Parametrically Excited Oscillations of Second-Order Functional Differential Equations and Application to Duffing Equations with Time Delay Feedback

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2014-01-01

    Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.

  11. The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays

    Directory of Open Access Journals (Sweden)

    Cong Zhai

    2016-01-01

    Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.

  12. Rehabilitation of the Upper Extremity after Stroke: A Case Series Evaluating REO Therapy and an Auditory Sensor Feedback for Trunk Control

    Directory of Open Access Journals (Sweden)

    G. Thielman

    2012-01-01

    Full Text Available Background and Purpose. Training in the virtual environment in post stroke rehab is being established as a new approach for neurorehabilitation, specifically, ReoTherapy (REO a robot-assisted virtual training device. Trunk stabilization strapping has been part of the concept with this device, and literature is lacking to support this for long-term functional changes with individuals after stroke. The purpose of this case series was to measure the feasibility of auditory trunk sensor feedback during REO therapy, in moderate to severely impaired individuals after stroke. Case Description. Using an open label crossover comparison design, 3 chronic stroke subjects were trained for 12 sessions over six weeks on either the REO or the control condition of task related training (TRT; after a washout period of 4 weeks; the alternative therapy was given. Outcomes. With both interventions, clinically relevant improvements were found for measures of body function and structure, as well as for activity, for two participants. Providing auditory feedback during REO training for trunk control was found to be feasible. Discussion. The degree of changes evident varied per protocol and may be due to the appropriateness of the technique chosen, as well as based on patients impaired arm motor control.

  13. Stability result of the Timoshenko system with delay and boundary feedback

    KAUST Repository

    Said-Houari, Belkacem; Soufyane, Abdelaziz

    2012-01-01

    Our interest in this paper is to analyse the asymptotic behaviour of a Timoshenko beam system together with two boundary controls, with delay terms in the first and second equation. Assuming the weights of the delay are small enough, we show that the system is well-posed using the semigroup theory. Furthermore, we introduce a Lyapunov functional that gives the exponential decay of the total energy. © 2012 The author.

  14. Reliable Memory Feedback Design for a Class of Nonlinear Fuzzy Systems with Time-varying Delay

    Institute of Scientific and Technical Information of China (English)

    You-Qing Wang; Dong-Hua Zhou; Li-Heng Liu

    2007-01-01

    This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with time-varying delay. The system under consideration is more general than those in other existent works. The controller, which is dependent on the magnitudes and derivative of the delay, is proposed in terms of linear matrix inequality (LMI). The closed-loop system is asymptotically stable for all admissible uncertainties as well as actuator faults. A numerical example is presented for illustration.

  15. Stability result of the Timoshenko system with delay and boundary feedback

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-06

    Our interest in this paper is to analyse the asymptotic behaviour of a Timoshenko beam system together with two boundary controls, with delay terms in the first and second equation. Assuming the weights of the delay are small enough, we show that the system is well-posed using the semigroup theory. Furthermore, we introduce a Lyapunov functional that gives the exponential decay of the total energy. © 2012 The author.

  16. The influence of parametric and external noise in act-and-wait control with delayed feedback.

    Science.gov (United States)

    Wang, Jiaxing; Kuske, Rachel

    2017-11-01

    We apply several novel semi-analytic approaches for characterizing and calculating the effects of noise in a system with act-and-wait control. For concrete illustration, we apply these to a canonical balance model for an inverted pendulum to study the combined effect of delay and noise within the act-and-wait setting. While the act-and-wait control facilitates strong stabilization through deadbeat control, a comparison of different models with continuous vs. discrete updating of the control strategy in the active period illustrates how delays combined with the imprecise application of the control can seriously degrade the performance. We give several novel analyses of a generalized act-and-wait control strategy, allowing flexibility in the updating of the control strategy, in order to understand the sensitivities to delays and random fluctuations. In both the deterministic and stochastic settings, we give analytical and semi-analytical results that characterize and quantify the dynamics of the system. These results include the size and shape of stability regions, densities for the critical eigenvalues that capture the rate of reaching the desired stable equilibrium, and amplification factors for sustained fluctuations in the context of external noise. They also provide the dependence of these quantities on the length of the delay and the active period. In particular, we see that the combined influence of delay, parametric error, or external noise and on-off control can qualitatively change the dynamics, thus reducing the robustness of the control strategy. We also capture the dependence on how frequently the control is updated, allowing an interpolation between continuous and frequent updating. In addition to providing insights for these specific models, the methods we propose are generalizable to other settings with noise, delay, and on-off control, where analytical techniques are otherwise severely scarce.

  17. Stabilization of wave equations with variable coefficient and delay in the dynamical boundary feedback

    Directory of Open Access Journals (Sweden)

    Dandan Guo

    2017-08-01

    Full Text Available In this article we consider the boundary stabilization of a wave equation with variable coefficients. This equation has an acceleration term and a delayed velocity term on the boundary. Under suitable geometric conditions, we obtain the exponential decay for the solutions. Our proof relies on the geometric multiplier method and the Lyapunov approach.

  18. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    International Nuclear Information System (INIS)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-01-01

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.

  19. Effect of State Feedback Coupling and System Delays on the Transient Performance of Stand-Alone VSI with LC Output Filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    The influence of state feedback coupling in the dynamics performance of power converters for stand-alone microgrids is investigated. Computation and PWM delays are the main factors that limit the achievable bandwidth of current regulators in digital implementations. In particular, the performance...... of state feedback decoupling is degraded because of these delays. Two decoupling techniques to improve the transient response of the system are investigated, named non-ideal and ideal capacitor voltage decoupling respectively. In particular, the latter solution consists in leading the capacitor voltage...... on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. A design methodology for the voltage loop, that considers the closed loop transfer functions developed for the inner loop, is also...

  20. Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback

    Science.gov (United States)

    Tiberkevich, Vasil S.; Khymyn, Roman S.; Tang, Hong X.; Slavin, Andrei N.

    2014-01-01

    For auto-oscillators of different nature (e.g. active cells in a human heart under the action of a pacemaker, neurons in brain, spin-torque nano-oscillators, micro and nano-mechanical oscillators, or generating Josephson junctions) a critically important property is their ability to synchronize with each other. The synchronization properties of an auto oscillator are directly related to its sensitivity to external signals. Here we demonstrate that a non-isochronous (having generation frequency dependent on the amplitude) auto-oscillator with delayed feedback can have an extremely high sensitivity to external signals and unusually large width of the phase-locking band near the boundary of the stable auto-oscillation regime. This property could be used for the development of synchronized arrays of non-isochronous auto-oscillators in physics and engineering, and, for instance, might bring a better fundamental understanding of ways to control a heart arrythmia in medicine.

  1. Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback

    International Nuclear Information System (INIS)

    Goharrizi, Amin Yazdanpanah; Khaki-Sedigh, Ali; Sepehri, Nariman

    2009-01-01

    A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.

  2. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback

    Science.gov (United States)

    Wang, Zhaoyou; Safavi-Naeini, Amir H.

    2017-07-01

    A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon-photon interactions mediated by mechanical motion may be within experimental reach.

  3. A new modelling and identification scheme for time-delay systems with experimental investigation: a relay feedback approach

    Science.gov (United States)

    Pandey, Saurabh; Majhi, Somanath; Ghorai, Prasenjit

    2017-07-01

    In this paper, the conventional relay feedback test has been modified for modelling and identification of a class of real-time dynamical systems in terms of linear transfer function models with time-delay. An ideal relay and unknown systems are connected through a negative feedback loop to bring the sustained oscillatory output around the non-zero setpoint. Thereafter, the obtained limit cycle information is substituted in the derived mathematical equations for accurate identification of unknown plants in terms of overdamped, underdamped, critically damped second-order plus dead time and stable first-order plus dead time transfer function models. Typical examples from the literature are included for the validation of the proposed identification scheme through computer simulations. Subsequently, the comparisons between estimated model and true system are drawn through integral absolute error criterion and frequency response plots. Finally, the obtained output responses through simulations are verified experimentally on real-time liquid level control system using Yokogawa Distributed Control System CENTUM CS3000 set up.

  4. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells.

    Science.gov (United States)

    Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F

    2015-01-07

    Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-04-20

    We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagram dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.

  6. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  7. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    Science.gov (United States)

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  9. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    Science.gov (United States)

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  10. Identification of neural structures involved in stuttering using vibrotactile feedback.

    Science.gov (United States)

    Cheadle, Oliver; Sorger, Clarissa; Howell, Peter

    Feedback delivered over auditory and vibratory afferent pathways has different effects on the fluency of people who stutter (PWS). These features were exploited to investigate the neural structures involved in stuttering. The speech signal vibrated locations on the body (vibrotactile feedback, VTF). Eleven PWS read passages under VTF and control (no-VTF) conditions. All combinations of vibration amplitude, synchronous or delayed VTF and vibrator position (hand, sternum or forehead) were presented. Control conditions were performed at the beginning, middle and end of test sessions. Stuttering rate, but not speaking rate, differed between the control and VTF conditions. Notably, speaking rate did not change between when VTF was delayed versus when it was synchronous in contrast with what happens with auditory feedback. This showed that cerebellar mechanisms, which are affected when auditory feedback is delayed, were not implicated in the fluency-enhancing effects of VTF, suggesting that there is a second fluency-enhancing mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  12. The role of auditory temporal cues in the fluency of stuttering adults

    Directory of Open Access Journals (Sweden)

    Juliana Furini

    Full Text Available ABSTRACT Purpose: to compare the frequency of disfluencies and speech rate in spontaneous speech and reading in adults with and without stuttering in non-altered and delayed auditory feedback (NAF, DAF. Methods: participants were 30 adults: 15 with Stuttering (Research Group - RG, and 15 without stuttering (Control Group - CG. The procedures were: audiological assessment and speech fluency evaluation in two listening conditions, normal and delayed auditory feedback (100 milliseconds delayed by Fono Tools software. Results: the DAF caused a significant improvement in the fluency of spontaneous speech in RG when compared to speech under NAF. The effect of DAF was different in CG, because it increased the common disfluencies and the total of disfluencies in spontaneous speech and reading, besides showing an increase in the frequency of stuttering-like disfluencies in reading. The intergroup analysis showed significant differences in the two speech tasks for the two listening conditions in the frequency of stuttering-like disfluencies and in the total of disfluencies, and in the flows of syllable and word-per-minute in the NAF. Conclusion: the results demonstrated that delayed auditory feedback promoted fluency in spontaneous speech of adults who stutter, without interfering in the speech rate. In non-stuttering adults an increase occurred in the number of common disfluencies and total of disfluencies as well as reduction of speech rate in spontaneous speech and reading.

  13. Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes.

    Science.gov (United States)

    Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E

    2017-08-01

    This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.

  14. Generating Li–Yorke chaos in a stable continuous-time T–S fuzzy model via time-delay feedback control

    International Nuclear Information System (INIS)

    Qiu-Ye, Sun; Hua-Guang, Zhang; Yan, Zhao

    2010-01-01

    This paper investigates the chaotification problem of a stable continuous-time T–S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T–S fuzzy system with time-delay and a discrete-time T–S fuzzy system is established. Based on the discrete-time T–S fuzzy system, it proves that the chaos in the discrete-time T–S fuzzy system satisfies the Li–Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example. (general)

  15. Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.

  16. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation

    KAUST Repository

    Gaffney, E. A.

    2013-10-01

    © The authors 2013. Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing\\'s ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing\\'s model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106, 8429-8434; Yamaguchi et al., 2007, PNAS, 104, 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge.

  17. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation.

    Science.gov (United States)

    Gaffney, E A; Lee, S Seirin

    2015-03-01

    Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  18. An Analysis of Students' Perceptions of the Value and Efficacy of Instructors' Auditory and Text-Based Feedback Modalities across Multiple Conceptual Levels

    Science.gov (United States)

    Ice, Phil; Swan, Karen; Diaz, Sebastian; Kupczynski, Lori; Swan-Dagen, Allison

    2010-01-01

    This article used work from the writing assessment literature to develop a framework for assessing the impact and perceived value of written, audio, and combined written and audio feedback strategies across four global and 22 discrete dimensions of feedback. Using a quasi-experimental research design, students at three U.S. universities were…

  19. Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.

  20. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.

    Science.gov (United States)

    Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun

    2017-10-25

    Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study

  1. Auditory prediction during speaking and listening.

    Science.gov (United States)

    Sato, Marc; Shiller, Douglas M

    2018-02-02

    In the present EEG study, the role of auditory prediction in speech was explored through the comparison of auditory cortical responses during active speaking and passive listening to the same acoustic speech signals. Two manipulations of sensory prediction accuracy were used during the speaking task: (1) a real-time change in vowel F1 feedback (reducing prediction accuracy relative to unaltered feedback) and (2) presenting a stable auditory target rather than a visual cue to speak (enhancing auditory prediction accuracy during baseline productions, and potentially enhancing the perturbing effect of altered feedback). While subjects compensated for the F1 manipulation, no difference between the auditory-cue and visual-cue conditions were found. Under visually-cued conditions, reduced N1/P2 amplitude was observed during speaking vs. listening, reflecting a motor-to-sensory prediction. In addition, a significant correlation was observed between the magnitude of behavioral compensatory F1 response and the magnitude of this speaking induced suppression (SIS) for P2 during the altered auditory feedback phase, where a stronger compensatory decrease in F1 was associated with a stronger the SIS effect. Finally, under the auditory-cued condition, an auditory repetition-suppression effect was observed in N1/P2 amplitude during the listening task but not active speaking, suggesting that auditory predictive processes during speaking and passive listening are functionally distinct. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  3. Auditory Peripheral Processing of Degraded Speech

    National Research Council Canada - National Science Library

    Ghitza, Oded

    2003-01-01

    ...". The underlying thesis is that the auditory periphery contributes to the robust performance of humans in speech reception in noise through a concerted contribution of the efferent feedback system...

  4. Bilateral duplication of the internal auditory canal

    International Nuclear Information System (INIS)

    Weon, Young Cheol; Kim, Jae Hyoung; Choi, Sung Kyu; Koo, Ja-Won

    2007-01-01

    Duplication of the internal auditory canal is an extremely rare temporal bone anomaly that is believed to result from aplasia or hypoplasia of the vestibulocochlear nerve. We report bilateral duplication of the internal auditory canal in a 28-month-old boy with developmental delay and sensorineural hearing loss. (orig.)

  5. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  6. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  7. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  8. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  9. Emotional feedback for mobile devices

    CERN Document Server

    Seebode, Julia

    2015-01-01

    This book investigates the functional adequacy as well as the affective impression made by feedback messages on mobile devices. It presents an easily adoptable experimental setup to examine context effects on various feedback messages, and applies it to auditory, tactile and auditory-tactile feedback messages. This approach provides insights into the relationship between the affective impression and functional applicability of these messages as well as an understanding of the influence of unimodal components on the perception of multimodal feedback messages. The developed paradigm can also be extended to investigate other aspects of context and used to investigate feedback messages in modalities other than those presented. The book uses questionnaires implemented on a Smartphone, which can easily be adopted for field studies to broaden the scope even wider. Finally, the book offers guidelines for the design of system feedback.

  10. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  11. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  12. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  13. Auditory N1 reveals planning and monitoring processes during music performance.

    Science.gov (United States)

    Mathias, Brian; Gehring, William J; Palmer, Caroline

    2017-02-01

    The current study investigated the relationship between planning processes and feedback monitoring during music performance, a complex task in which performers prepare upcoming events while monitoring their sensory outcomes. Theories of action planning in auditory-motor production tasks propose that the planning of future events co-occurs with the perception of auditory feedback. This study investigated the neural correlates of planning and feedback monitoring by manipulating the contents of auditory feedback during music performance. Pianists memorized and performed melodies at a cued tempo in a synchronization-continuation task while the EEG was recorded. During performance, auditory feedback associated with single melody tones was occasionally substituted with tones corresponding to future (next), present (current), or past (previous) melody tones. Only future-oriented altered feedback disrupted behavior: Future-oriented feedback caused pianists to slow down on the subsequent tone more than past-oriented feedback, and amplitudes of the auditory N1 potential elicited by the tone immediately following the altered feedback were larger for future-oriented than for past-oriented or noncontextual (unrelated) altered feedback; larger N1 amplitudes were associated with greater slowing following altered feedback in the future condition only. Feedback-related negativities were elicited in all altered feedback conditions. In sum, behavioral and neural evidence suggests that future-oriented feedback disrupts performance more than past-oriented feedback, consistent with planning theories that posit similarity-based interference between feedback and planning contents. Neural sensory processing of auditory feedback, reflected in the N1 ERP, may serve as a marker for temporal disruption caused by altered auditory feedback in auditory-motor production tasks. © 2016 Society for Psychophysiological Research.

  14. The Sense of Agency Is More Sensitive to Manipulations of Outcome than Movement-Related Feedback Irrespective of Sensory Modality.

    Directory of Open Access Journals (Sweden)

    Nicole David

    Full Text Available The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement's outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants' finger movements and (i the movement of the virtual hand or (ii the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action.

  15. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    Science.gov (United States)

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Auditory interfaces in automated driving: an international survey

    NARCIS (Netherlands)

    Bazilinskyy, P.; de Winter, J.C.F.

    2015-01-01

    This study investigated peoples’ opinion on auditory interfaces in contemporary
    cars and their willingness to be exposed to auditory feedback in automated driving. We used an Internet-based survey to collect 1,205 responses from 91 countries. The respondents stated their attitudes towards two

  17. Rhythmic walking interactions with auditory feedback

    DEFF Research Database (Denmark)

    Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur

    2012-01-01

    of interactions based on varying the temporal characteristics of the output, using the sound of human walking as the input. The system either provides a direct synthesis of a walking sound based on the detected amplitude envelope of the user's footstep sounds, or provides a continuous synthetic walking sound...... as a stimulus for the walking human, either with a fixed tempo or a tempo adapting to the human gait. In a pilot experiment, the different interaction modes are studied with respect to their effect on the walking tempo and the experience of the subjects. The results tentatively outline different user profiles......Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds...

  18. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  19. An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules.

    Science.gov (United States)

    Carter, Michael J; Ste-Marie, Diane M

    2017-03-01

    The learning advantages of self-controlled knowledge-of-results (KR) schedules compared to yoked schedules have been linked to the optimization of the informational value of the KR received for the enhancement of one's error-detection capabilities. This suggests that information-processing activities that occur after motor execution, but prior to receiving KR (i.e., the KR-delay interval) may underlie self-controlled KR learning advantages. The present experiment investigated whether self-controlled KR learning benefits would be eliminated if an interpolated activity was performed during the KR-delay interval. Participants practiced a waveform matching task that required two rapid elbow extension-flexion reversals in one of four groups using a factorial combination of choice (self-controlled, yoked) and KR-delay interval (empty, interpolated). The waveform had specific spatial and temporal constraints, and an overall movement time goal. The results indicated that the self-controlled + empty group had superior retention and transfer scores compared to all other groups. Moreover, the self-controlled + interpolated and yoked + interpolated groups did not differ significantly in retention and transfer; thus, the interpolated activity eliminated the typically found learning benefits of self-controlled KR. No significant differences were found between the two yoked groups. We suggest the interpolated activity interfered with information-processing activities specific to self-controlled KR conditions that occur during the KR-delay interval and that these activities are vital for reaping the associated learning benefits. These findings add to the growing evidence that challenge the motivational account of self-controlled KR learning advantages and instead highlights informational factors associated with the KR-delay interval as an important variable for motor learning under self-controlled KR schedules.

  20. How Do Batters Use Visual, Auditory, and Tactile Information about the Success of a Baseball Swing?

    Science.gov (United States)

    Gray, Rob

    2009-01-01

    Bat/ball contact produces visual (the ball leaving the bat), auditory (the "crack" of the bat), and tactile (bat vibration) feedback about the success of the swing. We used a batting simulation to investigate how college baseball players use visual, tactile, and auditory feedback. In Experiment 1, swing accuracy (i.e., the lateral separation…

  1. Feedback as Real-Time Constructions

    Science.gov (United States)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  2. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  3. Auditory memory for temporal characteristics of sound.

    Science.gov (United States)

    Zokoll, Melanie A; Klump, Georg M; Langemann, Ulrike

    2008-05-01

    This study evaluates auditory memory for variations in the rate of sinusoidal amplitude modulation (SAM) of noise bursts in the European starling (Sturnus vulgaris). To estimate the extent of the starling's auditory short-term memory store, a delayed non-matching-to-sample paradigm was applied. The birds were trained to discriminate between a series of identical "sample stimuli" and a single "test stimulus". The birds classified SAM rates of sample and test stimuli as being either the same or different. Memory performance of the birds was measured as the percentage of correct classifications. Auditory memory persistence time was estimated as a function of the delay between sample and test stimuli. Memory performance was significantly affected by the delay between sample and test and by the number of sample stimuli presented before the test stimulus, but was not affected by the difference in SAM rate between sample and test stimuli. The individuals' auditory memory persistence times varied between 2 and 13 s. The starlings' auditory memory persistence in the present study for signals varying in the temporal domain was significantly shorter compared to that of a previous study (Zokoll et al. in J Acoust Soc Am 121:2842, 2007) applying tonal stimuli varying in the spectral domain.

  4. Polarization chaos and random bit generation in nonlinear fiber optics induced by a time-delayed counter-propagating feedback loop.

    Science.gov (United States)

    Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J

    2018-01-22

    In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.

  5. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  6. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high......When an early wall reflection is added to a direct sound, a spectral modulation is introduced to the signal's power spectrum. This spectral modulation typically produces an auditory sensation of coloration or pitch. Throughout this study, auditory spectral-integration effects involved in coloration...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...

  7. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  8. Auditory sensory ("echoic") memory dysfunction in schizophrenia.

    Science.gov (United States)

    Strous, R D; Cowan, N; Ritter, W; Javitt, D C

    1995-10-01

    Studies of working memory dysfunction in schizophrenia have focused largely on prefrontal components. This study investigated the integrity of auditory sensory ("echoic") memory, a component that shows little dependence on prefrontal functioning. Echoic memory was investigated in 20 schizophrenic subjects and 20 age- and IQ-matched normal comparison subjects with the use of nondelayed and delayed tone matching. Schizophrenic subjects were markedly impaired in their ability to match two tones after an extremely brief delay between them (300 msec) but were unimpaired when there was no delay between tones. Working memory dysfunction in schizophrenia affects brain regions outside the prefrontal cortex as well as within.

  9. Movement goals and feedback and feedforward control mechanisms in speech production.

    Science.gov (United States)

    Perkell, Joseph S

    2012-09-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences.

  10. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  12. Effects of tailoring ingredients in auditory persuasive health messages on fruit and vegetable intake

    NARCIS (Netherlands)

    Elbert, Sarah P.; Dijkstra, Arie; Rozema, Andrea

    2017-01-01

    Objective: Health messages can be tailored by applying different tailoring ingredients, among which personalisation, feedback and adaptation. This experiment investigated the separate effects of these tailoring ingredients on behaviour in auditory health persuasion. Furthermore, the moderating

  13. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  14. Binaural processing by the gecko auditory periphery.

    Science.gov (United States)

    Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine E

    2011-05-01

    Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (∼ 1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al. 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions of direct and indirect sound components at the eardrum. Best ITD and click delays match interaural transmission delays, with a range of 200-500 μs. Inserting a mold in the mouth cavity blocks ITD and ILD sensitivity. Thus the neural response accurately reflects tympanic directionality, and most neurons in the auditory pathway should be directional.

  15. Klystron equalization for RF feedback

    International Nuclear Information System (INIS)

    Corredoura, P.

    1993-01-01

    The next generation of colliding beam storage rings support higher luminosities by significantly increasing the number of bunches and decreasing the spacing between respective bunches. The heavy beam loading requires large RF cavity detuning which drives several lower coupled bunch modes very strongly. One technique which has proven to be very successful in reducing the coupled bunch mode driving impedance is RF feedback around the klystron-cavity combination. The gain and bandwidth of the feedback loop is limited by the group delay around the feedback loop. Existing klystrons on the world market have not been optimized for this application and contribute a large portion of the total loop group delay. This paper describes a technique to reduce klystron group delay by adding an equalizing filter to the klystron RF drive. Such a filter was built and tested on a 500 kill klystron as part of the on going PEP-II R ampersand D effort here at SLAC

  16. Formativ Feedback

    DEFF Research Database (Denmark)

    Hyldahl, Kirsten Kofod

    Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...

  17. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  18. Acquisition and Retention of Esperanto: The Case for Error Correction and Immediate Feedback

    Science.gov (United States)

    Brosvic, Gary M.; Epstein, Michael L.; Dihoff, Roberta E.; Cook, Michael J.

    2006-01-01

    Participants completed 5 laboratory examinations during which the number of responses permitted (1 response, up to 4 responses) and the timing of feedback (no feedback control: Scantron form; delayed feedback: end-of-test, 24-hr delay; immediate feedback: assistant, response form) were manipulated. Participants completed a 100-item cumulative…

  19. Time-varying auditory gain control in response to double-pulse stimuli in harbour porpoises is not mediated by a stapedial reflex

    Directory of Open Access Journals (Sweden)

    Asger Emil Munch Schrøder

    2017-04-01

    Full Text Available Echolocating animals reduce their output level and hearing sensitivity with decreasing echo delays, presumably to stabilize the perceived echo intensity during target approaches. In bats, this variation in hearing sensitivity is formed by a call-induced stapedial reflex that tapers off over time after the call. Here, we test the hypothesis that a similar mechanism exists in toothed whales by subjecting a trained harbour porpoise to a series of double sound pulses varying in delay and frequency, while measuring the magnitudes of the evoked auditory brainstem responses (ABRs. We find that the recovery of the ABR to the second pulse is frequency dependent, and that a stapedial reflex therefore cannot account for the reduced hearing sensitivity at short pulse delays. We propose that toothed whale auditory time-varying gain control during echolocation is not enabled by the middle ear as in bats, but rather by frequency-dependent mechanisms such as forward masking and perhaps higher-order control of efferent feedback to the outer hair cells.

  20. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  1. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  2. Partially blind instantly decodable network codes for lossy feedback environment

    KAUST Repository

    Sorour, Sameh; Douik, Ahmed S.; Valaee, Shahrokh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2014-01-01

    an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both

  3. Translation and adaptation of functional auditory performance indicators (FAPI

    Directory of Open Access Journals (Sweden)

    Karina Ferreira

    2011-12-01

    Full Text Available Work with deaf children has gained new attention since the expectation and goal of therapy has expanded to language development and subsequent language learning. Many clinical tests were developed for evaluation of speech sound perception in young children in response to the need for accurate assessment of hearing skills that developed from the use of individual hearing aids or cochlear implants. These tests also allow the evaluation of the rehabilitation program. However, few of these tests are available in Portuguese. Evaluation with the Functional Auditory Performance Indicators (FAPI generates a child's functional auditory skills profile, which lists auditory skills in an integrated and hierarchical order. It has seven hierarchical categories, including sound awareness, meaningful sound, auditory feedback, sound source localizing, auditory discrimination, short-term auditory memory, and linguistic auditory processing. FAPI evaluation allows the therapist to map the child's hearing profile performance, determine the target for increasing the hearing abilities, and develop an effective therapeutic plan. Objective: Since the FAPI is an American test, the inventory was adapted for application in the Brazilian population. Material and Methods: The translation was done following the steps of translation and back translation, and reproducibility was evaluated. Four translated versions (two originals and two back-translated were compared, and revisions were done to ensure language adaptation and grammatical and idiomatic equivalence. Results: The inventory was duly translated and adapted. Conclusion: Further studies about the application of the translated FAPI are necessary to make the test practicable in Brazilian clinical use.

  4. Contextual modulation of primary visual cortex by auditory signals.

    Science.gov (United States)

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  5. Feedback Networks

    OpenAIRE

    Zamir, Amir R.; Wu, Te-Lin; Sun, Lin; Shen, William; Malik, Jitendra; Savarese, Silvio

    2016-01-01

    Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. ConvNets, where each layer forms one of such successive representations. However, an alternative that can achieve the same goal is a feedback based approach in which the representation is formed in an iterative manner based on a feedback received from previous iteration's...

  6. Auditory proactive interference in monkeys: the roles of stimulus set size and intertrial interval.

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2013-09-01

    We conducted two experiments to examine the influences of stimulus set size (the number of stimuli that are used throughout the session) and intertrial interval (ITI, the elapsed time between trials) in auditory short-term memory in monkeys. We used an auditory delayed matching-to-sample task wherein the animals had to indicate whether two sounds separated by a 5-s retention interval were the same (match trials) or different (nonmatch trials). In Experiment 1, we randomly assigned stimulus set sizes of 2, 4, 8, 16, 32, 64, or 192 (trial-unique) for each session of 128 trials. Consistent with previous visual studies, overall accuracy was consistently lower when smaller stimulus set sizes were used. Further analyses revealed that these effects were primarily caused by an increase in incorrect "same" responses on nonmatch trials. In Experiment 2, we held the stimulus set size constant at four for each session and alternately set the ITI at 5, 10, or 20 s. Overall accuracy improved when the ITI was increased from 5 to 10 s, but it was the same across the 10- and 20-s conditions. As in Experiment 1, the overall decrease in accuracy during the 5-s condition was caused by a greater number of false "match" responses on nonmatch trials. Taken together, Experiments 1 and 2 showed that auditory short-term memory in monkeys is highly susceptible to proactive interference caused by stimulus repetition. Additional analyses of the data from Experiment 1 suggested that monkeys may make same-different judgments on the basis of a familiarity criterion that is adjusted by error-related feedback.

  7. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  8. Maintenance of auditory-nonverbal information in working memory.

    Science.gov (United States)

    Soemer, Alexander; Saito, Satoru

    2015-12-01

    According to the multicomponent view of working memory, both auditory-nonverbal information and auditory-verbal information are stored in a phonological code and are maintained by an articulation-based rehearsal mechanism (Baddeley, 2012). Two experiments have been carried out to investigate this hypothesis using sound materials that are difficult to label verbally and difficult to articulate. Participants were required to maintain 2 to 4 sounds differing in timbre over a delay of up to 12 seconds while performing different secondary tasks. While there was no convincing evidence for articulatory rehearsal as a main maintenance mechanism for auditory-nonverbal information, the results suggest that processes similar or identical to auditory imagery might contribute to maintenance. We discuss the implications of these results for multicomponent models of working memory.

  9. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  10. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  11. Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex

    Science.gov (United States)

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction. PMID:23029483

  12. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  13. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  14. Chaos in the delay logistic equation with discontinuous delays

    International Nuclear Information System (INIS)

    Sen, Ayan; Mukherjee, Debasis

    2009-01-01

    This paper analyzes a delay logistic equation which models a feedback control problem. Interval map associated to the system is derived. By calculating Lyapunov exponent, we indicate stable orbit and chaotic phenomenon respectively. The results are verified through computer simulation. We identify the parameter which controls the dynamics.

  15. Skill learning from kinesthetic feedback.

    Science.gov (United States)

    Pinzon, David; Vega, Roberto; Sanchez, Yerly Paola; Zheng, Bin

    2017-10-01

    It is important for a surgeon to perform surgical tasks under appropriate guidance from visual and kinesthetic feedback. However, our knowledge on kinesthetic (muscle) memory and its role in learning motor skills remains elementary. To discover the effect of exclusive kinesthetic training on kinesthetic memory in both performance and learning. In Phase 1, a total of twenty participants duplicated five 2 dimensional movements of increasing complexity via passive kinesthetic guidance, without visual or auditory stimuli. Five participants were asked to repeat the task in the Phase 2 over a period of three weeks, for a total of nine sessions. Subjects accurately recalled movement direction using kinesthetic memory, but recalling movement length was less precise. Over the nine training sessions, error occurrence dropped after the sixth session. Muscle memory constructs the foundation for kinesthetic training. Knowledge gained helps surgeons learn skills from kinesthetic information in the condition where visual feedback is limited. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  18. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  19. Auditory white noise reduces postural fluctuations even in the absence of vision.

    Science.gov (United States)

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2015-08-01

    The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory noise should lead to increased feedback about sensory frames of reference used in balance control. In the present experiment, postural sway was analyzed in healthy young adults where they were presented with continuous white noise, in the presence and absence of visual information. Our results show reduced postural sway variability (as indexed by the body's center of pressure) in the presence of auditory noise, even when visual information was not present. Nonlinear time series analysis revealed that auditory noise has an additive effect, independent of vision, on postural stability. Further analysis revealed that auditory noise reduced postural sway variability in both low- and high-frequency regimes (> or noise. Our results support the idea that auditory white noise reduces postural sway, suggesting that auditory noise might be used for therapeutic and rehabilitation purposes in older individuals and those with balance disorders.

  20. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  1. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  2. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  3. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  4. Delayed Intermodal Contingency Affects Young Children's Recognition of Their Current Self

    Science.gov (United States)

    Miyazaki, Michiko; Hiraki, Kazuo

    2006-01-01

    This study investigated whether 2-, 3-, and 4-year-olds use their video feedback as a reflection of their current state, even when their feedback was presented with a short temporal delay. In Experiment 1, the effects of 1- and 2-s delayed feedback were examined on an analog of the mark test. In the case of live and 1-s delayed feedback,…

  5. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  6. Robust control of time-delay chaotic systems

    International Nuclear Information System (INIS)

    Hua Changchun; Guan Xinping

    2003-01-01

    Robust control problem of nonlinear time-delay chaotic systems is investigated. For such uncertain systems, we propose adaptive feedback controller and novel nonlinear feedback controller. They are both independent of the time delay and can render the corresponding closed-loop systems globally uniformly ultimately bounded stable. The simulations on controlling logistic system are made and the results show the controllers are feasible

  7. Auditory Memory for Timbre

    Science.gov (United States)

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  8. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new

  9. Delayed Ejaculation

    Science.gov (United States)

    ... cases, it is due to a combination of physical and psychological concerns. Psychological causes of delayed ejaculation include: Depression, anxiety or other mental health conditions Relationship problems due to stress, poor communication ...

  10. Delayed growth

    Science.gov (United States)

    ... Slow rate of growth; Retarded growth and development; Growth delay Images Toddler development References Cooke DW, Divall SA, Radovick S. Normal and aberrant growth in children. In: Melmed S, Polonsky KS, Larsen PR, ...

  11. Effects of Temporal Congruity Between Auditory and Visual Stimuli Using Rapid Audio-Visual Serial Presentation.

    Science.gov (United States)

    An, Xingwei; Tang, Jiabei; Liu, Shuang; He, Feng; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2016-10-01

    Combining visual and auditory stimuli in event-related potential (ERP)-based spellers gained more attention in recent years. Few of these studies notice the difference of ERP components and system efficiency caused by the shifting of visual and auditory onset. Here, we aim to study the effect of temporal congruity of auditory and visual stimuli onset on bimodal brain-computer interface (BCI) speller. We designed five visual and auditory combined paradigms with different visual-to-auditory delays (-33 to +100 ms). Eleven participants attended in this study. ERPs were acquired and aligned according to visual and auditory stimuli onset, respectively. ERPs of Fz, Cz, and PO7 channels were studied through the statistical analysis of different conditions both from visual-aligned ERPs and audio-aligned ERPs. Based on the visual-aligned ERPs, classification accuracy was also analyzed to seek the effects of visual-to-auditory delays. The latencies of ERP components depended mainly on the visual stimuli onset. Auditory stimuli onsets influenced mainly on early component accuracies, whereas visual stimuli onset determined later component accuracies. The latter, however, played a dominate role in overall classification. This study is important for further studies to achieve better explanations and ultimately determine the way to optimize the bimodal BCI application.

  12. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    Science.gov (United States)

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  13. Corrective feedback, learner uptake, and feedback perception in a Chinese as a foreign language classroom

    Directory of Open Access Journals (Sweden)

    Tingfeng Fu

    2016-03-01

    Full Text Available The role of corrective feedback in second language classrooms has received considerable research attention in the past few decades. However, most of this research has been conducted in English-teaching settings, either ESL or EFL. This study examined teacher feedback, learner uptake as well as learner and teacher perception of feedback in an adult Chinese as a foreign language classroom. Ten hours of classroom interactions were videotaped, transcribed and coded for analysis. Lyster and Ranta’s (1997 coding system involving six types of feedback was initially used to identify feedback frequency and learner uptake. However, the teacher was found to use a number of additional feedback types. Altogether, 12 types of feedback were identified: recasts, delayed recasts, clarification requests, translation, metalinguistic feedback, elicitation, explicit correction, asking a direct question, repetition, directing question to other students, re-asks, and using L1-English. Differences were noted in the frequency of some of the feedback types as well as learner uptake compared to what had been reported in some previous ESL and EFL studies. With respect to the new feedback types, some led to noticeable uptake. As for the students’ and teacher’s perceptions, they did not match and both the teacher and the students were generally not accurate in perceiving the frequency of each feedback type. The findings are discussed in terms of the role of context in affecting the provision and effectiveness of feedback and its relationship to student and teacher perception of feedback.

  14. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  15. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  16. Statistics and dimension of chaos in differential delay systems

    Energy Technology Data Exchange (ETDEWEB)

    Dorizzi, B.; Grammaticos, B.; Le Berre, M.; Pomeau, Y.; Ressayre, E.; Tallet, A.

    1987-01-01

    The chaotic solution of dissipative scalar-delay-differential equations with a nonlinear feedback periodic with respect to its argument is shown to behave as a Gaussian-Markovian process in a large time scale. The short time scale is shown to be defined by the correlation time of the delayed feedback. The dimension of the chaotic attractor is shown to be approximately equal to the number of short times that are contained inside the delay.

  17. Statistics and dimension of chaos in differential delay systems

    International Nuclear Information System (INIS)

    Dorizzi, B.; Grammaticos, B.; Le Berre, M.; Pomeau, Y.; Ressayre, E.; Tallet, A.

    1987-01-01

    The chaotic solution of dissipative scalar-delay-differential equations with a nonlinear feedback periodic with respect to its argument is shown to behave as a Gaussian-Markovian process in a large time scale. The short time scale is shown to be defined by the correlation time of the delayed feedback. The dimension of the chaotic attractor is shown to be approximately equal to the number of short times that are contained inside the delay

  18. Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia.

    Science.gov (United States)

    Lehmann, Alexandre; Skoe, Erika; Moreau, Patricia; Peretz, Isabelle; Kraus, Nina

    2015-07-01

    Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Abnormalities in auditory efferent activities in children with selective mutism.

    Science.gov (United States)

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. © 2013 S. Karger AG, Basel.

  20. H-infty Control of systems with multiple i/o delays

    NARCIS (Netherlands)

    Agoes Ariffin Moelja, A.A.; Meinsma, Gjerrit; Mirkin, Leonid

    2003-01-01

    In this paper the standard (four-block) H-infty control problem for systems with multiple i/o delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators. The adobe delay

  1. Partially blind instantly decodable network codes for lossy feedback environment

    KAUST Repository

    Sorour, Sameh

    2014-09-01

    In this paper, we study the multicast completion and decoding delay minimization problems for instantly decodable network coding (IDNC) in the case of lossy feedback. When feedback loss events occur, the sender falls into uncertainties about packet reception at the different receivers, which forces it to perform partially blind selections of packet combinations in subsequent transmissions. To determine efficient selection policies that reduce the completion and decoding delays of IDNC in such an environment, we first extend the perfect feedback formulation in our previous works to the lossy feedback environment, by incorporating the uncertainties resulting from unheard feedback events in these formulations. For the completion delay problem, we use this formulation to identify the maximum likelihood state of the network in events of unheard feedback and employ it to design a partially blind graph update extension to the multicast IDNC algorithm in our earlier work. For the decoding delay problem, we derive an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both outperform previously proposed approaches and achieve tolerable degradation even at relatively high feedback loss rates.

  2. Normal time course of auditory recognition in schizophrenia, despite impaired precision of the auditory sensory ("echoic") memory code.

    Science.gov (United States)

    March, L; Cienfuegos, A; Goldbloom, L; Ritter, W; Cowan, N; Javitt, D C

    1999-02-01

    Prior studies have demonstrated impaired precision of processing within the auditory sensory memory (ASM) system in schizophrenia. This study used auditory backward masking to evaluate the degree to which such deficits resulted from impaired overall precision versus premature decay of information within the short-term auditory store. ASM performance was evaluated in 14 schizophrenic participants and 16 controls. Schizophrenic participants were severely impaired in their ability to match tones following delay. However, when no-mask performance was equated across participants, schizophrenic participants were no more susceptible to the effects of backward maskers than were controls. Thus, despite impaired precision of ASM performance, schizophrenic participants showed no deficits in the time course over which short-term representations could be used within the ASM system.

  3. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  4. Developmental delay

    Science.gov (United States)

    Nutrition support is essential for the care of the child with developmental delay. After a thorough evaluation, an individualized intervention plan that accounts for the child’s nutrition status, feeding ability, and medical condition may be determined. Nutrition assessments may be performed at leas...

  5. KEKB bunch feedback systems

    Energy Technology Data Exchange (ETDEWEB)

    Tobiyama, M; Kikutani, E [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Design and the present status of the bunch by bunch feedback systems for KEKB rings are shown. The detection of the bunch oscillation are made with the phase detection for longitudinal plane, the AM/PM method for transverse plane. Two GHz component of the bunch signal which is extracted with an analog FIR filter is used for the detection. Hardware two-tap FIR filter systems to shift the phase of the oscillation by 90deg will be used for the longitudinal signal processing. The same system will be used with no filtering but with only digital delay for transverse system. The candidate for the kicker and the required maximum power are also estimated. (author)

  6. Feedforward and Feedback Control in Apraxia of Speech: Effects of Noise Masking on Vowel Production

    Science.gov (United States)

    Maas, Edwin; Mailend, Marja-Liisa; Guenther, Frank H.

    2015-01-01

    Purpose: This study was designed to test two hypotheses about apraxia of speech (AOS) derived from the Directions Into Velocities of Articulators (DIVA) model (Guenther et al., 2006): the feedforward system deficit hypothesis and the feedback system deficit hypothesis. Method: The authors used noise masking to minimize auditory feedback during…

  7. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  8. Prestimulus subsequent memory effects for auditory and visual events.

    Science.gov (United States)

    Otten, Leun J; Quayle, Angela H; Puvaneswaran, Bhamini

    2010-06-01

    It has been assumed that the effective encoding of information into memory primarily depends on neural activity elicited when an event is initially encountered. Recently, it has been shown that memory formation also relies on neural activity just before an event. The precise role of such activity in memory is currently unknown. Here, we address whether prestimulus activity affects the encoding of auditory and visual events, is set up on a trial-by-trial basis, and varies as a function of the type of recognition judgment an item later receives. Electrical brain activity was recorded from the scalps of 24 healthy young adults while they made semantic judgments on randomly intermixed series of visual and auditory words. Each word was preceded by a cue signaling the modality of the upcoming word. Auditory words were preceded by auditory cues and visual words by visual cues. A recognition memory test with remember/know judgments followed after a delay of about 45 min. As observed previously, a negative-going, frontally distributed modulation just before visual word onset predicted later recollection of the word. Crucially, the same effect was found for auditory words and observed on stay as well as switch trials. These findings emphasize the flexibility and general role of prestimulus activity in memory formation, and support a functional interpretation of the activity in terms of semantic preparation. At least with an unpredictable trial sequence, the activity is set up anew on each trial.

  9. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  10. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  11. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    OpenAIRE

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to ...

  12. Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI - A pilot study

    Directory of Open Access Journals (Sweden)

    Kirsten Emmert

    2017-01-01

    Overall, these results show that continuous feedback is suitable for long-term neurofeedback experiments while intermittent feedback presentation promises good results for single session experiments when using the auditory cortex as a target region. In particular, the down-regulation effect is more pronounced in the secondary auditory cortex, which might be more susceptible to voluntary modulation in comparison to a primary sensory region.

  13. Auditory changes in acromegaly.

    Science.gov (United States)

    Tabur, S; Korkmaz, H; Baysal, E; Hatipoglu, E; Aytac, I; Akarsu, E

    2017-06-01

    The aim of this study is to determine the changes involving auditory system in cases with acromegaly. Otological examinations of 41 cases with acromegaly (uncontrolled n = 22, controlled n = 19) were compared with those of age and gender-matched 24 healthy subjects. Whereas the cases with acromegaly underwent examination with pure tone audiometry (PTA), speech audiometry for speech discrimination (SD), tympanometry, stapedius reflex evaluation and otoacoustic emission tests, the control group did only have otological examination and PTA. Additionally, previously performed paranasal sinus-computed tomography of all cases with acromegaly and control subjects were obtained to measure the length of internal acoustic canal (IAC). PTA values were higher (p acromegaly group was narrower compared to that in control group (p = 0.03 for right ears and p = 0.02 for left ears). When only cases with acromegaly were taken into consideration, PTA values in left ears had positive correlation with growth hormone and insulin-like growth factor-1 levels (r = 0.4, p = 0.02 and r = 0.3, p = 0.03). Of all cases with acromegaly 13 (32%) had hearing loss in at least one ear, 7 (54%) had sensorineural type and 6 (46%) had conductive type hearing loss. Acromegaly may cause certain changes in the auditory system in cases with acromegaly. The changes in the auditory system may be multifactorial causing both conductive and sensorioneural defects.

  14. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  15. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  16. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  17. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  18. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tae, Woo Suk; Yakunina, Natalia; Nam, Eui-Cheol; Kim, Tae Su; Kim, Sam Soo

    2014-01-01

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  19. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  20. Feedback in the OSCE: What Do Residents Remember?

    Science.gov (United States)

    Humphrey-Murto, Susan; Mihok, Marika; Pugh, Debra; Touchie, Claire; Halman, Samantha; Wood, Timothy J

    2016-01-01

    The move to competency-based education has heightened the importance of direct observation of clinical skills and effective feedback. The Objective Structured Clinical Examination (OSCE) is widely used for assessment and affords an opportunity for both direct observation and feedback to occur simultaneously. For feedback to be effective, it should include direct observation, assessment of performance, provision of feedback, reflection, decision making, and use of feedback for learning and change. If one of the goals of feedback is to engage students to think about their performance (i.e., reflection), it would seem imperative that they can recall this feedback both immediately and into the future. This study explores recall of feedback in the context of an OSCE. Specifically, the purpose of this study was to (a) determine the amount and the accuracy of feedback that trainees remember immediately after an OSCE, as well as 1 month later, and (b) assess whether prompting immediate recall improved delayed recall. Internal medicine residents received 2 minutes of verbal feedback from physician examiners in the context of an OSCE. The feedback was audio-recorded and later transcribed. Residents were randomly allocated to the immediate recall group (immediate-RG; n = 10) or the delayed recall group (delayed-RG; n = 8). The immediate-RG completed a questionnaire prompting recall of feedback received immediately after the OSCE, and then again 1 month later. The delayed-RG completed a questionnaire only 1 month after the OSCE. The total number and accuracy of feedback points provided by examiners were compared to the points recalled by residents. Results comparing recall at 1 month between the immediate-RG and the delayed-RG were also studied. Physician examiners provided considerably more feedback points (M = 16.3) than the residents recalled immediately after the OSCE (M = 2.61, p feedback points recalled upon completion of the OSCE (2.61) compared to 1 month later (M = 1

  1. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. ...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....

  2. Delayed Puberty

    DEFF Research Database (Denmark)

    Kolby, Nanna; Busch, Alexander Siegfried; Juul, Anders

    2017-01-01

    . The underlying reasons for the large variation in the age at pubertal onset are not fully established; however, nutritional status and socioeconomic and environmental factors are known to be influencing, and a significant amount of influencing genetic factors have also been identified. The challenges...... optimal in discriminating especially CDGP from HH. Management of the delayed puberty depends on the etiology. For boys with CDGP an observational period will often reveal imminent puberty. If puberty is not progressing spontaneously, sex steroid replacement is effective in stimulating the development...

  3. Direct output feedback control of discrete-time systems

    International Nuclear Information System (INIS)

    Lin, C.C.; Chung, L.L.; Lu, K.H.

    1993-01-01

    An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)

  4. Auditory interfaces in automated driving: an international survey

    Directory of Open Access Journals (Sweden)

    Pavlo Bazilinskyy

    2015-08-01

    Full Text Available This study investigated peoples’ opinion on auditory interfaces in contemporary cars and their willingness to be exposed to auditory feedback in automated driving. We used an Internet-based survey to collect 1,205 responses from 91 countries. The respondents stated their attitudes towards two existing auditory driver assistance systems, a parking assistant (PA and a forward collision warning system (FCWS, as well as towards a futuristic augmented sound system (FS proposed for fully automated driving. The respondents were positive towards the PA and FCWS, and rated the willingness to have automated versions of these systems as 3.87 and 3.77, respectively (on a scale from 1 = disagree strongly to 5 = agree strongly. The respondents tolerated the FS (the mean willingness to use it was 3.00 on the same scale. The results showed that among the available response options, the female voice was the most preferred feedback type for takeover requests in highly automated driving, regardless of whether the respondents’ country was English speaking or not. The present results could be useful for designers of automated vehicles and other stakeholders.

  5. Multimodal information Management: Evaluation of Auditory and Haptic Cues for NextGen Communication Displays

    Science.gov (United States)

    Begault, Durand R.; Bittner, Rachel M.; Anderson, Mark R.

    2012-01-01

    Auditory communication displays within the NextGen data link system may use multiple synthetic speech messages replacing traditional ATC and company communications. The design of an interface for selecting amongst multiple incoming messages can impact both performance (time to select, audit and release a message) and preference. Two design factors were evaluated: physical pressure-sensitive switches versus flat panel "virtual switches", and the presence or absence of auditory feedback from switch contact. Performance with stimuli using physical switches was 1.2 s faster than virtual switches (2.0 s vs. 3.2 s); auditory feedback provided a 0.54 s performance advantage (2.33 s vs. 2.87 s). There was no interaction between these variables. Preference data were highly correlated with performance.

  6. Dynamics of Nonlinear Time-Delay Systems

    CERN Document Server

    Lakshmanan, Muthusamy

    2010-01-01

    Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...

  7. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  8. Synchronization of coupled nonidentical multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model

  9. Auditory short-term memory in the primate auditory cortex

    OpenAIRE

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ���working memory��� bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive sho...

  10. Feedback coupling in dynamical systems

    Science.gov (United States)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  11. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  12. Neural correlates of auditory recognition memory in the primate dorsal temporal pole.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2014-02-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.

  13. Skriftlig feedback i engelskundervisningen

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher

    2017-01-01

    The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools.......The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools....

  14. Student Engagement with Feedback

    Science.gov (United States)

    Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex

    2011-01-01

    This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…

  15. Global synchronization criteria with channel time-delay for chaotic time-delay system

    International Nuclear Information System (INIS)

    Sun Jitao

    2004-01-01

    Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved

  16. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  17. Demodulation Processes in Auditory Perception

    National Research Council Canada - National Science Library

    Feth, Lawrence

    1997-01-01

    The long range goal of this project was the understanding of human auditory processing of information conveyed by complex, time varying signals such as speech, music or important environmental sounds...

  18. Auditory cortical volumes and musical ability in Williams syndrome.

    Science.gov (United States)

    Martens, Marilee A; Reutens, David C; Wilson, Sarah J

    2010-07-01

    Individuals with Williams syndrome (WS) have been shown to have atypical morphology in the auditory cortex, an area associated with aspects of musicality. Some individuals with WS have demonstrated specific musical abilities, despite intellectual delays. Primary auditory cortex and planum temporale volumes were manually segmented in 25 individuals with WS and 25 control participants, and the participants also underwent testing of musical abilities. Left and right planum temporale volumes were significantly larger in the participants with WS than in controls, with no significant difference noted between groups in planum temporale asymmetry or primary auditory cortical volumes. Left planum temporale volume was significantly increased in a subgroup of the participants with WS who demonstrated specific musical strengths, as compared to the remaining WS participants, and was highly correlated with scores on a musical task. These findings suggest that differences in musical ability within WS may be in part associated with variability in the left auditory cortical region, providing further evidence of cognitive and neuroanatomical heterogeneity within this syndrome. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Control and diagnostic uses of feedback

    International Nuclear Information System (INIS)

    Sen, A. K.

    2000-01-01

    Recent results on multimode feedback control of magnetohydrodynamic (MHD) modes and a variety of diagnostic uses of feedback are summarized. First, is the report on reduction and scaling of transport under feedback. By controlling the fluctuation amplitudes and consequently the transport via feedback, it is found that the scaling of the diffusion coefficient is linear with root-mean-square rms fluctuation level. The scaling appears not to agree with any generic theory. A variety of other diagnostic uses of feedback have been developed. The primary goal is an experimental methodology for the determination of dynamic models of plasma turbulence, both for better transport understanding and more credible feedback controller designs. A specific motivation is to search for a low-order dynamic model, suitable for the convenient study of both transport and feedback. First, the time series analysis method is used for the determination of chaotic attractor dimension of plasma fluctuations. For ExB rotational flute modes it is found to be close to three, indicating that a low-order dynamic model may be adequate for transport prediction and feedback controller design. Second, a new method for direct experimental determination of nonlinear dynamical models of plasma turbulence using feedback has been developed. Specifically, the process begins with a standard three-wave coupling model and introduces a variable feedback gain. The power spectrum, delayed power spectrum, and bispectrum of fluctuations are then experimentally obtained. By varying the feedback gain continuously, an arbitrary number of numerical equations for a fixed number of unknowns can be generated. Their numerical solution yields the linear dispersion, as well as nonlinear coupling coefficients. This method has been successfully applied for ExB rotationally driven flute modes. (c) 2000 American Institute of Physics

  20. Bubbling in delay-coupled lasers.

    Science.gov (United States)

    Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E

    2009-06-01

    We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.

  1. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.

    Science.gov (United States)

    Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A

    2015-11-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.

  2. Auditory agnosia associated with bilateral putaminal hemorrhage: A case report of clinical course of recovery.

    Science.gov (United States)

    Tokida, Haruki; Kanaya, Yuhei; Shimoe, Yutaka; Imagawa, Madoka; Fukunaga, Shinya; Kuriyama, Masaru

    2017-08-31

    A 45-year-old right-handed man with a past history (10 years) of putaminal hemorrage presented with auditory agnosia associated with left putaminal hemorrhage. It was suspected that the auditory agnosia was due to bilateral damage in the acoustic radiations. Generalized auditory agnosia, verbal and non-verbal (music and environmental), was diagnosed by neuropsychological examinations. It improved 4 months after the onset. However, the clinical assessment of attention remained poor. The cognition for speech sounds improved slowly, but once it started to improve, the progress of improvement was rapid. Subsequently, the cognition for music sounds also improved, while the recovery of the cognition for environmental sounds remained delayed. There was a dissociation in recovery between these cognitions. He was able to return to work a year after the onset. We also reviewed the literature for cases with auditory agnosia and discuss their course of recovery in this report.

  3. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  4. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Directory of Open Access Journals (Sweden)

    James Bigelow

    Full Text Available Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s. However, at longer retention intervals (8-32 s, accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  5. Achilles’ Ear? Inferior Human Short-Term and Recognition Memory in the Auditory Modality

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects’ retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1–4 s). However, at longer retention intervals (8–32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices. PMID:24587119

  6. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Retrosplenial Cortex Is Required for the Retrieval of Remote Memory for Auditory Cues

    Science.gov (United States)

    Todd, Travis P.; Mehlman, Max L.; Keene, Christopher S.; DeAngeli, Nicole E.; Bucci, David J.

    2016-01-01

    The retrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of…

  9. Contributions from eye movement potentials to stimulus preceding negativity during anticipation of auditory stimulation

    DEFF Research Database (Denmark)

    Engdahl, Lis; Bjerre, Vicky K; Christoffersen, Gert R J

    2007-01-01

    Cognitive anticipation of a stimulus has been associated with an ERP called "stimulus preceding negativity" (SPN). A new auditory delay task without stimulus-related motor activity demonstrated a prefrontal SPN, present during attentive anticipation of sounds with closed eyes, but absent during d...

  10. Searching for the optimal stimulus eliciting auditory brainstem responses in humans

    DEFF Research Database (Denmark)

    Fobel, Oliver; Dau, Torsten

    2004-01-01

    -chirp, was based on estimates of human basilar membrane (BM) group delays derived from stimulus-frequency otoacoustic emissions (SFOAE) at a sound pressure level of 40 dB [Shera and Guinan, in Recent Developments in Auditory Mechanics (2000)]. The other chirp, referred to as the A-chirp, was derived from latency...

  11. Precise auditory-vocal mirroring in neurons for learned vocal communication.

    Science.gov (United States)

    Prather, J F; Peters, S; Nowicki, S; Mooney, R

    2008-01-17

    Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.

  12. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  13. Feedback on Feedback--Does It Work?

    Science.gov (United States)

    Speicher, Oranna; Stollhans, Sascha

    2015-01-01

    It is well documented that providing assessment feedback through the medium of screencasts is favourably received by students and encourages deeper engagement with the feedback given by the language teacher (inter alia Abdous & Yoshimura, 2010; Brick & Holmes, 2008; Cann, 2007; Stannard, 2007). In this short paper we will report the…

  14. Operation of the transverse feedback system at the CERN SPS

    International Nuclear Information System (INIS)

    Bossart, R.; Louwerse, R.; Mourier, J.; Vos, L.

    1987-01-01

    To prevent transverse instabilities at high beam intensity in the SPS, the transverse feedback system for damping the betatron oscillations has been upgraded for larger damping decrements and for increased system's bandwidth. The feedback loop now contains a digital delay line cancellor, so that the damper works with a velocity feedback Δx/Δt, unaffected by the closed orbit position x at the pick-up station. The digital processing of the feedback signal facilitates nonlinear feedback techniques such as antidamping and ''band-bang'' feedback. The ''bang-bang'' feedback provides the maximum possible damping rate of the injection oscillations in the SPS-collider, in order to minimize the emittance increase caused by filamentation. The antidamping nonlinearity provides small continuous beam oscillations of 50 μm amplitude for tracking the machine tune Q with a phase locked loop

  15. Relay Selection with Limited and Noisy Feedback

    KAUST Repository

    Eltayeb, Mohammed E.

    2016-01-28

    Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Nonetheless, relay selection algorithms generally require error-free channel state information (CSI) from all cooperating relays. Practically, CSI acquisition generates a great deal of feedback overhead that could result in significant transmission delays. In addition to this, the fed back channel information is usually corrupted by additive noise. This could lead to transmission outages if the central node selects the set of cooperating relays based on inaccurate feedback information. In this paper, we propose a relay selection algorithm that tackles the above challenges. Instead of allocating each relay a dedicated channel for feedback, all relays share a pool of feedback channels. Following that, each relay feeds back its identity only if its effective channel (source-relay-destination) exceeds a threshold. After deriving closed-form expressions for the feedback load and the achievable rate, we show that the proposed algorithm drastically reduces the feedback overhead and achieves a rate close to that obtained by selection algorithms with dedicated error-free feedback from all relays. © 2015 IEEE.

  16. Delayed Stochastic Linear-Quadratic Control Problem and Related Applications

    Directory of Open Access Journals (Sweden)

    Li Chen

    2012-01-01

    stochastic differential equations (FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the optimal feedback regulator for the time delay system via a new type of Riccati equations and also apply to a population optimal control problem.

  17. Delayed puberty and hypogonadotropic hypogonadism. Differential diagnosis and treatment

    NARCIS (Netherlands)

    Snoep, Marinus Cornelis

    1978-01-01

    This thesis describes a method enabling a prospecrive differential diagnosis to be made berween delayed puberty (DP) and hypogonadotropic hypogonadism (HH). The influence of androgen administration on the gonadal feedback sysrem of patients with delayed puberty was also studied. ... Zie: Summary

  18. Pinning synchronization of the complex networks with non-delayed and delayed coupling

    International Nuclear Information System (INIS)

    Guo Wanli; Austin, Francis; Chen Shihua; Sun Wen

    2009-01-01

    In this Letter, without assuming the symmetry of the coupling matrix, we investigate the global synchronization of the complex networks with non-delayed and delayed coupling based on the pinning controllers. Some sufficient conditions for the global synchronization by adding linear and adaptive feedback controllers to a part of nodes are obtained. Numerical examples are also provided to demonstrate the effectiveness of the theory.

  19. Haptic Feedback for Enhancing Realism of Walking Simulations

    DEFF Research Database (Denmark)

    Turchet, Luca; Burelli, Paolo; Serafin, Stefania

    2013-01-01

    system. While during the use of the interactive system subjects physically walked, during the use of the non-interactive system the locomotion was simulated while subjects were sitting on a chair. In both the configurations subjects were exposed to auditory and audio-visual stimuli presented...... with and without the haptic feedback. Results of the experiments provide a clear preference towards the simulations enhanced with haptic feedback showing that the haptic channel can lead to more realistic experiences in both interactive and non-interactive configurations. The majority of subjects clearly...... appreciated the added feedback. However, some subjects found the added feedback disturbing and annoying. This might be due on one hand to the limits of the haptic simulation and on the other hand to the different individual desire to be involved in the simulations. Our findings can be applied to the context...

  20. Delay-based virtual congestion control in multi-tenant datacenters

    Science.gov (United States)

    Liu, Yuxin; Zhu, Danhong; Zhang, Dong

    2018-03-01

    With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.

  1. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  2. Listen, you are writing!Speeding up online spelling with a dynamic auditory BCI

    Directory of Open Access Journals (Sweden)

    Martijn eSchreuder

    2011-10-01

    Full Text Available Representing an intuitive spelling interface for Brain-Computer Interfaces (BCI in the auditory domain is not straightforward. In consequence, all existing approaches based on event-related potentials (ERP rely at least partially on a visual representation of the interface. This online study introduces an auditory spelling interface that eliminates the necessity for such a visualization. In up to two sessions, a group of healthy subjects (N=21 was asked to use a text entry application, utilizing the spatial cues of the AMUSE paradigm (Auditory Multiclass Spatial ERP. The speller relies on the auditory sense both for stimulation and the core feedback. Without prior BCI experience, 76% of the participants were able to write a full sentence during the first session. By exploiting the advantages of a newly introduced dynamic stopping method, a maximum writing speed of 1.41 characters/minute (7.55 bits/minute could be reached during the second session (average: .94 char/min, 5.26 bits/min. For the first time, the presented work shows that an auditory BCI can reach performances similar to state-of-the-art visual BCIs based on covert attention. These results represent an important step towards a purely auditory BCI.

  3. Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations

    Directory of Open Access Journals (Sweden)

    Gabriella Musacchia

    2017-08-01

    Full Text Available Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx, over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx or maturation alone (Naïve Control, NC. Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD elicited greater Theta-band (4–6 Hz activity in Right Auditory Cortex (RAC, as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV elicited larger responses in Left Auditory Cortex (LAC. PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33–37 Hz activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.

  4. The Mythology of Feedback

    Science.gov (United States)

    Adcroft, Andy

    2011-01-01

    Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…

  5. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  6. PEP-II RF feedback system simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tighe, R [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A model containing the fundamental impedance of the PEP-II cavity along with the longitudinal beam dynamics and RF feedback system components is in use. It is prepared in a format allowing time-domain as well as frequency-domain analysis and full graphics capability. Matlab and Simulink are control system design and analysis programs (widely available) with many built-in tools. The model allows the use of compiled C-code modules for compute intensive portions. We desire to represent as nearly as possible the components of the feedback system including all delays, sample rates and applicable nonlinearities. (author)

  7. Delayed puberty in girls

    Science.gov (United States)

    ... sexual development - girls; Pubertal delay - girls; Constitutional delayed puberty ... In most cases of delayed puberty, growth changes just begin later than usual, sometimes called a late bloomer. Once puberty begins, it progresses normally. This pattern runs ...

  8. Delayed Puberty (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Delayed Puberty KidsHealth / For Teens / Delayed Puberty What's in this ... wonder if there's anything wrong. What Is Delayed Puberty? Puberty is the time when your body grows ...

  9. A Review of Auditory Prediction and Its Potential Role in Tinnitus Perception.

    Science.gov (United States)

    Durai, Mithila; O'Keeffe, Mary G; Searchfield, Grant D

    2018-06-01

    The precise mechanisms underlying tinnitus perception and distress are still not fully understood. A recent proposition is that auditory prediction errors and related memory representations may play a role in driving tinnitus perception. It is of interest to further explore this. To obtain a comprehensive narrative synthesis of current research in relation to auditory prediction and its potential role in tinnitus perception and severity. A narrative review methodological framework was followed. The key words Prediction Auditory, Memory Prediction Auditory, Tinnitus AND Memory, Tinnitus AND Prediction in Article Title, Abstract, and Keywords were extensively searched on four databases: PubMed, Scopus, SpringerLink, and PsychINFO. All study types were selected from 2000-2016 (end of 2016) and had the following exclusion criteria applied: minimum age of participants article not available in English. Reference lists of articles were reviewed to identify any further relevant studies. Articles were short listed based on title relevance. After reading the abstracts and with consensus made between coauthors, a total of 114 studies were selected for charting data. The hierarchical predictive coding model based on the Bayesian brain hypothesis, attentional modulation and top-down feedback serves as the fundamental framework in current literature for how auditory prediction may occur. Predictions are integral to speech and music processing, as well as in sequential processing and identification of auditory objects during auditory streaming. Although deviant responses are observable from middle latency time ranges, the mismatch negativity (MMN) waveform is the most commonly studied electrophysiological index of auditory irregularity detection. However, limitations may apply when interpreting findings because of the debatable origin of the MMN and its restricted ability to model real-life, more complex auditory phenomenon. Cortical oscillatory band activity may act as

  10. Steady State Analysis of Stochastic Systems with Multiple Time Delays

    Science.gov (United States)

    Xu, W.; Sun, C. Y.; Zhang, H. Q.

    In this paper, attention is focused on the steady state analysis of a class of nonlinear dynamic systems with multi-delayed feedbacks driven by multiplicative correlated Gaussian white noises. The Fokker-Planck equations for delayed variables are at first derived by Novikov's theorem. Then, under small delay assumption, the approximate stationary solutions are obtained by the probability density approach. As a special case, the effects of multidelay feedbacks and the correlated additive and multiplicative Gaussian white noises on the response of a bistable system are considered. It is shown that the obtained analytical results are in good agreement with experimental results in Monte Carlo simulations.

  11. Pre-Attentive Auditory Processing of Lexicality

    Science.gov (United States)

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  12. Feature Assignment in Perception of Auditory Figure

    Science.gov (United States)

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  13. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    Science.gov (United States)

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  14. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    Science.gov (United States)

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the

  15. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    Directory of Open Access Journals (Sweden)

    Nicolas eGiret

    2015-10-01

    Full Text Available Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM, while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird’s own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of

  16. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Analyzing delay causes in Egyptian construction projects

    Directory of Open Access Journals (Sweden)

    Mohamed M. Marzouk

    2014-01-01

    Full Text Available Construction delays are common problems in civil engineering projects in Egypt. These problems occur frequently during project life-time leading to disputes and litigation. Therefore, it is essential to study and analyze causes of construction delays. This research presents a list of construction delay causes retrieved from literature. The feedback of construction experts was obtained through interviews. Subsequently, a questionnaire survey was prepared. The questionnaire survey was distributed to thirty-three construction experts who represent owners, consultants, and contractor’s organizations. Frequency Index, Severity Index, and Importance Index are calculated and according to the highest values of them the top ten delay causes of construction projects in Egypt are determined. A case study is analyzed and compared to the most important delay causes in the research. Statistical analysis is carried out using analysis of variance ANOVA method to test delay causes, obtained from the survey. The test results reveal good correlation between groups while there is significant difference between them for some delay causes and finally roadmap for prioritizing delay causes groups is presented.

  18. Influence of age, spatial memory, and ocular fixation on localization of auditory, visual, and bimodal targets by human subjects.

    Science.gov (United States)

    Dobreva, Marina S; O'Neill, William E; Paige, Gary D

    2012-12-01

    A common complaint of the elderly is difficulty identifying and localizing auditory and visual sources, particularly in competing background noise. Spatial errors in the elderly may pose challenges and even threats to self and others during everyday activities, such as localizing sounds in a crowded room or driving in traffic. In this study, we investigated the influence of aging, spatial memory, and ocular fixation on the localization of auditory, visual, and combined auditory-visual (bimodal) targets. Head-restrained young and elderly subjects localized targets in a dark, echo-attenuated room using a manual laser pointer. Localization accuracy and precision (repeatability) were quantified for both ongoing and transient (remembered) targets at response delays up to 10 s. Because eye movements bias auditory spatial perception, localization was assessed under target fixation (eyes free, pointer guided by foveal vision) and central fixation (eyes fixed straight ahead, pointer guided by peripheral vision) conditions. Spatial localization across the frontal field in young adults demonstrated (1) horizontal overshoot and vertical undershoot for ongoing auditory targets under target fixation conditions, but near-ideal horizontal localization with central fixation; (2) accurate and precise localization of ongoing visual targets guided by foveal vision under target fixation that degraded when guided by peripheral vision during central fixation; (3) overestimation in horizontal central space (±10°) of remembered auditory, visual, and bimodal targets with increasing response delay. In comparison with young adults, elderly subjects showed (1) worse precision in most paradigms, especially when localizing with peripheral vision under central fixation; (2) greatly impaired vertical localization of auditory and bimodal targets; (3) increased horizontal overshoot in the central field for remembered visual and bimodal targets across response delays; (4) greater vulnerability to

  19. Neural correlates of auditory recognition memory in primate lateral prefrontal cortex.

    Science.gov (United States)

    Plakke, B; Ng, C-W; Poremba, A

    2013-08-06

    The neural underpinnings of working and recognition memory have traditionally been studied in the visual domain and these studies pinpoint the lateral prefrontal cortex (lPFC) as a primary region for visual memory processing (Miller et al., 1996; Ranganath et al., 2004; Kennerley and Wallis, 2009). Herein, we utilize single-unit recordings for the same region in monkeys (Macaca mulatta) but investigate a second modality examining auditory working and recognition memory during delayed matching-to-sample (DMS) performance. A large portion of neurons in the dorsal and ventral banks of the principal sulcus (area 46, 46/9) show DMS event-related activity to one or more of the following task events: auditory cues, memory delay, decision wait time, response, and/or reward portions. Approximately 50% of the neurons show evidence of auditory-evoked activity during the task and population activity demonstrated encoding of recognition memory in the form of match enhancement. However, neither robust nor sustained delay activity was observed. The neuronal responses during the auditory DMS task are similar in many respects to those found within the visual working memory domain, which supports the hypothesis that the lPFC, particularly area 46, functionally represents key pieces of information for recognition memory inclusive of decision-making, but regardless of modality. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Intermittent stimulation delays adaptation to electrocutaneous sensory feedback

    NARCIS (Netherlands)

    Buma, D.G.; Buma, Dorindo G.; Buitenweg, Jan R.; Veltink, Petrus H.

    Electrotactile displays deliver information to the user by means of electrocutaneous stimulation. If such displays are used in prostheses, the functionality depends on long term stability of this information channel. The perceived sensation, however, decays within 15 min due to central adaptation if

  3. Feedback effect on flute dynamics in a mirror machine

    International Nuclear Information System (INIS)

    Be’ery, I; Seemann, O

    2015-01-01

    The effect of active feedback on flute instability is experimentally studied in a table-top mirror machine. Changing the plasma conditions from mirror-loss dominated to flute-loss dominated, it is demonstrated that while the feedback has no effect on plasma density in the first case, it increases the plasma density by up to 50% in the second case. Measurements of the dependence of instability amplitude on feedback gain show that large gain stimulates high frequency perturbations. The period of these perturbations corresponds to the inherent delay of immersed electrode feedback. Variation of the spatial phase between the input and output of the phase reveals a large asymmetry between positive and negative phase shifts. A simplified model is introduced to explain how a negative phase shift causes positive feedback between the external feedback and the centrifugally driven rotation. (paper)

  4. $H^\\infty$ control of systems with multiple I/O delays via decomposition to adobe problems

    NARCIS (Netherlands)

    Meinsma, Gjerrit; Mirkin, Leonid

    In this paper, the standard (four-block) $H^\\infty$ control problem for systems with multiple input-output delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators.

  5. Speech and Language Delay

    Science.gov (United States)

    ... OTC Relief for Diarrhea Home Diseases and Conditions Speech and Language Delay Condition Speech and Language Delay Share Print Table of Contents1. ... Treatment6. Everyday Life7. Questions8. Resources What is a speech and language delay? A speech and language delay ...

  6. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  7. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  8. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    Science.gov (United States)

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  9. Time-dependent solutions for stochastic systems with delays: Perturbation theory and applications to financial physics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2006-01-01

    First-order approximations of time-dependent solutions are determined for stochastic systems perturbed by time-delayed feedback forces. To this end, the theory of delay Fokker-Planck equations is applied in combination with Bayes' theorem. Applications to a time-delayed Ornstein-Uhlenbeck process and the geometric Brownian walk of financial physics are discussed

  10. Delay signatures in the chaotic intensity output of a quantum dot ...

    Indian Academy of Sciences (India)

    Delay identification from the chaotic intensity output of a quantum dot laser with optical feedback is done using numerical and information theoretic techniques. Four quantifiers, namely autocorrelation function, delayed mutual information, permutation entropy and permutation statistical complexity, are employed in delay ...

  11. Differential Effectiveness of Electromyograph Feedback, Verbal Relaxation Instructions, and Medication Placebo with Tension Headaches

    Science.gov (United States)

    Cox, Daniel J.; And Others

    1975-01-01

    Adults with chronic tension headaches were assigned to auditory electromyograph (EMG) feedback (N=9), to progressive relaxation (N=9), and to placebo treatment (N=9). Data indicated that biofeedback and verbal relaxation instructions were equally superior to the medicine placebo on all measured variables in the direction of clinical improvement,…

  12. The Effect of Multimodal Feedback on Perceived Exertion on a VR Exercise Setting

    DEFF Research Database (Denmark)

    Bruun-Pedersen, Jon Ram; Andersen, Morten G.; Clemmesen, Mathias M.

    2018-01-01

    This paper seeks to determine if multimodal feedback, from auditory and haptic stimuli, can affect a user’s perceived exertion in a virtual reality setting. A simple virtual environment was created in the style of a desert to minimize the amount of visual distractions; a head mounted display was ...

  13. The Impact of Wireless Technology Feedback on Inventory Management at a Dairy Manufacturing Plant

    Science.gov (United States)

    Goomas, David T.

    2012-01-01

    Replacing the method of counting inventory from paper count sheets to that of wireless reliably reduced the elapsed time to complete a daily inventory of the storage cooler in a dairy manufacturing plant. The handheld computers delivered immediate prompts as well as auditory and visual feedback. Reducing the time to complete the daily inventory…

  14. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  15. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  16. Feedback and Incentives:

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedba...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work....

  17. Policy Feedback System (PFS)

    Data.gov (United States)

    Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...

  18. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  19. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  20. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  1. Auditory imagery shapes movement timing and kinematics: evidence from a musical task.

    Science.gov (United States)

    Keller, Peter E; Dalla Bella, Simone; Koch, Iring

    2010-04-01

    The role of anticipatory auditory imagery in music-like sequential action was investigated by examining timing accuracy and kinematics using a motion capture system. Musicians responded to metronomic pacing signals by producing three unpaced taps on three vertically aligned keys at the given tempo. Taps triggered tones in two out of three blocked feedback conditions, where key-to-tone mappings were compatible or incompatible in terms of spatial and pitch height. Results indicate that, while timing was most accurate without tones, movements were smaller in amplitude and less forceful (i.e., acceleration prior to impact was lowest) when tones were present. Moreover, timing was more accurate and movements were less forceful with compatible than with incompatible auditory feedback. Observing these effects at the first tap (before tone onset) suggests that anticipatory auditory imagery modulates the temporal kinematics of regularly timed auditory action sequences, like those found in music. Such cross-modal ideomotor processes may function to facilitate planning efficiency and biomechanical economy in voluntary action. Copyright 2010 APA, all rights reserved.

  2. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  3. Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback

    International Nuclear Information System (INIS)

    Zhao Mao-Rong; Wu Zheng-Mao; Deng Tao; Zhou Zhen-Li; Xia Guang-Qiong

    2015-01-01

    Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented. (paper)

  4. Rapid Auditory System Adaptation Using a Virtual Auditory Environment

    Directory of Open Access Journals (Sweden)

    Gaëtan Parseihian

    2011-10-01

    Full Text Available Various studies have highlighted plasticity of the auditory system from visual stimuli, limiting the trained field of perception. The aim of the present study is to investigate auditory system adaptation using an audio-kinesthetic platform. Participants were placed in a Virtual Auditory Environment allowing the association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues or Head-Related Transfer Function (HRTF through the use of a tracked ball manipulated by the subject. This set-up has the advantage to be not being limited to the visual field while also offering a natural perception-action coupling through the constant awareness of one's hand position. Adaptation process to non-individualized HRTF was realized through a spatial search game application. A total of 25 subjects participated, consisting of subjects presented with modified cues using non-individualized HRTF and a control group using individual measured HRTFs to account for any learning effect due to the game itself. The training game lasted 12 minutes and was repeated over 3 consecutive days. Adaptation effects were measured with repeated localization tests. Results showed a significant performance improvement for vertical localization and a significant reduction in the front/back confusion rate after 3 sessions.

  5. Auditory memory in monkeys: costs and benefits of proactive interference.

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2013-05-01

    Proactive interference (PI) has traditionally been understood as an adverse consequence of stimulus repetition during memory tasks. Herein, we present data that emphasize costs as well as benefits of PI for monkeys performing an auditory delayed matching-to-sample (DMTS) task. The animals made same/different judgments for a variety of simple and complex sounds separated by a 5-s memory delay. Each session used a stimulus set that included eight sounds; thus, each sound was repeated multiple times per session for match trials and for nonmatch trials as the sample (Cue 1) or test (Cue 2) stimulus. For nonmatch trials, performance was substantially diminished when the test stimulus had been previously presented on a recent trial. However, when the sample stimulus had been recently presented, performance was significantly improved. We also observed a marginal performance benefit when stimuli for match trials had been recently presented. The costs of PI for nonmatch test stimuli were greater than the combined benefits of PI for nonmatch sample stimuli and match trials, indicating that the net influence of PI is detrimental. For all three manifestations of PI, the effects are shown to extend beyond the immediately subsequent trial. Our data suggest that PI in auditory DMTS is best understood as an enduring influence that can be both detrimental and beneficial to memory-task performance. © 2012 Wiley Periodicals, Inc.

  6. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  7. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  8. Effects of tailoring ingredients in auditory persuasive health messages on fruit and vegetable intake

    OpenAIRE

    Elbert, Sarah P.; Dijkstra, Arie; Rozema, Andrea

    2017-01-01

    Objective: Health messages can be tailored by applying different tailoring ingredients, among which personalisation, feedback and adaptation. This experiment investigated the separate effects of these tailoring ingredients on behaviour in auditory health persuasion. Furthermore, the moderating effect of self-efficacy was assessed.Design: The between-participants design consisted of four conditions. A generic health message served as a control condition; personalisation was applied using the r...

  9. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  10. Noise transmission and delay-induced stochasticoscillations in biochemical network motifs

    Institute of Scientific and Technical Information of China (English)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Fumihiko Sakata

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations,we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation.We systematically analyse the effects of time delays,the feedback mechanism,and biological stochasticity on the power spectra.It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator.Delay-induced stochastic resonance can be expected,which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations.Through the analysis of the power spectrum,a new approach is proposed to estimate the oscillation period.

  11. Noise transmission and delay-induced stochastic oscillations in biochemical network motifs

    International Nuclear Information System (INIS)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)

  12. Auditory sensory memory and language abilities in former late talkers: a mismatch negativity study.

    Science.gov (United States)

    Grossheinrich, Nicola; Kademann, Stefanie; Bruder, Jennifer; Bartling, Juergen; Von Suchodoletz, Waldemar

    2010-09-01

    The present study investigated whether (a) a reduced duration of auditory sensory memory is found in late talking children and (b) whether deficits of sensory memory are linked to persistent difficulties in language acquisition. Former late talkers and children without delayed language development were examined at the age of 4 years and 7 months using mismatch negativity (MMN) with interstimulus intervals (ISIs) of 500 ms and 2000 ms. Additionally, short-term memory, language skills, and nonverbal intelligence were assessed. MMN mean amplitude was reduced for the ISI of 2000 ms in former late talking children both with and without persistent language deficits. In summary, our findings suggest that late talkers are characterized by a reduced duration of auditory sensory memory. However, deficits in auditory sensory memory are not sufficient for persistent language difficulties and may be compensated for by some children.

  13. Maturation of auditory neural processes in autism spectrum disorder — A longitudinal MEG study

    Directory of Open Access Journals (Sweden)

    Russell G. Port

    2016-01-01

    Conclusions: Children with ASD showed perturbed auditory cortex neural activity, as evidenced by M100 latency delays as well as reduced transient gamma-band activity. Despite evidence for maturation of these responses in ASD, the neural abnormalities in ASD persisted across time. Of note, data from the five children whom demonstrated “optimal outcome” qualitatively suggest that such clinical improvements may be associated with auditory brain responses intermediate between TD and ASD. These “optimal outcome” related results are not statistically significant though, likely due to the low sample size of this cohort, and to be expected as a result of the relatively low proportion of “optimal outcome” in the ASD population. Thus, further investigations with larger cohorts are needed to determine if the above auditory response phenotypes have prognostic utility, predictive of clinical outcome.

  14. Quantum feedback for rapid state preparation in the presence of control imperfections

    International Nuclear Information System (INIS)

    Combes, Joshua; Wiseman, Howard M

    2011-01-01

    Quantum feedback control protocols can improve the operation of quantum devices. Here we examine the performance of a purification protocol when there are imperfections in the controls. The ideal feedback protocol produces an x-eigenstate from a mixed state in the minimum time, and is known as rapid state preparation. The imperfections we examine include time delays in the feedback loop, finite strength feedback, calibration errors and inefficient detection. We analyse these imperfections using the Wiseman-Milburn feedback master equation and related formalism. We find that the protocol is most sensitive to time delays in the feedback loop. For systems with slow dynamics, however, our analysis suggests that inefficient detection would be the bigger problem. We also show how system imperfections, such as dephasing and damping, can be included in a model via the feedback master equation.

  15. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  16. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Role of Age and Executive Function in Auditory Category Learning

    Science.gov (United States)

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  18. Feedback For Helpers

    Science.gov (United States)

    Stromer, Walter F.

    1975-01-01

    The author offers some feedback to those in the helping professions in three areas: (1) forms and letters; (2) jumping to conclusions; and (3) blaming and belittling, in hopes of stimulating more feedback as well as more positive ways of performing their services. (HMV)

  19. 'Peer feedback' voor huisartsopleiders

    NARCIS (Netherlands)

    Damoiseaux, R A M J; Truijens, L

    2016-01-01

    In medical specialist training programmes it is common practice for residents to provide feedback to their medical trainers. The problem is that due to its anonymous nature, the feedback often lacks the specificity necessary to improve the performance of trainers. If anonymity is to be abolished,

  20. Feedback og interpersonel kommunikation

    DEFF Research Database (Denmark)

    Dindler, Camilla

    2016-01-01

    Som interpersonel kommunikationsform handler feedback om at observere, mærke og italesætte det, som handler om relationen mellem samtaleparterne mere end om samtaleemnet. Her er fokus på, hvad der siges og hvordan der kommunikeres sammen. Feedback er her ikke en korrigerende tilbagemelding til...

  1. Laterality of basic auditory perception.

    Science.gov (United States)

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  2. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey I Berman

    2016-03-01

    Full Text Available Background: Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD. The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD children (mean age 10.4±2.4years and 95 children with ASD (mean age 10.2±2.6years. Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1 superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2 auditory vowel-contrast mismatch field (MMF latency as a passive probe of early linguistic processes. Results: Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. Results also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. Conclusion: Present findings suggest atypical

  3. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  4. Feedback i matematik

    DEFF Research Database (Denmark)

    Sortkær, Bent

    2017-01-01

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hartberg, Dobson, & Gran, 2012; Hattie & Timperley, 2007; Wiliam, 2015). Dette på trods af, at flere forskere påpeger, at feedback ikke altid er læringsfremmende...... (Hattie & Gan, 2011), og nogle endda viser, at feedback kan have en negativ virkning i forhold til præstationer (Kluger & DeNisi, 1996). Artiklen vil undersøge disse tilsyneladende modstridende resultater ved at stille spørgsmålet: Under hvilke forudsætninger virker feedback i matematik læringsfremmende......? Dette gøres ved at dykke ned i forskningslitteraturen omhandlende feedback ud fra en række temaer for på den måde at besvare ovenstående spørgsmål....

  5. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  6. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  7. Two-actor conflict with time delay: A dynamical model

    Science.gov (United States)

    Qubbaj, Murad R.; Muneepeerakul, Rachata

    2012-11-01

    Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.

  8. The Effect of Working Memory Training on Auditory Stream Segregation in Auditory Processing Disorders Children

    OpenAIRE

    Abdollah Moossavi; Saeideh Mehrkian; Yones Lotfi; Soghrat Faghih zadeh; Hamed Adjedi

    2015-01-01

    Objectives: This study investigated the efficacy of working memory training for improving working memory capacity and related auditory stream segregation in auditory processing disorders children. Methods: Fifteen subjects (9-11 years), clinically diagnosed with auditory processing disorder participated in this non-randomized case-controlled trial. Working memory abilities and auditory stream segregation were evaluated prior to beginning and six weeks after completing the training program...

  9. UAVs and Control Delays

    National Research Council Canada - National Science Library

    de Vries, S. C

    2005-01-01

    .... Delays of about 250-300 ms often lead to unacceptable airplane handling qualities. Techniques such as filtering and predictive displays may extend the range of acceptable delays up to about 400 ms...

  10. Delayed puberty in boys

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007695.htm Delayed puberty in boys To use the sharing features on this page, please enable JavaScript. Delayed puberty in boys is when puberty does not begin ...

  11. Haptic feedback for enhancing realism of walking simulations.

    Science.gov (United States)

    Turchet, Luca; Burelli, Paolo; Serafin, Stefania

    2013-01-01

    In this paper, we describe several experiments whose goal is to evaluate the role of plantar vibrotactile feedback in enhancing the realism of walking experiences in multimodal virtual environments. To achieve this goal we built an interactive and a noninteractive multimodal feedback system. While during the use of the interactive system subjects physically walked, during the use of the noninteractive system the locomotion was simulated while subjects were sitting on a chair. In both the configurations subjects were exposed to auditory and audio-visual stimuli presented with and without the haptic feedback. Results of the experiments provide a clear preference toward the simulations enhanced with haptic feedback showing that the haptic channel can lead to more realistic experiences in both interactive and noninteractive configurations. The majority of subjects clearly appreciated the added feedback. However, some subjects found the added feedback unpleasant. This might be due, on one hand, to the limits of the haptic simulation and, on the other hand, to the different individual desire to be involved in the simulations. Our findings can be applied to the context of physical navigation in multimodal virtual environments as well as to enhance the user experience of watching a movie or playing a video game.

  12. Functional mapping of the primate auditory system.

    Science.gov (United States)

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  13. Auditory Modeling for Noisy Speech Recognition

    National Research Council Canada - National Science Library

    2000-01-01

    ... digital filtering for noise cancellation which interfaces to speech recognition software. It uses auditory features in speech recognition training, and provides applications to multilingual spoken language translation...

  14. Human Factors Military Lexicon: Auditory Displays

    National Research Council Canada - National Science Library

    Letowski, Tomasz

    2001-01-01

    .... In addition to definitions specific to auditory displays, speech communication, and audio technology, the lexicon includes several terms unique to military operational environments and human factors...

  15. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The importance of proper feedback modeling in HWR

    Energy Technology Data Exchange (ETDEWEB)

    Saphier, D; Gorelik, Z; Shapira, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    The DSNP simulation language was applied to study the effect of different modeling approximations of feedback phenomena in nuclear power plants. The different methods to model the feedback effects are presented and discussed. It is shown that HWR`s are most sensitive to the correct modeling since the usually have at least three feedback effects acting at different time scales, and to achieve correct kinetics a one dimensional representation is needed with correct modeling of the in core time delays. The simulation methodology of lumped parameters and one dimensional models using the DSNP simulation language is presented (authors).

  17. The importance of proper feedback modeling in HWR

    International Nuclear Information System (INIS)

    Saphier, D.; Gorelik, Z.; Shapira, M.

    1996-01-01

    The DSNP simulation language was applied to study the effect of different modeling approximations of feedback phenomena in nuclear power plants. The different methods to model the feedback effects are presented and discussed. It is shown that HWR's are most sensitive to the correct modeling since the usually have at least three feedback effects acting at different time scales, and to achieve correct kinetics a one dimensional representation is needed with correct modeling of the in core time delays. The simulation methodology of lumped parameters and one dimensional models using the DSNP simulation language is presented (authors)

  18. Delayed Orgasm and Anorgasmia

    OpenAIRE

    Jenkins, Lawrence C.; Mulhall, John P.

    2015-01-01

    Delayed orgasm/anorgasmia defined as the persistent or recurrent difficulty, delay in, or absence of attaining orgasm after sufficient sexual stimulation, which causes personal distress. Delayed orgasm and anorgasmia are associated with significant sexual dissatisfaction. A focused medical history can shed light on the potential etiologies; which include: medications, penile sensation loss, endocrinopathies, penile hyperstimulation and psychological etiologies, amongst others. Unfortunately, ...

  19. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    Science.gov (United States)

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  20. Feedback and efficient behavior.

    Directory of Open Access Journals (Sweden)

    Sandro Casal

    Full Text Available Feedback is an effective tool for promoting efficient behavior: it enhances individuals' awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers' behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers.

  1. Feedback - fra et elevperspektiv

    DEFF Research Database (Denmark)

    Petersen, Benedikte Vilslev; Pedersen, Bent Sortkær

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hattie og Timperley, 2007). Andre studier er dog inde på at feedback ikke altid er læringsfremmende og nogle viser endda at feedback kan have en negativ virkning i...... forhold til præstationer (Kluger & DeNisi, 1996). I forsøget på at forklare hvordan og hvorfor feedback virker (forskelligt), er der undersøgt flere dimensioner og forhold omkring feedback (se bl.a. Black og Wiliam, 1998; Hattie og Timperley, 2007; Shute, 2008). Dog er der få studier der undersøger...... hvordan feedback opleves fra et elevperspektiv (Ruiz-Primo og Li, 2013). Samtidig er der i feedbacklitteraturen en mangel på kvalitative studier, der kommer tæt på fænomenet feedback, som det viser sig i klasserummet (Ruiz-Primo og Li, 2013) i naturlige omgivelser (Black og Wiliam, 1998), og hvordan...

  2. Silent music reading: auditory imagery and visuotonal modality transfer in singers and non-singers.

    Science.gov (United States)

    Hoppe, Christian; Splittstößer, Christoph; Fliessbach, Klaus; Trautner, Peter; Elger, Christian E; Weber, Bernd

    2014-11-01

    In daily life, responses are often facilitated by anticipatory imagery of expected targets which are announced by associated stimuli from different sensory modalities. Silent music reading represents an intriguing case of visuotonal modality transfer in working memory as it induces highly defined auditory imagery on the basis of presented visuospatial information (i.e. musical notes). Using functional MRI and a delayed sequence matching-to-sample paradigm, we compared brain activations during retention intervals (10s) of visual (VV) or tonal (TT) unimodal maintenance versus visuospatial-to-tonal modality transfer (VT) tasks. Visual or tonal sequences were comprised of six elements, white squares or tones, which were low, middle, or high regarding vertical screen position or pitch, respectively (presentation duration: 1.5s). For the cross-modal condition (VT, session 3), the visuospatial elements from condition VV (session 1) were re-defined as low, middle or high "notes" indicating low, middle or high tones from condition TT (session 2), respectively, and subjects had to match tonal sequences (probe) to previously presented note sequences. Tasks alternately had low or high cognitive load. To evaluate possible effects of music reading expertise, 15 singers and 15 non-musicians were included. Scanner task performance was excellent in both groups. Despite identity of applied visuospatial stimuli, visuotonal modality transfer versus visual maintenance (VT>VV) induced "inhibition" of visual brain areas and activation of primary and higher auditory brain areas which exceeded auditory activation elicited by tonal stimulation (VT>TT). This transfer-related visual-to-auditory activation shift occurred in both groups but was more pronounced in experts. Frontoparietal areas were activated by higher cognitive load but not by modality transfer. The auditory brain showed a potential to anticipate expected auditory target stimuli on the basis of non-auditory information and

  3. Auditory and verbal memory predictors of spoken language skills in children with cochlear implants.

    Science.gov (United States)

    de Hoog, Brigitte E; Langereis, Margreet C; van Weerdenburg, Marjolijn; Keuning, Jos; Knoors, Harry; Verhoeven, Ludo

    2016-10-01

    Large variability in individual spoken language outcomes remains a persistent finding in the group of children with cochlear implants (CIs), particularly in their grammatical development. In the present study, we examined the extent of delay in lexical and morphosyntactic spoken language levels of children with CIs as compared to those of a normative sample of age-matched children with normal hearing. Furthermore, the predictive value of auditory and verbal memory factors in the spoken language performance of implanted children was analyzed. Thirty-nine profoundly deaf children with CIs were assessed using a test battery including measures of lexical, grammatical, auditory and verbal memory tests. Furthermore, child-related demographic characteristics were taken into account. The majority of the children with CIs did not reach age-equivalent lexical and morphosyntactic language skills. Multiple linear regression analyses revealed that lexical spoken language performance in children with CIs was best predicted by age at testing, phoneme perception, and auditory word closure. The morphosyntactic language outcomes of the CI group were best predicted by lexicon, auditory word closure, and auditory memory for words. Qualitatively good speech perception skills appear to be crucial for lexical and grammatical development in children with CIs. Furthermore, strongly developed vocabulary skills and verbal memory abilities predict morphosyntactic language skills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    Science.gov (United States)

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  5. Delay-range-dependent exponential H∞ synchronization of a class of delayed neural networks

    International Nuclear Information System (INIS)

    Karimi, Hamid Reza; Maass, Peter

    2009-01-01

    This article aims to present a multiple delayed state-feedback control design for exponential H ∞ synchronization problem of a class of delayed neural networks with multiple time-varying discrete delays. On the basis of the drive-response concept and by introducing a descriptor technique and using Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for exponential H ∞ synchronization of the drive-response structure of neural networks are driven in terms of linear matrix inequalities (LMIs). The explicit expression of the controller gain matrices are parameterized based on the solvability conditions such that the drive system and the response system can be exponentially synchronized. A numerical example is included to illustrate the applicability of the proposed design method.

  6. Evaluating the Precision of Auditory Sensory Memory as an Index of Intrusion in Tinnitus.

    Science.gov (United States)

    Barrett, Doug J K; Pilling, Michael

    The purpose of this study was to investigate the potential of measures of auditory short-term memory (ASTM) to provide a clinical measure of intrusion in tinnitus. Response functions for six normal listeners on a delayed pitch discrimination task were contrasted in three conditions designed to manipulate attention in the presence and absence of simulated tinnitus: (1) no-tinnitus, (2) ignore-tinnitus, and (3) attend-tinnitus. Delayed pitch discrimination functions were more variable in the presence of simulated tinnitus when listeners were asked to divide attention between the primary task and the amplitude of the tinnitus tone. Changes in the variability of auditory short-term memory may provide a novel means of quantifying the level of intrusion associated with the tinnitus percept during listening.

  7. Training effectiveness feedback

    International Nuclear Information System (INIS)

    Wiggin, N.A.

    1987-01-01

    A formal method of getting feedback about the job performance of employees is a necessary part of all the authors training programs. The formal process may prove to be inadequate if it is the only process in use. There are many ways and many opportunities to get good feedback about employee performance. It is important to document these methods and specific instances to supplement the more formalized process. The key is to identify them, encourage them, use them, and document the training actions that result from them. This paper describes one plant's method of getting feedback about performance of technicians in the field

  8. Feedback System Theory

    Science.gov (United States)

    1978-11-01

    R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction

  9. Brugbar peer feedback

    DEFF Research Database (Denmark)

    Hvass, Helle; Heger, Stine

    Studerende kan være medskabere af undervisning i akademisk skrivning, når de modtager og giver feedback til hinandens ufærdige akademiske tekster. Det ser vi i et udviklingsprojekt, hvor vi afprøver kollektive vejledningsformater. Vi har dog erfaret: 1. at studerende mangler træning i at give og ...... modtage feedback 2. at den manglende træning kan stå i vejen for realiseringen af læringspotentialet ved peer feedback....

  10. Regenerative memory in time-delayed neuromorphic photonic resonators

    Science.gov (United States)

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.

  11. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  12. Reality Monitoring and Feedback Control of Speech Production Are Related Through Self-Agency.

    Science.gov (United States)

    Subramaniam, Karuna; Kothare, Hardik; Mizuiri, Danielle; Nagarajan, Srikantan S; Houde, John F

    2018-01-01

    Self-agency is the experience of being the agent of one's own thoughts and motor actions. The intact experience of self-agency is necessary for successful interactions with the outside world (i.e., reality monitoring) and for responding to sensory feedback of our motor actions (e.g., speech feedback control). Reality monitoring is the ability to distinguish internally self-generated information from outside reality (externally-derived information). In the present study, we examined the relationship of self-agency between lower-level speech feedback monitoring (i.e., monitoring what we hear ourselves say) and a higher-level cognitive reality monitoring task. In particular, we examined whether speech feedback monitoring and reality monitoring were driven by the capacity to experience self-agency-the ability to make reliable predictions about the outcomes of self-generated actions. During the reality monitoring task, subjects made judgments as to whether information was previously self-generated (self-agency judgments) or externally derived (external-agency judgments). During speech feedback monitoring, we assessed self-agency by altering environmental auditory feedback so that subjects listened to a perturbed version of their own speech. When subjects heard minimal perturbations in their auditory feedback while speaking, they made corrective responses, indicating that they judged the perturbations as errors in their speech output. We found that self-agency judgments in the reality-monitoring task were higher in people who had smaller corrective responses ( p = 0.05) and smaller inter-trial variability ( p = 0.03) during minimal pitch perturbations of their auditory feedback. These results provide support for a unitary process for the experience of self-agency governing low-level speech control and higher level reality monitoring.

  13. Modeling the Developmental Patterns of Auditory Evoked Magnetic Fields in Children

    OpenAIRE

    Kotecha, Rupesh; Pardos, Maria; Wang, Yingying; Wu, Ting; Horn, Paul; Brown, David; Rose, Douglas; deGrauw, Ton; Xiang, Jing

    2009-01-01

    BACKGROUND: As magnetoencephalography (MEG) is of increasing utility in the assessment of deficits and development delays in brain disorders in pediatrics, it becomes imperative to fully understand the functional development of the brain in children. METHODOLOGY: The present study was designed to characterize the developmental patterns of auditory evoked magnetic responses with respect to age and gender. Sixty children and twenty adults were studied with a 275-channel MEG system. CONCLUSIONS:...

  14. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...

  15. Ambulatory Feedback System

    Science.gov (United States)

    Finger, Herbert; Weeks, Bill

    1985-01-01

    This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.

  16. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  17. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  18. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  19. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  20. Successive lag synchronization on dynamical networks with communication delay

    International Nuclear Information System (INIS)

    Zhang Xin-Jian; Wei Ai-Ju; Li Ke-Zan

    2016-01-01

    In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems. (paper)

  1. Synchronization of stochastic delayed neural networks with markovian switching and its application.

    Science.gov (United States)

    Tang, Yang; Fang, Jian-An; Miao, Qing-Ying

    2009-02-01

    In this paper, the problem of adaptive synchronization for a class of stochastic neural networks (SNNs) which involve both mixed delays and Markovian jumping parameters is investigated. The mixed delays comprise the time-varying delays and distributed delays, both of which are mode-dependent. The stochastic perturbations are described in terms of Browian motion. By the adaptive feedback technique, several sufficient criteria have been proposed to ensure the synchronization of SNNs in mean square. Moreover, the proposed adaptive feedback scheme is applied to the secure communication. Finally, the corresponding simulation results are given to demonstrate the usefulness of the main results obtained.

  2. Stability and Bifurcation Analysis in a Maglev System with Multiple Delays

    Science.gov (United States)

    Zhang, Lingling; Huang, Jianhua; Huang, Lihong; Zhang, Zhizhou

    This paper considers the time-delayed feedback control for Maglev system with two discrete time delays. We determine constraints on the feedback time delays which ensure the stability of the Maglev system. An algorithm is developed for drawing a two-parametric bifurcation diagram with respect to two delays τ1 and τ2. Direction and stability of periodic solutions are also determined using the normal form method and center manifold theory by Hassard. The complex dynamical behavior of the Maglev system near the domain of stability is confirmed by exhaustive numerical simulation.

  3. Noise-induced coherence in bistable systems with multiple time delays

    International Nuclear Information System (INIS)

    Jiang Yu; Dong, Shi-Hai; Lozada-Cassou, M.

    2004-01-01

    We study the correlation properties of noise-driven bistable systems with multiple time-delay feedbacks. For small noisy perturbation and feedback magnitude, we derive the autocorrelation function and the power spectrum based on the two-state model with transition rates depending on the earlier states of the system. A comparison between the single and double time delays reveals that the auto correlation functions exhibit exponential decay with small undulation for the double time delays, in contrast with the remarkable oscillatory behavior at small time lags for the single time delay

  4. Feedback control of vertical instability in TNS

    International Nuclear Information System (INIS)

    Frantz, E.R.

    1978-05-01

    Due to the unfavorable curvature of the vertical vacuum magnetic field, elongated plasmas are vertically unstable when the elongation, epsilon, becomes too large. The TNS (The Next Step) tokamak, as evolved in the Westinghouse-ORNL studies has an inside-D configuration (epsilon = 1.6, A = 5/1.25 = 4) characterized by an average decay index n approximately equal -0.75 at the plasma flux surface near the magnetic axis and is vertically unstable with a growth rate γ 0 approximately 10 5 sec -1 . Eddy currents produced in the vacuum vessel wall will slow this instability to growth rates γ 0 approximately 10 2 sec -1 provided there are no transverse insulating gaps in the vessel wall. A matrix equation has been developed for calculating the eddy currents induced in the EF coils and their stabilizing effect. Control theory for feedback systems with and without delay time is presented and possible plasma position detectors are discussed. For a plasma current of 6.1 MA, the controller peak power requirements using separate controller circuits are approximately 1 MW depending upon EF coil configurations and time delay. This feedback system is designed to stabilize a maximum plasma excursion of 10 cm from the midplane with delay times up to 2 sec

  5. Event-Based Stabilization over Networks with Transmission Delays

    Directory of Open Access Journals (Sweden)

    Xiangyu Meng

    2012-01-01

    Full Text Available This paper investigates asymptotic stabilization for linear systems over networks based on event-driven communication. A new communication logic is proposed to reduce the feedback effort, which has some advantages over traditional ones with continuous feedback. Considering the effect of time-varying transmission delays, the criteria for the design of both the feedback gain and the event-triggering mechanism are derived to guarantee the stability and performance requirements. Finally, the proposed techniques are illustrated by an inverted pendulum system and a numerical example.

  6. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference.

    Science.gov (United States)

    Wang, Anbang; Yang, Yibiao; Wang, Bingjie; Zhang, Beibei; Li, Lei; Wang, Yuncai

    2013-04-08

    We demonstrate experimentally and numerically a method using the incoherent delayed self-interference (DSI) of chaotic light from a semiconductor laser with optical feedback to generate wideband chaotic signal. The results show that, the DSI can eliminate the domination of laser relaxation oscillation existing in the chaotic laser light and therefore flatten and widen the power spectrum. Furthermore, the DSI depresses the time-delay signature induced by external cavity modes and improves the symmetry of probability distribution by more than one magnitude. We also experimentally show that this DSI signal is beneficial to the random number generation.

  7. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  8. Auditory and visual evoked potentials during hyperoxia

    Science.gov (United States)

    Smith, D. B. D.; Strawbridge, P. J.

    1974-01-01

    Experimental study of the auditory and visual averaged evoked potentials (AEPs) recorded during hyperoxia, and investigation of the effect of hyperoxia on the so-called contingent negative variation (CNV). No effect of hyperoxia was found on the auditory AEP, the visual AEP, or the CNV. Comparisons with previous studies are discussed.

  9. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  10. Neural circuits in auditory and audiovisual memory.

    Science.gov (United States)

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  12. Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

    Directory of Open Access Journals (Sweden)

    Mike eSkocik

    2013-01-01

    Full Text Available Studies of behavioral and neural responses to distorted auditory feedback can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds’ songs.

  13. Temporal Lobe Epilepsy and the Selective Reminding Test: The Conventional 30-Minute Delay Suffices

    Science.gov (United States)

    Bell, Brian D.; Fine, Jason; Dow, Christian; Seidenberg, Michael; Hermann, Bruce P.

    2005-01-01

    Conventional memory assessment may fail to identify memory dysfunction characterized by intact recall for a relatively brief period but rapid forgetting thereafter. This study assessed learning and retention after 30-min and 24-hr delays on auditory and visual selective reminding tests (SRTs) in right (n=20) and left (n=22) temporal lobe epilepsy…

  14. Multiple Description Coding with Feedback Based Network Compression

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Østergaard, Jan; Popovski, Petar

    2010-01-01

    and an intermediate node, respectively. A trade-off exists between reducing the delay of the feedback by adapting in the vicinity of the receiver and increasing the gain from compression by adapting close to the source. The analysis shows that adaptation in the network provides a better trade-off than adaptation...

  15. The Microphone Feedback Analogy for Chatter in Machining

    Directory of Open Access Journals (Sweden)

    Tony Schmitz

    2015-01-01

    Full Text Available This paper provides experimental evidence for the analogy between the time-delay feedback in public address systems and chatter in machining. Machining stability theory derived using the Nyquist criterion is applied to predict the squeal frequency in a microphone/speaker setup. Comparisons between predictions and measurements are presented.

  16. Ion feedback afterpulses in FEU-130 and XP2020 photomultipliers

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Morozov, V.A.; Morozova, N.V.

    2003-01-01

    Intensities and time distributions of ion feedback afterpulses are studied as a function of the difference of potentials between the photocathode and the first dynodes in FEU-130. The intensities and amplitudes of afterpulses in FEU-130 are found to be appreciably larger than in XP2020, which may limit the use of FEU-130 in some experiments with autocorrelation delayed-coincidence spectrometers

  17. Temporal auditory processing in elders

    Directory of Open Access Journals (Sweden)

    Azzolini, Vanuza Conceição

    2010-03-01

    Full Text Available Introduction: In the trial of aging all the structures of the organism are modified, generating intercurrences in the quality of the hearing and of the comprehension. The hearing loss that occurs in consequence of this trial occasion a reduction of the communicative function, causing, also, a distance of the social relationship. Objective: Comparing the performance of the temporal auditory processing between elderly individuals with and without hearing loss. Method: The present study is characterized for to be a prospective, transversal and of diagnosis character field work. They were analyzed 21 elders (16 women and 5 men, with ages between 60 to 81 years divided in two groups, a group "without hearing loss"; (n = 13 with normal auditive thresholds or restricted hearing loss to the isolated frequencies and a group "with hearing loss" (n = 8 with neurosensory hearing loss of variable degree between light to moderately severe. Both the groups performed the tests of frequency (PPS and duration (DPS, for evaluate the ability of temporal sequencing, and the test Randon Gap Detection Test (RGDT, for evaluate the temporal resolution ability. Results: It had not difference statistically significant between the groups, evaluated by the tests DPS and RGDT. The ability of temporal sequencing was significantly major in the group without hearing loss, when evaluated by the test PPS in the condition "muttering". This result presented a growing one significant in parallel with the increase of the age group. Conclusion: It had not difference in the temporal auditory processing in the comparison between the groups.

  18. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  19. PLS beam position measurement and feedback system

    International Nuclear Information System (INIS)

    Huang, J.Y.; Lee, J.; Park, M.K.; Kim, J.H.; Won, S.C.

    1992-01-01

    A real-time orbit correction system is proposed for the stabilization of beam orbit and photon beam positions in Pohang Light Source. PLS beam position monitoring system is designed to be VMEbus compatible to fit the real-time digital orbit feedback system. A VMEbus based subsystem control computer, Mil-1553B communication network and 12 BPM/PS machine interface units constitute digital part of the feedback system. With the super-stable PLS correction magnet power supply, power line frequency noise is almost filtered out and the dominant spectra of beam obtit fluctuations are expected to appear below 15 Hz. Using DSP board in SCC for the computation and using an appropriate compensation circuit for the phase delay by the vacuum chamber, PLS real-time orbit correction system is realizable without changing the basic structure of PLS computer control system. (author)

  20. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.