WorldWideScience

Sample records for delay tolerant networks

  1. Delay tolerant networks

    CERN Document Server

    Gao, Longxiang; Luan, Tom H

    2015-01-01

    This brief presents emerging and promising communication methods for network reliability via delay tolerant networks (DTNs). Different from traditional networks, DTNs possess unique features, such as long latency and unstable network topology. As a result, DTNs can be widely applied to critical applications, such as space communications, disaster rescue, and battlefield communications. The brief provides a complete investigation of DTNs and their current applications, from an overview to the latest development in the area. The core issue of data forward in DTNs is tackled, including the importance of social characteristics, which is an essential feature if the mobile devices are used for human communication. Security and privacy issues in DTNs are discussed, and future work is also discussed.

  2. Optimal Joint Expected Delay Forwarding in Delay Tolerant Networks

    OpenAIRE

    Jia Xu; Xin Feng; Wen Jun Yang; Ru Chuan Wang; Bing Qing Han

    2013-01-01

    Multicopy forwarding schemes have been employed in delay tolerant network (DTN) to improve the delivery delay and delivery rate. Much effort has been focused on reducing the routing cost while retaining high performance. This paper aims to provide an optimal joint expected delay forwarding (OJEDF) protocol which minimizes the expected delay while satisfying a certain constant on the number of forwardings per message. We propose a comprehensive forwarding metric called joint expected delay (JE...

  3. Delay tolerant networks protocols and applications

    CERN Document Server

    Vasilakos, Athanasios V; Spyropoulos, Thrasyvoulos

    2011-01-01

    Delay Tolerant Networks (DTN) - which include terrestrial mobile networks, exotic media networks, ad-hoc networks, and sensor networks - are becoming more important and may not be well served by the current end-to-end TCP/IP model. This book provides a self-contained, one-stop reference for researchers and practitioners who are looking toward the future of networking. The text presents a systematic exploration of DTN concepts, architectures, protocols, enabling technologies, and applications. It also discusses various challenges associated with DTN. The author includes a wealth of illustrative

  4. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  5. Congestion control for vehicular delay tolerant network routing protocols

    OpenAIRE

    Oham, Chuka Finbars

    2014-01-01

    The Vehicular Delay Tolerant Network (VDTN) is a special and challenging type of the Delay Tolerant Network because of its high mobility, frequent disconnections and nodal congestion features. These challenging features make it prone to congestion which leads to a considerable amount of message drops in the network. To minimize the impact of congestion in the network, we designed and implemented the Congestion Aware Spray and Wait (CASaW) routing protocol. We varied the buffer sizes of the no...

  6. Autonomous Congestion Control in Delay-Tolerant Networks

    Science.gov (United States)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  7. Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks

    Science.gov (United States)

    Dudukovich, Rachel; Raible, Daniel E.

    2016-01-01

    The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.

  8. A Novel Message Scheduling Framework for Delay Tolerant Networks Routing

    KAUST Repository

    Elwhishi, Ahmed

    2013-05-01

    Multicopy routing strategies have been considered the most applicable approaches to achieve message delivery in Delay Tolerant Networks (DTNs). Epidemic routing and two-hop forwarding routing are two well-reported approaches for delay tolerant networks routing which allow multiple message replicas to be launched in order to increase message delivery ratio and/or reduce message delivery delay. This advantage, nonetheless, is at the expense of additional buffer space and bandwidth overhead. Thus, to achieve efficient utilization of network resources, it is important to come up with an effective message scheduling strategy to determine which messages should be forwarded and which should be dropped in case of buffer is full. This paper investigates a new message scheduling framework for epidemic and two-hop forwarding routing in DTNs, such that the forwarding/dropping decision can be made at a node during each contact for either optimal message delivery ratio or message delivery delay. Extensive simulation results show that the proposed message scheduling framework can achieve better performance than its counterparts.

  9. Benefits of Delay Tolerant Networking for Earth Science Missions

    Science.gov (United States)

    Davis, Faith; Marquart, Jane; Menke, Greg

    2012-01-01

    To date there has been much discussion about the value of Delay Tolerant Networking (DTN) for space missions. Claims of various benefits, based on paper analysis, are good; however a benefits statement with empirical evidence to support is even better. This paper presents potential and actual advantages of using DTN for Earth science missions based on results from multiple demonstrations, conducted by the Communications, Standards, and Technology Laboratory (CSTL) at NASA Goddard Space Flight Center (GSFC). Demonstrations included two flight demonstrations using the Earth Observing Mission 1 (EO-1) and the Near Earth Network (NEN), a ground based demonstration over satellite links to the Internet Router in Space (IRIS) payload on Intelsat-14, and others using the NASA Tracking Data Relay Satellite System (TDRSS). Real and potential findings include increased flexibility and efficiency in science campaigns, reduced latency in a collaborative science scenario, and improved scientist-instrument communication and control.

  10. Composite mechanisms for improving Bubble Rap in delay tolerant networks

    Directory of Open Access Journals (Sweden)

    Sweta Jain

    2014-01-01

    Full Text Available Delay tolerant networks (DTNs are a subset of mobile ad hoc networks where connections are sparse and intermittent. This often results in a network graph which is rarely connected which introduces a challenge in message forwarding because of a lack of end-to-end connectivity towards the destination. Recently, social-based forwarding algorithms are gaining popularity because of the social nature displayed by the node movements in a DTN, especially in application areas like the pocket switched networks. The social-based metrics like community, similarity, centrality etc. are used to determine the carrier to which a node has to forward its message. Composite methods are used to improve the performance of Bubble Rap social-based forwarding algorithm. In the proposed mechanism, a new social metric termed ‘friendship’ has been introduced along with a time-to-live (TTL-based ‘threshold’ and acknowledgement (ACK IDs. Real trace data and working day movement models are used for simulations in the opportunistic network environment simulator to demonstrate that the proposed algorithm gives better delivery ratio than the original Bubble Rap algorithm.

  11. Cryptographic Key Management in Delay Tolerant Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Sofia Anna Menesidou

    2017-06-01

    Full Text Available Since their appearance at the dawn of the second millennium, Delay or Disruption Tolerant Networks (DTNs have gradually evolved, spurring the development of a variety of methods and protocols for making them more secure and resilient. In this context, perhaps, the most challenging problem to deal with is that of cryptographic key management. To the best of our knowledge, the work at hand is the first to survey the relevant literature and classify the various so far proposed key management approaches in such a restricted and harsh environment. Towards this goal, we have grouped the surveyed key management methods into three major categories depending on whether the particular method copes with (a security initialization, (b key establishment, and (c key revocation. We have attempted to provide a concise but fairly complete evaluation of the proposed up-to-date methods in a generalized way with the aim of offering a central reference point for future research.

  12. Information spreading in Delay Tolerant Networks based on nodes' behaviors

    Science.gov (United States)

    Wu, Yahui; Deng, Su; Huang, Hongbin

    2014-07-01

    Information spreading in DTNs (Delay Tolerant Networks) adopts a store-carry-forward method, and nodes receive the message from others directly. However, it is hard to judge whether the information is safe in this communication mode. In this case, a node may observe other nodes' behaviors. At present, there is no theoretical model to describe the varying rule of the nodes' trusting level. In addition, due to the uncertainty of the connectivity in DTN, a node is hard to get the global state of the network. Therefore, a rational model about the node's trusting level should be a function of the node's own observing result. For example, if a node finds k nodes carrying a message, it may trust the information with probability p(k). This paper does not explore the real distribution of p(k), but instead presents a unifying theoretical framework to evaluate the performance of the information spreading in above case. This framework is an extension of the traditional SI (susceptible-infected) model, and is useful when p(k) conforms to any distribution. Simulations based on both synthetic and real motion traces show the accuracy of the framework. Finally, we explore the impact of the nodes' behaviors based on certain special distributions through numerical results.

  13. Delay Tolerant Networking over the Metropolitan Public Transportation

    Directory of Open Access Journals (Sweden)

    A. Bujari

    2016-01-01

    Full Text Available We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case.

  14. Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks

    Science.gov (United States)

    Birrane, Edward J. III; Burleigh, Scott C.; Cerf, Vint

    2011-01-01

    Challenged networks exhibit irregularities in their communication performance stemming from node mobility, power constraints, and impacts from the operating environment. These irregularities manifest as high signal propagation delay and frequent link disruption. Understanding those limits of link disruption and propagation delay beyond which core networking features fail is an ongoing area of research. Various wireless networking communities propose tools and techniques that address these phenomena. Emerging standardization activities within the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) look to build upon both this experience and scalability analysis. Successful research in this area is predicated upon identifying enablers for common communication functions (notably node discovery, duplex communication, state caching, and link negotiation) and how increased disruptions and delays affect their feasibility within the network. Networks that make fewer assumptions relating to these enablers provide more universal service. Specifically, reliance on node discovery and link negotiation results in network-specific operational concepts rather than scalable technical solutions. Fundamental to this debate are the definitions, assumptions, operational concepts, and anticipated scaling of these networks. This paper presents the commonalities and differences between delay and disruption tolerance, including support protocols and critical enablers. We present where and how these tolerances differ. We propose a set of use cases that must be accommodated by any standardized delay-tolerant network and discuss the implication of these on existing tool development.

  15. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    Science.gov (United States)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  16. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    Science.gov (United States)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  17. A Novel Message Scheduling Framework for Delay Tolerant Networks Routing

    KAUST Repository

    Elwhishi, Ahmed; Ho, Pin-Han; Naik, K.; Shihada, Basem

    2013-01-01

    new message scheduling framework for epidemic and two-hop forwarding routing in DTNs, such that the forwarding/dropping decision can be made at a node during each contact for either optimal message delivery ratio or message delivery delay. Extensive

  18. A Novel Buffer Management Architecture for Epidemic Routing in Delay Tolerant Networks (DTNs)

    KAUST Repository

    Elwhishi, Ahmed; Ho, Pin-Han; Naik, K.; Shihada, Basem

    2010-01-01

    Delay tolerant networks (DTNs) are wireless networks in which an end-to-end path for a given node pair can never exist for an extended period. It has been reported as a viable approach in launching multiple message replicas in order to increase message delivery ratio and reduce message delivery delay. This advantage, nonetheless, is at the expense of taking more buffer space at each node. The combination of custody and replication entails high buffer and bandwidth overhead. This paper investigates a new buffer management architecture for epidemic routing in DTNs, which helps each node to make a decision on which message should be forwarded or dropped. The proposed buffer management architecture is characterized by a suite of novel functional modules, including Summary Vector Exchange Module (SVEM), Networks State Estimation Module (NSEM), and Utility Calculation Module (UCM). Extensive simulation results show that the proposed buffer management architecture can achieve superb performance against its counterparts in terms of delivery ratio and delivery delay.

  19. A Novel Buffer Management Architecture for Epidemic Routing in Delay Tolerant Networks (DTNs)

    KAUST Repository

    Elwhishi, Ahmed

    2010-11-17

    Delay tolerant networks (DTNs) are wireless networks in which an end-to-end path for a given node pair can never exist for an extended period. It has been reported as a viable approach in launching multiple message replicas in order to increase message delivery ratio and reduce message delivery delay. This advantage, nonetheless, is at the expense of taking more buffer space at each node. The combination of custody and replication entails high buffer and bandwidth overhead. This paper investigates a new buffer management architecture for epidemic routing in DTNs, which helps each node to make a decision on which message should be forwarded or dropped. The proposed buffer management architecture is characterized by a suite of novel functional modules, including Summary Vector Exchange Module (SVEM), Networks State Estimation Module (NSEM), and Utility Calculation Module (UCM). Extensive simulation results show that the proposed buffer management architecture can achieve superb performance against its counterparts in terms of delivery ratio and delivery delay.

  20. Delay-Tolerant, Low-Power Protocols for Large Security-Critical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Claudio S. Malavenda

    2012-01-01

    Full Text Available This paper reports the analysis, implementation, and experimental testing of a delay-tolerant and energy-aware protocol for a wireless sensor node, oriented to security applications. The solution proposed takes advantages from different domains considering as a guideline the low power consumption and facing the problems of seamless and lossy connectivity offered by the wireless medium along with very limited resources offered by a wireless network node. The paper is organized as follows: first we give an overview on delay-tolerant wireless sensor networking (DTN; then we perform a simulation-based comparative analysis of state-of-the-art DTN approaches and illustrate the improvement offered by the proposed protocol; finally we present experimental data gathered from the implementation of the proposed protocol on a proprietary hardware node.

  1. A Realistic Framework for Delay-Tolerant Network Routing in Open Terrains with Continuous Churn

    Science.gov (United States)

    Mahendran, Veeramani; Anirudh, Sivaraman K.; Murthy, C. Siva Ram

    The conventional analysis of Delay-Tolerant Network (DTN) routing assumes that the terrain over which nodes move is closed implying that when the nodes hit a boundary, they either wrap around or get reflected. In this work, we study the effect of relaxing this closed terrain assumption on the routing performance, where a continuous stream of nodes enter the terrain and get absorbed upon hitting the boundary.

  2. A Sociability-Based Routing Scheme for Delay-Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Fabbri Flavio

    2011-01-01

    Full Text Available The problem of choosing the best forwarders in Delay-Tolerant Networks (DTNs is crucial for minimizing the delay in packet delivery and for keeping the amount of generated traffic under control. In this paper, we introduce sociable routing, a novel routing strategy that selects a subset of optimal forwarders among all the nodes and relies on them for an efficient delivery. The key idea is that of assigning to each network node a time-varying scalar parameter which captures its social behavior in terms of frequency and types of encounters. This sociability concept is widely discussed and mathematically formalized. Simulation results of a DTN of vehicles in urban environment, driven by real mobility traces, and employing sociable routing, is presented. Encouraging results show that sociable routing, compared to other known protocols, achieves a good compromise in terms of delay performance and amount of generated traffic.

  3. Self-Adaptive Context Aware Routing Protocol for Unicast Communication in Delay and Tolerant Network

    Directory of Open Access Journals (Sweden)

    Yunbo Chen

    2014-05-01

    Full Text Available At present, most of research works in mobile network focus on the network overhead of the known path which exists between the sender and the receiver. However, the trend of the current practical application demands is becoming increasingly distributed and decentralized. The Delay and Tolerant Network (DTN just comes out of such background of the conflicts between them. The DTN could effectively eliminate the gap between the mobile network and the practical application demands. In this paper, a Self-Adaptive Context Aware Routing Protocol (SACARP for the unicast communication in delay and tolerant networks is presented. Meanwhile, according to the real-time context information of DTN, the Kalman filter theory is introduced to predict the information state of mobility for the optional message ferrying node, and then gives the optimal selection strategy of the message ferrying nodes. The simulation experiments have shown that, compared to the familiar single- copy and multi-copy protocols, the SACARP proposed in this paper has better transmission performance and stability, especially when the network is free, the protocol would keep a good performance with fewer connections and less buffer space.

  4. Vibrant Energy Aware Spray and Wait Routing in Delay Tolerant Network

    Directory of Open Access Journals (Sweden)

    Viren G. Patel

    2013-01-01

    Full Text Available Delay tolerant networks (DTN are wireless networks where disconnections arise often due to the mobility of nodes, failures of energy, the low density of nodes, or when the network extends over long distances. In these situations, traditional routing protocols that have been developed for mobile ad hoc networks prove to be unsuccessful to the scope of transmitting messages between nodes. The Spray and Wait routing may achieve low routing and energy efficiency due to the blindness in the spray phase. To deal with this situation, we propose an opportunistic routing with enclosed message copies, called the Vibrant Energy aware Spray and Wait (VESW, which utilizes the information about vibrancy of node and remaining energy to allocate the number of copies between the corresponding pair nodes in the spray phase.

  5. Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations

    Science.gov (United States)

    Burleigh, Scott C.

    2008-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology composed of scheduled, bounded communication contacts in a network built on the Delay-Tolerant Networking (DTN) architecture. It is designed to support operations in a space network based on DTN, but it also could be used in terrestrial applications where operation according to a predefined schedule is preferable to opportunistic communication, as in a low-power sensor network. This paper will describe the operation of the CGR system and explain how it can enable data delivery over scheduled transmission opportunities, fully utilizing the available transmission capacity, without knowing the current state of any bundle protocol node (other than the local node itself) and without exhausting processing resources at any bundle router.

  6. An energy-efficient MAC protocol using dynamic queue management for delay-tolerant mobile sensor networks.

    Science.gov (United States)

    Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua

    2011-01-01

    Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.

  7. Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications

    Science.gov (United States)

    2009-01-01

    This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.

  8. Learning Automata Based Caching for Efficient Data Access in Delay Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Zhenjie Ma

    2018-01-01

    Full Text Available Effective data access is one of the major challenges in Delay Tolerant Networks (DTNs that are characterized by intermittent network connectivity and unpredictable node mobility. Currently, different data caching schemes have been proposed to improve the performance of data access in DTNs. However, most existing data caching schemes perform poorly due to the lack of global network state information and the changing network topology in DTNs. In this paper, we propose a novel data caching scheme based on cooperative caching in DTNs, aiming at improving the successful rate of data access and reducing the data access delay. In the proposed scheme, learning automata are utilized to select a set of caching nodes as Caching Node Set (CNS in DTNs. Unlike the existing caching schemes failing to address the challenging characteristics of DTNs, our scheme is designed to automatically self-adjust to the changing network topology through the well-designed voting and updating processes. The proposed scheme improves the overall performance of data access in DTNs compared with the former caching schemes. The simulations verify the feasibility of our scheme and the improvements in performance.

  9. BTP: a Block Transfer Protocol for Delay Tolerant Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Biagioni, Edoardo S.

    2010-01-01

    Wireless sensor networks that are energy-constrained must transmit and receive data as efficiently as possible.  If the transmission is delay tolerant, transferring blocks of accumulated data can be more efficient than transferring each sensed measurement as soon as it is available.  This paper...... proposes a Block Transfer Protocol (BTP) designed for efficient and reliable transmission in wireless sensor networks.  BTP reduces the time it takes to reliably transfer a block of packets compared to conventional link layer protocols, by piggybacking in data packets information about the transfer......, minimizing the number of acknowledgements needed for reliable transmission, and reducing the need for timeouts, which can substantially slow down communication when transmission is unreliable.  In addition, BTP improves reliability by handling false positive acknowledgements and by letting the receivers...

  10. A distance-aware replica adaptive data gathering protocol for Delay Tolerant Mobile Sensor Networks.

    Science.gov (United States)

    Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin

    2011-01-01

    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node's limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes.

  11. Delay/Disruption Tolerance Networking (DTN) Implementation and Utilization Options on the International Space Station

    Science.gov (United States)

    Holbrook, Mark; Pitts, Robert Lee; Gifford, Kevin K.; Jenkins, Andrew; Kuzminsky, Sebastian

    2010-01-01

    The International Space Station (ISS) is in an operational configuration and nearing final assembly. With its maturity and diverse payloads onboard, the opportunity exists to extend the orbital lab into a facility to exercise and demonstrate Delay/Disruption Tolerant Networking (DTN). DTN is an end-to-end network service providing communications through environments characterized by intermittent connectivity, variable delays, high bit error rates, asymmetric links and simplex links. The DTN protocols, also known as bundle protocols, provide a store-and-forward capability to accommodate end-to-end network services. Key capabilities of the bundling protocols include: the Ability to cope with intermittent connectivity, the Ability to take advantage of scheduled and opportunistic connectivity (in addition to always up connectivity), Custody Transfer, and end-to-end security. Colorado University at Boulder and the Huntsville Operational Support Center (HOSC) have been developing a DTN capability utilizing the Commercial Generic Bioprocessing Apparatus (CGBA) payload resources onboard the ISS, at the Boulder Payload Operations Center (POC) and at the HOSC. The DTN capability is in parallel with and is designed to augment current capabilities. The architecture consists of DTN endpoint nodes on the ISS and at the Boulder POC, and a DTN node at the HOSC. The DTN network is composed of two implementations; the Interplanetary Overlay Network (ION) and the open source DTN2 implementation. This paper presents the architecture, implementation, and lessons learned. By being able to handle the types of environments described above, the DTN technology will be instrumental in extending networks into deep space to support future missions to other planets and other solar system points of interest. Thus, this paper also discusses how this technology will be applicable to these types of deep space exploration missions.

  12. An Improved PRoPHET Routing Protocol in Delay Tolerant Network

    Directory of Open Access Journals (Sweden)

    Seung Deok Han

    2015-01-01

    Full Text Available In delay tolerant network (DTN, an end-to-end path is not guaranteed and packets are delivered from a source node to a destination node via store-carry-forward based routing. In DTN, a source node or an intermediate node stores packets in buffer and carries them while it moves around. These packets are forwarded to other nodes based on predefined criteria and finally are delivered to a destination node via multiple hops. In this paper, we improve the dissemination speed of PRoPHET (probability routing protocol using history of encounters and transitivity protocol by employing epidemic protocol for disseminating message m, if forwarding counter and hop counter values are smaller than or equal to the threshold values. The performance of the proposed protocol was analyzed from the aspect of delivery probability, average delay, and overhead ratio. Numerical results show that the proposed protocol can improve the delivery probability, average delay, and overhead ratio of PRoPHET protocol by appropriately selecting the threshold forwarding counter and threshold hop counter values.

  13. Probabilistic Routing Based on Two-Hop Information in Delay/Disruption Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2015-01-01

    Full Text Available We investigate an opportunistic routing protocol in delay/disruption tolerant networks (DTNs where the end-to-end path between source and destination nodes may not exist for most of the time. Probabilistic routing protocol using history of encounters and transitivity (PRoPHET is an efficient history-based routing protocol specifically proposed for DTNs, which only utilizes the delivery predictability of one-hop neighbors to make a decision for message forwarding. In order to further improve the message delivery rate and to reduce the average overhead of PRoPHET, in this paper we propose an improved probabilistic routing algorithm (IPRA, where the history information of contacts for the immediate encounter and two-hop neighbors has been jointly used to make an informed decision for message forwarding. Based on the Opportunistic Networking Environment (ONE simulator, the performance of IPRA has been evaluated via extensive simulations. The results show that IPRA can significantly improve the average delivery rate while achieving a better or comparable performance with respect to average overhead, average delay, and total energy consumption compared with the existing algorithms.

  14. Data Gathering in Delay Tolerant Wireless Sensor Networks Using a Ferry

    Directory of Open Access Journals (Sweden)

    Mariam Alnuaimi

    2015-10-01

    Full Text Available In delay tolerant WSNs mobile ferries can be used for collecting data from sensor nodes, especially in large-scale networks. Unlike data collection via multi-hop forwarding among the nodes, ferries travel across the sensing field and collect data from sensors. The advantage of using a ferry-based approach is that, it eliminates the need for multi-hop forwarding of data, and as a result energy consumption at the nodes is significantly reduced. However, this increases data delivery latency and as such might not be suitable for all applications. In this paper an efficient data collection algorithm using a ferry node is proposed while considering the overall ferry roundtrip travel time and the overall consumed energy in the network. To minimize the overall roundtrip travel time, we divided the sensing field area into virtual grids based on the assumed sensing range and assigned a checkpoint in each one. A Genetic Algorithm with weight metrics to solve the Travel Sales Man Problem (TSP and decide on an optimum path for the ferry to collect data is then used. We utilized our previously published node ranking clustering algorithm (NRCA in each virtual grid and in choosing the location for placing the ferry’s checkpoints. In NRCA the decision of selecting cluster heads is based on their residual energy and their distance from their associated checkpoint which acts as a temporary sink. We simulated the proposed algorithm in MATLAB and showed its performance in terms of the network lifetime, total energy consumption and the total travel time. Moreover, we showed through simulation that nonlinear trajectory achieves a better optimization in term of network lifetime, overall energy consumed and the roundtrip travel time of the ferry compared to linear predetermined trajectory. In additional to that, we compared the performance of your algorithm to other recent algorithms in terms of the network lifetime using same and different initial energy values.

  15. An Energy-aware Routing Scheme in Delay Tolerant Mobile Sensor Networking

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2014-08-01

    Full Text Available In Delay Tolerant Mobile Sensor Networking (DTMSN, mobile sensor nodes are usually limited to their energy capacity, one important concern in routing design of DTMSN is energy consumption. This paper presents a number of variations of the Epidemic Routing Protocol (ERP to extend the DTMSN lifetime. It introduces the analytical model for ERP, after introducing the concepts behind the Target Delivery Probability and Minimum Delivery Probability, it defines the network lifetime. In this paper, it firstly studies many variations of the Epidemic Routing Protocol to extend the lifetime of the DTMSN. Secondly, based on the Epidemic Routing Protocol, three schemes are introduced. Those schemes rely on the limiting the times of message allowed for propagation (LT scheme, directly controlling the number of the copies (LC scheme, split the copies to the residual energies of the nodes (LE scheme. Finally, with the experiment and the validation of the simulation, the LE scheme can significantly maximize the lifetime of DTMSN, because it minimizes the number of copies and that shifts the generation of the copies to the nodes with larger residual energy.

  16. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments.

    Directory of Open Access Journals (Sweden)

    Qaisar Ayub

    Full Text Available Delay Tolerant Network (DTN multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.

  17. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments.

    Science.gov (United States)

    Ayub, Qaisar; Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan

    2018-01-01

    Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.

  18. GDTN: Genome-Based Delay Tolerant Network Formation in Heterogeneous 5G Using Inter-UA Collaboration.

    Science.gov (United States)

    You, Ilsun; Sharma, Vishal; Atiquzzaman, Mohammed; Choo, Kim-Kwang Raymond

    2016-01-01

    With a more Internet-savvy and sophisticated user base, there are more demands for interactive applications and services. However, it is a challenge for existing radio access networks (e.g. 3G and 4G) to cope with the increasingly demanding requirements such as higher data rates and wider coverage area. One potential solution is the inter-collaborative deployment of multiple radio devices in a 5G setting designed to meet exacting user demands, and facilitate the high data rate requirements in the underlying networks. These heterogeneous 5G networks can readily resolve the data rate and coverage challenges. Networks established using the hybridization of existing networks have diverse military and civilian applications. However, there are inherent limitations in such networks such as irregular breakdown, node failures, and halts during speed transmissions. In recent years, there have been attempts to integrate heterogeneous 5G networks with existing ad hoc networks to provide a robust solution for delay-tolerant transmissions in the form of packet switched networks. However, continuous connectivity is still required in these networks, in order to efficiently regulate the flow to allow the formation of a robust network. Therefore, in this paper, we present a novel network formation consisting of nodes from different network maneuvered by Unmanned Aircraft (UA). The proposed model utilizes the features of a biological aspect of genomes and forms a delay tolerant network with existing network models. This allows us to provide continuous and robust connectivity. We then demonstrate that the proposed network model has an efficient data delivery, lower overheads and lesser delays with high convergence rate in comparison to existing approaches, based on evaluations in both real-time testbed and simulation environment.

  19. An Energy-Efficient MAC Protocol Using Dynamic Queue Management for Delay-Tolerant Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yugui Qu

    2011-02-01

    Full Text Available Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.

  20. Delay Tolerant Networking with Data Triage Method based on Emergent User Policies for Disaster Information Network System

    Directory of Open Access Journals (Sweden)

    Noriki Uchida

    2014-01-01

    Full Text Available When Disaster Information Network System is considered in local areas that were heavy damaged by the East Japan Great Earthquake in 2011, the resiliency of the network system is one of significant subjects for the restoration of the areas. DTN (Delay Tolerant Network has been focused for the effective methods for such inoperable network circumstances. However, when DTN is applied for the local areas, there are some problems such as message delivery rate and latency because there are fewer roads, cars, and pedestrians than in urban areas. In this paper, we propose the Enhanced Media Coordinate System for its architecture, and Data Triage method by emergent user policies is introduced to improve the QoS in Disaster Information Network System in local areas. In the proposed method, every message is tagged with the priority levels by data types with considering emergent user policies, and the high priority messages are firstly duplicated to transmittable nodes. Then, the experimental results by the GIS map of a Japanese coastal town and the future studies are discussed.

  1. Delay/Disruption Tolerant Networks for Human Space Flight Video Project

    Science.gov (United States)

    Fink, Patrick W.; Ngo, Phong; Schlesinger, Adam

    2010-01-01

    The movie describes collaboration between NASA and Vint Cerf on the development of Disruption Tolerant Networks (DTN) for use in space exploration. Current evaluation efforts at Johnson Space Center are focused on the use of DTNs in space communications. Tests include the ability of rovers to store data for later display, tracking local and remote habitat inventory using radio-frequency identification tags, and merging networks.

  2. On Integrated Social and QoS Trust-Based Routing in Delay Tolerant Networks

    Science.gov (United States)

    2011-05-15

    according to our protocol. This leads to Tik(t + At) < Tmin because /?j + f32 = 1 and T, fc (t) < Tmin is given (in the if part). Therefore, it is...Disruption-Tolerant Networking," IEEE INFOCOM 2006. Barcelona . Spain. April 2006, pp. 1-11. [3] J.H. Cho, A. Swami and I.R. Chen, "Modeling and

  3. Delay/Disruption Tolerant Network-Based Message Forwarding for a River Pollution Monitoring Wireless Sensor Network Application.

    Science.gov (United States)

    Velásquez-Villada, Carlos; Donoso, Yezid

    2016-03-25

    Communications from remote areas that may be of interest is still a problem. Many innovative projects applied to remote sites face communications difficulties. The GOLDFISH project was an EU-funded project for river pollution monitoring in developing countries. It had several sensor clusters, with floating WiFi antennas, deployed along a downstream river's course. Sensor clusters sent messages to a Gateway installed on the riverbank. This gateway sent the messages, through a backhaul technology, to an Internet server where data was aggregated over a map. The communication challenge in this scenario was produced by the antennas' movement and network backhaul availability. Since the antennas were floating on the river, communications could be disrupted at any time. Also, 2G/3G availability near the river was not constant. For non-real-time applications, we propose a Delay/Disruption Tolerant Network (DTN)-based solution where all nodes have persistent storage capabilities and DTN protocols to be able to wait minutes or hours to transmit. A mechanical backhaul will periodically visit the river bank where the gateway is installed and it will automatically collect sensor data to be carried to an Internet-covered spot. The proposed forwarding protocol delivers around 98% of the messages for this scenario, performing better than other well-known DTN routing protocols.

  4. Delay/Disruption Tolerant Network-Based Message Forwarding for a River Pollution Monitoring Wireless Sensor Network Application

    Directory of Open Access Journals (Sweden)

    Carlos Velásquez-Villada

    2016-03-01

    Full Text Available Communications from remote areas that may be of interest is still a problem. Many innovative projects applied to remote sites face communications difficulties. The GOLDFISH project was an EU-funded project for river pollution monitoring in developing countries. It had several sensor clusters, with floating WiFi antennas, deployed along a downstream river’s course. Sensor clusters sent messages to a Gateway installed on the riverbank. This gateway sent the messages, through a backhaul technology, to an Internet server where data was aggregated over a map. The communication challenge in this scenario was produced by the antennas’ movement and network backhaul availability. Since the antennas were floating on the river, communications could be disrupted at any time. Also, 2G/3G availability near the river was not constant. For non-real-time applications, we propose a Delay/Disruption Tolerant Network (DTN-based solution where all nodes have persistent storage capabilities and DTN protocols to be able to wait minutes or hours to transmit. A mechanical backhaul will periodically visit the river bank where the gateway is installed and it will automatically collect sensor data to be carried to an Internet-covered spot. The proposed forwarding protocol delivers around 98% of the messages for this scenario, performing better than other well-known DTN routing protocols.

  5. Improving the Dominating-Set Routing over Delay-Tolerant Mobile Ad-Hoc Networks via Estimating Node Intermeeting Times

    Directory of Open Access Journals (Sweden)

    Preiss Bruno

    2011-01-01

    Full Text Available With limited coverage of wireless networks and frequent roaming of mobile users, providing a seamless communication service poses a technical challenge. In our previous research, we presented a supernode system architecture that employs the delay-tolerant network (DTN concept to provide seamless communications for roaming users over interconnected heterogeneous wireless networks. Mobile ad hoc networks (MANETs are considered a key component of the supernode system for services over an area not covered by other wireless networks. Within the super node system, a dominating-set routing technique is proposed to improve message delivery over MANETs and to achieve better resource utilization. The performance of the dominating-set routing technique depends on estimation accuracy of the probability of a future contact between nodes. This paper studies how node mobility can be modeled and used to better estimate the probability of a contact. We derive a distribution for the node-to-node intermeeting time and present numerical results to demonstrate that the distribution can be used to improve the dominating-set routing technique performance. Moreover, we investigate how the distribution can be employed to relax the constraints of selecting the dominating-set members in order to improve the system resource utilization.

  6. A Community-Based Event Delivery Protocol in Publish/Subscribe Systems for Delay Tolerant Sensor Networks

    Directory of Open Access Journals (Sweden)

    Haigang Gong

    2009-09-01

    Full Text Available The basic operation of a Delay Tolerant Sensor Network (DTSN is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  7. A community-based event delivery protocol in publish/subscribe systems for delay tolerant sensor networks.

    Science.gov (United States)

    Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang

    2009-01-01

    The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  8. A Performance Evaluation of NACK-Oriented Protocols as the Foundation of Reliable Delay- Tolerant Networking Convergence Layers

    Science.gov (United States)

    Iannicca, Dennis; Hylton, Alan; Ishac, Joseph

    2012-01-01

    Delay-Tolerant Networking (DTN) is an active area of research in the space communications community. DTN uses a standard layered approach with the Bundle Protocol operating on top of transport layer protocols known as convergence layers that actually transmit the data between nodes. Several different common transport layer protocols have been implemented as convergence layers in DTN implementations including User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Licklider Transmission Protocol (LTP). The purpose of this paper is to evaluate several stand-alone implementations of negative-acknowledgment based transport layer protocols to determine how they perform in a variety of different link conditions. The transport protocols chosen for this evaluation include Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP), Licklider Transmission Protocol (LTP), NACK-Oriented Reliable Multicast (NORM), and Saratoga. The test parameters that the protocols were subjected to are characteristic of common communications links ranging from terrestrial to cis-lunar and apply different levels of delay, line rate, and error.

  9. On the cost/delay tradeoff of wireless delay tolerant geographic routing

    OpenAIRE

    Tasiopoulos, Argyrios; Tsiaras, Christos; Toumpis, Stavros

    2012-01-01

    In Delay Tolerant Networks (DTNs), there is a fundamental tradeoff between the aggregate transport cost of a packet and the delay in its delivery. We study this tradeoff in the context of geographical routing in wireless DTNs.We ?rst specify the optimal cost/delay tradeoff, i.e., the tradeoff under optimal network operation, using a dynamic network construction termed the Cost/Delay Evolving Graph (C/DEG) and the Optimal Cost/Delay Curve (OC/DC), a function that gives the minimum possible agg...

  10. Delay Tolerance in Underwater Wireless Communications: A Routing Perspective

    Directory of Open Access Journals (Sweden)

    Safdar Hussain Bouk

    2016-01-01

    Full Text Available Similar to terrestrial networks, underwater wireless networks (UWNs also aid several critical tasks including coastal surveillance, underwater pollution detection, and other maritime applications. Currently, once underwater sensor nodes are deployed at different levels of the sea, it is nearly impossible or very expensive to reconfigure the hardware, for example, battery. Taking this issue into account, considerable amount of research has been carried out to ensure minimum energy costs and reliable communication between underwater nodes and base stations. As a result, several different network protocols were proposed for UWN, including MAC, PHY, transport, and routing. Recently, a new paradigm was introduced claiming that the intermittent nature of acoustic channel and signal resulted in designing delay tolerant routing schemes for the UWN, known as an underwater delay tolerant network. In this paper, we provide a comprehensive survey of underwater routing protocols with emphasis on the limitations, challenges, and future open issues in the context of delay tolerant network routing.

  11. Consensus in the network with uniform constant communication delay

    NARCIS (Netherlands)

    Wang, Xu; Saberi, Ali; Stoorvogel, Antonie Arij; Grip, H°avard Fjær; Yang, Tao

    2013-01-01

    This paper studies consensus among identical agents that are at most critically unstable and coupled through networks with uniform constant communication delay. An upper bound for delay tolerance is obtained which explicitly depends on agent dynamics and network topology. The dependence on network

  12. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  13. Delay Tolerance: A Therapeutic Possibility for AD/HD?

    Directory of Open Access Journals (Sweden)

    Edmund J. S. Sonuga-Barke

    2004-01-01

    on these two insights to explore the possibility that the motivational alterations underpinning delay aversion can be modified through specific training regimes in a way equivalent to that found with executive and attentional training. The requirements for such an approach are set out. Delay fading is proposed as a possible basis for reorganizing delay experience, altering the incentive value of delay (e.g., increasing tolerance for delay, thereby reducing AD/HD symptoms.

  14. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that ...

  15. Facilitating tolerance of delayed reinforcement during functional communication training.

    Science.gov (United States)

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading.

  16. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  17. On Delay and Security in Network Coding

    Science.gov (United States)

    Dikaliotis, Theodoros K.

    2013-01-01

    In this thesis, delay and security issues in network coding are considered. First, we study the delay incurred in the transmission of a fixed number of packets through acyclic networks comprised of erasure links. The two transmission schemes studied are routing with hop-by-hop retransmissions, where every node in the network simply stores and…

  18. The ecological rationality of delay tolerance: insights from capuchin monkeys.

    Science.gov (United States)

    Addessi, Elsa; Paglieri, Fabio; Focaroli, Valentina

    2011-04-01

    Both human and non-human animals often face decisions between options available at different times, and the capacity of delaying gratification has usually been considered one of the features distinguishing humans from other animals. However, this characteristic can widely vary across individuals, species, and types of task and it is still unclear whether it is accounted for by phylogenetic relatedness, feeding ecology, social structure, or metabolic rate. To disentangle these hypotheses, we evaluated temporal preferences in capuchin monkeys, South-American primates that, despite splitting off from human lineage approximately 35 million years ago, show striking behavioural analogies with the great apes. Then, we compared capuchins' performance with that of the other primate species tested so far with the same procedure. Overall, capuchins showed a delay tolerance significantly higher than closely related species, such as marmosets and tamarins, and comparable to that shown by great apes. Capuchins' tool use abilities might explain their comparatively high preference for delayed options in inter-temporal choices. Moreover, as in humans, capuchin females showed a greater delay tolerance than males, possibly because of their less opportunistic foraging style. Thus, our results shed light on the evolutionary origins of self-control supporting explanations of delay tolerance in terms of feeding ecology. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Transcriptional delay stabilizes bistable gene networks.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R

    2013-08-02

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner.

  20. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  1. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  2. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  3. Convergent dynamics for multistable delayed neural networks

    International Nuclear Information System (INIS)

    Shih, Chih-Wen; Tseng, Jui-Pin

    2008-01-01

    This investigation aims at developing a methodology to establish convergence of dynamics for delayed neural network systems with multiple stable equilibria. The present approach is general and can be applied to several network models. We take the Hopfield-type neural networks with both instantaneous and delayed feedbacks to illustrate the idea. We shall construct the complete dynamical scenario which comprises exactly 2 n stable equilibria and exactly (3 n − 2 n ) unstable equilibria for the n-neuron network. In addition, it is shown that every solution of the system converges to one of the equilibria as time tends to infinity. The approach is based on employing the geometrical structure of the network system. Positively invariant sets and componentwise dynamical properties are derived under the geometrical configuration. An iteration scheme is subsequently designed to confirm the convergence of dynamics for the system. Two examples with numerical simulations are arranged to illustrate the present theory

  4. Real-Time Fault Tolerant Networking Protocols

    National Research Council Canada - National Science Library

    Henzinger, Thomas A

    2004-01-01

    We made significant progress in the areas of video streaming, wireless protocols, mobile ad-hoc and sensor networks, peer-to-peer systems, fault tolerant algorithms, dependability and timing analysis...

  5. CNES-NASA Disruption-Tolerant Networking (DTN) Interoperability

    Science.gov (United States)

    Mortensen, Dale; Eddy, Wesley M.; Reinhart, Richard C.; Lassere, Francois

    2014-01-01

    Future missions requiring robust internetworking services may use Delay-Disruption-Tolerant Networking (DTN) technology. CNES, NASA, and other international space agencies are committed to using CCSDS standards in their space and ground mission communications systems. The experiment described in this presentation will evaluate operations concepts, system performance, and advance technology readiness for the use of DTN protocols in conjunction with CCSDS ground systems, CCSDS data links, and CCSDS file transfer applications

  6. Delayed switching applied to memristor neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Frank Z.; Yang Xiao; Lim Guan [Future Computing Group, School of Computing, University of Kent, Canterbury (United Kingdom); Helian Na [School of Computer Science, University of Hertfordshire, Hatfield (United Kingdom); Wu Sining [Xyratex, Havant (United Kingdom); Guo Yike [Department of Computing, Imperial College, London (United Kingdom); Rashid, Md Mamunur [CERN, Geneva (Switzerland)

    2012-04-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  7. Delayed switching applied to memristor neural networks

    International Nuclear Information System (INIS)

    Wang, Frank Z.; Yang Xiao; Lim Guan; Helian Na; Wu Sining; Guo Yike; Rashid, Md Mamunur

    2012-01-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  8. Stability of Neutral Fractional Neural Networks with Delay

    Institute of Scientific and Technical Information of China (English)

    LI Yan; JIANG Wei; HU Bei-bei

    2016-01-01

    This paper studies stability of neutral fractional neural networks with delay. By introducing the definition of norm and using the uniform stability, the sufficient condition for uniform stability of neutral fractional neural networks with delay is obtained.

  9. Dynamics in a delayed-neural network

    International Nuclear Information System (INIS)

    Yuan Yuan

    2007-01-01

    In this paper, we consider a neural network of four identical neurons with time-delayed connections. Some parameter regions are given for global, local stability and synchronization using the theory of functional differential equations. The root distributions in the corresponding characteristic transcendental equation are analyzed, Pitchfork bifurcation, Hopf and equivariant Hopf bifurcations are investigated by revealing the center manifolds and normal forms. Numerical simulations are shown the agreements with the theoretical results

  10. Analysis of Time Delay Simulation in Networked Control System

    OpenAIRE

    Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun

    2016-01-01

    The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...

  11. Estimation of network path segment delays

    Science.gov (United States)

    Nichols, Kathleen Marie

    2018-05-01

    A method for estimation of a network path segment delay includes determining a scaled time stamp for each packet of a plurality of packets by scaling a time stamp for each respective packet to minimize a difference of at least one of a frequency and a frequency drift between a transport protocol clock of a host and a monitoring point. The time stamp for each packet is provided by the transport protocol clock of the host. A corrected time stamp for each packet is determined by removing from the scaled time stamp for each respective packet, a temporal offset between the transport protocol clock and the monitoring clock by minimizing a temporal delay variation of the plurality of packets traversing a segment between the host and the monitoring point.

  12. Investigation of the network delay on Profibus-DP based network

    OpenAIRE

    Yılmaz, C.; Gürdal, O.; Sayan, H.H.

    2008-01-01

    The mathematical model of the network-induced delay control systems (NDCS) is given. Also the role of the NDCS’s components such as controller, sensor and network environment on the network-induced delay are included in the mathematical model of the system. The network delay is investigated on Profibus-DP based network application and experimental results obtained are presented graphically. The experimental results obtained show that the network induced delay is randomly changed according to ...

  13. Capacity, delay and mobility in wireless ad-hoc networks

    NARCIS (Netherlands)

    Bansal, N.; Liu, Z.

    2003-01-01

    Network throughput and packet delay are two important parameters in the design and the evaluation of routing protocols for ad-hoc networks. While mobility has been shown to increase the capacity of a network, it is not clear whether the delay can be kept low without trading off the throughput. We

  14. Discrete-time BAM neural networks with variable delays

    Science.gov (United States)

    Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi

    2007-07-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.

  15. Discrete-time BAM neural networks with variable delays

    International Nuclear Information System (INIS)

    Liu Xinge; Tang Meilan; Martin, Ralph; Liu Xinbi

    2007-01-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development

  16. Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling

    International Nuclear Information System (INIS)

    Wang Lifu; Kong Zhi; Jing Yuanwei

    2010-01-01

    This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)

  17. Hazard tolerance of spatially distributed complex networks

    International Nuclear Information System (INIS)

    Dunn, Sarah; Wilkinson, Sean

    2017-01-01

    In this paper, we present a new methodology for quantifying the reliability of complex systems, using techniques from network graph theory. In recent years, network theory has been applied to many areas of research and has allowed us to gain insight into the behaviour of real systems that would otherwise be difficult or impossible to analyse, for example increasingly complex infrastructure systems. Although this work has made great advances in understanding complex systems, the vast majority of these studies only consider a systems topological reliability and largely ignore their spatial component. It has been shown that the omission of this spatial component can have potentially devastating consequences. In this paper, we propose a number of algorithms for generating a range of synthetic spatial networks with different topological and spatial characteristics and identify real-world networks that share the same characteristics. We assess the influence of nodal location and the spatial distribution of highly connected nodes on hazard tolerance by comparing our generic networks to benchmark networks. We discuss the relevance of these findings for real world networks and show that the combination of topological and spatial configurations renders many real world networks vulnerable to certain spatial hazards. - Highlights: • We develop a method for quantifying the reliability of real-world systems. • We assess the spatial resilience of synthetic spatially distributed networks. • We form algorithms to generate spatial scale-free and exponential networks. • We show how these “synthetic” networks are proxies for real world systems. • Conclude that many real world systems are vulnerable to spatially coherent hazard.

  18. Delay-dependent exponential stability of cellular neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2005-01-01

    The global exponential stability of cellular neural networks (CNNs) with time-varying delays is analyzed. Two new sufficient conditions ensuring global exponential stability for delayed CNNs are obtained. The conditions presented here are related to the size of delay. The stability results improve the earlier publications. Two examples are given to demonstrate the effectiveness of the obtained results

  19. Asymptotic Delay Analysis for Cross-Layer Delay-Based Routing in Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Philippe Jacquet

    2007-01-01

    Full Text Available This paper addresses the problem of the evaluation of the delay distribution via analytical means in IEEE 802.11 wireless ad hoc networks. We show that the asymptotic delay distribution can be expressed as a power law. Based on the latter result, we present a cross-layer delay estimation protocol and we derive new delay-distribution-based routing algorithms, which are well adapted to the QoS requirements of real-time multimedia applications. In fact, multimedia services are not sensitive to average delays, but rather to the asymptotic delay distributions. Indeed, video streaming applications drop frames when they are received beyond a delay threshold, determined by the buffer size. Although delay-distribution-based routing is an NP-hard problem, we show that it can be solved in polynomial time when the delay threshold is large, because of the asymptotic power law distribution of the link delays.

  20. Global synchronization of a class of delayed complex networks

    International Nuclear Information System (INIS)

    Li Ping; Yi Zhang; Zhang Lei

    2006-01-01

    Global synchronization of a class of complex networks with time-varying delays is investigated in this paper. Some sufficient conditions are derived. These conditions show that the synchronization of delayed complex networks can be determined by their topologies. In addition, these conditions are simply represented in terms of the networks coupling matrix and are easy to be checked. A typical example of complex networks with chaotic nodes is employed to illustrate the obtained global synchronization results

  1. Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes

    International Nuclear Information System (INIS)

    Liu Tao; Zhao Jun; Hill, David J.

    2009-01-01

    In this paper, we study the global synchronization of nonlinearly coupled complex delayed dynamical networks with both directed and undirected graphs. Via Lyapunov-Krasovskii stability theory and the network topology, we investigate the global synchronization of such networks. Under the assumption that coupling coefficients are known, a family of delay-independent decentralized nonlinear feedback controllers are designed to globally synchronize the networks. When coupling coefficients are unavailable, an adaptive mechanism is introduced to synthesize a family of delay-independent decentralized adaptive controllers which guarantee the global synchronization of the uncertain networks. Two numerical examples of directed and undirected delayed dynamical network are given, respectively, using the Lorenz system as the nodes of the networks, which demonstrate the effectiveness of proposed results.

  2. Stability analysis for cellular neural networks with variable delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2006-01-01

    Some sufficient conditions for the global exponential stability of cellular neural networks with variable delay are obtained by means of a method based on delay differential inequality. The method, which does not make use of Lyapunov functionals, is simple and effective for the stability analysis of neural networks with delay. Some previously established results in the literature are shown to be special cases of the presented result

  3. Topology identification of the complex networks with non-delayed and delayed coupling

    International Nuclear Information System (INIS)

    Guo Wanli; Chen Shihua; Sun Wen

    2009-01-01

    In practical situation, there exists many uncertain information in complex networks, such as the topological structures. So the topology identification is an important issue in the research of the complex networks. Based on LaSalle's invariance principle, in this Letter, an adaptive controlling method is proposed to identify the topology of a weighted general complex network model with non-delayed and delayed coupling. Finally, simulation results show that the method is effective.

  4. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  5. Delay-independent stability of genetic regulatory networks.

    Science.gov (United States)

    Wu, Fang-Xiang

    2011-11-01

    Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and sufficient conditions for locally delay-independent stability of genetic regulatory networks with multiple time delays. Compared to the previous results, these conditions are easy to verify. Then we develop sufficient conditions for global delay-independent stability for genetic regulatory networks. Compared to the previous results, this sufficient condition is less conservative. To illustrate theorems developed in this paper, we analyze delay-independent stability of two genetic regulatory networks: a real-life repressilatory network with three genes and three proteins, and a synthetic gene regulatory network with five genes and seven proteins. The simulation results show that the theorems developed in this paper can effectively determine the delay-independent stability of genetic regulatory networks.

  6. Experiments with arbitrary networks in time-multiplexed delay systems

    Science.gov (United States)

    Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi

    2017-12-01

    We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.

  7. Traffic Scheduling in WDM Passive Optical Network with Delay Guarantee

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    WDM passive optical network becomes more favorable as the required bandwidth increases, but currently few media access control algorithms adapted to WDM access network. This paper presented a new scheduling algorithm for bandwidth sharing in WDM passive optical networks, which provides per-flow delay guarantee and supports variable-length packets scheduling. Through theoretical analysis and simulation, the end-to-end delay bound and throughput fairness of the algorithm was demonstrated.

  8. Partial synchronization in diffusively time-delay coupled oscillator networks

    NARCIS (Netherlands)

    Steur, E.; Oguchi, T.; Leeuwen, van C.; Nijmeijer, H.

    2012-01-01

    We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks

  9. Event-based simulation of networks with pulse delayed coupling

    Science.gov (United States)

    Klinshov, Vladimir; Nekorkin, Vladimir

    2017-10-01

    Pulse-mediated interactions are common in networks of different nature. Here we develop a general framework for simulation of networks with pulse delayed coupling. We introduce the discrete map governing the dynamics of such networks and describe the computation algorithm for its numerical simulation.

  10. The Ecological Rationality of Delay Tolerance: Insights from Capuchin Monkeys

    Science.gov (United States)

    Addessi, Elsa; Paglieri, Fabio; Focaroli, Valentina

    2011-01-01

    Both human and non-human animals often face decisions between options available at different times, and the capacity of delaying gratification has usually been considered one of the features distinguishing humans from other animals. However, this characteristic can widely vary across individuals, species, and types of task and it is still unclear…

  11. A novel delay-dependent criterion for delayed neural networks of neutral type

    International Nuclear Information System (INIS)

    Lee, S.M.; Kwon, O.M.; Park, Ju H.

    2010-01-01

    This Letter considers a robust stability analysis method for delayed neural networks of neutral type. By constructing a new Lyapunov functional, a novel delay-dependent criterion for the stability is derived in terms of LMIs (linear matrix inequalities). A less conservative stability criterion is derived by using nonlinear properties of the activation function of the neural networks. Two numerical examples are illustrated to show the effectiveness of the proposed method.

  12. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  13. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  14. Novel global robust stability criterion for neural networks with delay

    International Nuclear Information System (INIS)

    Singh, Vimal

    2009-01-01

    A novel criterion for the global robust stability of Hopfield-type interval neural networks with delay is presented. An example illustrating the improvement of the present criterion over several recently reported criteria is given.

  15. Successive lag synchronization on dynamical networks with communication delay

    International Nuclear Information System (INIS)

    Zhang Xin-Jian; Wei Ai-Ju; Li Ke-Zan

    2016-01-01

    In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems. (paper)

  16. Exponential stability of delayed fuzzy cellular neural networks with diffusion

    International Nuclear Information System (INIS)

    Huang Tingwen

    2007-01-01

    The exponential stability of delayed fuzzy cellular neural networks (FCNN) with diffusion is investigated. Exponential stability, significant for applications of neural networks, is obtained under conditions that are easily verified by a new approach. Earlier results on the exponential stability of FCNN with time-dependent delay, a special case of the model studied in this paper, are improved without using the time-varying term condition: dτ(t)/dt < μ

  17. ABOUT HYBRID BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DISCRETE DELAYS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, hybrid bidirectional associative memory neural networks with discrete delays is considered. By ingeniously importing real parameters di > 0(i = 1,2,···,n) which can be adjusted, we establish some new sufficient conditions for the dynamical characteristics of hybrid bidirectional associative memory neural networks with discrete delays by the method of variation of parameters and some analysis techniques. Our results generalize and improve the related results in [10,11]. Our work is significant...

  18. A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances

    International Nuclear Information System (INIS)

    Wang Yao; Wang Zidong; Liang Jinling

    2008-01-01

    In this Letter, the synchronization problem is investigated for a class of stochastic complex networks with time delays. By utilizing a new Lyapunov functional form based on the idea of 'delay fractioning', we employ the stochastic analysis techniques and the properties of Kronecker product to establish delay-dependent synchronization criteria that guarantee the globally asymptotically mean-square synchronization of the addressed delayed networks with stochastic disturbances. These sufficient conditions, which are formulated in terms of linear matrix inequalities (LMIs), can be solved efficiently by the LMI toolbox in Matlab. The main results are proved to be much less conservative and the conservatism could be reduced further as the number of delay fractioning gets bigger. A simulation example is exploited to demonstrate the advantage and applicability of the proposed result

  19. Complex network synchronization of chaotic systems with delay coupling

    International Nuclear Information System (INIS)

    Theesar, S. Jeeva Sathya; Ratnavelu, K.

    2014-01-01

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology

  20. Global synchronization of general delayed complex networks with stochastic disturbances

    International Nuclear Information System (INIS)

    Tu Li-Lan

    2011-01-01

    In this paper, global synchronization of general delayed complex networks with stochastic disturbances, which is a zero-mean real scalar Wiener process, is investigated. The networks under consideration are continuous-time networks with time-varying delay. Based on the stochastic Lyapunov stability theory, Ito's differential rule and the linear matrix inequality (LMI) optimization technique, several delay-dependent synchronous criteria are established, which guarantee the asymptotical mean-square synchronization of drive networks and response networks with stochastic disturbances. The criteria are expressed in terms of LMI, which can be easily solved using the Matlab LMI Control Toolbox. Finally, two examples show the effectiveness and feasibility of the proposed synchronous conditions. (general)

  1. Representative Delay Measurements (RDM: Facing the Challenge of Modern Networks

    Directory of Open Access Journals (Sweden)

    Joachim Fabini

    2015-02-01

    Full Text Available Network access technologies have evolved significantly in the last years. They deploy novel mechanisms like reactive capacity allocation and time-slotted operation to optimize overall network capacity. From a single node's perspective, such optimizations decrease network determinism and measurement repeatability. Evolving application fields like machine to machine (M2M communications or real-time gaming often have strict real-time requirements to operate correctly. Highly accurate delay measurements are necessary to monitor network compliance with application demands or to detect deviations of normal network behavior, which may be caused by network failures, misconfigurations or attacks. This paper analyzes factors that challenge active delay measurements in modern networks. It introduces the Representative Delay Measurement tool (RDM that addresses these factors and proposes solutions that conform to requirements of the recently published RFC7312. Delay measurement results acquired using RDM in live networks confirm that advanced measurement methods can significantly improve the quality of measurement samples by isolating systematic network behavior. The resulting high-quality samples are one prerequisite for accurate statistics that support proper operation of subsequent algorithms and applications.

  2. Delay-induced cluster patterns in coupled Cayley tree networks

    Science.gov (United States)

    Singh, A.; Jalan, S.

    2013-07-01

    We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.

  3. Delay Bound: Fractal Traffic Passes through Network Servers

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation of fractal traffic passing through severs is presented.

  4. Global exponential stability for nonautonomous cellular neural networks with delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2006-01-01

    In this Letter, by utilizing Lyapunov functional method and Halanay inequalities, we analyze global exponential stability of nonautonomous cellular neural networks with delay. Several new sufficient conditions ensuring global exponential stability of the network are obtained. The results given here extend and improve the earlier publications. An example is given to demonstrate the effectiveness of the obtained results

  5. Complex Dynamics of Delay-Coupled Neural Networks

    Science.gov (United States)

    Mao, Xiaochen

    2016-09-01

    This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.

  6. Delay-range-dependent exponential H∞ synchronization of a class of delayed neural networks

    International Nuclear Information System (INIS)

    Karimi, Hamid Reza; Maass, Peter

    2009-01-01

    This article aims to present a multiple delayed state-feedback control design for exponential H ∞ synchronization problem of a class of delayed neural networks with multiple time-varying discrete delays. On the basis of the drive-response concept and by introducing a descriptor technique and using Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for exponential H ∞ synchronization of the drive-response structure of neural networks are driven in terms of linear matrix inequalities (LMIs). The explicit expression of the controller gain matrices are parameterized based on the solvability conditions such that the drive system and the response system can be exponentially synchronized. A numerical example is included to illustrate the applicability of the proposed design method.

  7. Synchronization of nonidentical chaotic neural networks with leakage delay and mixed time-varying delays

    Directory of Open Access Journals (Sweden)

    Cao Jinde

    2011-01-01

    Full Text Available Abstract In this paper, an integral sliding mode control approach is presented to investigate synchronization of nonidentical chaotic neural networks with discrete and distributed time-varying delays as well as leakage delay. By considering a proper sliding surface and constructing Lyapunov-Krasovskii functional, as well as employing a combination of the free-weighting matrix method, Newton-Leibniz formulation and inequality technique, a sliding mode controller is designed to achieve the asymptotical synchronization of the addressed nonidentical neural networks. Moreover, a sliding mode control law is also synthesized to guarantee the reachability of the specified sliding surface. The provided conditions are expressed in terms of linear matrix inequalities, and are dependent on the discrete and distributed time delays as well as leakage delay. A simulation example is given to verify the theoretical results.

  8. Pinning synchronization of the complex networks with non-delayed and delayed coupling

    International Nuclear Information System (INIS)

    Guo Wanli; Austin, Francis; Chen Shihua; Sun Wen

    2009-01-01

    In this Letter, without assuming the symmetry of the coupling matrix, we investigate the global synchronization of the complex networks with non-delayed and delayed coupling based on the pinning controllers. Some sufficient conditions for the global synchronization by adding linear and adaptive feedback controllers to a part of nodes are obtained. Numerical examples are also provided to demonstrate the effectiveness of the theory.

  9. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    Science.gov (United States)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  10. Mean Square Synchronization of Stochastic Nonlinear Delayed Coupled Complex Networks

    Directory of Open Access Journals (Sweden)

    Chengrong Xie

    2013-01-01

    Full Text Available We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks. Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.

  11. Singular Perturbation Analysis and Gene Regulatory Networks with Delay

    Science.gov (United States)

    Shlykova, Irina; Ponosov, Arcady

    2009-09-01

    There are different ways of how to model gene regulatory networks. Differential equations allow for a detailed description of the network's dynamics and provide an explicit model of the gene concentration changes over time. Production and relative degradation rate functions used in such models depend on the vector of steeply sloped threshold functions which characterize the activity of genes. The most popular example of the threshold functions comes from the Boolean network approach, where the threshold functions are given by step functions. The system of differential equations becomes then piecewise linear. The dynamics of this system can be described very easily between the thresholds, but not in the switching domains. For instance this approach fails to analyze stationary points of the system and to define continuous solutions in the switching domains. These problems were studied in [2], [3], but the proposed model did not take into account a time delay in cellular systems. However, analysis of real gene expression data shows a considerable number of time-delayed interactions suggesting that time delay is essential in gene regulation. Therefore, delays may have a great effect on the dynamics of the system presenting one of the critical factors that should be considered in reconstruction of gene regulatory networks. The goal of this work is to apply the singular perturbation analysis to certain systems with delay and to obtain an analog of Tikhonov's theorem, which provides sufficient conditions for constracting the limit system in the delay case.

  12. Topology Identification of General Dynamical Network with Distributed Time Delays

    International Nuclear Information System (INIS)

    Zhao-Yan, Wu; Xin-Chu, Fu

    2009-01-01

    General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method. (general)

  13. Exponential synchronization of two nonlinearly non-delayed and delayed coupled complex dynamical networks

    International Nuclear Information System (INIS)

    Zheng Song

    2012-01-01

    In this paper, the exponential synchronization between two nonlinearly coupled complex networks with non-delayed and delayed coupling is investigated with Lyapunov-Krasovskii-type functionals. Based on the stability analysis of the impulsive differential equation and the linear matrix inequality, sufficient delay-dependent conditions for exponential synchronization are derived, and a linear impulsive controller and simple updated laws are also designed. Furthermore, the coupling matrices need not be symmetric or irreducible. Numerical examples are presented to verify the effectiveness and correctness of the synchronization criteria obtained.

  14. Stability results for stochastic delayed recurrent neural networks with discrete and distributed delays

    Science.gov (United States)

    Chen, Guiling; Li, Dingshi; Shi, Lin; van Gaans, Onno; Verduyn Lunel, Sjoerd

    2018-03-01

    We present new conditions for asymptotic stability and exponential stability of a class of stochastic recurrent neural networks with discrete and distributed time varying delays. Our approach is based on the method using fixed point theory, which do not resort to any Liapunov function or Liapunov functional. Our results neither require the boundedness, monotonicity and differentiability of the activation functions nor differentiability of the time varying delays. In particular, a class of neural networks without stochastic perturbations is also considered. Examples are given to illustrate our main results.

  15. Sliding Intermittent Control for BAM Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Jianqiang Hu

    2013-01-01

    Full Text Available This paper addresses the exponential stability problem for a class of delayed bidirectional associative memory (BAM neural networks with delays. A sliding intermittent controller which takes the advantages of the periodically intermittent control idea and the impulsive control scheme is proposed and employed to the delayed BAM system. With the adjustable parameter taking different particular values, such a sliding intermittent control method can comprise several kinds of control schemes as special cases, such as the continuous feedback control, the impulsive control, the periodically intermittent control, and the semi-impulsive control. By using analysis techniques and the Lyapunov function methods, some sufficient criteria are derived for the closed-loop delayed BAM neural networks to be globally exponentially stable. Finally, two illustrative examples are given to show the effectiveness of the proposed control scheme and the obtained theoretical results.

  16. Modular networks with delayed coupling: Synchronization and frequency control

    Science.gov (United States)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  17. Global robust exponential stability for interval neural networks with delay

    International Nuclear Information System (INIS)

    Cui Shihua; Zhao Tao; Guo Jie

    2009-01-01

    In this paper, new sufficient conditions for globally robust exponential stability of neural networks with either constant delays or time-varying delays are given. We show the sufficient conditions for the existence, uniqueness and global robust exponential stability of the equilibrium point by employing Lyapunov stability theory and linear matrix inequality (LMI) technique. Numerical examples are given to show the approval of our results.

  18. A ternary logic model for recurrent neuromime networks with delay.

    Science.gov (United States)

    Hangartner, R D; Cull, P

    1995-07-01

    In contrast to popular recurrent artificial neural network (RANN) models, biological neural networks have unsymmetric structures and incorporate significant delays as a result of axonal propagation. Consequently, biologically inspired neural network models are more accurately described by nonlinear differential-delay equations rather than nonlinear ordinary differential equations (ODEs), and the standard techniques for studying the dynamics of RANNs are wholly inadequate for these models. This paper develops a ternary-logic based method for analyzing these networks. Key to the technique is the realization that a nonzero delay produces a bounded stability region. This result significantly simplifies the construction of sufficient conditions for characterizing the network equilibria. If the network gain is large enough, each equilibrium can be classified as either asymptotically stable or unstable. To illustrate the analysis technique, the swim central pattern generator (CPG) of the sea slug Tritonia diomedea is examined. For wide range of reasonable parameter values, the ternary analysis shows that none of the network equilibria are stable, and thus the network must oscillate. The results show that complex synaptic dynamics are not necessary for pattern generation.

  19. Robust stability bounds for multi-delay networked control systems

    Science.gov (United States)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  20. A new delay-independent condition for global robust stability of neural networks with time delays.

    Science.gov (United States)

    Samli, Ruya

    2015-06-01

    This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Exponentially convergent state estimation for delayed switched recurrent neural networks.

    Science.gov (United States)

    Ahn, Choon Ki

    2011-11-01

    This paper deals with the delay-dependent exponentially convergent state estimation problem for delayed switched neural networks. A set of delay-dependent criteria is derived under which the resulting estimation error system is exponentially stable. It is shown that the gain matrix of the proposed state estimator is characterised in terms of the solution to a set of linear matrix inequalities (LMIs), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.

  2. Delay-slope-dependent stability results of recurrent neural networks.

    Science.gov (United States)

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  3. Global robust stability of delayed recurrent neural networks

    International Nuclear Information System (INIS)

    Cao Jinde; Huang Deshuang; Qu Yuzhong

    2005-01-01

    This paper is concerned with the global robust stability of a class of delayed interval recurrent neural networks which contain time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. A new sufficient condition is presented for the existence, uniqueness, and global robust stability of equilibria for interval neural networks with time delays by constructing Lyapunov functional and using matrix-norm inequality. An error is corrected in an earlier publication, and an example is given to show the effectiveness of the obtained results

  4. Inhibition delay increases neural network capacity through Stirling transform

    Science.gov (United States)

    Nogaret, Alain; King, Alastair

    2018-03-01

    Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.

  5. Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval

    Science.gov (United States)

    Shi, Xiangyun; Kuang, Yang; Makroglou, Athena; Mokshagundam, Sriprakash; Li, Jiaxu

    2017-11-01

    Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease in view of the modern life style. Both diabetic population and health expenses grow rapidly according to American Diabetes Association. Detecting the potential onset of T2DM is an essential focal point in the research of diabetes mellitus. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness, and pancreatic β-cell functionality, through the analysis and parameter estimation of a proper differential equation model. Delay differential equations have been used to study the complex physiological phenomena including the glucose and insulin regulations. In this paper, we propose a novel approach to model the time delay in IVGTT modeling. This novel approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Normally, larger time delay, either a discrete or a distributed delay, will destabilize the system. However, we find that time delay over a sub-interval might not. We present analytically some basic model properties, which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model, which often overestimates the glucose effectiveness index.

  6. Global exponential convergence of neutral-type Hopfield neural networks with multi-proportional delays and leakage delays

    International Nuclear Information System (INIS)

    Xu, Changjin; Li, Peiluan

    2017-01-01

    This paper is concerned with a class of neutral-type Hopfield neural networks with multi-proportional delays and leakage delays. Using the differential inequality theory, a set of sufficient conditions which guarantee that all solutions of neutral-type Hopfield neural networks with multi-proportional delays and leakage delays converge exponentially to zero vector are derived. Computer simulations are carried out to verify our theoretical findings. The obtained results of this paper are new and complement some previous studies.

  7. Novel results for global robust stability of delayed neural networks

    International Nuclear Information System (INIS)

    Yucel, Eylem; Arik, Sabri

    2009-01-01

    This paper investigates the global robust convergence properties of continuous-time neural networks with discrete time delays. By employing suitable Lyapunov functionals, some sufficient conditions for the existence, uniqueness and global robust asymptotic stability of the equilibrium point are derived. The conditions can be easily verified as they can be expressed in terms of the network parameters only. Some numerical examples are also given to compare our results with previous robust stability results derived in the literature.

  8. Global asymptotic stability of delayed Cohen-Grossberg neural networks

    International Nuclear Information System (INIS)

    Wu Wei; Cui Baotong; Huang Min

    2007-01-01

    In this letter, the global asymptotic stability of a class of Cohen-Grossberg neural networks with time-varying delays is discussed. A new set of sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence. Our criteria represent an extension of the existing results in literatures. An example is also presented to compare our results with the previous results

  9. Distributed Containment Control of Networked Fractional-Order Systems with Delay-Dependent Communications

    Directory of Open Access Journals (Sweden)

    Xueliang Liu

    2012-01-01

    Full Text Available This paper is concerned with a containment problem of networked fractional-order system with multiple leaders under a fixed directed interaction graph. Based on the neighbor rule, a distributed protocol is proposed in delayed communication channels. By employing the algebraic graph theory, matrix theory, Nyquist stability theorem, and frequency domain method, it is analytically proved that the whole follower agents will flock to the convex hull which is formed by the leaders. Furthermore, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is obtained. As a special case, the interconnection topology under the undirected case is also discussed. Finally, some numerical examples with simulations are presented to demonstrate the effectiveness and correctness of the theoretical results.

  10. Power and delay optimisation in multi-hop wireless networks

    KAUST Repository

    Xia, Li; Shihada, Basem

    2014-01-01

    in order to minimise the power consumption and the queueing delay of the whole network. With the assumptions of interference-free links and independently and identically distributed (i.i.d.) channel states, we formulate this problem using a semi

  11. Mean square exponential stability of stochastic delayed Hopfield neural networks

    International Nuclear Information System (INIS)

    Wan Li; Sun Jianhua

    2005-01-01

    Stochastic effects to the stability property of Hopfield neural networks (HNN) with discrete and continuously distributed delay are considered. By using the method of variation parameter, inequality technique and stochastic analysis, the sufficient conditions to guarantee the mean square exponential stability of an equilibrium solution are given. Two examples are also given to demonstrate our results

  12. Fault Tolerant Real-Time Networks

    National Research Council Canada - National Science Library

    Zakhor, Avideh; Henzinger, Thomas; Trevedi, Kishor; Ammar, Mostafa; Lynch, Nancy; Shin, Kang

    2007-01-01

    .... We have focused on multimedia delivery in traditional client-server architectures, both in the case of the Internet and wireless networks, as well as on peer-to-peer content delivery and on mobile ad-hoc networks...

  13. Stability analysis of delayed genetic regulatory networks with stochastic disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Qi, E-mail: zhouqilhy@yahoo.com.c [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Chen Bing [Institute of Complexity Science, Qingdao University, Qingdao 266071, Shandong (China); Li Hongyi [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2009-10-05

    This Letter considers the problem of stability analysis of a class of delayed genetic regulatory networks with stochastic disturbances. The delays are assumed to be time-varying and bounded. By utilizing Ito's differential formula and Lyapunov-Krasovskii functionals, delay-range-dependent and rate-dependent (rate-independent) stability criteria are proposed in terms of linear matrices inequalities. An important feature of the proposed results is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another important feature is that the obtained stability conditions are less conservative than certain existing ones in the literature due to introducing some appropriate free-weighting matrices. A simulation example is employed to illustrate the applicability and effectiveness of the proposed methods.

  14. Dynamic communications for small satellites using disruption tolerant network concepts

    NARCIS (Netherlands)

    Giuditta, N.; Gill, E.K.A.; Fernández, B.; Isaac, D.

    2009-01-01

    New network technologies are providing interconnectivity in areas previously unheard of. One of these novel technologies, named Disruption Tolerant Networking (DTN), shows promise for the space industry. In order to study its suitability for University projects, a model of a University space mission

  15. Global synchronization in arrays of delayed neural networks with constant and delayed coupling

    International Nuclear Information System (INIS)

    Cao Jinde; Li Ping; Wang Weiwei

    2006-01-01

    This Letter investigates the global exponential synchronization in arrays of coupled identical delayed neural networks (DNNs) with constant and delayed coupling. By referring to Lyapunov functional method and Kronecker product technique, some sufficient conditions are derived for global synchronization of such systems. These new synchronization criteria offer some adjustable matrix parameters, which is of important significance in the design and applications of such coupled DNNs, and the results improve and extend the earlier works. Finally, an example is given to illustrate the theoretical results

  16. Delay-dependent exponential stability for neural networks with discrete and distributed time-varying delays

    International Nuclear Information System (INIS)

    Zhu Xunlin; Wang Youyi

    2009-01-01

    This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a more general type of Lyapunov functionals and developing a new convex combination technique, new less conservative and less complex stability criteria are established to guarantee the global exponential stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed conditions.

  17. Pinning impulsive synchronization of stochastic delayed coupled networks

    International Nuclear Information System (INIS)

    Tang Yang; Fang Jian-An; Wong W K; Miao Qing-Ying

    2011-01-01

    In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method. (general)

  18. Exponential Synchronization of Networked Chaotic Delayed Neural Network by a Hybrid Event Trigger Scheme.

    Science.gov (United States)

    Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun

    2018-06-01

    This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.

  19. Outer synchronization of complex networks with internal delay and coupling delay via aperiodically intermittent pinning control

    Science.gov (United States)

    Zhang, Chuan; Wang, Xingyuan; Wang, Chunpeng; Xia, Zhiqiu

    This paper concerns the outer synchronization problem between two complex delayed networks via the method of aperiodically intermittent pinning control. Apart from previous works, internal delay and coupling delay are both involved in this model, and the designed intermittent controllers can be aperiodic. The main work in this paper can be summarized as follows: First, two cases of aperiodically intermittent control with constant gain and adaptive gain are implemented, respectively. The intermittent control and pinning control are combined to reduce consumptions further. Then, based on the Lyapunov stability theory, synchronization protocols are given by strict derivation. Especially, the designed controllers are indeed simple and valid in application of theory to practice. Finally, numerical examples put the proposed control methods to the test.

  20. Delay-Dependent Control for Networked Control Systems with Large Delays

    Directory of Open Access Journals (Sweden)

    Yilin Wang

    2013-01-01

    Full Text Available We consider the problems of robust stability and control for a class of networked control systems with long-time delays. Firstly, a nonlinear discrete time model with mode-dependent time delays is proposed by converting the uncertainty of time delay into the uncertainty of parameter matrices. We consider a probabilistic case where the system is switched among different subsystems, and the probability of each subsystem being active is defined as its occurrence probability. For a switched system with a known subsystem occurrence probabilities, we give a stochastic stability criterion in terms of linear matrix inequalities (LMIs. Then, we extend the results to a more practical case where the subsystem occurrence probabilities are uncertain. Finally, a simulation example is presented to show the efficacy of the proposed method.

  1. Structural and functional networks in complex systems with delay.

    Science.gov (United States)

    Eguíluz, Víctor M; Pérez, Toni; Borge-Holthoefer, Javier; Arenas, Alex

    2011-05-01

    Functional networks of complex systems are obtained from the analysis of the temporal activity of their components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the associated functional network as α=(2-γ)(-1) for γ<2. © 2011 American Physical Society

  2. On minimizing the maximum broadcast decoding delay for instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Ai-Naffouri, Tareq Y.

    2014-01-01

    In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a

  3. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    Science.gov (United States)

    Nash, A A; Gell, P G; Wildy, P

    1981-05-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed.

  4. Tolerance and immunity in mice infected with herpes simplex virus: studies on the mechanism of tolerance to delayed-type hypersensitivity.

    Science.gov (United States)

    Nash, A A; Phelan, J; Gell, P G; Wildy, P

    1981-06-01

    Tolerance to delayed-type hypersensitivity is produced in mice following an intravenous injection of herpes simplex virus. This form of tolerance is produced early on, following simultaneous injections of virus subcutaneously and intravenously, and is long lasting (greater than 100 days). The early tolerance mechanism is resistant to high doses of cyclophosphamide and is not transferable by serum or spleen cells taken after 7 days. However, spleen cells taken at 14 days onwards inhibit the induction of delayed hypersensitivity when transferred to normal syngeneic recipients. These cells are T lymphocytes and are specific for the herpes type used in the induction.

  5. Event-Triggered Faults Tolerant Control for Stochastic Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2016-01-01

    Full Text Available This paper is concerned with the state-feedback controller design for stochastic networked control systems (NCSs with random actuator failures and transmission delays. Firstly, an event-triggered scheme is introduced to optimize the performance of the stochastic NCSs. Secondly, stochastic NCSs under event-triggered scheme are modeled as stochastic time-delay systems. Thirdly, some less conservative delay-dependent stability criteria in terms of linear matrix inequalities for the codesign of both the controller gain and the trigger parameters are obtained by using delay-decomposition technique and convex combination approach. Finally, a numerical example is provided to show the less sampled data transmission and less conservatism of the proposed theory.

  6. Global stability of stochastic high-order neural networks with discrete and distributed delays

    International Nuclear Information System (INIS)

    Wang Zidong; Fang Jianan; Liu Xiaohui

    2008-01-01

    High-order neural networks can be considered as an expansion of Hopfield neural networks, and have stronger approximation property, faster convergence rate, greater storage capacity, and higher fault tolerance than lower-order neural networks. In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with discrete and distributed time-delays. Based on an Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived, which guarantee the global asymptotic convergence of the equilibrium point in the mean square. It is shown that the stochastic high-order delayed neural networks under consideration are globally asymptotically stable in the mean square if two linear matrix inequalities (LMIs) are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox. It is also shown that the main results in this paper cover some recently published works. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria

  7. Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols

    Science.gov (United States)

    Schoolcraft, Joshua; Wilson, Keith

    2011-01-01

    Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of

  8. Periodic bidirectional associative memory neural networks with distributed delays

    Science.gov (United States)

    Chen, Anping; Huang, Lihong; Liu, Zhigang; Cao, Jinde

    2006-05-01

    Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.

  9. Further results on passivity analysis of delayed cellular neural networks

    International Nuclear Information System (INIS)

    Park, Ju H.

    2007-01-01

    The passivity condition for delayed neural networks with uncertainties is considered in this article. From simple extension of a recent work for stability analysis of the system, a new criterion for the passivity of the system is derived in terms of linear matrix inequalities (LMIs), which can be easily solved by using various convex optimization algorithms. A numerical example is given to show the usefulness of our result

  10. Toeless pulse shaping with a single delay-line network

    International Nuclear Information System (INIS)

    Tauhata, L.; Binns, D.C.

    1976-04-01

    New unipolar delay-line clippers producing negligible cancellation remnant have been developed. Near perfect clipping is achieved using a combination of several types of coaxial cable tranformers working as a phase inverter, a new pulse adder, or an impedance transformer. Only passive elements are used in the bridge network. The construction is simple and the performance is extremely stable and wide in dynamic range and frequency band width. Completely symmetrical bipolar pulses are also easily obtained using this technique

  11. Destabilizing Effects of Impulse in Delayed Bam Neural Networks

    Science.gov (United States)

    Li, Chuandong; Li, Chaojie; Liu, Chao

    This paper further studies the global exponential stability of the equilibrium point of the delayed bidirectional associative memory (DBAM) neural networks with impulse effects. Several results characterizing the aggregated effects of impulse and dynamical property of the impulse-free DBAM on the exponential stability of the considered DBAM have been established. It is shown that the impulsive DBAM will preserve the global exponential stability of the impulse-free DBAM even if the impulses have enlarging effects on the states of neurons.

  12. Network Candidate Genes in Breeding for Drought Tolerant Crops

    Directory of Open Access Journals (Sweden)

    Christoph Tim Krannich

    2015-07-01

    Full Text Available Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  13. Analysis Of Packets Delay In Wireless Data Networks

    Directory of Open Access Journals (Sweden)

    Krivchenkov Aleksandr

    2015-12-01

    Full Text Available The networks with wireless links for automation control applications traffic transmission when packets have small size and application payload is predictable are under consideration. Analytical model for packets delay on their propagation path through the network is proposed. Estimations for network architectures based on WiFi and Bluetooth wireless technologies are made. The specifications for physical layer 802.11 a/b/g/n and 802.15.1 are under consideration. Analytical and experimental results for delivered network bandwidth for different network architecture, traffic structure and wireless technologies were compared to validate that basic mechanisms are correctly taken into account in the model. It is shown that basic effects are taken into account and further accuracy “improvement” of the model will give not more than 5%. As a result that is important for automation control applications we have reliably received the lowest possible level for packets delay in one wireless link. For 802.11 it is of order of 0.2 ms, for 802.15.1 it is 1.25 ms and is true when application packet can be transferred by one data frame.

  14. Trapped modes in linear quantum stochastic networks with delays

    Energy Technology Data Exchange (ETDEWEB)

    Tabak, Gil [Stanford University, Department of Applied Physics, Stanford, CA (United States); Mabuchi, Hideo

    2016-12-15

    Networks of open quantum systems with feedback have become an active area of research for applications such as quantum control, quantum communication and coherent information processing. A canonical formalism for the interconnection of open quantum systems using quantum stochastic differential equations (QSDEs) has been developed by Gough, James and co-workers and has been used to develop practical modeling approaches for complex quantum optical, microwave and optomechanical circuits/networks. In this paper we fill a significant gap in existing methodology by showing how trapped modes resulting from feedback via coupled channels with finite propagation delays can be identified systematically in a given passive linear network. Our method is based on the Blaschke-Potapov multiplicative factorization theorem for inner matrix-valued functions, which has been applied in the past to analog electronic networks. Our results provide a basis for extending the Quantum Hardware Description Language (QHDL) framework for automated quantum network model construction (Tezak et al. in Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 370(1979):5270-5290, 2012) to efficiently treat scenarios in which each interconnection of components has an associated signal propagation time delay. (orig.)

  15. Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.

    Science.gov (United States)

    Popa, Călin-Adrian

    2018-06-08

    This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Delay-Dependent Stability Criteria of Uncertain Periodic Switched Recurrent Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xing Yin

    2011-01-01

    uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.

  17. Global robust stability of neural networks with multiple discrete delays and distributed delays

    International Nuclear Information System (INIS)

    Gao Ming; Cui Baotong

    2009-01-01

    The problem of global robust stability is investigated for a class of uncertain neural networks with both multiple discrete time-varying delays and distributed time-varying delays. The uncertainties are assumed to be of norm-bounded form and the activation functions are supposed to be bounded and globally Lipschitz continuous. Based on the Lyapunov stability theory and linear matrix inequality technique, some robust stability conditions guaranteeing the global robust convergence of the equilibrium point are derived. The proposed LMI-based criteria are computationally efficient as they can be easily checked by using recently developed algorithms in solving LMIs. Two examples are given to show the effectiveness of the proposed results.

  18. Anti-synchronization control of BAM memristive neural networks with multiple proportional delays and stochastic perturbations

    Science.gov (United States)

    Wang, Weiping; Yuan, Manman; Luo, Xiong; Liu, Linlin; Zhang, Yao

    2018-01-01

    Proportional delay is a class of unbounded time-varying delay. A class of bidirectional associative memory (BAM) memristive neural networks with multiple proportional delays is concerned in this paper. First, we propose the model of BAM memristive neural networks with multiple proportional delays and stochastic perturbations. Furthermore, by choosing suitable nonlinear variable transformations, the BAM memristive neural networks with multiple proportional delays can be transformed into the BAM memristive neural networks with constant delays. Based on the drive-response system concept, differential inclusions theory and Lyapunov stability theory, some anti-synchronization criteria are obtained. Finally, the effectiveness of proposed criteria are demonstrated through numerical examples.

  19. Stability analysis for stochastic BAM nonlinear neural network with delays

    Science.gov (United States)

    Lv, Z. W.; Shu, H. S.; Wei, G. L.

    2008-02-01

    In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria.

  20. Stability analysis for stochastic BAM nonlinear neural network with delays

    International Nuclear Information System (INIS)

    Lv, Z W; Shu, H S; Wei, G L

    2008-01-01

    In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria

  1. Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay

    International Nuclear Information System (INIS)

    Wang Shen-Quan; Feng Jian; Zhao Qing

    2012-01-01

    In this paper, the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay. Different from the common assumptions on time delays, it is assumed that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method), less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Two numerical examples show that our results are better than the existing ones. (general)

  2. Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    Jose P. Perez

    2014-01-01

    Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.

  3. Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    OpenAIRE

    Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2014-01-01

    This work proposes a new protocol applying on–the–fly random linear network coding in wireless mesh net-works. The protocol provides increased reliability, low delay,and high throughput to the upper layers, while being obliviousto their specific requirements. This seemingly conflicting goalsare achieved by design, using an on–the–fly network codingstrategy. Our protocol also exploits relay nodes to increasethe overall performance of individual links. Since our protocolnaturally masks random p...

  4. Fault Tolerance in ZigBee Wireless Sensor Networks

    Science.gov (United States)

    Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.

  5. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Ai-Naffouri, Tareq Y.

    2013-01-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  6. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2013-10-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  7. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  8. Power and delay optimisation in multi-hop wireless networks

    KAUST Repository

    Xia, Li

    2014-02-05

    In this paper, we study the optimisation problem of transmission power and delay in a multi-hop wireless network consisting of multiple nodes. The goal is to determine the optimal policy of transmission rates at various buffer and channel states in order to minimise the power consumption and the queueing delay of the whole network. With the assumptions of interference-free links and independently and identically distributed (i.i.d.) channel states, we formulate this problem using a semi-open Jackson network model for data transmission and a Markov model for channel states transition. We derive a difference equation of the system performance under any two different policies. The necessary and sufficient condition of optimal policy is obtained. We also prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate and the optimal transmission rate can be either maximal or minimal. That is, the ‘bang-bang’ control is an optimal control. This optimality structure greatly reduces the problem complexity. Furthermore, we develop an iterative algorithm to find the optimal solution. Finally, we conduct the simulation experiments to demonstrate the effectiveness of our approach. We hope our work can shed some insights on solving this complicated optimisation problem.

  9. Event-Based Stabilization over Networks with Transmission Delays

    Directory of Open Access Journals (Sweden)

    Xiangyu Meng

    2012-01-01

    Full Text Available This paper investigates asymptotic stabilization for linear systems over networks based on event-driven communication. A new communication logic is proposed to reduce the feedback effort, which has some advantages over traditional ones with continuous feedback. Considering the effect of time-varying transmission delays, the criteria for the design of both the feedback gain and the event-triggering mechanism are derived to guarantee the stability and performance requirements. Finally, the proposed techniques are illustrated by an inverted pendulum system and a numerical example.

  10. Global Asymptotic Stability of Switched Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Zhenyu Lu

    2015-01-01

    Full Text Available This paper investigates the global asymptotic stability of a class of switched neural networks with delays. Several new criteria ensuring global asymptotic stability in terms of linear matrix inequalities (LMIs are obtained via Lyapunov-Krasovskii functional. And here, we adopt the quadratic convex approach, which is different from the linear and reciprocal convex combinations that are extensively used in recent literature. In addition, the proposed results here are very easy to be verified and complemented. Finally, a numerical example is provided to illustrate the effectiveness of the results.

  11. Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yonggang Chen

    2008-01-01

    Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.

  12. Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system

    Science.gov (United States)

    Yu, Wen-Ting; Tang, Jun; Ma, Jun; Yang, Xianqing

    2016-06-01

    A neuronal network often involves time delay caused by the finite signal propagation time in a given biological network. This time delay is not a homogenous fluctuation in a biological system. The heterogeneous delay-induced asynchrony and resonance in a noisy small-world neuronal network system are numerically studied in this work by calculating synchronization measure and spike interval distribution. We focus on three different delay conditions: double-values delay, triple-values delay, and Gaussian-distributed delay. Our results show the following: 1) the heterogeneity in delay results in asynchronous firing in the neuronal network, and 2) maximum synchronization could be achieved through resonance given that the delay values are integer or half-integer times of each other.

  13. Fault-Tolerant Topology Selection for TTEthernet Networks

    DEFF Research Database (Denmark)

    Gavrilut, Voica Maria; Tamas-Selicean, Domitian; Pop, Paul

    2015-01-01

    Many safety-critical real-time applications are implemented using distributed architectures, composed of heterogeneous processing elements (PEs) interconnected in a network. In this paper, we are interested in the TTEthernet protocol, which is a deterministic, synchronized and congestion-free net......Many safety-critical real-time applications are implemented using distributed architectures, composed of heterogeneous processing elements (PEs) interconnected in a network. In this paper, we are interested in the TTEthernet protocol, which is a deterministic, synchronized and congestion......-free network protocol based on the IEEE 802.3 Ethernet standard and compliant with ARINC 664p7. TTEthernet supports three types of traffic: static time-triggered (TT) traffic and dynamic traffic, which is further subdivided into Rate Constrained (RC) traffic that has bounded end-to-end latencies, and Best...... a fault-tolerant network topology, consisting of redundant physical links and network switches, such that the architecture cost is minimized, the applications are fault-tolerant to a given number of permanent faults occurring in the communication network, and the timing constraints of the TT and RC...

  14. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks.

    Science.gov (United States)

    Abba, Sani; Lee, Jeong-A

    2015-08-18

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network.

  15. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks

    Science.gov (United States)

    Abba, Sani; Lee, Jeong-A

    2015-01-01

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236

  16. Induction of Hopf bifurcation and oscillation death by delays in coupled networks

    International Nuclear Information System (INIS)

    Cheng, C.-Y.

    2009-01-01

    This work explores a system of two coupled networks that each has four nodes. Delayed effects of short-cuts in each network and the coupling between the two groups are considered. When the short-cut delay is fixed, the arising and death of oscillations are caused by the variational coupling delay.

  17. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    Science.gov (United States)

    2013-01-01

    involved in EA pretreatment-induced delayed brain ischemia tolerance. PMID:23663236

  18. Data center networks topologies, architectures and fault-tolerance characteristics

    CERN Document Server

    Liu, Yang; Veeraraghavan, Malathi; Lin, Dong; Hamdi, Mounir

    2013-01-01

    This SpringerBrief presents a survey of data center network designs and topologies and compares several properties in order to highlight their advantages and disadvantages. The brief also explores several routing protocols designed for these topologies and compares the basic algorithms to establish connections, the techniques used to gain better performance, and the mechanisms for fault-tolerance. Readers will be equipped to understand how current research on data center networks enables the design of future architectures that can improve performance and dependability of data centers. This con

  19. Improved Criteria on Delay-Dependent Stability for Discrete-Time Neural Networks with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    O. M. Kwon

    2012-01-01

    Full Text Available The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.

  20. Synchronization of Markovian jumping stochastic complex networks with distributed time delays and probabilistic interval discrete time-varying delays

    International Nuclear Information System (INIS)

    Li Hongjie; Yue Dong

    2010-01-01

    The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.

  1. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  2. Delay-dependent stability of neural networks of neutral type with time delay in the leakage term

    International Nuclear Information System (INIS)

    Li, Xiaodi; Cao, Jinde

    2010-01-01

    This paper studies the global asymptotic stability of neural networks of neutral type with mixed delays. The mixed delays include constant delay in the leakage term (i.e. 'leakage delay'), time-varying delays and continuously distributed delays. Based on the topological degree theory, Lyapunov method and linear matrix inequality (LMI) approach, some sufficient conditions are derived ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the obtained results are less restrictive than some recent works. It can be applied to neural networks of neutral type with activation functions without assuming their boundedness, monotonicity or differentiability. Moreover, the differentiability of the time-varying delay in the non-neutral term is removed. Finally, two numerical examples are given to show the effectiveness of the proposed method

  3. Robust Fault Tolerant Control for a Class of Time-Delay Systems with Multiple Disturbances

    Directory of Open Access Journals (Sweden)

    Songyin Cao

    2013-01-01

    Full Text Available A robust fault tolerant control (FTC approach is addressed for a class of nonlinear systems with time delay, actuator faults, and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC, fault accommodation, and a mixed H2/H∞ controller is constructed to reconfigure the considered systems with disturbance rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the proposed approach.

  4. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays

    OpenAIRE

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and di...

  5. Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work proposes a new protocol applying on– the–fly random linear network coding in wireless mesh net- works. The protocol provides increased reliability, low delay, and high throughput to the upper layers, while being oblivious to their specific requirements. This seemingly conflicting goals ...

  6. New Results on Passivity Analysis of Stochastic Neural Networks with Time-Varying Delay and Leakage Delay

    Directory of Open Access Journals (Sweden)

    YaJun Li

    2015-01-01

    Full Text Available The passivity problem for a class of stochastic neural networks systems (SNNs with varying delay and leakage delay has been further studied in this paper. By constructing a more effective Lyapunov functional, employing the free-weighting matrix approach, and combining with integral inequality technic and stochastic analysis theory, the delay-dependent conditions have been proposed such that SNNs are asymptotically stable with guaranteed performance. The time-varying delay is divided into several subintervals and two adjustable parameters are introduced; more information about time delay is utilised and less conservative results have been obtained. Examples are provided to illustrate the less conservatism of the proposed method and simulations are given to show the impact of leakage delay on stability of SNNs.

  7. Firing patterns transition and desynchronization induced by time delay in neural networks

    Science.gov (United States)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  8. Social networks in primates: smart and tolerant species have more efficient networks.

    Science.gov (United States)

    Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J J; Pelé, Marie; Bergstrom, Mackenzie L; Borgeaud, Christèle; Brosnan, Sarah F; Crofoot, Margaret C; Fedigan, Linda M; Fichtel, Claudia; Hopper, Lydia M; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric

    2014-12-23

    Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities.

  9. Social networks in primates: smart and tolerant species have more efficient networks

    Science.gov (United States)

    Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J. J.; Pelé, Marie; Bergstrom, Mackenzie L.; Borgeaud, Christèle; Brosnan, Sarah F.; Crofoot, Margaret C.; Fedigan, Linda M.; Fichtel, Claudia; Hopper, Lydia M.; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric

    2014-01-01

    Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities. PMID:25534964

  10. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    OpenAIRE

    Huawei Wang; Jun Gao

    2013-01-01

    Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...

  11. Transmission Delay Based Control over Networks with Wireless Links

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To achieve the mobility of computers during communication, the TCP connections between fixed host and mobile host may often traverse wired and wireless networks, and the recovery of losses due to wireless transmission error is much different from congestion control. The paper analyzes the side effect of RTT estimation while making the TCP source to handle congestion and wireless error losses properly. Then present a strategy using information feedback by the last hop acknowledgement and monitoring the queuing level of the wired bottleneck link by calculating the changes in transmission delay along the path. With the identification of the early stage of congestion, it can respond to wired congestion quickly while keeping wireless link more reliable, and make TCP react to the different packets losses more appropriately.

  12. Improved asymptotic stability analysis for uncertain delayed state neural networks

    International Nuclear Information System (INIS)

    Souza, Fernando O.; Palhares, Reinaldo M.; Ekel, Petr Ya.

    2009-01-01

    This paper presents a new linear matrix inequality (LMI) based approach to the stability analysis of artificial neural networks (ANN) subject to time-delay and polytope-bounded uncertainties in the parameters. The main objective is to propose a less conservative condition to the stability analysis using the Gu's discretized Lyapunov-Krasovskii functional theory and an alternative strategy to introduce slack matrices. Two computer simulations examples are performed to support the theoretical predictions. Particularly, in the first example, the Hopf bifurcation theory is used to verify the stability of the system when the origin falls into instability. The second example is presented to illustrate how the proposed approach can provide better stability performance when compared to other ones in the literature

  13. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay

    International Nuclear Information System (INIS)

    Tang, Longkun; Wu, Xiaoqun; Lu, Jun-an; Lü, Jinhu

    2015-01-01

    Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) The coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay

  14. Stability analysis of fractional-order Hopfield neural networks with time delays.

    Science.gov (United States)

    Wang, Hu; Yu, Yongguang; Wen, Guoguang

    2014-07-01

    This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A note on exponential convergence of neural networks with unbounded distributed delays

    Energy Technology Data Exchange (ETDEWEB)

    Chu Tianguang [Intelligent Control Laboratory, Center for Systems and Control, Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)]. E-mail: chutg@pku.edu.cn; Yang Haifeng [Intelligent Control Laboratory, Center for Systems and Control, Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)

    2007-12-15

    This note examines issues concerning global exponential convergence of neural networks with unbounded distributed delays. Sufficient conditions are derived by exploiting exponentially fading memory property of delay kernel functions. The method is based on comparison principle of delay differential equations and does not need the construction of any Lyapunov functionals. It is simple yet effective in deriving less conservative exponential convergence conditions and more detailed componentwise decay estimates. The results of this note and [Chu T. An exponential convergence estimate for analog neural networks with delay. Phys Lett A 2001;283:113-8] suggest a class of neural networks whose globally exponentially convergent dynamics is completely insensitive to a wide range of time delays from arbitrary bounded discrete type to certain unbounded distributed type. This is of practical interest in designing fast and reliable neural circuits. Finally, an open question is raised on the nature of delay kernels for attaining exponential convergence in an unbounded distributed delayed neural network.

  16. A note on exponential convergence of neural networks with unbounded distributed delays

    International Nuclear Information System (INIS)

    Chu Tianguang; Yang Haifeng

    2007-01-01

    This note examines issues concerning global exponential convergence of neural networks with unbounded distributed delays. Sufficient conditions are derived by exploiting exponentially fading memory property of delay kernel functions. The method is based on comparison principle of delay differential equations and does not need the construction of any Lyapunov functionals. It is simple yet effective in deriving less conservative exponential convergence conditions and more detailed componentwise decay estimates. The results of this note and [Chu T. An exponential convergence estimate for analog neural networks with delay. Phys Lett A 2001;283:113-8] suggest a class of neural networks whose globally exponentially convergent dynamics is completely insensitive to a wide range of time delays from arbitrary bounded discrete type to certain unbounded distributed type. This is of practical interest in designing fast and reliable neural circuits. Finally, an open question is raised on the nature of delay kernels for attaining exponential convergence in an unbounded distributed delayed neural network

  17. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  18. Improved delay-dependent globally asymptotic stability of delayed uncertain recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Yan, Ji; Bao-Tong, Cui

    2010-01-01

    In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB. (general)

  19. Delay-Dependent Stability Criterion for Bidirectional Associative Memory Neural Networks with Interval Time-Varying Delays

    Science.gov (United States)

    Park, Ju H.; Kwon, O. M.

    In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.

  20. Optimized energy-delay sub-network routing protocol development and implementation for wireless sensor networks

    International Nuclear Information System (INIS)

    Fonda, James W; Zawodniok, Maciej; Jagannathan, S; Watkins, Steve E

    2008-01-01

    The development and the implementation issues of a reactive optimized energy-delay sub-network routing (OEDSR) protocol for wireless sensor networks (WSN) are introduced and its performance is contrasted with the popular ad hoc on-demand distance vector (AODV) routing protocol. Analytical results illustrate the performance of the proposed OEDSR protocol, while experimental results utilizing a hardware testbed under various scenarios demonstrate improvements in energy efficiency of the OEDSR protocol. A hardware platform constructed at the University of Missouri-Rolla (UMR), now the Missouri University of Science and Technology (MST), based on the Generation 4 Smart Sensor Node (G4-SSN) prototyping platform is also described. Performance improvements are shown in terms of end-to-end (E2E) delay, throughput, route-set-up time and drop rates and energy usage is given for three topologies, including a mobile topology. Additionally, results from the hardware testbed provide valuable lessons for network deployments. Under testing OEDSR provides a factor of ten improvement in the energy used in the routing session and extends network lifetime compared to AODV. Depletion experiments show that the time until the first node failure is extended by a factor of three with the network depleting and network lifetime is extended by 6.7%

  1. A New Local Bipolar Autoassociative Memory Based on External Inputs of Discrete Recurrent Neural Networks With Time Delay.

    Science.gov (United States)

    Zhou, Caigen; Zeng, Xiaoqin; Luo, Chaomin; Zhang, Huaguang

    In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.

  2. Robust and global delay-dependent stability for genetic regulatory networks with parameter uncertainties.

    Science.gov (United States)

    Tian, Li-Ping; Wang, Jianxin; Wu, Fang-Xiang

    2012-09-01

    The study of stability is essential for designing or controlling genetic regulatory networks, which can be described by nonlinear differential equations with time delays. Much attention has been paid to the study of delay-independent stability of genetic regulatory networks and as a result, many sufficient conditions have been derived for delay-independent stability. Although it might be more interesting in practice, delay-dependent stability of genetic regulatory networks has been studied insufficiently. Based on the linear matrix inequality (LMI) approach, in this study we will present some delay-dependent stability conditions for genetic regulatory networks. Then we extend these results to genetic regulatory networks with parameter uncertainties. To illustrate the effectiveness of our theoretical results, gene repressilatory networks are analyzed .

  3. Output Information Based Fault-Tolerant Iterative Learning Control for Dual-Rate Sampling Process with Disturbances and Output Delay

    Directory of Open Access Journals (Sweden)

    Hongfeng Tao

    2018-01-01

    Full Text Available For a class of single-input single-output (SISO dual-rate sampling processes with disturbances and output delay, this paper presents a robust fault-tolerant iterative learning control algorithm based on output information. Firstly, the dual-rate sampling process with output delay is transformed into discrete system in state-space model form with slow sampling rate without time delay by using lifting technology; then output information based fault-tolerant iterative learning control scheme is designed and the control process is turned into an equivalent two-dimensional (2D repetitive process. Moreover, based on the repetitive process stability theory, the sufficient conditions for the stability of system and the design method of robust controller are given in terms of linear matrix inequalities (LMIs technique. Finally, the flow control simulations of two flow tanks in series demonstrate the feasibility and effectiveness of the proposed method.

  4. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  5. Exponential Antisynchronization Control of Stochastic Memristive Neural Networks with Mixed Time-Varying Delays Based on Novel Delay-Dependent or Delay-Independent Adaptive Controller

    Directory of Open Access Journals (Sweden)

    Minghui Yu

    2017-01-01

    Full Text Available The global exponential antisynchronization in mean square of memristive neural networks with stochastic perturbation and mixed time-varying delays is studied in this paper. Then, two kinds of novel delay-dependent and delay-independent adaptive controllers are designed. With the ability of adapting to environment changes, the proposed controllers can modify their behaviors to achieve the best performance. In particular, on the basis of the differential inclusions theory, inequality theory, and stochastic analysis techniques, several sufficient conditions are obtained to guarantee the exponential antisynchronization between the drive system and response system. Furthermore, two numerical simulation examples are provided to the validity of the derived criteria.

  6. Heterogeneous Cellular Networks with Spatio-Temporal Traffic: Delay Analysis and Scheduling

    OpenAIRE

    Zhong, Yi; Quek, Tony Q. S.; Ge, Xiaohu

    2016-01-01

    Emergence of new types of services has led to various traffic and diverse delay requirements in fifth generation (5G) wireless networks. Meeting diverse delay requirements is one of the most critical goals for the design of 5G wireless networks. Though the delay of point-to-point communications has been well investigated, the delay of multi-point to multi-point communications has not been thoroughly studied since it is a complicated function of all links in the network. In this work, we propo...

  7. Global exponential stability of BAM neural networks with time-varying delays and diffusion terms

    International Nuclear Information System (INIS)

    Wan Li; Zhou Qinghua

    2007-01-01

    The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established

  8. Global exponential stability of BAM neural networks with time-varying delays and diffusion terms

    Science.gov (United States)

    Wan, Li; Zhou, Qinghua

    2007-11-01

    The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.

  9. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    International Nuclear Information System (INIS)

    Wan Li; Zhou Qinghua

    2007-01-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem

  10. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    Science.gov (United States)

    Wan, Li; Zhou, Qinghua

    2007-10-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.

  11. Evaluation and Investigation of the Delay in VoIP Networks

    Directory of Open Access Journals (Sweden)

    V. Janata

    2011-06-01

    Full Text Available The paper is focused mainly on the delay problems, which considerably influence the final quality of connections in VoIP (Voice over IP networks. The paper provides a detailed exploration of the nature and mechanisms of the delay. The main purpose of the investigation was an attempt to formulate a mathematical model of delay in the VoIP network and its subsequent analysis by laboratory data.

  12. New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks

    Science.gov (United States)

    Zúñiga-Aguilar, C. J.; Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Martínez, V. M.; Romero-Ugalde, H. M.

    2018-02-01

    In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.

  13. Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

    International Nuclear Information System (INIS)

    Balasubramaniam, P.; Kalpana, M.; Rakkiyappan, R.

    2012-01-01

    Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov—Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method. (interdisciplinary physics and related areas of science and technology)

  14. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    Science.gov (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  15. A Fault Tolerance Mechanism for On-Road Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2016-12-01

    Full Text Available On-Road Sensor Networks (ORSNs play an important role in capturing traffic flow data for predicting short-term traffic patterns, driving assistance and self-driving vehicles. However, this kind of network is prone to large-scale communication failure if a few sensors physically fail. In this paper, to ensure that the network works normally, an effective fault-tolerance mechanism for ORSNs which mainly consists of backup on-road sensor deployment, redundant cluster head deployment and an adaptive failure detection and recovery method is proposed. Firstly, based on the N − x principle and the sensors’ failure rate, this paper formulates the backup sensor deployment problem in the form of a two-objective optimization, which explains the trade-off between the cost and fault resumption. In consideration of improving the network resilience further, this paper introduces a redundant cluster head deployment model according to the coverage constraint. Then a common solving method combining integer-continuing and sequential quadratic programming is explored to determine the optimal location of these two deployment problems. Moreover, an Adaptive Detection and Resume (ADR protocol is deigned to recover the system communication through route and cluster adjustment if there is a backup on-road sensor mismatch. The final experiments show that our proposed mechanism can achieve an average 90% recovery rate and reduce the average number of failed sensors at most by 35.7%.

  16. Exponential convergence rate estimation for uncertain delayed neural networks of neutral type

    International Nuclear Information System (INIS)

    Lien, C.-H.; Yu, K.-W.; Lin, Y.-F.; Chung, Y.-J.; Chung, L.-Y.

    2009-01-01

    The global exponential stability for a class of uncertain delayed neural networks (DNNs) of neutral type is investigated in this paper. Delay-dependent and delay-independent criteria are proposed to guarantee the robust stability of DNNs via LMI and Razumikhin-like approaches. For a given delay, the maximal allowable exponential convergence rate will be estimated. Some numerical examples are given to illustrate the effectiveness of our results. The simulation results reveal significant improvement over the recent results.

  17. Passivity of memristive BAM neural networks with leakage and additive time-varying delays

    Science.gov (United States)

    Wang, Weiping; Wang, Meiqi; Luo, Xiong; Li, Lixiang; Zhao, Wenbing; Liu, Linlin; Ping, Yuan

    2018-02-01

    This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov-Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.

  18. Robustness Analysis of Hybrid Stochastic Neural Networks with Neutral Terms and Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Chunmei Wu

    2015-01-01

    Full Text Available We analyze the robustness of global exponential stability of hybrid stochastic neural networks subject to neutral terms and time-varying delays simultaneously. Given globally exponentially stable hybrid stochastic neural networks, we characterize the upper bounds of contraction coefficients of neutral terms and time-varying delays by using the transcendental equation. Moreover, we prove theoretically that, for any globally exponentially stable hybrid stochastic neural networks, if additive neutral terms and time-varying delays are smaller than the upper bounds arrived, then the perturbed neural networks are guaranteed to also be globally exponentially stable. Finally, a numerical simulation example is given to illustrate the presented criteria.

  19. Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.

    Science.gov (United States)

    Huang, Chengdai; Cao, Jinde

    2018-02-01

    The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach

    International Nuclear Information System (INIS)

    Li Chuandong; Liao Xiaofeng; Zhang Rong

    2005-01-01

    For bi-directional associative memory (BAM) neural networks (NNs) with different constant or time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated in this paper. An approach combining the Lyapunov-Krasovskii functional with the linear matrix inequality (LMI) is taken to study the problems, which provide bounds on the interconnection matrix and the activation functions, so as to guarantee the system's exponential stability. Some criteria for the exponential stability, which give information on the delay-dependent property, are derived. The results obtained in this paper provide one more set of easily verified guidelines for determining the exponential stability of delayed BAM (DBAM) neural networks, which are less conservative and less restrictive than the ones reported so far in the literature. Some typical examples are presented to show the application of the criteria obtained in this paper

  1. A Pub/Sub Message Distribution Architecture for Disruption Tolerant Networks

    Science.gov (United States)

    Carrilho, Sergio; Esaki, Hiroshi

    Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.

  2. Fault-tolerance performance evaluation of fieldbus for NPCS network of KNGR

    International Nuclear Information System (INIS)

    Jung, Hyun Gi

    1999-02-01

    In contrast with conventional fieldbus researches which are focused merely on real time performance, this study aims to evaluate the real-time performance of the communication system including fault-tolerant mechanisms. Maintaining performance in presence of recoverable faults is very important because the communication network will be applied to next generation NPP(Nuclear Power Plant). In order to guarantee the performance of NPP communication network, the time characteristics of the target system in presence of recoverable fault should be investigated. If the time characteristics meet the requirements of the system, the faults will be recovered by fieldbus recovery mechanisms and the system will be safe. If the time characteristics can not meet the requirements, the faults in the fieldbus can propagate to system failure. In this study, for the purpose of investigating the time characteristics of fieldbus, the recoverable faults are classified and then the formulas which represent delays including recovery mechanisms and the simulation model are developed. In order to validate the proposed approach, the simulation model is applied to the Korea Next Generation Reactor (KNGR) NSSS Process Control System (NPCS). The results of the simulation provide reasonable delay characteristics of the fault cases with recovery mechanisms. Using the outcome of the simulation and the system requirements, we also can calculate the failure propagation probability from fieldbus to outer system

  3. CPN based fault-tolerance performance evaluation of fieldbus for KNGR NPCS network

    International Nuclear Information System (INIS)

    Jung, Hyun Gi; Seong, Poong Hyun

    1998-01-01

    In contrast with conventional Fieldbus researches which are focused on real time performanc ignoring fault-tolerant mechanisms, the aim of this work is real-time performance evaluation of the system including fault. Because the communication network will be applied to Next Generation NPP, maintaining performance in presence of recoverable fault is important. To guarantee this in NPP Control Network, we should investigate the time characteristics of the target system in case of recoverable fault. If the time characteristics meet the requirements of the system, the faults will be recovered by Fieldbus recovery mechanisms and the system will be safe. But, if time characteristics can not meet the requirements, the faults in the Fieldbus can propagate to system failure. For this purpose, we classified the recoverable faults, made the formula which represents delays including recovery mechaisms and made simulation model. We appied the simulation model to KNGR NPCS with some assumptions. The outcome of the simulation is reallistic delays of the fault cases which have been classified. From the outcome of the simulation and the system requirements, we can calculate failure propagation probability from Fieldbus to outer system

  4. On minimizing the maximum broadcast decoding delay for instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2014-09-01

    In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a definition of delay for IDNC allows a more equitable distribution of the delays between the different receivers and thus a better Quality of Service (QoS). In order to solve this problem, we first derive the expressions for the probability distributions of maximum decoding delay increments. Given these expressions, we formulate the problem as a maximum weight clique problem in the IDNC graph. Although this problem is known to be NP-hard, we design a greedy algorithm to perform effective packet selection. Through extensive simulations, we compare the sum decoding delay and the max decoding delay experienced when applying the policies to minimize the sum decoding delay and our policy to reduce the max decoding delay. Simulations results show that our policy gives a good agreement among all the delay aspects in all situations and outperforms the sum decoding delay policy to effectively minimize the sum decoding delay when the channel conditions become harsher. They also show that our definition of delay significantly improve the number of served receivers when they are subject to strict delay constraints.

  5. Fault-tolerant and QoS based Network Layer for Security Management

    Directory of Open Access Journals (Sweden)

    Mohamed Naceur Abdelkrim

    2013-07-01

    Full Text Available Wireless sensor networks have profound effects on many application fields like security management which need an immediate, fast and energy efficient route. In this paper, we define a fault-tolerant and QoS based network layer for security management of chemical products warehouse which can be classified as real-time and mission critical application. This application generate routine data packets and alert packets caused by unusual events which need a high reliability, short end to end delay and low packet loss rate constraints. After each node compute his hop count and build his neighbors table in the initialization phase, packets can be routed to the sink. We use FELGossiping protocol for routine data packets and node-disjoint multipath routing protocol for alert packets. Furthermore, we utilize the information gathering phase of FELGossiping to update the neighbors table and detect the failed nodes, and we adapt the network topology changes by rerun the initialization phase when chemical units were added or removed from the warehouse. Analysis shows that the network layer is energy efficient and can meet the QoS constraints of unusual events packets.

  6. Existence and stability of periodic solution in impulsive Hopfield neural networks with finite distributed delays

    International Nuclear Information System (INIS)

    Yang Xiaofan; Liao Xiaofeng; Evans, David J.; Tang Yuanyan

    2005-01-01

    In this Letter, we introduce a class of Hopfield neural networks with periodic impulses and finite distributed delays. We then derive a sufficient condition for the existence and global exponential stability of a unique periodic solution of the networks, which assumes neither the differentiability nor the monotonicity of the activation functions. Our condition extends and generalizes a known condition for the global exponential periodicity of continuous Hopfield neural networks with finite distributed delays

  7. Lightweight storage and overlay networks for fault tolerance.

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, Ron A.

    2010-01-01

    The next generation of capability-class, massively parallel processing (MPP) systems is expected to have hundreds of thousands to millions of processors, In such environments, it is critical to have fault-tolerance mechanisms, including checkpoint/restart, that scale with the size of applications and the percentage of the system on which the applications execute. For application-driven, periodic checkpoint operations, the state-of-the-art does not provide a scalable solution. For example, on today's massive-scale systems that execute applications which consume most of the memory of the employed compute nodes, checkpoint operations generate I/O that consumes nearly 80% of the total I/O usage. Motivated by this observation, this project aims to improve I/O performance for application-directed checkpoints through the use of lightweight storage architectures and overlay networks. Lightweight storage provide direct access to underlying storage devices. Overlay networks provide caching and processing capabilities in the compute-node fabric. The combination has potential to signifcantly reduce I/O overhead for large-scale applications. This report describes our combined efforts to model and understand overheads for application-directed checkpoints, as well as implementation and performance analysis of a checkpoint service that uses available compute nodes as a network cache for checkpoint operations.

  8. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays

    Science.gov (United States)

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don’t include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results. PMID:28931066

  9. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.

    Science.gov (United States)

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.

  10. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    Full Text Available Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs with both discrete delay and distributed delay (mixed delays. By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.

  11. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  12. Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Wang Li; Xu Bo

    2012-01-01

    In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.

  13. Distributed Fault-Tolerant Quality Of Service Routing in Hybrid Directional Wireless Networks

    National Research Council Canada - National Science Library

    Llewellyn, II, Larry C

    2007-01-01

    This thesis presents a distributed fault-tolerant routing protocol (EFDCB) for QoS supporting hybrid mobile ad hoc networks with the aim of mitigating QoS disruption time when network failures occur...

  14. A delay-dependent approach to robust control for neutral uncertain neural networks with mixed interval time-varying delays

    International Nuclear Information System (INIS)

    Lu, Chien-Yu

    2011-01-01

    This paper considers the problem of delay-dependent global robust stabilization for discrete, distributed and neutral interval time-varying delayed neural networks described by nonlinear delay differential equations of the neutral type. The parameter uncertainties are norm bounded. The activation functions are assumed to be bounded and globally Lipschitz continuous. Using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain neutral neural networks with interval time-varying delays are established in the form of LMIs, which can be readily verified using the standard numerical software. An important feature of the result reported is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another feature of the results lies in that it involves fewer free weighting matrix strategy, and upper bounds of the inner product between two vectors are not introduced to reduce the conservatism of the criteria. Two illustrative examples are provided to demonstrate the effectiveness and the reduced conservatism of the proposed method

  15. Synchronization between Different Networks with Time-Varying Delay and Its Application in Bilayer Coupled Public Traffic Network

    Directory of Open Access Journals (Sweden)

    Wenju Du

    2016-01-01

    Full Text Available In order to study the dynamic characteristics of urban public traffic network, this paper establishes the conventional bus traffic network and the urban rail traffic network based on the space R modeling method. Then regarding these two networks as the subnetwork, the paper presents a new bilayer coupled public traffic network through the transfer relationship between subway and bus, and this model well reflects the connection between the passengers and bus operating vehicles. Based on the synchronization theory of coupling network with time-varying delay and taking “Lorenz system” as the network node, the paper studies the synchronization of bilayer coupled public traffic network. Finally, numerical results are given to show the impact of public traffic dispatching, delayed departure, the number of public bus stops between bus lines, and the number of transfer stations between two traffic modes on the bilayer coupled public traffic network balance through Matlab simulation.

  16. Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix

    International Nuclear Information System (INIS)

    Singh, Vimal

    2007-01-01

    The question of estimating the upper limit of -parallel B -parallel 2 , which is a key step in some recently reported global robust stability criteria for delayed neural networks, is revisited ( B denotes the delayed connection weight matrix). Recently, Cao, Huang, and Qu have given an estimate of the upper limit of -parallel B -parallel 2 . In the present paper, an alternative estimate of the upper limit of -parallel B -parallel 2 is highlighted. It is shown that the alternative estimate may yield some new global robust stability results

  17. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...

  18. Exponential stability of fuzzy cellular neural networks with constant and time-varying delays

    International Nuclear Information System (INIS)

    Liu Yanqing; Tang Wansheng

    2004-01-01

    In this Letter, the global stability of delayed fuzzy cellular neural networks (FCNN) with either constant delays or time varying delays is proposed. Firstly, we give the existence and uniqueness of the equilibrium point by using the theory of topological degree and the properties of nonsingular M-matrix and the sufficient conditions for ascertaining the global exponential stability by constructing a suitable Lyapunov functional. Secondly, the criteria for guaranteeing the global exponential stability of FCNN with time varying delays are given and the estimation of exponential convergence rate with regard to speed of vary of delays is presented by constructing a suitable Lyapunov functional

  19. Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Jian; Lu Junguo

    2008-01-01

    In this paper, we study the global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain a sufficient condition for the uniqueness and global exponential stability of the equilibrium solution for a class of fuzzy cellular neural networks with delays and reaction-diffusion terms. The result imposes constraint conditions on the network parameters independently of the delay parameter. The result is also easy to check and plays an important role in the design and application of globally exponentially stable fuzzy neural circuits

  20. Topology Detection for Output-Coupling Weighted Complex Dynamical Networks with Coupling and Transmission Delays

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    2017-01-01

    Full Text Available Topology detection for output-coupling weighted complex dynamical networks with two types of time delays is investigated in this paper. Different from existing literatures, coupling delay and transmission delay are simultaneously taken into account in the output-coupling network. Based on the idea of the state observer, we build the drive-response system and apply LaSalle’s invariance principle to the error dynamical system of the drive-response system. Several convergent criteria are deduced in the form of algebraic inequalities. Some numerical simulations for the complex dynamical network, with node dynamics being chaotic, are given to verify the effectiveness of the proposed scheme.

  1. Analysis of Distributed Consensus Time Synchronization with Gaussian Delay over Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiong Gang

    2009-01-01

    Full Text Available This paper presents theoretical results on the convergence of the distributed consensus timing synchronization (DCTS algorithm for wireless sensor networks assuming general Gaussian delay between nodes. The asymptotic expectation and mean square of the global synchronization error are computed. The results lead to the definition of a time delay balanced network in which average timing consensus between nodes can be achieved despite random delays. Several structured network architectures are studied as examples, and their associated simulation results are used to validate analytical findings.

  2. Robust synchronization of delayed neural networks based on adaptive control and parameters identification

    International Nuclear Information System (INIS)

    Zhou Jin; Chen Tianping; Xiang Lan

    2006-01-01

    This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique

  3. Impact of Network Coding on Delay and Throughput in Practical Wireless Chain Topologies

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Rein, Stephan Alexander; Fitzek, Frank

    2013-01-01

    In this paper, we present results from a practical evaluation of network coding in a setup consisting of eight nodes deployed in a chain topology. With the tradition pure relaying, delay increases dramatically as the network gets congested, and here network coding helps to moderate this increase ...

  4. Delay reduction in multi-hop device-to-device communication using network coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Yang, Hong-Chuan; Alouini, Mohamed-Slim

    2015-01-01

    This paper considers the problem of reducing the broadcast delay of wireless networks using instantly decodable network coding (IDNC) based device-to-device (D2D) communications. In D2D-enabled networks, devices help hasten the recovery of the lost

  5. MAGMA: A Liquid Software Approach to Fault Tolerance, Computer Network Security, and Survivable Networking

    Science.gov (United States)

    2001-12-01

    and Lieutenant Namik Kaplan , Turkish Navy. Maj Tiefert’s thesis, “Modeling Control Channel Dynamics of SAAM using NS Network Simulation”, helped lay...DEC99] Deconinck , Dr. ir. Geert, Fault Tolerant Systems, ESAT / Division ACCA , Katholieke Universiteit Leuven, October 1999. [FRE00] Freed...Systems”, Addison-Wesley, 1989. [KAP99] Kaplan , Namik, “Prototyping of an Active and Lightweight Router,” March 1999 [KAT99] Kati, Effraim

  6. Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays.

    Science.gov (United States)

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Huang, Tingwen; Alsaadi, Fuad E

    2018-06-01

    This paper is concerned with the globally exponential stability problem for a class of discrete-time stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables is utilized to determine within which intervals the time-varying delays fall at certain time instant. The sector-bounded activation function is considered in the addressed DSMNN. By taking into account the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is globally exponentially stable in the mean square. The derived conditions are made dependent on both the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-independent criteria. A simulation example is given to show the effectiveness of the proposed stability criterion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks

    International Nuclear Information System (INIS)

    Wang Qingyun; Perc, Matjaz; Duan Zhisheng; Chen Guanrong

    2008-01-01

    We study the spatial dynamics of spiral waves in noisy Hodgkin-Huxley neuronal ensembles evoked by different information transmission delays and network topologies. In classical settings of coherence resonance the intensity of noise is fine-tuned so as to optimize the system's response. Here, we keep the noise intensity constant, and instead, vary the length of information transmission delay amongst coupled neurons. We show that there exists an intermediate transmission delay by which the spiral waves are optimally ordered, hence indicating the existence of delay-enhanced coherence of spatial dynamics in the examined system. Additionally, we examine the robustness of this phenomenon as the diffusive interaction topology changes towards the small-world type, and discover that shortcut links amongst distant neurons hinder the emergence of coherent spiral waves irrespective of transmission delay length. Presented results thus provide insights that could facilitate the understanding of information transmission delay on realistic neuronal networks

  8. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  9. Communication Delays in the Cooperative Control of Wide Area Search Munitions Via Iterative Network Flow

    National Research Council Canada - National Science Library

    Mitchell, Jason

    2003-01-01

    .... This model is used to study the effect of communication delays on the performance of an iteractive network flow optimization model that results in a sequence of linear programs for the optimal...

  10. Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control.

    Science.gov (United States)

    Cai, Shuiming; Zhou, Peipei; Liu, Zengrong

    2014-09-01

    This paper concerns the problem of exponential synchronization for a class of general delayed dynamical networks with hybrid coupling via pinning periodically intermittent control. Both the internal delay and coupling delay are taken into account in the network model. Meanwhile, the transmission delay and self-feedback delay are involved in the delayed coupling term. By establishing a new differential inequality, several simple and useful exponential synchronization criteria are derived analytically. It is shown that the controlled synchronization state can vary in comparison with the conventional synchronized solution, and the degree of the node and the inner delayed coupling matrix play important roles in the controlled synchronization state. By choosing different inner delayed coupling matrices and the degrees of the node, different controlled synchronization states can be obtained. Furthermore, the detail pinning schemes deciding what nodes should be chosen as pinned candidates and how many nodes are needed to be pinned for a fixed coupling strength are provided. The simple procedures illuminating how to design suitable intermittent controllers in real application are also given. Numerical simulations, including an undirected scale-free network and a directed small-world network, are finally presented to demonstrate the effectiveness of the theoretical results.

  11. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  12. Pinning Synchronization of Delayed Neural Networks with Nonlinear Inner-Coupling

    Directory of Open Access Journals (Sweden)

    Yangling Wang

    2011-01-01

    Full Text Available Without assuming the symmetry and irreducibility of the outer-coupling weight configuration matrices, we investigate the pinning synchronization of delayed neural networks with nonlinear inner-coupling. Some delay-dependent controlled stability criteria in terms of linear matrix inequality (LMI are obtained. An example is presented to show the application of the criteria obtained in this paper.

  13. Impulsive effects on global asymptotic stability of delay BAM neural networks

    International Nuclear Information System (INIS)

    Chen Jun; Cui Baotong

    2008-01-01

    Based on the proper Lyapunov functions and the Jacobsthal liner inequality, some sufficient conditions are presented in this paper for global asymptotic stability of delay bidirectional associative memory neural networks with impulses. The obtained results are independently of the delay parameters and can be easily verified. Also, some remarks and an illustrative example are given to demonstrate the effectiveness of the obtained results

  14. Global Hopf bifurcation analysis on a BAM neural network with delays

    Science.gov (United States)

    Sun, Chengjun; Han, Maoan; Pang, Xiaoming

    2007-01-01

    A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large.

  15. Robust stability of bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms.

  16. Global Hopf bifurcation analysis on a BAM neural network with delays

    International Nuclear Information System (INIS)

    Sun Chengjun; Han Maoan; Pang Xiaoming

    2007-01-01

    A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large

  17. Robust stability of bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov-Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms

  18. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  19. Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay

    International Nuclear Information System (INIS)

    Zhang Qun-Jiao; Zhao Jun-Chan

    2012-01-01

    This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis. (general)

  20. Global Exponential Stability of Periodic Oscillation for Nonautonomous BAM Neural Networks with Distributed Delay

    Directory of Open Access Journals (Sweden)

    Hongli Liu

    2009-01-01

    Full Text Available We derive a new criterion for checking the global stability of periodic oscillation of bidirectional associative memory (BAM neural networks with periodic coefficients and distributed delay, and find that the criterion relies on the Lipschitz constants of the signal transmission functions, weights of the neural network, and delay kernels. The proposed model transforms the original interacting network into matrix analysis problem which is easy to check, thereby significantly reducing the computational complexity and making analysis of periodic oscillation for even large-scale networks.

  1. On global exponential stability of high-order neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Baoyong; Xu Shengyuan; Li Yongmin; Chu Yuming

    2007-01-01

    This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria

  2. On global exponential stability of high-order neural networks with time-varying delays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Baoyong [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: baoyongzhang@yahoo.com.cn; Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: syxu02@yahoo.com.cn; Li Yongmin [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China) and Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)]. E-mail: ymlwww@163.com; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2007-06-18

    This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria.

  3. Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2003-01-01

    Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result

  4. Global exponential stability of mixed discrete and distributively delayed cellular neural network

    International Nuclear Information System (INIS)

    Yao Hong-Xing; Zhou Jia-Yan

    2011-01-01

    This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov—Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result. (general)

  5. Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Syed Ali, M.; Balasubramaniam, P.

    2009-01-01

    In this paper, the Takagi-Sugeno (TS) fuzzy model representation is extended to the stability analysis for uncertain Bidirectional Associative Memory (BAM) neural networks with time-varying delays using linear matrix inequality (LMI) theory. A novel LMI-based stability criterion is obtained by LMI optimization algorithms to guarantee the exponential stability of uncertain BAM neural networks with time-varying delays which are represented by TS fuzzy models. Finally, the proposed stability conditions are demonstrated with numerical examples.

  6. Stability analysis of delayed Cohen-Grossberg BAM neural networks with impulses via nonsmooth analysis

    International Nuclear Information System (INIS)

    Wen Zhen; Sun Jitao

    2009-01-01

    In this paper, we investigate the existence and uniqueness of equilibrium point for delayed Cohen-Grossberg bidirectional associative memory (BAM) neural networks with impulses, based on nonsmooth analysis method. And we give the criteria of global exponential stability of the unique equilibrium point for the delayed BAM neural networks with impulses using Lyapunov method. The new sufficient condition generalizes and improves the previously known results. Finally, we present examples to illustrate that our results are effective.

  7. Finite-Time Stability for Fractional-Order Bidirectional Associative Memory Neural Networks with Time Delays

    International Nuclear Information System (INIS)

    Xu Chang-Jin; Li Pei-Luan; Pang Yi-Cheng

    2017-01-01

    This paper is concerned with fractional-order bidirectional associative memory (BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. (paper)

  8. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Arik, Sabri

    2006-01-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature

  9. Global robust stability of bidirectional associative memory neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel; Arik, Sabri

    2007-10-01

    This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.

  10. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Arik, Sabri

    2006-02-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.

  11. Global exponential stability for reaction-diffusion recurrent neural networks with multiple time varying delays

    International Nuclear Information System (INIS)

    Lou, X.; Cui, B.

    2008-01-01

    In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)

  12. On the delay effects of different channels in Internet-based networked control systems

    Science.gov (United States)

    Zhao, Yun-Bo; Kim, Jongrae; Sun, Xi-Ming; Liu, Guo-Ping

    2013-11-01

    The sensor-to-controller and the controller-to-actuator delays in networked control systems (NCSs) are investigated for the first time with respect to their different effects on the system performance. This study starts with identifying the delay-independent and delay-dependent control laws in NCSs, and confirms that only two delay-dependent control laws can cause different delay effects in different channels. The conditions under which the different delays in different channels can cause different effects are then given for both delay-dependent control laws. The results are verified by numerical examples. Potentially, these results can be regarded as important design principles in the practical implementation of NCSs.

  13. Global dissipativity of continuous-time recurrent neural networks with time delay

    International Nuclear Information System (INIS)

    Liao Xiaoxin; Wang Jun

    2003-01-01

    This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems

  14. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  15. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-03-18

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  16. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shaobo Wu

    2018-03-01

    Full Text Available Wireless sensor networks (WSNs involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  17. Comparative Analysis of Disruption Tolerant Network Routing Simulations in the One and NS-3

    Science.gov (United States)

    2017-12-01

    The added levels of simulation increase the processing required by a simulation . ns-3’s simulation of other layers of the network stack permits...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3...Thesis 03-23-2016 to 12-15-2017 4. TITLE AND SUBTITLE COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3 5

  18. A decomposition approach to analysis of competitive-cooperative neural networks with delay

    International Nuclear Information System (INIS)

    Chu Tianguang; Zhang Zongda; Wang Zhaolin

    2003-01-01

    Competitive-cooperative or inhibitory-excitatory configurations abound in neural networks. It is demonstrated here how such a configuration may be exploited to give a detailed characterization of the fixed point dynamics in general neural networks with time delay. The idea is to divide the connection weights into inhibitory and excitatory types and thereby to embed a competitive-cooperative delay neural network into an augmented cooperative delay system through a symmetric transformation. This allows for the use of the powerful monotone properties of cooperative systems. By the method, we derive several simple necessary and sufficient conditions on guaranteed trapping regions and guaranteed componentwise (exponential) convergence of the neural networks. The results relate specific decay rate and trajectory bounds to system parameters and are therefore of practical significance in designing a network with desired performance

  19. Passivity analysis of memristor-based impulsive inertial neural networks with time-varying delays.

    Science.gov (United States)

    Wan, Peng; Jian, Jigui

    2018-03-01

    This paper focuses on delay-dependent passivity analysis for a class of memristive impulsive inertial neural networks with time-varying delays. By choosing proper variable transformation, the memristive inertial neural networks can be rewritten as first-order differential equations. The memristive model presented here is regarded as a switching system rather than employing the theory of differential inclusion and set-value map. Based on matrix inequality and Lyapunov-Krasovskii functional method, several delay-dependent passivity conditions are obtained to ascertain the passivity of the addressed networks. In addition, the results obtained here contain those on the passivity for the addressed networks without impulse effects as special cases and can also be generalized to other neural networks with more complex pulse interference. Finally, one numerical example is presented to show the validity of the obtained results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Associations between depression, distress tolerance, delay discounting, and alcohol-related problems in European American and African American college students.

    Science.gov (United States)

    Dennhardt, Ashley A; Murphy, James G

    2011-12-01

    Although levels of heavy drinking and alcohol-related problems are high in college students, there is significant variability in the number and type of problems experienced, even among students who drink heavily. African American students drink less and experience fewer alcohol-related problems than European American students, but are still at risk, and little research has investigated the potentially unique patterns and predictors of problems among these students. Depression, distress tolerance, and delay discounting have been implicated in adult substance abuse and may be important predictors of alcohol problem severity among college students. We examined the relationship between these variables and alcohol-related problems among African American and European American students (N = 206; 53% female; 68% European American; 28% African American) who reported recent heavy drinking. In regression models that controlled for drinking level, depression, distress tolerance, and delay discounting were associated with alcohol problems among African American students, but only depression was associated with alcohol problems among European American students. These results suggest that negative affect is a key risk factor for alcohol problems among college student drinkers. For African American students, the inability to tolerate negative emotions and to organize their behavior around future outcomes may also be especially relevant risk factors.

  1. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants.

    Science.gov (United States)

    Han, Ye; Han, Shoukun; Ban, Qiuyan; He, Yiheng; Jin, Mijing; Rao, Jingping

    2017-04-01

    DkXTH1 promoted cell elongation and more strength to maintain structural integrity by involving in cell wall assembly, thus enhanced tolerance to abiotic stress with broader phenotype in transgenic plants. Xyloglucan endotransglucosylase/hydrolase (XTH) is thought to play a key role in cell wall modifications by cleaving and re-joining xyloglucan, and participates in the diverse physiological processes. DkXTH1 was found to peak in immature expanding persimmon fruit, and its higher expression level exhibited along with firmer fruit during storage. In the present study, transgenic Arabidopsis and tomato plants were generated with DkXTH1 constitutively expressed. Overexpression of DkXTH1 enhanced tolerance to salt, ABA and drought stresses in transgenic Arabidopsis plants with respect to root and leaf growth, and survival. Transgenic tomatoes collected at the mature green stage, presented delayed fruit softening coupled with postponed color change, a later and lower ethylene peak, and higher firmness in comparison with the wild-type tomatoes during storage. Furthermore, broader leaves and tomato fruit with larger diameter were gained in transgenic Arabidopsis and tomato, respectively. Most importantly, transgenic plants exhibited more large and irregular cells with higher density of cell wall and intercellular spaces, resulting from the overactivity of XET enzymes involving in cell wall assembly. We suggest that DkXTH1 expression resulted in cells with more strength and thickness to maintain structural integrity, and thus enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants.

  2. Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Li Zuoan; Li Kelin

    2009-01-01

    In this paper, we investigate a class of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms. By employing the delay differential inequality with impulsive initial conditions and M-matrix theory, we find some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms. In particular, the estimate of the exponential converging index is also provided, which depends on the system parameters. An example is given to show the effectiveness of the results obtained here.

  3. Global exponential stability for discrete-time neural networks with variable delays

    International Nuclear Information System (INIS)

    Chen Wuhua; Lu Xiaomei; Liang Dongying

    2006-01-01

    This Letter provides new exponential stability criteria for discrete-time neural networks with variable delays. The main technique is to reduce exponential convergence estimation of the neural network solution to that of one component of the corresponding solution by constructing Lyapunov function based on M-matrix. By introducing the tuning parameter diagonal matrix, the delay-independent and delay-dependent exponential stability conditions have been unified in the same mathematical formula. The effectiveness of the new results are illustrated by three examples

  4. Chimera states in complex networks: interplay of fractal topology and delay

    Science.gov (United States)

    Sawicki, Jakub; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2017-06-01

    Chimera states are an example of intriguing partial synchronization patterns emerging in networks of identical oscillators. They consist of spatially coexisting domains of coherent (synchronized) and incoherent (desynchronized) dynamics. We analyze chimera states in networks of Van der Pol oscillators with hierarchical connectivities, and elaborate the role of time delay introduced in the coupling term. In the parameter plane of coupling strength and delay time we find tongue-like regions of existence of chimera states alternating with regions of existence of coherent travelling waves. We demonstrate that by varying the time delay one can deliberately stabilize desired spatio-temporal patterns in the system.

  5. Discrete-time bidirectional associative memory neural networks with variable delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde; Ho, Daniel W.C.

    2005-01-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks

  6. Local and global synchronization in general complex dynamical networks with delay coupling

    International Nuclear Information System (INIS)

    Lu Jianquan; Ho, Daniel W.C.

    2008-01-01

    Local and global synchronization of complex dynamical networks are studied in this paper. Some simple yet generic criteria ensuring delay-independent and delay-dependent synchronization are derived in terms of linear matrix inequalities (LMIs), which can be verified easily via interior-point algorithm. The assumption that the coupling configuration matrix is symmetric and irreducible, which is frequently used in other literatures, is removed. A network with a fixed delay and a special coupling scheme is given as an example to illustrate the theoretical results and the effectiveness of the proposed synchronization scheme

  7. Discrete-time bidirectional associative memory neural networks with variable delays

    Science.gov (United States)

    Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.

    2005-02-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.

  8. On the synchronization of neural networks containing time-varying delays and sector nonlinearity

    International Nuclear Information System (INIS)

    Yan, J.-J.; Lin, J.-S.; Hung, M.-L.; Liao, T.-L.

    2007-01-01

    We present a systematic design procedure for synchronization of neural networks subject to time-varying delays and sector nonlinearity in the control input. Based on the drive-response concept and the Lyapunov stability theorem, a memoryless decentralized control law is proposed which guarantees exponential synchronization even when input nonlinearity is present. The supplementary requirement that the time-derivative of time-varying delays must be smaller than one is released for the proposed control scheme. A four-dimensional Hopfield neural network with time-varying delays is presented as the illustrative example to demonstrate the effectiveness of the proposed synchronization scheme

  9. Synchronization of stochastic delayed neural networks with markovian switching and its application.

    Science.gov (United States)

    Tang, Yang; Fang, Jian-An; Miao, Qing-Ying

    2009-02-01

    In this paper, the problem of adaptive synchronization for a class of stochastic neural networks (SNNs) which involve both mixed delays and Markovian jumping parameters is investigated. The mixed delays comprise the time-varying delays and distributed delays, both of which are mode-dependent. The stochastic perturbations are described in terms of Browian motion. By the adaptive feedback technique, several sufficient criteria have been proposed to ensure the synchronization of SNNs in mean square. Moreover, the proposed adaptive feedback scheme is applied to the secure communication. Finally, the corresponding simulation results are given to demonstrate the usefulness of the main results obtained.

  10. Delay-aware adaptive sleep mechanism for green wireless-optical broadband access networks

    Science.gov (United States)

    Wang, Ruyan; Liang, Alei; Wu, Dapeng; Wu, Dalei

    2017-07-01

    Wireless-Optical Broadband Access Network (WOBAN) is capacity-high, reliable, flexible, and ubiquitous, as it takes full advantage of the merits from both optical communication and wireless communication technologies. Similar to other access networks, the high energy consumption poses a great challenge for building up WOBANs. To shot this problem, we can make some load-light Optical Network Units (ONUs) sleep to reduce the energy consumption. Such operation, however, causes the increased packet delay. Jointly considering the energy consumption and transmission delay, we propose a delay-aware adaptive sleep mechanism. Specifically, we develop a new analytical method to evaluate the transmission delay and queuing delay over the optical part, instead of adopting M/M/1 queuing model. Meanwhile, we also analyze the access delay and queuing delay of the wireless part. Based on such developed delay models, we mathematically derive ONU's optimal sleep time. In addition, we provide numerous simulation results to show the effectiveness of the proposed mechanism.

  11. Phase models and clustering in networks of oscillators with delayed coupling

    Science.gov (United States)

    Campbell, Sue Ann; Wang, Zhen

    2018-01-01

    We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

  12. Capacity of Heterogeneous Mobile Wireless Networks with D-Delay Transmission Strategy.

    Science.gov (United States)

    Wu, Feng; Zhu, Jiang; Xi, Zhipeng; Gao, Kai

    2016-03-25

    This paper investigates the capacity problem of heterogeneous wireless networks in mobility scenarios. A heterogeneous network model which consists of n normal nodes and m helping nodes is proposed. Moreover, we propose a D-delay transmission strategy to ensure that every packet can be delivered to its destination nodes with limited delay. Different from most existing network schemes, our network model has a novel two-tier architecture. The existence of helping nodes greatly improves the network capacity. Four types of mobile networks are studied in this paper: i.i.d. fast mobility model and slow mobility model in two-dimensional space, i.i.d. fast mobility model and slow mobility model in three-dimensional space. Using the virtual channel model, we present an intuitive analysis of the capacity of two-dimensional mobile networks and three-dimensional mobile networks, respectively. Given a delay constraint D, we derive the asymptotic expressions for the capacity of the four types of mobile networks. Furthermore, the impact of D and m to the capacity of the whole network is analyzed. Our findings provide great guidance for the future design of the next generation of networks.

  13. Exponential stability of uncertain stochastic neural networks with mixed time-delays

    International Nuclear Information System (INIS)

    Wang Zidong; Lauria, Stanislao; Fang Jian'an; Liu Xiaohui

    2007-01-01

    This paper is concerned with the global exponential stability analysis problem for a class of stochastic neural networks with mixed time-delays and parameter uncertainties. The mixed delays comprise discrete and distributed time-delays, the parameter uncertainties are norm-bounded, and the neural networks are subjected to stochastic disturbances described in terms of a Brownian motion. The purpose of the stability analysis problem is to derive easy-to-test criteria under which the delayed stochastic neural network is globally, robustly, exponentially stable in the mean square for all admissible parameter uncertainties. By resorting to the Lyapunov-Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established by using an efficient linear matrix inequality (LMI) approach. The proposed criteria can be checked readily by using recently developed numerical packages, where no tuning of parameters is required. An example is provided to demonstrate the usefulness of the proposed criteria

  14. Stability analysis and synchronization in discrete-time complex networks with delayed coupling

    Science.gov (United States)

    Cheng, Ranran; Peng, Mingshu; Yu, Weibin; Sun, Bo; Yu, Jinchen

    2013-12-01

    A new network of coupled maps is proposed in which the connections between units involve no delays but the intra-neural communication does, whereas in the work of Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], the focus is on information processing delayed by the inter-neural communication. We show that the synchronization of the network depends on not only the intrinsic dynamical features and inter-connection topology (characterized by the spectrum of the graph Laplacian) but also the delays and the coupling strength. There are two main findings: (i) the more neighbours, the easier to be synchronized; (ii) odd delays are easier to be synchronized than even ones. In addition, compared with those discussed by Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], our model has a better synchronizability for regular networks and small-world variants.

  15. A normalized PID controller in networked control systems with varying time delays.

    Science.gov (United States)

    Tran, Hoang-Dung; Guan, Zhi-Hong; Dang, Xuan-Kien; Cheng, Xin-Ming; Yuan, Fu-Shun

    2013-09-01

    It requires not only simplicity and flexibility but also high specified stability and robustness of system to design a PI/PID controller in such complicated networked control systems (NCSs) with delays. By gain and phase margins approach, this paper proposes a novel normalized PI/PID controller for NCSs based on analyzing the stability and robustness of system under the effect of network-induced delays. Specifically, We take into account the total measured network delays to formulate the gain and phase margins of the closed-loop system in the form of a set of equations. With pre-specified values of gain and phase margins, this set of equations is then solved for calculating the closed forms of control parameters which enable us to propose the normalized PI/PID controller simultaneously satisfying the following two requirements: (1) simplicity without re-solving the optimization problem for a new process, (2) high flexibility to cope with large scale of random delays and deal with many different processes in different conditions of network. Furthermore, in our method, the upper bound of random delay can be estimated to indicate the operating domain of proposed PI/PID controller. Finally, simulation results are shown to demonstrate the advantages of our proposed controller in many situations of network-induced delays. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    Science.gov (United States)

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in

  17. Delay-distribution-dependent H∞ state estimation for delayed neural networks with (x,v)-dependent noises and fading channels.

    Science.gov (United States)

    Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E

    2016-12-01

    This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Minimal-delay traffic grooming for WDM star networks

    Science.gov (United States)

    Choi, Hongsik; Garg, Nikhil; Choi, Hyeong-Ah

    2003-10-01

    All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.

  19. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2 gene in Arabidopsis delays flowering and enhances freezing tolerance.

    Directory of Open Access Journals (Sweden)

    Amadou Diallo

    Full Text Available The vernalization gene 2 (VRN2, is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2 is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  20. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  1. Exponential convergence for a class of delayed cellular neural networks with time-varying coefficients

    International Nuclear Information System (INIS)

    Liu Bingwen

    2008-01-01

    In this Letter, we consider a class of delayed cellular neural networks with time-varying coefficients. By applying Lyapunov functional method and differential inequality techniques, we establish new results to ensure that all solutions of the networks converge exponentially to zero point

  2. Chaos Control and Synchronization of Cellular Neural Network with Delays Based on OPNCL Control

    International Nuclear Information System (INIS)

    Qian, Tang; Xing-Yuan, Wang

    2010-01-01

    The problem of chaos control and complete synchronization of cellular neural network with delays is studied. Based on the open plus nonlinear closed loop (OPNCL) method, the control scheme and synchronization scheme are designed. Both the schemes can achieve the chaos control and complete synchronization of chaotic neural network respectively, and their validity is further verified by numerical simulation experiments. (general)

  3. Delay performance of a broadcast spectrum sharing network in Nakagami-m fading

    KAUST Repository

    Khan, Fahd Ahmed; Tourki, Kamel; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2014-01-01

    In this paper, we analyze the delay performance of a point-to-multipoint secondary network (P2M-SN), which is concurrently sharing the spectrum with a point-to-multipoint primary network (P2M-PN). The channel is assumed to be independent

  4. Stability of Delayed Hopfield Neural Networks with Variable-Time Impulses

    Directory of Open Access Journals (Sweden)

    Yangjun Pei

    2014-01-01

    Full Text Available In this paper the globally exponential stability criteria of delayed Hopfield neural networks with variable-time impulses are established. The proposed criteria can also be applied in Hopfield neural networks with fixed-time impulses. A numerical example is presented to illustrate the effectiveness of our theoretical results.

  5. Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays

    International Nuclear Information System (INIS)

    Zhao Hongyong; Ding Nan; Chen Ling

    2009-01-01

    This paper is concerned with the problem of exponential stability analysis for fuzzy cellular neural network with delays. By constructing suitable Lyapunov functional and using stochastic analysis we present some sufficient conditions ensuring almost sure exponential stability for the network. Moreover, an example is given to demonstrate the advantages of our method.

  6. On design and evaluation of tapped-delay neural network architectures

    DEFF Research Database (Denmark)

    Svarer, Claus; Hansen, Lars Kai; Larsen, Jan

    1993-01-01

    Pruning and evaluation of tapped-delay neural networks for the sunspot benchmark series are addressed. It is shown that the generalization ability of the networks can be improved by pruning using the optimal brain damage method of Le Cun, Denker and Solla. A stop criterion for the pruning algorithm...

  7. An Empirical Study of Synchrophasor Communication Delay in a Utility TCP/IP Network

    Science.gov (United States)

    Zhu, Kun; Chenine, Moustafa; Nordström, Lars; Holmström, Sture; Ericsson, Göran

    2013-07-01

    Although there is a plethora of literature dealing with Phasor Measurement Unit (PMU) communication delay, there has not been any effort made to generalize empirical delay results by identifying the distribution with the best fit. The existing studies typically assume a distribution or simply build on analogies to communication network routing delay. Specifically, this study provides insight into the characterization of the communication delay of both unprocessed PMU data and synchrophasors sorted by a Phasor Data Concentrator (PDC). The results suggest that a bi-modal distribution containing two normal distributions offers the best fit of the delay of the unprocessed data, whereas the delay profile of the sorted synchrophasors resembles a normal distribution based on these results, the possibility of evaluating the reliability of a synchrophasor application with respect to a particular choice of PDC timeout is discussed.

  8. A universal, fault-tolerant, non-linear analytic network for modeling and fault detection

    International Nuclear Information System (INIS)

    Mott, J.E.; King, R.W.; Monson, L.R.; Olson, D.L.; Staffon, J.D.

    1992-01-01

    The similarities and differences of a universal network to normal neural networks are outlined. The description and application of a universal network is discussed by showing how a simple linear system is modeled by normal techniques and by universal network techniques. A full implementation of the universal network as universal process modeling software on a dedicated computer system at EBR-II is described and example results are presented. It is concluded that the universal network provides different feature recognition capabilities than a neural network and that the universal network can provide extremely fast, accurate, and fault-tolerant estimation, validation, and replacement of signals in a real system

  9. A universal, fault-tolerant, non-linear analytic network for modeling and fault detection

    Energy Technology Data Exchange (ETDEWEB)

    Mott, J.E. [Advanced Modeling Techniques Corp., Idaho Falls, ID (United States); King, R.W.; Monson, L.R.; Olson, D.L.; Staffon, J.D. [Argonne National Lab., Idaho Falls, ID (United States)

    1992-03-06

    The similarities and differences of a universal network to normal neural networks are outlined. The description and application of a universal network is discussed by showing how a simple linear system is modeled by normal techniques and by universal network techniques. A full implementation of the universal network as universal process modeling software on a dedicated computer system at EBR-II is described and example results are presented. It is concluded that the universal network provides different feature recognition capabilities than a neural network and that the universal network can provide extremely fast, accurate, and fault-tolerant estimation, validation, and replacement of signals in a real system.

  10. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    International Nuclear Information System (INIS)

    Mei, Sun; Chang-Yan, Zeng; Li-Xin, Tian

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand–supply of energy resource in some regions of China

  11. Global asymptotic stability of Cohen-Grossberg neural networks with constant and variable delays

    International Nuclear Information System (INIS)

    Wu Wei; Cui Baotong; Huang Min

    2007-01-01

    Global asymptotic stability of Cohen-Grossberg neural networks with constant and variable delays is studied. Some sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence by using different Lyapunov functionals. Our criteria represent an extension of the existing results in literatures. A comparison between our results and the previous results admits that our results establish a new set of stability criteria for delayed Cohen-Grossberg neural networks. Those conditions are less restrictive than those given in the earlier reference

  12. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    Science.gov (United States)

    Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  13. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  14. Synchronization of Reaction-Diffusion Neural Networks With Dirichlet Boundary Conditions and Infinite Delays.

    Science.gov (United States)

    Sheng, Yin; Zhang, Hao; Zeng, Zhigang

    2017-10-01

    This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.

  15. Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse

    International Nuclear Information System (INIS)

    Huang Zaitang; Luo Xiaoshu; Yang Qigui

    2007-01-01

    Many systems existing in physics, chemistry, biology, engineering and information science can be characterized by impulsive dynamics caused by abrupt jumps at certain instants during the process. These complex dynamical behaviors can be model by impulsive differential system or impulsive neural networks. This paper formulates and studies a new model of impulsive bidirectional associative memory (BAM) networks with finite distributed delays. Several fundamental issues, such as global asymptotic stability and existence and uniqueness of such BAM neural networks with impulse and distributed delays, are established

  16. Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms

    International Nuclear Information System (INIS)

    Sheng Li; Yang Huizhong; Lou Xuyang

    2009-01-01

    This paper presents an exponential synchronization scheme for a class of neural networks with time-varying and distributed delays and reaction-diffusion terms. An adaptive synchronization controller is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory. At the same time, the update laws of parameters are proposed to guarantee the synchronization of delayed neural networks with all parameters unknown. It is shown that the approaches developed here extend and improve the ideas presented in recent literatures.

  17. Globally exponential stability condition of a class of neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liao, T.-L.; Yan, J.-J.; Cheng, C.-J.; Hwang, C.-C.

    2005-01-01

    In this Letter, the globally exponential stability for a class of neural networks including Hopfield neural networks and cellular neural networks with time-varying delays is investigated. Based on the Lyapunov stability method, a novel and less conservative exponential stability condition is derived. The condition is delay-dependent and easily applied only by checking the Hamiltonian matrix with no eigenvalues on the imaginary axis instead of directly solving an algebraic Riccati equation. Furthermore, the exponential stability degree is more easily assigned than those reported in the literature. Some examples are given to demonstrate validity and excellence of the presented stability condition herein

  18. Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters

    International Nuclear Information System (INIS)

    Lou Xuyang; Cui Baotong

    2009-01-01

    In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.

  19. On balancing between minimum energy and minimum delay with radio diversity for wireless sensor networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, RajA

    2012-01-01

    The expected number of transmissions (ETX) metric represents the link quality in wireless sensor networks, which is highly variable for a specific radio and it can influence dramatically both of the delay and the energy. To adapt to these fluctuations, radio diversity has been recently introduced...... to improve the delivery rate but at the cost of increases in energy for wireless sensor networks. In this paper, we propose a scheme for radio diversity that can balance, depending on the traffic nature in the network, between minimizing the energy consumption or minimizing the end-to-end delay. The proposed...... scheme combines the benefit of two metrics, which aim separately to minimize the energy consumption, and to minimize delay when delivering packets to the end-user. We show by both analysis and simulation that our proposed scheme can adapt to the type of traffic that can occur in a network so...

  20. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    Science.gov (United States)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  1. Local stability and Hopf bifurcation in small-world delayed networks

    International Nuclear Information System (INIS)

    Li Chunguang; Chen Guanrong

    2004-01-01

    The notion of small-world networks, recently introduced by Watts and Strogatz, has attracted increasing interest in studying the interesting properties of complex networks. Notice that, a signal or influence travelling on a small-world network often is associated with time-delay features, which are very common in biological and physical networks. Also, the interactions within nodes in a small-world network are often nonlinear. In this paper, we consider a small-world networks model with nonlinear interactions and time delays, which was recently considered by Yang. By choosing the nonlinear interaction strength as a bifurcation parameter, we prove that Hopf bifurcation occurs. We determine the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation by applying the normal form theory and the center manifold theorem. Finally, we show a numerical example to verify the theoretical analysis

  2. Local stability and Hopf bifurcation in small-world delayed networks

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunguang E-mail: cgli@uestc.edu.cn; Chen Guanrong E-mail: gchen@ee.cityu.edu.hk

    2004-04-01

    The notion of small-world networks, recently introduced by Watts and Strogatz, has attracted increasing interest in studying the interesting properties of complex networks. Notice that, a signal or influence travelling on a small-world network often is associated with time-delay features, which are very common in biological and physical networks. Also, the interactions within nodes in a small-world network are often nonlinear. In this paper, we consider a small-world networks model with nonlinear interactions and time delays, which was recently considered by Yang. By choosing the nonlinear interaction strength as a bifurcation parameter, we prove that Hopf bifurcation occurs. We determine the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation by applying the normal form theory and the center manifold theorem. Finally, we show a numerical example to verify the theoretical analysis.

  3. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    is linked to a different set of circumstances than the ones suggested by existing models in contemporary democratic theory. Reorienting the discussion of tolerance, the book raises the question of how to disclose new possibilities within our given context of affect and perception. Once we move away from......Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...

  4. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    Science.gov (United States)

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  5. Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling

    International Nuclear Information System (INIS)

    Jian-Rui, Chen; Li-Cheng, Jiao; Jian-She, Wu; Xiao-Hua, Wang

    2009-01-01

    A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)

  6. Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    OpenAIRE

    Al-Azzawi, Waleed

    2013-01-01

    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefo...

  7. Nonlinear Dynamics and Chaos in Fractional-Order Hopfield Neural Networks with Delay

    Directory of Open Access Journals (Sweden)

    Xia Huang

    2013-01-01

    Full Text Available A fractional-order two-neuron Hopfield neural network with delay is proposed based on the classic well-known Hopfield neural networks, and further, the complex dynamical behaviors of such a network are investigated. A great variety of interesting dynamical phenomena, including single-periodic, multiple-periodic, and chaotic motions, are found to exist. The existence of chaotic attractors is verified by the bifurcation diagram and phase portraits as well.

  8. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  9. Fault-tolerant topology in the wireless sensor networks for energy depletion and random failure

    International Nuclear Information System (INIS)

    Liu Bin; Dong Ming-Ru; Yin Rong-Rong; Yin Wen-Xiao

    2014-01-01

    Nodes in the wireless sensor networks (WSNs) are prone to failure due to energy depletion and poor environment, which could have a negative impact on the normal operation of the network. In order to solve this problem, in this paper, we build a fault-tolerant topology which can effectively tolerate energy depletion and random failure. Firstly, a comprehensive failure model about energy depletion and random failure is established. Then an improved evolution model is presented to generate a fault-tolerant topology, and the degree distribution of the topology can be adjusted. Finally, the relation between the degree distribution and the topological fault tolerance is analyzed, and the optimal value of evolution model parameter is obtained. Then the target fault-tolerant topology which can effectively tolerate energy depletion and random failure is obtained. The performances of the new fault tolerant topology are verified by simulation experiments. The results show that the new fault tolerant topology effectively prolongs the network lifetime and has strong fault tolerance. (general)

  10. Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks

    International Nuclear Information System (INIS)

    Wang, Baoying; Gong, Yubing; Xie, Huijuan; Wang, Qi

    2016-01-01

    Highlights: • Optimal autaptic delay enhanced synchronization transitions induced by synaptic delay in neuronal networks. • Optimal synaptic delay enhanced synchronization transitions induced by autaptic delay. • Optimal coupling strength enhanced synchronization transitions induced by autaptic or synaptic delay. - Abstract: In this paper, we numerically study the effect of electrical autaptic and synaptic delays on synchronization transitions induced by each other in Newman–Watts Hodgkin–Huxley neuronal networks. It is found that the synchronization transitions induced by synaptic delay vary with varying autaptic delay and become strongest when autaptic delay is optimal. Similarly, the synchronization transitions induced by autaptic delay vary with varying synaptic delay and become strongest at optimal synaptic delay. Also, there is optimal coupling strength by which the synchronization transitions induced by either synaptic or autaptic delay become strongest. These results show that electrical autaptic and synaptic delays can enhance synchronization transitions induced by each other in the neuronal networks. This implies that electrical autaptic and synaptic delays can cooperate with each other and more efficiently regulate the synchrony state of the neuronal networks. These findings could find potential implications for the information transmission in neural systems.

  11. Statistical properties and attack tolerance of growing networks with algebraic preferential attachment

    International Nuclear Information System (INIS)

    Liu Zonghua; Lai Yingcheng; Ye Nong

    2002-01-01

    We consider growing networks with algebraic preferential attachment and address two questions: (1) what is the effect of temporal fluctuations in the number of new links acquired by the network? and (2) what is the network tolerance against random failures and intentional attacks? We find that the fluctuations generally have little effect on the network properties, although they lead to a plateau behavior for small degrees in the connectivity distribution. Formulas are derived for the evolution and distribution of the network connectivity, which are tested by numerical simulations. Numerical study of the effect of failures and attacks suggests that networks constructed under algebraic preferential attachment are more robust than scale-free networks

  12. Symbolic dynamics and synchronization of coupled map networks with multiple delays

    International Nuclear Information System (INIS)

    Atay, Fatihcan M.; Jalan, Sarika; Jost, Juergen

    2010-01-01

    We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.

  13. Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model

    Science.gov (United States)

    Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu

    2018-01-01

    We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.

  14. STATISTIC MODEL OF DYNAMIC DELAY AND DROPOUT ON CELLULAR DATA NETWORKED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    MUHAMMAD A. MURTI

    2017-07-01

    Full Text Available Delay and dropout are important parameters influence overall control performance in Networked Control System (NCS. The goal of this research is to find a model of delay and dropout of data communication link in the NCS. Experiments have been done in this research to a water level control of boiler tank as part of the NCS based on internet communication network using High Speed Packet Access (HSPA cellular technology. By this experiments have been obtained closed-loop system response as well as data delay and dropout of data packets. This research contributes on modeling of the NCS which is combination of controlled plant and data communication link. Another contribution is statistical model of delay and dropout on the NCS.

  15. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech....

  16. Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes

    International Nuclear Information System (INIS)

    Cai Shuiming; He Qinbin; Hao Junjun; Liu Zengrong

    2010-01-01

    In this Letter, exponential synchronization of a complex network with nonidentical time-delayed dynamical nodes is considered. Two effective control schemes are proposed to drive the network to synchronize globally exponentially onto any smooth goal dynamics. By applying open-loop control to all nodes and adding some intermittent controllers to partial nodes, some simple criteria for exponential synchronization of such network are established. Meanwhile, a pinning scheme deciding which nodes need to be pinned and a simply approximate formula for estimating the least number of pinned nodes are also provided. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network with nonidentical time-delayed dynamical nodes, and an estimate of the upper bound of impulsive intervals ensuring global exponential stability of the synchronization process is also given. Numerical simulations are presented finally to demonstrate the effectiveness of the theoretical results.

  17. Robust convergence of Cohen-Grossberg neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Xiong Wenjun; Ma Deyi; Liang Jinling

    2009-01-01

    In this paper, robust convergence is studied for the Cohen-Grossberg neural networks (CGNNs) with time-varying delays. By applying the differential inequality and the Lyapunov method, some delay-independent conditions are derived ensuring the robust CGNNs to converge, globally, uniformly and exponentially, to a ball in the state space with a pre-specified convergence rate. Finally, the effectiveness of our results are verified by an illustrative example.

  18. On global stability criterion for neural networks with discrete and distributed delays

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov functional stability analysis for differential equations and the linear matrix inequality (LMI) optimization approach, a new delay-dependent criterion for neural networks with discrete and distributed delays is derived to guarantee global asymptotic stability. The criterion is expressed in terms of LMIs, which can be solved easily by various convex optimization algorithms. Some numerical examples are given to show the effectiveness of proposed method

  19. Improved result on stability analysis of discrete stochastic neural networks with time delay

    International Nuclear Information System (INIS)

    Wu Zhengguang; Su Hongye; Chu Jian; Zhou Wuneng

    2009-01-01

    This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.

  20. Global robust asymptotical stability of multi-delayed interval neural networks: an LMI approach

    International Nuclear Information System (INIS)

    Li Chuandong; Liao Xiaofeng; Zhang Rong

    2004-01-01

    Based on the Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique, some delay-dependent criteria for interval neural networks (IDNN) with multiple time-varying delays are derived to guarantee global robust asymptotic stability. The main results are generalizations of some recent results reported in the literature. Numerical example is also given to show the effectiveness of our results

  1. Stability and bifurcation of a discrete BAM neural network model with delays

    International Nuclear Information System (INIS)

    Zheng Baodong; Zhang Yang; Zhang Chunrui

    2008-01-01

    A map modelling a discrete bidirectional associative memory neural network with delays is investigated. Its dynamics is studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Numerical simulation is performed to verify the analytical results

  2. On exponential stability of bidirectional associative memory neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Park, Ju H.; Lee, S.M.; Kwon, O.M.

    2009-01-01

    For bidirectional associate memory neural networks with time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated by employing the Lyapunov functional method and linear matrix inequality (LMI) technique. A novel criterion for the stability, which give information on the delay-dependent property, is derived. A numerical example is given to demonstrate the effectiveness of the obtained results.

  3. Noise transmission and delay-induced stochasticoscillations in biochemical network motifs

    Institute of Scientific and Technical Information of China (English)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Fumihiko Sakata

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations,we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation.We systematically analyse the effects of time delays,the feedback mechanism,and biological stochasticity on the power spectra.It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator.Delay-induced stochastic resonance can be expected,which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations.Through the analysis of the power spectrum,a new approach is proposed to estimate the oscillation period.

  4. Noise transmission and delay-induced stochastic oscillations in biochemical network motifs

    International Nuclear Information System (INIS)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)

  5. Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control

    Energy Technology Data Exchange (ETDEWEB)

    Cai Shuiming, E-mail: caishuiming2008@yahoo.com.c [Department of Mathematics, Shanghai University, Shanghai 200444 (China); Institute of System Biology, Shanghai University, Shanghai 200444 (China); Hao Junjun [Institute of System Biology, Shanghai University, Shanghai 200444 (China); He, Qinbin [Department of Mathematics, Taizhou University, Linhai 317000 (China); Institute of System Biology, Shanghai University, Shanghai 200444 (China); Liu Zengrong, E-mail: zrongliu@126.co [Department of Mathematics, Shanghai University, Shanghai 200444 (China) and Institute of System Biology, Shanghai University, Shanghai 200444 (China)

    2011-05-09

    The problem of synchronization for a class of complex delayed dynamical networks via pinning periodically intermittent control is considered in this Letter. Some novel and useful exponential synchronization criteria are obtained by utilizing the methods which are different from the techniques employed in the existing works, and the derived results are less conservative. Especially, the traditional assumptions on control width and time delays are released in our results. Moreover, a pinning scheme deciding what nodes should be chosen as pinned candidates and how many nodes are needed to be pinned for a fixed coupling strength is provided. A Barabasi-Albert network example is finally given to illustrate the effectiveness of the theoretical results. - Highlights: Pinning control problem of complex networks via intermittent control is investigated. The traditional assumptions on control width and time delays are removed. A scheme deciding what nodes should be chosen as pinned candidates is proposed. A scheme deciding how many nodes are needed to be pinned is provided.

  6. Robust stability of interval bidirectional associative memory neural network with time delays.

    Science.gov (United States)

    Liao, Xiaofeng; Wong, Kwok-wo

    2004-04-01

    In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.

  7. Robust stability for stochastic bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Shu, H. S.; Lv, Z. W.; Wei, G. L.

    2008-02-01

    In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed criteria.

  8. Near Earth Application of Delay/Disruption Tolerant Networking in Operational Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In this internet age when a user sends an email to another user, rarely if at all do we think about the thousands of connections/links that exist in order for our...

  9. Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    Science.gov (United States)

    2009-03-01

    incorporating autonomous actions, but none appear to incorporate a cognitive aspect used to balance multiple objectives as is the focus of this work. There...routing algorithm) and/or mission type decision (orbit path change). In this component, the pseudo- cognitive aspect is implemented within the...orbit change behavior doesn’t know which orbit to choose. This is where the cognitive aspect takes over. Since the orbit change behavior doesn’t

  10. Power Minimization through Packet Retention in Cognitive Radio Sensor Networks under Interference and Delay Constraints: An Optimal Stopping Approach

    Directory of Open Access Journals (Sweden)

    Amr Y. Elnakeeb

    2016-04-01

    Full Text Available The aim of this article is twofold: First, we study the problem of packets retention in a queue with the aim of minimizing transmission power in delay-tolerant applications. The problem is classified as an optimal stopping problem. The optimal stopping rule has been derived as well. Optimal number of released packets is determined in each round through an Integer Linear Programming (ILP optimization problem. This transmission paradigm is tested via simulations in an interference-free environment leading to a significant reduction in transmission power (at least 55%. Second, we address the problem of applying the scheme of packets retention through the Optimal Stopping Policy (OSP to underlay Cognitive Radio Sensor Networks (CRSNs where strict interference threshold does exist. Simulations proved that our scheme outperforms traditional transmission method as far as dropped packet rate and Average Power per Transmitted Packet (APTP are concerned.

  11. Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Xie Yanhang; Lin Xiu; Hao Yinghang; Ma Xiaoguang

    2010-01-01

    Research highlights: → Chemical delay and chemical coupling can tame chaotic bursting. → Chemical delay-induced transitions from bursting synchronization to intermittent multiple spiking synchronizations. → Chemical coupling-induced different types of delay-dependent firing transitions. - Abstract: Chemical synaptic connections are more common than electric ones in neurons, and information transmission delay is especially significant for the synapses of chemical type. In this paper, we report a phenomenon of ordering spatiotemporal chaos and synchronization transitions by the delays and coupling through chemical synapses of modified Hodgkin-Huxley (MHH) neurons on scale-free networks. As the delay τ is increased, the neurons exhibit transitions from bursting synchronization (BS) to intermittent multiple spiking synchronizations (SS). As the coupling g syn is increased, the neurons exhibit different types of firing transitions, depending on the values of τ. For a smaller τ, there are transitions from spatiotemporal chaotic bursting (SCB) to BS or SS; while for a larger τ, there are transitions from SCB to intermittent multiple SS. These findings show that the delays and coupling through chemical synapses can tame the chaotic firings and repeatedly enhance the firing synchronization of neurons, and hence could play important roles in the firing activity of the neurons on scale-free networks.

  12. Fault tolerance of artificial neural networks with applications in critical systems

    Science.gov (United States)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  13. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    Science.gov (United States)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  14. Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks

    International Nuclear Information System (INIS)

    Roxin, Alex; Brunel, Nicolas; Hansel, David

    2005-01-01

    We study the effect of delays on the dynamics of large networks of neurons. We show that delays give rise to a wealth of bifurcations and to a rich phase diagram, which includes oscillatory bumps, traveling waves, lurching waves, standing waves arising via a period-doubling bifurcation, aperiodic regimes, and regimes of multistability. We study the existence and the stability of the various dynamical patterns analytically and numerically in a simplified rate model as a function of the interaction parameters. The results derived in that framework allow us to understand the origin of the diversity of dynamical states observed in large networks of spiking neurons

  15. Analysis on Passivity for Uncertain Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    O. M. Kwon

    2014-01-01

    Full Text Available The problem of passivity analysis for neural networks with time-varying delays and parameter uncertainties is considered. By the consideration of newly constructed Lyapunov-Krasovskii functionals, improved sufficient conditions to guarantee the passivity of the concerned networks are proposed with the framework of linear matrix inequalities (LMIs, which can be solved easily by various efficient convex optimization algorithms. The enhancement of the feasible region of the proposed criteria is shown via two numerical examples by the comparison of maximum allowable delay bounds.

  16. Stability and attractive basins of multiple equilibria in delayed two-neuron networks

    International Nuclear Information System (INIS)

    Huang Yu-Jiao; Zhang Hua-Guang; Wang Zhan-Shan

    2012-01-01

    Multiple stability for two-dimensional delayed recurrent neural networks with piecewise linear activation functions of 2r (r ≥ 1) corner points is studied. Sufficient conditions are established for checking the existence of (2r + 1) 2 equilibria in delayed recurrent neural networks. Under these conditions, (r + 1) 2 equilibria are locally exponentially stable, and (2r + 1) 2 — (r + 1) 2 — r 2 equilibria are unstable. Attractive basins of stable equilibria are estimated, which are larger than invariant sets derived by decomposing state space. One example is provided to illustrate the effectiveness of our results. (general)

  17. Globally exponential stability of neural network with constant and variable delays

    International Nuclear Information System (INIS)

    Zhao Weirui; Zhang Huanshui

    2006-01-01

    This Letter presents new sufficient conditions of globally exponential stability of neural networks with delays. We show that these results generalize recently published globally exponential stability results. In particular, several different globally exponential stability conditions in the literatures which were proved using different Lyapunov functionals are generalized and unified by using the same Lyapunov functional and the technique of inequality of integral. A comparison between our results and the previous results admits that our results establish a new set of stability criteria for delayed neural networks. Those conditions are less restrictive than those given in the earlier references

  18. Global existence of periodic solutions on a simplified BAM neural network model with delays

    International Nuclear Information System (INIS)

    Zheng Baodong; Zhang Yazhuo; Zhang Chunrui

    2008-01-01

    A simplified n-dimensional BAM neural network model with delays is considered. Some results of Hopf bifurcations occurring at the zero equilibrium as the delay increases are exhibited. Global existence of periodic solutions are established using a global Hopf bifurcation result of Wu [Wu J. Symmetric functional-differential equations and neural networks with memory. Trans Am Math Soc 1998;350:4799-838], and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney [Li MY, Muldowney J. On Bendixson's criterion. J Differ Equations 1994;106:27-39]. Finally, computer simulations are performed to illustrate the analytical results found

  19. Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays.

    Science.gov (United States)

    Arik, Sabri

    2005-05-01

    This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.

  20. Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays

    International Nuclear Information System (INIS)

    Liao Xiaofeng; Wong, K.-W.; Yang Shizhong

    2003-01-01

    In this Letter, the characteristics of the convergence dynamics of hybrid bidirectional associative memory neural networks with distributed transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the Lyapunov functionals are constructed and the generalized Halanay-type inequalities are employed to derive the delay-independent sufficient conditions under which the networks converge exponentially to the equilibria associated with temporally uniform external inputs. Some examples are given to illustrate the correctness of our results

  1. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    Science.gov (United States)

    Syed Ali, M.; Balasubramaniam, P.

    2008-07-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.

  2. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Syed Ali, M.; Balasubramaniam, P.

    2008-01-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB

  3. New results for global robust stability of bidirectional associative memory neural networks with multiple time delays

    International Nuclear Information System (INIS)

    Senan, Sibel; Arik, Sabri

    2009-01-01

    This paper presents some new sufficient conditions for the global robust asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with multiple time delays. The results we obtain impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. We also give some numerical examples to demonstrate the applicability and effectiveness of our results, and compare the results with the previous robust stability results derived in the literature.

  4. Some criteria for robust stability of Cohen-Grossberg neural networks with delays

    International Nuclear Information System (INIS)

    Xiong Weili; Xu Baoguo

    2008-01-01

    This paper considers the problem of robust stability of Cohen-Grossberg neural networks with time-varying delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, some sufficient conditions are derived to ensure the global robust convergence of the equilibrium point. The proposed LMI conditions can be checked easily by recently developed algorithms solving LMIs. Comparisons between our results and previous results admits our results establish a new set of stability criteria for delayed Cohen-Grossberg neural networks. Numerical examples are given to illustrate the effectiveness of our results

  5. Service for fault tolerance in the Ad Hoc Networks based on Multi Agent Systems

    Directory of Open Access Journals (Sweden)

    Ghalem Belalem

    2011-02-01

    Full Text Available The Ad hoc networks are distributed networks, self-organized and does not require infrastructure. In such network, mobile infrastructures are subject of disconnections. This situation may concern a voluntary or involuntary disconnection of nodes caused by the high mobility in the Ad hoc network. In these problems we are trying through this work to contribute to solving these problems in order to ensure continuous service by proposing our service for faults tolerance based on Multi Agent Systems (MAS, which predict a problem and decision making in relation to critical nodes. Our work contributes to study the prediction of voluntary and involuntary disconnections in the Ad hoc network; therefore we propose our service for faults tolerance that allows for effective distribution of information in the Network by selecting some objects of the network to be duplicates of information.

  6. Delay Bounded Multi-Source Multicast in Software-Defined Networking

    Directory of Open Access Journals (Sweden)

    Thabo Semong

    2018-01-01

    Full Text Available Software-Defined Networking (SDN is the next generation network architecture with exciting application prospects. The control function in SDN is decoupled from the data forwarding plane, hence it provides a new centralized architecture with flexible network resource management. Although SDN is attracting much attention from both industry and research, its advantage over the traditional networks has not been fully utilized. Multicast is designed to deliver content to multiple destinations. The current traffic engineering in SDN focuses mainly on unicast, however, multicast can effectively reduce network resource consumption by serving multiple clients. This paper studies a novel delay-bounded multi-source multicast SDN problem, in which among the set of potential sources, we select a source to build the multicast-tree, under the constraint that the transmission delay for every destination is bounded. This problem is more difficult than the traditional Steiner minimum tree (SMT problem, since it needs to find a source from the set of all potential sources. We model the problem as a mixed-integer linear programming (MILP and prove its NP-Hardness. To solve the problem, a delay bounded multi-source (DBMS scheme is proposed, which includes a DBMS algorithm to build a minimum delay cost DBMS-Forest. Through a MATLAB experiment, we demonstrate that DBMS is significantly more efficient and outperforms other existing algorithms in the literature.

  7. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    International Nuclear Information System (INIS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-01-01

    Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.

  8. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Bidesh K., E-mail: bideshbera18@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Hens, Chittaranjan, E-mail: chittaranjanhens@gmail.com [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Ghosh, Dibakar, E-mail: dibakar@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2016-07-15

    Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.

  9. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    Science.gov (United States)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  10. Pinning synchronization of delayed complex dynamical networks with nonlinear coupling

    Science.gov (United States)

    Cheng, Ranran; Peng, Mingshu; Yu, Weibin

    2014-11-01

    In this paper, we find that complex networks with the Watts-Strogatz or scale-free BA random topological architecture can be synchronized more easily by pin-controlling fewer nodes than regular systems. Theoretical analysis is included by means of Lyapunov functions and linear matrix inequalities (LMI) to make all nodes reach complete synchronization. Numerical examples are also provided to illustrate the importance of our theoretical analysis, which implies that there exists a gap between the theoretical prediction and numerical results about the minimum number of pinning controlled nodes.

  11. Qualitative analysis and control of complex neural networks with delays

    CERN Document Server

    Wang, Zhanshan; Zheng, Chengde

    2016-01-01

    This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.

  12. Counterpart synchronization of duplex networks with delayed nodes and noise perturbation

    International Nuclear Information System (INIS)

    Wei, Xiang; Wu, Xiaoqun; Lu, Jun-an; Zhao, Junchan

    2015-01-01

    In the real world, many complex systems are represented not by single networks but rather by sets of interdependent ones. In these specific networks, nodes in one network mutually interact with nodes in other networks. This paper focuses on a simple representative case of two-layer networks (the so-called duplex networks) with unidirectional inter-layer couplings. That is, each node in one network depends on a counterpart in the other network. Accordingly, the former network is called the response layer and the latter network is the drive layer. Specifically, synchronization between each node in the drive layer and its counterpart in the response layer (counterpart synchronization (CS)) in these kinds of duplex networks with delayed nodes and noise perturbation is investigated. Based on the LaSalle-type invariance principle, a control technique is proposed and a sufficient condition is developed for realizing CS of duplex networks. Furthermore, two corollaries are derived as special cases. In addition, node dynamics within each layer can be varied and topologies of the two layers are not necessarily identical. Therefore, the proposed synchronization method can be applied to a wide range of multiplex networks. Numerical examples are provided to illustrate the feasibility and effectiveness of the results. (paper)

  13. Stabilization of a Wireless Networked Control System with Packet Loss and Time Delay: An ADS Approach

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2012-01-01

    Full Text Available The stabilization problem of a wireless networked control system is considered in this paper. Both time delay and packet loss exist simultaneously in the wireless network. The system is modeled as an asynchronous dynamic system (ADS with unstable subsystems. A sufficient condition for the system to be stable is presented. A numerical example is given to demonstrate the effectiveness of the proposed approach.

  14. Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay

    International Nuclear Information System (INIS)

    Huang Zaitang; Yang Qigui

    2009-01-01

    The paper considers the problems of existence of quadratic mean almost periodic and global exponential stability for stochastic cellular neural networks with delays. By employing the Holder's inequality and fixed points principle, we present some new criteria ensuring existence and uniqueness of a quadratic mean almost periodic and global exponential stability. These criteria are important in signal processing and the design of networks. Moreover, these criteria are also applied in others stochastic biological neural systems.

  15. Dynamic analysis of stochastic bidirectional associative memory neural networks with delays

    International Nuclear Information System (INIS)

    Zhao Hongyong; Ding Nan

    2007-01-01

    In this paper, stochastic bidirectional associative memory neural networks model with delays is considered. By constructing Lyapunov functionals, and using stochastic analysis method and inequality technique, we give some sufficient criteria ensuring almost sure exponential stability, pth exponential stability and mean value exponential stability. The obtained criteria can be used as theoretic guidance to stabilize neural networks in practical applications when stochastic noise is taken into consideration

  16. Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions

    Science.gov (United States)

    Zhou, Jianping; Xu, Shengyuan; Shen, Hao; Zhang, Baoyong

    2013-08-01

    This article deals with the problem of passivity analysis for delayed reaction-diffusion bidirectional associative memory (BAM) neural networks with weight uncertainties. By using a new integral inequality, we first present a passivity condition for the nominal networks, and then extend the result to the case with linear fractional weight uncertainties. The proposed conditions are expressed in terms of linear matrix inequalities, and thus can be checked easily. Examples are provided to demonstrate the effectiveness of the proposed results.

  17. Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control

    International Nuclear Information System (INIS)

    Cui Baotong; Lou Xuyang

    2009-01-01

    In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme

  18. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  19. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with ZN symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  20. Exponential stability for stochastic delayed recurrent neural networks with mixed time-varying delays and impulses: the continuous-time case

    International Nuclear Information System (INIS)

    Karthik Raja, U; Leelamani, A; Raja, R; Samidurai, R

    2013-01-01

    In this paper, the exponential stability for a class of stochastic neural networks with time-varying delays and impulsive effects is considered. By constructing suitable Lyapunov functionals and by using the linear matrix inequality optimization approach, we obtain sufficient delay-dependent criteria to ensure the exponential stability of stochastic neural networks with time-varying delays and impulses. Two numerical examples with simulation results are provided to illustrate the effectiveness of the obtained results over those already existing in the literature. (paper)

  1. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    Science.gov (United States)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  2. Prediction of biodiesel ignition delay in a diesel engine using artificial neural networks

    International Nuclear Information System (INIS)

    Piloto-Rodríguez, Ramón; Sánchez-Borroto, Yisel

    2017-01-01

    Ignition delay is one of the most important parameters of the combustion process and have a strong influence in exhaust emissions and engines performance. In the present work, the results of the mathematical modeling of ignition delay through artificial neural networks are shown. The modeling starts from input values that cover thermodynamic variables, engines parameters and biodiesel properties. The model obtained is only useful for biodiesel samples and several neural network algorithms were applied in order to predict the ignition delay. From its correlation coefficient, prediction capability and lowest absolute error, the best model was selected. Among other network’s input parameters, the cetane number was taken into account, also previously predicted by the use of ANN. (author)

  3. Dynamics of the congestion control model in underwater wireless sensor networks with time delay

    International Nuclear Information System (INIS)

    Dong, Tao; Hu, Wenjie; Liao, Xiaofeng

    2016-01-01

    In this paper, a congestion control model in underwater wireless sensor network with time delay is considered. First, the boundedness of the positive equilibrium, where the samples density is positive for each node and the different event flows coexist, is investigated, which implies that the samples density of sensor node cannot exceed the Environmental carrying capacity. Then, by considering the time delay can be regarded as a bifurcating parameter, the dynamical behaviors, which include local stability and Hopf bifurcation, are investigated. It is found that when the communication time delay passes a critical value, the system loses its stability and a Hopf bifurcation occurs, which means the underwater wireless sensor network will be congested, even collapsed. Furthermore, the direction and stability of the bifurcating periodic solutions are derived by applying the normal form theory and the center manifold theorem. Finally, some numerical examples are finally performed to verify the theoretical results.

  4. End-to-end delay analysis in wireless sensor networks with service vacation

    KAUST Repository

    Alabdulmohsin, Ibrahim; Hyadi, Amal; Afify, Laila H.; Shihada, Basem

    2014-01-01

    In this paper, a delay-sensitive multi-hop wireless sensor network is considered, employing an M/G/1 with vacations framework. Sensors transmit measurements to a predefined data sink subject to maximum end-to-end delay constraint. In order to prolong the battery lifetime, a sleeping scheme is adopted throughout the network nodes. The objective of our proposed framework is to present an expression for maximum hop-count as well as an approximate expression of the probability of blocking at the sink node upon violating certain end-to-end delay threshold. Using numerical simulations, we validate the proposed analytical model and demonstrate that the blocking probability of the system for various vacation time distributions matches the simulation results.

  5. End-to-end delay analysis in wireless sensor networks with service vacation

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2014-04-01

    In this paper, a delay-sensitive multi-hop wireless sensor network is considered, employing an M/G/1 with vacations framework. Sensors transmit measurements to a predefined data sink subject to maximum end-to-end delay constraint. In order to prolong the battery lifetime, a sleeping scheme is adopted throughout the network nodes. The objective of our proposed framework is to present an expression for maximum hop-count as well as an approximate expression of the probability of blocking at the sink node upon violating certain end-to-end delay threshold. Using numerical simulations, we validate the proposed analytical model and demonstrate that the blocking probability of the system for various vacation time distributions matches the simulation results.

  6. Improved Robust Stability Criterion of Networked Control Systems with Transmission Delays and Packet Loss

    Directory of Open Access Journals (Sweden)

    Shenping Xiao

    2014-01-01

    Full Text Available The problem of stability analysis for a class of networked control systems (NCSs with network-induced delay and packet dropout is investigated in this paper. Based on the working mechanism of zero-order holder, the closed-loop NCS is modeled as a continuous-time linear system with input delay. By introducing a novel Lyapunov-Krasovskii functional which splits both the lower and upper bounds of the delay into two subintervals, respectively, and utilizes reciprocally convex combination technique, a new stability criterion is derived in terms of linear matrix inequalities. Compared with previous results in the literature, the obtained stability criterion is less conservative. Numerical examples demonstrate the validity and feasibility of the proposed method.

  7. Finite-time stability of neutral-type neural networks with random time-varying delays

    Science.gov (United States)

    Ali, M. Syed; Saravanan, S.; Zhu, Quanxin

    2017-11-01

    This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.

  8. Recursive Estimation for Dynamical Systems with Different Delay Rates Sensor Network and Autocorrelated Process Noises

    Directory of Open Access Journals (Sweden)

    Jianxin Feng

    2014-01-01

    Full Text Available The recursive estimation problem is studied for a class of uncertain dynamical systems with different delay rates sensor network and autocorrelated process noises. The process noises are assumed to be autocorrelated across time and the autocorrelation property is described by the covariances between different time instants. The system model under consideration is subject to multiplicative noises or stochastic uncertainties. The sensor delay phenomenon occurs in a random way and each sensor in the sensor network has an individual delay rate which is characterized by a binary switching sequence obeying a conditional probability distribution. By using the orthogonal projection theorem and an innovation analysis approach, the desired recursive robust estimators including recursive robust filter, predictor, and smoother are obtained. Simulation results are provided to demonstrate the effectiveness of the proposed approaches.

  9. Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay

    International Nuclear Information System (INIS)

    Feng Wei; Yang, Simon X.; Fu Wei; Wu Haixia

    2009-01-01

    This paper addresses the stability analysis problem for uncertain stochastic neural networks with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded, and the delay factor is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is robustly, globally, asymptotically stable in the mean square. Some stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be effectively solved by some standard numerical packages. Finally, numerical examples are provided to demonstrate the usefulness of the proposed criteria.

  10. Synchronization criterion for Lur'e type complex dynamical networks with time-varying delay

    International Nuclear Information System (INIS)

    Ji, D.H.; Park, Ju H.; Yoo, W.J.; Won, S.C.; Lee, S.M.

    2010-01-01

    In this Letter, the synchronization problem for a class of complex dynamical networks in which every identical node is a Lur'e system with time-varying delay is considered. A delay-dependent synchronization criterion is derived for the synchronization of complex dynamical network that represented by Lur'e system with sector restricted nonlinearities. The derived criterion is a sufficient condition for absolute stability of error dynamics between the each nodes and the isolated node. Using a convex representation of the nonlinearity for error dynamics, the stability condition based on the discretized Lyapunov-Krasovskii functional is obtained via LMI formulation. The proposed delay-dependent synchronization criterion is less conservative than the existing ones. The effectiveness of our work is verified through numerical examples.

  11. A new criterion for global robust stability of interval neural networks with discrete time delays

    International Nuclear Information System (INIS)

    Li Chuandong; Chen Jinyu; Huang Tingwen

    2007-01-01

    This paper further studies global robust stability of a class of interval neural networks with discrete time delays. By introducing an equivalent transformation of interval matrices, a new criterion on global robust stability is established. In comparison with the results reported in the literature, the proposed approach leads to results with less restrictive conditions. Numerical examples are also worked through to illustrate our results

  12. Networked control systems with communication constraints :tradeoffs between sampling intervals, delays and performance

    NARCIS (Netherlands)

    Heemels, W.P.M.H.; Teel, A.R.; Wouw, van de N.; Nesic, D.

    2010-01-01

    There are many communication imperfections in networked control systems (NCS) such as varying transmission delays, varying sampling/transmission intervals, packet loss, communication constraints and quantization effects. Most of the available literature on NCS focuses on only some of these aspects,

  13. Robustness of unstable attractors in arbitrarily sized pulse-coupled networks with delay

    NARCIS (Netherlands)

    Broer, Hendrik; Efstathiou, Konstantinos; Subramanian, Easwar

    We consider arbitrarily large networks of pulse-coupled oscillators with non-zero delay where the coupling is given by the Mirollo-Strogatz function. We prove that such systems have unstable attractors (saddle periodic orbits whose stable set has non-empty interior) in an open parameter region for

  14. New results of almost periodic solutions for cellular neural networks with mixed delays

    International Nuclear Information System (INIS)

    Zhao Weirui; Zhang Huanshui

    2009-01-01

    In this paper, for cellular neural networks with mixed delays, we prove some new results on the existence of almost periodic solutions by contraction principle. The global exponential stability of almost periodic solutions is discussed further, and conditions for exponential convergence are given. The conditions we obtained are weaker than the previously known ones and can be easily reduced to several special cases.

  15. Dynamic analysis of high-order Cohen-Grossberg neural networks with time delay

    International Nuclear Information System (INIS)

    Chen Zhang; Zhao Donghua; Ruan Jiong

    2007-01-01

    In this paper, a class of high-order Cohen-Grossberg neural networks with time delay is studied. Several sufficient conditions are obtained for global asymptotic stability and global exponential stability using Lyapunov and LMI method. Finally, two examples are given to illustrate the effectiveness of our method

  16. Global Stability of Complex-Valued Genetic Regulatory Networks with Delays on Time Scales

    Directory of Open Access Journals (Sweden)

    Wang Yajing

    2016-01-01

    Full Text Available In this paper, the global exponential stability of complex-valued genetic regulatory networks with delays is investigated. Besides presenting conditions guaranteeing the existence of a unique equilibrium pattern, its global exponential stability is discussed. Some numerical examples for different time scales.

  17. Dynamical Behaviors of Stochastic Reaction-Diffusion Cohen-Grossberg Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Li Wan

    2012-01-01

    Full Text Available This paper investigates dynamical behaviors of stochastic Cohen-Grossberg neural network with delays and reaction diffusion. By employing Lyapunov method, Poincaré inequality and matrix technique, some sufficient criteria on ultimate boundedness, weak attractor, and asymptotic stability are obtained. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.

  18. Global asymptotic stability of Cohen-Grossberg neural network with continuously distributed delays

    International Nuclear Information System (INIS)

    Wan Li; Sun Jianhua

    2005-01-01

    The convergence dynamical behaviors of Cohen-Grossberg neural network with continuously distributed delays are discussed. By using Brouwer's fixed point theorem, matrix theory and analysis techniques such as Gronwall inequality, some new sufficient conditions guaranteeing the existence, uniqueness of an equilibrium point and its global asymptotic stability are obtained. An example is given to illustrate the theoretical results

  19. Global exponential stability of cellular neural networks with mixed delays and impulses

    International Nuclear Information System (INIS)

    Xiong Wanmin; Zhou Qiyuan; Xiao Bing; Yu Yuehua

    2007-01-01

    In this paper cellular neural networks with mixed delays and impulses are considered. Sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and differential inequality technique. The results of this paper are new and they complement previously known results

  20. Global exponential stability of cellular neural networks with continuously distributed delays and impulses

    International Nuclear Information System (INIS)

    Wang Yixuan; Xiong Wanmin; Zhou Qiyuan; Xiao Bing; Yu Yuehua

    2006-01-01

    In this Letter cellular neural networks with continuously distributed delays and impulses are considered. Sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and differential inequality techniques. The results of this Letter are new and they complement previously known results

  1. Limitations in the design of ancillary service markets imposed by communication network delays

    NARCIS (Netherlands)

    Hermans, R.M.; Jokic, A.; Bosch, van den P.P.J.; Frunt, J.; Kamphuis, I.G.; Warmer, C.J.

    2010-01-01

    Real-time balancing of the European electricity grid will become increasingly dependent on market-based control mechanisms that are enabled by connecting millions of prosumers to an open communication network. The use of communication systems inevitably introduces delays in the energy balancing

  2. Aperiodic linear networked control considering variable channel delays: application to robots coordination.

    Science.gov (United States)

    Santos, Carlos; Espinosa, Felipe; Santiso, Enrique; Mazo, Manuel

    2015-05-27

    One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  3. Aperiodic Linear Networked Control Considering Variable Channel Delays: Application to Robots Coordination

    Directory of Open Access Journals (Sweden)

    Carlos Santos

    2015-05-01

    Full Text Available One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  4. Stability and bifurcation in a simplified four-neuron BAM neural network with multiple delays

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We first study the distribution of the zeros of a fourth-degree exponential polynomial. Then we apply the obtained results to a simplified bidirectional associated memory (BAM neural network with four neurons and multiple time delays. By taking the sum of the delays as the bifurcation parameter, it is shown that under certain assumptions the steady state is absolutely stable. Under another set of conditions, there are some critical values of the delay, when the delay crosses these critical values, the Hopf bifurcation occurs. Furthermore, some explicit formulae determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form theory and center manifold reduction. Numerical simulations supporting the theoretical analysis are also included.

  5. Two time-delay dynamic model on the transmission of malicious signals in wireless sensor network

    International Nuclear Information System (INIS)

    Keshri, Neha; Mishra, Bimal Kumar

    2014-01-01

    Highlights: • Role of time delay to reduce the adversary effect in WSN is explored. • Model with two time delays is proposed to analyse spread of malicious signal in WSN. • Dynamical behaviour of worm-free equilibrium and endemic equilibrium is shown. • Threshold condition for switch of stability are obtained analytically. • Relation between stability and the two time delays is also explored. - Abstract: Deployed in a hostile environment, motes of a Wireless sensor network (WSN) could be easily compromised by the attackers because of several constraints such as limited processing capabilities, memory space, and limited battery life time etc. While transmitting the data to their neighbour motes within the network, motes are easily compromised due to resource constraints. Here time delay can play an efficient role to reduce the adversary effect on motes. In this paper, we propose an epidemic model SEIR (Susceptible–Exposed–Infectious–Recovered) with two time delays to describe the transmission dynamics of malicious signals in wireless sensor network. The first delay accounts for an exposed (latent) period while the second delay is for the temporary immunity period due to multiple worm outbreaks. The dynamical behaviour of worm-free equilibrium and endemic equilibrium is shown from the point of stability which switches under some threshold condition specified by the basic reproduction number. Our results show that the global properties of equilibria also depends on the threshold condition and that latent and temporary immunity period in a mote does not affect the stability, but they play a positive role to control malicious attack. Moreover, numerical simulations are given to support the theoretical analysis

  6. Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty

    International Nuclear Information System (INIS)

    Huang He; Qu Yuzhong; Li Hanxiong

    2005-01-01

    With the development of intelligent control, switched systems have been widely studied. Here we try to introduce some ideas of the switched systems into the field of neural networks. In this Letter, a class of switched Hopfield neural networks with time-varying delay is investigated. The parametric uncertainty is considered and assumed to be norm bounded. Firstly, the mathematical model of the switched Hopfield neural networks is established in which a set of Hopfield neural networks are used as the individual subsystems and an arbitrary switching rule is assumed; Secondly, robust stability analysis for such switched Hopfield neural networks is addressed based on the Lyapunov-Krasovskii approach. Some criteria are given to guarantee the switched Hopfield neural networks to be globally exponentially stable for all admissible parametric uncertainties. These conditions are expressed in terms of some strict linear matrix inequalities (LMIs). Finally, a numerical example is provided to illustrate our results

  7. Irradiated mice lose the capacity to 'process' fed antigen for systemic tolerance of delayed-type hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, M G; Strobel, S; Hanson, D G; Ferguson, A

    1987-12-01

    'Intestinal antigen processing' is a function of the gastro-intestinal tract whereby shortly after an animal has been fed an immunogenic protein antigen, such as ovabumin (OVA), a tolerogenic form of the protein is generated and can be detected in the circulation. The effect of damage to the intestinal epithelium on the processing of OVA has been examined in lethally irradiated mice. Irradiated animals were fed 25 mg OVA and their serum collected 1 h later. When this serum was transferred intraperitoneally into naive recipient mice, this did not induce the typical suppression of systemic delayed-type hypersensitivity. Results were similar when the serum donors were at 2 days after irradiation, with crypt hypoplasia, and at 5 days after irradiation when there was reactive crypt hyperplasia. However reconstitution of donors with normal spleen cells immediately after irradiation restored their capacity to generate a tolerogenic form of the antigen. Immunoreactive OVA was detected by ELISA in both tolerizing and non-tolerizing sera, and the immunological properties of these sera were not related to serum levels of OVA after feeding. The results suggest that lymphoid cells may be involved in the phenomenon of antigen processing.

  8. Generalized Projective Synchronization between Two Different Neural Networks with Mixed Time Delays

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2012-01-01

    Full Text Available The generalized projective synchronization (GPS between two different neural networks with nonlinear coupling and mixed time delays is considered. Several kinds of nonlinear feedback controllers are designed to achieve GPS between two different such neural networks. Some results for GPS of these neural networks are proved theoretically by using the Lyapunov stability theory and the LaSalle invariance principle. Moreover, by comparison, we determine an optimal nonlinear controller from several ones and provide an adaptive update law for it. Computer simulations are provided to show the effectiveness and feasibility of the proposed methods.

  9. Global exponential synchronization of inertial memristive neural networks with time-varying delay via nonlinear controller.

    Science.gov (United States)

    Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen

    2018-06-01

    The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Cluster synchronization of community network with distributed time delays via impulsive control

    International Nuclear Information System (INIS)

    Leng Hui; Wu Zhao-Yan

    2016-01-01

    Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results. (paper)

  11. Exponential p-stability of delayed Cohen-Grossberg-type BAM neural networks with impulses

    International Nuclear Information System (INIS)

    Xia Yonghui; Huang Zhenkun; Han Maoan

    2008-01-01

    An impulsive Cohen-Grossberg-type bidirectional associative memory (BAM) neural networks with distributed delays is studied. Some new sufficient conditions are established for the existence and global exponential stability of a unique equilibrium without strict conditions imposed on self regulation functions. The approaches are based on Laypunov-Kravsovskii functional and homeomorphism theory. When our results are applied to the BAM neural networks, our results generalize some previously known results. It is believed that these results are significant and useful for the design and applications of Cohen-Grossberg-type bidirectional associative memory networks

  12. Periodic oscillation of higher-order bidirectional associative memory neural networks with periodic coefficients and delays

    Science.gov (United States)

    Ren, Fengli; Cao, Jinde

    2007-03-01

    In this paper, several sufficient conditions are obtained ensuring existence, global attractivity and global asymptotic stability of the periodic solution for the higher-order bidirectional associative memory neural networks with periodic coefficients and delays by using the continuation theorem of Mawhin's coincidence degree theory, the Lyapunov functional and the non-singular M-matrix. Two examples are exploited to illustrate the effectiveness of the proposed criteria. These results are more effective than the ones in the literature for some neural networks, and can be applied to the design of globally attractive or globally asymptotically stable networks and thus have important significance in both theory and applications.

  13. Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2004-01-01

    First, convergence of continuous-time Bidirectional Associative Memory (BAM) neural networks are studied. By using Lyapunov functionals and some analysis technique, the delay-independent sufficient conditions are obtained for the networks to converge exponentially toward the equilibrium associated with the constant input sources. Second, discrete-time analogues of the continuous-time BAM networks are formulated and studied. It is shown that the convergence characteristics of the continuous-time systems are preserved by the discrete-time analogues without any restriction imposed on the uniform discretionary step size. An illustrative example is given to demonstrate the effectiveness of the obtained results

  14. Delay reduction in multi-hop device-to-device communication using network coding

    KAUST Repository

    Douik, Ahmed S.

    2015-08-12

    This paper considers the problem of reducing the broadcast delay of wireless networks using instantly decodable network coding (IDNC) based device-to-device (D2D) communications. In D2D-enabled networks, devices help hasten the recovery of the lost packets of devices in their transmission range by sending network coded packets. To solve the problem, the different events occurring at each device are identified so as to derive an expression for the probability distribution of the decoding delay. The joint optimization problem over the set of transmitting devices and the packet combinations of each is formulated. Due to the high complexity of finding the optimal solution, this paper focuses on cooperation without interference between the transmitting users. The optimal solution, in such interference-less scenario, is expressed using a graph theory approach by introducing the cooperation graph. Extensive simulations compare the decoding delay experienced in the Point to Multi-Point (PMP), the fully connected D2D (FC-D2D) and the more practical partially connected D2D (PC-D2D) configurations and suggest that the PC-D2D outperforms the FC-D2D in all situations and provides an enormous gain for poorly connected networks.

  15. Lyapunov Functions to Caputo Fractional Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Ravi Agarwal

    2018-05-01

    Full Text Available One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable. In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.

  16. Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2013-09-01

    The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.

  17. Periodic oscillatory solution in delayed competitive-cooperative neural networks: A decomposition approach

    International Nuclear Information System (INIS)

    Yuan Kun; Cao Jinde

    2006-01-01

    In this paper, the problems of exponential convergence and the exponential stability of the periodic solution for a general class of non-autonomous competitive-cooperative neural networks are analyzed via the decomposition approach. The idea is to divide the connection weights into inhibitory or excitatory types and thereby to embed a competitive-cooperative delayed neural network into an augmented cooperative delay system through a symmetric transformation. Some simple necessary and sufficient conditions are derived to ensure the componentwise exponential convergence and the exponential stability of the periodic solution of the considered neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice

  18. Robustness analysis of uncertain dynamical neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel

    2015-10-01

    This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments

    Science.gov (United States)

    Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus

    2013-01-01

    Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.

  20. Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells.

    Science.gov (United States)

    Voelker, Aaron R; Eliasmith, Chris

    2018-03-01

    Researchers building spiking neural networks face the challenge of improving the biological plausibility of their model networks while maintaining the ability to quantitatively characterize network behavior. In this work, we extend the theory behind the neural engineering framework (NEF), a method of building spiking dynamical networks, to permit the use of a broad class of synapse models while maintaining prescribed dynamics up to a given order. This theory improves our understanding of how low-level synaptic properties alter the accuracy of high-level computations in spiking dynamical networks. For completeness, we provide characterizations for both continuous-time (i.e., analog) and discrete-time (i.e., digital) simulations. We demonstrate the utility of these extensions by mapping an optimal delay line onto various spiking dynamical networks using higher-order models of the synapse. We show that these networks nonlinearly encode rolling windows of input history, using a scale invariant representation, with accuracy depending on the frequency content of the input signal. Finally, we reveal that these methods provide a novel explanation of time cell responses during a delay task, which have been observed throughout hippocampus, striatum, and cortex.

  1. Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons

    Science.gov (United States)

    Huang, Chengdai; Cao, Jinde; Xiao, Min; Alsaedi, Ahmed; Hayat, Tasawar

    2018-04-01

    This paper is comprehensively concerned with the dynamics of a class of high-dimension fractional ring-structured neural networks with multiple time delays. Based on the associated characteristic equation, the sum of time delays is regarded as the bifurcation parameter, and some explicit conditions for describing delay-dependent stability and emergence of Hopf bifurcation of such networks are derived. It reveals that the stability and bifurcation heavily relies on the sum of time delays for the proposed networks, and the stability performance of such networks can be markedly improved by selecting carefully the sum of time delays. Moreover, it is further displayed that both the order and the number of neurons can extremely influence the stability and bifurcation of such networks. The obtained criteria enormously generalize and improve the existing work. Finally, numerical examples are presented to verify the efficiency of the theoretical results.

  2. A New Delay Connection for Long Short-Term Memory Networks.

    Science.gov (United States)

    Wang, Jianyong; Zhang, Lei; Chen, Yuanyuan; Yi, Zhang

    2017-12-17

    Connections play a crucial role in neural network (NN) learning because they determine how information flows in NNs. Suitable connection mechanisms may extensively enlarge the learning capability and reduce the negative effect of gradient problems. In this paper, a new delay connection is proposed for Long Short-Term Memory (LSTM) unit to develop a more sophisticated recurrent unit, called Delay Connected LSTM (DCLSTM). The proposed delay connection brings two main merits to DCLSTM with introducing no extra parameters. First, it allows the output of the DCLSTM unit to maintain LSTM, which is absent in the LSTM unit. Second, the proposed delay connection helps to bridge the error signals to previous time steps and allows it to be back-propagated across several layers without vanishing too quickly. To evaluate the performance of the proposed delay connections, the DCLSTM model with and without peephole connections was compared with four state-of-the-art recurrent model on two sequence classification tasks. DCLSTM model outperformed the other models with higher accuracy and F1[Formula: see text]score. Furthermore, the networks with multiple stacked DCLSTM layers and the standard LSTM layer were evaluated on Penn Treebank (PTB) language modeling. The DCLSTM model achieved lower perplexity (PPL)/bit-per-character (BPC) than the standard LSTM model. The experiments demonstrate that the learning of the DCLSTM models is more stable and efficient.

  3. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    International Nuclear Information System (INIS)

    Liu Yurong; Wang Zidong; Liu Xiaohui

    2008-01-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions

  4. Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks

    International Nuclear Information System (INIS)

    Yilmaz, Ergin

    2014-01-01

    Highlights: • We investigate the NDD phenomenon in a hybrid scale-free network. • Electrical synapses are more impressive on the emergence of NDD. • Electrical synapses are more efficient in suppressing of the NDD. • Average degree has two opposite effects on the appearance time of the first spike. - Abstract: We study the phenomenon of noise-delayed decay in a scale-free neural network consisting of excitable FitzHugh–Nagumo neurons. In contrast to earlier works, where only electrical synapses are considered among neurons, we primarily examine the effects of hybrid synapses on the noise-delayed decay in this study. We show that the electrical synaptic coupling is more impressive than the chemical coupling in determining the appearance time of the first-spike and more efficient on the mitigation of the delay time in the detection of a suprathreshold input signal. We obtain that hybrid networks including inhibitory chemical synapses have higher signal detection capabilities than those of including excitatory ones. We also find that average degree exhibits two different effects, which are strengthening and weakening the noise-delayed decay effect depending on the noise intensity

  5. End-to-End Delay Model for Train Messaging over Public Land Mobile Networks

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-11-01

    Full Text Available Modern train control systems rely on a dedicated radio network for train to ground communications. A number of possible alternatives have been analysed to adopt the European Rail Traffic Management System/European Train Control System (ERTMS/ETCS control system on local/regional lines to improve transport capacity. Among them, a communication system based on public networks (cellular&satellite provides an interesting, effective and alternative solution to proprietary and expensive radio networks. To analyse performance of this solution, it is necessary to model the end-to-end delay and message loss to fully characterize the message transfer process from train to ground and vice versa. Starting from the results of a railway test campaign over a 300 km railway line for a cumulative 12,000 traveled km in 21 days, in this paper, we derive a statistical model for the end-to-end delay required for delivering messages. In particular, we propose a two states model allowing for reproducing the main behavioral characteristics of the end-to-end delay as observed experimentally. Model formulation has been derived after deep analysis of the recorded experimental data. When it is applied to model a realistic scenario, it allows for explicitly accounting for radio coverage characteristics, the received power level, the handover points along the line and for the serving radio technology. As an example, the proposed model is used to generate the end-to-end delay profile in a realistic scenario.

  6. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    Science.gov (United States)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  7. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    Science.gov (United States)

    Wu, Wei; Cui, Bao-Tong

    2007-07-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  8. Exponentially asymptotical synchronization in uncertain complex dynamical networks with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Luo Qun; Yang Han; Li Lixiang; Yang Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Han Jiangxue, E-mail: luoqun@bupt.edu.c [National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2010-12-10

    Over the past decade, complex dynamical network synchronization has attracted more and more attention and important developments have been made. In this paper, we explore the scheme of globally exponentially asymptotical synchronization in complex dynamical networks with time delay. Based on Lyapunov stability theory and through defining the error function between adjacent nodes, four novel adaptive controllers are designed under four situations where the Lipschitz constants of the state function in nodes are known or unknown and the network structure is certain or uncertain, respectively. These controllers could not only globally asymptotically synchronize all nodes in networks, but also ensure that the error functions do not exceed the pre-scheduled exponential function. Finally, simulations of the synchronization among the chaotic system in the small-world and scale-free network structures are presented, which prove the effectiveness and feasibility of our controllers.

  9. New results on global exponential stability of recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Xu Shengyuan; Chu Yuming; Lu Junwei

    2006-01-01

    This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples

  10. New results on global exponential stability of recurrent neural networks with time-varying delays

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shengyuan [Department of Automation, Nanjing University of Science and Technology, Nanjing 210094 (China)]. E-mail: syxu02@yahoo.com.cn; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou, Zhejiang 313000 (China); Lu Junwei [School of Electrical and Automation Engineering, Nanjing Normal University, 78 Bancang Street, Nanjing, 210042 (China)

    2006-04-03

    This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples.

  11. A feedback control model for network flow with multiple pure time delays

    Science.gov (United States)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  12. On control of Hopf bifurcation in time-delayed neural network system

    International Nuclear Information System (INIS)

    Zhou Shangbo; Liao Xiaofeng; Yu Juebang; Wong Kwokwo

    2005-01-01

    The control of Hopf bifurcations in neural network systems is studied in this Letter. The asymptotic stability theorem and the relevant corollary for linearized nonlinear dynamical systems are proven. In particular, a novel method for analyzing the local stability of a dynamical system with time-delay is suggested. For the time-delayed system consisting of one or two neurons, a washout filter based control model is proposed and analyzed. By employing the stability theorems derived, we investigate the stability of a control system and state the relevant theorems for choosing the parameters of the stabilized control system

  13. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  14. H∞ state estimation of generalised neural networks with interval time-varying delays

    Science.gov (United States)

    Saravanakumar, R.; Syed Ali, M.; Cao, Jinde; Huang, He

    2016-12-01

    This paper focuses on studying the H∞ state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov-Krasovskii functional are handled by the Jensen's inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H∞ performance. The proposed conditions are represented by linear matrix inequalities. Optimal H∞ norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.

  15. Completion time reduction in instantly decodable network coding through decoding delay control

    KAUST Repository

    Douik, Ahmed S.

    2014-12-01

    For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effect of controlling the decoding delay to reduce the completion time below its currently best known solution. We first derive the decoding-delay-dependent expressions of the users\\' and their overall completion times. Although using such expressions to find the optimal overall completion time is NP-hard, we use a heuristic that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Simulation results show that this new algorithm achieves both a lower mean completion time and mean decoding delay compared to the best known heuristic for completion time reduction. The gap in performance becomes significant for harsh erasure scenarios.

  16. Completion time reduction in instantly decodable network coding through decoding delay control

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.

    2014-01-01

    For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effect of controlling the decoding delay to reduce the completion time below its currently best known solution. We first derive the decoding-delay-dependent expressions of the users' and their overall completion times. Although using such expressions to find the optimal overall completion time is NP-hard, we use a heuristic that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Simulation results show that this new algorithm achieves both a lower mean completion time and mean decoding delay compared to the best known heuristic for completion time reduction. The gap in performance becomes significant for harsh erasure scenarios.

  17. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  18. An Efficient Network Coding-Based Fault-Tolerant Mechanism in WBAN for Smart Healthcare Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Yuhuai Peng

    2017-08-01

    Full Text Available As a key technology in smart healthcare monitoring systems, wireless body area networks (WBANs can pre-embed sensors and sinks on body surface or inside bodies for collecting different vital signs parameters, such as human Electrocardiograph (ECG, Electroencephalograph (EEG, Electromyogram (EMG, body temperature, blood pressure, blood sugar, blood oxygen, etc. Using real-time online healthcare, patients can be tracked and monitored in normal or emergency conditions at their homes, hospital rooms, and in Intensive Care Units (ICUs. In particular, the reliability and effectiveness of the packets transmission will be directly related to the timely rescue of critically ill patients with life-threatening injuries. However, traditional fault-tolerant schemes either have the deficiency of underutilised resources or react too slowly to failures. In future healthcare systems, the medical Internet of Things (IoT for real-time monitoring can integrate sensor networks, cloud computing, and big data techniques to address these problems. It can collect and send patient’s vital parameter signal and safety monitoring information to intelligent terminals and enhance transmission reliability and efficiency. Therefore, this paper presents a design in healthcare monitoring systems for a proactive reliable data transmission mechanism with resilience requirements in a many-to-one stream model. This Network Coding-based Fault-tolerant Mechanism (NCFM first proposes a greedy grouping algorithm to divide the topology into small logical units; it then constructs a spanning tree based on random linear network coding to generate linearly independent coding combinations. Numerical results indicate that this transmission scheme works better than traditional methods in reducing the probability of packet loss, the resource redundant rate, and average delay, and can increase the effective throughput rate.

  19. Robust Stability Analysis of Neutral-Type Hybrid Bidirectional Associative Memory Neural Networks with Time-Varying Delays

    OpenAIRE

    Wei Feng; Simon X. Yang; Haixia Wu

    2014-01-01

    The global asymptotic robust stability of equilibrium is considered for neutral-type hybrid bidirectional associative memory neural networks with time-varying delays and parameters uncertainties. The results we obtained in this paper are delay-derivative-dependent and establish various relationships between the network parameters only. Therefore, the results of this paper are applicable to a larger class of neural networks and can be easily verified when compared with the previously reported ...

  20. Effects of the network structure and coupling strength on the noise-induced response delay of a neuronal network

    International Nuclear Information System (INIS)

    Ozer, Mahmut; Uzuntarla, Muhammet

    2008-01-01

    The Hodgkin-Huxley (H-H) neuron model driven by stimuli just above threshold shows a noise-induced response delay with respect to time to the first spike for a certain range of noise strengths, an effect called 'noise delayed decay' (NDD). We study the response time of a network of coupled H-H neurons, and investigate how the NDD can be affected by the connection topology of the network and the coupling strength. We show that the NDD effect exists for weak and intermediate coupling strengths, whereas it disappears for strong coupling strength regardless of the connection topology. We also show that although the network structure has very little effect on the NDD for a weak coupling strength, the network structure plays a key role for an intermediate coupling strength by decreasing the NDD effect with the increasing number of random shortcuts, and thus provides an additional operating regime, that is absent in the regular network, in which the neurons may also exploit a spike time code

  1. A Jackson network model and threshold policy for joint optimization of energy and delay in multi-hop wireless networks

    KAUST Repository

    Xia, Li

    2014-11-20

    This paper studies the joint optimization problem of energy and delay in a multi-hop wireless network. The optimization variables are the transmission rates, which are adjustable according to the packet queueing length in the buffer. The optimization goal is to minimize the energy consumption of energy-critical nodes and the packet transmission delay throughout the network. In this paper, we aim at understanding the well-known decentralized algorithms which are threshold based from a different research angle. By using a simplified network model, we show that we can adopt the semi-open Jackson network model and study this optimization problem in closed form. This simplified network model further allows us to establish some significant optimality properties. We prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate. We also prove that the threshold-type policy is optimal, i.e., when the number of packets in the buffer is larger than a threshold, transmit with the maximal rate (power); otherwise, no transmission. With these optimality properties, we develop a heuristic algorithm to iteratively find the optimal threshold. Finally, we conduct some simulation experiments to demonstrate the main idea of this paper.

  2. A Jackson network model and threshold policy for joint optimization of energy and delay in multi-hop wireless networks

    KAUST Repository

    Xia, Li; Shihada, Basem

    2014-01-01

    This paper studies the joint optimization problem of energy and delay in a multi-hop wireless network. The optimization variables are the transmission rates, which are adjustable according to the packet queueing length in the buffer. The optimization goal is to minimize the energy consumption of energy-critical nodes and the packet transmission delay throughout the network. In this paper, we aim at understanding the well-known decentralized algorithms which are threshold based from a different research angle. By using a simplified network model, we show that we can adopt the semi-open Jackson network model and study this optimization problem in closed form. This simplified network model further allows us to establish some significant optimality properties. We prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate. We also prove that the threshold-type policy is optimal, i.e., when the number of packets in the buffer is larger than a threshold, transmit with the maximal rate (power); otherwise, no transmission. With these optimality properties, we develop a heuristic algorithm to iteratively find the optimal threshold. Finally, we conduct some simulation experiments to demonstrate the main idea of this paper.

  3. H∞ Filtering for Networked Markovian Jump Systems with Multiple Stochastic Communication Delays

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2015-01-01

    Full Text Available This paper is concerned with the H∞ filtering for a class of networked Markovian jump systems with multiple communication delays. Due to the existence of communication constraints, the measurement signal cannot arrive at the filter completely on time, and the stochastic communication delays are considered in the filter design. Firstly, a set of stochastic variables is introduced to model the occurrence probabilities of the delays. Then based on the stochastic system approach, a sufficient condition is obtained such that the filtering error system is stable in the mean-square sense and with a prescribed H∞ disturbance attenuation level. The optimal filter gain parameters can be determined by solving a convex optimization problem. Finally, a simulation example is given to show the effectiveness of the proposed filter design method.

  4. Stabilization of Networked Control Systems with Variable Delays and Saturating Inputs

    Directory of Open Access Journals (Sweden)

    M. Mahmodi Kaleybar

    2014-06-01

    Full Text Available In this paper, improved conditions for the synthesis of static state-feedback controller are derived to stabilize networked control systems (NCSs subject to actuator saturation. Both of the data packet latency and dropout which deteriorate the performance of the closed-loop system are considered in the NCS model via variable delays. Two different techniques are employed to incorporate actuator saturation in the system description. Utilizing Lyapunov-Krasovskii Theorem, delay-dependent conditions are obtained in terms of linear matrix inequalities (LMIs to determine the static feedback gain. Moreover, an optimization problem is formulated in order to find the less conservative estimate for the region of attraction corresponding to different maximum allowable delays. Numerical examples are introduced to demonstrate the effectiveness and advantages of the proposed schemes.

  5. H∞ Control for a Networked Control Model of Systems with Two Additive Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Hanyong Shao

    2014-01-01

    Full Text Available This paper is concerned with H∞ control for a networked control model of systems with two additive time-varying delays. A new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays instead of the upper bounds of them. Then the convex polyhedron method is proposed to check the upper bound of the derivative of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is asymptotically stable with a prescribed H∞ disturbance attenuation level. Finally examples are given to show the advantages of the stability criteria and the effectiveness of the proposed control method.

  6. A robust control strategy for a class of distributed network with transmission delays

    DEFF Research Database (Denmark)

    Vahid Naghavi, S.; A. Safavi, A.; Khooban, Mohammad Hassan

    2016-01-01

    Purpose The purpose of this paper is to concern the design of a robust model predictive controller for distributed networked systems with transmission delays. Design/methodology/approach The overall system is composed of a number of interconnected nonlinear subsystems with time-varying transmission...... as an optimization problem of a “worst-case” objective function over an infinite moving horizon. Findings The aim is to propose control synthesis approach that depends on nonlinearity and time varying delay characteristics. The MPC problem is represented in a time varying delayed state feedback structure....... Then the synthesis sufficient condition is provided in the form of a linear matrix inequality (LMI) optimization and is solved online at each time instant. In the rest, an LMI-based decentralized observer-based robust model predictive control strategy is proposed. Originality/value The authors develop RMPC...

  7. Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis

    International Nuclear Information System (INIS)

    Liu, Yurong; Wang, Zidong; Serrano, Alan; Liu, Xiaohui

    2007-01-01

    This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov-Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition

  8. Cooperative Content Distribution over Wireless Networks for Energy and Delay Minimization

    KAUST Repository

    Atat, Rachad

    2012-06-01

    Content distribution with mobile-to-mobile cooperation is studied. Data is sent to mobile terminals on a long range link then the terminals exchange the content using an appropriate short range wireless technology. Unicasting and multicasting are investigated, both on the long range and short range links. Energy minimization is formulated as an optimization problem for each scenario, and the optimal solutions are determined in closed form. Moreover, the schemes are applied in public safety vehicular networks, where Long Term Evolution (LTE) network is used for the long range link, while IEEE 802.11 p is considered for inter-vehicle collaboration on the short range links. Finally, relay-based multicasting is applied in high speed trains for energy and delay minimization. Results show that cooperative schemes outperform non-cooperative ones and other previous related work in terms of energy and delay savings. Furthermore, practical implementation aspects of the proposed methods are also discussed.

  9. Synchronization stability of memristor-based complex-valued neural networks with time delays.

    Science.gov (United States)

    Liu, Dan; Zhu, Song; Ye, Er

    2017-12-01

    This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Robust Adaptive Exponential Synchronization of Stochastic Perturbed Chaotic Delayed Neural Networks with Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2014-01-01

    Full Text Available This paper investigates the robust adaptive exponential synchronization in mean square of stochastic perturbed chaotic delayed neural networks with nonidentical parametric uncertainties. A robust adaptive feedback controller is proposed based on Gronwally’s inequality, drive-response concept, and adaptive feedback control technique with the update laws of nonidentical parametric uncertainties as well as linear matrix inequality (LMI approach. The sufficient conditions for robust adaptive exponential synchronization in mean square of uncoupled uncertain stochastic chaotic delayed neural networks are derived in terms of linear matrix inequalities (LMIs. The effect of nonidentical uncertain parameter uncertainties is suppressed by the designed robust adaptive feedback controller rapidly. A numerical example is provided to validate the effectiveness of the proposed method.

  11. State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates

    International Nuclear Information System (INIS)

    Liang Jinling; Lam, James; Wang Zidong

    2009-01-01

    This Letter is concerned with the robust state estimation problem for uncertain time-delay Markovian jumping genetic regulatory networks (GRNs) with SUM logic, where the uncertainties enter into both the network parameters and the mode transition rate. The nonlinear functions describing the feedback regulation are assumed to satisfy the sector-like conditions. The main purpose of the problem addressed is to design a linear estimator to approximate the true concentrations of the mRNA and protein through available measurement outputs. By resorting to the Lyapunov functional method and some stochastic analysis tools, it is shown that if a set of linear matrix inequalities (LMIs) is feasible, the desired state estimator, that can ensure the estimation error dynamics to be globally robustly asymptotically stable in the mean square, exists. The obtained LMI conditions are dependent on both the lower and the upper bounds of the delays. An illustrative example is presented to demonstrate the feasibility of the proposed estimation schemes.

  12. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    Science.gov (United States)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.

    2013-09-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.

  13. Finite-Time Stability for Fractional-Order Bidirectional Associative Memory Neural Networks with Time Delays

    Science.gov (United States)

    Xu, Chang-Jin; Li, Pei-Luan; Pang, Yi-Cheng

    2017-02-01

    This paper is concerned with fractional-order bidirectional associative memory (BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag-Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. Supported by National Natural Science Foundation of China under Grant Nos.~61673008, 11261010, 11101126, Project of High-Level Innovative Talents of Guizhou Province ([2016]5651), Natural Science and Technology Foundation of Guizhou Province (J[2015]2025 and J[2015]2026), 125 Special Major Science and Technology of Department of Education of Guizhou Province ([2012]011) and Natural Science Foundation of the Education Department of Guizhou Province (KY[2015]482)

  14. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    International Nuclear Information System (INIS)

    Vadivel, P; Sakthivel, R; Mathiyalagan, K; Arunkumar, A

    2013-01-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov–Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results. (paper)

  15. A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach

    International Nuclear Information System (INIS)

    Cao Jinde; Ho, Daniel W.C.

    2005-01-01

    In this paper, global asymptotic stability is discussed for neural networks with time-varying delay. Several new criteria in matrix inequality form are given to ascertain the uniqueness and global asymptotic stability of equilibrium point for neural networks with time-varying delay based on Lyapunov method and Linear Matrix Inequality (LMI) technique. The proposed LMI approach has the advantage of considering the difference of neuronal excitatory and inhibitory efforts, which is also computationally efficient as it can be solved numerically using recently developed interior-point algorithm. In addition, the proposed results generalize and improve previous works. The obtained criteria also combine two existing conditions into one generalized condition in matrix form. An illustrative example is also given to demonstrate the effectiveness of the proposed results

  16. Novel global robust stability criteria for interval neural networks with multiple time-varying delays

    International Nuclear Information System (INIS)

    Xu Shengyuan; Lam, James; Ho, Daniel W.C.

    2005-01-01

    This Letter is concerned with the problem of robust stability analysis for interval neural networks with multiple time-varying delays and parameter uncertainties. The parameter uncertainties are assumed to be bounded in given compact sets and the activation functions are supposed to be bounded and globally Lipschitz continuous. A sufficient condition is obtained by means of Lyapunov functionals, which guarantees the existence, uniqueness and global asymptotic stability of the delayed neural network for all admissible uncertainties. This condition is in terms of a linear matrix inequality (LMI), which can be easily checked by using recently developed algorithms in solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method

  17. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.

    Science.gov (United States)

    Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing

    2015-04-01

    This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.

  18. Asymmetric Propagation Delay-Aware TDMA MAC Protocol for Mobile Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2018-06-01

    Full Text Available The propagation delay in mobile underwater acoustic sensor network (MUASN is asymmetric because of its low sound propagation speed, and this asymmetry grows with the increase in packet travel time, which damages the collision avoidance mechanism of the spatial reuse medium access control (MAC protocols for MUASN. We propose an asymmetric propagation delay-aware time division multiple access (APD-TDMA for a MUASN in which periodic data packet transmission is required for a sink node (SN. Collisions at the SN are avoided by deferring data packet transmission after reception of a beacon packet from the SN, and data packets are arrived at the SN in a packet-train manner. The time-offset, which is the time for a node to wait before the transmission of a data packet after reception of a beacon packet, is determined by estimating the propagation delay over two consecutive cycles such that the idle interval at the SN is minimized, and this time-offset is announced by the beacon packet. Simulation results demonstrate that the APD-TDMA improves the channel access delay and the channel utilization by approximately 20% and 30%, respectively, compared with those of the block time bounded TDMA under the given network conditions.

  19. Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    Full Text Available The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction and one for tolerance (inhibitor persistence. These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  20. Global asymptotic stability to a generalized Cohen-Grossberg BAM neural networks of neutral type delays.

    Science.gov (United States)

    Zhang, Zhengqiu; Liu, Wenbin; Zhou, Dongming

    2012-01-01

    In this paper, we first discuss the existence of a unique equilibrium point of a generalized Cohen-Grossberg BAM neural networks of neutral type delays by means of the Homeomorphism theory and inequality technique. Then, by applying the existence result of an equilibrium point and constructing a Lyapunov functional, we study the global asymptotic stability of the equilibrium solution to the above Cohen-Grossberg BAM neural networks of neutral type. In our results, the hypothesis for boundedness in the existing paper, which discussed Cohen-Grossberg neural networks of neutral type on the activation functions, are removed. Finally, we give an example to demonstrate the validity of our global asymptotic stability result for the above neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Stability Analysis and Application for Delayed Neural Networks Driven by Fractional Brownian Noise.

    Science.gov (United States)

    Zhou, Wuneng; Zhou, Xianghui; Yang, Jun; Zhou, Jun; Tong, Dongbing

    2018-05-01

    This paper deals with two types of the stability problem for the delayed neural networks driven by fractional Brownian noise (FBN). The existence and the uniqueness of the solution to the main system with respect to FBN are proved via fixed point theory. Based on Hilbert-Schmidt operator theory and analytic semigroup principle, the mild solution of the stochastic neural networks is obtained. By applying the stochastic analytic technique and some well-known inequalities, the asymptotic stability criteria and the exponential stability condition are established. Both numerical example and practical application for synchronization control of multiagent system are provided to illustrate the effectiveness and potential of the proposed techniques.

  2. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Linshan; Zhang Zhe; Wang Yangfan

    2008-01-01

    Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities

  3. Boundedness and stability for recurrent neural networks with variable coefficients and time-varying delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2003-01-01

    In this Letter, the problems of boundedness and stability for a general class of non-autonomous recurrent neural networks with variable coefficients and time-varying delays are analyzed via employing Young inequality technique and Lyapunov method. Some simple sufficient conditions are given for boundedness and stability of the solutions for the recurrent neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice. Two illustrative examples and their numerical simulations are also given to demonstrate the effectiveness of the proposed results

  4. Global Exponential Stability of Delayed Cohen-Grossberg BAM Neural Networks with Impulses on Time Scales

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2009-01-01

    Full Text Available Based on the theory of calculus on time scales, the homeomorphism theory, Lyapunov functional method, and some analysis techniques, sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of the equilibrium point of Cohen-Grossberg bidirectional associative memory (BAM neural networks with distributed delays and impulses on time scales. This is the first time applying the time-scale calculus theory to unify the discrete-time and continuous-time Cohen-Grossberg BAM neural network with impulses under the same framework.

  5. Global stability and existence of periodic solutions of discrete delayed cellular neural networks

    International Nuclear Information System (INIS)

    Li Yongkun

    2004-01-01

    We use the continuation theorem of coincidence degree theory and Lyapunov functions to study the existence and stability of periodic solutions for the discrete cellular neural networks (CNNs) with delays xi(n+1)=xi(n)e-bi(n)h+θi(h)-bar j=1maij(n)fj(xj(n))+θi(h)-bar j=1mbij(n)fj(xj(n- τij(n)))+θi(h)Ii(n),i=1,2,...,m. We obtain some sufficient conditions to ensure that for the networks there exists a unique periodic solution, and all its solutions converge to such a periodic solution

  6. Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2012-01-01

    Full Text Available A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.

  7. An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays

    International Nuclear Information System (INIS)

    Park, Ju H.

    2007-01-01

    This paper considers the robust stability analysis of cellular neural networks with discrete and distributed delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, a novel stability criterion guaranteeing the global robust convergence of the equilibrium point is derived. The criterion can be solved easily by various convex optimization algorithms. An example is given to illustrate the usefulness of our results

  8. Estimation of exponential convergence rate and exponential stability for neural networks with time-varying delay

    International Nuclear Information System (INIS)

    Tu Fenghua; Liao Xiaofeng

    2005-01-01

    We study the problem of estimating the exponential convergence rate and exponential stability for neural networks with time-varying delay. Some criteria for exponential stability are derived by using the linear matrix inequality (LMI) approach. They are less conservative than the existing ones. Some analytical methods are employed to investigate the bounds on the interconnection matrix and activation functions so that the systems are exponentially stable

  9. Robustness of unstable attractors in arbitrarily sized pulse-coupled networks with delay

    International Nuclear Information System (INIS)

    Broer, Henk; Efstathiou, Konstantinos; Subramanian, Easwar

    2008-01-01

    We consider arbitrarily large networks of pulse-coupled oscillators with non-zero delay where the coupling is given by the Mirollo–Strogatz function. We prove that such systems have unstable attractors (saddle periodic orbits whose stable set has non-empty interior) in an open parameter region for three or more oscillators. The evolution operator of the system can be discontinuous and we propose an improved model with continuous evolution operator

  10. Stability and Hopf Bifurcation in a Delayed SEIRS Worm Model in Computer Network

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2013-01-01

    Full Text Available A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.

  11. Some new results for recurrent neural networks with varying-time coefficients and delays

    International Nuclear Information System (INIS)

    Jiang Haijun; Teng Zhidong

    2005-01-01

    In this Letter, we consider the recurrent neural networks with varying-time coefficients and delays. By constructing new Lyapunov functional, introducing ingeniously many real parameters and applying the technique of Young inequality, we establish a series of criteria on the boundedness, global exponential stability and the existence of periodic solutions. In these criteria, we do not require that the response functions are differentiable, bounded and monotone nondecreasing. Some previous works are improved and extended

  12. Almost periodic cellular neural networks with neutral-type proportional delays

    Science.gov (United States)

    Xiao, Songlin

    2018-03-01

    This paper presents a new result on the existence, uniqueness and generalised exponential stability of almost periodic solutions for cellular neural networks with neutral-type proportional delays and D operator. Based on some novel differential inequality techniques, a testable condition is derived to ensure that all the state trajectories of the system converge to an almost periodic solution with a positive exponential convergence rate. The effectiveness of the obtained result is illustrated by a numerical example.

  13. Dynamics of a class of cellular neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Huang Lihong; Huang Chuangxia; Liu Bingwen

    2005-01-01

    Employing Brouwer's fixed point theorem, matrix theory, a continuation theorem of the coincidence degree and inequality analysis, the authors make a further investigation of a class of cellular neural networks with delays (DCNNs) in this Letter. A family of sufficient conditions are given for checking global exponential stability and the existence of periodic solutions of DCNNs. These results have important leading significance in the design and applications of globally stable DCNNs and periodic oscillatory DCNNs. Our results extend and improve some earlier publications

  14. Global exponential stability of fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Qianhong; Luo Wei

    2009-01-01

    In this paper, a class of fuzzy bidirectional associated memory (BAM) neural networks with time-varying delays are studied. Employing fixed point theorem, matrix theory and inequality analysis, some sufficient conditions are established for the existence, uniqueness and global exponential stability of equilibrium point. The sufficient conditions are easy to verify at pattern recognition and automatic control. Finally, an example is given to show feasibility and effectiveness of our results.

  15. Stochastic Wilson–Cowan models of neuronal network dynamics with memory and delay

    International Nuclear Information System (INIS)

    Goychuk, Igor; Goychuk, Andriy

    2015-01-01

    We consider a simple Markovian class of the stochastic Wilson–Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. (paper)

  16. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans.

    Science.gov (United States)

    Rebollo, Ignacio; Devauchelle, Anne-Dominique; Béranger, Benoît; Tallon-Baudry, Catherine

    2018-03-21

    Resting-state networks offer a unique window into the brain's functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. © 2018, Rebollo et al.

  17. A lossy graph model for delay reduction in generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2014-06-01

    The problem of minimizing the decoding delay in Generalized instantly decodable network coding (G-IDNC) for both perfect and lossy feedback scenarios is formulated as a maximum weight clique problem over the G-IDNC graph in. In this letter, we introduce a new lossy G-IDNC graph (LG-IDNC) model to further minimize the decoding delay in lossy feedback scenarios. Whereas the G-IDNC graph represents only doubtless combinable packets, the LG-IDNC graph represents also uncertain packet combinations, arising from lossy feedback events, when the expected decoding delay of XORing them among themselves or with other certain packets is lower than that expected when sending these packets separately. We compare the decoding delay performance of LG-IDNC and G-IDNC graphs through extensive simulations. Numerical results show that our new LG-IDNC graph formulation outperforms the G-IDNC graph formulation in all lossy feedback situations and achieves significant improvement in the decoding delay especially when the feedback erasure probability is higher than the packet erasure probability. © 2012 IEEE.

  18. Delay-dependent asymptotic stability of mobile ad-hoc networks: A descriptor system approach

    International Nuclear Information System (INIS)

    Yang Juan; Yang Dan; Zhang Xiao-Hong; Huang Bin; Luo Jian-Lu

    2014-01-01

    In order to analyze the capacity stability of the time-varying-propagation and delay-dependent of mobile ad-hoc networks (MANETs), in this paper, a novel approach is proposed to explore the capacity asymptotic stability for the delay-dependent of MANETs based on non-cooperative game theory, where the delay-dependent conditions are explicitly taken into consideration. This approach is based on the Lyapunov—Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique. A corresponding Lyapunov—Krasovskii functional is introduced for the stability analysis of this system with use of the descriptor and “neutral-type” model transformation without producing any additional dynamics. The delay-dependent stability criteria are derived for this system. Conditions are given in terms of linear matrix inequalities, and for the first time referred to neutral systems with the time-varying propagation and delay-dependent stability for capacity analysis of MANETs. The proposed criteria are less conservative since they are based on an equivalent model transformation. Furthermore, we also provide an effective and efficient iterative algorithm to solve the constrained stability control model. Simulation experiments have verified the effectiveness and efficiency of our algorithm. (general)

  19. Global Robust Stability of Switched Interval Neural Networks with Discrete and Distributed Time-Varying Delays of Neural Type

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2012-01-01

    Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  20. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses.

    Science.gov (United States)

    Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong

    2017-11-01

    In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Clustering and fault tolerance for target tracking using wireless sensor networks

    International Nuclear Information System (INIS)

    Bhatti, S.; Khanzada, S.; Memon, S.

    2012-01-01

    Over the last few years, the deployment of WSNs (Wireless Sensor Networks) has been fostered in diverse applications. WSN has great potential for a variety of domains ranging from scientific experiments to commercial applications. Due to the deployment of WSNs in dynamic and unpredictable environments. They have potential to cope with variety of faults. This paper proposes an energy-aware fault-tolerant clustering protocol for target tracking applications termed as the FITf (Fault Tolerant Target Tracking) protocol The identification of RNs (Redundant Nodes) makes SN (Sensor Node) fault tolerance plausible and the clustering endorsed recovery of sensors supervised by a faulty CH (Cluster Head). The FfTT protocol intends two steps of reducing energy consumption: first, by identifying RNs in the network; secondly, by restricting the numbers of SNs sending data to the CH. Simulations validate the scalability and low power consumption of the FITf protocol in comparison with LEACH protocol. (author)

  2. Design of Fault Tolerant Network Interfaces for NoCs

    DEFF Research Database (Denmark)

    Fiorin, Leandro; Micconi, Laura; Sami, Mariagiovanna

    2011-01-01

    Networks-on-Chip (NoCs) appeared as a strategy to deal with the communication requirements of complex IP-based System-on-Chips. As the complexity of designs increases and the technology scales down into the deep-submicron domain, the probability of malfunctions and failures in the NoC components...... increases. This paper focuses on the study and evaluation of techniques for increasing reliability and resilience of Network Interfaces (NIs). NIs act as interfaces between IP cores and the communication infrastructure; a faulty behavior in them could affect therefore the overall system. In this work, we...... of the NI, while saving up to 83% in area with respect to a standard Triple Modular Redundancy implementation, as well as a significant energy reduction....

  3. Finite Time Fault Tolerant Control for Robot Manipulators Using Time Delay Estimation and Continuous Nonsingular Fast Terminal Sliding Mode Control.

    Science.gov (United States)

    Van, Mien; Ge, Shuzhi Sam; Ren, Hongliang

    2016-04-28

    In this paper, a novel finite time fault tolerant control (FTC) is proposed for uncertain robot manipulators with actuator faults. First, a finite time passive FTC (PFTC) based on a robust nonsingular fast terminal sliding mode control (NFTSMC) is investigated. Be analyzed for addressing the disadvantages of the PFTC, an AFTC are then investigated by combining NFTSMC with a simple fault diagnosis scheme. In this scheme, an online fault estimation algorithm based on time delay estimation (TDE) is proposed to approximate actuator faults. The estimated fault information is used to detect, isolate, and accommodate the effect of the faults in the system. Then, a robust AFTC law is established by combining the obtained fault information and a robust NFTSMC. Finally, a high-order sliding mode (HOSM) control based on super-twisting algorithm is employed to eliminate the chattering. In comparison to the PFTC and other state-of-the-art approaches, the proposed AFTC scheme possess several advantages such as high precision, strong robustness, no singularity, less chattering, and fast finite-time convergence due to the combined NFTSMC and HOSM control, and requires no prior knowledge of the fault due to TDE-based fault estimation. Finally, simulation results are obtained to verify the effectiveness of the proposed strategy.

  4. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity

    International Nuclear Information System (INIS)

    Han Fang; Wang Zhi-Jie; Gong Tao; Fan Hong

    2015-01-01

    It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptic delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in E/I neuronal networks. (paper)

  5. Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution

    International Nuclear Information System (INIS)

    Bistouni, Fathollah; Jahanshahi, Mohsen

    2015-01-01

    Fault-tolerant multistage interconnection networks (MINs) play a vital role in the performance of multiprocessor systems where reliability evaluation becomes one of the main concerns in analyzing these networks properly. In many cases, the primary objective in system reliability analysis is to compute a failure distribution of the entire system according to that of its components. However, since the problem is known to be NP-hard, in none of the previous efforts, the precise evaluation of the system failure rate has been performed. Therefore, our goal is to investigate this parameter for different fault-tolerant MINs using Weibull life distribution that is one of the most commonly used distributions in reliability. In this paper, four important groups of fault-tolerant MINs will be examined to find the best fault-tolerance techniques in terms of failure rate; (1) Extra-stage MINs, (2) Parallel MINs, (3) Rearrangeable non-blocking MINs, and (4) Replicated MINs. This paper comprehensively analyzes all perspectives of the reliability (terminal, broadcast, and network reliability). Moreover, in this study, all reliability equations are calculated for different network sizes. - Highlights: • The failure rate of different MINs is analyzed by using Weibull life distribution. • This article tries to find the best fault-tolerance technique in the field of MINs. • Complex series-parallel RBDs are used to determine the reliability of the MINs. • All aspects of the reliability (i.e. terminal, broadcast, and network) are analyzed. • All reliability equations will be calculated for different size N×N.

  6. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  7. Periodic synchronization control of discontinuous delayed networks by using extended Filippov-framework.

    Science.gov (United States)

    Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting

    2015-08-01

    This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Predicting geomagnetic storms from solar-wind data using time-delay neural networks

    Directory of Open Access Journals (Sweden)

    H. Gleisner

    1996-07-01

    Full Text Available We have used time-delay feed-forward neural networks to compute the geomagnetic-activity index Dst one hour ahead from a temporal sequence of solar-wind data. The input data include solar-wind density n, velocity V and the southward component Bz of the interplanetary magnetic field. Dst is not included in the input data. The networks implement an explicit functional relationship between the solar wind and the geomagnetic disturbance, including both direct and time-delayed non-linear relations. In this study we especially consider the influence of varying the temporal size of the input-data sequence. The networks are trained on data covering 6600 h, and tested on data covering 2100 h. It is found that the initial and main phases of geomagnetic storms are well predicted, almost independent of the length of the input-data sequence. However, to predict the recovery phase, we have to use up to 20 h of solar-wind input data. The recovery phase is mainly governed by the ring-current loss processes, and is very much dependent on the ring-current history, and thus also the solar-wind history. With due consideration of the time history when optimizing the networks, we can reproduce 84% of the Dst variance.

  9. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Teich

    2006-06-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  10. The Role of Delay and Connectivity in Throughput Reduction of Cooperative Decentralized Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ahmed Alkhayyat

    2015-01-01

    Full Text Available We proposed a multiple relay selection protocol for decentralized wireless networks. The proposed relays selection protocol aims to address three issues: (1 selecting relays within the coverage area of the source and destination to ensure that the relays are positioned one hop away from the destination, (2 ensuring that the best node (best relays with less distance and attenuation from the destination access the channel first, and (3 ensuring that the proposed relays selection is collision-free. Our analysis also considers three important characteristics of decentralized wireless networks that are directly affected by cooperation: delay, connectivity, and throughput. The main goal of this paper is to demonstrate that improving connectivity and increasing number of relays reduce the throughput of cooperative decentralized wireless networks; consequently, a trade-off equation has been derived.

  11. An Incremental Time-delay Neural Network for Dynamical Recurrent Associative Memory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An incremental time-delay neural network based on synapse growth, which is suitable for dynamic control and learning of autonomous robots, is proposed to improve the learning and retrieving performance of dynamical recurrent associative memory architecture. The model allows steady and continuous establishment of associative memory for spatio-temporal regularities and time series in discrete sequence of inputs. The inserted hidden units can be taken as the long-term memories that expand the capacity of network and sometimes may fade away under certain condition. Preliminary experiment has shown that this incremental network may be a promising approach to endow autonomous robots with the ability of adapting to new data without destroying the learned patterns. The system also benefits from its potential chaos character for emergence.

  12. H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Multistability and instability analysis of recurrent neural networks with time-varying delays.

    Science.gov (United States)

    Zhang, Fanghai; Zeng, Zhigang

    2018-01-01

    This paper provides new theoretical results on the multistability and instability analysis of recurrent neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks have exactly [Formula: see text] equilibria, [Formula: see text] of which are locally exponentially stable and the others are unstable, where k 0 is a nonnegative integer such that k 0 ≤n. By using the combination method of two different divisions, recurrent neural networks can possess more dynamic properties. This method improves and extends the existing results in the literature. Finally, one numerical example is provided to show the superiority and effectiveness of the presented results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pinning synchronization of memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Yang, Zhanyu; Luo, Biao; Liu, Derong; Li, Yueheng

    2017-09-01

    In this paper, the synchronization of memristor-based neural networks with time-varying delays via pinning control is investigated. A novel pinning method is introduced to synchronize two memristor-based neural networks which denote drive system and response system, respectively. The dynamics are studied by theories of differential inclusions and nonsmooth analysis. In addition, some sufficient conditions are derived to guarantee asymptotic synchronization and exponential synchronization of memristor-based neural networks via the presented pinning control. Furthermore, some improvements about the proposed control method are also discussed in this paper. Finally, the effectiveness of the obtained results is demonstrated by numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks.

    Science.gov (United States)

    Li, Xujing; Liu, Anfeng; Xie, Mande; Xiong, Neal N; Zeng, Zhiwen; Cai, Zhiping

    2018-04-16

    The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold ( N t ) or the waiting time is equal to the aggregation timer ( T t ), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline ( T t ) and the aggregation threshold ( N t ) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of T t and N t to reduce delay, and the nodes near the sink are set to a large value of T t and N t to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy

  16. Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xujing Li

    2018-04-01

    Full Text Available The quality of service (QoS regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs. Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold ( N t or the waiting time is equal to the aggregation timer ( T t , data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR scheme are the following: (a the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b An improved AAR scheme is proposed to improve the QoS. The aggregation deadline ( T t and the aggregation threshold ( N t are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of T t and N t to reduce delay, and the nodes near the sink are set to a large value of T t and N t to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases

  17. A Case Study of IPv6 Network Performance: Packet Delay, Loss, and Reordering

    Directory of Open Access Journals (Sweden)

    Fuliang Li

    2017-01-01

    Full Text Available Internet Protocol (IP is used to identify and locate computers on the Internet. Currently, IPv4 still routes most Internet traffic. However, with the exhausting of IPv4 addresses, the transition to IPv6 is imminent, because, as the successor of IPv4, IPv6 can provide a larger available address space. Existing studies have addressed the notion that IPv6-centric next generation networks are widely deployed and applied. In order to gain a deep understanding of IPv6, this paper revisits several critical IPv6 performance metrics. Our extensive measurement shows that packet delay and loss rate of IPv6 are similar to IPv4 when the AS-level paths are roughly the same. Specifically, when the link utilization exceeds a threshold, for example, 0.83 in our study, variation of packet delay presents a similar pattern with the variation of link utilization. If packet delay of a path is large, packet-loss rate of that path is more likely to fluctuate. In addition, we conduct a first-ever analysis of packet reordering in IPv6 world. Few IPv6 probe packets are out-of-order and the reordering rate is 2.3⁎10-6, which is much lower than that of 0.79% in IPv4 world. Our analysis consolidates an experimental basis for operators and researchers of IPv6 networks.

  18. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Zidong; Liu Yurong; Yu Li; Liu Xiaohui

    2006-01-01

    In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions

  19. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control

    Science.gov (United States)

    Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.

    2018-06-01

    Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.

  20. Delay Reduction for Instantly Decodable Network Coding in Persistent Channels With Feedback Imperfections

    KAUST Repository

    Douik, Ahmed S.

    2015-11-05

    This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.