D-leaping: Accelerating stochastic simulation algorithms for reactions with delays
International Nuclear Information System (INIS)
Bayati, Basil; Chatelain, Philippe; Koumoutsakos, Petros
2009-01-01
We propose a novel, accelerated algorithm for the approximate stochastic simulation of biochemical systems with delays. The present work extends existing accelerated algorithms by distributing, in a time adaptive fashion, the delayed reactions so as to minimize the computational effort while preserving their accuracy. The accuracy of the present algorithm is assessed by comparing its results to those of the corresponding delay differential equations for a representative biochemical system. In addition, the fluctuations produced from the present algorithm are comparable to those from an exact stochastic simulation with delays. The algorithm is used to simulate biochemical systems that model oscillatory gene expression. The results indicate that the present algorithm is competitive with existing works for several benchmark problems while it is orders of magnitude faster for certain systems of biochemical reactions.
Gompertzian stochastic model with delay effect to cervical cancer growth
International Nuclear Information System (INIS)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-01-01
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits
Gompertzian stochastic model with delay effect to cervical cancer growth
Energy Technology Data Exchange (ETDEWEB)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
International Nuclear Information System (INIS)
Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir
2014-01-01
Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay
Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William
2014-05-28
Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.
Mean Square Synchronization of Stochastic Nonlinear Delayed Coupled Complex Networks
Directory of Open Access Journals (Sweden)
Chengrong Xie
2013-01-01
Full Text Available We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks. Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.
Neutron stochastic transport theory with delayed neutrons
International Nuclear Information System (INIS)
Munoz-Cobo, J.L.; Verdu, G.
1987-01-01
From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)
2–stage stochastic Runge–Kutta for stochastic delay differential equations
Energy Technology Data Exchange (ETDEWEB)
Rosli, Norhayati; Jusoh Awang, Rahimah [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang (Malaysia); Bahar, Arifah; Yeak, S. H. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-05-15
This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.
A retrodictive stochastic simulation algorithm
International Nuclear Information System (INIS)
Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.
2010-01-01
In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.
Dynamic analysis of a stochastic delayed rumor propagation model
Jia, Fangju; Lv, Guangying; Wang, Shuangfeng; Zou, Guang-an
2018-02-01
The rapid development of the Internet, especially the emergence of the social networks, has led rumor propagation into a new media era. In this paper, we are concerned with a stochastic delayed rumor propagation model. Firstly, we obtain the existence of the global solution. Secondly, sufficient conditions for extinction of the rumor are established. Lastly, the boundedness of solution is proved and some simulations are given to verify our results.
On stochastic differential equations with random delay
International Nuclear Information System (INIS)
Krapivsky, P L; Luck, J M; Mallick, K
2011-01-01
We consider stochastic dynamical systems defined by differential equations with a uniform random time delay. The latter equations are shown to be equivalent to deterministic higher-order differential equations: for an nth-order equation with random delay, the corresponding deterministic equation has order n + 1. We analyze various examples of dynamical systems of this kind, and find a number of unusual behaviors. For instance, for the harmonic oscillator with random delay, the energy grows as exp((3/2) t 2/3 ) in reduced units. We then investigate the effect of introducing a discrete time step ε. At variance with the continuous situation, the discrete random recursion relations thus obtained have intrinsic fluctuations. The crossover between the fluctuating discrete problem and the deterministic continuous one as ε goes to zero is studied in detail on the example of a first-order linear differential equation
Delayed Stochastic Linear-Quadratic Control Problem and Related Applications
Directory of Open Access Journals (Sweden)
Li Chen
2012-01-01
stochastic differential equations (FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the optimal feedback regulator for the time delay system via a new type of Riccati equations and also apply to a population optimal control problem.
Directory of Open Access Journals (Sweden)
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Bifurcations in stochastic equations with delayed feedback
Gaudreault, Mathieu
The bifurcation diagram of a model stochastic differential equation with delayed feedback is presented. We are motivated by recent research on stochastic effects in models of transcriptional gene regulation. We start from the normal form for a pitchfork bifurcation, and add multiplicative or parametric noise and linear delayed feedback. The latter is sufficient to originate a Hopf bifurcation in that region of parameters in which there is a sufficiently strong negative feedback. We find a sharp bifurcation in parameter space, and define the threshold as the point in which the stationary distribution function p(x) changes from a delta function at the trivial state x = 0 to p( x) ˜ xalpha at small x (with alpha = 1 exactly at threshold). We find that the bifurcation threshold is shifted by fluctuations relative to the deterministic limit by an amount that scales linearly with the noise intensity. Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for the model considered. Our results assume that the delay time tau is small compared to other characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line is found, the location of which depends on the conditional average , where x(t) is the dynamical variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deterministic limit and hence that the
Multivalued stochastic delay differential equations and related ...
African Journals Online (AJOL)
We study the existence and uniqueness of a solution for the multivalued stochastic differential equation with delay (the multivalued term is of subdifferential type):. dX(t) + aφ (X(t))dt ∍ b(t,X(t), Y(t), Z(t)) dt. ⎨ +σ (t, X (t), Y (t), Z (t)) dW (t), t ∈ (s, T). X(t) = ξ (t - s), t ∈ [s - δ, s]. Specify that in this case the coefficients at time t ...
Variance decomposition in stochastic simulators
Le Maître, O. P.
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Delay-induced stochastic bifurcations in a bistable system under white noise
Energy Technology Data Exchange (ETDEWEB)
Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xiao, Yuzhu [Department of Mathematics and Information Science, Chang' an University, Xi' an 710086 (China)
2015-08-15
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.
Delay-induced stochastic bifurcations in a bistable system under white noise
International Nuclear Information System (INIS)
Sun, Zhongkui; Fu, Jin; Xu, Wei; Xiao, Yuzhu
2015-01-01
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses
Stochastic models: theory and simulation.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps
Li, Yan; Hu, Junhao
2013-01-01
We investigate the convergence rate of Euler-Maruyama method for a class of stochastic partial differential delay equations driven by both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of stochastic partial differential delay equations with jumps in infinite dimensions.
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Robustness Analysis of Hybrid Stochastic Neural Networks with Neutral Terms and Time-Varying Delays
Directory of Open Access Journals (Sweden)
Chunmei Wu
2015-01-01
Full Text Available We analyze the robustness of global exponential stability of hybrid stochastic neural networks subject to neutral terms and time-varying delays simultaneously. Given globally exponentially stable hybrid stochastic neural networks, we characterize the upper bounds of contraction coefficients of neutral terms and time-varying delays by using the transcendental equation. Moreover, we prove theoretically that, for any globally exponentially stable hybrid stochastic neural networks, if additive neutral terms and time-varying delays are smaller than the upper bounds arrived, then the perturbed neural networks are guaranteed to also be globally exponentially stable. Finally, a numerical simulation example is given to illustrate the presented criteria.
Exponential Stability of Stochastic Nonlinear Dynamical Price System with Delay
Directory of Open Access Journals (Sweden)
Wenli Zhu
2013-01-01
Full Text Available Based on Lyapunov stability theory, Itô formula, stochastic analysis, and matrix theory, we study the exponential stability of the stochastic nonlinear dynamical price system. Using Taylor's theorem, the stochastic nonlinear system with delay is reduced to an n-dimensional semilinear stochastic differential equation with delay. Some sufficient conditions of exponential stability and corollaries for such price system are established by virtue of Lyapunov function. The time delay upper limit is solved by using our theoretical results when the system is exponentially stable. Our theoretical results show that if the classical price Rayleigh equation is exponentially stable, so is its perturbed system with delay provided that both the time delay and the intensity of perturbations are small enough. Two examples are presented to illustrate our results.
Stability analysis of switched stochastic neural networks with time-varying delays.
Wu, Xiaotai; Tang, Yang; Zhang, Wenbing
2014-03-01
This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples. Copyright © 2013 Elsevier Ltd. All rights reserved.
AESS: Accelerated Exact Stochastic Simulation
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution
Exponential Stability of Stochastic Systems with Delay and Poisson Jumps
Directory of Open Access Journals (Sweden)
Wenli Zhu
2014-01-01
Full Text Available This paper focuses on the model of a class of nonlinear stochastic delay systems with Poisson jumps based on Lyapunov stability theory, stochastic analysis, and inequality technique. The existence and uniqueness of the adapted solution to such systems are proved by applying the fixed point theorem. By constructing a Lyapunov function and using Doob’s martingale inequality and Borel-Cantelli lemma, sufficient conditions are given to establish the exponential stability in the mean square of such systems, and we prove that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. The obtained results show that if stochastic systems is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic delay systems with Poisson jumps will remain exponentially stable, and time delay upper limit is solved by using the obtained results when the system is exponentially stable, and they are more easily verified and applied in practice.
Exponential Stability of Stochastic Differential Equation with Mixed Delay
Directory of Open Access Journals (Sweden)
Wenli Zhu
2014-01-01
Full Text Available This paper focuses on a class of stochastic differential equations with mixed delay based on Lyapunov stability theory, Itô formula, stochastic analysis, and inequality technique. A sufficient condition for existence and uniqueness of the adapted solution to such systems is established by employing fixed point theorem. Some sufficient conditions of exponential stability and corollaries for such systems are obtained by using Lyapunov function. By utilizing Doob’s martingale inequality and Borel-Cantelli lemma, it is shown that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. In particular, our theoretical results show that if stochastic differential equation is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic differential equation with mixed delay will remain exponentially stable. Moreover, time delay upper limit is solved by using our theoretical results when the system is exponentially stable, and they are more easily verified and applied in practice.
Mean square exponential stability of stochastic delayed Hopfield neural networks
International Nuclear Information System (INIS)
Wan Li; Sun Jianhua
2005-01-01
Stochastic effects to the stability property of Hopfield neural networks (HNN) with discrete and continuously distributed delay are considered. By using the method of variation parameter, inequality technique and stochastic analysis, the sufficient conditions to guarantee the mean square exponential stability of an equilibrium solution are given. Two examples are also given to demonstrate our results
Li, Xiaodi; Song, Shiji
2014-10-01
In this paper, an impulsive controller is designed to achieve the exponential synchronization of chaotic delayed neural networks with stochastic perturbation. By using the impulsive delay differential inequality technique that was established in recent publications, several sufficient conditions ensuring the exponential synchronization of chaotic delayed networks are derived, which can be easily checked by LMI Control Toolbox in Matlab. A numerical example and its simulation is given to demonstrate the effectiveness and advantage of the theory results.
Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems
Woolley, Thomas E.
2012-05-22
Cellular gene expression is a complex process involving many steps, including the transcription of DNA and translation of mRNA; hence the synthesis of proteins requires a considerable amount of time, from ten minutes to several hours. Since diffusion-driven instability has been observed to be sensitive to perturbations in kinetic delays, the application of Turing patterning mechanisms to the problem of producing spatially heterogeneous differential gene expression has been questioned. In deterministic systems a small delay in the reactions can cause a large increase in the time it takes a system to pattern. Recently, it has been observed that in undelayed systems intrinsic stochasticity can cause pattern initiation to occur earlier than in the analogous deterministic simulations. Here we are interested in adding both stochasticity and delays to Turing systems in order to assess whether stochasticity can reduce the patterning time scale in delayed Turing systems. As analytical insights to this problem are difficult to attain and often limited in their use, we focus on stochastically simulating delayed systems. We consider four different Turing systems and two different forms of delay. Our results are mixed and lead to the conclusion that, although the sensitivity to delays in the Turing mechanism is not completely removed by the addition of intrinsic noise, the effects of the delays are clearly ameliorated in certain specific cases. © 2012 American Physical Society.
Communication nets stochastic message flow and delay
Kleinrock, Leonard
2007-01-01
Considerable research has been devoted to the formulation and solution of problems involving flow within connected networks. Independent of these surveys, an extensive body of knowledge has accumulated on the subject of queues, particularly in regard to stochastic flow through single-node servicing facilities. This text combines studies of connected networks with those of stochastic flow, providing a basis for understanding the general behavior and operation of communication networks in realistic situations.Author Leonard Kleinrock of the Computer Science Department at UCLA created the basic p
Effects of time delay on stochastic resonance of the stock prices in financial system
International Nuclear Information System (INIS)
Li, Jiang-Cheng; Li, Chun; Mei, Dong-Cheng
2014-01-01
The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value
Effects of time delay on stochastic resonance of the stock prices in financial system
Energy Technology Data Exchange (ETDEWEB)
Li, Jiang-Cheng [Department of Physics, Yunnan University, Kunming, 650091 (China); Li, Chun [Department of Computer Science, Puer Teachers' College, Puer 665000 (China); Mei, Dong-Cheng, E-mail: meidch@ynu.edu.cn [Department of Physics, Yunnan University, Kunming, 650091 (China)
2014-06-13
The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value.
Noise-sustained fluctuations in stochastic dynamics with a delay.
D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca
2012-04-01
Delayed responses to external drivers are ubiquitous in environmental, social, and biological processes. Delays may induce oscillations, Hopf bifurcations, and instabilities in deterministic systems even in the absence of nonlinearities. Despite recent advances in the study of delayed stochastic differential equations, the interaction of random drivers with delays remains poorly understood. In particular, it is unclear whether noise-induced behaviors may emerge from these interactions. Here we show that noise may enhance and sustain transient periodic oscillations inherent to deterministic delayed systems. We investigate the conditions conducive to the emergence and disappearance of these dynamics in a linear system in the presence of both additive and multiplicative noise.
Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence
Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Ahmad, Bashir
2017-11-01
In this paper, a stochastic delayed HIV-1 infection model with nonlinear incidence is proposed and investigated. First of all, we prove that there is a unique global positive solution as desired in any population dynamics. Then by constructing some suitable Lyapunov functions, we show that if the basic reproduction number R0 ≤ 1, then the solution of the stochastic system oscillates around the infection-free equilibrium E0, while if R0 > 1, then the solution of the stochastic system fluctuates around the infective equilibrium E∗. Sufficient conditions of these results are established. Finally, we give some examples and a series of numerical simulations to illustrate the analytical results.
Bifurcation Regulations Governed by Delay Self-Control Feedback in a Stochastic Birhythmic System
Ma, Zhidan; Ning, Lijuan
2017-12-01
We aim to investigate bifurcation behaviors in a stochastic birhythmic van der Pol (BVDP) system subjected to delay self-control feedback. First, the harmonic approximation is adopted to drive the delay self-control feedback to state variables without delay. Then, Fokker-Planck-Kolmogorov (FPK) equation and stationary probability density function (SPDF) for amplitude are obtained by applying stochastic averaging method. Finally, dynamical scenarios of the change of delay self-control feedback as well as noise that markedly influence bifurcation performance are observed. It is found that: the big feedback strength and delay will suppress the large amplitude limit cycle (LC) while the relatively big noise strength facilitates the large amplitude LC, which imply the proposed regulation strategies are feasible. Interestingly enough, the inner LC is never destroyed due to noise. Furthermore, the validity of analytical results was verified by Monte Carlo simulation of the dynamics.
H∞ Filtering for Networked Markovian Jump Systems with Multiple Stochastic Communication Delays
Directory of Open Access Journals (Sweden)
Hui Dong
2015-01-01
Full Text Available This paper is concerned with the H∞ filtering for a class of networked Markovian jump systems with multiple communication delays. Due to the existence of communication constraints, the measurement signal cannot arrive at the filter completely on time, and the stochastic communication delays are considered in the filter design. Firstly, a set of stochastic variables is introduced to model the occurrence probabilities of the delays. Then based on the stochastic system approach, a sufficient condition is obtained such that the filtering error system is stable in the mean-square sense and with a prescribed H∞ disturbance attenuation level. The optimal filter gain parameters can be determined by solving a convex optimization problem. Finally, a simulation example is given to show the effectiveness of the proposed filter design method.
Effects of time delay on stochastic resonance of the stock prices in financial system
Li, Jiang-Cheng; Li, Chun; Mei, Dong-Cheng
2014-06-01
The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing.
Stability analysis for stochastic BAM nonlinear neural network with delays
Lv, Z. W.; Shu, H. S.; Wei, G. L.
2008-02-01
In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria.
Stochastic modelling of train delays and delay propagation in stations
Yuan, J.
2006-01-01
A trade-off exists between efficiently utilizing the capacity of railway networks and improving the reliability and punctuality of train operations. This dissertation presents a new analytical probability model based on blocking time theory which estimates the knock-on delays of trains caused by
Synchronization of chaotic delayed neural networks with impulsive and stochastic perturbations
Li, Xiaodi; Fu, Xilin
2011-02-01
In this paper, we study the exponential synchronization problem of a class of chaotic delayed neural networks with impulsive and stochastic perturbations. The involved time delays include time-varying delays and unbounded distributed delays. Employing the method of impulsive delay differential inequality, several new sufficient conditions ensuring the exponential synchronization are obtained, which can be easily checked by LMI Control Toolbox in Matlab. Compared with the previous methods, our method does not resort to complicated Lyapunov-Krasovkii, and the results derived are independent of the time-varying delays and do not require the differentiability of delay functions and the monotony of the activation functions. Finally, a numerical example and its simulation is given to show the effectiveness of the obtained results in this paper.
Stochastic systems with delay: Perturbation theory for second order statistics
Energy Technology Data Exchange (ETDEWEB)
Frank, T.D., E-mail: till.frank@uconn.edu
2016-03-24
Within the framework of delay Fokker–Planck equations, a perturbation theoretical method is developed to determine second-order statistical quantities such as autocorrelation functions for stochastic systems with delay. Two variants of the perturbation theoretical approach are presented. The first variant is based on a non-local Fokker–Planck operator. The second variant requires to solve a Fokker–Planck equation with source term. It is shown that the two variants yield consistent results. The perturbation theoretical approaches are applied to study negative autocorrelations that are induced by feedback delays and mediated by the strength of the fluctuating forces that act on the feedback systems. - Highlights: • A perturbation theory for stochastic delay systems is presented. • The perturbation theory yields second order statistical quantities. • The theory is developed within the framework of delay Fokker–Planck equations. • The effective Fokker–Planck operator is a non-local operator in space. • Negative autocorrelations can be induced by time-delayed feedback.
H∞state estimation of stochastic memristor-based neural networks with time-varying delays.
Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Hongjian; Wang, Zidong; Shen, Bo; Huang, Tingwen; Alsaadi, Fuad E
2018-06-01
This paper is concerned with the globally exponential stability problem for a class of discrete-time stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables is utilized to determine within which intervals the time-varying delays fall at certain time instant. The sector-bounded activation function is considered in the addressed DSMNN. By taking into account the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is globally exponentially stable in the mean square. The derived conditions are made dependent on both the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-independent criteria. A simulation example is given to show the effectiveness of the proposed stability criterion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Guiling; Li, Dingshi; Shi, Lin; van Gaans, Onno; Verduyn Lunel, Sjoerd
2018-03-01
We present new conditions for asymptotic stability and exponential stability of a class of stochastic recurrent neural networks with discrete and distributed time varying delays. Our approach is based on the method using fixed point theory, which do not resort to any Liapunov function or Liapunov functional. Our results neither require the boundedness, monotonicity and differentiability of the activation functions nor differentiability of the time varying delays. In particular, a class of neural networks without stochastic perturbations is also considered. Examples are given to illustrate our main results.
A delay financial model with stochastic volatility; martingale method
Lee, Min-Ku; Kim, Jeong-Hoon; Kim, Joocheol
2011-08-01
In this paper, we extend a delayed geometric Brownian model by adding a stochastic volatility term, which is driven by a hidden process of fast mean reverting diffusion, to the delayed model. Combining a martingale approach and an asymptotic method, we develop a theory for option pricing under this hybrid model. The core result obtained by our work is a proof that a discounted approximate option price can be decomposed as a martingale part plus a small term. Subsequently, a correction effect on the European option price is demonstrated both theoretically and numerically for a good agreement with practical results.
Bao, Haibo; Cao, Jinde
2011-01-01
This paper is concerned with the state estimation problem for a class of discrete-time stochastic neural networks (DSNNs) with random delays. The effect of both variation range and distribution probability of the time delay are taken into account in the proposed approach. The stochastic disturbances are described in terms of a Brownian motion and the time-varying delay is characterized by introducing a Bernoulli stochastic variable. By employing a Lyapunov-Krasovskii functional, sufficient delay-distribution-dependent conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimator which can be checked readily by the Matlab toolbox. The main feature of the results obtained in this paper is that they are dependent on not only the bound but also the distribution probability of the time delay, and we obtain a larger allowance variation range of the delay, hence our results are less conservative than the traditional delay-independent ones. One example is given to illustrate the effectiveness of the proposed result. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sheng, Yin; Zeng, Zhigang
2017-09-01
In this paper, synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and unbounded discrete time-varying delays is investigated. By virtue of theories of partial differential equations, inequality methods, and stochastic analysis techniques, pth moment exponential synchronization and almost sure exponential synchronization of the underlying neural networks are developed. The obtained results in this study enhance and generalize some earlier ones. The effectiveness and merits of the theoretical criteria are substantiated by two numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal control strategy for an impulsive stochastic competition system with time delays and jumps
Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua
2017-07-01
Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.
Almost Sure Stability and Stabilization for Hybrid Stochastic Systems with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Hua Yang
2012-01-01
Full Text Available The problems of almost sure (a.s. stability and a.s. stabilization are investigated for hybrid stochastic systems (HSSs with time-varying delays. The different time-varying delays in the drift part and in the diffusion part are considered. Based on nonnegative semimartingale convergence theorem, Hölder’s inequality, Doob’s martingale inequality, and Chebyshev’s inequality, some sufficient conditions are proposed to guarantee that the underlying nonlinear hybrid stochastic delay systems (HSDSs are almost surely (a.s. stable. With these conditions, a.s. stabilization problem for a class of nonlinear HSDSs is addressed through designing linear state feedback controllers, which are obtained in terms of the solutions to a set of linear matrix inequalities (LMIs. Two numerical simulation examples are given to show the usefulness of the results derived.
International Nuclear Information System (INIS)
Karthik Raja, U; Leelamani, A; Raja, R; Samidurai, R
2013-01-01
In this paper, the exponential stability for a class of stochastic neural networks with time-varying delays and impulsive effects is considered. By constructing suitable Lyapunov functionals and by using the linear matrix inequality optimization approach, we obtain sufficient delay-dependent criteria to ensure the exponential stability of stochastic neural networks with time-varying delays and impulses. Two numerical examples with simulation results are provided to illustrate the effectiveness of the obtained results over those already existing in the literature. (paper)
Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process
Turner, Douglas C.; Ladde, Gangaram S.
2018-03-01
Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.
Deterministic and stochastic control of chimera states in delayed feedback oscillator
Energy Technology Data Exchange (ETDEWEB)
Semenov, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Maistrenko, Y. [Institute of Mathematics and Center for Medical and Biotechnical Research, NAS of Ukraine, Tereschenkivska Str. 3, 01601 Kyiv (Ukraine)
2016-06-08
Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.
A Class of Stochastic Nonlinear Delay System with Jumps
Directory of Open Access Journals (Sweden)
Ling Bai
2014-01-01
Full Text Available We consider stochastic suppression and stabilization for nonlinear delay differential system. The system is assumed to satisfy local Lipschitz condition and one-side polynomial growth condition. Since the system may explode in a finite time, we stochastically perturb this system by introducing independent Brownian noises and Lévy noise feedbacks. The contributions of this paper are as follows. (a We show that Brownian noises or Lévy noise may suppress potential explosion of the solution for some appropriate parameters. (b Using the exponential martingale inequality with jumps, we discuss the fact that the sample Lyapunov exponent is nonpositive. (c Considering linear Lévy processes, by the strong law of large number for local martingale, sufficient conditions for a.s. exponentially stability are investigated in Theorem 13.
Stochastic analysis for finance with simulations
Choe, Geon Ho
2016-01-01
This book is an introduction to stochastic analysis and quantitative finance; it includes both theoretical and computational methods. Topics covered are stochastic calculus, option pricing, optimal portfolio investment, and interest rate models. Also included are simulations of stochastic phenomena, numerical solutions of the Black–Scholes–Merton equation, Monte Carlo methods, and time series. Basic measure theory is used as a tool to describe probabilistic phenomena. The level of familiarity with computer programming is kept to a minimum. To make the book accessible to a wider audience, some background mathematical facts are included in the first part of the book and also in the appendices. This work attempts to bridge the gap between mathematics and finance by using diagrams, graphs and simulations in addition to rigorous theoretical exposition. Simulations are not only used as the computational method in quantitative finance, but they can also facilitate an intuitive and deeper understanding of theoret...
Mean, covariance, and effective dimension of stochastic distributed delay dynamics
René, Alexandre; Longtin, André
2017-11-01
Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.
Global impulsive exponential synchronization of stochastic perturbed chaotic delayed neural networks
International Nuclear Information System (INIS)
Hua-Guang, Zhang; Tie-Dong, Ma; Jie, Fu; Shao-Cheng, Tong
2009-01-01
In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control algorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method
Stochastic Hopf bifurcation in transcription networks with delayed feedback
Wentworth, John; Gaudreault, Mathieu; Vinals, Jorge
2012-02-01
We study the oscillatory instabilities of two model systems that rely on delayed negative feedback to induce oscillation: a single gene auto repressor system, and a dimer negative autoregulation system. We focus on fluctuations of intrinsic origin in the range of low copy number. The bifurcation diagram is obtained for these stochastic models, and shown to differ significantly from that of a macroscopic description that neglects fluctuations. Bifurcation lines remain sharp under fluctuations, but their location is a function of the relative size of the fluctuations. Shifts in the stability threshold of the oscillators can be traced back to the interplay between statistical correlations and delayed feedback. We finally show that there results cannot be captured by weak noise approximations (the diffusion limit), but instead result from strong fluctuations associated with low copy numbers.
Extreme fluctuations in stochastic network coordination with time delays
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
A stochastic delay differential model of cerebral autoregulation.
Directory of Open Access Journals (Sweden)
Simona Panunzi
Full Text Available Mathematical models of the cardiovascular system and of cerebral autoregulation (CAR have been employed for several years in order to describe the time course of pressures and flows changes subsequent to postural changes. The assessment of the degree of efficiency of cerebral auto regulation has indeed importance in the prognosis of such conditions as cerebro-vascular accidents or Alzheimer. In the quest for a simple but realistic mathematical description of cardiovascular control, which may be fitted onto non-invasive experimental observations after postural changes, the present work proposes a first version of an empirical Stochastic Delay Differential Equations (SDDEs model. The model consists of a total of four SDDEs and two ancillary algebraic equations, incorporates four distinct delayed controls from the brain onto different components of the circulation, and is able to accurately capture the time course of mean arterial pressure and cerebral blood flow velocity signals, reproducing observed auto-correlated error around the expected drift.
A stochastic delay differential model of cerebral autoregulation.
Panunzi, Simona; D'Orsi, Laura; Iacoviello, Daniela; De Gaetano, Andrea
2015-01-01
Mathematical models of the cardiovascular system and of cerebral autoregulation (CAR) have been employed for several years in order to describe the time course of pressures and flows changes subsequent to postural changes. The assessment of the degree of efficiency of cerebral auto regulation has indeed importance in the prognosis of such conditions as cerebro-vascular accidents or Alzheimer. In the quest for a simple but realistic mathematical description of cardiovascular control, which may be fitted onto non-invasive experimental observations after postural changes, the present work proposes a first version of an empirical Stochastic Delay Differential Equations (SDDEs) model. The model consists of a total of four SDDEs and two ancillary algebraic equations, incorporates four distinct delayed controls from the brain onto different components of the circulation, and is able to accurately capture the time course of mean arterial pressure and cerebral blood flow velocity signals, reproducing observed auto-correlated error around the expected drift.
Simulation of Stochastic Loads for Fatigue Experiments
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Brincker, Rune
1989-01-01
A simple direct simulation method for stochastic fatigue-load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... ranges given the last peak values. Analytical estimates of these distribution functions are presented in the paper and compared with estimates based on a more accurate simulation method. In the more accurate simulation method samples at equidistant times are generated by approximating the stochastic load...... process by a Markov process. Two different spectra from two tubular joints in an offshore structure (one narrow banded and one wide banded) are considered in an example. The results show that the simple direct method is quite efficient and results in a simulation speed of about 3000 load cycles per second...
Simulation of Stochastic Loads for Fatigue Experiments
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Brincker, Rune
1989-01-01
process by a Markov process. Two different spectra from two tubular joints in an offshore structure (one narrow banded and one wide banded) are considered in an example. The results show that the simple direct method is quite efficient and results in a simulation speed of about 3000 load cycles per second......A simple direct simulation method for stochastic fatigue-load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... ranges given the last peak values. Analytical estimates of these distribution functions are presented in the paper and compared with estimates based on a more accurate simulation method. In the more accurate simulation method samples at equidistant times are generated by approximating the stochastic load...
Simulation of Stochastic Loads for Fatigue Experiments
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Brincker, Rune
process by a Markov process. Two different spectra from two tubular joints in an offshore structure (one narrow banded and one wide banded) are considered in an example. The results show that the simple direct method is quite efficient and is results in a simulation speed at about 3000 load cycles per......A simple direct simulation method for stochastic fatigue load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... ranges given the last peak values. Analytical estimates of these distribution functions are presented in the paper and compared with estimates based on a more accurate simulation method. In the more accurate simulation method samples at equidistant times are generated by approximating the stochastic load...
Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.
Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André
2010-01-28
We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society
Stochastic airspace simulation tool development
2009-10-01
Modeling and simulation is often used to study : the physical world when observation may not be : practical. The overall goal of a recent and ongoing : simulation tool project has been to provide a : documented, lifecycle-managed, multi-processor : c...
Stochastic Simulation of Process Calculi for Biology
Directory of Open Access Journals (Sweden)
Andrew Phillips
2010-10-01
Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.
Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation
Directory of Open Access Journals (Sweden)
Wantao Jia
2018-02-01
Full Text Available We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate stationary probability density functions for both predator and prey populations. The influences of system parameters and the Poisson white noises are investigated in detail based on the approximate stationary probability density functions. It is found that, increasing time delay parameter as well as the mean arrival rate and the variance of the amplitude of the Poisson white noise will enhance the fluctuations of the prey and predator population. While the larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore, the results from Monte Carlo simulation are also obtained to show the effectiveness of the results from averaging method.
Exponential p-stability of impulsive stochastic differential equations with delays
International Nuclear Information System (INIS)
Yang Zhiguo; Xu Daoyi; Xiang Li
2006-01-01
In this Letter, we establish a method to study the exponential p-stability of the zero solution of impulsive stochastic differential equations with delays. By establishing an L-operator inequality and using the properties of M-cone and stochastic analysis technique, we obtain some new conditions ensuring the exponential p-stability of the zero solution of impulsive stochastic differential equations with delays. Two illustrative examples have been provided to show the effectiveness of our results
Frank, T D; Beek, P J
2001-08-01
Recently, Küchler and Mensch [Stochastics Stochastics Rep. 40, 23 (1992)] derived exact stationary probability densities for linear stochastic delay differential equations. This paper presents an alternative derivation of these solutions by means of the Fokker-Planck approach introduced by Guillouzic [Phys. Rev. E 59, 3970 (1999); 61, 4906 (2000)]. Applications of this approach, which is argued to have greater generality, are discussed in the context of stochastic models for population growth and tracking movements.
Khan, Sami Ullah; Ali, Ishtiaq
2018-03-01
Explicit solutions to delay differential equation (DDE) and stochastic delay differential equation (SDDE) can rarely be obtained, therefore numerical methods are adopted to solve these DDE and SDDE. While on the other hand due to unstable nature of both DDE and SDDE numerical solutions are also not straight forward and required more attention. In this study, we derive an efficient numerical scheme for DDE and SDDE based on Legendre spectral-collocation method, which proved to be numerical methods that can significantly speed up the computation. The method transforms the given differential equation into a matrix equation by means of Legendre collocation points which correspond to a system of algebraic equations with unknown Legendre coefficients. The efficiency of the proposed method is confirmed by some numerical examples. We found that our numerical technique has a very good agreement with other methods with less computational effort.
Noise transmission and delay-induced stochastic oscillations in biochemical network motifs
International Nuclear Information System (INIS)
Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko
2011-01-01
With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)
Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal
International Nuclear Information System (INIS)
Yong-Feng, Guo; Wei, Xu; Liang, Wang
2010-01-01
This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)
Directory of Open Access Journals (Sweden)
Dongyan Chen
2015-01-01
Full Text Available This paper is concerned with the optimal Kalman filtering problem for a class of discrete stochastic systems with multiplicative noises and random two-step sensor delays. Three Bernoulli distributed random variables with known conditional probabilities are introduced to characterize the phenomena of the random two-step sensor delays which may happen during the data transmission. By using the state augmentation approach and innovation analysis technique, an optimal Kalman filter is constructed for the augmented system in the sense of the minimum mean square error (MMSE. Subsequently, the optimal Kalman filtering is derived for corresponding augmented system in initial instants. Finally, a simulation example is provided to demonstrate the feasibility and effectiveness of the proposed filtering method.
International Nuclear Information System (INIS)
Frank, T D
2005-01-01
Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)
International Nuclear Information System (INIS)
Frank, T.D.
2006-01-01
First-order approximations of time-dependent solutions are determined for stochastic systems perturbed by time-delayed feedback forces. To this end, the theory of delay Fokker-Planck equations is applied in combination with Bayes' theorem. Applications to a time-delayed Ornstein-Uhlenbeck process and the geometric Brownian walk of financial physics are discussed
International Nuclear Information System (INIS)
Wang Shen-Quan; Feng Jian; Zhao Qing
2012-01-01
In this paper, the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay. Different from the common assumptions on time delays, it is assumed that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method), less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Two numerical examples show that our results are better than the existing ones. (general)
Exponential stability of uncertain stochastic neural networks with mixed time-delays
International Nuclear Information System (INIS)
Wang Zidong; Lauria, Stanislao; Fang Jian'an; Liu Xiaohui
2007-01-01
This paper is concerned with the global exponential stability analysis problem for a class of stochastic neural networks with mixed time-delays and parameter uncertainties. The mixed delays comprise discrete and distributed time-delays, the parameter uncertainties are norm-bounded, and the neural networks are subjected to stochastic disturbances described in terms of a Brownian motion. The purpose of the stability analysis problem is to derive easy-to-test criteria under which the delayed stochastic neural network is globally, robustly, exponentially stable in the mean square for all admissible parameter uncertainties. By resorting to the Lyapunov-Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established by using an efficient linear matrix inequality (LMI) approach. The proposed criteria can be checked readily by using recently developed numerical packages, where no tuning of parameters is required. An example is provided to demonstrate the usefulness of the proposed criteria
On solutions of neutral stochastic delay Volterra equations with singular kernels
Directory of Open Access Journals (Sweden)
Xiaotai Wu
2012-08-01
Full Text Available In this paper, existence, uniqueness and continuity of the adapted solutions for neutral stochastic delay Volterra equations with singular kernels are discussed. In addition, continuous dependence on the initial date is also investigated. Finally, stochastic Volterra equation with the kernel of fractional Brownian motion is studied to illustrate the effectiveness of our results.
Directory of Open Access Journals (Sweden)
Yuqiang Luo
2013-01-01
Full Text Available This paper deals with a robust H∞ deconvolution filtering problem for discrete-time nonlinear stochastic systems with randomly occurring sensor delays. The delayed measurements are assumed to occur in a random way characterized by a random variable sequence following the Bernoulli distribution with time-varying probability. The purpose is to design an H∞ deconvolution filter such that, for all the admissible randomly occurring sensor delays, nonlinear disturbances, and external noises, the input signal distorted by the transmission channel could be recovered to a specified extent. By utilizing the constructed Lyapunov functional relying on the time-varying probability parameters, the desired sufficient criteria are derived. The proposed H∞ deconvolution filter parameters include not only the fixed gains obtained by solving a convex optimization problem but also the online measurable time-varying probability. When the time-varying sensor delays occur randomly with a time-varying probability sequence, the proposed gain-scheduled filtering algorithm is very effective. The obtained design algorithm is finally verified in the light of simulation examples.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.
Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.
Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing
2016-08-01
In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.
Stochastic simulations of the tetracycline operon
2011-01-01
Background The tetracycline operon is a self-regulated system. It is found naturally in bacteria where it confers resistance to antibiotic tetracycline. Because of the performance of the molecular elements of the tetracycline operon, these elements are widely used as parts of synthetic gene networks where the protein production can be efficiently turned on and off in response to the presence or the absence of tetracycline. In this paper, we investigate the dynamics of the tetracycline operon. To this end, we develop a mathematical model guided by experimental findings. Our model consists of biochemical reactions that capture the biomolecular interactions of this intriguing system. Having in mind that small biological systems are subjects to stochasticity, we use a stochastic algorithm to simulate the tetracycline operon behavior. A sensitivity analysis of two critical parameters embodied this system is also performed providing a useful understanding of the function of this system. Results Simulations generate a timeline of biomolecular events that confer resistance to bacteria against tetracycline. We monitor the amounts of intracellular TetR2 and TetA proteins, the two important regulatory and resistance molecules, as a function of intrecellular tetracycline. We find that lack of one of the promoters of the tetracycline operon has no influence on the total behavior of this system inferring that this promoter is not essential for Escherichia coli. Sensitivity analysis with respect to the binding strength of tetracycline to repressor and of repressor to operators suggests that these two parameters play a predominant role in the behavior of the system. The results of the simulations agree well with experimental observations such as tight repression, fast gene expression, induction with tetracycline, and small intracellular TetR2 amounts. Conclusions Computer simulations of the tetracycline operon afford augmented insight into the interplay between its molecular
Stochastic simulations of the tetracycline operon
Directory of Open Access Journals (Sweden)
Kaznessis Yiannis N
2011-01-01
Full Text Available Abstract Background The tetracycline operon is a self-regulated system. It is found naturally in bacteria where it confers resistance to antibiotic tetracycline. Because of the performance of the molecular elements of the tetracycline operon, these elements are widely used as parts of synthetic gene networks where the protein production can be efficiently turned on and off in response to the presence or the absence of tetracycline. In this paper, we investigate the dynamics of the tetracycline operon. To this end, we develop a mathematical model guided by experimental findings. Our model consists of biochemical reactions that capture the biomolecular interactions of this intriguing system. Having in mind that small biological systems are subjects to stochasticity, we use a stochastic algorithm to simulate the tetracycline operon behavior. A sensitivity analysis of two critical parameters embodied this system is also performed providing a useful understanding of the function of this system. Results Simulations generate a timeline of biomolecular events that confer resistance to bacteria against tetracycline. We monitor the amounts of intracellular TetR2 and TetA proteins, the two important regulatory and resistance molecules, as a function of intrecellular tetracycline. We find that lack of one of the promoters of the tetracycline operon has no influence on the total behavior of this system inferring that this promoter is not essential for Escherichia coli. Sensitivity analysis with respect to the binding strength of tetracycline to repressor and of repressor to operators suggests that these two parameters play a predominant role in the behavior of the system. The results of the simulations agree well with experimental observations such as tight repression, fast gene expression, induction with tetracycline, and small intracellular TetR2 amounts. Conclusions Computer simulations of the tetracycline operon afford augmented insight into the
Fu, Xilin; Li, Xiaodi
2011-01-01
In this paper, the global asymptotic stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays is investigated by using Lyapunov-Krasovskii functional method and the linear matrix inequality (LMI) technique. The mixed time delays comprise both the multiple time-varying and continuously distributed delays. Some new sufficient conditions are obtained to guarantee the global asymptotic stability of the addressed model in the stochastic sense using the powerful MATLAB LMI toolbox. The results extend and improve the earlier publications. Two numerical examples are given to illustrate the effectiveness of our results.
Directory of Open Access Journals (Sweden)
Weihua Mao
2012-01-01
Full Text Available This paper discusses the mean-square exponential stability of uncertain neutral linear stochastic systems with interval time-varying delays. A new augmented Lyapunov-Krasovskii functional (LKF has been constructed to derive improved delay-dependent robust mean-square exponential stability criteria, which are forms of linear matrix inequalities (LMIs. By free-weight matrices method, the usual restriction that the stability conditions only bear slow-varying derivative of the delay is removed. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.
MCdevelop - a universal framework for Stochastic Simulations
Slawinska, M.; Jadach, S.
2011-03-01
We present MCdevelop, a universal computer framework for developing and exploiting the wide class of Stochastic Simulations (SS) software. This powerful universal SS software development tool has been derived from a series of scientific projects for precision calculations in high energy physics (HEP), which feature a wide range of functionality in the SS software needed for advanced precision Quantum Field Theory calculations for the past LEP experiments and for the ongoing LHC experiments at CERN, Geneva. MCdevelop is a "spin-off" product of HEP to be exploited in other areas, while it will still serve to develop new SS software for HEP experiments. Typically SS involve independent generation of large sets of random "events", often requiring considerable CPU power. Since SS jobs usually do not share memory it makes them easy to parallelize. The efficient development, testing and running in parallel SS software requires a convenient framework to develop software source code, deploy and monitor batch jobs, merge and analyse results from multiple parallel jobs, even before the production runs are terminated. Throughout the years of development of stochastic simulations for HEP, a sophisticated framework featuring all the above mentioned functionality has been implemented. MCdevelop represents its latest version, written mostly in C++ (GNU compiler gcc). It uses Autotools to build binaries (optionally managed within the KDevelop 3.5.3 Integrated Development Environment (IDE)). It uses the open-source ROOT package for histogramming, graphics and the mechanism of persistency for the C++ objects. MCdevelop helps to run multiple parallel jobs on any computer cluster with NQS-type batch system. Program summaryProgram title:MCdevelop Catalogue identifier: AEHW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http
Exponential stability analysis for delayed stochastic Cohen-Grossberg neural network
Directory of Open Access Journals (Sweden)
Guanjun Wang
2010-04-01
Full Text Available In this paper, the exponential stability problems are addressed for a class of delayed Cohen-Grossberg neural networks which are also perturbed by some stochastic noises. By employing the Lyapunov method, stochastic analysis and some inequality techniques, sufficient conditions are acquired for checking the pth(p g 1 and the 1st moment exponential stability of the network. Finally, One example is given to show the effectiveness of the proposed results.
International Nuclear Information System (INIS)
Huang Zaitang; Yang Qigui
2009-01-01
The paper considers the problems of existence of quadratic mean almost periodic and global exponential stability for stochastic cellular neural networks with delays. By employing the Holder's inequality and fixed points principle, we present some new criteria ensuring existence and uniqueness of a quadratic mean almost periodic and global exponential stability. These criteria are important in signal processing and the design of networks. Moreover, these criteria are also applied in others stochastic biological neural systems.
Directory of Open Access Journals (Sweden)
Hua Yang
2012-01-01
Full Text Available We are concerned with the stochastic differential delay equations with Poisson jump and Markovian switching (SDDEsPJMSs. Most SDDEsPJMSs cannot be solved explicitly as stochastic differential equations. Therefore, numerical solutions have become an important issue in the study of SDDEsPJMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJMSs when the drift and diffusion coefficients are Taylor approximations.
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
Energy Technology Data Exchange (ETDEWEB)
Xiu, Dongbin [Univ. of Utah, Salt Lake City, UT (United States)
2017-03-03
The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
The threshold of a stochastic delayed SIR epidemic model with vaccination
Liu, Qun; Jiang, Daqing
2016-11-01
In this paper, we study the threshold dynamics of a stochastic delayed SIR epidemic model with vaccination. We obtain sufficient conditions for extinction and persistence in the mean of the epidemic. The threshold between persistence in the mean and extinction of the stochastic system is also obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number Rbar0 of the deterministic system. Results show that time delay has important effects on the persistence and extinction of the epidemic.
Su, Weiwei; Chen, Yiming
2009-05-01
In this paper, the global exponential stability is investigated for a class of stochastic interval neural networks with time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. Based on Lyapunov stable theory and stochastic analysis approaches, the delay-dependent criteria are derived to ensure the global, robust, exponential stability of the addressed system in the mean square. The criteria can be checked easily by the LMI control toolbox in Matlab. A numerical example is given to illustrate the effectiveness and improvement over some existing results.
Global asymptotic stability analysis for neutral stochastic neural networks with time-varying delays
Su, Weiwei; Chen, Yiming
2009-04-01
In this paper, the global asymptotic stability is investigated for a class of neutral stochastic neural networks with time-varying delays and norm-bounded uncertainties. Based on Lyapunov stability theory and stochastic analysis approaches, delay-dependent criteria are derived to ensure the global, robust, asymptotic stability of the addressed system in the mean square for all admissible parameter uncertainties. The criteria can be checked easily by the LMI Control Toolbox in Matlab. A numerical example is given to illustrate the feasibility and effectiveness of the results.
Provably unbounded memory advantage in stochastic simulation using quantum mechanics
Garner, Andrew J. P.; Liu, Qing; Thompson, Jayne; Vedral, Vlatko; Gu, mile
2017-10-01
Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart.
Limits and Dynamics of Stochastic Neuronal Networks with Random Heterogeneous Delays
Touboul, Jonathan
2012-11-01
Realistic networks display heterogeneous transmission delays. We analyze here the limits of large stochastic multi-populations networks with stochastic coupling and random interconnection delays. We show that depending on the nature of the delays distributions, a quenched or averaged propagation of chaos takes place in these networks, and that the network equations converge towards a delayed McKean-Vlasov equation with distributed delays. Our approach is mostly fitted to neuroscience applications. We instantiate in particular a classical neuronal model, the Wilson and Cowan system, and show that the obtained limit equations have Gaussian solutions whose mean and standard deviation satisfy a closed set of coupled delay differential equations in which the distribution of delays and the noise levels appear as parameters. This allows to uncover precisely the effects of noise, delays and coupling on the dynamics of such heterogeneous networks, in particular their role in the emergence of synchronized oscillations. We show in several examples that not only the averaged delay, but also the dispersion, govern the dynamics of such networks.
Improved result on stability analysis of discrete stochastic neural networks with time delay
International Nuclear Information System (INIS)
Wu Zhengguang; Su Hongye; Chu Jian; Zhou Wuneng
2009-01-01
This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.
Directory of Open Access Journals (Sweden)
Diem Dang Huan
2015-12-01
Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.
Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks.
Liang, Jinling; Wang, Zidong; Liu, Yurong; Liu, Xiaohui
2008-11-01
This paper is concerned with the robust synchronization problem for an array of coupled stochastic discrete-time neural networks with time-varying delay. The individual neural network is subject to parameter uncertainty, stochastic disturbance, and time-varying delay, where the norm-bounded parameter uncertainties exist in both the state and weight matrices, the stochastic disturbance is in the form of a scalar Wiener process, and the time delay enters into the activation function. For the array of coupled neural networks, the constant coupling and delayed coupling are simultaneously considered. We aim to establish easy-to-verify conditions under which the addressed neural networks are synchronized. By using the Kronecker product as an effective tool, a linear matrix inequality (LMI) approach is developed to derive several sufficient criteria ensuring the coupled delayed neural networks to be globally, robustly, exponentially synchronized in the mean square. The LMI-based conditions obtained are dependent not only on the lower bound but also on the upper bound of the time-varying delay, and can be solved efficiently via the Matlab LMI Toolbox. Two numerical examples are given to demonstrate the usefulness of the proposed synchronization scheme.
International Nuclear Information System (INIS)
Li Hongjie; Yue Dong
2010-01-01
The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
pth Moment stability of impulsive stochastic delay differential systems with Markovian switching
Wu, Xiaotai; Zhang, Wenbing; Tang, Yang
2013-07-01
This paper is concerned with the pth moment stability of impulsive stochastic delay differential systems with Markovian switching. By using the Razumikhin-type method, some stability criteria are obtained, which can loosen the constraints of the existing results and thus reduce the conservativeness. Two examples are presented to demonstrate the usefulness of the proposed results.
Dynamical Behaviors of Stochastic Reaction-Diffusion Cohen-Grossberg Neural Networks with Delays
Directory of Open Access Journals (Sweden)
Li Wan
2012-01-01
Full Text Available This paper investigates dynamical behaviors of stochastic Cohen-Grossberg neural network with delays and reaction diffusion. By employing Lyapunov method, Poincaré inequality and matrix technique, some sufficient criteria on ultimate boundedness, weak attractor, and asymptotic stability are obtained. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.
Energy Technology Data Exchange (ETDEWEB)
Cui Jing [College of Information Science and Technology, Donghua University, 2999 North Renmin Rd, Songjiang, Shanghai 201620 (China); Yan Litan, E-mail: jcui123@126.com, E-mail: litanyan@hotmail.com [Department of Mathematics, College of Science, Donghua University, 2999 North Renmin Rd, Songjiang, Shanghai 201620 (China)
2011-08-19
This paper is concerned with the existence of mild solutions for a class of fractional neutral stochastic integro-differential equations with infinite delay in Hilbert spaces. A sufficient condition for the existence is obtained under non-Lipschitz conditions by means of Sadovskii's fixed point theorem. An example is given to illustrate the theory.
Directory of Open Access Journals (Sweden)
Meili Li
2015-01-01
Full Text Available The approximate controllability of semilinear neutral stochastic integrodifferential inclusions with infinite delay in an abstract space is studied. Sufficient conditions are established for the approximate controllability. The results are obtained by using the theory of analytic resolvent operator, the fractional power theory, and the theorem of nonlinear alternative for Kakutani maps. Finally, an example is provided to illustrate the theory.
Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays
International Nuclear Information System (INIS)
Zhao Hongyong; Ding Nan; Chen Ling
2009-01-01
This paper is concerned with the problem of exponential stability analysis for fuzzy cellular neural network with delays. By constructing suitable Lyapunov functional and using stochastic analysis we present some sufficient conditions ensuring almost sure exponential stability for the network. Moreover, an example is given to demonstrate the advantages of our method.
Fixed Points and Stability in Neutral Stochastic Differential Equations with Variable Delays
Directory of Open Access Journals (Sweden)
Chang-Wen Zhao
2008-07-01
Full Text Available We consider the mean square asymptotic stability of a generalized linear neutral stochastic differential equation with variable delays by using the fixed point theory. An asymptotic mean square stability theorem with a necessary and sufficient condition is proved, which improves and generalizes some results due to Burton, Zhang and Luo. Two examples are also given to illustrate our results.
Statistical inference for discrete-time samples from affine stochastic delay differential equations
DEFF Research Database (Denmark)
Küchler, Uwe; Sørensen, Michael
2013-01-01
Statistical inference for discrete time observations of an affine stochastic delay differential equation is considered. The main focus is on maximum pseudo-likelihood estimators, which are easy to calculate in practice. A more general class of prediction-based estimating functions is investigated...
Robust stability for stochastic bidirectional associative memory neural networks with time delays
Shu, H. S.; Lv, Z. W.; Wei, G. L.
2008-02-01
In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed criteria.
International Nuclear Information System (INIS)
Du Luchun; Mei Dongcheng
2011-01-01
The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.
Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong
2015-03-01
This paper considered the state estimation for stochastic neural networks of neutral type with discrete and distributed delays. By using available output measurements, the state estimator can approximate the neuron states, and the asymptotic property of the state error is mean square exponential stable and also almost surely exponential stable in the presence of discrete and distributed delays. Under the Lipschitz assumptions for the activation functions and the measurement nonlinearity, a delay-dependent linear matrix inequality (LMI) criterion is proposed to guarantee the existence of the desired estimators by constructing an appropriate Lyapunov-Krasovskii function. It is shown that the existence conditions and the explicit expression of the state estimator can be parameterised in terms of the solution to a LMI. Finally, two numerical examples are presented to demonstrate the validity of the theoretical results and show that the theorem can provide less conservative conditions.
Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies
Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj
2017-04-01
In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10
Stochastic models to simulate paratuberculosis in dairy herds
DEFF Research Database (Denmark)
Nielsen, Søren Saxmose; Weber, M.F.; Kudahl, Anne Margrethe Braad
2011-01-01
Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... the models are somewhat different in their underlying principles and do put slightly different values on the different strategies, their overall findings are similar. Therefore, simulation models may be useful in planning paratuberculosis strategies in dairy herds, although as with all models caution...
Dynamics of a stochastic cell-to-cell HIV-1 model with distributed delay
Ji, Chunyan; Liu, Qun; Jiang, Daqing
2018-02-01
In this paper, we consider a stochastic cell-to-cell HIV-1 model with distributed delay. Firstly, we show that there is a global positive solution of this model before exploring its long-time behavior. Then sufficient conditions for extinction of the disease are established. Moreover, we obtain sufficient conditions for the existence of an ergodic stationary distribution of the model by constructing a suitable stochastic Lyapunov function. The stationary distribution implies that the disease is persistent in the mean. Finally, we provide some numerical examples to illustrate theoretical results.
International Nuclear Information System (INIS)
Wang Linshan; Zhang Zhe; Wang Yangfan
2008-01-01
Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities
HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks
Directory of Open Access Journals (Sweden)
Luca Marchetti
2017-01-01
Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.
Coherence and stochastic resonance in threshold crossing detectors with delayed feedback
International Nuclear Information System (INIS)
Morse, Robert; Longtin, Andre
2006-01-01
We consider the dynamical behavior of threshold systems driven by external periodic and stochastic signals and internal delayed feedback. Specifically, the effect of positive delayed feedback on the sensitivity of a threshold crossing detector (TCD) to periodic forcing embedded in noise is investigated. The system has an intrinsic ability to oscillate in the presence of positive feedback. We first show conditions under which such reverberatory behavior is enhanced by noise, which is a form of coherence resonance (CR) for this system. Further, for input signals that are subthreshold in the absence of feedback, the open-loop stochastic resonance (SR) characteristic can be sharply enhanced by positive delayed feedback. This enhancement is shown to depend on the stimulus period, and is maximal when this period is matched to an integer multiple of the delay. Reverberatory oscillations, which are particularly prominent after the offset of periodic forcing, are shown to be eliminated by a summing network of such TCDs with local delayed feedback. Theoretical analysis of the crossing rate dynamics qualitatively accounts for the existence of CR and the resonant behavior of the SR effect as a function of delay and forcing frequency
SELANSI: a toolbox for simulation of stochastic gene regulatory networks.
Pájaro, Manuel; Otero-Muras, Irene; Vázquez, Carlos; Alonso, Antonio A
2018-03-01
Gene regulation is inherently stochastic. In many applications concerning Systems and Synthetic Biology such as the reverse engineering and the de novo design of genetic circuits, stochastic effects (yet potentially crucial) are often neglected due to the high computational cost of stochastic simulations. With advances in these fields there is an increasing need of tools providing accurate approximations of the stochastic dynamics of gene regulatory networks (GRNs) with reduced computational effort. This work presents SELANSI (SEmi-LAgrangian SImulation of GRNs), a software toolbox for the simulation of stochastic multidimensional gene regulatory networks. SELANSI exploits intrinsic structural properties of gene regulatory networks to accurately approximate the corresponding Chemical Master Equation with a partial integral differential equation that is solved by a semi-lagrangian method with high efficiency. Networks under consideration might involve multiple genes with self and cross regulations, in which genes can be regulated by different transcription factors. Moreover, the validity of the method is not restricted to a particular type of kinetics. The tool offers total flexibility regarding network topology, kinetics and parameterization, as well as simulation options. SELANSI runs under the MATLAB environment, and is available under GPLv3 license at https://sites.google.com/view/selansi. antonio@iim.csic.es. © The Author(s) 2017. Published by Oxford University Press.
MONTE CARLO SIMULATION OF MULTIFOCAL STOCHASTIC SCANNING SYSTEM
Directory of Open Access Journals (Sweden)
LIXIN LIU
2014-01-01
Full Text Available Multifocal multiphoton microscopy (MMM has greatly improved the utilization of excitation light and imaging speed due to parallel multiphoton excitation of the samples and simultaneous detection of the signals, which allows it to perform three-dimensional fast fluorescence imaging. Stochastic scanning can provide continuous, uniform and high-speed excitation of the sample, which makes it a suitable scanning scheme for MMM. In this paper, the graphical programming language — LabVIEW is used to achieve stochastic scanning of the two-dimensional galvo scanners by using white noise signals to control the x and y mirrors independently. Moreover, the stochastic scanning process is simulated by using Monte Carlo method. Our results show that MMM can avoid oversampling or subsampling in the scanning area and meet the requirements of uniform sampling by stochastically scanning the individual units of the N × N foci array. Therefore, continuous and uniform scanning in the whole field of view is implemented.
Directory of Open Access Journals (Sweden)
Rashad O. Mastaliev
2016-12-01
Full Text Available The optimal control problem of nonlinear stochastic systems which mathematical model is given by Ito stochastic differential equation with delay argument is considered. Assuming that the concerned region is open for the control by the first and the second variation (classical sense of the quality functional we obtain the necessary optimality condition of the first and the second order. In the particular case we receive the stochastic analog of the Legendre—Clebsch condition and some constructively verified conclusions from the second order necessary condition. We investigate the Legendre–Clebsch conditions for the degeneration case and obtain the necessary conditions of optimality for a special control, in the classical sense.
Stochastic simulation of off-shore oil terminal systems
International Nuclear Information System (INIS)
Frankel, E.G.; Oberle, J.
1991-01-01
To cope with the problem of uncertainty and conditionality in the planning, design, and operation of offshore oil transshipment terminal systems, a conditional stochastic simulation approach is presented. Examples are shown, using SLAM II, a computer simulation language based on GERT, a conditional stochastic network analysis methodology in which use of resources such as time and money are expressed by the moment generating function of the statistics of the resource requirements. Similarly each activity has an associated conditional probability of being performed and/or of requiring some of the resources. The terminal system is realistically represented by modelling the statistics of arrivals, loading and unloading times, uncertainties in costs and availabilities, etc
International Nuclear Information System (INIS)
Wu Zhi-Hai; Peng Li; Xie Lin-Bo; Wen Ji-Wei
2013-01-01
In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results. (interdisciplinary physics and related areas of science and technology)
Song, Zhibao; Zhai, Junyong
2018-02-22
This paper addresses the problem of adaptive output-feedback control for a class of switched stochastic time-delay nonlinear systems with uncertain output function, where both the control coefficients and time-varying delay are unknown. The drift and diffusion terms are subject to unknown homogeneous growth condition. By virtue of adding a power integrator technique, an adaptive output-feedback controller is designed to render that the closed-loop system is bounded in probability, and the state of switched stochastic nonlinear system can be globally regulated to the origin almost surely. A numerical example is provided to demonstrate the validity of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yang Fang
2014-01-01
Full Text Available This paper investigates the robust adaptive exponential synchronization in mean square of stochastic perturbed chaotic delayed neural networks with nonidentical parametric uncertainties. A robust adaptive feedback controller is proposed based on Gronwally’s inequality, drive-response concept, and adaptive feedback control technique with the update laws of nonidentical parametric uncertainties as well as linear matrix inequality (LMI approach. The sufficient conditions for robust adaptive exponential synchronization in mean square of uncoupled uncertain stochastic chaotic delayed neural networks are derived in terms of linear matrix inequalities (LMIs. The effect of nonidentical uncertain parameter uncertainties is suppressed by the designed robust adaptive feedback controller rapidly. A numerical example is provided to validate the effectiveness of the proposed method.
Asymptotical stability of stochastic neural networks with multiple time-varying delays
Zhou, Xianghui; Zhou, Wuneng; Dai, Anding; Yang, Jun; Xie, Lili
2015-03-01
The stochastic neural networks can be considered as an expansion of cellular neural networks and Hopfield neural networks. In real world, the neural networks are prone to be instable due to time delay and external disturbance. In this paper, we consider the asymptotic stability for the stochastic neural networks with multiple time-varying delays. By employing a Lyapunov-Krasovskii function, a sufficient condition which guarantees the asymptotic stability of the state trajectory in the mean square is obtained. The criteria proposed can be verified readily by utilising the linear matrix inequality toolbox in Matlab, and no parameters to be tuned. In the end, two numerical examples are provided to demonstrate the effectiveness of the proposed method.
Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations
Christensen, H. M.; Dawson, A.; Palmer, T.
2017-12-01
Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.
Directory of Open Access Journals (Sweden)
Xiaolin Zhu
2014-01-01
Full Text Available This paper studies the T-stability of the Heun method and balanced method for solving stochastic differential delay equations (SDDEs. Two T-stable conditions of the Heun method are obtained for two kinds of linear SDDEs. Moreover, two conditions under which the balanced method is T-stable are obtained for two kinds of linear SDDEs. Some numerical examples verify the theoretical results proposed.
Stochastic stability of Cohen-Grossberg neural networks with unbounded distributed delays
Directory of Open Access Journals (Sweden)
Ping Chen
2010-03-01
Full Text Available In this article, we consider a model that describes the dynamics of Cohen-Grossberg neural networks with unbounded distributed delays, whose state variable are governed by stochastic non-linear integro-differential equations. Without assuming the smoothness, monotonicity and boundedness of the activation functions, by constructing suitable Lyapunov functional, employing the semi-martingale convergence theorem and some inequality, we obtain some sufficient criteria to check the almost exponential stability of networks.
pth moment asymptotic stability of stochastic delayed hybrid systems with Lévy noise
Yang, Jun; Zhou, Wuneng; Yang, Xueqing; Hu, Xiaotao; Xie, Lili
2015-09-01
The problem of pth moment asymptotic stability analysis is considered for stochastic delayed hybrid systems with Lévy noise. By virtue of Itô's formula and M-matrix theories, we propose some sufficient conditions to guarantee the asymptotic stability and exponential stability of the system. The criterion of mean square asymptotic stability is derived as well for delayed neural networks with Lévy noise. A numerical example is provided to show the usefulness of the proposed asymptotic stability criterion.
Gaudreault, Mathieu; Drolet, François; Viñals, Jorge
2010-11-01
Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear stochastic differential delay equation with feedback. Our results assume that the delay time τ is small compared to other characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line is found, the location of which depends on the conditional average , where x(t) is the dynamical variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deterministic limit and hence that the interaction between fluctuation correlations and delay affect the stability of the solutions of the model equation studied.
Improved operating strategies for uranium extraction: a stochastic simulation
International Nuclear Information System (INIS)
Broekman, B.R.
1986-01-01
Deterministic and stochastic simulations of a Western Transvaal uranium process are used in this research report to determine more profitable uranium plant operating strategies and to gauge the potential financial benefits of automatic process control. The deterministic simulation model was formulated using empirical and phenomenological process models. The model indicated that profitability increases significantly as the uranium leaching strategy becomes harsher. The stochastic simulation models use process variable distributions corresponding to manually and automatically controlled conditions to investigate the economic gains that may be obtained if a change is made from manual to automatic control of two important process variables. These lognormally distributed variables are the pachuca 1 sulphuric acid concentration and the ferric to ferrous ratio. The stochastic simulations show that automatic process control is justifiable in certain cases. Where the leaching strategy is relatively harsh, such as that in operation during January 1986, it is not possible to justify an automatic control system. Automatic control is, however, justifiable if a relatively mild leaching strategy is adopted. The stochastic and deterministic simulations represent two different approaches to uranium process modelling. This study has indicated the necessity for each approach to be applied in the correct context. It is contended that incorrect conclusions may have been drawn by other investigators in South Africa who failed to consider the two approaches separately
Multiscale Hy3S: Hybrid stochastic simulation for supercomputers
Directory of Open Access Journals (Sweden)
Kaznessis Yiannis N
2006-02-01
Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users
Simulating biological processes: stochastic physics from whole cells to colonies
Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida
2018-05-01
The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.
Stochastic algorithm for simulating gas transport coefficients
Rudyak, V. Ya.; Lezhnev, E. V.
2018-02-01
The aim of this paper is to create a molecular algorithm for modeling the transport processes in gases that will be more efficient than molecular dynamics method. To this end, the dynamics of molecules are modeled stochastically. In a rarefied gas, it is sufficient to consider the evolution of molecules only in the velocity space, whereas for a dense gas it is necessary to model the dynamics of molecules also in the physical space. Adequate integral characteristics of the studied system are obtained by averaging over a sufficiently large number of independent phase trajectories. The efficiency of the proposed algorithm was demonstrated by modeling the coefficients of self-diffusion and the viscosity of several gases. It was shown that the accuracy comparable to the experimental one can be obtained on a relatively small number of molecules. The modeling accuracy increases with the growth of used number of molecules and phase trajectories.
Analysing initial attack on wildland fires using stochastic simulation.
Jeremy S. Fried; J. Keith Gilless; James. Spero
2006-01-01
Stochastic simulation models of initial attack on wildland fire can be designed to reflect the complexity of the environmental, administrative, and institutional context in which wildland fire protection agencies operate, but such complexity may come at the cost of a considerable investment in data acquisition and management. This cost may be well justified when it...
Stochastic Simulation Using @ Risk for Dairy Business Investment Decisions
A dynamic, stochastic, mechanistic simulation model of a dairy business was developed to evaluate the cost and benefit streams coinciding with technology investments. The model was constructed to embody the biological and economical complexities of a dairy farm system within a partial budgeting fram...
Stochastic simulation using @Risk for dairy business investment decisions
Bewley, J.D.; Boehlje, M.D.; Gray, A.W.; Hogeveen, H.; Kenyon, S.J.; Eicher, S.D.; Schutz, M.M.
2010-01-01
Purpose – The purpose of this paper is to develop a dynamic, stochastic, mechanistic simulation model of a dairy business to evaluate the cost and benefit streams coinciding with technology investments. The model was constructed to embody the biological and economical complexities of a dairy farm
Powering stochastic reliability models by discrete event simulation
DEFF Research Database (Denmark)
Kozine, Igor; Wang, Xiaoyun
2012-01-01
it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...
Directory of Open Access Journals (Sweden)
Elston Timothy C
2004-03-01
Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.
Si, Wenjie; Dong, Xunde; Yang, Feifei
2018-03-01
This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Adaptive hybrid simulations for multiscale stochastic reaction networks
International Nuclear Information System (INIS)
Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa
2015-01-01
The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest
Particle simulation in stochastic magnetic fields at tokamak edge
Chang, C. C.; Nishimura, Y.; Cheng, C. Z.
2013-10-01
An orbit following simulation code is developed incorporating magnetic perturbation. While magnetic field lines can exhibit stochastic behavior in the presence of incommensurate magnetic perturbations, the particle motions are also influenced by the mirror force and the perturbed electric fields. Remnants of lowest order magnetic islands can also play an important role in regulating the particle and heat transport. Effective perpendicular transport can be enhanced in the presence of trapped particles; how the mirror force influences the transport in stochastic magnetic fields is examined. This work is supported by National Science Council of Taiwan, NSC 100-2112-M-006-021-MY3 and NCKU Top University Project.
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
Fuzzy delay model based fault simulator for crosstalk delay fault test ...
Indian Academy of Sciences (India)
In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design trends move towards nanometer technologies, more number of new parameters affects the delay of the component. Fuzzy delay models are ideal for modelling the uncertainty found in the design and manufacturing steps.
Directory of Open Access Journals (Sweden)
Jie Zhang
2014-01-01
Full Text Available This paper is concerned with fault detection problem for a class of network control systems (NCSs with multiple communication delays and stochastic missing measurements. The missing measurement phenomenon occurs in a random way and the occurrence probability for each measurement output is governed by an individual random variable. Besides, the multiple communication delay phenomenon reflects that networked control systems have different communication delays when the signals are transferred via different channels. We aim to design a fault detection filter so that the overall fault detection dynamics is exponentially stable in the mean square. By constructing proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the fault detection filter for the discrete systems, and the filter parameters are also derived by solving linear matrix inequality. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.
Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay
International Nuclear Information System (INIS)
Feng Wei; Yang, Simon X.; Fu Wei; Wu Haixia
2009-01-01
This paper addresses the stability analysis problem for uncertain stochastic neural networks with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded, and the delay factor is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is robustly, globally, asymptotically stable in the mean square. Some stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be effectively solved by some standard numerical packages. Finally, numerical examples are provided to demonstrate the usefulness of the proposed criteria.
International Nuclear Information System (INIS)
Brett, Tobias; Galla, Tobias
2014-01-01
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period
Brett, Tobias; Galla, Tobias
2014-03-28
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2014-07-01
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stochastic Robotic Simulation Tool, Phase I
National Aeronautics and Space Administration — Energid Technologies proposes a game-theory inspired simulation tool for testing and validating robotic lunar and planetary missions. It applies Monte Carlo...
Yang, Tao; Cao, Qingjie
2018-03-01
This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.
Karmeshu; Gupta, Varun; Kadambari, K V
2011-06-01
A single neuronal model incorporating distributed delay (memory)is proposed. The stochastic model has been formulated as a Stochastic Integro-Differential Equation (SIDE) which results in the underlying process being non-Markovian. A detailed analysis of the model when the distributed delay kernel has exponential form (weak delay) has been carried out. The selection of exponential kernel has enabled the transformation of the non-Markovian model to a Markovian model in an extended state space. For the study of First Passage Time (FPT) with exponential delay kernel, the model has been transformed to a system of coupled Stochastic Differential Equations (SDEs) in two-dimensional state space. Simulation studies of the SDEs provide insight into the effect of weak delay kernel on the Inter-Spike Interval(ISI) distribution. A measure based on Jensen-Shannon divergence is proposed which can be used to make a choice between two competing models viz. distributed delay model vis-á-vis LIF model. An interesting feature of the model is that the behavior of (CV(t))((ISI)) (Coefficient of Variation) of the ISI distribution with respect to memory kernel time constant parameter η reveals that neuron can switch from a bursting state to non-bursting state as the noise intensity parameter changes. The membrane potential exhibits decaying auto-correlation structure with or without damped oscillatory behavior depending on the choice of parameters. This behavior is in agreement with empirically observed pattern of spike count in a fixed time window. The power spectral density derived from the auto-correlation function is found to exhibit single and double peaks. The model is also examined for the case of strong delay with memory kernel having the form of Gamma distribution. In contrast to fast decay of damped oscillations of the ISI distribution for the model with weak delay kernel, the decay of damped oscillations is found to be slower for the model with strong delay kernel.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen
2013-05-01
The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.
Directory of Open Access Journals (Sweden)
Pengfei Guo
2014-01-01
Full Text Available This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to design H∞ fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying the H∞ performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina
2017-11-21
In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is
Pitchfork and Hopf bifurcation thresholds in stochastic equations with delayed feedback
Gaudreault, Mathieu; Lépine, Françoise; Viñals, Jorge
2009-12-01
The bifurcation diagram of a model stochastic differential equation with delayed feedback is presented. We are motivated by recent research on stochastic effects in models of transcriptional gene regulation. We start from the normal form for a pitchfork bifurcation, and add multiplicative or parametric noise and linear delayed feedback. The latter is sufficient to originate a Hopf bifurcation in that region of parameters in which there is a sufficiently strong negative feedback. We find a sharp bifurcation in parameter space, and define the threshold as the point in which the stationary distribution function p(x) changes from a delta function at the trivial state x=0 to p(x)˜xα at small x (with α=-1 exactly at threshold). We find that the bifurcation threshold is shifted by fluctuations relative to the deterministic limit by an amount that scales linearly with the noise intensity. Analytic calculations of the bifurcation threshold are also presented in the limit of small delay τ→0 that compare quite favorably with the numerical solutions even for moderate values of τ .
International Nuclear Information System (INIS)
Frank, T.D.
2007-01-01
We present a generalized Kramers-Moyal expansion for stochastic differential equations with single and multiple delays. In particular, we show that the delay Fokker-Planck equation derived earlier in the literature is a special case of the proposed Kramers-Moyal expansion. Applications for bond pricing and a self-inhibitory neuron model are discussed
Overview of the TurbSim Stochastic Inflow Turbulence Simulator
Energy Technology Data Exchange (ETDEWEB)
Kelley, N. D.; Jonkman, B. J.
2005-09-01
The TurbSim stochastic inflow turbulence code was developed to provide a numerical simulation of a full-field flow that contains coherent turbulence structures that reflect the proper spatiotemporal turbulent velocity field relationships seen in instabilities associated with nocturnal boundary layer flows that are not represented well by the IEC Normal Turbulence Models (NTM). Its purpose is to provide the wind turbine designer with the ability to drive design code (FAST or MSC.ADAMS) simulations of advanced turbine designs with simulated inflow turbulence environments that incorporate many of the important fluid dynamic features known to adversely affect turbine aeroelastic response and loading.
Optimal harvesting of a stochastic delay logistic model with Lévy jumps
International Nuclear Information System (INIS)
Qiu, Hong; Deng, Wenmin
2016-01-01
The optimal harvesting problem of a stochastic time delay logistic model with Lévy jumps is considered in this article. We first show that the model has a unique global positive solution and discuss the uniform boundedness of its p th moment with harvesting. Then we prove that the system is globally attractive and asymptotically stable in distribution under our assumptions. Furthermore, we obtain the existence of the optimal harvesting effort by the ergodic method, and then we give the explicit expression of the optimal harvesting policy and maximum yield. (paper)
HYDRASTAR - a code for stochastic simulation of groundwater flow
International Nuclear Information System (INIS)
Norman, S.
1992-05-01
The computer code HYDRASTAR was developed as a tool for groundwater flow and transport simulations in the SKB 91 safety analysis project. Its conceptual ideas can be traced back to a report by Shlomo Neuman in 1988, see the reference section. The main idea of the code is the treatment of the rock as a stochastic continuum which separates it from the deterministic methods previously employed by SKB and also from the discrete fracture models. The current report is a comprehensive description of HYDRASTAR including such topics as regularization or upscaling of a hydraulic conductivity field, unconditional and conditional simulation of stochastic processes, numerical solvers for the hydrology and streamline equations and finally some proposals for future developments
GEMFsim: A Stochastic Simulator for the Generalized Epidemic Modeling Framework
Sahneh, Faryad Darabi; Vajdi, Aram; Shakeri, Heman; Fan, Futing; Scoglio, Caterina
2016-01-01
The recently proposed generalized epidemic modeling framework (GEMF) \\cite{sahneh2013generalized} lays the groundwork for systematically constructing a broad spectrum of stochastic spreading processes over complex networks. This article builds an algorithm for exact, continuous-time numerical simulation of GEMF-based processes. Moreover the implementation of this algorithm, GEMFsim, is available in popular scientific programming platforms such as MATLAB, R, Python, and C; GEMFsim facilitates ...
Stochastic simulations of calcium contents in sugarcane area
Directory of Open Access Journals (Sweden)
Gener T. Pereira
2015-08-01
Full Text Available ABSTRACTThe aim of this study was to quantify and to map the spatial distribution and uncertainty of soil calcium (Ca content in a sugarcane area by sequential Gaussian and simulated-annealing simulation methods. The study was conducted in the municipality of Guariba, northeast of the São Paulo state. A sampling grid with 206 points separated by a distance of 50 m was established, totaling approximately 42 ha. The calcium contents were evaluated in layer of 0-0.20 m. Techniques of geostatistical estimation, ordinary kriging and stochastic simulations were used. The technique of ordinary kriging does not reproduce satisfactorily the global statistics of the Ca contents. The use of simulation techniques allows reproducing the spatial variability pattern of Ca contents. The techniques of sequential Gaussian simulation and simulated annealing showed significant variations in the contents of Ca in the small scale.
Robust H∞ filtering for a class of complex networks with stochastic packet dropouts and time delays.
Zhang, Jie; Lyu, Ming; Karimi, Hamid Reza; Guo, Pengfei; Bo, Yuming
2014-01-01
The robust H∞ filtering problem is investigated for a class of complex network systems which has stochastic packet dropouts and time delays, combined with disturbance inputs. The packet dropout phenomenon occurs in a random way and the occurrence probability for each measurement output node is governed by an individual random variable. Besides, the time delay phenomenon is assumed to occur in a nonlinear vector-valued function. We aim to design a filter such that the estimation error converges to zero exponentially in the mean square, while the disturbance rejection attenuation is constrained to a given level by means of the H∞ performance index. By constructing the proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the state detection observer for the discrete systems, and the observer gain is also derived by solving linear matrix inequalities. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.
Fault Detection for Non-Gaussian Stochastic Systems with Time-Varying Delay
Directory of Open Access Journals (Sweden)
Tao Li
2013-01-01
Full Text Available Fault detection (FD for non-Gaussian stochastic systems with time-varying delay is studied. The available information for the addressed problem is the input and the measured output probability density functions (PDFs of the system. In this framework, firstly, by constructing an augmented Lyapunov functional, which involves some slack variables and a tuning parameter, a delay-dependent condition for the existence of FD observer is derived in terms of linear matrix inequality (LMI and the fault can be detected through a threshold. Secondly, in order to improve the detection sensitivity performance, the optimal algorithm is applied to minimize the threshold value. Finally, paper-making process example is given to demonstrate the applicability of the proposed approach.
StochPy: a comprehensive, user-friendly tool for simulating stochastic biological processes.
Directory of Open Access Journals (Sweden)
Timo R Maarleveld
Full Text Available Single-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models are indispensable for the study of phenotypic stochasticity in cellular decision-making and cell survival. There is a demand for versatile, stochastic modeling environments with extensive, preprogrammed statistics functions and plotting capabilities that hide the mathematics from the novice users and offers low-level programming access to the experienced user. Here we present StochPy (Stochastic modeling in Python, which is a flexible software tool for stochastic simulation in cell biology. It provides various stochastic simulation algorithms, SBML support, analyses of the probability distributions of molecule copy numbers and event waiting times, analyses of stochastic time series, and a range of additional statistical functions and plotting facilities for stochastic simulations. We illustrate the functionality of StochPy with stochastic models of gene expression, cell division, and single-molecule enzyme kinetics. StochPy has been successfully tested against the SBML stochastic test suite, passing all tests. StochPy is a comprehensive software package for stochastic simulation of the molecular control networks of living cells. It allows novice and experienced users to study stochastic phenomena in cell biology. The integration with other Python software makes StochPy both a user-friendly and easily extendible simulation tool.
Stochastic simulation of regional groundwater flow in Beishan area
International Nuclear Information System (INIS)
Dong Yanhui; Li Guomin
2010-01-01
Because of the hydrogeological complexity, traditional thinking of aquifer characteristics is not appropriate for groundwater system in Beishan area. Uncertainty analysis of groundwater models is needed to examine the hydrologic effects of spatial heterogeneity. In this study, fast Fourier transform spectral method (FFTS) was used to generate the random horizontal permeability parameters. Depth decay and vertical anisotropy of hydraulic conductivity were included to build random permeability models. Based on high-performance computers, hundreds of groundwater flow models were simulated. Through stochastic simulations, the effect of heterogeneity to groundwater flow pattern was analyzed. (authors)
Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.
Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O
2006-03-01
The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.
Hybrid framework for the simulation of stochastic chemical kinetics
Duncan, Andrew; Erban, Radek; Zygalakis, Konstantinos
2016-12-01
Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the "fast" reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.
Zheng, Ying; Wong, David Shan-Hill; Wang, Yan-Wei; Fang, Huajing
2014-07-01
In many batch-based industrial manufacturing processes, feedback run-to-run control is used to improve production quality. However, measurements may be expensive and cannot always be performed online. Thus, the measurement delay always exists. The metrology delay will affect the stability and performance of the process. Moreover, since quality measurements are performed offline, delay is not fixed but is stochastic in nature. In this paper, a modeling approach Takagi-Sugeno (T-S) model is presented to handle stochastic metrology delay in both single-product and mixed-product processes. Based on the Markov characteristics of the delay, the membership of the T-S model is derived. Performance indices such as the mean and the variance of the closed-loop output of the exponentially weighted moving average (EWMA) control algorithm can be derived. A steady-state error of the process output always exists, which leads the output deviating from the target. To remove the steady-state error, an algorithm called compensatory EWMA run-to-run (COM-EWMA-RtR) algorithm is proposed. The validity of the T-S model analysis and the efficiency of the proposed COM-EWMA-RtR algorithm are confirmed by simulation.
Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations
Energy Technology Data Exchange (ETDEWEB)
Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory
2008-01-01
We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.
Cox, S.G.
2012-01-01
The thesis deals with various aspects of the study of stochastic partial differential equations driven by Gaussian noise. The approach taken is functional analytic rather than probabilistic: the stochastic partial differential equation is interpreted as an ordinary stochastic differential equation
Jia, Qing-Shan
2012-01-01
The dynamics of many systems nowadays follow not only physical laws but also man-made rules. These systems are known as discrete event dynamic systems and their performances can be accurately evaluated only through simulations. Existing studies on simulation-based optimization (SBO) usually assume deterministic simulation time for each replication. However, in many applications such as evacuation, smoke detection, and territory exploration, the simulation time is stochastic due to the randomn...
Numerical Simulation of the Heston Model under Stochastic Correlation
Directory of Open Access Journals (Sweden)
Long Teng
2017-12-01
Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.
Stochastic simulation of ecohydrological interactions between vegetation and groundwater
Dwelle, M. C.; Ivanov, V. Y.; Sargsyan, K.
2017-12-01
The complex interactions between groundwater and vegetation in the Amazon rainforest may yield vital ecophysiological interactions in specific landscape niches such as buffering plant water stress during dry season or suppression of water uptake due to anoxic conditions. Representation of such processes is greatly impacted by both external and internal sources of uncertainty: inaccurate data and subjective choice of model representation. The models that can simulate these processes are complex and computationally expensive, and therefore make it difficult to address uncertainty using traditional methods. We use the ecohydrologic model tRIBS+VEGGIE and a novel uncertainty quantification framework applied to the ZF2 watershed near Manaus, Brazil. We showcase the capability of this framework for stochastic simulation of vegetation-hydrology dynamics. This framework is useful for simulation with internal and external stochasticity, but this work will focus on internal variability of groundwater depth distribution and model parameterizations. We demonstrate the capability of this framework to make inferences on uncertain states of groundwater depth from limited in situ data, and how the realizations of these inferences affect the ecohydrological interactions between groundwater dynamics and vegetation function. We place an emphasis on the probabilistic representation of quantities of interest and how this impacts the understanding and interpretation of the dynamics at the groundwater-vegetation interface.
Disordered Stabilization of Stochastic Delay Systems: The Disorder-Dependent Approach
Directory of Open Access Journals (Sweden)
Guoliang Wang
2017-01-01
Full Text Available In this paper, a general stabilization problem of stochastic delay systems is realized by a disordered controller and studied by exploiting the disorder-dependent approach. Different from the traditional results, the stabilizing controller here experiences a disorder between control gains and system states. Firstly, the above disorder is described by the robust method, whose probability distribution is embodied by a Markov process with two modes. Based on this description, a kind of disordered controller having special uncertainties and depending on a Markov process is proposed. Then, by exploiting a disorder-dependent Lyapunov functional, two respective conditions for the existence of such a disordered controller are provided with LMIs. Moreover, the presented results are further extended to a general case that the corresponding transition rate matrix of the disordered controller has uncertainties. Finally, a numerical example is exploited to demonstrate the effectiveness and superiority of the proposed methods.
Zhang, Ling
2017-01-01
The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
Sakthivel, R.; Karthik Raja, U.; Mathiyalagan, K.; Leelamani, A.
2012-03-01
This paper is concerned with the problem of robust stabilization and H∞ control for a class of uncertain stochastic neural networks with time-varying delays and time-varying norm-bounded parameter uncertainties. The delay is of a time-varying nature, and the activation functions are assumed to be neither differentiable nor strictly monotonic. Moreover, the description of the activation functions is more general than the commonly used Lipschitz conditions. By using the Lyapunov function approach together with the linear matrix inequality (LMI) technique, for the robust stabilization we propose a state feedback controller to ensure that the closed loop system is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. For the robust H∞ control problem, a state feedback controller is designed such that in addition to the requirement of robust stability, a prescribed H∞ performance level is to be satisfied. The results obtained are formulated in terms of LMIs which can be easily checked by the MATLAB LMI control toolbox. Numerical examples are presented to illustrate the effectiveness of the obtained method and the improvement over some existing results.
Fuzzy delay model based fault simulator for crosstalk delay fault test ...
Indian Academy of Sciences (India)
In this paper, the fuzzy delay model is employed for test generation of crosstalk delay faults in ... Section 2 reviews the previous works on test generation and simulation of asynchronous sequential circuits. ...... Takahashi H, Keller K J, Le K T, Saluja K K and Takamatsu Y 2005 A Method for Reducing the Target. Fault list of ...
Stochastic Mesocortical Dynamics and Robustness of Working Memory during Delay-Period.
Directory of Open Access Journals (Sweden)
Melissa Reneaux
Full Text Available The role of prefronto-mesoprefrontal system in the dopaminergic modulation of working memory during delayed response tasks is well-known. Recently, a dynamical model of the closed-loop mesocortical circuit has been proposed which employs a deterministic framework to elucidate the system's behavior in a qualitative manner. Under natural conditions, noise emanating from various sources affects the circuit's functioning to a great extent. Accordingly in the present study, we reformulate the model into a stochastic framework and investigate its steady state properties in the presence of constant background noise during delay-period. From the steady state distribution, global potential landscape and signal-to-noise ratio are obtained which help in defining robustness of the circuit dynamics. This provides insight into the robustness of working memory during delay-period against its disruption due to background noise. The findings reveal that the global profile of circuit's robustness is predominantly governed by the level of D1 receptor activity and high D1 receptor stimulation favors the working memory-associated sustained-firing state over the spontaneous-activity state of the system. Moreover, the circuit's robustness is further fine-tuned by the levels of excitatory and inhibitory activities in a way such that the robustness of sustained-firing state exhibits an inverted-U shaped profile with respect to D1 receptor stimulation. It is predicted that the most robust working memory is formed possibly at a subtle ratio of the excitatory and inhibitory activities achieved at a critical level of D1 receptor stimulation. The study also paves a way to understand various cognitive deficits observed in old-age, acute stress and schizophrenia and suggests possible mechanistic routes to the working memory impairments based on the circuit's robustness profile.
Stochastic Mesocortical Dynamics and Robustness of Working Memory during Delay-Period.
Reneaux, Melissa; Gupta, Rahul; Karmeshu
2015-01-01
The role of prefronto-mesoprefrontal system in the dopaminergic modulation of working memory during delayed response tasks is well-known. Recently, a dynamical model of the closed-loop mesocortical circuit has been proposed which employs a deterministic framework to elucidate the system's behavior in a qualitative manner. Under natural conditions, noise emanating from various sources affects the circuit's functioning to a great extent. Accordingly in the present study, we reformulate the model into a stochastic framework and investigate its steady state properties in the presence of constant background noise during delay-period. From the steady state distribution, global potential landscape and signal-to-noise ratio are obtained which help in defining robustness of the circuit dynamics. This provides insight into the robustness of working memory during delay-period against its disruption due to background noise. The findings reveal that the global profile of circuit's robustness is predominantly governed by the level of D1 receptor activity and high D1 receptor stimulation favors the working memory-associated sustained-firing state over the spontaneous-activity state of the system. Moreover, the circuit's robustness is further fine-tuned by the levels of excitatory and inhibitory activities in a way such that the robustness of sustained-firing state exhibits an inverted-U shaped profile with respect to D1 receptor stimulation. It is predicted that the most robust working memory is formed possibly at a subtle ratio of the excitatory and inhibitory activities achieved at a critical level of D1 receptor stimulation. The study also paves a way to understand various cognitive deficits observed in old-age, acute stress and schizophrenia and suggests possible mechanistic routes to the working memory impairments based on the circuit's robustness profile.
Stochastic simulation of chemically reacting systems using multi-core processors.
Gillespie, Colin S
2012-01-07
In recent years, computer simulations have become increasingly useful when trying to understand the complex dynamics of biochemical networks, particularly in stochastic systems. In such situations stochastic simulation is vital in gaining an understanding of the inherent stochasticity present, as these models are rarely analytically tractable. However, a stochastic approach can be computationally prohibitive for many models. A number of approximations have been proposed that aim to speed up stochastic simulations. However, the majority of these approaches are fundamentally serial in terms of central processing unit (CPU) usage. In this paper, we propose a novel simulation algorithm that utilises the potential of multi-core machines. This algorithm partitions the model into smaller sub-models. These sub-models are then simulated, in parallel, on separate CPUs. We demonstrate that this method is accurate and can speed-up the simulation by a factor proportional to the number of processors available.
An Exploration Algorithm for Stochastic Simulators Driven by Energy Gradients
Directory of Open Access Journals (Sweden)
Anastasia S. Georgiou
2017-06-01
Full Text Available In recent work, we have illustrated the construction of an exploration geometry on free energy surfaces: the adaptive computer-assisted discovery of an approximate low-dimensional manifold on which the effective dynamics of the system evolves. Constructing such an exploration geometry involves geometry-biased sampling (through both appropriately-initialized unbiased molecular dynamics and through restraining potentials and, machine learning techniques to organize the intrinsic geometry of the data resulting from the sampling (in particular, diffusion maps, possibly enhanced through the appropriate Mahalanobis-type metric. In this contribution, we detail a method for exploring the conformational space of a stochastic gradient system whose effective free energy surface depends on a smaller number of degrees of freedom than the dimension of the phase space. Our approach comprises two steps. First, we study the local geometry of the free energy landscape using diffusion maps on samples computed through stochastic dynamics. This allows us to automatically identify the relevant coarse variables. Next, we use the information garnered in the previous step to construct a new set of initial conditions for subsequent trajectories. These initial conditions are computed so as to explore the accessible conformational space more efficiently than by continuing the previous, unbiased simulations. We showcase this method on a representative test system.
Constant-complexity stochastic simulation algorithm with optimal binning
Energy Technology Data Exchange (ETDEWEB)
Sanft, Kevin R., E-mail: kevin@kevinsanft.com [Department of Computer Science, University of North Carolina Asheville, Asheville, North Carolina 28804 (United States); Othmer, Hans G., E-mail: othmer@math.umn.edu [School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2015-08-21
At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie’s Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.
Weiss, Charles J.
2017-01-01
An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…
International Nuclear Information System (INIS)
Zhang Min-Min; Mei Dong-Cheng; Wang Can-Jun
2011-01-01
The effects of the time delay on the upper bound of the time derivative of information entropy are investigated in a time-delayed dynamical system driven by correlated noise. Using the Markov approximation of the stochastic delay differential equations and the Schwartz inequality principle, we obtain an analytical expression for the upper bound U B (t) of the time derivative of the information entropy. The results show that there is a critical value of τ (delay time), and U B (t) presents opposite behaviours on difference sides of the critical value. For the case of the weak additive noise, τ can induce a reentrance transition. Delay time τ also causes a reversal behaviour in U B (t)-λ plot, where λ denotes the degree of the correlation between the two noises. (general)
Experiences using DAKOTA stochastic expansion methods in computational simulations.
Energy Technology Data Exchange (ETDEWEB)
Templeton, Jeremy Alan; Ruthruff, Joseph R.
2012-01-01
Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.
Stochastic simulation and robust design optimization of integrated photonic filters
Directory of Open Access Journals (Sweden)
Weng Tsui-Wei
2016-07-01
Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.
Hybrid Multilevel Monte Carlo Simulation of Stochastic Reaction Networks
Moraes, Alvaro
2015-01-07
Stochastic reaction networks (SRNs) is a class of continuous-time Markov chains intended to describe, from the kinetic point of view, the time-evolution of chemical systems in which molecules of different chemical species undergo a finite set of reaction channels. This talk is based on articles [4, 5, 6], where we are interested in the following problem: given a SRN, X, defined though its set of reaction channels, and its initial state, x0, estimate E (g(X(T))); that is, the expected value of a scalar observable, g, of the process, X, at a fixed time, T. This problem lead us to define a series of Monte Carlo estimators, M, such that, with high probability can produce values close to the quantity of interest, E (g(X(T))). More specifically, given a user-selected tolerance, TOL, and a small confidence level, η, find an estimator, M, based on approximate sampled paths of X, such that, P (|E (g(X(T))) − M| ≤ TOL) ≥ 1 − η; even more, we want to achieve this objective with near optimal computational work. We first introduce a hybrid path-simulation scheme based on the well-known stochastic simulation algorithm (SSA)[3] and the tau-leap method [2]. Then, we introduce a Multilevel Monte Carlo strategy that allows us to achieve a computational complexity of order O(T OL−2), this is the same computational complexity as in an exact method but with a smaller constant. We provide numerical examples to show our results.
Rejection-free stochastic simulation of BNGL-encoded models
Energy Technology Data Exchange (ETDEWEB)
Hlavacek, William S [Los Alamos National Laboratory; Monine, Michael I [Los Alamos National Laboratory; Colvin, Joshua [TRANSLATIONAL GENOM; Posner, Richard G [NORTHERN ARIZONA UNIV.; Von Hoff, Daniel D [TRANSLATIONAL GENOMICS RESEARCH INSTIT.
2009-01-01
Formal rules encoded using the BioNetGen language (BNGL) can be used to represent the system-level dynamics of molecular interactions. Rules allow one to compactly and implicitly specify the reaction network implied by a set of molecules and their interactions. Typically, the reaction network implied by a set of rules is large, which makes generation of the underlying rule-defined network expensive. Moreover, the cost of conventional simulation methods typically depends on network size. Together these factors have limited application of the rule-based modeling approach. To overcome this limitation, several methods have recently been developed for determining the reaction dynamics implied by rules while avoiding the expensive step of network generation. The cost of these 'network-free' simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is needed for the analysis of rule-based models of biochemical systems. Here, we present a software tool called RuleMonkey that implements a network-free stochastic simulation method for rule-based models. The method is rejection free, unlike other network-free methods that introduce null events (i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated), and the software is capable of simulating models encoded in BNGL, a general-purpose model-specification language. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant general-purpose simulator for rule-based models, as well as various problem-specific codes that implement network-free simulation methods. RuleMonkey enables the simulation of models defined by rule sets that imply large-scale reaction networks. It is faster than DYNSTOC for stiff problems, although it requires the use of more computer memory. RuleMonkey is freely available for non-commercial use as a stand
Rosinberg, M. L.; Munakata, T.; Tarjus, G.
2015-04-01
Response lags are generic to almost any physical system and often play a crucial role in the feedback loops present in artificial nanodevices and biological molecular machines. In this paper, we perform a comprehensive study of small stochastic systems governed by an underdamped Langevin equation and driven out of equilibrium by a time-delayed continuous feedback control. In their normal operating regime, these systems settle in a nonequilibrium steady state in which work is permanently extracted from the surrounding heat bath. By using the Fokker-Planck representation of the dynamics, we derive a set of second-law-like inequalities that provide bounds to the rate of extracted work. These inequalities involve additional contributions characterizing the reduction of entropy production due to the continuous measurement process. We also show that the non-Markovian nature of the dynamics requires a modification of the basic relation linking dissipation to the breaking of time-reversal symmetry at the level of trajectories. The modified relation includes a contribution arising from the acausal character of the reverse process. This, in turn, leads to another second-law-like inequality. We illustrate the general formalism with a detailed analytical and numerical study of a harmonic oscillator driven by a linear feedback, which describes actual experimental setups.
Wang, Fen; Chen, Yuanlong; Liu, Meichun
2018-02-01
Stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays play an increasingly important role in the design and implementation of neural network systems. Under the framework of Filippov solutions, the issues of the pth moment exponential stability of stochastic memristor-based BAM neural networks are investigated. By using the stochastic stability theory, Itô's differential formula and Young inequality, the criteria are derived. Meanwhile, with Lyapunov approach and Cauchy-Schwarz inequality, we derive some sufficient conditions for the mean square exponential stability of the above systems. The obtained results improve and extend previous works on memristor-based or usual neural networks dynamical systems. Four numerical examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB
Klingbeil, G.
2011-02-25
Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. Results: The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user\\'s models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. © The Author 2011. Published by Oxford University Press. All rights reserved.
Computing Optimal Stochastic Portfolio Execution Strategies: A Parametric Approach Using Simulations
Moazeni, Somayeh; Coleman, Thomas F.; Li, Yuying
2010-09-01
Computing optimal stochastic portfolio execution strategies under appropriate risk consideration presents great computational challenge. We investigate a parametric approach for computing optimal stochastic strategies using Monte Carlo simulations. This approach allows reduction in computational complexity by computing coefficients for a parametric representation of a stochastic dynamic strategy based on static optimization. Using this technique, constraints can be similarly handled using appropriate penalty functions. We illustrate the proposed approach to minimize the expected execution cost and Conditional Value-at-Risk (CVaR).
Li, Zhe; Xu, Rui
2012-04-01
In this paper, a class of stochastic reaction-diffusion neural networks with time delays in the leakage terms is investigated. By using the Lyapunov functional method and linear matrix inequality (LMI) approach, sufficient conditions are derived to ensure the global asymptotic stability of an equilibrium point of the networks in the mean square. The results can be easily solved by MATLAB LMI toolbox. Finally, a numerical example is given to demonstrate the effectiveness and conservativeness of our theoretical results.
Directory of Open Access Journals (Sweden)
Zhaohui Chen
2013-01-01
Full Text Available The delay-dependent exponential L2-L∞ performance analysis and filter design are investigated for stochastic systems with mixed delays and nonlinear perturbations. Based on the delay partitioning and integral partitioning technique, an improved delay-dependent sufficient condition for the existence of the L2-L∞ filter is established, by choosing an appropriate Lyapunov-Krasovskii functional and constructing a new integral inequality. The full-order filter design approaches are obtained in terms of linear matrix inequalities (LMIs. By solving the LMIs and using matrix decomposition, the desired filter gains can be obtained, which ensure that the filter error system is exponentially stable with a prescribed L2-L∞ performance γ. Numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.
Pan, Indranil; Das, Saptarshi; Gupta, Amitava
2011-01-01
An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Ali, M. Syed
2011-01-01
In this paper, the global stability of Takagi—Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature. (general)
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar
2018-02-01
In this paper, we study the dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases which make the research more complex. The environment variability in this paper is characterized by white noise and Lévy noise. We establish sufficient conditions for extinction and persistence in the mean of the two epidemic diseases. It is shown that: (i) time delay and Lévy noise have important effects on the persistence and extinction of epidemic diseases; (ii) two diseases can coexist under certain conditions.
Stochastic simulations of normal aging and Werner's syndrome.
Qi, Qi
2014-04-26
Human cells typically consist of 23 pairs of chromosomes. Telomeres are repetitive sequences of DNA located at the ends of chromosomes. During cell replication, a number of basepairs are lost from the end of the chromosome and this shortening restricts the number of divisions that a cell can complete before it becomes senescent, or non-replicative. In this paper, we use Monte Carlo simulations to form a stochastic model of telomere shortening to investigate how telomere shortening affects normal aging. Using this model, we study various hypotheses for the way in which shortening occurs by comparing their impact on aging at the chromosome and cell levels. We consider different types of length-dependent loss and replication probabilities to describe these processes. After analyzing a simple model for a population of independent chromosomes, we simulate a population of cells in which each cell has 46 chromosomes and the shortest telomere governs the replicative potential of the cell. We generalize these simulations to Werner\\'s syndrome, a condition in which large sections of DNA are removed during cell division and, amongst other conditions, results in rapid aging. Since the mechanisms governing the loss of additional basepairs are not known, we use our model to simulate a variety of possible forms for the rate at which additional telomeres are lost per replication and several expressions for how the probability of cell division depends on telomere length. As well as the evolution of the mean telomere length, we consider the standard deviation and the shape of the distribution. We compare our results with a variety of data from the literature, covering both experimental data and previous models. We find good agreement for the evolution of telomere length when plotted against population doubling.
Multinomial tau-leaping method for stochastic kinetic simulations
Pettigrew, Michel F.; Resat, Haluk
2007-02-01
We introduce the multinomial tau-leaping (MτL) method for general reaction networks with multichannel reactant dependencies. The MτL method is an extension of the binomial tau-leaping method where efficiency is improved in several ways. First, τ-leaping steps are determined simply and efficiently using a priori information and Poisson distribution-based estimates of expectation values for reaction numbers over a tentative τ-leaping step. Second, networks are partitioned into closed groups of reactions and corresponding reactants in which no group reactant set is found in any other group. Third, product formation is factored into upper-bound estimation of the number of times a particular reaction occurs. Together, these features allow larger time steps where the numbers of reactions occurring simultaneously in a multichannel manner are estimated accurately using a multinomial distribution. Furthermore, we develop a simple procedure that places a specific upper bound on the total reaction number to ensure non-negativity of species populations over a single multiple-reaction step. Using two disparate test case problems involving cellular processes—epidermal growth factor receptor signaling and a lactose operon model—we show that the τ-leaping based methods such as the MτL algorithm can significantly reduce the number of simulation steps thus increasing the numerical efficiency over the exact stochastic simulation algorithm by orders of magnitude.
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
Multinomial Tau-Leaping Method for Stochastic Kinetic Simulations
Energy Technology Data Exchange (ETDEWEB)
Pettigrew, Michel F.; Resat, Haluk
2007-02-28
We introduce the multinomial tau-leaping (MtL) method, an improved version of the binomial tau-leaping method, for general reaction networks. Improvements in efficiency are achieved in several ways. Firstly, tau-leaping steps are determined simply and efficiently using a-prior information. Secondly, networks are partitioned into closed groups of reactions and corresponding reactants in which no group reactant or reaction is found in any other group. Thirdly, product formation is factored into upper bound estimation of the number of times a particular reaction occurs. Together, these features allow for larger time steps where the numbers of reactions occurring simultaneously in a multi-channel manner are estimated accurately using a multinomial distribution. Using a wide range of test case problems of scientific and practical interest involving cellular processes, such as epidermal growth factor receptor signaling and lactose operon model incorporating gene transcription and translation, we show that tau-leaping based methods like the MtL algorithm can significantly reduce the number of simulation steps thus increasing the numerical efficiency over the exact stochastic simulation algorithm by orders of magnitude. Furthermore, the simultaneous multi-channel representation capability of the MtL algorithm makes it a candidate for FPGA implementation or for parallelization in parallel computing environments.
Real option valuation of power transmission investments by stochastic simulation
International Nuclear Information System (INIS)
Pringles, Rolando; Olsina, Fernando; Garcés, Francisco
2015-01-01
Network expansions in power markets usually lead to investment decisions subject to substantial irreversibility and uncertainty. Hence, investors need valuing the flexibility to change decisions as uncertainty unfolds progressively. Real option analysis is an advanced valuation technique that enables planners to take advantage of market opportunities while preventing or mitigating losses if future conditions evolve unfavorably. In the past, many approaches for valuing real options have been developed. However, applying these methods to value transmission projects is often inappropriate as revenue cash flows are path-dependent and affected by a myriad of uncertain variables. In this work, a valuation technique based on stochastic simulation and recursive dynamic programming, called Least-Square Monte Carlo, is applied to properly value the deferral option in a transmission investment. The effect of option's maturity, the initial outlay and the capital cost upon the value of the postponement option is investigated. Finally, sensitivity analysis determines optimal decision regions to execute, postpone or reject the investment projects. - Highlights: • A modern investment appraisal method is applied to value power transmission projects. • The value of the option to postpone decision to invest in transmission projects is assessed. • Simulation methods are best suited for valuing real options in transmission investments
Stochastic analysis of spatio-temporal variations of GNSS wet delays for meteorological applications
Reguzzoni, Ivan; Fermi, Alessandro; Realini, Eugenio; Venuti, Giovanna; Oigawa, Masanori; Tsuda, Toshitaka
2015-04-01
Although designed for positioning purposes, the Global Navigation Satellite System (GNSS) can be also exploited for atmospheric sounding and in particular for troposphere water vapor content monitoring. The water vapor content in fact reflects in a GNSS signal delay, which can be evaluated in terms of Zenith Wet Delay (ZWD). This is an average parameter accounting for delays affecting the signals arriving to a GNSS receiver from all satellites in view. The modeling of water vapor variations in space and time is still a challenging research topic: since it is difficult to characterize it in a deterministic way, stochastic approaches are often preferred; moreover, the turbulent behavior demands a high-resolution sampling both in time and space. ZWDs derived from regional permanent GNSS networks result in high-rate time series, but the space resolution is still too loose for reconstructing the turbulent component of the water vapor content. Possible solutions can be envisaged from the coupling of GNSS with radar or SAR products or by the possibility to exploit low-cost GNSS receivers designed in view of meteorological applications. With the aim of assessing the potential use of GNSS observations for this purpose, a network of 17 dual-frequency receivers, installed near the Uji campus of Kyoto University, Japan, was used. The network covers an area of about 10×6 km2 and inter-station distances range between 1 and 2 km. All receivers are identical and observe GPS, GLONASS and QZSS at 1 Hz. Weather stations are installed within the network, measuring ground pressure and temperature for accurate zenith wet delay (ZWD) and precipitable water vapor (PWV) retrieval. In this work we exploit ZWDs derived by Precise Point Positioning (PPP) on observations of this network, which were extensively validated in previous studies by comparison with independent measurements by radiosondes and microwave radiometers. The delay at a given epoch is modeled as a homogeneous random field
Stochastic simulation and Monte-Carlo methods; Simulation stochastique et methodes de Monte-Carlo
Energy Technology Data Exchange (ETDEWEB)
Graham, C. [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France); Ecole Polytechnique, 91 - Palaiseau (France); Talay, D. [Institut National de Recherche en Informatique et en Automatique (INRIA), 78 - Le Chesnay (France); Ecole Polytechnique, 91 - Palaiseau (France)
2011-07-01
This book presents some numerical probabilistic methods of simulation with their convergence speed. It combines mathematical precision and numerical developments, each proposed method belonging to a precise theoretical context developed in a rigorous and self-sufficient manner. After some recalls about the big numbers law and the basics of probabilistic simulation, the authors introduce the martingales and their main properties. Then, they develop a chapter on non-asymptotic estimations of Monte-Carlo method errors. This chapter gives a recall of the central limit theorem and precises its convergence speed. It introduces the Log-Sobolev and concentration inequalities, about which the study has greatly developed during the last years. This chapter ends with some variance reduction techniques. In order to demonstrate in a rigorous way the simulation results of stochastic processes, the authors introduce the basic notions of probabilities and of stochastic calculus, in particular the essential basics of Ito calculus, adapted to each numerical method proposed. They successively study the construction and important properties of the Poisson process, of the jump and deterministic Markov processes (linked to transport equations), and of the solutions of stochastic differential equations. Numerical methods are then developed and the convergence speed results of algorithms are rigorously demonstrated. In passing, the authors describe the probabilistic interpretation basics of the parabolic partial derivative equations. Non-trivial applications to real applied problems are also developed. (J.S.)
Simulation of nuclear plant operation into a stochastic energy production model
International Nuclear Information System (INIS)
Pacheco, R.L.
1983-04-01
A simulation model of nuclear plant operation is developed to fit into a stochastic energy production model. In order to improve the stochastic model used, and also reduce its computational time burdened by the aggregation of the model of nuclear plant operation, a study of tail truncation of the unsupplied demand distribution function has been performed. (E.G.) [pt
A low-bias simulation scheme for the SABR stochastic volatility model
B. Chen (Bin); C.W. Oosterlee (Cornelis); J.A.M. van der Weide
2012-01-01
htmlabstractThe Stochastic Alpha Beta Rho Stochastic Volatility (SABR-SV) model is widely used in the financial industry for the pricing of fixed income instruments. In this paper we develop an lowbias simulation scheme for the SABR-SV model, which deals efficiently with (undesired)
Transport in two-dimensional scattering stochastic media: Simulations and models
International Nuclear Information System (INIS)
Haran, O.; Shvarts, D.; Thieberger, R.
1999-01-01
Classical monoenergetic transport of neutral particles in a binary, scattering, two-dimensional stochastic media is discussed. The work focuses on the effective representation of the stochastic media, as obtained by averaging over an ensemble of random realizations of the media. Results of transport simulations in two-dimensional stochastic media are presented and compared against results from several models. Problems for which this work is relevant range from transport through cracked or porous concrete shields and transport through boiling coolant of a nuclear reactor, to transport through stochastic stellar atmospheres
Stochastic differential equations and numerical simulation for pedestrians
Energy Technology Data Exchange (ETDEWEB)
Garrison, J.C.
1993-07-27
The mathematical foundation of the Ito interpretation of stochastic ordinary and partial differential equations is briefly explained. This provides the basis for a review of simple difference approximations to stochastic differential equations. An example arising in the theory of optical switching is discussed.
Ekofisk chalk: core measurements, stochastic reconstruction, network modeling and simulation
Energy Technology Data Exchange (ETDEWEB)
Talukdar, Saifullah
2002-07-01
This dissertation deals with (1) experimental measurements on petrophysical, reservoir engineering and morphological properties of Ekofisk chalk, (2) numerical simulation of core flood experiments to analyze and improve relative permeability data, (3) stochastic reconstruction of chalk samples from limited morphological information, (4) extraction of pore space parameters from the reconstructed samples, development of network model using pore space information, and computation of petrophysical and reservoir engineering properties from network model, and (5) development of 2D and 3D idealized fractured reservoir models and verification of the applicability of several widely used conventional up scaling techniques in fractured reservoir simulation. Experiments have been conducted on eight Ekofisk chalk samples and porosity, absolute permeability, formation factor, and oil-water relative permeability, capillary pressure and resistivity index are measured at laboratory conditions. Mercury porosimetry data and backscatter scanning electron microscope images have also been acquired for the samples. A numerical simulation technique involving history matching of the production profiles is employed to improve the relative permeability curves and to analyze hysteresis of the Ekofisk chalk samples. The technique was found to be a powerful tool to supplement the uncertainties in experimental measurements. Porosity and correlation statistics obtained from backscatter scanning electron microscope images are used to reconstruct microstructures of chalk and particulate media. The reconstruction technique involves a simulated annealing algorithm, which can be constrained by an arbitrary number of morphological parameters. This flexibility of the algorithm is exploited to successfully reconstruct particulate media and chalk samples using more than one correlation functions. A technique based on conditional simulated annealing has been introduced for exact reproduction of vuggy
Directory of Open Access Journals (Sweden)
Yang Fang
2016-01-01
Full Text Available The robust exponential stability problem for a class of uncertain impulsive stochastic neural networks of neutral-type with Markovian parameters and mixed time-varying delays is investigated. By constructing a proper exponential-type Lyapunov-Krasovskii functional and employing Jensen integral inequality, free-weight matrix method, some novel delay-dependent stability criteria that ensure the robust exponential stability in mean square of the trivial solution of the considered networks are established in the form of linear matrix inequalities (LMIs. The proposed results do not require the derivatives of discrete and distributed time-varying delays to be 0 or smaller than 1. Moreover, the main contribution of the proposed approach compared with related methods lies in the use of three types of impulses. Finally, two numerical examples are worked out to verify the effectiveness and less conservativeness of our theoretical results over existing literature.
Directory of Open Access Journals (Sweden)
Dan Ye
2013-01-01
Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.
DEFF Research Database (Denmark)
Stentoft, Peter Alexander; Munk-Nielsen, Thomas; Mikkelsen, Peter Steen
2017-01-01
In the alternating activated sludge process with rule-based control, online N-measurements are of great importance for maintaining good control. These measurements can be delayed due to sensor processing time, turbulence at the location in the aeration tank where the sensor is placed, etc....... The measurements may also be temporarily unavailable because of recalibration, communication faults or other errors. Here we present a method that handles such delay and missing observations. The model is based on zero order hold stochastic differential equations which use binary signals for influent flow...... and aeration to determine the state of the alternating process. It also uses measured ammonium and nitrate concentrations, which are shifted to account for delay. The method is developed and tested with data from a WWTP located in Kolding, Denmark. Results indicate that even though the model is simple...
Database of Nucleon-Nucleon Scattering Cross Sections by Stochastic Simulation, Phase I
National Aeronautics and Space Administration — A database of nucleon-nucleon elastic differential and total cross sections will be generated by stochastic simulation of the quantum Liouville equation in the...
Simulation cobweb model of price formation with delayed supply
Directory of Open Access Journals (Sweden)
Yatsenko Roman Nikolaevich
2013-03-01
Full Text Available The article presents a simulation cobweb model of price formation with delayed supply. It considers cases with absence and availability of random factors. Randomness is presented in the model as a concept of games with nature with the use of Markov chains. The article studies activity of the retail link in the described environment.
International Nuclear Information System (INIS)
Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.
2014-01-01
The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy
Energy Technology Data Exchange (ETDEWEB)
Fu, Jin, E-mail: iamfujin@hotmail.com [Department of Computer Science, University of California, Santa Barbara (United States); Wu, Sheng, E-mail: sheng@cs.ucsb.edu [Department of Computer Science, University of California, Santa Barbara (United States); Li, Hong, E-mail: hong.li@teradata.com [Teradata Inc., El Segundo, California (United States); Petzold, Linda R., E-mail: petzold@cs.ucsb.edu [Department of Computer Science, University of California, Santa Barbara (United States)
2014-10-01
The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy.
Project Evaluation and Cash Flow Forecasting by Stochastic Simulation
Directory of Open Access Journals (Sweden)
Odd A. Asbjørnsen
1983-10-01
Full Text Available The net present value of a discounted cash flow is used to evaluate projects. It is shown that the LaPlace transform of the cash flow time function is particularly useful when the cash flow profiles may be approximately described by ordinary linear differential equations in time. However, real cash flows are stochastic variables due to the stochastic nature of the disturbances during production.
Rouz, Omid Farkhondeh; Ahmadian, Davood; Milev, Mariyan
2017-12-01
This paper establishes exponential mean square stability of two classes of theta Milstein methods, namely split-step theta Milstein (SSTM) method and stochastic theta Milstein (STM) method, for stochastic differential delay equations (SDDEs). We consider the SDDEs problem under a coupled monotone condition on drift and diffusion coefficients, as well as a necessary linear growth condition on the last term of theta Milstein method. It is proved that the SSTM method with θ ∈ [0, ½] can recover the exponential mean square stability of the exact solution with some restrictive conditions on stepsize, but for θ ∈ (½, 1], we proved that the stability results hold for any stepsize. Then, based on the stability results of SSTM method, we examine the exponential mean square stability of the STM method and obtain the similar stability results to that of the SSTM method. In the numerical section the figures show thevalidity of our claims.
A Simulation-and-Regression Approach for Stochastic Dynamic Programs with Endogenous State Variables
DEFF Research Database (Denmark)
Denault, Michel; Simonato, Jean-Guy; Stentoft, Lars
2013-01-01
We investigate the optimum control of a stochastic system, in the presence of both exogenous (control-independent) stochastic state variables and endogenous (control-dependent) state variables. Our solution approach relies on simulations and regressions with respect to the state variables, but also...... grafts the endogenous state variable into the simulation paths. That is, unlike most other simulation approaches found in the literature, no discretization of the endogenous variable is required. The approach is meant to handle several stochastic variables, offers a high level of flexibility...... in their modeling, and should be at its best in non time-homogenous cases, when the optimal policy structure changes with time. We provide numerical results for a dam-based hydropower application, where the exogenous variable is the stochastic spot price of power, and the endogenous variable is the water level...
FluTE, a publicly available stochastic influenza epidemic simulation model.
Directory of Open Access Journals (Sweden)
Dennis L Chao
2010-01-01
Full Text Available Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this model have realistic social contact networks, and transmission and infections are based on the current state of knowledge of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian A(H2N2 and 2009 pandemic A(H1N1 influenza viruses. We present examples of how this model can be used to study the dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical interventions and social distancing measures. Computer simulation models play an essential role in informing public policy and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage its use and further development.
FluTE, a publicly available stochastic influenza epidemic simulation model.
Chao, Dennis L; Halloran, M Elizabeth; Obenchain, Valerie J; Longini, Ira M
2010-01-29
Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this model have realistic social contact networks, and transmission and infections are based on the current state of knowledge of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian A(H2N2) and 2009 pandemic A(H1N1) influenza viruses. We present examples of how this model can be used to study the dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical interventions and social distancing measures. Computer simulation models play an essential role in informing public policy and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage its use and further development.
International Nuclear Information System (INIS)
Ali, M. Syed
2014-01-01
In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen—Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples
Su, Weiwei; Chen, Yiming
2009-02-01
The paper is concerned with the problem of robust asymptotic stability analysis of stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technology, some sufficient conditions are derived to ensure the global robust convergence of the equilibrium point. The proposed conditions can be checked easily by LMI Control Toolbox in Matlab. Furthermore, all the results are obtained under mild conditions, assuming neither differentiability nor strict monotonicity for activation function. A numerical example is given to demonstrate the effectiveness of our results.
Directory of Open Access Journals (Sweden)
Yuancheng Sun
2016-01-01
Full Text Available For the non-Gaussian singular time-delayed stochastic distribution control (SDC system with unknown external disturbance where the output probability density function (PDF is approximated by the rational square-root B-spline basis function, a robust fault diagnosis and fault tolerant control algorithm is presented. A full-order observer is constructed to estimate the exogenous disturbance and an adaptive observer is used to estimate the fault size. A fault tolerant tracking controller is designed using the feedback of distribution tracking error, fault, and disturbance estimation to let the postfault output PDF still track desired distribution. Finally, a simulation example is included to illustrate the effectiveness of the proposed algorithms and encouraging results have been obtained.
Liu, Jian; Wang, Youguo
2018-03-01
The simultaneous influence of potential asymmetries and time-delayed feedback on stochastic resonance (SR) subject to both periodic force and additive Gaussian white noise is investigated by using two-state theory and small-delay approximation, where three types of asymmetries include well-depth, well-width, and both well-depth and well-width asymmetries, respectively. The asymmetric types and time-delayed feedback determine the behaviors of SR, especially output signal-to-noise ratio (SNR) peaks, optimal additive noise intensity and feedback intensity. Moreover, the largest SNR in asymmetric SR is found to be relatively larger than symmetric one in some cases, whereas in other cases the symmetric SR is superior to asymmetric one, which is of dependence on time delay and feedback intensity. In addition, the SR with well-width asymmetry can suppress stronger noise than that with well-depth asymmetry under the action of same time delay, which is beneficial to weak signal detection.
A discrete event simulation model for evaluating time delays in a pipeline network
Energy Technology Data Exchange (ETDEWEB)
Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)
2009-07-01
Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)
Simulation of the stochastic wave loads using a physical modeling approach
DEFF Research Database (Denmark)
Liu, W.F.; Sichani, Mahdi Teimouri; Nielsen, Søren R.K.
2013-01-01
In analyzing stochastic dynamic systems, analysis of the system uncertainty due to randomness in the loads plays a crucial role. Typically time series of the stochastic loads are simulated using traditional random phase method. This approach combined with fast Fourier transform algorithm makes...... an efficient way of simulating realizations of the stochastic load processes. However it requires many random variables, i.e. in the order of magnitude of 1000, to be included in the load model. Unfortunately having too many random variables in the problem makes considerable difficulties in analyzing system...... reliability or its uncertainty. Moreover applicability of the probability density evolution method on engineering problems faces critical difficulties when the system embeds too many random variables. Hence it is useful to devise a method which can make realization of the stochastic load processes with low...
A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis
Directory of Open Access Journals (Sweden)
Linda J.S. Allen
2017-05-01
Full Text Available Some mathematical methods for formulation and numerical simulation of stochastic epidemic models are presented. Specifically, models are formulated for continuous-time Markov chains and stochastic differential equations. Some well-known examples are used for illustration such as an SIR epidemic model and a host-vector malaria model. Analytical methods for approximating the probability of a disease outbreak are also discussed. Keywords: Branching process, Continuous-time Markov chain, Minor outbreak, Stochastic differential equation, 2000 MSC: 60H10, 60J28, 92D30
Stochastic simulation of acoustic communication in turbulent shallow water
DEFF Research Database (Denmark)
Bjerrum-Niese, Christian; Lutzen, R.
2000-01-01
This paper presents a stochastic model of a turbulent shallow-water acoustic channel. The model utilizes a Monte Carlo realization method to predict signal transmission conditions. The main output from the model are statistical descriptions of the signal-to-multipath ratio (SMR) and signal fading...
Optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps
Qiu, Hong; Deng, Wenmin
2018-02-01
In this paper, the optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps is considered. We introduce two kinds of environmental perturbations in this model. One is called white noise which is continuous and is described by a stochastic integral with respect to the standard Brownian motion. And the other one is jumping noise which is modeled by a Lévy process. Under some mild assumptions, the critical values between extinction and persistent in the mean of each species are established. The sufficient and necessary criteria for the existence of optimal harvesting policy are established and the optimal harvesting effort and the maximum of sustainable yield are also obtained. We utilize the ergodic method to discuss the optimal harvesting problem. The results show that white noises and Lévy noises significantly affect the optimal harvesting policy while time delays is harmless for the optimal harvesting strategy in some cases. At last, some numerical examples are introduced to show the validity of our results.
Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor
International Nuclear Information System (INIS)
Saha Ray, S.
2012-01-01
Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.
GillesPy: A Python Package for Stochastic Model Building and Simulation.
Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R
2016-09-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.
Some simulation aspects, from molecular systems to stochastic geometries of pebble bed reactors
International Nuclear Information System (INIS)
Mazzolo, A.
2009-06-01
After a brief presentation of his teaching and supervising activities, the author gives an overview of his research activities: investigation of atoms under high intensity magnetic field (investigation of the electronic structure under these fields), studies of theoretical and numerical electrochemistry (simulation coupling molecular dynamics and quantum calculations, comprehensive simulations of molecular dynamics), and studies relating stochastic geometry and neutron science
Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession
Hong S. He; David J. Mladenoff
1999-01-01
Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...
Stochastic linear multistep methods for the simulation of chemical kinetics
Energy Technology Data Exchange (ETDEWEB)
Barrio, Manuel, E-mail: mbarrio@infor.uva.es [Departamento de Informática, University of Valladolid, Valladolid (Spain); Burrage, Kevin [Department of Computer Science, University of Oxford, Oxford (United Kingdom); School of Mathematical Sciences, Queensland University of Technology, Brisbane (Australia); Burrage, Pamela [School of Mathematical Sciences, Queensland University of Technology, Brisbane (Australia)
2015-02-14
In this paper, we introduce the Stochastic Adams-Bashforth (SAB) and Stochastic Adams-Moulton (SAM) methods as an extension of the τ-leaping framework to past information. Using the Θ-trapezoidal τ-leap method of weak order two as a starting procedure, we show that the k-step SAB method with k ≥ 3 is order three in the mean and correlation, while a predictor-corrector implementation of the SAM method is weak order three in the mean but only order one in the correlation. These convergence results have been derived analytically for linear problems and successfully tested numerically for both linear and non-linear systems. A series of additional examples have been implemented in order to demonstrate the efficacy of this approach.
Symplectic structure of quantum phase and stochastic simulation of qubits
International Nuclear Information System (INIS)
Rybakov, Yu.P.; Kamalov, T.F.
2009-01-01
Starting from the projective interpretation of the Hilbert space, a special stochastic representation of the wave function in Quantum Mechanics (QM), based on soliton realization of extended particles, is considered with the aim to model quantum states via classical computer. Entangled solitons construction having been earlier introduced in the nonlinear spinor field model for the calculation of the Einstein-Podolsky-Rosen (EPR) spin correlation for the spin-1/2 particles in the singlet state, another example is now studied. The latter concerns the entangled envelope solitons in Kerr dielectric with cubic nonlinearity, where we use two-soliton configurations for modeling the entangled states of photons. Finally, the concept of stochastic qubits is used for quantum computing modeling
Directory of Open Access Journals (Sweden)
Zygourakis Kyriacos
2011-07-01
Full Text Available Abstract Background The lac operon genetic switch is considered as a paradigm of genetic regulation. This system has a positive feedback loop due to the LacY permease boosting its own production by the facilitated transport of inducer into the cell and the subsequent de-repression of the lac operon genes. Previously, we have investigated the effect of stochasticity in an artificial lac operon network at the single cell level by comparing corresponding deterministic and stochastic kinetic models. Results This work focuses on the dynamics of cell populations by incorporating the above kinetic scheme into two Monte Carlo (MC simulation frameworks. The first MC framework assumes stochastic reaction occurrence, accounts for stochastic DNA duplication, division and partitioning and tracks all daughter cells to obtain the statistics of the entire cell population. In order to better understand how stochastic effects shape cell population distributions, we develop a second framework that assumes deterministic reaction dynamics. By comparing the predictions of the two frameworks, we conclude that stochasticity can create or destroy bimodality, and may enhance phenotypic heterogeneity. Conclusions Our results show how various sources of stochasticity act in synergy with the positive feedback architecture, thereby shaping the behavior at the cell population level. Further, the insights obtained from the present study allow us to construct simpler and less computationally intensive models that can closely approximate the dynamics of heterogeneous cell populations.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
Navarro, María
2016-12-26
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Fan, Kuangang; Zhang, Yan; Gao, Shujing; Wei, Xiang
2017-09-01
A class of SIR epidemic model with generalized nonlinear incidence rate is presented in this paper. Temporary immunity and stochastic perturbation are also considered. The existence and uniqueness of the global positive solution is achieved. Sufficient conditions guaranteeing the extinction and persistence of the epidemic disease are established. Moreover, the threshold behavior is discussed, and the threshold value R0 is obtained. We show that if R0 1, then the system remains permanent in the mean.
A higher-order numerical framework for stochastic simulation of chemical reaction systems.
Székely, Tamás
2012-07-15
BACKGROUND: In this paper, we present a framework for improving the accuracy of fixed-step methods for Monte Carlo simulation of discrete stochastic chemical kinetics. Stochasticity is ubiquitous in many areas of cell biology, for example in gene regulation, biochemical cascades and cell-cell interaction. However most discrete stochastic simulation techniques are slow. We apply Richardson extrapolation to the moments of three fixed-step methods, the Euler, midpoint and θ-trapezoidal τ-leap methods, to demonstrate the power of stochastic extrapolation. The extrapolation framework can increase the order of convergence of any fixed-step discrete stochastic solver and is very easy to implement; the only condition for its use is knowledge of the appropriate terms of the global error expansion of the solver in terms of its stepsize. In practical terms, a higher-order method with a larger stepsize can achieve the same level of accuracy as a lower-order method with a smaller one, potentially reducing the computational time of the system. RESULTS: By obtaining a global error expansion for a general weak first-order method, we prove that extrapolation can increase the weak order of convergence for the moments of the Euler and the midpoint τ-leap methods, from one to two. This is supported by numerical simulations of several chemical systems of biological importance using the Euler, midpoint and θ-trapezoidal τ-leap methods. In almost all cases, extrapolation results in an improvement of accuracy. As in the case of ordinary and stochastic differential equations, extrapolation can be repeated to obtain even higher-order approximations. CONCLUSIONS: Extrapolation is a general framework for increasing the order of accuracy of any fixed-step stochastic solver. This enables the simulation of complicated systems in less time, allowing for more realistic biochemical problems to be solved.
A stochastic delay model for pricing debt and equity: Numerical techniques and applications
Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah
2015-01-01
Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.
The influences of delay time on the stability of a market model with stochastic volatility
Li, Jiang-Cheng; Mei, Dong-Cheng
2013-02-01
The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.
Klingbeil, Guido
2012-02-01
We explore two different threading approaches on a graphics processing unit (GPU) exploiting two different characteristics of the current GPU architecture. The fat thread approach tries to minimize data access time by relying on shared memory and registers potentially sacrificing parallelism. The thin thread approach maximizes parallelism and tries to hide access latencies. We apply these two approaches to the parallel stochastic simulation of chemical reaction systems using the stochastic simulation algorithm (SSA) by Gillespie [14]. In these cases, the proposed thin thread approach shows comparable performance while eliminating the limitation of the reaction system\\'s size. © 2006 IEEE.
Simulation of conditional diffusions via forward-reverse stochastic representations
Bayer, Christian
2015-01-07
We derive stochastic representations for the finite dimensional distributions of a multidimensional diffusion on a fixed time interval,conditioned on the terminal state. The conditioning can be with respect to a fixed measurement point or more generally with respect to some subset. The representations rely on a reverse process connected with the given (forward) diffusion as introduced by Milstein, Schoenmakers and Spokoiny in the context of density estimation. The corresponding Monte Carlo estimators have essentially root-N accuracy, and hence they do not suffer from the curse of dimensionality. We also present an application in statistics, in the context of the EM algorithm.
Shi, Peng; Zhang, Yingqi; Chadli, Mohammed; Agarwal, Ramesh K
2016-04-01
In this brief, the problems of the mixed H-infinity and passivity performance analysis and design are investigated for discrete time-delay neural networks with Markovian jump parameters represented by Takagi-Sugeno fuzzy model. The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique. Applying the matrix decomposition techniques, sufficient conditions are provided for the solvability of the problems, which can be formulated in terms of linear matrix inequalities. A numerical example is also presented to illustrate the effectiveness of the proposed techniques.
Liang, Faming
2014-04-03
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online.
A constrained approach to multiscale stochastic simulation of chemically reacting systems
Cotter, Simon L.
2011-01-01
Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Fokker-Planck equation approximation, we can in turn approximate average switching times in stochastic chemical systems. © 2011 American Institute of Physics.
DEFF Research Database (Denmark)
Jensen, Karsten Høgh; Mantoglou, Aristotelis
1992-01-01
A stochastic unsaturated flow theory and a numerical simulation model have been coupled in order to estimate the large-scale mean behavior of an unsaturated flow system in a spatially variable soil. On the basis of the theoretical developments of Mantoglou and Gelhar (1987a, b, c), the theory...... unsaturated flow equation representing the mean system behavior is solved using a finite difference numerical solution technique. The effective parameters are evaluated from the stochastic theory formulas before entering them into the numerical solution for each iteration. The stochastic model is applied...... to a field site in Denmark, where information is available on the spatial variability of soil parameters and variables. Numerical simulations have been carried out, and predictions of the mean behavior and the variance of the capillary tension head and the soil moisture content have been compared to field...
Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist.
Directory of Open Access Journals (Sweden)
Brian Drawert
2016-12-01
Full Text Available We present StochSS: Stochastic Simulation as a Service, an integrated development environment for modeling and simulation of both deterministic and discrete stochastic biochemical systems in up to three dimensions. An easy to use graphical user interface enables researchers to quickly develop and simulate a biological model on a desktop or laptop, which can then be expanded to incorporate increasing levels of complexity. StochSS features state-of-the-art simulation engines. As the demand for computational power increases, StochSS can seamlessly scale computing resources in the cloud. In addition, StochSS can be deployed as a multi-user software environment where collaborators share computational resources and exchange models via a public model repository. We demonstrate the capabilities and ease of use of StochSS with an example of model development and simulation at increasing levels of complexity.
Li, Jimeng; Li, Ming; Zhang, Jinfeng
2017-08-01
Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.
Multivariate stochastic simulation with subjective multivariate normal distributions
P. J. Ince; J. Buongiorno
1991-01-01
In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectively assesed multivariate normal...
The stochastic characteristics stability in the problem of the dynamic filtration with delay
Chashnikov, Mikhail
2017-07-01
In this paper thesolution's calculation of linear differential equation with delay is considered. It is supposed that initial conditions are the set with random error and we have chance of updating the solution in periodic timepointswith the same error. The dependence between the estimate dispersion and the measuring error dispersion is recieved.
Directory of Open Access Journals (Sweden)
Qinghui Du
2014-01-01
Full Text Available We consider semi-implicit Euler methods for stochastic age-dependent capital system with variable delays and random jump magnitudes, and investigate the convergence of the numerical approximation. It is proved that the numerical approximate solutions converge to the analytical solutions in the mean-square sense under given conditions.
Monte-Carlo simulation of a stochastic differential equation
Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG
2017-12-01
For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.
Modeling Group Perceptions Using Stochastic Simulation: Scaling Issues in the Multiplicative AHP
DEFF Research Database (Denmark)
Barfod, Michael Bruhn; van den Honert, Robin; Salling, Kim Bang
2016-01-01
This paper proposes a new decision support approach for applying stochastic simulation to the multiplicative analytic hierarchy process (AHP) in order to deal with issues concerning the scale parameter. The paper suggests a new approach that captures the influence from the scale parameter by making...
Simulation modeling and optimization of competitive electricity markets and stochastic fluid systems
Ozdemir, O.
2013-01-01
The second part of the thesis focuses on a different stochastic problem of finding the optimal hedging points in a manufacturing flow control system. Our simulation-based method allows solving large scale systems that are considered very difficult to solve by current standards in the literature.
Adaptive finite element method assisted by stochastic simulation of chemical systems
Czech Academy of Sciences Publication Activity Database
Cotter, S.L.; Vejchodský, Tomáš; Erban, R.
2013-01-01
Roč. 35, č. 1 (2013), B107-B131 ISSN 1064-8275 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional support: RVO:67985840 Keywords : chemical Fokker-Planck * adaptive meshes * stochastic simulation algorithm Subject RIV: BA - General Mathematics Impact factor: 1.940, year: 2013 http://epubs.siam.org/doi/abs/10.1137/120877374
Bewley, J.M.; Boehlje, M.D.; Gray, A.W.; Hogeveen, H.; Kenyon, S.J.; Eicher, S.D.; Schutz, M.M.
2010-01-01
Purpose – The purpose of this paper is to develop a dynamic, stochastic, mechanistic simulation model of a dairy business to evaluate the cost and benefit streams coinciding with technology investments. The model was constructed to embody the biological and economical complexities of a dairy farm
Argoti, A.; Fan, L. T.; Cruz, J.; Chou, S. T.
2008-01-01
The stochastic simulation of chemical reactions, specifically, a simple reversible chemical reaction obeying the first-order, i.e., linear, rate law, has been presented by Martinez-Urreaga and his collaborators in this journal. The current contribution is intended to complement and augment their work in two aspects. First, the simple reversible…
Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.
Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Jonathan Dushoff; Liu, James H
2017-11-21
Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017. Published by Elsevier Inc.
DEFF Research Database (Denmark)
Debrabant, Kristian; Samaey, Giovanni; Zieliński, Przemysław
2017-01-01
We present and analyse a micro-macro acceleration method for the Monte Carlo simulation of stochastic differential equations with separation between the (fast) time-scale of individual trajectories and the (slow) time-scale of the macroscopic function of interest. The algorithm combines short...
A stochastic model simulating the spatiotemporal dynamics of yellow rust on wheat
DEFF Research Database (Denmark)
Lett, C.; Østergård, Hanne
2000-01-01
A stochastic model of the spatiotemporal dynamics of plant disease epidemics in monocultures is described and applied to the simulation of yellow rust on wheat (Puccinia striiformis f. sp. tritici). The most sensitive parameters of the model are latent period, daily multiplication factor...
Parallel discrete-event simulation of FCFS stochastic queueing networks
Nicol, David M.
1988-01-01
Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young
2017-03-14
Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.
STOCHASTIC SIMULATION FOR BUFFELGRASS (Cenchrus ciliaris L.) PASTURES IN MARIN, N. L., MEXICO
JosÃ© Romualdo MartÃnez-LÃ³pez; Erasmo Gutierrez-Ornelas; Miguel Angel Barrera-Silva; Rafael Retes-LÃ³pez
2014-01-01
A stochastic simulation model was constructed to determine the response of net primary production of buffelgrass (Cenchrus ciliaris L.) and its dry matter intake by cattle, in MarÃn, NL, MÃ©xico. Buffelgrass is very important for extensive livestock industry in arid and semiarid areas of northeastern Mexico. To evaluate the behavior of the model by comparing the model results with those reported in the literature was the objective in this experiment. Model simulates the monthly production of...
Stochastic Simulation of Hourly Average Wind Speed in Umudike ...
African Journals Online (AJOL)
Ten years of hourly average wind speed data were used to build a seasonal autoregressive integrated moving average (SARIMA) model. The model was used to simulate hourly average wind speed and recommend possible uses at Umudike, South eastern Nigeria. Results showed that the simulated wind behaviour was ...
A stochastic quasi Newton method for molecular simulations
Chau, Chun Dong
2010-01-01
In this thesis the Langevin equation with a space-dependent alternative mobility matrix has been considered. Simulations of a complex molecular system with many different length and time scales based on the fundamental equations of motion take a very long simulation time before capturing the
A stochastic simulation approach for production scheduling and ...
African Journals Online (AJOL)
The present paper aims to develop a simulation tool for tile manufacturing companies. The paper shows how simulation approach can be useful to support management decisions related to production scheduling and investment planning. Particularly the aim is to demonstrate the importance of an information system in tile ...
GillespieSSA: Implementing the Gillespie Stochastic Simulation Algorithm in R
Directory of Open Access Journals (Sweden)
Mario Pineda-Krch
2008-02-01
Full Text Available The deterministic dynamics of populations in continuous time are traditionally described using coupled, first-order ordinary differential equations. While this approach is accurate for large systems, it is often inadequate for small systems where key species may be present in small numbers or where key reactions occur at a low rate. The Gillespie stochastic simulation algorithm (SSA is a procedure for generating time-evolution trajectories of finite populations in continuous time and has become the standard algorithm for these types of stochastic models. This article presents a simple-to-use and flexible framework for implementing the SSA using the high-level statistical computing language R and the package GillespieSSA. Using three ecological models as examples (logistic growth, Rosenzweig-MacArthur predator-prey model, and Kermack-McKendrick SIRS metapopulation model, this paper shows how a deterministic model can be formulated as a finite-population stochastic model within the framework of SSA theory and how it can be implemented in R. Simulations of the stochastic models are performed using four different SSA Monte Carlo methods: one exact method (Gillespie's direct method; and three approximate methods (explicit, binomial, and optimized tau-leap methods. Comparison of simulation results confirms that while the time-evolution trajectories obtained from the different SSA methods are indistinguishable, the approximate methods are up to four orders of magnitude faster than the exact methods.
Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia
Energy Technology Data Exchange (ETDEWEB)
Ghil, Michael [Univ. of California, Los Angeles, CA (United States); Robertson, Andrew W. [IRI, Chicago, IL (United States); Cook, Edward R. [LDEO Tree Ring Lab., New York, NY (United States); D’Arrigo, Rosanne [LDEO Tree Ring Lab., New York, NY (United States); Lall, Upmanu [Columbia Water Center, New York, NY (United States); Smyth, Padhraic J. [Univ. of California, Irvine, CA (United States)
2015-01-18
We developed further our advanced methods of time series analysis and empirical model reduction (EMR) and applied them to climatic time series relevant to hydroclimate over Monsoonal Asia. The EMR methodology was both generalized further and laid on a rigorous mathematical basis via multilayered stochastic models (MSMs). We identified easily testable conditions that imply the existence of a global random attractor for MSMs and allow for non-polynomial predictors. This existence, in turn, guarantees the numerical stability of the MSMs so obtained. We showed that, in the presence of low-frequency variability (LFV), EMR prediction can be improved further by including information from selected times in the system’s past. This prediction method, dubbed Past-Noise Forecasting (PNF), was successfully applied to the Madden-Julian Oscillation (MJO). Our time series analysis and forecasting methods, based on singular-spectrum analysis (SSA) and its enhancements, were applied to several multi-centennial proxy records provided by the Lamont team. These included the Palmer Drought Severity Index (PDSI) for 1300–2005 from the Monsoonal Asia Drought Atlas (MADA), and a 300-member ensemble of pseudo-reconstructions of Indus River discharge for 1702–2005. The latter was shown to exhibit a robust 27-yr low-frequency mode, which helped multi-decadal retroactive forecasts with no look-ahead over this 300-year interval.
Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems
Cotter, Simon L.
2013-01-01
Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.
Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations
Directory of Open Access Journals (Sweden)
Florin-Catalin ENACHE
2015-10-01
Full Text Available The growing character of the cloud business has manifested exponentially in the last 5 years. The capacity managers need to concentrate on a practical way to simulate the random demands a cloud infrastructure could face, even if there are not too many mathematical tools to simulate such demands.This paper presents an introduction into the most important stochastic processes and queueing theory concepts used for modeling computer performance. Moreover, it shows the cases where such concepts are applicable and when not, using clear programming examples on how to simulate a queue, and how to use and validate a simulation, when there are no mathematical concepts to back it up.
Stochastic Modeling and Simulation of Marginally Trapped Neutrons
Coakley, K. J.
2014-03-01
For a magnetic trapping experiment, I present an efficient method for simulating experimental β-decay rates that accounts for loss of marginally trapped neutrons due to wall collisions and other possible loss mechanisms. Monte Carlo estimates of time-dependent survival probability functions for the wall loss mechanism are based on computer intensive tracking of marginally trapped neutrons with a symplectic integration method and a physical model for the loss probability of a neutron when it collides with a trap boundary. The simulation is highly efficient because after all relevant survival probabilities are determined, observed neutron decay events are quickly simulated by sampling from probability distribution functions associated with each survival probability function of interest. That is, computer intensive and time-consuming numerical simulation of a large number of additional neutron trajectories is not necessary.
An adaptive algorithm for simulation of stochastic reaction-diffusion processes
International Nuclear Information System (INIS)
Ferm, Lars; Hellander, Andreas; Loetstedt, Per
2010-01-01
We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.
MOSES: A Matlab-based open-source stochastic epidemic simulator.
Varol, Huseyin Atakan
2016-08-01
This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.
Fuzzy delay model based fault simulator for crosstalk delay fault test ...
Indian Academy of Sciences (India)
generation is that the test patterns must guarantee not only that the deterministic fault effect is captured correctly ... In digital circuits, the delays associated with each element are different and may not be known with precision for a ... In this paper, the fuzzy delay model is employed for test generation of crosstalk delay faults in.
A fire management simulation model using stochastic arrival times
Eric L. Smith
1987-01-01
Fire management simulation models are used to predict the impact of changes in the fire management program on fire outcomes. As with all models, the goal is to abstract reality without seriously distorting relationships between variables of interest. One important variable of fire organization performance is the length of time it takes to get suppression units to the...
Simulation and Inference for Stochastic Differential Equations With R Examples
Iacus, Stefano M
2008-01-01
Organized into four chapters, this book presents several classes of processes used in mathematics, computational biology, finance and the social sciences. Dealing with simulation schemes, it focuses on parametric estimation techniques. It also contains topics like nonparametric estimation, model identification and change point estimation
An efficient parallel stochastic simulation method for analysis of nonviral gene delivery systems
Kuwahara, Hiroyuki
2011-01-01
Gene therapy has a great potential to become an effective treatment for a wide variety of diseases. One of the main challenges to make gene therapy practical in clinical settings is the development of efficient and safe mechanisms to deliver foreign DNA molecules into the nucleus of target cells. Several computational and experimental studies have shown that the design process of synthetic gene transfer vectors can be greatly enhanced by computational modeling and simulation. This paper proposes a novel, effective parallelization of the stochastic simulation algorithm (SSA) for pharmacokinetic models that characterize the rate-limiting, multi-step processes of intracellular gene delivery. While efficient parallelizations of the SSA are still an open problem in a general setting, the proposed parallel simulation method is able to substantially accelerate the next reaction selection scheme and the reaction update scheme in the SSA by exploiting and decomposing the structures of stochastic gene delivery models. This, thus, makes computationally intensive analysis such as parameter optimizations and gene dosage control for specific cell types, gene vectors, and transgene expression stability substantially more practical than that could otherwise be with the standard SSA. Here, we translated the nonviral gene delivery model based on mass-action kinetics by Varga et al. [Molecular Therapy, 4(5), 2001] into a more realistic model that captures intracellular fluctuations based on stochastic chemical kinetics, and as a case study we applied our parallel simulation to this stochastic model. Our results show that our simulation method is able to increase the efficiency of statistical analysis by at least 50% in various settings. © 2011 ACM.
Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes
Liu, Zhangjun; Liu, Zixin; Peng, Yongbo
2017-11-01
Conventional Karhunen-Loeve expansions for simulation of stochastic processes often encounter the challenge of dealing with hundreds of random variables. For breaking through the barrier, a random function embedded Karhunen-Loeve expansion method is proposed in this paper. The updated scheme has a similar form to the conventional Karhunen-Loeve expansion, both involving a summation of a series of deterministic orthonormal basis and uncorrelated random variables. While the difference from the updated scheme lies in the dimension reduction of Karhunen-Loeve expansion through introducing random functions as a conditional constraint upon uncorrelated random variables. The random function is expressed as a single-elementary-random-variable orthogonal function in polynomial format (non-Gaussian variables) or trigonometric format (non-Gaussian and Gaussian variables). For illustrative purposes, the simulation of seismic ground motion is carried out using the updated scheme. Numerical investigations reveal that the Karhunen-Loeve expansion with random functions could gain desirable simulation results in case of a moderate sample number, except the Hermite polynomials and the Laguerre polynomials. It has the sound applicability and efficiency in simulation of stochastic processes. Besides, the updated scheme has the benefit of integrating with probability density evolution method, readily for the stochastic analysis of nonlinear structures.
Neural network stochastic simulation applied for quantifying uncertainties
Directory of Open Access Journals (Sweden)
N Foudil-Bey
2016-09-01
Full Text Available Generally the geostatistical simulation methods are used to generate several realizations of physical properties in the sub-surface, these methods are based on the variogram analysis and limited to measures correlation between variables at two locations only. In this paper, we propose a simulation of properties based on supervised Neural network training at the existing drilling data set. The major advantage is that this method does not require a preliminary geostatistical study and takes into account several points. As a result, the geological information and the diverse geophysical data can be combined easily. To do this, we used a neural network with multi-layer perceptron architecture like feed-forward, then we used the back-propagation algorithm with conjugate gradient technique to minimize the error of the network output. The learning process can create links between different variables, this relationship can be used for interpolation of the properties on the one hand, or to generate several possible distribution of physical properties on the other hand, changing at each time and a random value of the input neurons, which was kept constant until the period of learning. This method was tested on real data to simulate multiple realizations of the density and the magnetic susceptibility in three-dimensions at the mining camp of Val d'Or, Québec (Canada.
Jonrinaldi, Primadi, M. Yugo; Hadiguna, Rika Ampuh
2017-11-01
Inventory cannot be avoided by organizations. One of them is a hospital which has a functional unit to manage the drugs and other medical supplies such as disposable and laboratory material. The unit is called Pharmacy Department which is responsible to do all of pharmacy services in the hospital. The current problem in Pharmacy Department is that the level of drugs and medical supplies inventory is too high. Inventory is needed to keep the service level to customers but at the same time it increases the cost of holding the items, so there should be a policy to keep the inventory on an optimal condition. To solve such problem, this paper proposes an inventory policy in Pharmacy Department of Pariaman Hospital. The inventory policy is determined by using Economic Order Quantity (EOQ) model under condition of permissible delay in payment for multiple products considering safety stock to anticipate stochastic demand. This policy is developed based on the actual condition of the system studied where suppliers provided a certain period to Pharmacy Department to complete the payment of the order. Based on implementation using software Lingo 13.0, total inventory cost of proposed policy of IDR 137,334,815.34 is 37.4% lower than the total inventory cost of current policy of IDR 219,511,519.45. Therefore, the proposed inventory policy is applicable to the system to minimize the total inventory cost.
Application of users’ light-switch stochastic models to dynamic energy simulation
DEFF Research Database (Denmark)
Camisassi, V.; Fabi, V.; Andersen, Rune Korsholm
2015-01-01
deterministic inputs, due to the uncertain nature of human behaviour. In this paper, new stochastic models of users’ interaction with artificial lighting systems are developed and implemented in the energy simulation software IDA ICE. They were developed from field measurements in an office building in Prague......The design of an innovative building should include building overall energy flows estimation. They are principally related to main six influencing factors (IEA-ECB Annex 53): climate, building envelope and equipment, operation and maintenance, occupant behaviour and indoor environment conditions....... Consequently, energy-related occupant behaviour should be taken into account by energy simulation software. Previous researches (Bourgeois et al. 2006, Buso 2012, Fabi 2012) already revealed the differences in terms of energy loads between considering occupants' behaviour as stochastic processes rather than...
International Nuclear Information System (INIS)
Hepburn, I.; De Schutter, E.; Chen, W.
2016-01-01
Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realistic biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.
Dassargues, Alain
2006-01-01
In hydrogeology, advances in the delimitation of protection zones are made by the use of stochastic simulations integrating all available data. In practice, due to the few available measurements of the main parameters (hard data), it is very useful to integrate several secondary properties of the media as indirect data (soft data) to reduce the uncertainty of the results. In aquifers, most of the solute spreading is governed by the hydraulic conductivity (K) spatial variability, which is gene...
Overview of the TurbSim Stochastic Inflow Turbulence Simulator: Version 1.10
Energy Technology Data Exchange (ETDEWEB)
Kelley, N. D.; Jonkman, B. J.
2006-09-01
The Turbsim stochastic inflow turbulence code was developed to provide a numerical simulation of a full-field flow that contains coherent turbulence structures that reflect the proper spatiotemporal turbulent velocity field relationships seen in instabilities associated with nocturnal boundary layer flows. This report provides the user with an overview of how the TurbSim code has been developed and some of the theory behind that development.
Stochastic effects in real and simulated charged particle beams
Directory of Open Access Journals (Sweden)
Jürgen Struckmeier
2000-03-01
Full Text Available The Vlasov equation embodies the smooth field approximation of the self-consistent equation of motion for charged particle beams. This framework is fundamentally altered if we include the fluctuating forces that originate from the actual charge granularity. We thereby perform the transition from a reversible description to a statistical mechanics description covering also the irreversible aspects of beam dynamics. Taking into account contributions from fluctuating forces is mandatory if we want to describe effects such as intrabeam scattering or temperature balancing within beams. Furthermore, the appearance of “discreteness errors” in computer simulations of beams can be modeled as “exact” beam dynamics that are being modified by fluctuating “error forces.” It will be shown that the related emittance increase depends on two distinct quantities: the magnitude of the fluctuating forces embodied in a friction coefficient, γ, and the correlation time dependent average temperature anisotropy. These analytical results are verified by various computer simulations.
Dodov, B.
2017-12-01
Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon
Tsekouras, Georgios; Ioannou, Christos; Efstratiadis, Andreas; Koutsoyiannis, Demetris
2013-04-01
The drawbacks of conventional energy sources including their negative environmental impacts emphasize the need to integrate renewable energy sources into energy balance. However, the renewable sources strongly depend on time varying and uncertain hydrometeorological processes, including wind speed, sunshine duration and solar radiation. To study the design and management of hybrid energy systems we investigate the stochastic properties of these natural processes, including possible long-term persistence. We use wind speed and sunshine duration time series retrieved from a European database of daily records and we estimate representative values of the Hurst coefficient for both variables. We conduct simultaneous generation of synthetic time series of wind speed and sunshine duration, on yearly, monthly and daily scale. To this we use the Castalia software system which performs multivariate stochastic simulation. Using these time series as input, we perform stochastic simulation of an autonomous hypothetical hybrid renewable energy system and optimize its performance using genetic algorithms. For the system design we optimize the sizing of the system in order to satisfy the energy demand with high reliability also minimizing the cost. While the simulation scale is the daily, a simple method allows utilizing the subdaily distribution of the produced wind power. Various scenarios are assumed in order to examine the influence of input parameters, such as the Hurst coefficient, and design parameters such as the photovoltaic panel angle.
Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations
Curran, Thomas; Denner, Fabian; van Wachem, Berend
2017-11-01
The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.
Lagrangian stochastic modelling in Large-Eddy Simulation of turbulent particle-laden flows
Chibbaro, Sergio; Innocenti, Alessio; Marchioli, Cristian
2017-11-01
Large-Eddy Simulation (LES) in Eulerian-Lagrangian studies of particle-laden flows is one of the most promising and viable approaches when Direct Numerical Simulation (DNS) is not affordable. However applicability of LES to particle-laden flows is limited by the modeling of the Sub-Grid Scale (SGS) turbulence effects on particle dynamics. These effects may be taken into account through a stochastic SGS model for the Equations of Particle Motion (EPM) that extends the Velocity Filtered Density Function method originally developed for reactive flows, to two-phase flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure, where a set of Stochastic Differential Equations (SDE) is solved along the trajectory of a particle. The resulting Lagrangian stochastic model has been tested for the reference case of turbulent channel flow. Tests with inertial particles have been performed focusing on particle preferential concentration and segregation in the near-wall region: upon comparison with DNS-based statistics, our results show improved accuracy with respect to LES with no SGS model in the EPM for different Stokes numbers. Furthermore, statistics of the particle velocity recover well DNS levels.
Delayed radiation necrosis of the brain simulating a brain tumor
International Nuclear Information System (INIS)
Ikeda, Hiroya; Kanai, Nobuhiro; Kamikawa, Kiyoo
1976-01-01
Two cases of delayed radiation necrosis of the brain are reported. Case 1 was a 50-year-old man who had right hemiparesis and disorientation 26 months after Linac irradiation (5,000 rad), preceded by an operation for right maxillar carcinoma. A left carotid angiogram demonstrated a left temporal mass lesion, extending to the frontal lobe. Case 2 was a 41-year-old man who had previously had an operation for right intraorbital plasmocytoma, followed by two Co irradiations (6,400 rad, and 5,000 rad). He had the signs and symptoms of intracranial hypertension 36 months after his last irradiation. A left carotid angiogram demonstrated a left temporal mass lesion. Both cases were treated by administration of steroid hormone (which alleviated the signs and symptoms) and by temporal lobectomy. Microscopic examinations showed necrosis of the brain tissues associated with hyaline degeneration of blood vessel walls and perivascular cell infiltration. The signs and symptoms of intracranial hypertension subsided postoperatively. Thirteen other cases the same as ours were collected from literature. They showed the signs and symptoms simulating a brain tumor (like a metastatic brain tumor) after irradiation to extracranial malignant tumors. Diagnosis of radiation necrosis was made by operation or autopsy. A follow-up for a long time is necessary, because the pathological changes in the brain may be progressive and extending in some cases, although decompressive operations for mass lesions give excellent results. (auth.)
A Multilevel Adaptive Reaction-splitting Simulation Method for Stochastic Reaction Networks
Moraes, Alvaro
2016-07-07
In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks characterized by having simultaneously fast and slow reaction channels. To produce efficient simulations, our method adaptively classifies the reactions channels into fast and slow channels. To this end, we first introduce a state-dependent quantity named level of activity of a reaction channel. Then, we propose a low-cost heuristic that allows us to adaptively split the set of reaction channels into two subsets characterized by either a high or a low level of activity. Based on a time-splitting technique, the increments associated with high-activity channels are simulated using the tau-leap method, while those associated with low-activity channels are simulated using an exact method. This path simulation technique is amenable for coupled path generation and a corresponding multilevel Monte Carlo algorithm. To estimate expected values of observables of the system at a prescribed final time, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This goal is achieved with a computational complexity of order O(TOL-2), the same as with a pathwise-exact method, but with a smaller constant. We also present a novel low-cost control variate technique based on the stochastic time change representation by Kurtz, showing its performance on a numerical example. We present two numerical examples extracted from the literature that show how the reaction-splitting method obtains substantial gains with respect to the standard stochastic simulation algorithm and the multilevel Monte Carlo approach by Anderson and Higham. © 2016 Society for Industrial and Applied Mathematics.
Simulating local measurements on a quantum many-body system with stochastic matrix product states
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2010-01-01
We demonstrate how to simulate both discrete and continuous stochastic evolutions of a quantum many-body system subject to measurements using matrix product states. A particular, but generally applicable, measurement model is analyzed and a simple representation in terms of matrix product operators...... is found. The technique is exemplified by numerical simulations of the antiferromagnetic Heisenberg spin-chain model subject to various instances of the measurement model. In particular, we focus on local measurements with small support and nonlocal measurements, which induce long-range correlations....
Energy Technology Data Exchange (ETDEWEB)
Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue
2014-02-28
Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.
Monte Carlo simulation of induction time and metastable zone width; stochastic or deterministic?
Kubota, Noriaki
2018-03-01
The induction time and metastable zone width (MSZW) measured for small samples (say 1 mL or less) both scatter widely. Thus, these two are observed as stochastic quantities. Whereas, for large samples (say 1000 mL or more), the induction time and MSZW are observed as deterministic quantities. The reason for such experimental differences is investigated with Monte Carlo simulation. In the simulation, the time (under isothermal condition) and supercooling (under polythermal condition) at which a first single crystal is detected are defined as the induction time t and the MSZW ΔT for small samples, respectively. The number of crystals just at the moment of t and ΔT is unity. A first crystal emerges at random due to the intrinsic nature of nucleation, accordingly t and ΔT become stochastic. For large samples, the time and supercooling at which the number density of crystals N/V reaches a detector sensitivity (N/V)det are defined as t and ΔT for isothermal and polythermal conditions, respectively. The points of t and ΔT are those of which a large number of crystals have accumulated. Consequently, t and ΔT become deterministic according to the law of large numbers. Whether t and ΔT may stochastic or deterministic in actual experiments should not be attributed to change in nucleation mechanisms in molecular level. It could be just a problem caused by differences in the experimental definition of t and ΔT.
Directory of Open Access Journals (Sweden)
Giorgos Minas
2017-07-01
Full Text Available In order to analyse large complex stochastic dynamical models such as those studied in systems biology there is currently a great need for both analytical tools and also algorithms for accurate and fast simulation and estimation. We present a new stochastic approximation of biological oscillators that addresses these needs. Our method, called phase-corrected LNA (pcLNA overcomes the main limitations of the standard Linear Noise Approximation (LNA to remain uniformly accurate for long times, still maintaining the speed and analytically tractability of the LNA. As part of this, we develop analytical expressions for key probability distributions and associated quantities, such as the Fisher Information Matrix and Kullback-Leibler divergence and we introduce a new approach to system-global sensitivity analysis. We also present algorithms for statistical inference and for long-term simulation of oscillating systems that are shown to be as accurate but much faster than leaping algorithms and algorithms for integration of diffusion equations. Stochastic versions of published models of the circadian clock and NF-κB system are used to illustrate our results.
Dizaji, Farzad; Marshall, Jeffrey; Grant, John; Jin, Xing
2017-11-01
Accounting for the effect of subgrid-scale turbulence on interacting particles remains a challenge when using Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) approaches for simulation of turbulent particulate flows. The standard stochastic Lagrangian method for introducing turbulence into particulate flow computations is not effective when the particles interact via collisions, contact electrification, etc., since this method is not intended to accurately model relative motion between particles. We have recently developed the stochastic vortex structure (SVS) method and demonstrated its use for accurate simulation of particle collision in homogeneous turbulence; the current work presents an extension of the SVS method to turbulent shear flows. The SVS method simulates subgrid-scale turbulence using a set of randomly-positioned, finite-length vortices to generate a synthetic fluctuating velocity field. It has been shown to accurately reproduce the turbulence inertial-range spectrum and the probability density functions for the velocity and acceleration fields. In order to extend SVS to turbulent shear flows, a new inversion method has been developed to orient the vortices in order to generate a specified Reynolds stress field. The extended SVS method is validated in the present study with comparison to direct numerical simulations for a planar turbulent jet flow. This research was supported by the U.S. National Science Foundation under Grant CBET-1332472.
Pareto Optimal Solutions for Stochastic Dynamic Programming Problems via Monte Carlo Simulation
Directory of Open Access Journals (Sweden)
R. T. N. Cardoso
2013-01-01
Full Text Available A heuristic algorithm is proposed for a class of stochastic discrete-time continuous-variable dynamic programming problems submitted to non-Gaussian disturbances. Instead of using the expected values of the objective function, the randomness nature of the decision variables is kept along the process, while Pareto fronts weighted by all quantiles of the objective function are determined. Thus, decision makers are able to choose any quantile they wish. This new idea is carried out by using Monte Carlo simulations embedded in an approximate algorithm proposed to deterministic dynamic programming problems. The new method is tested in instances of the classical inventory control problem. The results obtained attest for the efficiency and efficacy of the algorithm in solving these important stochastic optimization problems.
Directory of Open Access Journals (Sweden)
Fei Li
2018-01-01
Full Text Available This paper considers a high-dimensional stochastic SEIQR (susceptible-exposed-infected-quarantined-recovered epidemic model with quarantine-adjusted incidence and the imperfect vaccination. The main aim of this study is to investigate stochastic effects on the SEIQR epidemic model and obtain its thresholds. We first obtain the sufficient condition for extinction of the disease of the stochastic system. Then, by using the theory of Hasminskii and the Lyapunov analysis methods, we show there is a unique stationary distribution of the stochastic system and it has an ergodic property, which means the infectious disease is prevalent. This implies that the stochastic disturbance is conducive to epidemic diseases control. At last, computer numerical simulations are carried out to illustrate our theoretical results.
Directory of Open Access Journals (Sweden)
Drawert Brian
2012-06-01
Full Text Available Abstract Background Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. Results We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods
The two-regime method for optimizing stochastic reaction-diffusion simulations
Flegg, M. B.
2011-10-19
Spatial organization and noise play an important role in molecular systems biology. In recent years, a number of software packages have been developed for stochastic spatio-temporal simulation, ranging from detailed molecular-based approaches to less detailed compartment-based simulations. Compartment-based approaches yield quick and accurate mesoscopic results, but lack the level of detail that is characteristic of the computationally intensive molecular-based models. Often microscopic detail is only required in a small region (e.g. close to the cell membrane). Currently, the best way to achieve microscopic detail is to use a resource-intensive simulation over the whole domain. We develop the two-regime method (TRM) in which a molecular-based algorithm is used where desired and a compartment-based approach is used elsewhere. We present easy-to-implement coupling conditions which ensure that the TRM results have the same accuracy as a detailed molecular-based model in the whole simulation domain. Therefore, the TRM combines strengths of previously developed stochastic reaction-diffusion software to efficiently explore the behaviour of biological models. Illustrative examples and the mathematical justification of the TRM are also presented.
Moraes, Alvaro
2015-01-01
Epidemics have shaped, sometimes more than wars and natural disasters, demo- graphic aspects of human populations around the world, their health habits and their economies. Ebola and the Middle East Respiratory Syndrome (MERS) are clear and current examples of potential hazards at planetary scale. During the spread of an epidemic disease, there are phenomena, like the sudden extinction of the epidemic, that can not be captured by deterministic models. As a consequence, stochastic models have been proposed during the last decades. A typical forward problem in the stochastic setting could be the approximation of the expected number of infected individuals found in one month from now. On the other hand, a typical inverse problem could be, given a discretely observed set of epidemiological data, infer the transmission rate of the epidemic or its basic reproduction number. Markovian epidemic models are stochastic models belonging to a wide class of pure jump processes known as Stochastic Reaction Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions but they also have applications in neural networks, virus kinetics, and dynamics of social networks, among others. 4 This PhD thesis is focused on novel fast simulation algorithms and statistical inference methods for SRNs. Our novel Multi-level Monte Carlo (MLMC) hybrid simulation algorithms provide accurate estimates of expected values of a given observable of SRNs at a prescribed final time. They are designed to control the global approximation error up to a user-selected accuracy and up to a certain confidence level, and with near optimal computational work. We also present novel dual-weighted residual expansions for fast estimation of weak and strong errors arising from the MLMC methodology. Regarding the statistical inference
Revisions to some parameters used in stochastic-method simulations of ground motion
Boore, David; Thompson, Eric M.
2015-01-01
The stochastic method of ground‐motion simulation specifies the amplitude spectrum as a function of magnitude (M) and distance (R). The manner in which the amplitude spectrum varies with M and R depends on physical‐based parameters that are often constrained by recorded motions for a particular region (e.g., stress parameter, geometrical spreading, quality factor, and crustal amplifications), which we refer to as the seismological model. The remaining ingredient for the stochastic method is the ground‐motion duration. Although the duration obviously affects the character of the ground motion in the time domain, it also significantly affects the response of a single‐degree‐of‐freedom oscillator. Recently published updates to the stochastic method include a new generalized double‐corner‐frequency source model, a new finite‐fault correction, a new parameterization of duration, and a new duration model for active crustal regions. In this article, we augment these updates with a new crustal amplification model and a new duration model for stable continental regions. Random‐vibration theory (RVT) provides a computationally efficient method to compute the peak oscillator response directly from the ground‐motion amplitude spectrum and duration. Because the correction factor used to account for the nonstationarity of the ground motion depends on the ground‐motion amplitude spectrum and duration, we also present new RVT correction factors for both active and stable regions.
Wang, Ting; Plecháč, Petr
2017-12-21
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Estimating US dairy clinical disease costs with a stochastic simulation model.
Liang, D; Arnold, L M; Stowe, C J; Harmon, R J; Bewley, J M
2017-02-01
A farm-level stochastic model was used to estimate costs of 7 common clinical diseases in the United States: mastitis, lameness, metritis, retained placenta, left-displaced abomasum, ketosis, and hypocalcemia. The total disease costs were divided into 7 categories: veterinary and treatment, producer labor, milk loss, discarded milk, culling cost, extended days open, and on-farm death. A Monte Carlo simulation with 5,000 iterations was applied to the model to account for inherent system variation. Four types of market prices (milk, feed, slaughter, and replacement cow) and 3 herd-performance factors (rolling herd average, product of heat detection rate and conception rate, and age at first calving) were modeled stochastically. Sensitivity analyses were conducted to study the relationship between total disease costs and selected stochastic factors. In general, the disease costs in multiparous cows were greater than in primiparous cows. Left-displaced abomasum had the greatest estimated total costs in all parities ($432.48 in primiparous cows and $639.51 in multiparous cows). Cost category contributions varied for different diseases and parities. Milk production loss and treatment cost were the 2 greatest cost categories. The effect of market prices were consistent in all diseases and parities; higher milk and replacement prices increased total costs, whereas greater feed and slaughter prices decreased disease costs. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wang, Ting; Plecháč, Petr
2017-12-01
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Directory of Open Access Journals (Sweden)
Jin Qin
2015-01-01
Full Text Available A stochastic multiproduct capacitated facility location problem involving a single supplier and multiple customers is investigated. Due to the stochastic demands, a reasonable amount of safety stock must be kept in the facilities to achieve suitable service levels, which results in increased inventory cost. Based on the assumption of normal distributed for all the stochastic demands, a nonlinear mixed-integer programming model is proposed, whose objective is to minimize the total cost, including transportation cost, inventory cost, operation cost, and setup cost. A combined simulated annealing (CSA algorithm is presented to solve the model, in which the outer layer subalgorithm optimizes the facility location decision and the inner layer subalgorithm optimizes the demand allocation based on the determined facility location decision. The results obtained with this approach shown that the CSA is a robust and practical approach for solving a multiple product problem, which generates the suboptimal facility location decision and inventory policies. Meanwhile, we also found that the transportation cost and the demand deviation have the strongest influence on the optimal decision compared to the others.
Figueredo, Grazziela P; Siebers, Peer-Olaf; Owen, Markus R; Reps, Jenna; Aickelin, Uwe
2014-01-01
There is great potential to be explored regarding the use of agent-based modelling and simulation as an alternative paradigm to investigate early-stage cancer interactions with the immune system. It does not suffer from some limitations of ordinary differential equation models, such as the lack of stochasticity, representation of individual behaviours rather than aggregates and individual memory. In this paper we investigate the potential contribution of agent-based modelling and simulation when contrasted with stochastic versions of ODE models using early-stage cancer examples. We seek answers to the following questions: (1) Does this new stochastic formulation produce similar results to the agent-based version? (2) Can these methods be used interchangeably? (3) Do agent-based models outcomes reveal any benefit when compared to the Gillespie results? To answer these research questions we investigate three well-established mathematical models describing interactions between tumour cells and immune elements. These case studies were re-conceptualised under an agent-based perspective and also converted to the Gillespie algorithm formulation. Our interest in this work, therefore, is to establish a methodological discussion regarding the usability of different simulation approaches, rather than provide further biological insights into the investigated case studies. Our results show that it is possible to obtain equivalent models that implement the same mechanisms; however, the incapacity of the Gillespie algorithm to retain individual memory of past events affects the similarity of some results. Furthermore, the emergent behaviour of ABMS produces extra patters of behaviour in the system, which was not obtained by the Gillespie algorithm.
DEFF Research Database (Denmark)
Foddai, Alessandro; Enøe, Claes; Krogh, Kaspar
2014-01-01
A stochastic simulation model was developed to estimate the time from introduction ofBovine Viral Diarrhea Virus (BVDV) in a herd to detection of antibodies in bulk tank milk(BTM) samples using three ELISAs. We assumed that antibodies could be detected, after afixed threshold prevalence of seroco......A stochastic simulation model was developed to estimate the time from introduction ofBovine Viral Diarrhea Virus (BVDV) in a herd to detection of antibodies in bulk tank milk(BTM) samples using three ELISAs. We assumed that antibodies could be detected, after afixed threshold prevalence...... of seroconverted milking cows was reached in the herd. Differentthresholds were set for each ELISA, according to previous studies. For each test, antibodydetection was simulated in small (70 cows), medium (150 cows) and large (320 cows)herds. The assays included were: (1) the Danish blocking ELISA, (2......, which was the most efficient ELISA, could detect antibodiesin the BTM of a large herd 280 days (95% prediction interval: 218; 568) after a transientlyinfected (TI) milking cow has been introduced into the herd. The estimated time to detectionafter introduction of one PI calf was 111 days (44; 605...
Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo
2018-03-01
In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables.
Pugno, Nicola M; Bosia, Federico; Carpinteri, Alberto
2008-08-01
Thousands of multiscale stochastic simulations are carried out in order to perform the first in-silico tensile tests of carbon nanotube (CNT)-based macroscopic cables with varying length. The longest treated cable is the space-elevator megacable but more realistic shorter cables are also considered in this bottom-up investigation. Different sizes, shapes, and concentrations of defects are simulated, resulting in cable macrostrengths not larger than approximately 10 GPa, which is much smaller than the theoretical nanotube strength (approximately 100 GPa). No best-fit parameters are present in the multiscale simulations: the input at level 1 is directly estimated from nanotensile tests of CNTs, whereas its output is considered as the input for the level 2, and so on up to level 5, corresponding to the megacable. Thus, five hierarchical levels are used to span lengths from that of a single nanotube (approximately 100 nm) to that of the space-elevator megacable (approximately 100 Mm).
Elliott, Thomas J.; Gu, Mile
2018-03-01
Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.
Thanh, Vo Hong; Marchetti, Luca; Reali, Federico; Priami, Corrado
2018-02-01
The stochastic simulation algorithm (SSA) has been widely used for simulating biochemical reaction networks. SSA is able to capture the inherently intrinsic noise of the biological system, which is due to the discreteness of species population and to the randomness of their reciprocal interactions. However, SSA does not consider other sources of heterogeneity in biochemical reaction systems, which are referred to as extrinsic noise. Here, we extend two simulation approaches, namely, the integration-based method and the rejection-based method, to take extrinsic noise into account by allowing the reaction propensities to vary in time and state dependent manner. For both methods, new efficient implementations are introduced and their efficiency and applicability to biological models are investigated. Our numerical results suggest that the rejection-based method performs better than the integration-based method when the extrinsic noise is considered.
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Walton, Owen
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MACGMC composite material analysis code. The resulting code is called FEAMACCARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMACCARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMACCARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
International Nuclear Information System (INIS)
Garnier, Robert; Chevalier, Marcel
2000-01-01
Studying large and complex industrial sites, requires more and more accuracy in modeling. In particular, when considering Spares, Maintenance and Repair / Replacement processes, determining optimal Integrated Logistic Support policies requires a high level modeling formalism, in order to make the model as close as possible to the real considered processes. Generally, numerical methods are used to process this kind of study. In this paper, we propose an alternate way to process optimal Integrated Logistic Support policy determination when dealing with large, complex and distributed multi-policies industrial sites. This method is based on the use of behavioral Monte Carlo simulation, supported by Generalized Stochastic Petri Nets. (author)
Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna
2016-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
International Nuclear Information System (INIS)
Kaplani, E.; Kaplanis, S.
2012-01-01
Highlights: ► Solar radiation data for European cities follow the Extreme Value or Weibull distribution. ► Simulation model for the sizing of SAPV systems based on energy balance and stochastic analysis. ► Simulation of PV Generator-Loads-Battery Storage System performance for all months. ► Minimum peak power and battery capacity required for reliable SAPV sizing for various European cities. ► Peak power and battery capacity reduced by more than 30% for operation 95% success rate. -- Abstract: The large fluctuations observed in the daily solar radiation profiles affect highly the reliability of the PV system sizing. Increasing the reliability of the PV system requires higher installed peak power (P m ) and larger battery storage capacity (C L ). This leads to increased costs, and makes PV technology less competitive. This research paper presents a new stochastic simulation model for stand-alone PV systems, developed to determine the minimum installed P m and C L for the PV system to be energy independent. The stochastic simulation model developed, makes use of knowledge acquired from an in-depth statistical analysis of the solar radiation data for the site, and simulates the energy delivered, the excess energy burnt, the load profiles and the state of charge of the battery system for the month the sizing is applied, and the PV system performance for the entire year. The simulation model provides the user with values for the autonomy factor d, simulating PV performance in order to determine the minimum P m and C L depending on the requirements of the application, i.e. operation with critical or non-critical loads. The model makes use of NASA’s Surface meteorology and Solar Energy database for the years 1990–2004 for various cities in Europe with a different climate. The results obtained with this new methodology indicate a substantial reduction in installed peak power and battery capacity, both for critical and non-critical operation, when compared to
Testing the new stochastic neutronic code ANET in simulating safety important parameters
International Nuclear Information System (INIS)
Xenofontos, T.; Delipei, G.-K.; Savva, P.; Varvayanni, M.; Maillard, J.; Silva, J.; Catsaros, N.
2017-01-01
Highlights: • ANET is a new neutronics stochastic code. • Criticality calculations in both subcritical and critical nuclear systems of conventional design were conducted. • Simulations of thermal, lower epithermal and fast neutron fluence rates were performed. • Axial fission rate distributions in standard and MOX fuel pins were computed. - Abstract: ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development Monte Carlo code for simulating both GEN II/III reactors as well as innovative nuclear reactor designs, based on the high energy physics code GEANT3.21 of CERN. ANET is built through continuous GEANT3.21 applicability amplifications, comprising the simulation of particles’ transport and interaction in low energy along with the accessibility of user-provided libraries and tracking algorithms for energies below 20 MeV, as well as the simulation of elastic and inelastic collision, capture and fission. Successive testing applications performed throughout the ANET development have been utilized to verify the new code capabilities. In this context the ANET reliability in simulating certain reactor parameters important to safety is here examined. More specifically the reactor criticality as well as the neutron fluence and fission rates are benchmarked and validated. The Portuguese Research Reactor (RPI) after its conversion to low enrichment in U-235 and the OECD/NEA VENUS-2 MOX international benchmark were considered appropriate for the present study, the former providing criticality and neutron flux data and the latter reaction rates. Concerning criticality benchmarking, the subcritical, Training Nuclear Reactor of the Aristotle University of Thessaloniki (TNR-AUTh) was also analyzed. The obtained results are compared with experimental data from the critical infrastructures and with computations performed by two different, well established stochastic neutronics codes, i.e. TRIPOLI-4.8 and MCNP5. Satisfactory agreement
Mélykúti, Bence
2010-01-01
The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses 2 m1 + m2. We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch. © 2010 American Institute of Physics.
Towards a Framework for the Stochastic Modelling of Subgrid Scale Fluxes for Large Eddy Simulation
Directory of Open Access Journals (Sweden)
Thomas von Larcher
2015-04-01
Full Text Available We focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES codes. Our concept is based on the integral conservation laws for mass, momentum and energy of a flow field. We model the space-time structure of the flux correction terms to create a discrete formulation. Advanced methods of time series analysis for the data-based construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach. The reconstruction capabilities of the modelling ansatz are tested against fully 3D turbulent channel flow data computed by direct numerical simulation and, in addition, against a turbulent Taylor-Green vortex flow showing a transition from laminar to a turbulent flow state. The modelling approach for the LES closure is different in both test cases. In the channel flow we consider an implicit LES ansatz. In the Taylor-Green vortex flow, it follows an explicit closure approach. We present here the outcome of our reconstruction tests and show specific results of the non-trivial time series data analysis. Started with a generally stochastic ansatz we found, surprisingly, that the deterministic model part already yields small residuals and is, therefore, good enough to fit the flux correction terms well. In the Taylor-Green vortex flow, we found additionally time-dependent features confirming that our modelling approach is capable of detecting changes in the temporal structure of the flow. The results encourage us to launch a more ambitious attempt at dynamic LES closure along these lines.
The numerical simulation of convection delayed dominated diffusion equation
Directory of Open Access Journals (Sweden)
Mohan Kumar P. Murali
2016-01-01
Full Text Available In this paper, we propose a fitted numerical method for solving convection delayed dominated diffusion equation. A fitting factor is introduced and the model equation is discretized by cubic spline method. The error analysis is analyzed for the consider problem. The numerical examples are solved using the present method and compared the result with the exact solution.
Simulating disturbances and modelling expected train passenger delays
DEFF Research Database (Denmark)
Landex, Alex; Nielsen, Otto Anker
2006-01-01
Forecasts of regularity for railway systems have traditionally – if at all – been computed for trains, not for passengers. It has only relatively recently become possible to model and evaluate the actual passenger delays. This paper describes how it is possible to use a passenger regularity model...
Sedwards, Sean; Mazza, Tommaso
2007-10-15
Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.
STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies
Directory of Open Access Journals (Sweden)
Hepburn Iain
2012-05-01
Full Text Available Abstract Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins, conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates
Event-by-event simulation of Wheeler's delayed-choice experiment
Zhao, S.; Yuan, S.; De Raedt, H.; Michielsen, K.; Landau, DP; Lewis, SP; Schuttler, HB
2010-01-01
We present a computer simulation model of Wheeler's delayed choice experiment. The model is solely based on experimental facts and does not rely on concepts of quantum theory or probability theory. We demonstrate that it is possible to give a particle-only description of Wheeler's delayed choice
Simulation of Higher-Order Electrical Circuits with Stochastic Parameters via SDEs
Directory of Open Access Journals (Sweden)
BRANCIK, L.
2013-02-01
Full Text Available The paper deals with a technique for the simulation of higher-order electrical circuits with parameters varying randomly. The principle consists in the utilization of the theory of stochastic differential equations (SDE, namely the vector form of the ordinary SDEs. Random changes of both excitation voltage and some parameters of passive circuit elements are considered, and circuit responses are analyzed. The voltage and/or current responses are computed and represented in the form of the sample means accompanied by their confidence intervals to provide reliable estimates. The method is applied to analyze responses of the circuit models of optional orders, specially those consisting of a cascade connection of the RLGC networks. To develop the model equations the state-variable method is used, afterwards a corresponding vector SDE is formulated and a stochastic Euler numerical method applied. To verify the results the deterministic responses are also computed by the help of the PSpice simulator or the numerical inverse Laplace transforms (NILT procedure in MATLAB, while removing random terms from the circuit model.
Lazy Updating of hubs can enable more realistic models by speeding up stochastic simulations
Ehlert, Kurt; Loewe, Laurence
2014-11-01
To respect the nature of discrete parts in a system, stochastic simulation algorithms (SSAs) must update for each action (i) all part counts and (ii) each action's probability of occurring next and its timing. This makes it expensive to simulate biological networks with well-connected "hubs" such as ATP that affect many actions. Temperature and volume also affect many actions and may be changed significantly in small steps by the network itself during fever and cell growth, respectively. Such trends matter for evolutionary questions, as cell volume determines doubling times and fever may affect survival, both key traits for biological evolution. Yet simulations often ignore such trends and assume constant environments to avoid many costly probability updates. Such computational convenience precludes analyses of important aspects of evolution. Here we present "Lazy Updating," an add-on for SSAs designed to reduce the cost of simulating hubs. When a hub changes, Lazy Updating postpones all probability updates for reactions depending on this hub, until a threshold is crossed. Speedup is substantial if most computing time is spent on such updates. We implemented Lazy Updating for the Sorting Direct Method and it is easily integrated into other SSAs such as Gillespie's Direct Method or the Next Reaction Method. Testing on several toy models and a cellular metabolism model showed >10× faster simulations for its use-cases—with a small loss of accuracy. Thus we see Lazy Updating as a valuable tool for some special but important simulation problems that are difficult to address efficiently otherwise.
Meta-stochastic simulation of biochemical models for systems and synthetic biology.
Sanassy, Daven; Widera, Paweł; Krasnogor, Natalio
2015-01-16
Stochastic simulation algorithms (SSAs) are used to trace realistic trajectories of biochemical systems at low species concentrations. As the complexity of modeled biosystems increases, it is important to select the best performing SSA. Numerous improvements to SSAs have been introduced but they each only tend to apply to a certain class of models. This makes it difficult for a systems or synthetic biologist to decide which algorithm to employ when confronted with a new model that requires simulation. In this paper, we demonstrate that it is possible to determine which algorithm is best suited to simulate a particular model and that this can be predicted a priori to algorithm execution. We present a Web based tool ssapredict that allows scientists to upload a biochemical model and obtain a prediction of the best performing SSA. Furthermore, ssapredict gives the user the option to download our high performance simulator ngss preconfigured to perform the simulation of the queried biochemical model with the predicted fastest algorithm as the simulation engine. The ssapredict Web application is available at http://ssapredict.ico2s.org. It is free software and its source code is distributed under the terms of the GNU Affero General Public License.
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R. K.
of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically......-numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...
Rahimi, Mohammad; Karimi-Varzaneh, Hossein Ali; Böhm, Michael C; Müller-Plathe, Florian; Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul
2011-04-21
A scheme is described for performing molecular dynamics simulations on polymers under nonperiodic, stochastic boundary conditions. It has been designed to allow later the embedding of a particle domain treated by molecular dynamics into a continuum environment treated by finite elements. It combines, in the boundary region, harmonically restrained particles to confine the system with dissipative particle dynamics to dissipate energy and to thermostat the simulation. The equilibrium position of the tethered particles, the so-called anchor points, are well suited for transmitting deformations, forces and force derivatives between the particle and continuum domains. In the present work the particle scheme is tested by comparing results for coarse-grained polystyrene melts under nonperiodic and regular periodic boundary conditions. Excellent agreement is found for thermodynamic, structural, and dynamic properties.
Calibration of semi-stochastic procedure for simulating high-frequency ground motions
Seyhan, Emel; Stewart, Jonathan P.; Graves, Robert
2013-01-01
Broadband ground motion simulation procedures typically utilize physics-based modeling at low frequencies, coupled with semi-stochastic procedures at high frequencies. The high-frequency procedure considered here combines deterministic Fourier amplitude spectra (dependent on source, path, and site models) with random phase. Previous work showed that high-frequency intensity measures from this simulation methodology attenuate faster with distance and have lower intra-event dispersion than in empirical equations. We address these issues by increasing crustal damping (Q) to reduce distance attenuation bias and by introducing random site-to-site variations to Fourier amplitudes using a lognormal standard deviation ranging from 0.45 for Mw 100 km).
Verification of HYDRASTAR - A code for stochastic continuum simulation of groundwater flow
International Nuclear Information System (INIS)
Norman, S.
1991-07-01
HYDRASTAR is a code developed at Starprog AB for use in the SKB 91 performance assessment project with the following principal function: - Reads the actual conductivity measurements from a file created from the data base GEOTAB. - Regularizes the measurements to a user chosen calculation scale. - Generates three dimensional unconditional realizations of the conductivity field by using a supplied model of the conductivity field as a stochastic function. - Conditions the simulated conductivity field on the actual regularized measurements. - Reads the boundary conditions from a regional deterministic NAMMU computation. - Calculates the hydraulic head field, Darcy velocity field, stream lines and water travel times by solving the stationary hydrology equation and the streamline equation obtained with the velocities calculated from Darcy's law. - Generates visualizations of the realizations if desired. - Calculates statistics such as semivariograms and expectation values of the output fields by repeating the above procedure by iterations of the Monte Carlo type. When using computer codes for safety assessment purpose validation and verification of the codes are important. Thus this report describes a work performed with the goal of verifying parts of HYDRASTAR. The verification described in this report uses comparisons with two other solutions of related examples: A. Comparison with a so called perturbation solution of the stochastical stationary hydrology equation. This as an analytical approximation of the stochastical stationary hydrology equation valid in the case of small variability of the unconditional random conductivity field. B. Comparison with the (Hydrocoin, 1988), case 2. This is a classical example of a hydrology problem with a deterministic conductivity field. The principal feature of the problem is the presence of narrow fracture zones with high conductivity. the compared output are the hydraulic head field and a number of stream lines originating from a
A stochastic simulator of a blood product donation environment with demand spikes and supply shocks.
An, Ming-Wen; Reich, Nicholas G; Crawford, Stephen O; Brookmeyer, Ron; Louis, Thomas A; Nelson, Kenrad E
2011-01-01
The availability of an adequate blood supply is a critical public health need. An influenza epidemic or another crisis affecting population mobility could create a critical donor shortage, which could profoundly impact blood availability. We developed a simulation model for the blood supply environment in the United States to assess the likely impact on blood availability of factors such as an epidemic. We developed a simulator of a multi-state model with transitions among states. Weekly numbers of blood units donated and needed were generated by negative binomial stochastic processes. The simulator allows exploration of the blood system under certain conditions of supply and demand rates, and can be used for planning purposes to prepare for sudden changes in the public's health. The simulator incorporates three donor groups (first-time, sporadic, and regular), immigration and emigration, deferral period, and adjustment factors for recruitment. We illustrate possible uses of the simulator by specifying input values for an 8-week flu epidemic, resulting in a moderate supply shock and demand spike (for example, from postponed elective surgeries), and different recruitment strategies. The input values are based in part on data from a regional blood center of the American Red Cross during 1996-2005. Our results from these scenarios suggest that the key to alleviating deficit effects of a system shock may be appropriate timing and duration of recruitment efforts, in turn depending critically on anticipating shocks and rapidly implementing recruitment efforts.
Energy Technology Data Exchange (ETDEWEB)
Ahn, Tae-Hyuk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Sandu, Adrian [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Computer Science; Watson, Layne T. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Computer Science and Mathematics, Aerospace and Ocean Engineering; Shaffer, Clifford A. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Computer Science; Cao, Yang [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Computer Science; Baumann, William T. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Electrical and Computer Engineering
2015-08-01
Ensembles of simulations are employed to estimate the statistics of possible future states of a system, and are widely used in important applications such as climate change and biological modeling. Ensembles of runs can naturally be executed in parallel. However, when the CPU times of individual simulations vary considerably, a simple strategy of assigning an equal number of tasks per processor can lead to serious work imbalances and low parallel efficiency. This paper presents a new probabilistic framework to analyze the performance of dynamic load balancing algorithms for ensembles of simulations where many tasks are mapped onto each processor, and where the individual compute times vary considerably among tasks. Four load balancing strategies are discussed: most-dividing, all-redistribution, random-polling, and neighbor-redistribution. Simulation results with a stochastic budding yeast cell cycle model are consistent with the theoretical analysis. It is especially significant that there is a provable global decrease in load imbalance for the local rebalancing algorithms due to scalability concerns for the global rebalancing algorithms. The overall simulation time is reduced by up to 25 %, and the total processor idle time by 85 %.
STOCHASTIC SIMULATION FOR BUFFELGRASS (Cenchrus ciliaris L. PASTURES IN MARIN, N. L., MEXICO
Directory of Open Access Journals (Sweden)
JosÃ© Romualdo MartÃnez-LÃ³pez
2014-04-01
Full Text Available A stochastic simulation model was constructed to determine the response of net primary production of buffelgrass (Cenchrus ciliaris L. and its dry matter intake by cattle, in MarÃn, NL, MÃ©xico. Buffelgrass is very important for extensive livestock industry in arid and semiarid areas of northeastern Mexico. To evaluate the behavior of the model by comparing the model results with those reported in the literature was the objective in this experiment. Model simulates the monthly production of dry matter of green grass, as well as its conversion to senescence and dry grass and eventually to mulch, depending on precipitation and temperature. Model also simulates consumption of green and dry grass for cattle. The stocking rate used in the model simulation was 2 hectares per animal unit. Annual production ranged from 4.5 to 10.2 t of dry matter per hectare with annual rainfall of 300 to 704 mm, respectively. Total annual intake required per animal unit was estimated at 3.6 ton. Simulated net primary production coincides with reports in the literature, so the model was evaluated successfully.
Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.
2016-02-24
The Souris River Basin is a 61,000-square-kilometer basin in the Provinces of Saskatchewan and Manitoba and the State of North Dakota. In May and June of 2011, record-setting rains were seen in the headwater areas of the basin. Emergency spillways of major reservoirs were discharging at full or nearly full capacity, and extensive flooding was seen in numerous downstream communities. To determine the probability of future extreme floods and droughts, the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, developed a stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural (unregulated) streamflow. Simulations from the model can be used in future studies to simulate regulated streamflow, design levees, and other structures; and to complete economic cost/benefit analyses.Long-term climatic variability was analyzed using tree-ring chronologies to hindcast precipitation to the early 1700s and compare recent wet and dry conditions to earlier extreme conditions. The extended precipitation record was consistent with findings from the Devils Lake and Red River of the North Basins (southeast of the Souris River Basin), supporting the idea that regional climatic patterns for many centuries have consisted of alternating wet and dry climate states.A stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration for the Souris River Basin was developed using recorded meteorological data and extended precipitation records provided through tree-ring analysis. A significant climate transition was seen around1970, with 1912–69 representing a dry climate state and 1970–2011 representing a wet climate state. Although there were some distinct subpatterns within the basin, the predominant differences between the two states were higher spring through early fall precipitation and higher spring potential evapotranspiration for the wet compared to the dry state.A water
DEFF Research Database (Denmark)
Sørensen, J.T.; Enevoldsen, Carsten; Houe, H.
1995-01-01
A dynamic, stochastic model simulating the technical and economic consequences of bovine virus diarrhoea virus (BVDV) infections for a dairy cattle herd for use on a personal computer was developed. The production and state changes of the herd were simulated by state changes of the individual cows...... modelling principle. The validation problem in relation to the model was discussed. A comparison between real and simulated data using data from a published case report was shown to illustrate how user acceptance can be obtained....
International Nuclear Information System (INIS)
Petrus Zacharias; Abdul Jami
2010-01-01
Researches conducted by Batan's researchers have resulted in a number competences that can be used to produce goods and services, which will be applied to industrial sector. However, there are difficulties how to convey and utilize the R and D products into industrial sector. Evaluation results show that each research result should be completed with techno-economy analysis to obtain the feasibility of a product for industry. Further analysis on multy-product concept, in which one business can produce many main products, will be done. For this purpose, a software package simulating techno-economy I economic feasibility which uses deterministic and stochastic data (Monte Carlo method) was been carried out for multi-product including side product. The programming language used in Visual Basic Studio Net 2003 and SQL as data base processing software. This software applied sensitivity test to identify which investment criteria is sensitive for the prospective businesses. Performance test (trial test) has been conducted and the results are in line with the design requirement, such as investment feasibility and sensitivity displayed deterministically and stochastically. These result can be interpreted very well to support business decision. Validation has been performed using Microsoft Excel (for single product). The result of the trial test and validation show that this package is suitable for demands and is ready for use. (author)
MarkoLAB: A simulator to study ionic channel's stochastic behavior.
da Silva, Robson Rodrigues; Goroso, Daniel Gustavo; Bers, Donald M; Puglisi, José Luis
2017-08-01
Mathematical models of the cardiac cell have started to include markovian representations of the ionic channels instead of the traditional Hodgkin & Huxley formulations. There are many reasons for this: Markov models are not restricted to the idea of independent gates defining the channel, they allow more complex description with specific transitions between open, closed or inactivated states, and more importantly those states can be closely related to the underlying channel structure and conformational changes. We used the LabVIEW ® and MATLAB ® programs to implement the simulator MarkoLAB that allow a dynamical 3D representation of the markovian model of the channel. The Monte Carlo simulation was used to implement the stochastic transitions among states. The user can specify the voltage protocol by setting the holding potential, the step-to voltage and the duration of the stimuli. The most studied feature of a channel is the current flowing through it. This happens when the channel stays in the open state, but most of the time, as revealed by the low open probability values, the channel remains on the inactive or closed states. By focusing only when the channel enters or leaves the open state we are missing most of its activity. MarkoLAB proved to be quite useful to visualize the whole behavior of the channel and not only when the channel produces a current. Such dynamic representation provides more complete information about channel kinetics and will be a powerful tool to demonstrate the effect of gene mutations or drugs on the channel function. MarkoLAB provides an original way of visualizing the stochastic behavior of a channel. It clarifies concepts, such as recovery from inactivation, calcium- versus voltage-dependent inactivation, and tail currents. It is not restricted to ionic channels only but it can be extended to other transporters, such as exchangers and pumps. This program is intended as a didactical tool to illustrate the dynamical behavior of a
Guerrier, C.; Holcman, D.
2017-07-01
The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.
Energy Technology Data Exchange (ETDEWEB)
Guerrier, C. [Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d' Ulm, 75005 Paris (France); Holcman, D., E-mail: david.holcman@ens.fr [Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d' Ulm, 75005 Paris (France); Mathematical Institute, Oxford OX2 6GG, Newton Institute (United Kingdom)
2017-07-01
The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.
Metaheuristic simulation optimisation for the stochastic multi-retailer supply chain
Omar, Marina; Mustaffa, Noorfa Haszlinna H.; Othman, Siti Norsyahida
2013-04-01
Supply Chain Management (SCM) is an important activity in all producing facilities and in many organizations to enable vendors, manufacturers and suppliers to interact gainfully and plan optimally their flow of goods and services. A simulation optimization approach has been widely used in research nowadays on finding the best solution for decision-making process in Supply Chain Management (SCM) that generally faced a complexity with large sources of uncertainty and various decision factors. Metahueristic method is the most popular simulation optimization approach. However, very few researches have applied this approach in optimizing the simulation model for supply chains. Thus, this paper interested in evaluating the performance of metahueristic method for stochastic supply chains in determining the best flexible inventory replenishment parameters that minimize the total operating cost. The simulation optimization model is proposed based on the Bees algorithm (BA) which has been widely applied in engineering application such as training neural networks for pattern recognition. BA is a new member of meta-heuristics. BA tries to model natural behavior of honey bees in food foraging. Honey bees use several mechanisms like waggle dance to optimally locate food sources and to search new ones. This makes them a good candidate for developing new algorithms for solving optimization problems. This model considers an outbound centralised distribution system consisting of one supplier and 3 identical retailers and is assumed to be independent and identically distributed with unlimited supply capacity at supplier.
International Nuclear Information System (INIS)
Guerrier, C.; Holcman, D.
2017-01-01
The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.
Event-by-event simulation of a quantum delayed-choice experiment
Donker, Hylke C.; De Raedt, Hans; Michielsen, Kristel
2014-01-01
The quantum delayed-choice experiment of Tang et al. (2012) is simulated on the level of individual events without making reference to concepts of quantum theory or without solving a wave equation. The simulation results are in excellent agreement with the quantum theoretical predictions of this
Zalys-Geller, E.; Hatridge, M.; Silveri, M.; Narla, A.; Sliwa, K. M.; Shankar, S.; Girvin, S. M.; Devoret, M. H.
2015-03-01
Remote entanglement of two superconducting qubits may be accomplished by first entangling them with flying coherent microwave pulses, and then erasing the which-path information of these pulses by using a non-degenerate parametric amplifier such as the Josephson Parametric Converter (JPC). Crucially, this process requires no direct interaction between the two qubits. The JPC, however, will fail to completely erase the which-path information if the flying microwave pulses encode any difference in dynamics of the two qubit-cavity systems. This which-path information can easily arise from mismatches in the cavity linewidths and the cavity dispersive shifts from their respective qubits. Through analysis of the Stochastic Master Equation for this system, we have found a strategy for shaping the measurement pulses to eliminate the effect of these mismatches on the entangling measurement. We have then confirmed the effectiveness of this strategy by numerical simulation. Work supported by: IARPA, ARO, and NSF.
International Nuclear Information System (INIS)
Schwen, E M; Mazilu, I; Mazilu, D A
2015-01-01
We introduce a stochastic cooperative model for particle deposition and evaporation relevant to ionic self-assembly of nanoparticles with applications in surface fabrication and nanomedicine, and present a method for mapping our model onto the Ising model. The mapping process allows us to use the established results for the Ising model to describe the steady-state properties of our system. After completing the mapping process, we investigate the time dependence of particle density using the mean field approximation. We complement this theoretical analysis with Monte Carlo simulations that support our model. These techniques, which can be used separately or in combination, are useful as pedagogical tools because they are tractable mathematically and they apply equally well to many other physical systems with nearest-neighbour interactions including voter and epidemic models. (paper)
Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates
Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.
2016-01-01
The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.
Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion
Li, Z.; Ghaith, M.
2017-12-01
Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.
The Stochastic Human Exposure and Dose Simulation Model – High-Throughput (SHEDS-HT) is a U.S. Environmental Protection Agency research tool for predicting screening-level (low-tier) exposures to chemicals in consumer products. This course will present an overview of this m...
Perozzi, Lorenzo; Gloaguen, Erwan; Rondenay, Stephane; Leite, André; McDowell, Glenn; Wheeler, Robert
2010-05-01
In the mining industry, classic methods to build a grade model for ore deposits are based on kriging or cokriging of grades for targeted minerals measured in drill core in fertile geological units. As the complexity of the geological geometry increases, so does the complexity of grade estimations. For example, in layered mafic or ultramafic intrusions, it is necessary to know the layering geometry in order to perform kriging of grades in the most fertile zones. Without additional information on geological framwork, the definition of fertile zones is a low-precision exercise that requires extensive experience and good ability from the geologist. Recently, thanks to computer and geophysical tool improvements, seismic tomography became very attractive for many application fields. Indeed, this non-intrusive technique allows inferring the mechanical properties of the ground using travel times and amplitude analysis of the transmitted wavelet between two boreholes, hence provide additional information on the nature of the deposit. Commonly used crosshole seismic velocity tomography algorithms estimate 2D slowness models (inverse of velocity) in the plane between the boreholes using the measured direct wave travel times from the transmitter (located in one of the hole) to the receivers (located in the other hole). Furthermore, geophysical borehole logging can be used to constrain seismic tomography between drill holes. Finally, this project aims to estimate grade of economically worth mineral by integrating seismic tomography data with respectively drill core measured grades acquired by Vale Inco for one of their mine sites in operation. In this study, a new type algorithm that combines geostatistical simulation and tomography in the same process (namely stochastic tomography) has been used. The principle of the stochastic tomography is based on the straight ray approximation and use the linear relationship between travel time and slowness to estimate the slowness
Energy Technology Data Exchange (ETDEWEB)
Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)
2010-07-01
Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)
Horng, Shih-Cheng; Lin, Shin-Yeu; Lee, Loo Hay; Chen, Chun-Hung
2013-10-01
A three-phase memetic algorithm (MA) is proposed to find a suboptimal solution for real-time combinatorial stochastic simulation optimization (CSSO) problems with large discrete solution space. In phase 1, a genetic algorithm assisted by an offline global surrogate model is applied to find N good diversified solutions. In phase 2, a probabilistic local search method integrated with an online surrogate model is used to search for the approximate corresponding local optimum of each of the N solutions resulted from phase 1. In phase 3, the optimal computing budget allocation technique is employed to simulate and identify the best solution among the N local optima from phase 2. The proposed MA is applied to an assemble-to-order problem, which is a real-world CSSO problem. Extensive simulations were performed to demonstrate its superior performance, and results showed that the obtained solution is within 1% of the true optimum with a probability of 99%. We also provide a rigorous analysis to evaluate the performance of the proposed MA.
Sun, Xiaodan; Hartzell, Stephen; Rezaeian, Sanaz
2015-01-01
Three broadband simulation methods are used to generate synthetic ground motions for the 2011 Mineral, Virginia, earthquake and compare with observed motions. The methods include a physics‐based model by Hartzell et al. (1999, 2005), a stochastic source‐based model by Boore (2009), and a stochastic site‐based model by Rezaeian and Der Kiureghian (2010, 2012). The ground‐motion dataset consists of 40 stations within 600 km of the epicenter. Several metrics are used to validate the simulations: (1) overall bias of response spectra and Fourier spectra (from 0.1 to 10 Hz); (2) spatial distribution of residuals for GMRotI50 peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration (PSA) at various periods; (3) comparison with ground‐motion prediction equations (GMPEs) for the eastern United States. Our results show that (1) the physics‐based model provides satisfactory overall bias from 0.1 to 10 Hz and produces more realistic synthetic waveforms; (2) the stochastic site‐based model also yields more realistic synthetic waveforms and performs superiorly for frequencies greater than about 1 Hz; (3) the stochastic source‐based model has larger bias at lower frequencies (frequency content in the time domain. The spatial distribution of GMRotI50 residuals shows that there is no obvious pattern with distance in the simulation bias, but there is some azimuthal variability. The comparison between synthetics and GMPEs shows similar fall‐off with distance for all three models, comparable PGA and PSA amplitudes for the physics‐based and stochastic site‐based models, and systematic lower amplitudes for the stochastic source‐based model at lower frequencies (<0.5 Hz).
Directory of Open Access Journals (Sweden)
GERMÁN LOBOS
2015-12-01
Full Text Available ABSTRACT The traditional method of net present value (NPV to analyze the economic profitability of an investment (based on a deterministic approach does not adequately represent the implicit risk associated with different but correlated input variables. Using a stochastic simulation approach for evaluating the profitability of blueberry (Vaccinium corymbosum L. production in Chile, the objective of this study is to illustrate the complexity of including risk in economic feasibility analysis when the project is subject to several but correlated risks. The results of the simulation analysis suggest that the non-inclusion of the intratemporal correlation between input variables underestimate the risk associated with investment decisions. The methodological contribution of this study illustrates the complexity of the interrelationships between uncertain variables and their impact on the convenience of carrying out this type of business in Chile. The steps for the analysis of economic viability were: First, adjusted probability distributions for stochastic input variables (SIV were simulated and validated. Second, the random values of SIV were used to calculate random values of variables such as production, revenues, costs, depreciation, taxes and net cash flows. Third, the complete stochastic model was simulated with 10,000 iterations using random values for SIV. This result gave information to estimate the probability distributions of the stochastic output variables (SOV such as the net present value, internal rate of return, value at risk, average cost of production, contribution margin and return on capital. Fourth, the complete stochastic model simulation results were used to analyze alternative scenarios and provide the results to decision makers in the form of probabilities, probability distributions, and for the SOV probabilistic forecasts. The main conclusion shown that this project is a profitable alternative investment in fruit trees in
DEFF Research Database (Denmark)
Nielsen, Steen
2000-01-01
This paper expands the traditional product costing technique be including a stochastic form in a complex production process for product costing. The stochastic phenomenon in flesbile manufacturing technologies is seen as an important phenomenon that companies try to decreas og eliminate. DFM has ...... been used for evaluating the appropriateness of the firm's production capability. In this paper a simulation model is developed to analyze the relevant cost behaviour with respect to DFM and to develop a more streamlined process in the layout of the manufacturing process....
XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations
Dennis, Graham R.; Hope, Joseph J.; Johnsson, Mattias T.
2013-01-01
XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code. Program summaryProgram title: XMDS2 Catalogue identifier: AENK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 872490 No. of bytes in distributed program, including test data, etc.: 45522370 Distribution format: tar.gz Programming language: Python and C++. Computer: Any computer with a Unix-like system, a C++ compiler and Python. Operating system: Any Unix-like system; developed under Mac OS X and GNU/Linux. RAM: Problem dependent (roughly 50 bytes per grid point) Classification: 4.3, 6.5. External routines: The external libraries required are problem-dependent. Uses FFTW3 Fourier transforms (used only for FFT-based spectral methods), dSFMT random number generation (used only for stochastic problems), MPI message-passing interface (used only for distributed problems), HDF5, GNU Scientific Library (used only for Bessel-based spectral methods) and a BLAS implementation (used only for non-FFT-based spectral methods). Nature of problem: General coupled initial-value stochastic partial differential equations. Solution method: Spectral method
Fiore, Andrew M.; Swan, James W.
2018-01-01
equations of motion leads to a stochastic differential algebraic equation (SDAE) of index 1, which is integrated forward in time using a mid-point integration scheme that implicitly produces stochastic displacements consistent with the fluctuation-dissipation theorem for the constrained system. Calculations for hard sphere dispersions are illustrated and used to explore the performance of the algorithm. An open source, high-performance implementation on graphics processing units capable of dynamic simulations of millions of particles and integrated with the software package HOOMD-blue is used for benchmarking and made freely available in the supplementary material (ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-012805)
Diffusion approximation-based simulation of stochastic ion channels: which method to use?
Directory of Open Access Journals (Sweden)
Danilo ePezo
2014-11-01
Full Text Available To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie’s method for Markov Chains (MC simulation is highly accurate, yet it becomes computationally intensive in the regime of high channel numbers. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA. Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties – such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Dangerfield et al., 2012; Linaro et al., 2011; Huang et al., 2013a; Orio and Soudry, 2012; Schmandt and Galán, 2012; Goldwyn et al., 2011; Güler, 2013, comparing all of them in a set of numerical simulations that asses numerical accuracy and computational efficiency on three different models: the original Hodgkin and Huxley model, a model with faster sodium channels, and a multi-compartmental model inspired in granular cells. We conclude that for low channel numbers (usually below 1000 per simulated compartment one should use MC – which is both the most accurate and fastest method. For higher channel numbers, we recommend using the method by Orio and Soudry (2012, possibly combined with the method by Schmandt and Galán (2012 for increased speed and slightly reduced accuracy. Consequently, MC modelling may be the best method for detailed multicompartment neuron models – in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels.
Diffusion approximation-based simulation of stochastic ion channels: which method to use?
Pezo, Danilo; Soudry, Daniel; Orio, Patricio
2014-01-01
To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914
Stochastic Global Optimization and Its Applications with Fuzzy Adaptive Simulated Annealing
Aguiar e Oliveira Junior, Hime; Petraglia, Antonio; Rembold Petraglia, Mariane; Augusta Soares Machado, Maria
2012-01-01
Stochastic global optimization is a very important subject, that has applications in virtually all areas of science and technology. Therefore there is nothing more opportune than writing a book about a successful and mature algorithm that turned out to be a good tool in solving difficult problems. Here we present some techniques for solving several problems by means of Fuzzy Adaptive Simulated Annealing (Fuzzy ASA), a fuzzy-controlled version of ASA, and by ASA itself. ASA is a sophisticated global optimization algorithm that is based upon ideas of the simulated annealing paradigm, coded in the C programming language and developed to statistically find the best global fit of a nonlinear constrained, non-convex cost function over a multi-dimensional space. By presenting detailed examples of its application we want to stimulate the reader’s intuition and make the use of Fuzzy ASA (or regular ASA) easier for everyone wishing to use these tools to solve problems. We kept formal mathematical requirements to a...
A framework for stochastic simulation of distribution practices for hotel reservations
Energy Technology Data Exchange (ETDEWEB)
Halkos, George E.; Tsilika, Kyriaki D. [Laboratory of Operations Research, Department of Economics, University of Thessaly, Korai 43, 38 333, Volos (Greece)
2015-03-10
The focus of this study is primarily on the Greek hotel industry. The objective is to design and develop a framework for stochastic simulation of reservation requests, reservation arrivals, cancellations and hotel occupancy with a planning horizon of a tourist season. In Greek hospitality industry there have been two competing policies for reservation planning process up to 2003: reservations coming directly from customers and a reservations management relying on tour operator(s). Recently the Internet along with other emerging technologies has offered the potential to disrupt enduring distribution arrangements. The focus of the study is on the choice of distribution intermediaries. We present an empirical model for the hotel reservation planning process that makes use of a symbolic simulation, Monte Carlo method, as, requests for reservations, cancellations, and arrival rates are all sources of uncertainty. We consider as a case study the problem of determining the optimal booking strategy for a medium size hotel in Skiathos Island, Greece. Probability distributions and parameters estimation result from the historical data available and by following suggestions made in the relevant literature. The results of this study may assist hotel managers define distribution strategies for hotel rooms and evaluate the performance of the reservations management system.
Directory of Open Access Journals (Sweden)
Purutçuoǧlu Vilda
2006-12-01
Full Text Available The MAPK (mitogen-activated protein kinase or its synonymous ERK (extracellular signal regulated kinase pathway whose components are Ras, Raf, and MEK proteins with many biochemical links, is one of the major signalling systems involved in cellular growth control of eukaryotes including cell proliferation, transformation, differentiation, and apoptosis. In this study we describe the MAPK/ERK pathway via (quasi biochemical reactions and then implement the pathway by a stochastic Markov process. A novelty of our approach is to use multiple parametrizations in order to deal with molecules for which localization in the cell is an intricate part of the dynamic process and to describe the protein using different binding sites and various phosphorylations. We simulate the system by exact and different approximate simulations, e.g. via the Poisson τ-leap, the Binomial τ-leap and the diffusion methods, in which we introduce a new updating plan for dependent columns of the diffusion matrix. Finally we compare the results of different algorithms by the current biological knowledge and find out new relations about this complex system.
An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays
Directory of Open Access Journals (Sweden)
Laurenzi Ian J
2009-12-01
Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.
A conditional stochastic weather generator for seasonal to multi-decadal simulations
Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico
2018-01-01
We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.
A framework for stochastic simulation of distribution practices for hotel reservations
International Nuclear Information System (INIS)
Halkos, George E.; Tsilika, Kyriaki D.
2015-01-01
The focus of this study is primarily on the Greek hotel industry. The objective is to design and develop a framework for stochastic simulation of reservation requests, reservation arrivals, cancellations and hotel occupancy with a planning horizon of a tourist season. In Greek hospitality industry there have been two competing policies for reservation planning process up to 2003: reservations coming directly from customers and a reservations management relying on tour operator(s). Recently the Internet along with other emerging technologies has offered the potential to disrupt enduring distribution arrangements. The focus of the study is on the choice of distribution intermediaries. We present an empirical model for the hotel reservation planning process that makes use of a symbolic simulation, Monte Carlo method, as, requests for reservations, cancellations, and arrival rates are all sources of uncertainty. We consider as a case study the problem of determining the optimal booking strategy for a medium size hotel in Skiathos Island, Greece. Probability distributions and parameters estimation result from the historical data available and by following suggestions made in the relevant literature. The results of this study may assist hotel managers define distribution strategies for hotel rooms and evaluate the performance of the reservations management system
Kimizuka, M; Munakata, T; Rosinberg, M L
2010-10-01
We consider a network of N noisy bistable elements with global time-delayed couplings. In a two-state description, where elements are represented by Ising spins, the collective dynamics is described by an infinite hierarchy of coupled master equations which was solved at the mean-field level in the thermodynamic limit. When the number of elements is finite, as is the case in actual laser networks, an analytical description was deemed so far intractable and numerical studies seemed to be necessary. In this paper we consider the case of two interacting elements and show that a partial analytical description of the stationary state is possible if the stochastic process is time symmetric. This requires some relationship between the transition rates to be satisfied.
DEFF Research Database (Denmark)
Sørensen, J.T.; Enevoldsen, Carsten; Houe, H.
1995-01-01
A dynamic, stochastic model simulating the technical and economic consequences of bovine virus diarrhoea virus (BVDV) infections for a dairy cattle herd for use on a personal computer was developed. The production and state changes of the herd were simulated by state changes of the individual cows...... variables describing biologic and management variables including 21 decision variables describing the effect of BVDV infection on the production of the individual animal. Two markedly different scenarios were simulated to demonstrate the behaviour of the developed model and the potentials of the applied...... and heifers. All discrete events at the cow level were triggered stochastically. Each cow and heifer was characterized by state variables such as stage of lactation, parity, oestrous status, decision for culling, milk production potential, and immune status for BVDV. The model was controlled by 170 decision...
Delayed detached-eddy simulation of vortex breakdown over a 70 .deg. delta wing
International Nuclear Information System (INIS)
Son, Mi So; Sa, Jeong Hwan; Park, Soo Hyung; Byun, Yung Hwan; Cho, Kum Won
2015-01-01
To investigate the vortex breakdown over the ONERA70 delta wing at an angle-of-attack of 27 .deg., unsteady simulations were performed using Reynolds-averaged Navier-Stokes and Spalart-Allmaras delayed detached-eddy simulations. A low-diffusive preconditioned Roe scheme with third-order MUSCL interpolation scheme was applied, along with second-order dual-time stepping combined with diagonalized alternating direction implicit method for unsteady simulation. Vortex breakdown was investigated through an examination of total pressure loss, axial velocity, and axial vorticity around the primary vortex. Delayed dtached-eddy simulation provided good agreement with experimental data and predicted all physical phenomena related to vortex breakdown well.
Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.
2016-01-01
This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.
StochPy: A Comprehensive, User-Friendly Tool for Simulating Stochastic Biological Processes
T.R. Maarleveld (Timo); B.G. Olivier (Brett); F.J. Bruggeman (Frank)
2013-01-01
htmlabstractSingle-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models
Delayed Neutron & Gamma Measurements of Special Nuclear Materials and MCNP6 Simulations
Energy Technology Data Exchange (ETDEWEB)
Sellers, Madison [Royal Military College of Canada, Kingston, ON (Canada); Goorley, John T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Corcoran, E. C. [Royal Military College of Canada, Kingston, ON (Canada); Kelly, D. G. [Royal Military College of Canada, Kingston, ON (Canada)
2014-01-21
Measurements of DG emissions from 0.8 – 1.6 MeV were compared to MCNP6 simulations. Several discrepancies were resolved with use of ENDFVII.1 decay data. Furthermore, MCNP6 was executable with delayed bin fix resolved several line intensity discrepancies.
DEFF Research Database (Denmark)
Sørensen, J.T.; Enevoldsen, Carsten; Houe, H.
1995-01-01
A dynamic, stochastic model simulating the technical and economic consequences of bovine virus diarrhoea virus (BVDV) infections for a dairy cattle herd for use on a personal computer was developed. The production and state changes of the herd were simulated by state changes of the individual cows...... variables describing biologic and management variables including 21 decision variables describing the effect of BVDV infection on the production of the individual animal. Two markedly different scenarios were simulated to demonstrate the behaviour of the developed model and the potentials of the applied...
Extending Stochastic Network Calculus to Loss Analysis
Directory of Open Access Journals (Sweden)
Chao Luo
2013-01-01
Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.
Simulation-optimization framework for multi-site multi-season hybrid stochastic streamflow modeling
Srivastav, Roshan; Srinivasan, K.; Sudheer, K. P.
2016-11-01
A simulation-optimization (S-O) framework is developed for the hybrid stochastic modeling of multi-site multi-season streamflows. The multi-objective optimization model formulated is the driver and the multi-site, multi-season hybrid matched block bootstrap model (MHMABB) is the simulation engine within this framework. The multi-site multi-season simulation model is the extension of the existing single-site multi-season simulation model. A robust and efficient evolutionary search based technique, namely, non-dominated sorting based genetic algorithm (NSGA - II) is employed as the solution technique for the multi-objective optimization within the S-O framework. The objective functions employed are related to the preservation of the multi-site critical deficit run sum and the constraints introduced are concerned with the hybrid model parameter space, and the preservation of certain statistics (such as inter-annual dependence and/or skewness of aggregated annual flows). The efficacy of the proposed S-O framework is brought out through a case example from the Colorado River basin. The proposed multi-site multi-season model AMHMABB (whose parameters are obtained from the proposed S-O framework) preserves the temporal as well as the spatial statistics of the historical flows. Also, the other multi-site deficit run characteristics namely, the number of runs, the maximum run length, the mean run sum and the mean run length are well preserved by the AMHMABB model. Overall, the proposed AMHMABB model is able to show better streamflow modeling performance when compared with the simulation based SMHMABB model, plausibly due to the significant role played by: (i) the objective functions related to the preservation of multi-site critical deficit run sum; (ii) the huge hybrid model parameter space available for the evolutionary search and (iii) the constraint on the preservation of the inter-annual dependence. Split-sample validation results indicate that the AMHMABB model is
Evaluating Economic Alternatives for Wood Energy Supply Based on Stochastic Simulation
Directory of Open Access Journals (Sweden)
Ulises Flores Hernández
2018-04-01
Full Text Available Productive forests, as a major source of biomass, represent an important pre-requisite for the development of a bio-economy. In this respect, assessments of biomass availability, efficiency of forest management, forest operations, and economic feasibility are essential. This is certainly the case for Mexico, a country with an increasing energy demand and a considerable potential for sustainable forest utilization. Hence, this paper focuses on analyzing economic alternatives for the Mexican bioenergy supply based on the costs and revenues of utilizing woody biomass residues. With a regional spatial approach, harvesting and transportation costs of utilizing selected biomass residues were stochastically calculated using Monte Carlo simulations. A sensitivity analysis of percentage variation of the most probable estimate in relation to the parameters price and cost for one alternative using net future analysis was conducted. Based on the results for the northern region, a 10% reduction of the transportation cost would reduce overall supply cost, resulting in a total revenue of 13.69 USD/m3 and 0.75 USD/m3 for harvesting residues and non-extracted stand residues, respectively. For the central south region, it is estimated that a contribution of 16.53 USD/m3 from 2013 and a total revenue of 33.00 USD/m3 in 2030 from sawmill residues will improve the value chain. The given approach and outputs provide the basis for the decision-making process regarding forest utilization towards energy generation based on economic indicators.
Directory of Open Access Journals (Sweden)
E Scholtz
2012-12-01
Full Text Available The cash management of an autoteller machine (ATM is a multi-objective optimisation problem which aims to maximise the service level provided to customers at minimum cost. This paper focus on improved cash management in a section of the South African retail banking industry, for which a decision support system (DSS was developed. This DSS integrates four Operations Research (OR methods: the vehicle routing problem (VRP, the continuous review policy for inventory management, the knapsack problem and stochastic, discrete-event simulation. The DSS was applied to an ATM network in the Eastern Cape, South Africa, to investigate 90 different scenarios. Results show that the application of a formal vehicle routing method consistently yields higher service levels at lower cost when compared to two other routing approaches, in conjunction with selected ATM reorder levels and a knapsack-based notes dispensing algorithm. It is concluded that the use of vehicle routing methods is especially beneficial when the bank has substantial control over transportation cost.
A stochastic simulation procedure for selecting herbicides with minimum environmental impact.
Giudice, Ben D; Massoudieh, Arash; Huang, Xinjiang; Young, Thomas M
2008-01-15
A mathematical environmental transport model of roadside applied herbicides at the site scale (approximately 100 m) was stochastically applied using a Monte-Carlo technique to simulate the concentrations of 33 herbicides in stormwater runoff. Field surveys, laboratory sorption data, and literature data were used to generate probability distribution functions for model input parameters to allow extrapolation of the model to the regional scale. Predicted concentrations were compared to EPA acute toxicity end points for aquatic organisms to determine the frequency of potentiallytoxic outcomes. Results are presented for three geographical regions in California and two highway geometries. For a given herbicide, frequencies of potential toxicity (FPTs) varied by as much as 36% between region and highway type. Of 33 herbicides modeled, 16 exhibit average FPTs greater than 50% at the maximum herbicide application rate, while 20 exhibit average FPTs less than 50% at the minimum herbicide application rate. Based on these FPTs and current usage statistics, selected herbicides were determined to be more environmentally acceptable than others in terms of acute toxicity and other documented environmental effects. This analysis creates a decision support system that can be used to evaluate the relative water quality impacts of varied herbicide application practices.
Stochastic Simulations of Colloid-Facilitated Transport for Long Time and Space Scales
Painter, S.; Pickett, D.; Cvetkovic, V.
2004-12-01
Although it is widely recognized that naturally occurring inorganic colloids can potentially enhance the transport of radionuclides in the subsurface, comparatively few analyses have considered the long times and large travel distances associated with potential nuclear waste repositories. One-dimensional transient simulations in a stochastic Lagrangian framework are used to explore model and parameter sensitivities for colloid-facilitated transport at large scales. The model accounts for (i) advection and dispersion of radionuclides and colloids, (ii) radionuclide decay, (iii) exchange of radionuclides among colloid-bound, dissolved, and fixed substrate phases, and (iv) attachment and detachment of colloids to the fixed substrate. Kinetics of the exchanges between dissolved and colloid-bound states are addressed using linear and non-linear models. Generic sensitivity studies addressing both fractured and granular aquifers are considered, as is an example based on the groundwater transport pathway for the potential repository at Yucca Mountain, Nevada. In the absence of mitigating factors such as permanent filtration of colloids, transport may be enhanced over the situation without colloids, but only for strongly sorbing radionuclides. Mass transfer between solution and immobilized colloids makes colloid retardation relatively ineffective at reducing facilitated transport except when the retardation factor is large. Results are particularly sensitive to the rate of desorption from colloids, a parameter that is difficult to measure with short-duration experiments. This paper is an independent product of the CNWRA and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission.
Multi-site Stochastic Simulation of Daily Streamflow with Markov Chain and KNN Algorithm
Mathai, J.; Mujumdar, P.
2017-12-01
A key focus of this study is to develop a method which is physically consistent with the hydrologic processes that can capture short-term characteristics of daily hydrograph as well as the correlation of streamflow in temporal and spatial domains. In complex water resource systems, flow fluctuations at small time intervals require that discretisation be done at small time scales such as daily scales. Also, simultaneous generation of synthetic flows at different sites in the same basin are required. We propose a method to equip water managers with a streamflow generator within a stochastic streamflow simulation framework. The motivation for the proposed method is to generate sequences that extend beyond the variability represented in the historical record of streamflow time series. The method has two steps: In step 1, daily flow is generated independently at each station by a two-state Markov chain, with rising limb increments randomly sampled from a Gamma distribution and the falling limb modelled as exponential recession and in step 2, the streamflow generated in step 1 is input to a nonparametric K-nearest neighbor (KNN) time series bootstrap resampler. The KNN model, being data driven, does not require assumptions on the dependence structure of the time series. A major limitation of KNN based streamflow generators is that they do not produce new values, but merely reshuffle the historical data to generate realistic streamflow sequences. However, daily flow generated using the Markov chain approach is capable of generating a rich variety of streamflow sequences. Furthermore, the rising and falling limbs of daily hydrograph represent different physical processes, and hence they need to be modelled individually. Thus, our method combines the strengths of the two approaches. We show the utility of the method and improvement over the traditional KNN by simulating daily streamflow sequences at 7 locations in the Godavari River basin in India.
Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites
Oliveira, Rodrigo F.; Kim, MyungSook; Blackwell, Kim T.
2012-01-01
Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity. PMID:22346744
International Nuclear Information System (INIS)
Fivaz, M.; Fasoli, A.; Appert, K.; Trans, T.M.; Tran, M.Q.; Skiff, F.
1993-08-01
Dynamical chaos is produced by the interaction between plasma particles and two electrostatic waves. Experiments performed in a linear magnetized plasma and a 1D particle-in-cell simulation agree qualitatively: above a threshold wave amplitude, ion stochastic diffusion and heating occur on a fast time scale. Self-consistency appears to limit the extent of the heating process. (author) 5 figs., 18 refs
Wang, Yong; Zhang, Guang J.; He, Yu-Jun
2017-12-01
With the incorporation of the Plant-Craig stochastic deep convection scheme into the Zhang-McFarlane deterministic parameterization in the Community Atmospheric Model version 5 (CAM5), its impact on extreme precipitation at different resolutions (2°, 1°, and 0.5°) is investigated. CAM5 with the stochastic deep convection scheme (experiment (EXP)) simulates the precipitation extreme indices better than the standard version (control). At 2° and 1° resolutions, EXP increases high percentile (>99th) daily precipitation over the United States, Europe, and China, resulting in a better agreement with observations. However, at 0.5° resolution, due to enhanced grid-scale precipitation with increasing resolution, EXP overestimates extreme precipitation over southeastern U.S. and eastern Europe. The reduced biases in EXP at each resolution benefit from a broader probability distribution function of convective precipitation intensity simulated. Among EXP simulations at different resolutions, if the spatial averaging area over which input quantities used in convective closure are spatially averaged in the stochastic convection scheme is comparable, the modeled convective precipitation intensity decreases with increasing resolution, when gridded to the same resolution, while the total precipitation is not sensitive to model resolution, exhibiting some degree of scale-awareness. Sensitivity tests show that for the same resolution, increasing the size of spatial averaging area decreases convective precipitation but increases the grid-scale precipitation.
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Rao, M.M.M.; Sadhuram, Y.; Sridevi, B.; Maneesha, K.; SujithKumar, S.; Prasanna, P.L.; Murthy, K.S.R.
of Bengal during south-west monsoon season and explore possibility to reconstruct the acoustic profile of the eddy by Stochastic Inverse Technique. A simulation experiment on forward and inverse problems for observed sound velocity perturbation field has...
Reis, T.
2010-09-06
Existing lattice Boltzmann models that have been designed to recover a macroscopic description of immiscible liquids are only able to make predictions that are quantitatively correct when the interface that exists between the fluids is smeared over several nodal points. Attempts to minimise the thickness of this interface generally leads to a phenomenon known as lattice pinning, the precise cause of which is not well understood. This spurious behaviour is remarkably similar to that associated with the numerical simulation of hyperbolic partial differential equations coupled with a stiff source term. Inspired by the seminal work in this field, we derive a lattice Boltzmann implementation of a model equation used to investigate such peculiarities. This implementation is extended to different spacial discretisations in one and two dimensions. We shown that the inclusion of a quasi-random threshold dramatically delays the onset of pinning and facetting.
Yildirim, Necmettin; Kazanci, Caner
2011-01-01
A brief introduction to mathematical modeling of biochemical regulatory reaction networks is presented. Both deterministic and stochastic modeling techniques are covered with examples from enzyme kinetics, coupled reaction networks with oscillatory dynamics and bistability. The Yildirim-Mackey model for lactose operon is used as an example to discuss and show how deterministic and stochastic methods can be used to investigate various aspects of this bacterial circuit. © 2011 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Zarzycki, Piotr [Energy; Institute; Rosso, Kevin M. [Pacific Northwest
2017-06-15
Understanding Fe(II)-catalyzed transformations of Fe(III)- (oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014, 48, 11302-11311; Joshi and Gorski Environ. Sci. Technol. 2016, 50, 7315-7324), we developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ~10-5 Fe nm-2 s-1, commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.
Directory of Open Access Journals (Sweden)
R. Uijlenhoet
2008-03-01
Full Text Available As rainfall constitutes the main source of water for the terrestrial hydrological processes, accurate and reliable measurement and prediction of its spatial and temporal distribution over a wide range of scales is an important goal for hydrology. We investigate the potential of ground-based weather radar to provide such measurements through a theoretical analysis of some of the associated observation uncertainties. A stochastic model of range profiles of raindrop size distributions is employed in a Monte Carlo simulation experiment to investigate the rainfall retrieval uncertainties associated with weather radars operating at X-, C-, and S-band. We focus in particular on the errors and uncertainties associated with rain-induced signal attenuation and its correction for incoherent, non-polarimetric, single-frequency, operational weather radars. The performance of two attenuation correction schemes, the (forward Hitschfeld-Bordan algorithm and the (backward Marzoug-Amayenc algorithm, is analyzed for both moderate (assuming a 50 km path length and intense Mediterranean rainfall (for a 30 km path. A comparison shows that the backward correction algorithm is more stable and accurate than the forward algorithm (with a bias in the order of a few percent for the former, compared to tens of percent for the latter, provided reliable estimates of the total path-integrated attenuation are available. Moreover, the bias and root mean square error associated with each algorithm are quantified as a function of path-averaged rain rate and distance from the radar in order to provide a plausible order of magnitude for the uncertainty in radar-retrieved rain rates for hydrological applications.
Dynamical Modelling, Stochastic Simulation and Optimization in the Context of Damage Tolerant Design
Directory of Open Access Journals (Sweden)
Sergio Butkewitsch
2006-01-01
Full Text Available This paper addresses the situation in which some form of damage is induced by cyclic mechanical stresses yielded by the vibratory motion of a system whose dynamical behaviour is, in turn, affected by the evolution of the damage. It is assumed that both phenomena, vibration and damage propagation, can be modeled by means of time depended equations of motion whose coupled solution is sought. A brief discussion about the damage tolerant design philosophy for aircraft structures is presented at the introduction, emphasizing the importance of the accurate definition of inspection intervals and, for this sake, the need of a representative damage propagation model accounting for the actual loading environment in which a structure may operate. For the purpose of illustration, the finite element model of a cantilever beam is formulated, providing that the stiffness matrix can be updated as long as a crack of an assumed initial length spreads in a given location of the beam according to a proper propagation model. This way, it is possible to track how the mechanical vibration, through its varying amplitude stress field, activates and develops the fatigue failure mechanism. Conversely, it is also possible to address how the effect of the fatigue induced stiffness degradation influences the motion of the beam, closing the loop for the analysis of a coupled vibration-degradation dynamical phenomenon. In the possession of this working model, stochastic simulation of the beam behaviour is developed, aiming at the identification of the most influential parameters and at the characterization of the probability distributions of the relevant responses of interest. The knowledge of the parameters and responses allows for the formulation of optimization problems aiming at the improvement of the beam robustness with respect to the fatigue induced stiffness degradation. The overall results are presented and analyzed, conducting to the conclusions and outline of future
Zarzycki, Piotr; Rosso, Kevin M
2017-07-05
Understanding Fe(II)-catalyzed transformations of Fe(III)-(oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014 , 48 , 11302 - 11311 ; Joshi and Gorski Environ. Sci. Technol. 2016 , 50 , 7315 - 7324 ), we developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ∼10 -5 Fe nm -2 s -1 , commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.
Directory of Open Access Journals (Sweden)
Christoph Castan
Full Text Available Early defibrillation is an important factor of survival in cardiac arrest. However, novice resuscitators often struggle with cardiac arrest patients. We investigated factors leading to delayed defibrillation performed by final-year medical students within a simulated bystander cardiac arrest situation.Final-year medical students received a refresher lecture and basic life support training before being confronted with a simulated cardiac arrest situation in a simulation ambulance. The scenario was analyzed for factors leading to delayed defibrillation. We compared the time intervals the participants needed for various measures with a benchmark set by experienced resuscitators. After training, the participants were interviewed regarding challenges and thoughts during the scenario.The median time needed for defibrillation was 158 s (n = 49, interquartile range: 107-270 s, more than six-fold of the benchmark time. The major part of total defibrillation time (49%; median, n = 49 was between onset of ventricular fibrillation and beginning to prepare the defibrillator, more specifically the time between end of preparation of the defibrillator and actual delivery of the shock, with a mean proportion of 26% (n = 49, SD = 17% of the overall time needed for defibrillation (maximum 67%. Self-reported reasons for this delay included uncertainty about the next step to take, as reported by 73% of the participants. A total of 35% were unsure about which algorithm to follow. Diagnosing the patient was subjectively difficult for 35% of the participants. Overall, 53% of the participants felt generally confused.Our study shows that novice resuscitators rarely achieve guideline-recommended defibrillation times. The most relative delays were observed when participants had to choose what to do next or which algorithm to follow, and thus i.e. performed extensive airway management before a life-saving defibrillation. Our data provides a first insight in the process of
Delays in Admittance-Controlled Haptic Devices Make Simulated Masses Feel Heavier.
Directory of Open Access Journals (Sweden)
Irene A Kuling
Full Text Available In an admittance-controlled haptic device, input forces are used to calculate the movement of the device. Although developers try to minimize delays, there will always be delays between the applied force and the corresponding movement in such systems, which might affect what the user of the device perceives. In this experiment we tested whether these delays in a haptic human-robot interaction influence the perception of mass. In the experiment an admittance-controlled manipulator was used to simulate various masses. In a staircase design subjects had to decide which of two virtual masses was heavier after gently pushing them leftward with the right hand in mid-air (no friction, no gravity. The manipulator responded as quickly as possible or with an additional delay (25 or 50 ms to the forces exerted by the subject on the handle of the haptic device. The perceived mass was ~10% larger for a delay of 25 ms and ~20% larger for a delay of 50 ms. Based on these results, we estimated that the delays that are present in nowadays admittance-controlled haptic devices (up to 20ms will give an increase in perceived mass which is smaller than the Weber fraction for mass (~10% for inertial mass. Additional analyses showed that the subjects' decision on mass when the perceptual differences were small did not correlate with intuitive variables such as force, velocity or a combination of these, nor with any other measured variable, suggesting that subjects did not have a consistent strategy during guessing or used other sources of information, for example the efference copy of their pushes.
Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan
2016-12-01
The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.
Directory of Open Access Journals (Sweden)
Mark D McDonnell
2013-05-01
Full Text Available The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of action-potential arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic action potential, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms.
International Nuclear Information System (INIS)
Eriksson, L.O.; Oppelstrup, J.
1994-12-01
A simulator for 2D stochastic continuum simulation and inverse modelling of groundwater flow has been developed. The simulator is well suited for method evaluation and what-if simulation and written in MATLAB. Conductivity fields are generated by unconditional simulation, conditional simulation on measured conductivities and calibration on both steady-state head measurements and transient head histories. The fields can also include fracture zones and zones with different mean conductivities. Statistics of conductivity fields and particle travel times are recorded in Monte-Carlo simulations. The calibration uses the pilot point technique, an inverse technique proposed by RamaRao and LaVenue. Several Kriging procedures are implemented, among others Kriging neighborhoods. In cases where the expectation of the log-conductivity in the truth field is known the nonbias conditions can be omitted, which will make the variance in the conditionally simulated conductivity fields smaller. A simulation experiment, resembling the initial stages of a site investigation and devised in collaboration with SKB, is performed and interpreted. The results obtained in the present study show less uncertainty than in our preceding study. This is mainly due to the modification of the Kriging procedure but also to the use of more data. Still the large uncertainty in cases of sparse data is apparent. The variogram represents essential characteristics of the conductivity field. Thus, even unconditional simulations take account of important information. Significant improvements in variance by further conditioning will be obtained only as the number of data becomes much larger. 16 refs, 26 figs
International Nuclear Information System (INIS)
Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.
2006-01-01
This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties
Mental simulation of drawing actions enhances delayed recall of a complex figure.
De Lucia, Natascia; Trojano, Luigi; Senese, Vincenzo Paolo; Conson, Massimiliano
2016-10-01
Motor simulation implies that the same motor representations involved in action execution are re-enacted during observation or imagery of actions. Neurofunctional data suggested that observation of letters or abstract paintings can elicit simulation of writing or drawing gestures. We performed four behavioural experiments on right-handed healthy participants to test whether observation of a static and complex geometrical figure implies re-enactment of drawing actions. In Experiment 1, participants had to observe the stimulus without explicit instruction (observation-only condition), while performing irrelevant finger tapping (motor dual task), or while articulating irrelevant verbal material (verbal dual task). Delayed drawing of the stimulus was less accurate in the motor dual-task (interfering with simulation of hand actions) than in verbal dual-task and observation-only conditions. In Experiment 2, delayed drawing in the observation only was as accurate as when participants encoded the stimulus by copying it; in both conditions, accuracy was higher than when participants were instructed to observe the stimulus to recall it later verbally (observe to recall), thus being discouraged from engaging motor simulation. In Experiment 3, delayed drawing was as accurate in the observation-only condition as when participants imagined copying the stimulus; accuracy in both conditions was higher than in the observe-to-recall condition. In Experiment 4, in the observe-only condition participants who observed the stimulus with their right arm hidden behind their back were significantly less accurate than participants who had their left arm hidden. These findings converge in suggesting that mere observation of a geometrical stimulus can activate motor simulation and re-enactment of drawing actions.
Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis
2015-04-01
We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the
Simulating transmission and control of Taenia solium infections using a reed-frost stochastic model
DEFF Research Database (Denmark)
Kyvsgaard, Niels Chr.; Johansen, Maria Vang; Carabin, Hélène
2007-01-01
The transmission dynamics of the human-pig zoonotic cestode Taenia solium are explored with both deterministic and stochastic versions of a modified Reed-Frost model. This model, originally developed for microparasitic infections (i.e. bacteria, viruses and protozoa), assumes that random contacts...... humans eating under-cooked pork meat harbouring T. solium metacestodes. Deterministic models of each scenario were first run, followed by stochastic versions of the models to assess the likelihood of infection elimination in the small population modelled. The effects of three groups of interventions were...
Stochastic stresses in granular matter simulated by dripping identical ellipses into plane silo
DEFF Research Database (Denmark)
Berntsen, Kasper Nikolaj; Ditlevsen, Ove Dalager
2000-01-01
proposed by Janssen in 1895. The stochastic Janssen factor model is shown to be fairly consistentwith the observations from which the mean and the intensity of the white noise is estimated by the method of maximumlikelihood using the properties of the gamma-distribution. Two wall friction coefficients...
Valent, Peter; Paquet, Emmanuel
2017-09-01
A reliable estimate of extreme flood characteristics has always been an active topic in hydrological research. Over the decades a large number of approaches and their modifications have been proposed and used, with various methods utilizing continuous simulation of catchment runoff, being the subject of the most intensive research in the last decade. In this paper a new and promising stochastic semi-continuous method is used to estimate extreme discharges in two mountainous Slovak catchments of the rivers Váh and Hron, in which snow-melt processes need to be taken into account. The SCHADEX method used, couples a precipitation probabilistic model with a rainfall-runoff model used to both continuously simulate catchment hydrological conditions and to transform generated synthetic rainfall events into corresponding discharges. The stochastic nature of the method means that a wide range of synthetic rainfall events were simulated on various historical catchment conditions, taking into account not only the saturation of soil, but also the amount of snow accumulated in the catchment. The results showed that the SCHADEX extreme discharge estimates with return periods of up to 100 years were comparable to those estimated by statistical approaches. In addition, two reconstructed historical floods with corresponding return periods of 100 and 1000 years were compared to the SCHADEX estimates. The results confirmed the usability of the method for estimating design discharges with a recurrence interval of more than 100 years and its applicability in Slovak conditions.
DEFF Research Database (Denmark)
Hagnestam-Nielsen, Christel; Østergaard, Søren
2009-01-01
reflects the fact that in different stages of lactation, CM gives rise to different yield-loss patterns or postulates just one type of yield-loss pattern irrespective of when, during lactation, CM occurs. A dynamic and stochastic simulation model, SimHerd, was used to study the effects of CM in a herd...... a single yield-loss pattern irrespective of when, during the lactation period, the cow develops CM - was compared with a new modelling strategy in which CM was assumed to affect production differently depending on its lactational timing. The effect of the choice of reference level when estimating yield...
The ground motion simulation of Kangding Mw6.0,2014 by the stochastic finite-fault model
Zhang, Lifang; Li, Shanyou; Lyu, Yuejun
2018-01-01
The November 22, 2014, Kangding strike-slip earthquake (Mw 6.0) occurred on the Southern Section of the Xianshuihe Fault Zone. Its epicenter was at 101.69°E, 30.26°N, source mechanism strikes N33°E, dips 82°, and slipped at an angle of -9°. In this work, we simulated ground motions by the stochastic finite-fault model(SFFM), including peak ground acceleration, peak velocity, and acceleration time-histories caused by this earthquake.
International Nuclear Information System (INIS)
Lei, Hang; Zhou, Dai; Bao, Yan; Li, Ye; Han, Zhaolong
2017-01-01
Highlights: • The Improved Delayed Detached Eddy Simulation and polyhedral mesh are utilized. • Power coefficient and wake velocity are compared between experiments and simulations. • Improved Delayed Detached Eddy Simulation shows more vortices under dynamic stall. • Different scales of flow separations are distinguished by these two models. - Abstract: The aerodynamic performance of a two-bladed vertical axis wind turbine is investigated using the turbulence model of the Improved Delayed Detached Eddy Simulation and the polyhedral mesh. The sliding mesh technique is used to simulate the rotation of the rotor. Meanwhile, the results obtained by the shear stress transport k-ω model are presented as contrast. Then, the simulated power coefficients at different tip speed ratios and the wake velocity are validated by comparison with the experimental data from available literature. It is shown that the power coefficients and wake velocity predicted by the Improved Delayed Detached Eddy Simulation are closer to the experimental data than those by the shear stress transport k-ω model. The pressure distributions predicted by the two turbulence models show different degrees of discrepancies in different scales of flow separation. By comparing the vorticity magnitude graphs, the Improved Delayed Detached Eddy Simulation is found to be able to capture more exquisite vortices after the flow separations. Limited by its inherent ability, the shear stress transport k-ω model predicts vortices that are less realistic than those of Improved Delayed Detached Eddy Simulation. Hence, it may cause some errors in predicting the pressure distributions, especially when the blades suffer dynamic stall. It is demonstrated that the Improved Delayed Detached Eddy Simulation is regarded as a reliable model to analyze the aerodynamic performance of vertical axis wine turbines.
Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar
2017-07-01
Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.
Bruzzone, Agostino G.; Revetria, Roberto; Simeoni, Simone; Viazzo, Simone; Orsoni, Alessandra
2004-08-01
In logistics and industrial production managers must deal with the impact of stochastic events to improve performances and reduce costs. In fact, production and logistics systems are generally designed considering some parameters as deterministically distributed. While this assumption is mostly used for preliminary prototyping, it is sometimes also retained during the final design stage, and especially for estimated parameters (i.e. Market Request). The proposed methodology can determine the impact of stochastic events in the system by evaluating the chaotic threshold level. Such an approach, based on the application of a new and innovative methodology, can be implemented to find the condition under which chaos makes the system become uncontrollable. Starting from problem identification and risk assessment, several classification techniques are used to carry out an effect analysis and contingency plan estimation. In this paper the authors illustrate the methodology with respect to a real industrial case: a production problem related to the logistics of distributed chemical processing.
Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M
2009-08-27
We present an approach to recover kinetics from a simplified protein folding model at different temperatures using the combined power of replica exchange (RE), a kinetic network, and effective stochastic dynamics. While RE simulations generate a large set of discrete states with the correct thermodynamics, kinetic information is lost due to the random exchange of temperatures. We show how we can recover the kinetics of a 2D continuous potential with an entropic barrier by using RE-generated discrete states as nodes of a kinetic network. By choosing the neighbors and the microscopic rates between the neighbors appropriately, the correct kinetics of the system can be recovered by running a kinetic simulation on the network. We fine-tune the parameters of the network by comparison with the effective drift velocities and diffusion coefficients of the system determined from short-time stochastic trajectories. One of the advantages of the kinetic network model is that the network can be built on a high-dimensional discretized state space, which can consist of multiple paths not consistent with a single reaction coordinate.
Directory of Open Access Journals (Sweden)
Lim Ming Han
Full Text Available Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces.
Workshop on quantum stochastic differential equations for the quantum simulation of physical systems
2016-09-22
and a milestone as ARL becomes a significant player in the development of mathematical tools for quantum systems of interest to the Army...Commun. Math . Phys. 104, 457 (1986). [5] M.-H. Chang, Quantum stochastics, Cambridge Series in Statistical and Probabilistic Mathematics (2014...Phys. A 28, 5401 (1995). [9] M. J. Kastoryano and K. Temme, Quantum logarithmic Sobolev inequalities and rapid mixing, J. Math . Phys. 54, 052202
Transcriptional delay stabilizes bistable gene networks.
Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R
2013-08-02
Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner.
Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti
2015-01-01
The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb3Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb3Sn magnets with different heater geometries. ...
Optimal Kalman Filtering for a Class of State Delay Systems with Randomly Multiple Sensor Delays
Directory of Open Access Journals (Sweden)
Dongyan Chen
2014-01-01
Full Text Available The optimal Kalman filtering problem is investigated for a class of discrete state delay stochastic systems with randomly multiple sensor delays. The phenomenon of measurement delay occurs in a random way and the delay rate for each sensor is described by a Bernoulli distributed random variable with known conditional probability. Based on the innovative analysis approach and recursive projection formula, a new linear optimal filter is designed such that, for the state delay and randomly multiple sensor delays with different delay rates, the filtering error is minimized in the sense of mean square and the filter gain is designed by solving the recursive matrix equation. Finally, a simulation example is given to illustrate the feasibility and effectiveness of the proposed filtering scheme.
International Nuclear Information System (INIS)
Yao, Jian
2014-01-01
Highlights: • Driving factor for adjustment of manually controlled solar shades was determined. • A stochastic model for manual solar shades was constructed using Markov method. • Co-simulation with Energyplus was carried out in BCVTB. • External shading even manually controlled should be used prior to LOW-E windows. • Previous studies on manual solar shades may overestimate energy savings. - Abstract: Solar shading devices play a significant role in reducing building energy consumption and maintaining a comfortable indoor condition. In this paper, a typical office building with internal roller shades in hot summer and cold winter zone was selected to determine the driving factor of control behavior of manual solar shades. Solar radiation was determined as the major factor in driving solar shading adjustment based on field measurements and logit analysis and then a stochastic model for manually adjusted solar shades was constructed by using Markov method. This model was used in BCVTB for further co-simulation with Energyplus to determine the impact of the control behavior of solar shades on energy performance. The results show that manually adjusted solar shades, whatever located inside or outside, have a relatively high energy saving performance than clear-pane windows while only external shades perform better than regularly used LOW-E windows. Simulation also indicates that using an ideal assumption of solar shade adjustment as most studies do in building simulation may lead to an overestimation of energy saving by about 16–30%. There is a need to improve occupants’ actions on shades to more effectively respond to outdoor conditions in order to lower energy consumption, and this improvement can be easily achieved by using simple strategies as a guide to control manual solar shades
Duan, Xiaofeng F; Burggraf, Larry W; Huang, Lingyu
2013-07-22
To find low energy Si(n)C(n) structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each Si(n)C(n) cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to Si(n)C(n) (n = 4-12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each Si(n)C(n) cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.
Directory of Open Access Journals (Sweden)
Larry W. Burggraf
2013-07-01
Full Text Available To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA. We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12 clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.
Paquet, Emmanuel
2014-05-01
The SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2013), is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modeling. A complete CDF of daily discharges and flood peak values is build up to extreme quantiles with several millions of simulated events. The application of SCHADEX to a large catchment (area greater than 5000 km²) or whose floods are affected by significant hydraulic effects (flood plains, artificial reservoir) can pose a problem with some of the hypothesis of the method (e.g. hydro-climatic homogeneity within the catchment, no significant hydraulic damping of flood peaks). To overcome this limitation, a coordinated stochastic simulation method is proposed. Firstly, several tributaries of the large catchment are selected based on their hydro-climatic features (among them homogeneity) and the availability of data. Then the main SCHADEX components are set up for these catchments (hydrological model, probabilistic model for extreme rainfall, and peak-to-volume ratio), as well as for the large one. The SCHADEX stochastic simulation is ran for the large catchment. Each randomly drawn precipitation event (at the large ctachment's scale) is disaggregated to the catchment of each tributary thanks to the observed rain field shape of an historical day of similar synoptic situation. The rain fields are reconstructed at a 1 km² resolution for the whole area thanks to the SPAZM method (Gottardi, 2012). The synoptic situations are characterized thanks to a rainfall-oriented classification (Garavaglia, 2010). For a given precipitation event, all the catchment's saturations (and snowpack conditions) are kept synchronous by superimposing the simulated event on the conditions of the same day for all catchments. Several millions of flood events are simulated this way. At the end
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
Energy Technology Data Exchange (ETDEWEB)
Zabaras, Nicolas J. [Cornell Univ., Ithaca, NY (United States)
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
Directory of Open Access Journals (Sweden)
Ya-Ting Lee
2016-06-01
Full Text Available Near-fault ground motion is a key to understanding the seismic hazard along a fault and is challenged by the ground motion prediction equation approach. This paper presents a developed stochastic-slip-scaling source model, a spatial stochastic model with slipped area scaling toward the ground motion simulation. We considered the near-fault ground motion of the 1999 Chi-Chi earthquake in Taiwan, the most massive near-fault disastrous earthquake, proposed by Ma et al. (2001 as a reference for validation. Three scenario source models including the developed stochastic-slip-scaling source model, mean-slip model and characteristic-asperity model were used for the near-fault ground motion examination. We simulated synthetic ground motion through 3D waveforms and validated these simulations using observed data and the ground-motion prediction equation (GMPE for Taiwan earthquakes. The mean slip and characteristic asperity scenario source models over-predicted the near-fault ground motion. The stochastic-slip-scaling model proposed in this paper is more accurately approximated to the near-fault motion compared with the GMPE and observations. This is the first study to incorporate slipped-area scaling in a stochastic slip model. The proposed model can generate scenario earthquakes for predicting ground motion.
Directory of Open Access Journals (Sweden)
Song Hyun Kim
2015-08-01
Full Text Available Chord length sampling method in Monte Carlo simulations is a method used to model spherical particles with random sampling technique in a stochastic media. It has received attention due to the high calculation efficiency as well as user convenience; however, a technical issue regarding boundary effect has been noted. In this study, after analyzing the distribution characteristics of spherical particles using an explicit method, an alternative chord length sampling method is proposed. In addition, for modeling in finite media, a correction method of the boundary effect is proposed. Using the proposed method, sample probability distributions and relative errors were estimated and compared with those calculated by the explicit method. The results show that the reconstruction ability and modeling accuracy of the particle probability distribution with the proposed method were considerably high. Also, from the local packing fraction results, the proposed method can successfully solve the boundary effect problem. It is expected that the proposed method can contribute to the increasing of the modeling accuracy in stochastic media.
Energy Technology Data Exchange (ETDEWEB)
Patanarapeelert, K. [Faculty of Science, Department of Mathematics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Frank, T.D. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany)]. E-mail: tdfrank@uni-muenster.de; Friedrich, R. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany); Beek, P.J. [Faculty of Human Movement Sciences and Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam (Netherlands); Tang, I.M. [Faculty of Science, Department of Physics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand)
2006-12-18
A method is proposed to identify deterministic components of stable and unstable time-delayed systems subjected to noise sources with finite correlation times (colored noise). Both neutral and retarded delay systems are considered. For vanishing correlation times it is shown how to determine their noise amplitudes by minimizing appropriately defined Kullback measures. The method is illustrated by applying it to simulated data from stochastic time-delayed systems representing delay-induced bifurcations, postural sway and ship rolling.
Assessment of Stochastic Capacity Consumption in Railway Networks
DEFF Research Database (Denmark)
Jensen, Lars Wittrup; Landex, Alex; Nielsen, Otto Anker
2015-01-01
The railway industry continuously strive to reduce cost and utilise resources optimally. Thus, there is a demand for tools that are able to fast and efficiently provide decision-makers with solutions that can help them achieve their goals. In strategic planning of capacity, this translates...... in networks where a timetable is not needed as input. We account for robustness using a stochastic simulation of delays to obtain the stochastic capacity consumption in a network. The model is used on a case network where four different infrastructure scenarios are considered and both deterministic...... and stochastic capacity consumption results are obtained efficiently. The case study show that the results of capacity analysis depends on the size of the network considered. Furthermore, we find that the capacity gain in the case scenarios are greater when delays are considered compared to a deterministic...
Stochastic quantization and supersymmetry
International Nuclear Information System (INIS)
Kirschner, R.
1984-04-01
In the last years interest in stochastic quantization has increased. The method of quantization by stochastic relaxation processes has been proposed by Parisi and Wu, inspired by the extensive application of Monte Carlo simulations to quantum systems. Starting with the classical equations of motion of the system (field theory) and adding random force terms - the random force obeys a Gaussian distribution (white noise) - stochastic differential equations are obtained, in this context called Langevin equations, which are a central object in the theory of stochastic processes. (author)
Delay estimation on a railway-line with smart use of micro-simulation
DEFF Research Database (Denmark)
Cerreto, Fabrizio; Harrod, Steven; Nielsen, Otto Anker
2017-01-01
This paper formulates a delay propagation model that estimates total railway line delay as a polynomial function of a single primary delay. The estimate is derived from a finite series of delays over a horizon that spans two dimensions: the length of the railway line and the number of trains in t...
Simulation-Based Performance Comparison for Variants of Spray and Wait in Delay Tolerant Networks
Directory of Open Access Journals (Sweden)
Ki-Il Kim
2017-02-01
Full Text Available Delay Tolerant Network (DTN has been proposed to deliver data packets in an intermittently connected network by the store and carry technique. Among many existing routing protocols in DTN, spray and wait and its variants are based on replication by allowing the number of copies per message in the network but they still include some problems. To address energy issue and delivery ratio, we have presented the spray and fuzzy forwarding (S&FF to employ the fuzzy inference systems (FIS. However, since our previous performance comparisons are simply evaluated over few cases, more extensive simulation scenarios need to be executed for accurate performance comparison. Based on this demand, in this paper, we compare S&FF with some variants of spray and wait in diverse aspects and provide analysis for their simulation results. Through the simulation results, we can observe that delivery ratio is acceptable while extending network lifetime in S&FF rather than comparable protocols under varying deadlines, the number of nodes and velocities.
Directory of Open Access Journals (Sweden)
Debeljković Dragutin Lj.
2016-01-01
Full Text Available The heat exchangers are frequently used as constructive elements in various plants and their dynamics is very important. Their operation is usually controlled by manipulating inlet fluid temperatures or mass flow rates. On the basis of the accepted and critically clarified assumptions, a linearized mathematical model of the cross-flow heat exchanger has been derived, taking into account the wall dynamics. The model is based on the fundamental law of energy conservation, covers all heat accumulation storages in the process, and leads to the set of partial differential equations (PDE, which solution is not possible in closed form. In order to overcome this problem the approach based on physical discretization was applied with associated time delay on the positions where it was necessary and unavoidable. This is quite new approach, which represent the further extension of previous results which did not include significant time delay existing in the working media. Simulation results, were derived, showing progress in building such a model suitable for further treatment from the position of analysis as well as the needs for control synthesis problem.
Yeates, P J A; Thomas, S H L
2000-01-01
Aims Oral activated charcoal is used to treat drug overdose and is effective at reducing drug absorption when administered within 1 h of drug ingestion. There are fewer data on efficacy when the delay is longer, as is the case in most drug overdoses. This study investigated the efficacy of activated charcoal at preventing paracetamol (acetaminophen) absorption after simulated overdose when administration was delayed between 1 and 4 h. Methods An open randomized-order four-way crossover study was performed in healthy volunteers comparing the effect of activated charcoal 50 g on the absorption of 3 g paracetamol tablets when administered after an interval of 1, 2 or 4 h or not at all. Plasma paracetamol concentrations were measured over 9 h after paracetamol ingestion using h.p.l.c. and areas under the curve between 4 and 9 h (AUC(4,9 h)) calculated as a measure of paracetamol absorption. Results Activated charcoal significantly reduced paracetamol AUC(4,9 h) when administered after 1 h (mean reduction 56%; 95% Confidence intervals 34, 78; P activated charcoal reduced individual plasma paracetamol concentrations significantly at all times between 4 and 9 h after paracetamol administration. Administration at 2 or 4 h had no significant effect. Conclusions These results in healthy volunteers cannot be extrapolated directly to poisoned patients. However, they provide no evidence of efficacy for activated charcoal when administered after an interval of more than 2 h. PMID:10606832
Xie, Cheng; Deng, Jian; Zhuang, Yuan; Sun, Hao
2017-10-15
This paper presents a method based on the oceanic current model and the oil spill model to evaluate the pollution risk of sensitive resources when oil spills occur. Moreover, this study proposes a novel impact index based on the risk theory to improve the risk assessment accuracy. The impact probability and the first impact time of the oil spill are calculated through a stochastic numerical simulation. The risk assessment content is enriched by establishing an impact model that considers the impact of sensitive index and spillage. Finally, the risk score of sensitive resources in an oil spill accident is visualized for formulating a scientific and effective protection priority order in a contamination response strategy. This study focuses on integrating every possible impact factor that plays a role in risk assessment and helps to provide a better theoretical support for protecting sensitive resources. Copyright © 2017 Elsevier Ltd. All rights reserved.
RFID-WSN integrated architecture for energy and delay- aware routing a simulation approach
Ahmed, Jameel; Tayyab, Muhammad; Nawaz, Menaa
2015-01-01
The book identifies the performance challenges concerning Wireless Sensor Networks (WSN) and Radio Frequency Identification (RFID) and analyzes their impact on the performance of routing protocols. It presents a thorough literature survey to identify the issues affecting routing protocol performance, as well as a mathematical model for calculating the end-to-end delays of the routing protocol ACQUIRE; a comparison of two routing protocols (ACQUIRE and DIRECTED DIFFUSION) is also provided for evaluation purposes. On the basis of the results and literature review, recommendations are made for better selection of protocols regarding the nature of the respective application and related challenges. In addition, this book covers a proposed simulator that integrates both RFID and WSN technologies. Therefore, the manuscript is divided in two major parts: an integrated architecture of smart nodes, and a power-optimized protocol for query and information interchange.
Zhu, Dongming; Nemeth, Noel N.
2017-01-01
Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental
Modeling and Simulation of High Dimensional Stochastic Multiscale PDE Systems at the Exascale
Energy Technology Data Exchange (ETDEWEB)
Kevrekidis, Ioannis [Princeton Univ., NJ (United States)
2017-03-22
The thrust of the proposal was to exploit modern data-mining tools in a way that will create a systematic, computer-assisted approach to the representation of random media -- and also to the representation of the solutions of an array of important physicochemical processes that take place in/on such media. A parsimonious representation/parametrization of the random media links directly (via uncertainty quantification tools) to good sampling of the distribution of random media realizations. It also links directly to modern multiscale computational algorithms (like the equation-free approach that has been developed in our group) and plays a crucial role in accelerating the scientific computation of solutions of nonlinear PDE models (deterministic or stochastic) in such media – both solutions in particular realizations of the random media, and estimation of the statistics of the solutions over multiple realizations (e.g. expectations).
Dijkhuizen, A.A.; Stelwagen, J.; Renkema, J.A.
1986-01-01
A stochastic simulation model was developed to study management decisions in dairy herds. The primary purpose of this model is to quantify the economic effects of different culling policies with respect to productive and reproductive failure. Each stimulated herd consists of a fixed number of up
International Nuclear Information System (INIS)
Lee, J.H.; Atkins, J.E.; Andrews, R.W.
1995-01-01
A detailed stochastic waste package degradation simulation model was developed incorporating the humid-air and aqueous general and pitting corrosion models for the carbon steel corrosion-allowance outer barrier and aqueous pitting corrosion model for the Alloy 825 corrosion-resistant inner barrier. The uncertainties in the individual corrosion models were also incorporated to capture the variability in the corrosion degradation among waste packages and among pits in the same waste package. Within the scope of assumptions employed in the simulations, the corrosion modes considered, and the near-field conditions from the drift-scale thermohydrologic model, the results of the waste package performance analyses show that the current waste package design appears to meet the 'controlled design assumption' requirement of waste package performance, which is currently defined as having less than 1% of waste packages breached at 1,000 years. It was shown that, except for the waste packages that fail early, pitting corrosion of the corrosion-resistant inner barrier has a greater control on the failure of waste packages and their subsequent degradation than the outer barrier. Further improvement and substantiation of the inner barrier pitting model (currently based on an elicitation) is necessary in future waste package performance simulation model
Anticipated backward stochastic differential equations
Peng, Shige; Yang, Zhe
2007-01-01
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.
Stochastic bounded consensus of second-order multi-agent systems in noisy environment
International Nuclear Information System (INIS)
Ren Hong-Wei; Deng Fei-Qi
2017-01-01
This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms. (paper)
Barthel, Erik R; Pierce, James R; Speer, Allison L; Levin, Daniel E; Goodhue, Catherine J; Ford, Henri R; Grikscheit, Tracy C; Upperman, Jeffrey S
2013-09-01
Disasters occur randomly and can severely tax the health care delivery system of affected and surrounding regions. A significant proportion of disaster survivors are children, who have unique medical, psychosocial, and logistical needs after a mass casualty event. Children are often transported to specialty centers after disasters for a higher level of pediatric care, but this can also lead to separation of these survivors from their families. In a recent theoretical article, we showed that the availability of a pediatric trauma center after a mass casualty event would decrease the time needed to definitively treat the pediatric survivor cohort and decrease pediatric mortality. However, we also found that if the pediatric center was too slow in admitting and discharging patients, these benefits were at risk of being lost as children became "trapped" in the slow center. We hypothesized that this effect could result in further increased mortality and greater costs. Here, we expand on these ideas to test this hypothesis via mathematical simulation. We examine how a delay in discharge of part of the pediatric cohort is predicted to affect mortality and the cost of inpatient care in the setting of our model. We find that mortality would increase slightly (from 14.2%-16.1%), and the cost of inpatient care increases dramatically (by a factor of 21) if children are discharged at rates consistent with reported delays to reunification after a disaster from the literature. Our results argue for the ongoing improvement of identification technology and logistics for rapid reunification of pediatric survivors with their families after mass casualty events. Copyright © 2013 Elsevier Inc. All rights reserved.
2003-01-01
This study evaluated existing traffic signal optimization programs including Synchro,TRANSYT-7F, and genetic algorithm optimization using real-world data collected in Virginia. As a first step, a microscopic simulation model, VISSIM, was extensively ...
International Nuclear Information System (INIS)
Follin, S.
1992-12-01
Flow in fractured crystalline (hard) rocks is of interest in Sweden for assessing the postclosure radiological safety of a deep repository for high-level nuclear waste. For simulation of flow and mass transport in the far field different porous media concepts are often used, whereas discrete fracture/channel network concepts are often used for near-field simulations. Due to lack of data, it is generally necessary to have resort to single-hole double-packer test data for the far-field simulations, i.e., test data on a small scale are regularized in order to fit a comparatively coarser numerical discretization, which is governed by various computational constraints. In the present study the Monte Carlo method is used to investigate the relationship between the transmissivity value interpreted and the corresponding radius of influence in conjunction with single-hole double-packer tests in heterogeneous formations. The numerical flow domain is treated as a two-dimensional heterogeneous porous medium with a spatially varying diffusivity on 3 m scale. The Monte Carlo simulations demonstrate the sensitivity to the correlation range of a spatially varying diffusivity field. In contradiction to what is tacitly assumed in stochastic subsurface hydrology, the results show that the lateral support scale (e.g., the radius of influence) of transmissivity measurements in heterogeneous porous media is a random variable, which is affected by both the hydraulic and statistical characteristics. If these results are general, the traditional methods for scaling-up, assuming a constant lateral scale of support and a multi normal distribution, may lead to an underestimation of the persistence and connectivity of transmissive zones, particularly in highly heterogeneous porous media
International Nuclear Information System (INIS)
Franke, B.C.; Kensek, R.P.; Prinja, A.K.
2013-01-01
Stochastic-media simulations require numerous boundary crossings. We consider two Monte Carlo electron transport approaches and evaluate accuracy with numerous material boundaries. In the condensed-history method, approximations are made based on infinite-medium solutions for multiple scattering over some track length. Typically, further approximations are employed for material-boundary crossings where infinite-medium solutions become invalid. We have previously explored an alternative 'condensed transport' formulation, a Generalized Boltzmann-Fokker-Planck (GBFP) method, which requires no special boundary treatment but instead uses approximations to the electron-scattering cross sections. Some limited capabilities for analog transport and a GBFP method have been implemented in the Integrated Tiger Series (ITS) codes. Improvements have been made to the condensed history algorithm. The performance of the ITS condensed-history and condensed-transport algorithms are assessed for material-boundary crossings. These assessments are made both by introducing artificial material boundaries and by comparison to analog Monte Carlo simulations. (authors)
International Nuclear Information System (INIS)
Camargo, Dayana Queiroz de
2011-01-01
This thesis has developed a stochastic model to simulate the neutrons transport in a heterogeneous environment, considering continuous neutron spectra and the nuclear properties with its continuous dependence on energy. This model was implemented using Monte Carlo method for the propagation of neutrons in different environment. Due to restrictions with respect to the number of neutrons that can be simulated in reasonable computational processing time introduced the variable control volume along the (pseudo-) periodic boundary conditions in order to overcome this problem. The choice of class physical Monte Carlo is due to the fact that it can decompose into simpler constituents the problem of solve a transport equation. The components may be treated separately, these are the propagation and interaction while respecting the laws of energy conservation and momentum, and the relationships that determine the probability of their interaction. We are aware of the fact that the problem approached in this thesis is far from being comparable to building a nuclear reactor, but this discussion the main target was to develop the Monte Carlo model, implement the code in a computer language that allows extensions of modular way. This study allowed a detailed analysis of the influence of energy on the neutron population and its impact on the life cycle of neutrons. From the results, even for a simple geometrical arrangement, we can conclude the need to consider the energy dependence, i.e. an spectral effective multiplication factor should be introduced each energy group separately. (author)
Stochastic volatility and stochastic leverage
DEFF Research Database (Denmark)
Veraart, Almut; Veraart, Luitgard A. M.
This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...
Directory of Open Access Journals (Sweden)
MANFREDI, P.
2014-11-01
Full Text Available This paper extends recent literature results concerning the statistical simulation of circuits affected by random electrical parameters by means of the polynomial chaos framework. With respect to previous implementations, based on the generation and simulation of augmented and deterministic circuit equivalents, the modeling is extended to generic and ?black-box? multi-terminal nonlinear subcircuits describing complex devices, like those found in integrated circuits. Moreover, based on recently-published works in this field, a more effective approach to generate the deterministic circuit equivalents is implemented, thus yielding more compact and efficient models for nonlinear components. The approach is fully compatible with commercial (e.g., SPICE-type circuit simulators and is thoroughly validated through the statistical analysis of a realistic interconnect structure with a 16-bit memory chip. The accuracy and the comparison against previous approaches are also carefully established.
Bates, P. D.; Quinn, N.; Sampson, C. C.; Smith, A.; Wing, O.; Neal, J. C.
2017-12-01
Remotely sensed data has transformed the field of large scale hydraulic modelling. New digital elevation, hydrography and river width data has allowed such models to be created for the first time, and remotely sensed observations of water height, slope and water extent has allowed them to be calibrated and tested. As a result, we are now able to conduct flood risk analyses at national, continental or even global scales. However, continental scale analyses have significant additional complexity compared to typical flood risk modelling approaches. Traditional flood risk assessment uses frequency curves to define the magnitude of extreme flows at gauging stations. The flow values for given design events, such as the 1 in 100 year return period flow, are then used to drive hydraulic models in order to produce maps of flood hazard. Such an approach works well for single gauge locations and local models because over relatively short river reaches (say 10-60km) one can assume that the return period of an event does not vary. At regional to national scales and across multiple river catchments this assumption breaks down, and for a given flood event the return period will be different at different gauging stations, a pattern known as the event `footprint'. Despite this, many national scale risk analyses still use `constant in space' return period hazard layers (e.g. the FEMA Special Flood Hazard Areas) in their calculations. Such an approach can estimate potential exposure, but will over-estimate risk and cannot determine likely flood losses over a whole region or country. We address this problem by using a stochastic model to simulate many realistic extreme event footprints based on observed gauged flows and the statistics of gauge to gauge correlations. We take the entire USGS gauge data catalogue for sites with > 45 years of record and use a conditional approach for multivariate extreme values to generate sets of flood events with realistic return period variation in
Claesson, Andreas; Karlsson, Tomas; Thorén, Ann-Britt; Herlitz, Johan
2011-11-01
To describe time delay during surf rescue and compare the quality of cardiopulmonary resuscitation (CPR) before and after exertion in surf lifeguards. A total of 40 surf lifeguards at the Tylösand Surf Lifesaving Club in Sweden (65% men; age, 19-43 years) performed single-rescuer CPR for 10 minutes on a Laerdal SkillmeteÔ Resusci Anne manikin. The test was repeated with an initial simulated surf rescue on an unconscious 80-kg victim 100 m from the shore. The time to victim, to first ventilation, and to the start of CPR was documented. The mean time in seconds to the start of ventilations in the water was 155 ± 31 (mean ± SD) and to the start of CPR, 258 ± 44. Men were significantly faster during rescue (mean difference, 43 seconds) than women (P = .002). The mean compression depth (millimeters) at rest decreased significantly from 0-2 minutes (42.6 ± 7.8) to 8-10 minutes (40.8 ± 9.3; P = .02). The mean compression depth after exertion decreased significantly (44.2 ± 8.7 at 0-2 minutes to 41.5 ± 9.1 at 8-10 minutes; P = .0008). The compression rate per minute decreased after rescue from 117.2 ±14.3 at 0 to 2 minutes to 114.1 ± 16.1 after 8 to 10 minutes (P = .002). The percentage of correct compressions at 8 to 10 minutes was identical before and after rescue (62%). In a simulated drowning, 100 m from shore, it took twice as long to bring the patient back to shore as to reach him; and men were significantly faster. Half the participants delivered continuous chest compressions of more than 38 mm during 10 minutes of single-rescuer CPR. The quality was identical before and after surf rescue. Copyright © 2011 Elsevier Inc. All rights reserved.
A stochastic model for the simulation of wind turbine blades in static stall
DEFF Research Database (Denmark)
Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.
2010-01-01
The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...
Energy Technology Data Exchange (ETDEWEB)
Kitteroed, Nils-Otto
1997-12-31
The background for this thesis was the increasing risk of contamination of water resources and the requirement of groundwater protection. Specifically, the thesis implements procedures to estimate and simulate observed heterogeneities in the unsaturated zone and evaluates what impact the heterogeneities may have on the water flow. The broad goal was to establish a reference model with high spatial resolution within a small area and to condition the model using spatially frequent field observations, and the Moreppen site at Oslo`s new major airport was used for this purpose. An approach is presented for the use of ground penetrating radar in which indicator kriging is used to estimate continuous stratigraphical architecture. Kriging is also used to obtain 3D images of soil moisture. A simulation algorithm based on the Karhunen-Loeve expansion is evaluated and a modification of the Karhunen-Loeve simulation is suggested that makes it possible to increase the size of the simulation lattice. This is obtained by kriging interpolation of the eigenfunctions. 250 refs., 40 figs., 7 tabs.
Stochastic simulation of large grids using free and public domain software
Bruin, de S.; Wit, de A.J.W.
2005-01-01
This paper proposes a tiled map procedure enabling sequential indicator simulation on grids consisting of several tens of millions of cells, without putting excessive memory requirements. Spatial continuity across map tiles is handled by conditioning adjacent tiles on their shared boundaries. Tiles
Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall
The wind-driven stably stratified mid-latitude oceanic surface turbulent boundary layer is computationally simulated in the presence of a specified surface gravity-wave field. The gravity waves have broad wavenumber and frequency spectra typical of measured conditions in near-equilibrium with the mean wind speed. The simulation model is based on (i) an asymptotic theory for the conservative dynamical effects of waves on the wave-averaged boundary-layer currents and (ii) a boundary-layer forcing by a stochastic representation of the impulses and energy fluxes in a field of breaking waves. The wave influences are shown to be profound on both the mean current profile and turbulent statistics compared to a simulation without these wave influences and forced by an equivalent mean surface stress. As expected from previous studies with partial combinations of these wave influences, Langmuir circulations due to the wave-averaged vortex force make vertical eddy fluxes of momentum and material concentration much more efficient and non-local (i.e. with negative eddy viscosity near the surface), and they combine with the breakers to increase the turbulent energy and dissipation rate. They also combine in an unexpected positive feedback in which breaker-generated vorticity seeds the creation of a new Langmuir circulation and instigates a deep strong intermittent downwelling jet that penetrates through the boundary layer and increases the material entrainment rate at the base of the layer. These wave effects on the boundary layer are greater for smaller wave ages and higher mean wind speeds.
Study on the Business Cycle Model with Fractional-Order Time Delay under Random Excitation
Directory of Open Access Journals (Sweden)
Zifei Lin
2017-07-01
Full Text Available Time delay of economic policy and memory property in a real economy system is omnipresent and inevitable. In this paper, a business cycle model with fractional-order time delay which describes the delay and memory property of economic control is investigated. Stochastic averaging method is applied to obtain the approximate analytical solution. Numerical simulations are done to verify the method. The effects of the fractional order, time delay, economic control and random excitation on the amplitude of the economy system are investigated. The results show that time delay, fractional order and intensity of random excitation can all magnify the amplitude and increase the volatility of the economy system.
Energy Technology Data Exchange (ETDEWEB)
Tonks, Michael R [Los Alamos National Laboratory
2008-01-01
We compare the experimentally obtained response of two cylindrical tantalum Taylor impact specimens. The first specimen is manufactured using a powder metallurgy (P/M) process with a random initial texture and relatively equiaxed crystals. The second is sectioned from a roundcorner square rolled (RCSR) rod with an asymmetric texture and elongated crystals. The deformed P/M specimen has an axisymmetric footprint while the deformed RCSR projectile has an eccentric footprint with distinct corners. Also, the two specimens experienced similar crystallographic texture evolution, though the RCSR specimen experienced greater plastic deformation. Our simulation predictions mimic the texture and deformation data measured from the P/M specimen. However, our RCSR specimen simulations over-predict the texture development and do not accurately predict the deformation, though the deformation prediction is improved when the texture is not allowed to evolve. We attribute this discrepancy to the elongated crystal morphology in the RCSR specimen which is not represented in our mean-field model.
Tam, Vincent H; Kabbara, Samer
2006-10-01
Monte Carlo simulations (MCSs) are increasingly being used to predict the pharmacokinetic variability of antimicrobials in a population. However, various MCS approaches may differ in the accuracy of the predictions. We compared the performance of 3 different MCS approaches using a data set with known parameter values and dispersion. Ten concentration-time profiles were randomly generated and used to determine the best-fit parameter estimates. Three MCS methods were subsequently used to simulate the AUC(0-infinity) of the population, using the central tendency and dispersion of the following in the subject sample: 1) K and V; 2) clearance and V; 3) AUC(0-infinity). In each scenario, 10000 subject simulations were performed. Compared to true AUC(0-infinity) of the population, mean biases by various methods were 1) 58.4, 2) 380.7, and 3) 12.5 mg h L(-1), respectively. Our results suggest that the most realistic MCS approach appeared to be based on the variability of AUC(0-infinity) in the subject sample.
Stochastic simulation of patterns using ISOMAP for dimensionality reduction of training images
Zhang, Ting; Du, Yi; Huang, Tao; Yang, Jiaqing; Li, Xue
2015-06-01
Most data in the real world are normally nonlinear or difficult to determine whether they are linear or not beforehand. Some linear dimensionality reduction algorithms, e.g., principal component analysis (PCA) and multi-dimensional scaling (MDS) are only suitable for linear dimensionality reduction of spatial data. The patterns extracted from training images (TIs) used in MPS simulation mostly are probably nonlinear, so for some MPS simulation methods based on dimensionality reduction, e.g., FILTERSIM using some filters created via the idea of PCA and DisPAT using MDS as a tool of dimensionality reduction, those linear methods for dimensionality reduction are not appropriate when realizing the dimensionality reduction of nonlinear data of patterns. Therefore, isometric mapping (ISOMAP) working as a nonlinear dimensionality reduction method used in manifold learning is introduced to map those patterns, regardless of being linear or nonlinear, into low-dimensional space. However, because the original ISOMAP has some disadvantages in computing speed and accuracy, landmark points of patterns are selected to improve the speed and neighborhoods of patterns are set to guarantee the quality of dimensionality reduction. Next, the sequential simulation similar to FILTERSIM is performed after low-dimensional data of patterns are classified by a density-based clustering algorithm. The comparisons with FILTERSIM and DisPAT show the improvement of pattern reproductivity and computing speed of our method for both continuous and categorical variables.
A stochastic Markov chain approach for tennis: Monte Carlo simulation and modeling
Aslam, Kamran
This dissertation describes the computational formulation of probability density functions (pdfs) that facilitate head-to-head match simulations in tennis along with ranking systems developed from their use. A background on the statistical method used to develop the pdfs , the Monte Carlo method, and the resulting rankings are included along with a discussion on ranking methods currently being used both in professional sports and in other applications. Using an analytical theory developed by Newton and Keller in [34] that defines a tennis player's probability of winning a game, set, match and single elimination tournament, a computational simulation has been developed in Matlab that allows further modeling not previously possible with the analytical theory alone. Such experimentation consists of the exploration of non-iid effects, considers the concept the varying importance of points in a match and allows an unlimited number of matches to be simulated between unlikely opponents. The results of these studies have provided pdfs that accurately model an individual tennis player's ability along with a realistic, fair and mathematically sound platform for ranking them.
Simulating extreme low-discharge events for the Rhine using a stochastic model
Macian-Sorribes, Hector; Mens, Marjolein; Schasfoort, Femke; Diermanse, Ferdinand; Pulido-Velazquez, Manuel
2017-04-01
The specific features of hydrological droughts make them more difficult to be analysed than other water-related phenomena: longer time scales (months to several years) so less historical events are available, and the drought severity and associate damage depends on a combination of variables with no clear prevalence (e.g., total water deficit, maximum deficit and duration). As part of drought risk analysis, which aims to provide insight into the variability of hydrological conditions and associated socio-economic impacts, long synthetic time series should therefore be developed. In this contribution, we increase the length of the available inflow time series using stochastic autoregressive modelling. This enhancement could improve the characterization of the extreme range and can define extreme droughts with similar periods of return but different patterns that can lead to distinctly different damages. The methodology consists of: 1) fitting an autoregressive model (AR, ARMA…) to the available records; 2) generating extended time series (thousands of years); 3) performing a frequency analysis with different characteristic variables (total, deficit, maximum deficit and so on); and 4) selecting extreme drought events associated with different characteristic variables and return periods. The methodology was applied to the Rhine river discharge at location Lobith, where the Rhine enters The Netherlands. A monthly ARMA(1,1) autoregressive model with seasonally varying parameters was fitted and successfully validated to the historical records available since year 1901. The maximum monthly deficit with respect to a threshold value of 1800 m3/s and the average discharge for a given time span in m3/s were chosen as indicators to identify drought periods. A synthetic series of 10,000 years of discharges was generated using the validated ARMA model. Two time spans were considered in the analysis: the whole calendar year and the half-year period between April and September
Energy Technology Data Exchange (ETDEWEB)
Kleinhans, David
2008-06-25
This thesis investigates various methods for the description and modelling of complex systems. Complex systems can frequently be described by means of the dynamics of a small set of order parameters, that complies with stochastic differential equations. Based on a method for the direct estimation of drift and diffusion functions from measured data by Friedrich and Peinke the focus at first is on the statistical estimation of the dynamics of order parameters. In particular an existing iterative method for data analysis purposes is re ned by means of a 'Maximum-Likelihood' approach. Then the connection between stochastic processes 'in time' and 'in scale' is investigated. Moreover the influence of external noise sources on Markov properties is studied. The compliance with Markov properties is essential for the application of efficient data analysis techniques. It turns out, that Markov properties generally are seriously spoiled by the influence of external noise such as measurement noise. Then 'Continuous Time Random Walks' (CTRWs) are discussed, that form an extension of classic random processes. CTRWs are feasible for the modelling of non- Markov processes exhibiting anomalous difusion properties in the ensemble sense, that frequently are observed in complex amorphous media. At the first instance Fogedby's continuous description of CTRWs is investigated. Based on Fogedby's approach then an algorithm for the generation of continuous trajectories of CTRWs is developed. Additionally, a physical framework for the microscopic dynamics of so-called 'trapping models' is introduced, that are currently used as models for the glass transition. The applicability of CTRWs for simulations of turbulent flows has been an open question. For this reason, the use of CTRWs for the generation of turbulent inflow wind fields for wind turbine simulations is discussed. At first an extensive introduction the special needs of such
Choi, Juntae; Song, Yunheub
2017-04-01
The resistance distribution of a magnetic tunnel junction (MTJ) shows nonuniformity according to various MTJ parameters. Moreover, this resistance variation leads to write-current density variation, which can cause serious problems when designing peripheral circuits for spin transfer torque magnetoresistance random access memory (STT-MRAM) and commercializing gigabit STT-MRAM. Therefore, a macromodel of MTJ including resistance, tunneling magnetoresistance ratio (TMR), and critical current variations is required for circuit designers to design MRAM peripheral circuits, that can overcome the various effects of the variations, such as write failure and read failure, and realize STT-MRAM. In this study, we investigated a stochastic behavior macromodel of the write current dependence on the MTJ resistance variation. The proposed model can possibly be used to analyze the write current density in relation to the resistance and TMR variations of MTJ with various parameter variations. It can be very helpful for designing STT-MRAM circuits and simulating the operation of STT-MRAM devices considering MTJ variations.
Directory of Open Access Journals (Sweden)
Changchun Liu
2018-10-01
Full Text Available This paper studies the problem of scheduling a finite set of customers with stochastic service times for a single-server system. The objective is to minimize the waiting time of customers, the idle time of the server, and the lateness of the schedule. Because of the NP-hardness of the problem, the optimal schedule is notoriously hard to derive with reasonable computation times. Therefore, we develop a simulation based K-steps look-ahead selection method which can result in nearly optimal schedules within reasonable computation times. Furthermore, we study the different distributed service times, e.g., Exponential, Weibull and lognormal distribution and the results show that the proposed algorithm can obtain better results than the lag order approximation method proposed by Vink et al. (2015 [Vink, W., Kuiper, A., Kemper, B., & Bhulai, S. (2015. Optimal appointment scheduling in continuous time: The lag order approximation method. European Journal of Operational Research, 240(1, 213-219.]. Finally, a realistic appointment scheduling includes experiments to verify the good performance of the proposed method.
Dobramysl, U; Holcman, D
2018-02-15
Is it possible to recover the position of a source from the steady-state fluxes of Brownian particles to small absorbing windows located on the boundary of a domain? To address this question, we develop a numerical procedure to avoid tracking Brownian trajectories in the entire infinite space. Instead, we generate particles near the absorbing windows, computed from the analytical expression of the exit probability. When the Brownian particles are generated by a steady-state gradient at a single point, we compute asymptotically the fluxes to small absorbing holes distributed on the boundary of half-space and on a disk in two dimensions, which agree with stochastic simulations. We also derive an expression for the splitting probability between small windows using the matched asymptotic method. Finally, when there are more than two small absorbing windows, we show how to reconstruct the position of the source from the diffusion fluxes. The present approach provides a computational first principle for the mechanism of sensing a gradient of diffusing particles, a ubiquitous problem in cell biology.
Stratis, P. N.; Dokou, Z. A.; Karatzas, G. P.; Papadopoulou, E. P.; Saridakis, Y. G.
2017-09-01
Recently, the well-known Princeton Transport Code (PTC), a groundwater flow and contaminant transport simulator, has been coupled with the ALgorithm of Pattern EXtraction (ALOPEX), a real-time stochastic optimization method, to provide a freshwater pumping management tool for coastal aquifers, aiming in preventing saltwater intrusion. In our previous work (Proceedings of INASE/CSCC-WHH 2015, Recent Advances in Environmental and Earth Sciences and Economics, pp 329-334, 2015), the PTC-ALOPEX approach was used in studying the saltwater contamination problem for the coastal aquifer at Hersonissos, Crete. Extending these results, in the present study the PTC-ALOPEX approach is equipped with a nodal safety strategy that effectively controls saltwater front's advancement inside the aquifer. In cooperation with an appropriate penalty system, the performance of PTC-ALOPEX algorithm is studied considering several pumping and weather condition scenarios. This study also establishes pumping/well scenarios that ensure the needed volume of fresh water to the local community without risking saltwater contamination.
O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.
2016-10-01
The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.
Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu
2014-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.
Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu
2014-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.
Kanjilal, Oindrila; Manohar, C. S.
2017-07-01
The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.
Stochastic simulation of power systems with integrated renewable and utility-scale storage resources
Degeilh, Yannick
The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i
Improved-Delayed-Detached-Eddy Simulation of cavity-induced transition in hypersonic boundary layer
International Nuclear Information System (INIS)
Xiao, Lianghua; Xiao, Zhixiang; Duan, Zhiwei; Fu, Song
2015-01-01
Highlights: • This work is about hypersonic cavity-induced transition with IDDES approach. • The length-to-width-to-depth ratio of the cavity is 19.9:3.57:1 at AoA −10° and −15°. • Flow remains laminar at −10°, transition occurs at −15° and cavity changed from open to close type. • Streamwise vortices, impingement shock, traveling shocks and exit shock are observed. • Breakdown of these vortices triggering rapid flow transition. - Abstract: Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition
Lanchier, Nicolas
2017-01-01
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...
Applying Statistical Design to Control the Risk of Over-Design with Stochastic Simulation
Directory of Open Access Journals (Sweden)
Yi Wu
2010-02-01
Full Text Available By comparing a hard real-time system and a soft real-time system, this article elicits the risk of over-design in soft real-time system designing. To deal with this risk, a novel concept of statistical design is proposed. The statistical design is the process accurately accounting for and mitigating the effects of variation in part geometry and other environmental conditions, while at the same time optimizing a target performance factor. However, statistical design can be a very difficult and complex task when using clas-sical mathematical methods. Thus, a simulation methodology to optimize the design is proposed in order to bridge the gap between real-time analysis and optimization for robust and reliable system design.
International Nuclear Information System (INIS)
Purnama, Budi; Koga, Masashi; Nozaki, Yukio; Matsuyama, Kimihide
2009-01-01
Thermally assisted magnetization reversal of sub-100 nm dots with perpendicular anisotropy has been investigated using a micromagnetic Langevin model. The performance of the two different reversal modes of (i) a reduced barrier writing scheme and (ii) a Curie point writing scheme are compared. For the reduced barrier writing scheme, the switching field H swt decreases with an increase in writing temperature but is still larger than that of the Curie point writing scheme. For the Curie point writing scheme, the required threshold field H th , evaluated from 50 simulation results, saturates at a value, which is not simply related to the energy barrier height. The value of H th increases with a decrease in cooling time owing to the dynamic aspects of the magnetic ordering process. Dependence of H th on material parameters and dot sizes has been systematically studied
Nonlinear Stochastic stability analysis of Wind Turbine Wings by Monte Carlo Simulations
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Iwankiewiczb, R.; Nielsen, Søren R.K.
2007-01-01
and inertial contributions. A reduced two-degrees-of-freedom modal expansion is used specifying the modal coordinate of the fundamental blade and edgewise fixed base eigenmodes of the beam. The rotating beam is subjected to harmonic and narrow-banded support point motion from the nacelle displacement...... under narrow-banded excitation, and it is shown that the qualitative behaviour of the strange attractor is very similar for the periodic and almost periodic responses, whereas the strange attractor for the chaotic case loses structure as the excitation becomes narrow-banded. Furthermore......, the characteristic behaviour of the strange attractor is shown to be identifiable by the so-called information dimension. Due to the complexity of the coupled nonlinear structural system all analyses are carried out via Monte Carlo simulations....
Directory of Open Access Journals (Sweden)
C. Papaioannou
2000-06-01
Full Text Available We present the results of a comparative study of two intrinsically different methodologies, a stochastic one and a deterministic one, performed to simulate strong ground motion in the Kozani area (NW Greece. Source parameters were calculated from empirical relations in order to check their reliability, in combination with the applied methodologies, to simulate future events. Strong ground motion from the Kozani mainshock (13 May, 1995, M w = 6.5 was synthesized by using both the stochastic method for finite-fault cases and the empirical Greens function method. The latter method was also applied to simulate a Mw = 5.1 aftershock (19 May, 1995. The results of the two simulations computed for the mainshock are quite satisfactory for both methodologies at the frequencies of engineering interest (> ~ 2 Hz. This strengthens the idea of incorporating proper empirical relations for the estimation of source parameters in a priori simulations of strong ground motion from future earthquakes. Nevertheless, the results of the simulation of the smaller earthquake point out the need for further investigation of regional or local, if possible, relations for estimating source parameters at smaller magnitude ranges
Gross, Markus
2018-03-01
A fluctuating interfacial profile in one dimension is studied via Langevin simulations of the Edwards–Wilkinson equation with non-conserved noise and the Mullins–Herring equation with conserved noise. The profile is subject to either periodic or Dirichlet (no-flux) boundary conditions. We determine the noise-driven time-evolution of the profile between an initially flat configuration and the instant at which the profile reaches a given height M for the first time. The shape of the averaged profile agrees well with the prediction of weak-noise theory (WNT), which describes the most-likely trajectory to a fixed first-passage time. Furthermore, in agreement with WNT, on average the profile approaches the height M algebraically in time, with an exponent that is essentially independent of the boundary conditions. However, the actual value of the dynamic exponent turns out to be significantly smaller than predicted by WNT. This ‘renormalization’ of the exponent is explained in terms of the entropic repulsion exerted by the impenetrable boundary on the fluctuations of the profile around its most-likely path. The entropic repulsion mechanism is analyzed in detail for a single (fractional) Brownian walker, which describes the anomalous diffusion of a tagged monomer of the interface as it approaches the absorbing boundary. The present study sheds light on the accuracy and the limitations of the weak-noise approximation for the description of the full first-passage dynamics.
De Raedt, Hans; Delina, Mutia; Jin, Fenping; Michielsen, Kristel
2012-01-01
A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is discussed. The event-based corpuscular model gives a unified description of multiple-beam fringes of a plane parallel plate and single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum eraser, two-beam interference, Einstein...
Kim, S C; Adesogan, A T
2006-08-01
The aim of this study was to determine how delayed silo sealing, high ensiling temperatures, and rainfall at harvest affect the fermentation and aerobic stability of corn silage. One-half of each of 4 replicated, 6 x 1.5 m plots of a corn hybrid was harvested at 35% dry matter (Dry), and each of the other halves was harvested after they were sprinkled with sufficient water to simulate 4 mm of rainfall (Wet). Six representative (2 kg) subsamples were taken from the Wet and Dry forage piles and ensiled immediately (Prompt). Three hours later, 6 additional representative (2 kg) samples were taken from each pile and ensiled (Delay). Half of the bags from each moisture x sealing time treatment combination were stored for 82 d in a 40 degrees C incubator (Hot) and the other half were stored in a 20 degrees C air-conditioned room (Cool). A 2 (moisture treatments) x 2 (sealing times) x 2 (ensiling temperatures) factorial design with 3 replicates per treatment was used for the study. Wetting the corn silage increased concentrations of NH(3)-N, ethanol, and acetic acid. Ensiling at 40 instead of 20 degrees C increased pH, in vitro digestibility, and concentrations of NH(3)-N, residual water-soluble carbohydrates and acid detergent insoluble crude protein. The higher ensiling temperature also reduced concentrations of neutral and acid detergent fiber and lactic and acetic acid. Delayed sealing reduced concentrations of NH(3)-N and total volatile fatty acids. Wetting, high temperature ensiling, and delayed sealing each reduced yeast counts slightly, and marginally (8 h) increased aerobic stability. Hot-Wet-Delay silages were more stable than other silages but had the lowest lactic to acetic acid ratio, and total volatile fatty acid concentration. This study indicates that the fermentation of corn silage is adversely affected by wet conditions at harvest and high ensiling temperatures, whereas delayed silo sealing for 3 h caused no adverse effects.
A Cucker--Smale Model with Noise and Delay
Erban, Radek
2016-08-09
A generalization of the Cucker-Smale model for collective animal behavior is investigated. The model is formulated as a system of delayed stochastic differential equations. It incorporates two additional processes which are present in animal decision making, but are often neglected in modeling: (i) stochasticity (imperfections) of individual behavior and (ii) delayed responses of individuals to signals in their environment. Sufficient conditions for flocking for the generalized Cucker-Smale model are derived by using a suitable Lyapunov functional. As a by-product, a new result regarding the asymptotic behavior of delayed geometric Brownian motion is obtained. In the second part of the paper, results of systematic numerical simulations are presented. They not only illustrate the analytical results, but hint at a somehow surprising behavior
Exponential stability result for discrete-time stochastic fuzzy uncertain neural networks
International Nuclear Information System (INIS)
Mathiyalagan, K.; Sakthivel, R.; Marshal Anthoni, S.
2012-01-01
This Letter addresses the stability analysis problem for a class of uncertain discrete-time stochastic fuzzy neural networks (DSFNNs) with time-varying delays. By constructing a new Lyapunov–Krasovskii functional combined with the free weighting matrix technique, a new set of delay-dependent sufficient conditions for the robust exponential stability of the considered DSFNNs is established in terms of Linear Matrix Inequalities (LMIs). Finally, numerical examples with simulation results are provided to illustrate the applicability and usefulness of the obtained theory. -- Highlights: ► Applications of neural networks require the knowledge of dynamic behaviors. ► Exponential stability of discrete-time stochastic fuzzy neural networks is studied. ► Linear matrix inequality optimization approach is used to obtain the result. ► Delay-dependent stability criterion is established in terms of LMIs. ► Examples with simulation are provided to show the effectiveness of the result.
Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.
2015-01-01
This study evaluated the effects of communications delays and winds on air traffic controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between Unmanned Aircraft Systems (UAS) and manned aircraft in a simulation of the Dallas-Ft. Worth (DFW) airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from Detect and Avoid (DAA) self-separation algorithms (Stratway+) displayed on the Multi-Aircraft Control System. This guidance consisted of amber "bands" on the heading scale of the UAS navigation display indicating headings that would result in a loss of well clear between the UAS and nearby traffic. Winds tested were successfully handled by the DAA algorithms and did not affect the controller acceptability ratings of the HMDs. Voice communications delays for the UAS were also tested and included one-way delay times of 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS. Information from this study will also be of value to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 228 - Minimum Performance Standards for UAS.
Santana, Erico Soriano Martins; Mueller, Carlos
2003-01-01
The occurrence of flight delays in Brazil, mostly verified at the ground (airfield), is responsible for serious disruptions at the airport level but also for the unchaining of problems in all the airport system, affecting also the airspace. The present study develops an analysis of delay and travel times at Sao Paulo International Airport/ Guarulhos (AISP/GRU) airfield based on simulation model. Different airport physical and operational scenarios had been analyzed by means of simulation. SIMMOD Plus 4.0, the computational tool developed to represent aircraft operation in the airspace and airside of airports, was used to perform these analysis. The study was mainly focused on aircraft operations on ground, at the airport runway, taxi-lanes and aprons. The visualization of the operations with increasing demand facilitated the analyses. The results generated in this work certify the viability of the methodology, they also indicated the solutions capable to solve the delay problem by travel time analysis, thus diminishing the costs for users mainly airport authority. It also indicated alternatives for airport operations, assisting the decision-making process and in the appropriate timing of the proposed changes in the existing infrastructure.
Time delay and noise explaining the behaviour of the cell growth in fermentation process
Energy Technology Data Exchange (ETDEWEB)
Ayuobi, Tawfiqullah; Rosli, Norhayati [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-02-03
This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.
Time delay and noise explaining the behaviour of the cell growth in fermentation process
International Nuclear Information System (INIS)
Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md
2015-01-01
This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process
The stochastic quality calculus
DEFF Research Database (Denmark)
Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis
2014-01-01
We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated...... with the outputs and at the same time the inputs impose constraints on the waiting times. Consequently, the expected inputs may not be available when needed and therefore the calculus allows to express the absence of data.The communication delays are expressed by general distributions and the resulting semantics...
Asymptotic analysis for functional stochastic differential equations
Bao, Jianhai; Yuan, Chenggui
2016-01-01
This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity. This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.
International Nuclear Information System (INIS)
De Raedt, Hans; Delina, M; Jin, Fengping; Michielsen, Kristel
2012-01-01
A corpuscular simulation model of optical phenomena that does not require knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one by one is discussed. The event-based corpuscular model gives a unified description of multiple-beam fringes of a plane parallel plate and a single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum eraser, two-beam interference, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments. The approach is illustrated by applying it to a recent proposal for a quantum-controlled delayed choice experiment, demonstrating that also this thought experiment can be understood in terms of particle processes only.
Directory of Open Access Journals (Sweden)
Zhi-Wen Zhu
2015-01-01
Full Text Available A kind of high-aspect-ratio shape memory alloy (SMA composite wing is proposed to reduce the wing’s fluttering. The nonlinear dynamic characteristics and optimal control of the SMA composite wings subjected to in-plane stochastic excitation are investigated where the great bending under the flight loads is considered. The stochastic stability of the system is analyzed, and the system’s response is obtained. The conditions of stochastic Hopf bifurcation are determined, and the probability density of the first-passage time is obtained. Finally, the optimal control strategy is proposed. Numerical simulation shows that the stability of the system varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the reliability of the system is improved through optimal control, and the first-passage time is delayed. Finally, the effects of the control strategy are proved by experiments. The results of this paper are helpful for engineering applications of SMA.
Manzione, Rodrigo L.; Wendland, Edson; Tanikawa, Diego H.
2012-11-01
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. Copyright © 2014 Elsevier Inc. All rights reserved.
Selroos, J. O.; Appleyard, P.; Bym, T.; Follin, S.; Hartley, L.; Joyce, S.; Munier, R.
2015-12-01
In 2011 the Swedish Nuclear Fuel and Waste Management Company (SKB) applied for a license to start construction of a final repository for spent nuclear fuel at Forsmark in Northern Uppland, Sweden. The repository is to be built at approximately 500 m depth in crystalline rock. A stochastic, discrete fracture network (DFN) concept was chosen for interpreting the surface-based (incl. boreholes) data, and for assessing the safety of the repository in terms of groundwater flow and flow pathways to and from the repository. Once repository construction starts, also underground data such as tunnel pilot borehole and tunnel trace data will become available. It is deemed crucial that DFN models developed at this stage honors the mapped structures both in terms of location and geometry, and in terms of flow characteristics. The originally fully stochastic models will thus increase determinism towards the repository. Applying the adopted probabilistic framework, predictive modeling to support acceptance criteria for layout and disposal can be performed with the goal of minimizing risks associated with the repository. This presentation describes and illustrates various methodologies that have been developed to condition stochastic realizations of fracture networks around underground openings using borehole and tunnel trace data, as well as using hydraulic measurements of inflows or hydraulic interference tests. The methodologies, implemented in the numerical simulators ConnectFlow and FracMan/MAFIC, are described in some detail, and verification tests and realistic example cases are shown. Specifically, geometric and hydraulic data are obtained from numerical synthetic realities approximating Forsmark conditions, and are used to test the constraining power of the developed methodologies by conditioning unconditional DFN simulations following the same underlying fracture network statistics. Various metrics are developed to assess how well the conditional simulations compare to
Energy Technology Data Exchange (ETDEWEB)
Saldanha Filho, Paulo Carlos
1998-02-01
Stochastic simulation has been employed in petroleum reservoir characterization as a modeling tool able to reconcile information from several different sources. It has the ability to preserve the variability of the modeled phenomena and permits transference of geological knowledge to numerical models of flux, whose predictions on reservoir constitute the main basis for reservoir management decisions. Several stochastic models have been used and/or suggested, depending on the nature of the phenomena to be described. Markov Random Fields (MRFs) appear as an alternative for the modeling of discrete variables, mainly reservoirs with mosaic architecture of facies. In this dissertation, the reader is introduced to the stochastic modeling by MRFs in a generic sense. The main aspects of the technique are reviewed. MRF Conceptual Background is described: its characterization through the Markovian property and the equivalence to Gibbs distributions. The framework for generic modeling of MRFs is described. The classical models of Ising and Potts-Strauss are specific in this context and are related to models of Ising and Potts-Strauss are specific in this context and are related to models used in petroleum reservoir characterization. The problem of parameter estimation is discussed. The maximum pseudolikelihood estimators for some models are presented. Estimators for two models useful for reservoir characterization are developed, and represent a new contribution to the subject. Five algorithms for the Conditional Simulation of MRFs are described: the Metropolis algorithm, the algorithm of German and German (Gibbs sampler), the algorithm of Swendsen-Wang, the algorithm of Wolff, and the algorithm of Flinn. Finally, examples of simulation for some of the models discussed are presented, along with their implications on the modelling of petroleum reservoirs. (author)
Indian Academy of Sciences (India)
IAS Admin
V S Borkar is the Institute. Chair Professor of. Electrical Engineering at. IIT Bombay. His research interests are stochastic optimization, theory, algorithms and applica- tions. 1 'Markov Chain Monte Carlo' is another one (see [1]), not to mention schemes that combine both. Stochastic approximation is one of the unsung.
de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-12-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of
Energy Technology Data Exchange (ETDEWEB)
Bangga, Galih; Weihing, Pascal; Lutz, Thorsten; Krämer, Ewald [University of Stuttgart, Stuttgart (Germany)
2017-05-15
The present study focuses on the impact of grid for accurate prediction of the MEXICO rotor under stalled conditions. Two different blade mesh topologies, O and C-H meshes, and two different grid resolutions are tested for several time step sizes. The simulations are carried out using Delayed detached-eddy simulation (DDES) with two eddy viscosity RANS turbulence models, namely Spalart- Allmaras (SA) and Menter Shear stress transport (SST) k-ω. A high order spatial discretization, WENO (Weighted essentially non- oscillatory) scheme, is used in these computations. The results are validated against measurement data with regards to the sectional loads and the chordwise pressure distributions. The C-H mesh topology is observed to give the best results employing the SST k-ω turbulence model, but the computational cost is more expensive as the grid contains a wake block that increases the number of cells.
Parzen, Emanuel
1962-01-01
Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine
McKean, Henry P
2005-01-01
This little book is a brilliant introduction to an important boundary field between the theory of probability and differential equations. -E. B. Dynkin, Mathematical Reviews This well-written book has been used for many years to learn about stochastic integrals. The book starts with the presentation of Brownian motion, then deals with stochastic integrals and differentials, including the famous Itô lemma. The rest of the book is devoted to various topics of stochastic integral equations, including those on smooth manifolds. Originally published in 1969, this classic book is ideal for supplemen
Nietupski, John; And Others
1985-01-01
No differential effects were revealed between minimal and relatively lengthy intervals in simulated and in vivo training of two students (8 and 13 years old) with severe handicaps. Performance in community fast food restaurants was measured. (CL)
Plante, I; Wu, H
2014-01-01
The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.
Energy Technology Data Exchange (ETDEWEB)
Kotalczyk, G., E-mail: Gregor.Kotalczyk@uni-due.de; Kruis, F.E.
2017-07-01
Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named ‘stochastic resolution’ in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope of a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named ‘random removal’ in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.
Kotalczyk, G.; Kruis, F. E.
2017-07-01
Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named 'stochastic resolution' in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope of a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named 'random removal' in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.
Stochastic Model Checking of the Stochastic Quality Calculus
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Zeng, Kebin
2015-01-01
The Quality Calculus uses quality binders for input to express strategies for continuing the computation even when the desired input has not been received. The Stochastic Quality Calculus adds generally distributed delays for output actions and real-time constraints on the quality binders for input...
On the Use of Information Quality in Stochastic Networked Control Systems
DEFF Research Database (Denmark)
Olsen, Rasmus Løvenstein; Madsen, Jacob Theilgaard; Rasmussen, Jakob Gulddahl
2017-01-01
Networked control is challenged by stochastic delays that are caused by the communication networks as well as by the approach taken to exchange information about system state and set-points. Combined with stochastic changing information, there is a probability that information at the controller...... is not matching the true system observation, which we call mismatch probability (mmPr). The hypothesis is that the optimization of certain parameters of networked control systems targeting mmPr is equivalent to the optimization targeting control performance, while the former is practically much easier to conduct....... This is first analyzed in simulation models for the example system of a wind-farm controller. As simulation analysis is subject to stochastic variability and requires large computational effort, the paper develops a Markov model of a simplified networked control system and uses numerical results from the Markov...
International Nuclear Information System (INIS)
Bieda, Bogusław
2014-01-01
The purpose of the paper is to present the results of application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) data of Mittal Steel Poland (MSP) complex in Kraków, Poland. In order to assess the uncertainty, the software CrystalBall® (CB), which is associated with Microsoft® Excel spreadsheet model, is used. The framework of the study was originally carried out for 2005. The total production of steel, coke, pig iron, sinter, slabs from continuous steel casting (CSC), sheets from hot rolling mill (HRM) and blast furnace gas, collected in 2005 from MSP was analyzed and used for MC simulation of the LCI model. In order to describe random nature of all main products used in this study, normal distribution has been applied. The results of the simulation (10,000 trials) performed with the use of CB consist of frequency charts and statistical reports. The results of this study can be used as the first step in performing a full LCA analysis in the steel industry. Further, it is concluded that the stochastic approach is a powerful method for quantifying parameter uncertainty in LCA/LCI studies and it can be applied to any steel industry. The results obtained from this study can help practitioners and decision-makers in the steel production management. - Highlights: • The benefits of Monte Carlo simulation are examined. • The normal probability distribution is studied. • LCI data on Mittal Steel Poland (MSP) complex in Kraków, Poland dates back to 2005. • This is the first assessment of the LCI uncertainties in the Polish steel industry