WorldWideScience

Sample records for delay neural networks

  1. Stability of discrete Hopfield neural networks with delay

    Institute of Scientific and Technical Information of China (English)

    Ma Runnian; Lei Sheping; Liu Naigong

    2005-01-01

    Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete Hopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.

  2. Solving quadratic programming problems by delayed projection neural network.

    Science.gov (United States)

    Yang, Yongqing; Cao, Jinde

    2006-11-01

    In this letter, the delayed projection neural network for solving convex quadratic programming problems is proposed. The neural network is proved to be globally exponentially stable and can converge to an optimal solution of the optimization problem. Three examples show the effectiveness of the proposed network.

  3. Delayed transiently chaotic neural networks and their application

    Science.gov (United States)

    Chen, Shyan-Shiou

    2009-09-01

    In this paper, we propose a novel model, a delayed transiently chaotic neural network (DTCNN), and numerically confirm that the model performs better in finding the global minimum for the traveling salesman problem (TSP) than the traditional transiently chaotic neural network. The asymptotic stability and chaotic behavior of the dynamical system with time delay are fully discussed. We not only theoretically prove the existence of Marotto's chaos for the delayed neural network without the cooling schedule by geometrically constructing a transversal homoclinic orbit, but we also discuss the stability of nonautonomous delayed systems using LaSalle's invariance principle. The result of the application to the TSP by the DTCNN might further explain the importance of systems with time delays in the neural system.

  4. ABOUT HYBRID BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DISCRETE DELAYS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, hybrid bidirectional associative memory neural networks with discrete delays is considered. By ingeniously importing real parameters di > 0(i = 1,2,···,n) which can be adjusted, we establish some new sufficient conditions for the dynamical characteristics of hybrid bidirectional associative memory neural networks with discrete delays by the method of variation of parameters and some analysis techniques. Our results generalize and improve the related results in [10,11]. Our work is significant...

  5. Efficient Training of Recurrent Neural Network with Time Delays.

    Science.gov (United States)

    Marom, Emanuel; Saad, David; Cohen, Barak

    1997-01-01

    Training recurrent neural networks to perform certain tasks is known to be difficult. The possibility of adding synaptic delays to the network properties makes the training task more difficult. However, the disadvantage of tough training procedure is diminished by the improved network performance. During our research of training neural networks with time delays we encountered a robust method for accomplishing the training task. The method is based on adaptive simulated annealing algorithm (ASA) which was found to be superior to other training algorithms. It requires no tuning and is fast enough to enable training to be held on low end platforms such as personal computers. The implementation of the algorithm is presented over a set of typical benchmark tests of training recurrent neural networks with time delays. Copyright 1996 Elsevier Science Ltd.

  6. Nonuniform behavior and stability of Hopfield neural networks with delay

    Science.gov (United States)

    Bento, António J. G.; Oliveira, José J.; Silva, César M.

    2017-08-01

    Based on a new abstract result on the behavior of nonautonomous delayed equations, we obtain a stability result for the solutions of a general discrete nonautonomous Hopfield neural network model with delay. As an application we improve some existing results on the stability of Hopfield models.

  7. Global asymptotic stability of cellular neural networks with multiple delays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Global asymptotic stability (GAS) is discussed for cellular neural networks (CNN) with multiple time delays. Several criteria are proposed to ascertain the uniqueness and global asymptotic stability of the equilibrium point for the CNN with delays. These criteria can eliminate the difference between the neuronal excitatory and inhibitory effects. Two examples are presented to demonstrate the effectiveness of the criteria.

  8. Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, O.M., E-mail: madwind@chungbuk.ac.k [School of Electrical Engineering, Chungbuk National University, Cheongju (Korea, Republic of); Lee, S.M., E-mail: moony@daegu.ac.k [School of Electronics Engineering, Daegu University, Kyongsan (Korea, Republic of); Park, Ju H., E-mail: jessie@ynu.ac.k [Department of Electrical Engineering, Yeungnam University, Kyongsan (Korea, Republic of)

    2010-02-22

    This Letter investigates the problem of delay-dependent exponential stability analysis for uncertain stochastic neural networks with time-varying delay. Based on the Lyapunov stability theory, improved delay-dependent exponential stability criteria for the networks are established in terms of linear matrix inequalities (LMIs).

  9. STABILITY ANALYSIS OF HOPFIELD NEURAL NETWORKS WITH TIME DELAY

    Institute of Scientific and Technical Information of China (English)

    王林山; 徐道义

    2002-01-01

    The global asymptotic stability for Hopfield neural networks with time delay was investigated. A theorem and two corollaries were obtained, in which the boundedness and differentiability offjon R in some articles were deleted. Some sufficient conditions for the existence of global asymptotic stable equilibrium of the networks in this paper are better than the sufficient conditions in quoted articles.

  10. Stability Analysis for Stochastic Delayed High-order Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with time-delays. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived in order to guarantee the global asymptotic convergence of the equilibrium point in the mean square. Investigation shows that the addressed stochastic highorder delayed neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities (LMIs). Hence, the global asymptotic stability of the studied stochastic high-order delayed neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria.

  11. Dynamical analysis of uncertain neural networks with multiple time delays

    Science.gov (United States)

    Arik, Sabri

    2016-02-01

    This paper investigates the robust stability problem for dynamical neural networks in the presence of time delays and norm-bounded parameter uncertainties with respect to the class of non-decreasing, non-linear activation functions. By employing the Lyapunov stability and homeomorphism mapping theorems together, a new delay-independent sufficient condition is obtained for the existence, uniqueness and global asymptotic stability of the equilibrium point for the delayed uncertain neural networks. The condition obtained for robust stability establishes a matrix-norm relationship between the network parameters of the neural system, which can be easily verified by using properties of the class of the positive definite matrices. Some constructive numerical examples are presented to show the applicability of the obtained result and its advantages over the previously published corresponding literature results.

  12. GLOBAL ASYMPTOTIC STABILITY CONDITIONS OF DELAYED NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-ming; CAO Jin-de; ZHANG Li-ming

    2005-01-01

    Utilizing the Liapunov functional method and combining the inequality of matrices technique to analyze the existence of a unique equilibrium point and the global asymptotic stability for delayed cellular neural networks (DCNNs), a new sufficient criterion ensuring the global stability of DCNNs is obtained. Our criteria provide some parameters to appropriately compensate for the tradeoff between the matrix definite condition on feedback matrix and delayed feedback matrix. The criteria can easily be used to design and verify globally stable networks. Furthermore, the condition presented here is independent of the delay parameter and is less restrictive than that given in the references.

  13. Global Asymplotic Stability of Neural Networks with Time Delay

    Institute of Scientific and Technical Information of China (English)

    肖晓丹; 张洁

    2008-01-01

    The global asymptotic stability problem of Cellular neural networks with delay is investigated.A new stability condition is presented based on Lyapunov-Krasovskii method,which is dependent On the size of delay.The result is given in the form of LMI.and the admitted upper bound of the delay can be obtained easily.The time delay dependent and independent results can be obtained,which include some results in the former literature.Finally,a numerical example is siven to illustrate the effectiveness of the main results.

  14. Robust Stability Criterion for Uncertain Neural Networks with Time Delays

    Institute of Scientific and Technical Information of China (English)

    LIN Zhi-wei; ZHANG Ning; YANG Hong-jiu

    2010-01-01

    The robust stability of uncertain neural network with time-varying delay was investigated. The norm-bounded un-certainties are included in the system matrices. The constraint on time-varying delays is removed, which means that a fast time-varying delay is admissible. Some new delay-dependent stability criteria were presented by using Lyapunov-Krasovskii functional and linear matrix inequalities (LMIs) approaches. Finally, a numerical example was given to illustrate the effec-tiveness and innovation nature of the developed techniques.

  15. Global attractivity in delayed Cohen-Grossberg neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.-H. [Department of Mathematics, National Central University, Jhongli City 32001, Taiwan (China)], E-mail: 93241006@cc.ncu.edu.tw; Yang, S.-Y. [Department of Mathematics, National Central University, Jhongli City 32001, Taiwan (China)], E-mail: syyang@math.ncu.edu.tw

    2009-02-28

    In this paper, we investigate the global attractivity of Cohen-Grossberg neural network models with connection time delays for both discrete and distributed cases via the Lyapunov functional method. Without assuming the monotonicity and differentiability of activation functions and the symmetry of connection matrix, we establish three new sufficient conditions for the global exponential stability of a unique equilibrium for the delayed Cohen-Grossberg neural network no matter whether the connection time delay is of discrete type or distributed type. In particular, all the three new criteria are independent of time delays and do not include one another. To demonstrate the differences and features of the new stability criteria, several examples are discussed to compare the present results with the existing ones.

  16. GLOBAL STABILITY IN HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiye; Wu Pingbo; Dai Huanyun

    2001-01-01

    In this paper, without assuming the boundedness, monotonicity and differentiability of the activation functions, the conditions ensuring existence, uniqueness, and global asymptotical stability of the equilibrium point of Hopfield neural network models with distributed time delays are studied. Using M-matrix theory and constructing proper Liapunov functionals, the sufficient conditions for global asymptotic stability are obtained.

  17. Chaotifying delayed recurrent neural networks via impulsive effects

    Science.gov (United States)

    Şaylı, Mustafa; Yılmaz, Enes

    2016-02-01

    In this paper, chaotification of delayed recurrent neural networks via chaotically changing moments of impulsive actions is considered. Sufficient conditions for the presence of Li-Yorke chaos with its ingredients proximality, frequent separation, and existence of infinitely many periodic solutions are theoretically proved. Finally, effectiveness of our theoretical results is illustrated by an example with numerical simulations.

  18. Delay-slope-dependent stability results of recurrent neural networks.

    Science.gov (United States)

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  19. Adaptive synchronization of neural networks with time-varying delay and distributed delay

    Science.gov (United States)

    Wang, Kai; Teng, Zhidong; Jiang, Haijun

    2008-01-01

    In this paper, the adaptive synchronization of neural networks with time-varying delay and distributed delay is discussed. Based on the LaSalle invariant principle of functional differential equations and the adaptive feedback control technique, some sufficient conditions for adaptive synchronization of such a system are obtained. Finally, a numerical example is given to show the effectiveness of the proposed synchronization method.

  20. Delay-Dependent Exponential Stability Criterion for BAM Neural Networks with Time-Varying Delays

    Institute of Scientific and Technical Information of China (English)

    Wei-Wei Su; Yi-Ming Chen

    2008-01-01

    By employing the Lyapunov stability theory and linear matrix inequality (LMI) technique, delay dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory (BAM) neural networks with time-varying delays. The proposed condition can be checked easily by LMI control toolbox in Matlab. A numerical example is given to demonstrate the effectiveness of our results.

  1. Behavior of impulsive fuzzy cellular neural networks with distributed delays

    Directory of Open Access Journals (Sweden)

    Kelin Li

    2007-04-01

    Full Text Available In this paper, we investigate a generalized model of fuzzy cellular neural networks with distributed delays and impulses. By employing the theory of topological degree, M-matrix and Lypunov functional, we find sufficient conditions for the existence, uniqueness and global exponential stability of both the equilibrium point and the periodic solution. Two examples are given to illustrate the results obtained here.

  2. A new delay-independent condition for global robust stability of neural networks with time delays.

    Science.gov (United States)

    Samli, Ruya

    2015-06-01

    This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results.

  3. Delay dependent stability criteria for recurrent neural networks with time varying delays

    Institute of Scientific and Technical Information of China (English)

    Zhanshan WANG; Huaguang ZHANG

    2009-01-01

    This paper aims to present some delay-dependent global asymptotic stability criteria for recurrent neural networks with time varying delays.The obtained results have no restriction on the magnitude of derivative of time varying delay,and can be easily checked due to the form of linear matrix inequality.By comparison with some previous results,the obtained results are less conservative.A numerical example is utilized to demonstrate the effectiveness of the obtained results.

  4. GLOBAL DYNAMICS OF DELAYED BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM) NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; LIU Zeng-rong; XIANG Lan

    2005-01-01

    Without assuming the smoothness, monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associative memory (BAM) neural networks are established by applying the Liapunov functional methods and matrix-algebraic techniques. It is shown that the new conditions presented in terms of a nonsingular M matrix described by the networks parameters, the connection matrix and the Lipschitz constant of the activation functions, are not only simple and practical, but also easier to check and less conservative than those imposed by similar results in recent literature.

  5. ON GLOBAL ROBUST STABILITY FOR COMPETITIVE NEURAL NETWORKS WITH TIME DELAYS AND DIFFERENT TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, using the theory of topological degree and Liapunov functional methods, the authors study the competitive neural networks with time delays and different time scales and present some criteria of global robust stability for this neural network model.

  6. Delay-dependent asymptotic stability for neural networks with time-varying delays

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2006-01-01

    ensure local and global asymptotic stability of the equilibrium of the neural network. Our results are applied to a two-neuron system with delayed connections between neurons, and some novel asymptotic stability criteria are also derived. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.

  7. Stability analysis of fractional-order Hopfield neural networks with time delays.

    Science.gov (United States)

    Wang, Hu; Yu, Yongguang; Wen, Guoguang

    2014-07-01

    This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper.

  8. Stability analysis of switched stochastic neural networks with time-varying delays.

    Science.gov (United States)

    Wu, Xiaotai; Tang, Yang; Zhang, Wenbing

    2014-03-01

    This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples.

  9. Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control.

    Science.gov (United States)

    He, Wangli; Qian, Feng; Cao, Jinde

    2017-01-01

    This paper investigates pinning synchronization of coupled neural networks with both current-state coupling and distributed-delay coupling via impulsive control. A novel impulse pinning strategy involving pinning ratio is proposed and a general criterion is derived to ensure an array of neural networks with two different topologies synchronizes with the desired trajectory. In order to handle the difficulties of high-dimension criteria, some inequality techniques and matrix decomposition methods through simultaneous diagonalization of two matrices are introduced and low-dimensional criteria are obtained. Finally, an illustrative example is given to show the effectiveness of the proposed method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. New delay-dependent stability criteria for neural networks with time-varying interval delay

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie, E-mail: chenjie@bit.edu.c [School of Automation, Beijing Institute of Technology, Beijing, 100081 (China); Sun Jian, E-mail: helios1225@yahoo.com.c [School of Automation, Beijing Institute of Technology, Beijing, 100081 (China); Liu, G.P., E-mail: gpliu@glam.ac.u [Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); CTGT Center in Harbin Institute of Technology, Harbin, 150001 (China); Rees, D., E-mail: drees@glam.ac.u [Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom)

    2010-09-27

    The problem of stability analysis of neural networks with time-varying delay in a given range is investigated in this Letter. By introducing a new Lyapunov functional which uses the information on the lower bound of the delay sufficiently and an augmented Lyapunov functional which contains some triple-integral terms, some improved delay-dependent stability criteria are derived using the free-weighting matrices method. Numerical examples are presented to illustrate the less conservatism of the obtained results and the effectiveness of the proposed method.

  11. Delay-Dependent Stability Criteria of Uncertain Periodic Switched Recurrent Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xing Yin

    2011-01-01

    uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.

  12. Global exponential periodicity and stability of recurrent neural networks with multi-proportional delays.

    Science.gov (United States)

    Zhou, Liqun; Zhang, Yanyan

    2016-01-01

    In this paper, a class of recurrent neural networks with multi-proportional delays is studied. The nonlinear transformation transforms a class of recurrent neural networks with multi-proportional delays into a class of recurrent neural networks with constant delays and time-varying coefficients. By constructing Lyapunov functional and establishing the delay differential inequality, several delay-dependent and delay-independent sufficient conditions are derived to ensure global exponential periodicity and stability of the system. And several examples and their simulations are given to illustrate the effectiveness of obtained results.

  13. Dynamic Behavior of Discrete Hopfield Neural Networks with Time-Delay

    Institute of Scientific and Technical Information of China (English)

    MARunnian; XIYoumin; LEISheping

    2005-01-01

    The dynamic behavior of recurrent neural networks is not only known to be one of the mostly basic problems, but also known to be bases of the network's widely various applications. The discrete Hopfield neural network with delay is an extension of the famous discrete Hopfield neural networks. The parallel stability of discrete Hopfield neural networks with delay is mainly investigated by the use of the state transition equation and the energy function. Some sufficient criteria are given to ensure the networks with delay converging towards a stable state in parallel updating mode. The established results here extend the previous results on stability of discrete Hopfield neural network both without delay and with delay.

  14. Dissipativity Analysis of Neural Networks with Time-varying Delays

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Bao-Tong Cui

    2008-01-01

    A new definition of dissipativity for neural networks is presented in this paper. By constructing proper Lyapunov func- tionals and using some analytic techniques, sufficient conditions are given to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties and the integro-differential neural networks in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the obtained results.

  15. Exponential passivity of neural networks with time-varying delay and uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Song, E-mail: zhusonghust@smail.hust.edu.c [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Shen Yi, E-mail: yishen64@163.co [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen Guici, E-mail: gcichen@yahoo.com.c [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Science, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2010-12-01

    In this Letter, delay-dependent exponential passivity condition for delayed neural networks is obtained. Then, the result is extended to two types of uncertainties. Two numerical examples are given to demonstrate the effectiveness of the proposed criteria.

  16. Synchronization of Memristor-Based Coupling Recurrent Neural Networks With Time-Varying Delays and Impulses.

    Science.gov (United States)

    Zhang, Wei; Li, Chuandong; Huang, Tingwen; He, Xing

    2015-12-01

    Synchronization of an array of linearly coupled memristor-based recurrent neural networks with impulses and time-varying delays is investigated in this brief. Based on the Lyapunov function method, an extended Halanay differential inequality and a new delay impulsive differential inequality, some sufficient conditions are derived, which depend on impulsive and coupling delays to guarantee the exponential synchronization of the memristor-based recurrent neural networks. Impulses with and without delay and time-varying delay are considered for modeling the coupled neural networks simultaneously, which renders more practical significance of our current research. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.

  17. Delay-Dependent Exponential Stability of Stochastic Delayed Recurrent Neural Networks with Markovian Switching

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-feng; WANG Chun-hua; WEI Guo-liang

    2008-01-01

    The exponential stability problem is investigated fora class of stochastic recurrent neural networks with time delay and Markovian switching.By using It(o)'s differential formula and the Lyapunov stabifity theory,sufficient condition for the solvability of this problem is derived in telm of linear matrix inequalities,which can be easily checked by resorting to available software packages.A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results.

  18. GLOBAL EXPONENTIAL STABILITY OF HOPFIELD NEURAL NETWORKS WITH VARIABLE DELAYS AND IMPULSIVE EFFECTS

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-chun; XU Dao-yi

    2006-01-01

    A class of Hopfield neural network with time-varying delays and impulsive effects is concerned. By applying the piecewise continuous vector Lyapunov function some sufficient conditions were obtained to ensure the global exponential stability of impulsive delay neural networks. An example and its simulation are given to illustrate the effectiveness of the results.

  19. GLOBAL ATTRACTIVITY AND GLOBAL EXPONENTIAL STABILITY FOR DELAYED HOPFIELD NEURAL NETWORK MODELS

    Institute of Scientific and Technical Information of China (English)

    蒲志林; 徐道义

    2001-01-01

    Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural networks with time delays are presented.

  20. Global Robust Stability of Switched Interval Neural Networks with Discrete and Distributed Time-Varying Delays of Neural Type

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2012-01-01

    Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  1. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    Science.gov (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  2. Stability and synchronization of memristor-based fractional-order delayed neural networks.

    Science.gov (United States)

    Chen, Liping; Wu, Ranchao; Cao, Jinde; Liu, Jia-Bao

    2015-11-01

    Global asymptotic stability and synchronization of a class of fractional-order memristor-based delayed neural networks are investigated. For such problems in integer-order systems, Lyapunov-Krasovskii functional is usually constructed, whereas similar method has not been well developed for fractional-order nonlinear delayed systems. By employing a comparison theorem for a class of fractional-order linear systems with time delay, sufficient condition for global asymptotic stability of fractional memristor-based delayed neural networks is derived. Then, based on linear error feedback control, the synchronization criterion for such neural networks is also presented. Numerical simulations are given to demonstrate the effectiveness of the theoretical results.

  3. More relaxed condition for dynamics of discrete time delayed Hopfield neural networks

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiang

    2008-01-01

    The dynamics of discrete time delayed Hopfield neural networks is investigated.By using a difference inequality combining with the linear matrix inequality,a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found.The result obtained holds not only for constant delay but also for time-varying delays.

  4. Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    Jose P. Perez

    2014-01-01

    Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.

  5. On the Global Dissipativity of a Class of Cellular Neural Networks with Multipantograph Delays

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2011-01-01

    Full Text Available For the first time the global dissipativity of a class of cellular neural networks with multipantograph delays is studied. On the one hand, some delay-dependent sufficient conditions are obtained by directly constructing suitable Lyapunov functionals; on the other hand, firstly the transformation transforms the cellular neural networks with multipantograph delays into the cellular neural networks with constant delays and variable coefficients, and then constructing Lyapunov functionals, some delay-independent sufficient conditions are given. These new sufficient conditions can ensure global dissipativity together with their sets of attraction and can be applied to design global dissipative cellular neural networks with multipantograph delays and easily checked in practice by simple algebraic methods. An example is given to illustrate the correctness of the results.

  6. Global Stability, Bifurcation, and Chaos Control in a Delayed Neural Network Model

    Directory of Open Access Journals (Sweden)

    Amitava Kundu

    2014-01-01

    Full Text Available Conditions for the global asymptotic stability of delayed artificial neural network model of n (≥3 neurons have been derived. For bifurcation analysis with respect to delay we have considered the model with three neurons and used suitable transformation on multiple time delays to reduce it to a system with single delay. Bifurcation analysis is discussed with respect to single delay. Numerical simulations are presented to verify the analytical results. Using numerical simulation, the role of delay and neuronal gain parameter in changing the dynamics of the neural network model has been discussed.

  7. Exponential synchronization of general chaotic delayed neural networks via hybrid feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, and covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, recurrent multilayer perceptrons (RMLPs). By virtue of LyapunovKrasovskii stability theory and linear matrix inequality (LMI) technique, some exponential synchronization criteria are derived.Using the drive-response concept, hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria. Finally, detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  8. New delay-dependent criterion for the stability of recurrent neural networks with time-varying delay

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuaGuang; WANG ZhanShan

    2009-01-01

    This paper is concerned with the global asymptotic stability of a class of recurrent neural networks with interval time-varying delay. By constructing a suitable Lyapunov functional, a new criterion is established to ensure the global asymptotic stability of the concerned neural networks, which can be expressed in the form of linear matrix inequality and independent of the size of derivative of time varying delay. Two numerical examples show the effectiveness of the obtained results.

  9. Dynamics of Uncertain Discrete-Time Neural Network with Delay and Impulses

    Directory of Open Access Journals (Sweden)

    Xuehui Mei

    2015-01-01

    Full Text Available The stability of discrete-time impulsive delay neural networks with and without uncertainty is investigated. First, by using Razumikhin-type theorem, a new less conservative condition for the exponential stability of discrete-time neural network with delay and impulse is proposed. Moreover, some new sufficient conditions are derived to guarantee the stability of uncertain discrete-time neural network with delay and impulse by using Lyapunov function and linear matrix inequality (LMI. Finally, several examples with numerical simulation are presented to demonstrate the effectiveness of the obtained results.

  10. Dynamic stability conditions for Lotka-Volterra recurrent neural networks with delays.

    Science.gov (United States)

    Yi, Zhang; Tan, K K

    2002-07-01

    The Lotka-Volterra model of neural networks, derived from the membrane dynamics of competing neurons, have found successful applications in many "winner-take-all" types of problems. This paper studies the dynamic stability properties of general Lotka-Volterra recurrent neural networks with delays. Conditions for nondivergence of the neural networks are derived. These conditions are based on local inhibition of networks, thereby allowing these networks to possess a multistability property. Multistability is a necessary property of a network that will enable important neural computations such as those governing the decision making process. Under these nondivergence conditions, a compact set that globally attracts all the trajectories of a network can be computed explicitly. If the connection weight matrix of a network is symmetric in some sense, and the delays of the network are in L2 space, we can prove that the network will have the property of complete stability.

  11. Mode and delay-dependent adaptive exponential synchronization in pth moment for stochastic delayed neural networks with Markovian switching.

    Science.gov (United States)

    Zhou, Wuneng; Tong, Dongbing; Gao, Yan; Ji, Chuan; Su, Hongye

    2012-04-01

    In this brief, the analysis problem of the mode and delay-dependent adaptive exponential synchronization in th moment is considered for stochastic delayed neural networks with Markovian switching. By utilizing a new nonnegative function and the -matrix approach, several sufficient conditions to ensure the mode and delay-dependent adaptive exponential synchronization in th moment for stochastic delayed neural networks are derived. Via the adaptive feedback control techniques, some suitable parameters update laws are found. To illustrate the effectiveness of the -matrix-based synchronization conditions derived in this brief, a numerical example is provided finally.

  12. Qualitative analysis and control of complex neural networks with delays

    CERN Document Server

    Wang, Zhanshan; Zheng, Chengde

    2016-01-01

    This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.

  13. Global μ-Stability of Impulsive Complex-Valued Neural Networks with Leakage Delay and Mixed Delays

    Directory of Open Access Journals (Sweden)

    Xiaofeng Chen

    2014-01-01

    Full Text Available The impulsive complex-valued neural networks with three kinds of time delays including leakage delay, discrete delay, and distributed delay are considered. Based on the homeomorphism mapping principle of complex domain, a sufficient condition for the existence and uniqueness of the equilibrium point of the addressed complex-valued neural networks is proposed in terms of linear matrix inequality (LMI. By constructing appropriate Lyapunov-Krasovskii functionals, and employing the free weighting matrix method, several delay-dependent criteria for checking the global μ-stability of the complex-valued neural networks are established in LMIs. As direct applications of these results, several criteria on the exponential stability, power-stability, and log-stability are obtained. Two examples with simulations are provided to demonstrate the effectiveness of the proposed criteria.

  14. Stability of Delayed Hopfield Neural Networks with Variable-Time Impulses

    Directory of Open Access Journals (Sweden)

    Yangjun Pei

    2014-01-01

    Full Text Available In this paper the globally exponential stability criteria of delayed Hopfield neural networks with variable-time impulses are established. The proposed criteria can also be applied in Hopfield neural networks with fixed-time impulses. A numerical example is presented to illustrate the effectiveness of our theoretical results.

  15. An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation.

    Science.gov (United States)

    Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André

    2013-01-01

    We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes.

  16. ON THE EXISTENCE OF POSITIVE ALMOST PERIODIC SOLUTIONS TO AN IMPULSIVE NEURAL NETWORKS WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,Hopfield neural networks with delays and impulses are considered.By means of mathematical analysis techniques,some sufficient conditions for the existence of positive almost periodic solutions are obtained.

  17. Existence and attractivity of periodic solutions to Cohen-Grossberg neural network with distributed delays

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2005-01-01

    Full Text Available We study the existence and exponential attractivity of periodic solutions to Cohen-Grossberg neural network with distributed delays. Our results are obtained by applying the continuation theorem of coincidence degree theory and a general Halanay inequality.

  18. Stability analysis of BAM neural networks with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huaguang; WANG Zhanshan

    2007-01-01

    Some new criteria for the global asymptotic stability of the equilibrium point for the bi-directional associative memory neural networks with time varying delays are presented. The obtained results present the structure of linear matrix inequality which can be solved efficiently. The comparison with some previously reported results in the literature demonstrates that the results in this paper provide one more set of criteria for determining the stability of the bi-directional associative memory neural networks with delays.

  19. Global exponential stability of mixed discrete and distributively delayed cellular neural network

    Institute of Scientific and Technical Information of China (English)

    Yao Hong-Xing; Zhou Jia-Yan

    2011-01-01

    This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.

  20. GLOBAL EXPONENTIAL STABILITY IN HOPFIELD AND BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    RONG LIBIN; LU WENLIAN; CHEN TIANPING

    2004-01-01

    Without assuming the boundedness, strict monotonicity and differentiability of the activation functions, the authors utilize the Lyapunov functional method to analyze the global convergence of some delayed models. For the Hopfield neural network with time delays, a new sufficient condition ensuring the existence, uniqueness and global exponential stability of the equilibrium point is derived. This criterion concerning the signs of entries in the connection matrix imposes constraints on the feedback matrix independently of the delay parameters. From a new viewpoint, the bidirectional associative memory neural network with time delays is investigated and a new global exponential stability result is given.

  1. GLOBAL STABILITY ANALYSIS IN CELLULAR NEURAL NETWORKS WITH UNBOUNDED TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    张继业

    2004-01-01

    Without assuming the boundedness and differentiability of the activation functions,the conditions ensuring existence,uniqueness,and global asymptotical stability of the equilibrium point of cellular neural networks with unbounded time delays and variable delays were studied.Using the idea of vector Liapunov method,the intero-differential inequalities with unbounded delay and variable delays were constructed.By the stability analysis of the intero-differential inequalities,the sufficient conditions for global asymptotic stability of cellular neural networks were obtained.

  2. Asymptotical stability of stochastic neural networks with multiple time-varying delays

    Science.gov (United States)

    Zhou, Xianghui; Zhou, Wuneng; Dai, Anding; Yang, Jun; Xie, Lili

    2015-03-01

    The stochastic neural networks can be considered as an expansion of cellular neural networks and Hopfield neural networks. In real world, the neural networks are prone to be instable due to time delay and external disturbance. In this paper, we consider the asymptotic stability for the stochastic neural networks with multiple time-varying delays. By employing a Lyapunov-Krasovskii function, a sufficient condition which guarantees the asymptotic stability of the state trajectory in the mean square is obtained. The criteria proposed can be verified readily by utilising the linear matrix inequality toolbox in Matlab, and no parameters to be tuned. In the end, two numerical examples are provided to demonstrate the effectiveness of the proposed method.

  3. Exponential Stability of Almost Periodic Solutions for Memristor-Based Neural Networks with Distributed Leakage Delays.

    Science.gov (United States)

    Xu, Changjin; Li, Peiluan; Pang, Yicheng

    2016-12-01

    In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural networks. We apply the results of this solution to prove the existence and stability of periodic solutions for this delayed neural network with periodic coefficients. We then provide an example to illustrate the effectiveness of the theoretical results. Our results are completely new and complement the previous studies Chen, Zeng, and Jiang ( 2014 ) and Jiang, Zeng, and Chen ( 2015 ).

  4. Global exponential stability for switched memristive neural networks with time-varying delays.

    Science.gov (United States)

    Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia

    2016-08-01

    This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples.

  5. EXPONENTIAL STABILITY AND PERIODIC SOLUTION OF HYBRID BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DISCRETE DELAYS

    Institute of Scientific and Technical Information of China (English)

    谢惠琴; 王全义

    2004-01-01

    In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By ingeniously importing real parameters di > 0 (i = 1, 2,..., n) which can be adjusted, making use of the Lyapunov functional method and some analysis techniques, some new sufficient conditions are established. Our results generalize and improve the related results in [9]. These conditions can be used both to design globally exponentially stable and periodical oscillatory hybrid bidirectional associative neural networks with discrete delays, and to enlarge the area of designing neural networks. Our work has important significance in related theory and its application.

  6. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Wu Wei; Cui Bao-Tong

    2007-01-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented.This class of chaotic neural networks covers several well-known neural network, such a Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  7. ASYMPTOTIC BEHAVIOR OF DELAY DISCRETETIME NEURAL NETWORKS WITH CRITICAL THRESHOLD

    Institute of Scientific and Technical Information of China (English)

    ZhangHongqiang; LiuKaiyu

    2005-01-01

    This paper is concerned with a delay discrete-time system arising as a discrete-time network of two neurons with McCulloch-Pitts nonlinearity. We obtain the asymptotic behaviors of the solutions of the system for some cases.The results obtained improve and extend the corresponding results established recently by Zhou, Yu and Huang [1].

  8. Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay.

    Science.gov (United States)

    Velmurugan, G; Rakkiyappan, R; Vembarasan, V; Cao, Jinde; Alsaedi, Ahmed

    2017-02-01

    As we know, the notion of dissipativity is an important dynamical property of neural networks. Thus, the analysis of dissipativity of neural networks with time delay is becoming more and more important in the research field. In this paper, the authors establish a class of fractional-order complex-valued neural networks (FCVNNs) with time delay, and intensively study the problem of dissipativity, as well as global asymptotic stability of the considered FCVNNs with time delay. Based on the fractional Halanay inequality and suitable Lyapunov functions, some new sufficient conditions are obtained that guarantee the dissipativity of FCVNNs with time delay. Moreover, some sufficient conditions are derived in order to ensure the global asymptotic stability of the addressed FCVNNs with time delay. Finally, two numerical simulations are posed to ensure that the attention of our main results are valuable.

  9. Receding Horizon Stabilization and Disturbance Attenuation for Neural Networks With Time-Varying Delay.

    Science.gov (United States)

    Ahn, Choon Ki; Shi, Peng; Wu, Ligang

    2015-12-01

    This paper is concerned with the problems of receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay. New delay-dependent conditions on the terminal weighting matrices of a new finite horizon cost functional for receding horizon stabilization are established for neural networks with time-varying or time-invariant delays using single- and double-integral Wirtinger-type inequalities. Based on the results, delay-dependent sufficient conditions for the receding horizon disturbance attenuation are given to guarantee the infinite horizon H∞ performance of neural networks with time-varying or time-invariant delays. Three numerical examples are provided to illustrate the effectiveness of the proposed approach.

  10. Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

    Institute of Scientific and Technical Information of China (English)

    P. Balasubramaniam; M. Kalpana; R. Rakkiyappan

    2012-01-01

    Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs).Each cell in an FCNN contains fuzzy operating abilities.The entire network is governed by cellular computing laws.The design of FCNNs is based on fuzzy local rules.In this paper,a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated.Mixed delays include discrete time-varying delays and unbounded distributed delays.A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network.By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs.The controller can be easily obtained by solving the derived LMIs.A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.

  11. New Stability Criteria for High-Order Neural Networks with Proportional Delays

    Science.gov (United States)

    Xu, Chang-Jin; Li, Pei-Luan

    2017-03-01

    This paper is concerned with high-order neural networks with proportional delays. The proportional delay is a time-varying unbounded delay which is different from the constant delay, bounded time-varying delay and distributed delay. By the nonlinear transformation {y}i(t)={u}i({{{e}}}t){{ }}(i=1,2,\\ldots ,n), we transform a class of high-order neural networks with proportional delays into a class of high-order neural networks with constant delays and time-varying coefficients. With the aid of Brouwer fixed point theorem and constructing the delay differential inequality, we obtain some delay-independent and delay-dependent sufficient conditions to ensure the existence, uniqueness and global exponential stability of equilibrium of the network. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. Supported by National Natural Science Foundation of China under Grant Nos. 61673008 and 11261010, and Project of High-level Innovative Talents of Guizhou Province ([2016]5651)

  12. Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yonggang Chen

    2008-01-01

    Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.

  13. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  14. Oscillation, Conduction Delays, and Learning Cooperate to Establish Neural Competition in Recurrent Networks.

    Science.gov (United States)

    Kato, Hideyuki; Ikeguchi, Tohru

    2016-01-01

    Specific memory might be stored in a subnetwork consisting of a small population of neurons. To select neurons involved in memory formation, neural competition might be essential. In this paper, we show that excitable neurons are competitive and organize into two assemblies in a recurrent network with spike timing-dependent synaptic plasticity (STDP) and axonal conduction delays. Neural competition is established by the cooperation of spontaneously induced neural oscillation, axonal conduction delays, and STDP. We also suggest that the competition mechanism in this paper is one of the basic functions required to organize memory-storing subnetworks into fine-scale cortical networks.

  15. Global Uniform Asymptotic Stability of Competitive Neural Networks with Different-Time Scales and Delay

    Institute of Scientific and Technical Information of China (English)

    LI Hong; L(U) Shu; ZHONG Shou-ming

    2005-01-01

    The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.

  16. Synchronization of fractional-order complex-valued neural networks with time delay.

    Science.gov (United States)

    Bao, Haibo; Park, Ju H; Cao, Jinde

    2016-09-01

    This paper deals with the problem of synchronization of fractional-order complex-valued neural networks with time delays. By means of linear delay feedback control and a fractional-order inequality, sufficient conditions are obtained to guarantee the synchronization of the drive-response systems. Numerical simulations are provided to show the effectiveness of the obtained results.

  17. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  18. Pinning Synchronization of Delayed Neural Networks with Nonlinear Inner-Coupling

    Directory of Open Access Journals (Sweden)

    Yangling Wang

    2011-01-01

    Full Text Available Without assuming the symmetry and irreducibility of the outer-coupling weight configuration matrices, we investigate the pinning synchronization of delayed neural networks with nonlinear inner-coupling. Some delay-dependent controlled stability criteria in terms of linear matrix inequality (LMI are obtained. An example is presented to show the application of the criteria obtained in this paper.

  19. Lag Synchronization of a Class of Time-delayed Chaotic Neural Networks by Impulsive Control

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2013-06-01

    Full Text Available The paper studies the exponential lag synchronization of a class of delayed chaotic neural networks with impulsive effects via the unidirectional linear coupling. Some sufficient conditions are derived by establishing impulsive differential delay inequality and using M-matrix theory. An illustrative example is also provided to show the effectiveness and feasibility of the impulsive control method.  

  20. Global Exponential Stability Criteria for Bidirectional Associative Memory Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    J. Thipcha

    2013-01-01

    Full Text Available The global exponential stability for bidirectional associative memory neural networks with time-varying delays is studied. In our study, the lower and upper bounds of the activation functions are allowed to be either positive, negative, or zero. By constructing new and improved Lyapunov-Krasovskii functional and introducing free-weighting matrices, a new and improved delay-dependent exponential stability for BAM neural networks with time-varying delays is derived in the form of linear matrix inequality (LMI. Numerical examples are given to demonstrate that the derived condition is less conservative than some existing results given in the literature.

  1. Stability Analysis for Recurrent Neural Networks with Time-varying Delay

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Wu; Yu-Qiang Wu

    2009-01-01

    This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones.

  2. New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations.

    Science.gov (United States)

    Cai, Zuowei; Huang, Lihong; Zhang, Lingling

    2015-05-01

    This paper investigates the problem of exponential synchronization of time-varying delayed neural networks with discontinuous neuron activations. Under the extended Filippov differential inclusion framework, by designing discontinuous state-feedback controller and using some analytic techniques, new testable algebraic criteria are obtained to realize two different kinds of global exponential synchronization of the drive-response system. Moreover, we give the estimated rate of exponential synchronization which depends on the delays and system parameters. The obtained results extend some previous works on synchronization of delayed neural networks not only with continuous activations but also with discontinuous activations. Finally, numerical examples are provided to show the correctness of our analysis via computer simulations. Our method and theoretical results have a leading significance in the design of synchronized neural network circuits involving discontinuous factors and time-varying delays.

  3. Delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays.

    Science.gov (United States)

    Zhong, Qishui; Cheng, Jun; Zhao, Yuqing

    2015-07-01

    In this paper, a novel method is developed for delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays. New sufficient condition for stochastic boundness of Markovian jumping neural networks is presented and proved by an newly augmented stochastic Lyapunov-Krasovskii functional and novel activation function conditions, the state trajectory remains in a bounded region of the state space over a given finite-time interval. Finally, a numerical example is given to illustrate the efficiency and less conservative of the proposed method.

  4. Stability and synchronization analysis of inertial memristive neural networks with time delays.

    Science.gov (United States)

    Rakkiyappan, R; Premalatha, S; Chandrasekar, A; Cao, Jinde

    2016-10-01

    This paper is concerned with the problem of stability and pinning synchronization of a class of inertial memristive neural networks with time delay. In contrast to general inertial neural networks, inertial memristive neural networks is applied to exhibit the synchronization and stability behaviors due to the physical properties of memristors and the differential inclusion theory. By choosing an appropriate variable transmission, the original system can be transformed into first order differential equations. Then, several sufficient conditions for the stability of inertial memristive neural networks by using matrix measure and Halanay inequality are derived. These obtained criteria are capable of reducing computational burden in the theoretical part. In addition, the evaluation is done on pinning synchronization for an array of linearly coupled inertial memristive neural networks, to derive the condition using matrix measure strategy. Finally, the two numerical simulations are presented to show the effectiveness of acquired theoretical results.

  5. Global exponential almost periodicity of a delayed memristor-based neural networks.

    Science.gov (United States)

    Chen, Jiejie; Zeng, Zhigang; Jiang, Ping

    2014-12-01

    In this paper, the existence, uniqueness and stability of almost periodic solution for a class of delayed memristor-based neural networks are studied. By using a new Lyapunov function method, the neural network that has a unique almost periodic solution, which is globally exponentially stable is proved. Moreover, the obtained conclusion on the almost periodic solution is applied to prove the existence and stability of periodic solution (or equilibrium point) for delayed memristor-based neural networks with periodic coefficients (or constant coefficients). The obtained results are helpful to design the global exponential stability of almost periodic oscillatory memristor-based neural networks. Three numerical examples and simulations are also given to show the feasibility of our results.

  6. Passivity and robust synchronisation of switched interval coupled neural networks with time delay

    Science.gov (United States)

    Li, Ning; Cao, Jinde

    2016-09-01

    This paper is concerned with passivity and robust synchronisation of switched coupled neural networks with uncertain parameters. First, the mathematical model of switched coupled neural networks with interval uncertain parameters is established, which consists of L modes and switches from one mode to another according to the switching rule. Second, by employing passivity theory and linear matrix inequality techniques, delay-independent and delay-dependent conditions are derived to guarantee the passivity of switched interval coupled neural networks. Moreover, based on the proposed passivity results, global synchronisation criteria can be obtained for switched coupled neural networks with or without uncertain parameters. Finally, an illustrative example is provided to demonstrate the effectiveness of the obtained results.

  7. On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.

    Science.gov (United States)

    Feng, Zhiguang; Zheng, Wei Xing

    2015-12-01

    In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.

  8. Exponential synchronization of memristive Cohen-Grossberg neural networks with mixed delays.

    Science.gov (United States)

    Yang, Xinsong; Cao, Jinde; Yu, Wenwu

    2014-06-01

    This paper concerns the problem of global exponential synchronization for a class of memristor-based Cohen-Grossberg neural networks with time-varying discrete delays and unbounded distributed delays. The drive-response set is discussed. A novel controller is designed such that the response (slave) system can be controlled to synchronize with the drive (master) system. Through a nonlinear transformation, we get an alternative system from the considered memristor-based Cohen-Grossberg neural networks. By investigating the global exponential synchronization of the alternative system, we obtain the corresponding synchronization criteria of the considered memristor-based Cohen-Grossberg neural networks. Moreover, the conditions established in this paper are easy to be verified and improve the conditions derived in most of existing papers concerning stability and synchronization for memristor-based neural networks. Numerical simulations are given to show the effectiveness of the theoretical results.

  9. Discrete-time delayed standard neural network model and its application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analysis of discrete-time recurrent neural networks (RNNs) and to ease the synthesis of controllers for discrete-time nonlinear systems. The model is composed of a discrete-time linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. By combining various Lyapunov functionals with the S-procedure, sufficient conditions for the global asymptotic stability and global exponential stability of the DDSNNM are derived, which are formulated as linear or nonlinear matrix inequalities. Most discrete-time delayed or non-delayed RNNs, or discrete-time neural-network-based nonlinear control systems can be transformed into the DDSNNMs for stability analysis and controller synthesis in a unified way. Two application examples are given where the DDSNNMs are employed to analyze the stability of the discrete-time cellular neural networks (CNNs) and to synthesize the neuro-controllers for the discrete-time nonlinear systems, respectively. Through these examples, it is demonstrated that the DDSNNM not only makes the stability analysis of the RNNs much easier, but also provides a new approach to the synthesis of the controllers for the nonlinear systems.

  10. A New Globally Exponential Stability Criterion for Neural Networks with Discrete and Distributed Delays

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2015-01-01

    Full Text Available This paper concerns the problem of the globally exponential stability of neural networks with discrete and distributed delays. A novel criterion for the globally exponential stability of neural networks is derived by employing the Lyapunov stability theory, homomorphic mapping theory, and matrix theory. The proposed result improves the previously reported global stability results. Finally, two illustrative numerical examples are given to show the effectiveness of our results.

  11. Adaptive synchronization under almost every initial data for stochastic neural networks with time-varying delays and distributed delays

    Science.gov (United States)

    Zhu, Quanxin; Cao, Jinde

    2011-04-01

    This paper is concerned with the adaptive synchronization problem for a class of stochastic delayed neural networks. Based on the LaSalle invariant principle of stochastic differential delay equations and the stochastic analysis theory as well as the adaptive feedback control technique, a linear matrix inequality approach is developed to derive some novel sufficient conditions achieving complete synchronization of unidirectionally coupled stochastic delayed neural networks. In particular, the synchronization criterion considered in this paper is the globally almost surely asymptotic stability of the error dynamical system, which has seldom been applied to investigate the synchronization problem. Moreover, the delays proposed in this paper are time-varying delays and distributed delays, which have rarely been used to study the synchronization problem for coupled stochastic delayed neural networks. Therefore, the results obtained in this paper are more general and useful than those given in the previous literature. Finally, two numerical examples and their simulations are provided to demonstrate the effectiveness of the theoretical results.

  12. New asymptotic stability criteria for neural networks with time-varying delay

    Energy Technology Data Exchange (ETDEWEB)

    Tian Junkang, E-mail: tianjunkang1980@163.co [School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Xie Xiangjun [School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2010-02-01

    The problem of delay-dependent asymptotic stability criteria for neural networks with time-varying delay is investigated. A new class of Lyapunov functional is constructed to derive some new delay-dependent stability criteria.The obtained criterion are less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, numerical examples are given to demonstrate the effectiveness of the proposed method.

  13. Global Exponential Stability of Discrete-Time Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    S. Udpin

    2013-01-01

    Full Text Available This paper presents some global stability criteria of discrete-time neural networks with time-varying delays. Based on a discrete-type inequality, a new global stability condition for nonlinear difference equation is derived. We consider nonlinear discrete systems with time-varying delays and independence of delay time. Numerical examples are given to illustrate the effectiveness of our theoretical results.

  14. New results on the robust stability analysis of neural networks with discrete and distributed time delays

    Institute of Scientific and Technical Information of China (English)

    Su Weiwei; Chen Yiming

    2008-01-01

    Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) technique, delay-dependent stability criteria are derived in terms of LMIs avoiding bounding certain cross terms, which often leads to conservatism. The effectiveness of the proposed stability criteria and the improvement over the existing results are illustrated in the numerical examples.

  15. Generalized Projective Synchronization between Two Different Neural Networks with Mixed Time Delays

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2012-01-01

    Full Text Available The generalized projective synchronization (GPS between two different neural networks with nonlinear coupling and mixed time delays is considered. Several kinds of nonlinear feedback controllers are designed to achieve GPS between two different such neural networks. Some results for GPS of these neural networks are proved theoretically by using the Lyapunov stability theory and the LaSalle invariance principle. Moreover, by comparison, we determine an optimal nonlinear controller from several ones and provide an adaptive update law for it. Computer simulations are provided to show the effectiveness and feasibility of the proposed methods.

  16. Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control.

    Science.gov (United States)

    Zhang, Guodong; Shen, Yi

    2014-07-01

    This paper investigates the exponential synchronization of coupled memristor-based chaotic neural networks with both time-varying delays and general activation functions. And here, we adopt nonsmooth analysis and control theory to handle memristor-based chaotic neural networks with discontinuous right-hand side. In particular, several new criteria ensuring exponential synchronization of two memristor-based chaotic neural networks are obtained via periodically intermittent control. In addition, the new proposed results here are very easy to verify and also complement, extend the earlier publications. Numerical simulations on the chaotic systems are presented to illustrate the effectiveness of the theoretical results.

  17. Sensor Fault Diagnosis for a Class of Time Delay Uncertain Nonlinear Systems Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    Mou Chen; Chang-Sheng Jiang; Qing-Xian Wu

    2008-01-01

    In this paper, a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network. The sensor fault and the system input uncertainty are assumed to be unknown but bounded. The radial basis function (RBF) neural network is used to approximate the sensor fault. Based on the output of the RBF neural network, the sliding mode observer is presented. Using the Lyapunov method, a criterion for stability is given in terms of matrix inequality. Finally, an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer.

  18. Passivity of memristor-based BAM neural networks with different memductance and uncertain delays.

    Science.gov (United States)

    Anbuvithya, R; Mathiyalagan, K; Sakthivel, R; Prakash, P

    2016-08-01

    This paper addresses the passivity problem for a class of memristor-based bidirectional associate memory (BAM) neural networks with uncertain time-varying delays. In particular, the proposed memristive BAM neural networks is formulated with two different types of memductance functions. By constructing proper Lyapunov-Krasovskii functional and using differential inclusions theory, a new set of sufficient condition is obtained in terms of linear matrix inequalities which guarantee the passivity criteria for the considered neural networks. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theoretical results.

  19. Oscillatory Behavior on a Three-Node Neural Network Model with Discrete and Distributed Delays

    Directory of Open Access Journals (Sweden)

    Chunhua Feng

    2014-01-01

    Full Text Available This paper investigates the oscillatory behavior of the solutions for a three-node neural network with discrete and distributed delays. Two theorems are provided to determine the conditions for oscillating solutions of the model. The criteria for selecting the parameters in this network are derived. Some simulation examples are presented to illustrate the effectiveness of the results.

  20. On design and evaluation of tapped-delay neural network architectures

    DEFF Research Database (Denmark)

    Svarer, Claus; Hansen, Lars Kai; Larsen, Jan

    1993-01-01

    Pruning and evaluation of tapped-delay neural networks for the sunspot benchmark series are addressed. It is shown that the generalization ability of the networks can be improved by pruning using the optimal brain damage method of Le Cun, Denker and Solla. A stop criterion for the pruning algorithm...

  1. Synchronization criteria for coupled Hopfield neural networks with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    M.J. Park; O.M. Kwon; Ju H. Park; S.M. Lee; E.J. Cha

    2011-01-01

    This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays.By construction of a suitable Lyapunov-Krasovskii's functional and use of Finsler's lemma,novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms.Two numerical examples are given to illustrate the effectiveness of the proposed methods.

  2. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  3. Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Sheng, Yin

    2016-04-01

    This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.

  4. Robustness analysis of uncertain dynamical neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel

    2015-10-01

    This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results.

  5. Model algorithm control using neural networks for input delayed nonlinear control system

    Institute of Scientific and Technical Information of China (English)

    Yuanliang Zhang; Kil To Chong

    2015-01-01

    The performance of the model algorithm control method is partial y based on the accuracy of the system’s model. It is diffi-cult to obtain a good model of a nonlinear system, especial y when the nonlinearity is high. Neural networks have the ability to“learn”the characteristics of a system through nonlinear mapping to rep-resent nonlinear functions as wel as their inverse functions. This paper presents a model algorithm control method using neural net-works for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one pro-duces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to il ustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.

  6. Mean square delay dependent-probability-distribution stability analysis of neutral type stochastic neural networks.

    Science.gov (United States)

    Muralisankar, S; Manivannan, A; Balasubramaniam, P

    2015-09-01

    The aim of this manuscript is to investigate the mean square delay dependent-probability-distribution stability analysis of neutral type stochastic neural networks with time-delays. The time-delays are assumed to be interval time-varying and randomly occurring. Based on the new Lyapunov-Krasovskii functional and stochastic analysis approach, a novel sufficient condition is obtained in the form of linear matrix inequality such that the delayed stochastic neural networks are globally robustly asymptotically stable in the mean-square sense for all admissible uncertainties. Finally, the derived theoretical results are validated through numerical examples in which maximum allowable upper bounds are calculated for different lower bounds of time-delay.

  7. Stability Analysis of Distributed Delay Neural Networks Based on Relaxed Lyapunov-Krasovskii Functionals.

    Science.gov (United States)

    Zhang, Baoyong; Lam, James; Xu, Shengyuan

    2015-07-01

    This paper revisits the problem of asymptotic stability analysis for neural networks with distributed delays. The distributed delays are assumed to be constant and prescribed. Since a positive-definite quadratic functional does not necessarily require all the involved symmetric matrices to be positive definite, it is important for constructing relaxed Lyapunov-Krasovskii functionals, which generally lead to less conservative stability criteria. Based on this fact and using two kinds of integral inequalities, a new delay-dependent condition is obtained, which ensures that the distributed delay neural network under consideration is globally asymptotically stable. This stability criterion is then improved by applying the delay partitioning technique. Two numerical examples are provided to demonstrate the advantage of the presented stability criteria.

  8. Global robust dissipativity of interval recurrent neural networks with time-varying delay and discontinuous activations.

    Science.gov (United States)

    Duan, Lian; Huang, Lihong; Guo, Zhenyuan

    2016-07-01

    In this paper, the problems of robust dissipativity and robust exponential dissipativity are discussed for a class of recurrent neural networks with time-varying delay and discontinuous activations. We extend an invariance principle for the study of the dissipativity problem of delay systems to the discontinuous case. Based on the developed theory, some novel criteria for checking the global robust dissipativity and global robust exponential dissipativity of the addressed neural network model are established by constructing appropriate Lyapunov functionals and employing the theory of Filippov systems and matrix inequality techniques. The effectiveness of the theoretical results is shown by two examples with numerical simulations.

  9. Global robust dissipativity of interval recurrent neural networks with time-varying delay and discontinuous activations

    Science.gov (United States)

    Duan, Lian; Huang, Lihong; Guo, Zhenyuan

    2016-07-01

    In this paper, the problems of robust dissipativity and robust exponential dissipativity are discussed for a class of recurrent neural networks with time-varying delay and discontinuous activations. We extend an invariance principle for the study of the dissipativity problem of delay systems to the discontinuous case. Based on the developed theory, some novel criteria for checking the global robust dissipativity and global robust exponential dissipativity of the addressed neural network model are established by constructing appropriate Lyapunov functionals and employing the theory of Filippov systems and matrix inequality techniques. The effectiveness of the theoretical results is shown by two examples with numerical simulations.

  10. Network-based H∞ synchronization control of time-delay neural networks with communication constraints

    Science.gov (United States)

    Dong, Hui; Ling, Rongyao; Zhang, Dan

    2016-03-01

    This paper is concerned with the network-based H∞ synchronization control for a class of discrete time-delay neural networks, and attention is focused on how to reduce the communication rate since the communication resource is limited. Techniques such as the measurement size reduction, signal quantization and stochastic signal transmission are introduced to achieve the above goal. An uncertain switched system model is first proposed to capture the above-networked uncertainties. Based on the switched system theory and Lyapunov stability approach, a sufficient condition is obtained such that the closed-loop synchronization system is exponentially stable in the mean-square sense with a prescribed H∞ performance level. The controller gains are determined by solving a set of linear matrix inequalities (LMIs). A numerical example is finally presented to show the effectiveness of the proposed design method.

  11. Control of Halo-Chaos in Beam Transport Network via Neural Network Adaptation with Time-Delayed Feedback

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; LUO Xiao-Shu; HUANG Guo-Xian

    2006-01-01

    Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neuralnetwork with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.

  12. Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay

    Science.gov (United States)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang

    2017-01-01

    The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.

  13. New Results on Passivity Analysis of Stochastic Neural Networks with Time-Varying Delay and Leakage Delay

    Directory of Open Access Journals (Sweden)

    YaJun Li

    2015-01-01

    Full Text Available The passivity problem for a class of stochastic neural networks systems (SNNs with varying delay and leakage delay has been further studied in this paper. By constructing a more effective Lyapunov functional, employing the free-weighting matrix approach, and combining with integral inequality technic and stochastic analysis theory, the delay-dependent conditions have been proposed such that SNNs are asymptotically stable with guaranteed performance. The time-varying delay is divided into several subintervals and two adjustable parameters are introduced; more information about time delay is utilised and less conservative results have been obtained. Examples are provided to illustrate the less conservatism of the proposed method and simulations are given to show the impact of leakage delay on stability of SNNs.

  14. A neural network controller for the path tracking control of a hopping robot involving time delays.

    Science.gov (United States)

    Chaitanya, V Sree Krishna; Reddy, M Srinivas

    2006-02-01

    In this paper a hopping robot motion with offset mass is discussed. A mathematical model has been considered and an efficient single layered neural network has been developed to suit to the dynamics of the hopping robot, which ensures guaranteed tracking performance leading to the stability of the otherwise unstable system. The neural network takes advantage of the robot regressor dynamics that expresses the highly nonlinear robot dynamics in a linear form in terms of the known and unknown robot parameters. Time delays in the control mechanism play a vital role in the motion of hopping robots. The present work also enables us to estimate the maximum time delay admissible with out losing the guaranteed tracking performance. Further this neural network does not require offline training procedures. The salient features are highlighted by appropriate simulations.

  15. ADAPTIVE PINNING SYNCHRONIZATION OF COUPLED NEURAL NETWORKS WITH MIXED DELAYS AND VECTOR-FORM STOCHASTIC PERTURBATIONS

    Institute of Scientific and Technical Information of China (English)

    Yang Xinsong; Cao Jinde

    2012-01-01

    In this article,we consider the global chaotic synchronization of general coupled neural networks,in which subsystems have both discrete and distributed delays.Stochastic perturbations between subsystems are also considered.On the basis of two simple adaptive pinning feedback control schemes,Lyapunov functional method,and stochastic analysis approach,several sufficient conditions are developed to guarantee global synchronization of the coupled neural networks with two kinds of delay couplings,even if only partial states of the nodes are coupled.The outer-coupling matrices may be symmetric or asymmetric.Unlike existing results that an isolate node is introduced as the pinning target,we pin to help the network realizing synchronization without introducing any isolate node when the network is not synchronized.As a by product,sufficient conditions under which the network realizes synchronization without control are derived.Numerical simulations confirm the effectiveness of the obtained results.

  16. Exponential stability of cellular neural networks with multiple time delays and impulsive effects

    Institute of Scientific and Technical Information of China (English)

    Li Dong; Wang Hui; Yang Dan; Zhang Xiao-Hong; Wang Shi-Long

    2008-01-01

    In this work,the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated.Based on the stability theory of Lyapunov-Krasovskii,the method of linear matrix inequality (LMI) and parametrized first-order model transformation,several novel conditions guaranteeing the delaydependent and the delay-independent exponential stabilities are obtained.A numerical example is given to illustrate the effectiveness of our results.

  17. STABILITY OF DISCRETE-TIME COHEN-GROSSBERG BAM NEURAL NETWORKS WITH DELAYS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we study the existence and stability of an equilibrium of discrete-time Cohen-Grossberg BAM Neural Networks with delays. We obtain several sufficient conditions ensuring the existence and stability of an equilibrium of such systems, using discrete Halanay-type inequality and vector Lyapunov methods. In addition, we show that the proposed sufficient condition is independent of the delay parameter. An example is given to demonstrate the effectiveness of the results obtained.

  18. Improved exponential convergence result for generalized neural networks including interval time-varying delayed signals.

    Science.gov (United States)

    Rajchakit, G; Saravanakumar, R; Ahn, Choon Ki; Karimi, Hamid Reza

    2017-02-01

    This article examines the exponential stability analysis problem of generalized neural networks (GNNs) including interval time-varying delayed states. A new improved exponential stability criterion is presented by establishing a proper Lyapunov-Krasovskii functional (LKF) and employing new analysis theory. The improved reciprocally convex combination (RCC) and weighted integral inequality (WII) techniques are utilized to obtain new sufficient conditions to ascertain the exponential stability result of such delayed GNNs. The superiority of the obtained results is clearly demonstrated by numerical examples.

  19. Global exponential stability of Cohen-Grossberg neural networks with variable delays

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-juan; SHI Bao

    2009-01-01

    A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable delays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions are derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.

  20. INFLUENCE OF NOISE AND DELAY ON REACTION-DIFFUSION RECURRENT NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Li Wu

    2006-01-01

    In this paper, the influence of the noise and delay upon the stability property of reaction-diffusion recurrent neural networks (RNNs) with the time-varying delay is discussed. The new and easily verifiable conditions to guarantee the mean value exponential stability of an equilibrium solution are derived. The rate of exponential convergence can be estimated by means of a simple computation based on these criteria.

  1. Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delay

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xia; Cao Jinde

    2003-07-28

    Several sufficient conditions are obtained for the existence of almost periodic solution and its attractivity of shunting inhibitory cellular neural networks with time-varying delay based on the fixed point method and Halanay inequality technique. Some previous results are improved and extended in this Letter and two examples are given to illustrate the effectiveness of the new results.

  2. Global exponential stability of Cohen-Grossberg neural networks with time-varying delays and impulses

    Institute of Scientific and Technical Information of China (English)

    ZHU Qing; LIANG Fang; ZHANG Qing

    2009-01-01

    In this paper, the Cohen-Grossberg neural networks with time-varying delays and impulses are considered. New sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and Lyapunov functional. An example is given to demonstrate the effectiveness of our results.

  3. Periodic Solution to BAM-type Cohen-Grossberg Neural Network with Time-varying Delays

    Institute of Scientific and Technical Information of China (English)

    An-ping Chen; Qun-hua Gu

    2011-01-01

    By using the continuation theorem of Mawhin's coincidence degree theory and the Liapunov functional method, some sufficient conditions are obtained to ensure the existence, uniqueness and the global exponential stability of the periodic solution to the BAM-type Cohen-Grossberg neural networks involving time-varying delays.

  4. Exponential Stability Analysis of Cohen-Grossberg Neural Networks with Time-varying Delays

    Institute of Scientific and Technical Information of China (English)

    Yi-min MENG; Li-hong HUANG; Zhao-hui YUAN

    2012-01-01

    In this paper,we study Cohen-Grossberg neural networks (CGNN) with time-varying delay.Based on Halanay inequality and continuation theorem of the coincidence degree,we obtain some sufficient conditions ensuring the existence,uniqueness,and global exponential stability of periodic solution.Our results complement previously known results.

  5. Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay

    Institute of Scientific and Technical Information of China (English)

    Wang Shen-Quan; Feng Jian; Zhao Qing

    2012-01-01

    In this paper,the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay.Different from the common assumptions on time delays,it is assumed that the probability distribution of the delay taking values in some intervals is known a priori.By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method),less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs).Two numerical examples show that our results are better than the existing ones.

  6. Global stability of bidirectional associative memory neural networks with continuously distributed delays

    Institute of Scientific and Technical Information of China (English)

    张强; 马润年; 许进

    2003-01-01

    Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the acti-vation functions, two sufficient conditions ensuring global stability of such networks are derived by utiliz-ing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method.

  7. Almost Sure Stability of Stochastic Neural Networks with Time Delays in the Leakage Terms

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available The stability issue is investigated for a class of stochastic neural networks with time delays in the leakage terms. Different from the previous literature, we are concerned with the almost sure stability. By using the LaSalle invariant principle of stochastic delay differential equations, Itô’s formula, and stochastic analysis theory, some novel sufficient conditions are derived to guarantee the almost sure stability of the equilibrium point. In particular, the weak infinitesimal operator of Lyapunov functions in this paper is not required to be negative, which is necessary in the study of the traditional moment stability. Finally, two numerical examples and their simulations are provided to show the effectiveness of the theoretical results and demonstrate that time delays in the leakage terms do contribute to the stability of stochastic neural networks.

  8. Delay-dependent stability analysis for continuous-time BAM neural networks with Markovian jumping parameters.

    Science.gov (United States)

    Liu, Hongyang; Ou, Yan; Hu, Jun; Liu, Tingting

    2010-04-01

    This paper investigates the problem of stability analysis for bidirectional associative memory (BAM) neural networks with Markovian jumping parameters. Some new delay-dependent stochastic stability criteria are derived based on a novel Lyapunov-Krasovskii functional (LKF) approach. These new criteria based on the delay partitioning idea prove to be less conservative, since the conservatism could be notably reduced by thinning the delay partitioning. It is shown that the addressed stochastic BAM neural networks with Markovian jumping parameters are stochastically stable if three linear matrix inequalities (LMIs) are feasible. The feasibility of the LMIs can be readily checked by the Matlab LMI toolbox. A numerical example is provided to show the effectiveness and advantage of the proposed technique.

  9. Passivity analysis of uncertain stochastic neural networks with time-varying delays and Markovian jumping parameters.

    Science.gov (United States)

    Ali, M Syed; Rani, M Esther

    2015-01-01

    This paper investigates the problem of robust passivity of uncertain stochastic neural networks with time-varying delays and Markovian jumping parameters. To reflect most of the dynamical behaviors of the system, both parameter uncertainties and stochastic disturbances are considered; stochastic disturbances are given in the form of a Brownian motion. By utilizing the Lyapunov functional method, the Itô differential rule, and matrix analysis techniques, we establish a sufficient criterion such that, for all admissible parameter uncertainties and stochastic disturbances, the stochastic neural network is robustly passive in the sense of expectation. A delay-dependent stability condition is formulated, in which the restriction of the derivative of the time-varying delay should be less than 1 is removed. The derived criteria are expressed in terms of linear matrix inequalities that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.

  10. EXISTENCE AND EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS TO BAM RECURRENT NEURAL NETWORKS WITH TRANSMISSION DELAYS AND CONTINUOUSLY DISTRIBUTED DELAYS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,a class of bidirectional associative memory(BAM) recurrent neural networks with delays are studied.By a fixed point theorem and a Lyapunov functional,some new sufficient conditions for the existence,uniqueness and global exponential stability of the almost periodic solutions are established.These conditions are easy to be verified and our results complement the previous known results.

  11. Matrix measure based dissipativity analysis for inertial delayed uncertain neural networks.

    Science.gov (United States)

    Tu, Zhengwen; Cao, Jinde; Hayat, Tasawar

    2016-03-01

    The present paper is devoted to investigating the global dissipativity for inertial neural networks with time-varying delays and parameter uncertainties. By virtue of a suitable substitution, the original system is transformed to the first order differential system. By means of matrix measure, generalized Halanay inequality, and matrix-norm inequality, several sufficient criteria for the global dissipativity of the addressed neural networks are proposed. Meanwhile, the specific estimations of positive invariant sets and globally attractive sets are obtained. Finally, two examples are provided to validate our theoretical results.

  12. Global Exponential Stability of Delayed Cohen-Grossberg BAM Neural Networks with Impulses on Time Scales

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2009-01-01

    Full Text Available Based on the theory of calculus on time scales, the homeomorphism theory, Lyapunov functional method, and some analysis techniques, sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of the equilibrium point of Cohen-Grossberg bidirectional associative memory (BAM neural networks with distributed delays and impulses on time scales. This is the first time applying the time-scale calculus theory to unify the discrete-time and continuous-time Cohen-Grossberg BAM neural network with impulses under the same framework.

  13. Periodic Oscillation of Fuzzy Cohen-Grossberg Neural Networks with Distributed Delay and Variable Coefficients

    Directory of Open Access Journals (Sweden)

    Hongjun Xiang

    2008-01-01

    Full Text Available A class of fuzzy Cohen-Grossberg neural networks with distributed delay and variable coefficients is discussed. It is neither employing coincidence degree theory nor constructing Lyapunov functionals, instead, by applying matrix theory and inequality analysis, some sufficient conditions are obtained to ensure the existence, uniqueness, global attractivity and global exponential stability of the periodic solution for the fuzzy Cohen-Grossberg neural networks. The method is very concise and practical. Moreover, two examples are posed to illustrate the effectiveness of our results.

  14. Dynamical stability analysis of delayed recurrent neural networks with ring structure

    Science.gov (United States)

    Zhang, Huaguang; Huang, Yujiao; Cai, Tiaoyang; Wang, Zhanshan

    2014-04-01

    In this paper, multistability is discussed for delayed recurrent neural networks with ring structure and multi-step piecewise linear activation functions. Sufficient criteria are obtained to check the existence of multiple equilibria. A lemma is proposed to explore the number and the cross-direction of purely imaginary roots for the characteristic equation, which corresponds to the neural network model. Stability of all of equilibria is investigated. The work improves and extends the existing stability results in the literature. Finally, two examples are given to illustrate the effectiveness of the obtained results.

  15. Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay.

    Science.gov (United States)

    Wu, Yuanyuan; Cao, Jinde; Alofi, Abdulaziz; Al-Mazrooei, Abdullah; Elaiw, Ahmed

    2015-09-01

    This paper deals with the finite-time boundedness and stabilization problem for a class of switched neural networks with time-varying delay and parametric uncertainties. Based on Lyapunov-like function method and average dwell time technique, some sufficient conditions are derived to guarantee the finite-time boundedness of considered uncertain switched neural networks. Furthermore, the state feedback controller is designed to solve the finite-time stabilization problem. Moreover, the proposed sufficient conditions can be simplified into the form of linear matrix equalities for conveniently using Matlab LMI toolbox. Finally, two numerical examples are given to show the effectiveness of the main results.

  16. Finite-time synchronization of fractional-order memristor-based neural networks with time delays.

    Science.gov (United States)

    Velmurugan, G; Rakkiyappan, R; Cao, Jinde

    2016-01-01

    In this paper, we consider the problem of finite-time synchronization of a class of fractional-order memristor-based neural networks (FMNNs) with time delays and investigated it potentially. By using Laplace transform, the generalized Gronwall's inequality, Mittag-Leffler functions and linear feedback control technique, some new sufficient conditions are derived to ensure the finite-time synchronization of addressing FMNNs with fractional order α:1neural networks. Finally, three numerical examples are presented to show the effectiveness of our proposed theoretical results.

  17. Adaptive neural network tracking control for a class of unknown nonlinear time-delay systems

    Institute of Scientific and Technical Information of China (English)

    Chen Weisheng; Li Junmin

    2006-01-01

    For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example.

  18. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses.

    Science.gov (United States)

    Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong

    2017-11-01

    In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays.

    Science.gov (United States)

    Rakkiyappan, R; Cao, Jinde; Velmurugan, G

    2015-01-01

    This paper deals with the problem of existence and uniform stability analysis of fractional-order complex-valued neural networks with constant time delays. Complex-valued recurrent neural networks is an extension of real-valued recurrent neural networks that includes complex-valued states, connection weights, or activation functions. This paper explains sufficient condition for the existence and uniform stability analysis of such networks. Three numerical simulations are delineated to substantiate the effectiveness of the theoretical results.

  20. Periodicity and dissipativity for memristor-based mixed time-varying delayed neural networks via differential inclusions.

    Science.gov (United States)

    Duan, Lian; Huang, Lihong

    2014-09-01

    In this paper, we investigate a class of memristor-based neural networks with general mixed delays involving both time-varying delays and distributed delays. By using the Mawhin-like coincidence theorem, together with the differential inclusion theory, M-matrix properties and differential inequality techniques, some novel criteria are established for ensuring the periodicity and dissipativity for the addressed neural networks. Finally, two numerical examples with simulations are presented to demonstrate the effectiveness of the theoretical results.

  1. Global exponential stability and dissipativity of generalized neural networks with time-varying delay signals.

    Science.gov (United States)

    Manivannan, R; Samidurai, R; Cao, Jinde; Alsaedi, Ahmed; Alsaadi, Fuad E

    2017-03-01

    This paper investigates the problems of exponential stability and dissipativity of generalized neural networks (GNNs) with time-varying delay signals. By constructing a novel Lyapunov-Krasovskii functionals (LKFs) with triple integral terms that contain more advantages of the state vectors of the neural networks, and the upper bound on the time-varying delay signals are formulated. We employ a new integral inequality technique (IIT), free-matrix-based (FMB) integral inequality approach, and Wirtinger double integral inequality (WDII) technique together with the reciprocally convex combination (RCC) approach to bound the time derivative of the LKFs. An improved exponential stability and strictly (Q,S,R)-γ-dissipative conditions of the addressed systems are represented by the linear matrix inequalities (LMIs). Finally, four interesting numerical examples are developed to verify the usefulness of the proposed method with a practical application to a biological network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pinning synchronization of memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Yang, Zhanyu; Luo, Biao; Liu, Derong; Li, Yueheng

    2017-09-01

    In this paper, the synchronization of memristor-based neural networks with time-varying delays via pinning control is investigated. A novel pinning method is introduced to synchronize two memristor-based neural networks which denote drive system and response system, respectively. The dynamics are studied by theories of differential inclusions and nonsmooth analysis. In addition, some sufficient conditions are derived to guarantee asymptotic synchronization and exponential synchronization of memristor-based neural networks via the presented pinning control. Furthermore, some improvements about the proposed control method are also discussed in this paper. Finally, the effectiveness of the obtained results is demonstrated by numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Complete stability of delayed recurrent neural networks with Gaussian activation functions.

    Science.gov (United States)

    Liu, Peng; Zeng, Zhigang; Wang, Jun

    2017-01-01

    This paper addresses the complete stability of delayed recurrent neural networks with Gaussian activation functions. By means of the geometrical properties of Gaussian function and algebraic properties of nonsingular M-matrix, some sufficient conditions are obtained to ensure that for an n-neuron neural network, there are exactly 3(k) equilibrium points with 0≤k≤n, among which 2(k) and 3(k)-2(k) equilibrium points are locally exponentially stable and unstable, respectively. Moreover, it concludes that all the states converge to one of the equilibrium points; i.e., the neural networks are completely stable. The derived conditions herein can be easily tested. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Time-Delay Neural Network for Smart MIMO Channel Estimation in Downlink 4G-LTE-Advance System

    OpenAIRE

    Nirmalkumar S. Reshamwala; Pooja S. Suratia; Satish K. Shah

    2014-01-01

    Long-Term Evolution (LTE) is the next generation of current mobile telecommunication networks. LTE has a new flat radio-network architecture and significant increase in spectrum efficiency. In this paper, main focus on throughput performance analysis of robust MIMO channel estimators for Downlink Long Term Evolution-Advance (DL LTE-A)-4G system using three Artificial Neural Networks: Feed-forward neural network (FFNN), Cascade-forward neural network (CFNN) and Time-Delay neural network (TDNN) a...

  5. Synchronization of stochastically hybrid coupled neural networks with coupling discrete and distributed time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Tang Yang; Zhong Hui-Huang; Fang Jian-An

    2008-01-01

    A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed,which is composed of constant coupling,coupling discrete time-varying delay and coupling distributed timevarying delay.All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion,which reflects a more realistic dynamical behaviour of coupled systems in practice.Based on a simple adaptive feedback controller and stochastic stability theory,several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays.Finally,numerical simulatious illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.

  6. Stationary oscillation of an impulsive delayed system and its application to chaotic neural networks.

    Science.gov (United States)

    Sun, Jitao; Lin, Hai

    2008-09-01

    This paper investigates the stationary oscillation for an impulsive delayed system which represents a class of nonlinear hybrid systems. First, a new concept of S-stability is introduced for nonlinear impulsive delayed systems. Based on this new concept and fixed point theorem, the relationship between S-stability and stationary oscillation (i.e., existence, uniqueness and global stability of periodic solutions) for the nonlinear impulsive delayed system is explored. It is shown that the nonlinear impulsive delayed system has a stationary oscillation if the system is S-stable. Second, an easily verifiable sufficient condition is then obtained for stationary oscillations of nonautonomous neural networks with both time delays and impulses by using the new criterion. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method.

  7. Global Exponential Stability for Complex-Valued Recurrent Neural Networks With Asynchronous Time Delays.

    Science.gov (United States)

    Liu, Xiwei; Chen, Tianping

    2016-03-01

    In this paper, we investigate the global exponential stability for complex-valued recurrent neural networks with asynchronous time delays by decomposing complex-valued networks to real and imaginary parts and construct an equivalent real-valued system. The network model is described by a continuous-time equation. There are two main differences of this paper with previous works: 1) time delays can be asynchronous, i.e., delays between different nodes are different, which make our model more general and 2) we prove the exponential convergence directly, while the existence and uniqueness of the equilibrium point is just a direct consequence of the exponential convergence. Using three generalized norms, we present some sufficient conditions for the uniqueness and global exponential stability of the equilibrium point for delayed complex-valued neural networks. These conditions in our results are less restrictive because of our consideration of the excitatory and inhibitory effects between neurons; so previous works of other researchers can be extended. Finally, some numerical simulations are given to demonstrate the correctness of our obtained results.

  8. Robust Adaptive Exponential Synchronization of Stochastic Perturbed Chaotic Delayed Neural Networks with Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2014-01-01

    Full Text Available This paper investigates the robust adaptive exponential synchronization in mean square of stochastic perturbed chaotic delayed neural networks with nonidentical parametric uncertainties. A robust adaptive feedback controller is proposed based on Gronwally’s inequality, drive-response concept, and adaptive feedback control technique with the update laws of nonidentical parametric uncertainties as well as linear matrix inequality (LMI approach. The sufficient conditions for robust adaptive exponential synchronization in mean square of uncoupled uncertain stochastic chaotic delayed neural networks are derived in terms of linear matrix inequalities (LMIs. The effect of nonidentical uncertain parameter uncertainties is suppressed by the designed robust adaptive feedback controller rapidly. A numerical example is provided to validate the effectiveness of the proposed method.

  9. Stability analysis for uncertain switched neural networks with time-varying delay.

    Science.gov (United States)

    Shen, Wenwen; Zeng, Zhigang; Wang, Leimin

    2016-11-01

    In this paper, stability for a class of uncertain switched neural networks with time-varying delay is investigated. By exploring the mode-dependent properties of each subsystem, all the subsystems are categorized into stable and unstable ones. Based on Lyapunov-like function method and average dwell time technique, some delay-dependent sufficient conditions are derived to guarantee the exponential stability of considered uncertain switched neural networks. Compared with general results, our proposed approach distinguishes the stable and unstable subsystems rather than viewing all subsystems as being stable, thus getting less conservative criteria. Finally, two numerical examples are provided to show the validity and the advantages of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Event-triggered H∞ filter design for delayed neural network with quantization.

    Science.gov (United States)

    Liu, Jinliang; Tang, Jia; Fei, Shumin

    2016-10-01

    This paper is concerned with H∞ filter design for a class of neural network systems with event-triggered communication scheme and quantization. Firstly, a new event-triggered communication scheme is introduced to determine whether or not the current sampled sensor data should be broadcasted and transmitted to quantizer, which can save the limited communication resource. Secondly, a logarithmic quantizer is used to quantify the sampled data, which can reduce the data transmission rate in the network. Thirdly, considering the influence of the constrained network resource, we investigate the problem of H∞ filter design for a class of event-triggered neural network systems with quantization. By using Lyapunov functional and linear matrix inequality (LMI) techniques, some delay-dependent stability conditions for the existence of the desired filter are obtained. Furthermore, the explicit expression is given for the designed filter parameters in terms of LMIs. Finally, a numerical example is given to show the usefulness of the obtained theoretical results.

  11. On global exponential stability of positive neural networks with time-varying delay.

    Science.gov (United States)

    Hien, Le Van

    2017-03-01

    This paper presents a new result on the existence, uniqueness and global exponential stability of a positive equilibrium of positive neural networks in the presence of bounded time-varying delay. Based on some novel comparison techniques, a testable condition is derived to ensure that all the state trajectories of the system converge exponentially to a unique positive equilibrium. The effectiveness of the obtained results is illustrated by a numerical example.

  12. Global Exponential Stability of Almost Periodic Solution of Cellular Neural Networks with Time-Varying Delays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results.

  13. Ship Attitude Prediction Based on Input Delay Neural Network and Measurements of Gyroscopes

    DEFF Research Database (Denmark)

    Wang, Yunlong; N. Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2017-01-01

    Due to the uncertainty and random nature of ocean waves, the accurate prediction of ship attitude is hard to be achieved, especially in high sea states. A ship attitude prediction method using Input Delay Neural Network (IDNN) is proposed in this paper. One of the advantages of this method is tha.......12 deg and 0.26 deg, respectively, when the prediction time is 2 sec. This precision is high enough for most attitude stabilization control systems....

  14. Dynamics of Fuzzy BAM Neural Networks with Distributed Delays and Diffusion

    Directory of Open Access Journals (Sweden)

    Qianhong Zhang

    2012-01-01

    Full Text Available Constructing a new Lyapunov functional and employing inequality technique, the existence, uniqueness, and global exponential stability of the periodic oscillatory solution are investigated for a class of fuzzy bidirectional associative memory (BAM neural networks with distributed delays and diffusion. We obtained some sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the periodic solution. The results remove the usual assumption that the activation functions are differentiable. An example is provided to show the effectiveness of our results.

  15. Nonlinear H∞ control of structured uncertain stochastic neural networks with discrete and distributed time varying delays

    Institute of Scientific and Technical Information of China (English)

    Chen Di-Lan; Zhang Wei-Dong

    2008-01-01

    This paper is concerned with the problem of robust H∞ control for structured uncertain stochastic neural networks with both discrete and distributed time varying delays. A sufficient condition is presented for the existence of H∞ control based on the Lyapunov stability theory. The stability criterion is described in terms of linear matrix inequalities (LMIs),which can be easily checked in practice. An example is provided to demonstrate the effectiveness of the proposed result.

  16. Stability of Stochastic Reaction-Diffusion Recurrent Neural Networks with Unbounded Distributed Delays

    Directory of Open Access Journals (Sweden)

    Chuangxia Huang

    2011-01-01

    Full Text Available Stability of reaction-diffusion recurrent neural networks (RNNs with continuously distributed delays and stochastic influence are considered. Some new sufficient conditions to guarantee the almost sure exponential stability and mean square exponential stability of an equilibrium solution are obtained, respectively. Lyapunov's functional method, M-matrix properties, some inequality technique, and nonnegative semimartingale convergence theorem are used in our approach. The obtained conclusions improve some published results.

  17. A new result on global exponential robust stability of neural networks with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Jinliang SHAO; Tingzhu HUANG

    2009-01-01

    In this paper,the global exponential robust stability of neural networks with time-varying delays is investigated.By using nonnegative matrix theory and the Halanay inequality,a new sufficient condition for global exponential robust stability is presented.It is shown that the obtained result is different from or improves some existing ones reported in the literatures.Finally,some numerical examples and a simulation are given to show the effectiveness of the obtained result.

  18. Neural-network predictive control for nonlinear dynamic systems with time-delay.

    Science.gov (United States)

    Huang, Jin-Quan; Lewis, F L

    2003-01-01

    A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy.

  19. Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach.

    Science.gov (United States)

    Zhang, Xian-Ming; Han, Qing-Long

    2014-06-01

    This paper is concerned with global asymptotic stability for a class of generalized neural networks with interval time-varying delays by constructing a new Lyapunov-Krasovskii functional which includes some integral terms in the form of ∫(t-h)(t)(h-t-s)(j)ẋ(T)(s)Rjẋ(s)ds(j=1,2,3). Some useful integral inequalities are established for the derivatives of those integral terms introduced in the Lyapunov-Krasovskii functional. A matrix-based quadratic convex approach is introduced to prove not only the negative definiteness of the derivative of the Lyapunov-Krasovskii functional, but also the positive definiteness of the Lyapunov-Krasovskii functional. Some novel stability criteria are formulated in two cases, respectively, where the time-varying delay is continuous uniformly bounded and where the time-varying delay is differentiable uniformly bounded with its time-derivative bounded by constant lower and upper bounds. These criteria are applicable to both static neural networks and local field neural networks. The effectiveness of the proposed method is demonstrated by two numerical examples.

  20. New Results on Almost Periodic Solution of Shunting Inhibitory Cellular Neural Networks with Continuously Distributed Delays

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Pei-Yong Zhu

    2008-01-01

    In this paper, the existence, uniqueness and global attractivity are discussed on almost periodic solution of SICNNs (shunting inhibitory cellular neural networks) with continuously distributed delays. By using the fixed point theorem, differential inequality technique and Lyapunov functional method, giving the new ranges of parameters, several sufficient conditions are obtained to ensure the existence, uniqueness and global attractivity of almost periodic solution. Compared with the previous studies, our methods are more effective for almost periodic solution analysis of SICNNs with continuously distributed delays. Some existing results have been improved and extended. In order to show the effectiveness of the obtained results, an example is given in this paper.

  1. Time-Delay Artificial Neural Network Computing Models for Predicting Shelf Life of Processed Cheese

    Directory of Open Access Journals (Sweden)

    Sumit Goyal

    2012-04-01

    Full Text Available This paper presents the capability of Time–delay artificial neural network models for predicting shelf life of processed cheese. Datasets were divided into two subsets (30 for training and 6 for validation. Models with single and multi layers were developed and compared with each other. Mean Square Error, Root Mean Square Error, Coefficient of Determination and Nash -
    Sutcliffo Coefficient were used as performance evaluators, Time- delay model predicted the shelf life of processed cheese as 28.25 days, which is very close to experimental shelf life of 30 days.

  2. Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays.

    Science.gov (United States)

    Guodong Zhang; Yi Shen; Quan Yin; Junwei Sun

    2015-01-01

    In this paper, based on the knowledge of memristor and recurrent neural networks (RNNs), the model of the memristor-based RNNs with discrete and distributed delays is established. By constructing proper Lyapunov functionals and using inequality technique, several sufficient conditions are given to ensure the passivity of the memristor-based RNNs with discrete and distributed delays in the sense of Filippov solutions. The passivity conditions here are presented in terms of linear matrix inequalities, which can be easily solved by using Matlab Tools. In addition, the results of this paper complement and extend the earlier publications. Finally, numerical simulations are employed to illustrate the effectiveness of the obtained results.

  3. Convergence of Asymptotic Systems of Non-autonomous Neural Network Models with Infinite Distributed Delays

    Science.gov (United States)

    Oliveira, José J.

    2017-02-01

    In this paper, we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.

  4. Stability analysis of delayed neural networks via a new integral inequality.

    Science.gov (United States)

    Yang, Bin; Wang, Juan; Wang, Jun

    2017-04-01

    This paper focuses on stability analysis for neural networks systems with time-varying delays. A more general auxiliary function-based integral inequality is established and some improved delay-dependent stability conditions formulated in terms of linear matrix inequalities (LMIs) are derived by employing a suitable Lyapunov-Krasovskii functional (LKF) and the novel integral inequality. Three well-known application examples are provided to demonstrate the effectiveness and improvements of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Adaptive output feedback control for nonlinear time-delay systems using neural network

    Institute of Scientific and Technical Information of China (English)

    Weisheng CHEN; Junmin LI

    2006-01-01

    This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on LyapunovKrasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved.The feasibility is investigated by two illustrative simulation examples.

  6. Complete Periodic Synchronization of Memristor-Based Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2013-01-01

    Full Text Available This paper investigates the complete periodic synchronization of memristor-based neural networks with time-varying delays. Firstly, under the framework of Filippov solutions, by using M-matrix theory and the Mawhin-like coincidence theorem in set-valued analysis, the existence of the periodic solution for the network system is proved. Secondly, complete periodic synchronization is considered for memristor-based neural networks. According to the state-dependent switching feature of the memristor, the error system is divided into four cases. Adaptive controller is designed such that the considered model can realize global asymptotical synchronization. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  7. Improved Conditions for Global Asymptotic Stability of Cohen-Grossberg Neural Networks with Time-Varying Delays

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; CUI Bao-Tong; GAO Ming

    2008-01-01

    The global asymptotic stability of delayed Cohen-Grossberg neural networks with impulses is investigated. Based on the new suitable Lyapunov functions and the Jacobsthal inequality, a set of novel sufficient criteria are derived for the global asymptotic stability of Cohen-Grossberg neural networks with time-varying delays and impulses.An illustrative example with its numerical simulations is given to demonstrate the effectiveness of the obtained results.

  8. Stability analysis of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time varying delays

    Science.gov (United States)

    M. Syed, Ali

    2014-06-01

    In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen—Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples.

  9. Novel delay-dependent stability analysis of Takagi-Sugeno fuzzy uncertain neural networks with time varying delays

    Institute of Scientific and Technical Information of China (English)

    M.Syed Ali

    2012-01-01

    This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi-Sugeno (T-S) model.The main results given here focus on the stability criteria using a new Lyapunov functional.New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature.Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.

  10. Synchronization in Array of Coupled Neural Networks with Unbounded Distributed Delay and Limited Transmission Efficiency

    Directory of Open Access Journals (Sweden)

    Xinsong Yang

    2013-01-01

    Full Text Available This paper investigates global synchronization in an array of coupled neural networks with time-varying delays and unbounded distributed delays. In the coupled neural networks, limited transmission efficiency between coupled nodes, which makes the model more practical, is considered. Based on a novel integral inequality and the Lyapunov functional method, sufficient synchronization criteria are derived. The derived synchronization criteria are formulated by linear matrix inequalities (LMIs and can be easily verified by using Matlab LMI Toolbox. It is displayed that, when some of the transmission efficiencies are limited, the dynamics of the synchronized state are different from those of the isolated node. Furthermore, the transmission efficiency and inner coupling matrices between nodes play important roles in the final synchronized state. The derivative of the time-varying delay can be any given value, and the time-varying delay can be unbounded. The outer-coupling matrices can be symmetric or asymmetric. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results.

  11. Multiple μ-stability of neural networks with unbounded time-varying delays.

    Science.gov (United States)

    Wang, Lili; Chen, Tianping

    2014-05-01

    In this paper, we are concerned with a class of recurrent neural networks with unbounded time-varying delays. Based on the geometrical configuration of activation functions, the phase space R(n) can be divided into several Φη-type subsets. Accordingly, a new set of regions Ωη are proposed, and rigorous mathematical analysis is provided to derive the existence of equilibrium point and its local μ-stability in each Ωη. It concludes that the n-dimensional neural networks can exhibit at least 3(n) equilibrium points and 2(n) of them are μ-stable. Furthermore, due to the compatible property, a set of new conditions are presented to address the dynamics in the remaining 3(n)-2(n) subset regions. As direct applications of these results, we can get some criteria on the multiple exponential stability, multiple power stability, multiple log-stability, multiple log-log-stability and so on. In addition, the approach and results can also be extended to the neural networks with K-level nonlinear activation functions and unbounded time-varying delays, in which there can store (2K+1)(n) equilibrium points, (K+1)(n) of them are locally μ-stable. Numerical examples are given to illustrate the effectiveness of our results.

  12. Almost Periodic Solution for Memristive Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2013-01-01

    Full Text Available This paper is concerned with the dynamical stability analysis for almost periodic solution of memristive neural networks with time-varying delays. Under the framework of Filippov solutions, by applying the inequality analysis techniques, the existence and asymptotically almost periodic behavior of solutions are discussed. Based on the differential inclusions theory and Lyapunov functional approach, the stability issues of almost periodic solution are investigated, and a sufficient condition for the existence, uniqueness, and global exponential stability of the almost periodic solution is established. Moreover, as a special case, the condition which ensures the global exponential stability of a unique periodic solution is also presented for the considered memristive neural networks. Two examples are given to illustrate the validity of the theoretical results.

  13. An improved robust stability result for uncertain neural networks with multiple time delays.

    Science.gov (United States)

    Arik, Sabri

    2014-06-01

    This paper proposes a new alternative sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of delayed neural networks under the parameter uncertainties of the neural system. The existence and uniqueness of the equilibrium point is proved by using the Homomorphic mapping theorem. The asymptotic stability of the equilibrium point is established by employing the Lyapunov stability theorems. The obtained robust stability condition establishes a new relationship between the network parameters of the system. We compare our stability result with the previous corresponding robust stability results derived in the past literature. Some comparative numerical examples together with some simulation results are also given to show the applicability and advantages of our result.

  14. Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks.

    Science.gov (United States)

    Wan, Ying; Cao, Jinde; Wen, Guanghui; Yu, Wenwu

    2016-01-01

    The fixed-time master-slave synchronization of Cohen-Grossberg neural networks with parameter uncertainties and time-varying delays is investigated. Compared with finite-time synchronization where the convergence time relies on the initial synchronization errors, the settling time of fixed-time synchronization can be adjusted to desired values regardless of initial conditions. Novel synchronization control strategy for the slave neural network is proposed. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, some sufficient schemes are provided for selecting the control parameters to ensure synchronization with required convergence time and in the presence of parameter uncertainties. Corresponding criteria for tuning control inputs are also derived for the finite-time synchronization. Finally, two numerical examples are given to illustrate the validity of the theoretical results.

  15. New passivity criteria for memristive uncertain neural networks with leakage and time-varying delays.

    Science.gov (United States)

    Xiao, Jianying; Zhong, Shouming; Li, Yongtao

    2015-11-01

    In this paper, the problem of passivity analysis is studied for memristor-based uncertain neural networks with leakage and time-varying delays. By combining differential inclusions with set-valued maps, the system of memristive neural networks is changed into the conventional one. By adding a triple quadratic integral and relaxing the requirement for the positive definiteness of some matrices, a proper Lyapunov-Krasovskii functional is constructed. Based on the establishment of the novel Lyapunov-Krasovskii functional, the new passivity criteria are derived by mainly applying Wirtinger-based double integral inequality, S-procedure and so on. Moreover, the conservatism of passivity conditions can be reduced. Finally, four numerical examples are given to show the effectiveness and less conservatism of the proposed criteria.

  16. Global exponential stability analysis of cellular neural networks with multiple time delays

    Institute of Scientific and Technical Information of China (English)

    Zhanshan WANG; Huaguang ZHANG

    2007-01-01

    Global exponential stability problems are investigated for cellular neural networks (CNN) with multiple time-varying delays. Several new criteria in linear matrix inequality form or in algebraic form are presented to ascertain the uniqueness and global exponential stability of the equilibrium point for CNN with multiple time-varying delays and with constant time delays. The proposed method has the advantage of considering the difference of neuronal excitatory and inhibitory effects, which is also computationally efficient as it can be solved numerically using the recently developed interior-point algorithm or be checked using simple algebraic calculation. In addition, the proposed results generalize and improve upon some previous works. Two numerical examples are used to show the effectiveness of the obtained results.

  17. Robust passivity analysis for discrete-time recurrent neural networks with mixed delays

    Science.gov (United States)

    Huang, Chuan-Kuei; Shu, Yu-Jeng; Chang, Koan-Yuh; Shou, Ho-Nien; Lu, Chien-Yu

    2015-02-01

    This article considers the robust passivity analysis for a class of discrete-time recurrent neural networks (DRNNs) with mixed time-delays and uncertain parameters. The mixed time-delays that consist of both the discrete time-varying and distributed time-delays in a given range are presented, and the uncertain parameters are norm-bounded. The activation functions are assumed to be globally Lipschitz continuous. Based on new bounding technique and appropriate type of Lyapunov functional, a sufficient condition is investigated to guarantee the existence of the desired robust passivity condition for the DRNNs, which can be derived in terms of a family of linear matrix inequality (LMI). Some free-weighting matrices are introduced to reduce the conservatism of the criterion by using the bounding technique. A numerical example is given to illustrate the effectiveness and applicability.

  18. Adaptive Output-feedback Regulation for Nonlinear Delayed Systems Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying time-delay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results,where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.

  19. Robust stability analysis of a class of neural networks with discrete time delays.

    Science.gov (United States)

    Faydasicok, Ozlem; Arik, Sabri

    2012-05-01

    This paper studies the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete constant time delays under parameter uncertainties. The class of the neural network considered in this paper employs the activation functions which are assumed to be continuous and slope-bounded but not required to be bounded or differentiable. We conduct a stability analysis by exploiting the stability theory of Lyapunov functionals and the theory of Homomorphic mapping to derive some easily verifiable sufficient conditions for existence, uniqueness and global asymptotic stability of the equilibrium point. The conditions obtained mainly establish some time-independent relationships between the network parameters of the neural network. We make a detailed comparison between our results and the previously published corresponding results. This comparison proves that our results are new and improve and generalize the results derived in the past literature. We also give some illustrative numerical examples to show the effectiveness and applicability of our proposed stability results.

  20. A time delay artificial neural network approach for flow routing in a river system

    Directory of Open Access Journals (Sweden)

    M. J. Diamantopoulou

    2006-09-01

    Full Text Available River flow routing provides basic information on a wide range of problems related to the design and operation of river systems. In this paper, three layer cascade correlation Time Delay Artificial Neural Network (TDANN models have been developed to forecast the one day ahead daily flow at Ilarionas station on the Aliakmon river, in Northern Greece. The networks are time lagged feed-formatted with delayed memory processing elements at the input layer. The network topology is using multiple inputs, which include the time lagged daily flow values further up at Siatista station on the Aliakmon river and at Grevena station on the Venetikos river, which is a tributary to the Aliakmon river and a single output, which are the daily flow values at Ilarionas station. The choice of the input variables introduced to the input layer was based on the cross-correlation. The use of cross-correlation between the ith input series and the output provides a short cut to the problem of the delayed memory determination. Kalman's learning rule was used to modify the artificial neural network weights. The networks are designed by putting weights between neurons, by using the hyperbolic-tangent function for training. The number of nodes in the hidden layer was determined based on the maximum value of the correlation coefficient. The results show a good performance of the TDANN approach for forecasting the daily flow values, at Ilarionas station and demonstrate its adequacy and potential for river flow routing. The TDANN approach introduced in this study is sufficiently general and has great potential to be applicable to many hydrological and environmental applications.

  1. Stability Analysis of Cohen-Grossberg Neural Networks with Time-Varying Delays

    Institute of Scientific and Technical Information of China (English)

    LIU Yanqing; TANG Wansheng

    2007-01-01

    The global exponential stability of Cohen-Grossberg neural networks with time-varying delays is studied. By constructing several suitable Lyapunov functionals and utilizing differential inequality techniques, some sufficient criteria for the global exponential stability and the exponential convergence rate of the equilibrium point of the system are obtained. The criteria do not require the activation functions to be differentiable or monotone nondecreasing. Some stability results from previous works are extended and improved. Comparisons are made to demonstrate the advantage of our results.

  2. Extended dissipative state estimation for memristive neural networks with time-varying delay.

    Science.gov (United States)

    Xiao, Jianying; Li, Yongtao; Zhong, Shouming; Xu, Fang

    2016-09-01

    This paper investigates the problem of extended dissipative state estimation for memristor-based neural networks (MNNs) with time-varying delay. Based on both nonsmooth analysis and the construction of a new Lyapunov-Krasovskii functional, the extended dissipative state estimation criteria are obtained by mainly applying differential inclusions, set-valued maps and many new integral inequalities. The extended dissipative state estimation can be adopted to deal with l2-l∞ state estimation, H∞ state estimation, passive state estimation and dissipative state estimation by valuing the corresponding weighting matrices. Finally, two numerical examples are given to show the effectiveness and less conservatism of the proposed criteria.

  3. Stability analysis of delayed cellular neural networks with and without noise perturbation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-juan; WANG Guan-xiang; LIU Hua

    2008-01-01

    The stability of a class of delayed cellular neural networks (DCNN) with or without noise perturbation is studied.After presenting a simple and easily checkable condition for the global exponential stability of a deterministic system,we further investigate the case with noise perturbation.When DCNN is perturbed by external noise,the system is globally stable.An important fact is that,when the system is perturbed by internal noise,it is globally exponentially stable only if the total noise strength is within a certain bound.This is significant since the stochastic resonance phenomena have been found to exist in many nonlinear systems.

  4. BIFURCATION IN A TWO-DIMENSIONAL NEURAL NETWORK MODEL WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    WEI Jun-jie; ZHANG Chun-rui; LI Xiu-ling

    2005-01-01

    A kind of 2-dimensional neural network model with delay is considered. By analyzing the distribution of the roots of the characteristic equation associated with the model, a bifurcation diagram was drawn in an appropriate parameter plane. It is found that a line is a pitchfork bifurcation curve. Further more, the stability of each fixed point and existence of Hopf bifurcation were obtained. Finally, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions were determined by using the normal form method and centre manifold theory.

  5. An Incremental Time-delay Neural Network for Dynamical Recurrent Associative Memory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An incremental time-delay neural network based on synapse growth, which is suitable for dynamic control and learning of autonomous robots, is proposed to improve the learning and retrieving performance of dynamical recurrent associative memory architecture. The model allows steady and continuous establishment of associative memory for spatio-temporal regularities and time series in discrete sequence of inputs. The inserted hidden units can be taken as the long-term memories that expand the capacity of network and sometimes may fade away under certain condition. Preliminary experiment has shown that this incremental network may be a promising approach to endow autonomous robots with the ability of adapting to new data without destroying the learned patterns. The system also benefits from its potential chaos character for emergence.

  6. Robust Estimation for Neural Networks With Randomly Occurring Distributed Delays and Markovian Jump Coupling.

    Science.gov (United States)

    Xu, Yong; Lu, Renquan; Shi, Peng; Tao, Jie; Xie, Shengli

    2017-01-24

    This paper studies the issue of robust state estimation for coupled neural networks with parameter uncertainty and randomly occurring distributed delays, where the polytopic model is employed to describe the parameter uncertainty. A set of Bernoulli processes with different stochastic properties are introduced to model the randomly occurrences of the distributed delays. Novel state estimators based on the local coupling structure are proposed to make full use of the coupling information. The augmented estimation error system is obtained based on the Kronecker product. A new Lyapunov function, which depends both on the polytopic uncertainty and the coupling information, is introduced to reduce the conservatism. Sufficient conditions, which guarantee the stochastic stability and the l₂-l∞ performance of the augmented estimation error system, are established. Then, the estimator gains are further obtained on the basis of these conditions. Finally, a numerical example is used to prove the effectiveness of the results.

  7. H∞ state estimation for discrete-time memristive recurrent neural networks with stochastic time-delays

    Science.gov (United States)

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2016-07-01

    This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.

  8. Global impulsive exponential synchronization of stochastic perturbed chaotic delayed neural networks

    Institute of Scientific and Technical Information of China (English)

    Zhang Hua-Guang; Ma Tie-Dong; Fu Jie; Tong Shao-Cheng

    2009-01-01

    In this paper,the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory,stochastic analysis approach and an efficient impulsive delay differential inequality,some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controUer not only can globally exponentially stabilize the error dynamics in mean square,but also can control the exponential synchronization rate. Furthermore,to estimate the stable region of the synchronization error dynamics,a novel optimization control algorithm is proposed,which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively.Simulation results finally demonstrate the effectiveness of the proposed method.

  9. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control.

    Science.gov (United States)

    Li, Xiaofan; Fang, Jian-An; Li, Huiyuan

    2017-09-01

    This paper investigates master-slave exponential synchronization for a class of complex-valued memristor-based neural networks with time-varying delays via discontinuous impulsive control. Firstly, the master and slave complex-valued memristor-based neural networks with time-varying delays are translated to two real-valued memristor-based neural networks. Secondly, an impulsive control law is constructed and utilized to guarantee master-slave exponential synchronization of the neural networks. Thirdly, the master-slave synchronization problems are transformed into the stability problems of the master-slave error system. By employing linear matrix inequality (LMI) technique and constructing an appropriate Lyapunov-Krasovskii functional, some sufficient synchronization criteria are derived. Finally, a numerical simulation is provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Uniqueness and stability of traveling waves for cellular neural networks with multiple delays

    Science.gov (United States)

    Yu, Zhi-Xian; Mei, Ming

    2016-01-01

    In this paper, we investigate the properties of traveling waves to a class of lattice differential equations for cellular neural networks with multiple delays. Following the previous study [38] on the existence of the traveling waves, here we focus on the uniqueness and the stability of these traveling waves. First of all, by establishing the a priori asymptotic behavior of traveling waves and applying Ikehara's theorem, we prove the uniqueness (up to translation) of traveling waves ϕ (n - ct) with c ≤c* for the cellular neural networks with multiple delays, where c* < 0 is the critical wave speed. Then, by the weighted energy method together with the squeezing technique, we further show the global stability of all non-critical traveling waves for this model, that is, for all monotone waves with the speed c

  11. Global stabilization of memristor-based fractional-order neural networks with delay via output-feedback control

    Science.gov (United States)

    Chen, Jiyang; Li, Chuandong; Huang, Tingwen; Yang, Xujun

    2017-02-01

    In this paper, the memristor-based fractional-order neural networks (MFNN) with delay and with two types of stabilizing control are described in detail. Based on the Lyapunov direct method, the theories of set-value maps, differential inclusions and comparison principle, some sufficient conditions and assumptions for global stabilization of this neural network model are established. Finally, two numerical examples are presented to demonstrate the effectiveness and practicability of the obtained results.

  12. Novel conditions on exponential stability of a class of delayed neural networks with state-dependent switching.

    Science.gov (United States)

    Zhang, Guodong; Shen, Yi

    2015-11-01

    This paper is concerned with the global exponential stability on a class of delayed neural networks with state-dependent switching. Under the novel conditions, some sufficient criteria ensuring exponential stability of the proposed system are obtained. In particular, the obtained conditions complement and improve earlier publications on conventional neural networks with continuous or discontinuous right-hand side. Numerical simulations are also presented to illustrate the effectiveness of the obtained results.

  13. Further results for global exponential stability of stochastic memristor-based neural networks with time-varying delays

    Science.gov (United States)

    Zhong, Kai; Zhu, Song; Yang, Qiqi

    2016-11-01

    In recent years, the stability problems of memristor-based neural networks have been studied extensively. This paper not only takes the unavoidable noise into consideration but also investigates the global exponential stability of stochastic memristor-based neural networks with time-varying delays. The obtained criteria are essentially new and complement previously known ones, which can be easily validated with the parameters of system itself. In addition, the study of the nonlinear dynamics for the addressed neural networks may be helpful in qualitative analysis for general stochastic systems. Finally, two numerical examples are provided to substantiate our results.

  14. Dynamical Behavior of Delayed Reaction-Diffusion Hopfield Neural Networks Driven by Infinite Dimensional Wiener Processes.

    Science.gov (United States)

    Liang, Xiao; Wang, Linshan; Wang, Yangfan; Wang, Ruili

    2016-09-01

    In this paper, we focus on the long time behavior of the mild solution to delayed reaction-diffusion Hopfield neural networks (DRDHNNs) driven by infinite dimensional Wiener processes. We analyze the existence, uniqueness, and stability of this system under the local Lipschitz function by constructing an appropriate Lyapunov-Krasovskii function and utilizing the semigroup theory. Some easy-to-test criteria affecting the well-posedness and stability of the networks, such as infinite dimensional noise and diffusion effect, are obtained. The criteria can be used as theoretic guidance to stabilize DRDHNNs in practical applications when infinite dimensional noise is taken into consideration. Meanwhile, considering the fact that the standard Brownian motion is a special case of infinite dimensional Wiener process, we undertake an analysis of the local Lipschitz condition, which has a wider range than the global Lipschitz condition. Two samples are given to examine the availability of the results in this paper. Simulations are also given using the MATLAB.

  15. Exponential synchronization of discontinuous neural networks with time-varying mixed delays via state feedback and impulsive control.

    Science.gov (United States)

    Yang, Xinsong; Cao, Jinde; Ho, Daniel W C

    2015-04-01

    This paper investigates drive-response synchronization for a class of neural networks with time-varying discrete and distributed delays (mixed delays) as well as discontinuous activations. Strict mathematical proof shows the global existence of Filippov solutions to neural networks with discontinuous activation functions and the mixed delays. State feedback controller and impulsive controller are designed respectively to guarantee global exponential synchronization of the neural networks. By using Lyapunov function and new analysis techniques, several new synchronization criteria are obtained. Moreover, lower bound on the convergence rate is explicitly estimated when state feedback controller is utilized. Results of this paper are new and some existing ones are extended and improved. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.

  16. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    Science.gov (United States)

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  17. Time-Delay Neural Network for Smart MIMO Channel Estimation in Downlink 4G-LTE-Advance System

    Directory of Open Access Journals (Sweden)

    Nirmalkumar S. Reshamwala

    2014-05-01

    Full Text Available Long-Term Evolution (LTE is the next generation of current mobile telecommunication networks. LTE has a new flat radio-network architecture and significant increase in spectrum efficiency. In this paper, main focus on throughput performance analysis of robust MIMO channel estimators for Downlink Long Term Evolution-Advance (DL LTE-A-4G system using three Artificial Neural Networks: Feed-forward neural network (FFNN, Cascade-forward neural network (CFNN and Time-Delay neural network (TDNN are adopted to train the constructed neural networks’ models separately using Back-Propagation Algorithm. The methods use the information received by the received reference symbols to estimate the total frequency response of the channel in two important phases. In the first phase, the proposed ANN based method learns to adapt to the channel variations, and in the second phase, it estimates the MIMO channel matrix and try to improve throughput of LTE. The performance of the estimation methods is evaluated by simulations in Vienna LTE-A DL Link Level Simulator. Performance of the proposed channel estimator, Time-Delay neural network (TDNN is compared with traditional Least Square (LS algorithm and ANN based other estimators for Closed Loop Spatial Multiplexing (CLSM - Single User Multi-input Multi-output (MIMO-2×2 and 4×4 in terms of throughput. Simulation result shows TDNN gives better performance than other ANN based estimations methods and LS.

  18. A Novel Method for Nonlinear Time Series Forecasting of Time-Delay Neural Network

    Institute of Scientific and Technical Information of China (English)

    JIANG Weijin; XU Yuhui

    2006-01-01

    Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization.Furthermore, the model is applied to forecast the import and export trades in one industry.The results showed that the improved model has excellent generalization capabilities, which not only learned the historical curve, but efficiently predicted the trend of business.Comparing with common evaluation of forecasts, we put on a conclusion that nonlinear forecast can not only focus on data combination and precision improvement, it also can vividly reflect the nonlinear characteristic of the forecasting system.While analyzing the forecasting precision of the model, we give a model judgment by calculating the nonlinear characteristic value of the combined serial and original serial, proved that the forecasting model can reasonably catch' the dynamic characteristic of the nonlinear system which produced the origin serial.

  19. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong

    2014-03-01

    In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results.

  20. On the periodic dynamics of a class of time-varying delayed neural networks via differential inclusions.

    Science.gov (United States)

    Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Chen, Xiaoyan

    2012-09-01

    This paper investigates the periodic dynamics of a general class of time-varying delayed neural networks with discontinuous right-hand sides. By employing the topological degree theory in set-valued analysis, differential inclusions theory and Lyapunov-like approach, we perform a thorough analysis of the existence, uniqueness and global exponential stability of the periodic solution for the neural networks. Especially, some sufficient conditions are derived to guarantee the existence, uniqueness and global exponential stability of the equilibrium point for the autonomous systems corresponding to the non-autonomous neural networks. Furthermore, the global convergence of the output and the convergence in finite time of the state are also discussed. Without assuming the boundedness or monotonicity of the discontinuous neuron activation functions, the obtained results improve and extend previous works on discontinuous or continuous neural network dynamical systems. Finally, two numerical examples are provided to show the applicability and effectiveness of our main results.

  1. Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

    Science.gov (United States)

    Li, Hongfei; Jiang, Haijun; Hu, Cheng

    2016-03-01

    In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results.

  2. Linear matrix inequality approach for robust stability analysis for stochastic neural networks with time-varying delay

    Institute of Scientific and Technical Information of China (English)

    S. Lakshmanan; P. Balasubramaniarn

    2011-01-01

    This paper studies the problem of linear matrix inequality(LMI)approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.

  3. Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays.

    Science.gov (United States)

    Guo, Zhenyuan; Wang, Jun; Yan, Zheng

    2013-12-01

    This paper addresses the global exponential dissipativity of memristor-based recurrent neural networks with time-varying delays. By constructing proper Lyapunov functionals and using M-matrix theory and LaSalle invariant principle, the sets of global exponentially dissipativity are characterized parametrically. It is proven herein that there are 2(2n(2)-n) equilibria for an n-neuron memristor-based neural network and they are located in the derived globally attractive sets. It is also shown that memristor-based recurrent neural networks with time-varying delays are stabilizable at the origin of the state space by using a linear state feedback control law with appropriate gains. Finally, two numerical examples are discussed in detail to illustrate the characteristics of the results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. An linear matrix inequality approach to global synchronisation of non-parameter perturbations of multi-delay Hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    Shao Hai-Jian; Cai Guo-Liang; Wang Hao-Xiang

    2010-01-01

    In this study,a successful linear matrix inequality approach is used to analyse a non-parameter perturbation of multi-delay Hopfield neural network by constructing an appropriate Lyapunov-Krasovskii functional.This paper presents the comprehensive discussion of the approach and also extensive applications.

  5. Stability Analysis of Stochastic Reaction-Diffusion Cohen-Grossberg Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Chuangxia Huang

    2009-01-01

    Full Text Available This paper is concerned with pth moment exponential stability of stochastic reaction-diffusion Cohen-Grossberg neural networks with time-varying delays. With the help of Lyapunov method, stochastic analysis, and inequality techniques, a set of new suffcient conditions on pth moment exponential stability for the considered system is presented. The proposed results generalized and improved some earlier publications.

  6. Existence and Exponential Stability of Periodic Solution for a Class of Generalized Neural Networks with Arbitrary Delays

    Directory of Open Access Journals (Sweden)

    Yimin Zhang

    2009-01-01

    Full Text Available By the continuation theorem of coincidence degree and M-matrix theory, we obtain some sufficient conditions for the existence and exponential stability of periodic solutions for a class of generalized neural networks with arbitrary delays, which are milder and less restrictive than those of previous known criteria. Moreover our results generalize and improve many existing ones.

  7. A new upper bound for the norm of interval matrices with application to robust stability analysis of delayed neural networks.

    Science.gov (United States)

    Faydasicok, Ozlem; Arik, Sabri

    2013-08-01

    The main problem with the analysis of robust stability of neural networks is to find the upper bound norm for the intervalized interconnection matrices of neural networks. In the previous literature, the major three upper bound norms for the intervalized interconnection matrices have been reported and they have been successfully applied to derive new sufficient conditions for robust stability of delayed neural networks. One of the main contributions of this paper will be the derivation of a new upper bound for the norm of the intervalized interconnection matrices of neural networks. Then, by exploiting this new upper bound norm of interval matrices and using stability theory of Lyapunov functionals and the theory of homomorphic mapping, we will obtain new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slope-bounded activation functions. The results obtained in this paper will be shown to be new and they can be considered alternative results to previously published corresponding results. We also give some illustrative and comparative numerical examples to demonstrate the effectiveness and applicability of the proposed robust stability condition.

  8. Neural network-based H∞ filtering for nonlinear systems with time-delays

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed.Firstly,neural networks are employed to approximate the nonlinearities.Next,the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI).Finally,based on the LDI model,a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints.Compared with the existing nonlinear filters,NNBNF is time-invariant and numerically tractable.The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.

  9. Decentralized Adaptive Control of Large-Scale Non-Affine Nonlinear Time-Delay Systems Using Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Elaheh Saeedi

    2014-07-01

    Full Text Available In this paper, a decentralized adaptive controller with using wavelet neural network is used for a class of large-scale nonlinear systems with time- delay unknown nonlinear non- affine subsystems. The entered interruptions in subsystems are considered nonlinear with time delay, this is closer the reality, compared with the case in which the delay is not considered for interruptions. In this paper, the output weights of wavelet neural network and the other parameters of wavelet are adjusted online. The stability of close loop system is guaranteed with using the Lyapanov- Krasovskii method. Moreover the stability of close loop systems, guaranteed tracking error is converging to neighborhood zero and also all of the signals in the close loop system are bounded. Finally, the proposed method, simulated and applied for the control of two inverted pendulums that connected by a spring and the computer results, show that the efficiency of suggested method in this paper.

  10. Augmented Lyapunov approach to H∞ state estimation of static neural networks with discrete and distributed time-varying delays

    Science.gov (United States)

    Syed, Ali M.; Saravanakumar, R.

    2015-05-01

    This paper deals with H∞ state estimation problem of neural networks with discrete and distributed time-varying delays. A novel delay-dependent concept of H∞ state estimation is proposed to estimate the H∞ performance and global asymptotic stability of the concerned neural networks. By constructing the Lyapunov-Krasovskii functional and using the linear matrix inequality technique, sufficient conditions for delay-dependent H∞ performances are obtained, which can be easily solved by some standard numerical algorithms. Finally, numerical examples are given to illustrate the usefulness and effectiveness of the proposed theoretical results. Project supported by the Fund from National Board of Higher Mathematics (NBHM), New Delhi (Grant No. 2/48/10/2011-R&D-II/865).

  11. Stability of Almost Periodic Solution for a General Class of Discontinuous Neural Networks with Mixed Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2013-01-01

    Full Text Available The global exponential stability issues are considered for almost periodic solution of the neural networks with mixed time-varying delays and discontinuous neuron activations. Some sufficient conditions for the existence, uniqueness, and global exponential stability of almost periodic solution are achieved in terms of certain linear matrix inequalities (LMIs, by applying differential inclusions theory, matrix inequality analysis technique, and generalized Lyapunov functional approach. In addition, the existence and asymptotically almost periodic behavior of the solution of the neural networks are also investigated under the framework of the solution in the sense of Filippov. Two simulation examples are given to illustrate the validity of the theoretical results.

  12. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  13. Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects.

    Science.gov (United States)

    Song, Qiankun; Yan, Huan; Zhao, Zhenjiang; Liu, Yurong

    2016-07-01

    In this paper, the global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects is discussed. By employing Lyapunov functional method and using matrix inequality technique, several sufficient conditions in complex-valued linear matrix inequality form are obtained to ensure the existence, uniqueness and global exponential stability of equilibrium point for the considered neural networks. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The proposed stability results are less conservative than some recently known ones in the literatures, which is demonstrated via two examples with simulations.

  14. Exponential Stability for Impulsive BAM Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms

    Directory of Open Access Journals (Sweden)

    Qiankun Song

    2007-06-01

    Full Text Available Impulsive bidirectional associative memory neural network model with time-varying delays and reaction-diffusion terms is considered. Several sufficient conditions ensuring the existence, uniqueness, and global exponential stability of equilibrium point for the addressed neural network are derived by M-matrix theory, analytic methods, and inequality techniques. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The obtained results in this paper are less restrictive than previously known criteria. Two examples are given to show the effectiveness of the obtained results.

  15. Exponential Stability for Impulsive BAM Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms

    Directory of Open Access Journals (Sweden)

    Cao Jinde

    2007-01-01

    Full Text Available Impulsive bidirectional associative memory neural network model with time-varying delays and reaction-diffusion terms is considered. Several sufficient conditions ensuring the existence, uniqueness, and global exponential stability of equilibrium point for the addressed neural network are derived by M-matrix theory, analytic methods, and inequality techniques. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The obtained results in this paper are less restrictive than previously known criteria. Two examples are given to show the effectiveness of the obtained results.

  16. Matrix measure method for global exponential stability of complex-valued recurrent neural networks with time-varying delays.

    Science.gov (United States)

    Gong, Weiqiang; Liang, Jinling; Cao, Jinde

    2015-10-01

    In this paper, based on the matrix measure method and the Halanay inequality, global exponential stability problem is investigated for the complex-valued recurrent neural networks with time-varying delays. Without constructing any Lyapunov functions, several sufficient criteria are obtained to ascertain the global exponential stability of the addressed complex-valued neural networks under different activation functions. Here, the activation functions are no longer assumed to be derivative which is always demanded in relating references. In addition, the obtained results are easy to be verified and implemented in practice. Finally, two examples are given to illustrate the effectiveness of the obtained results.

  17. On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching.

    Science.gov (United States)

    Zheng, Cheng-De; Shan, Qi-He; Zhang, Huaguang; Wang, Zhanshan

    2013-05-01

    The globally exponential stabilization problem is investigated for a general class of stochastic Cohen-Grossberg neural networks with both Markovian jumping parameters and mixed mode-dependent time-delays. The mixed time-delays consist of both discrete and distributed delays. This paper aims to design a memoryless state feedback controller such that the closed-loop system is stochastically exponentially stable in the mean square sense. By introducing a new Lyapunov-Krasovskii functional that accounts for the mode-dependent mixed delays, stochastic analysis is conducted in order to derive delay-dependent criteria for the exponential stabilization problem. Three numerical examples are carried out to demonstrate the feasibility of our delay-dependent stabilization criteria.

  18. System Identification of a Nonlinear Multivariable Steam Generator Power Plant Using Time Delay and Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Laila Khalilzadeh Ganjali-khani

    2013-01-01

    Full Text Available One of the most effective strategies for steam generator efficiency enhancement is to improve the control system. For such an improvement, it is essential to have an accurate model for the steam generator of power plant. In this paper, an industrial steam generator is considered as a nonlinear multivariable system for identification. An important step in nonlinear system identification is the development of a nonlinear model. In recent years, artificial neural networks have been successfully used for identification of nonlinear systems in many researches. Wavelet neural networks (WNNs also are used as a powerful tool for nonlinear system identification. In this paper we present a time delay neural network model and a WNN model in order to identify an industrial steam generator. Simulation results show the effectiveness of the proposed models in the system identification and demonstrate that the WNN model is more precise to estimate the plant outputs.

  19. Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions

    Science.gov (United States)

    Huang, Yu-Jiao; Hu, Hai-Gen

    2015-12-01

    In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61374094 and 61503338) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F030005).

  20. Multistability of neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays.

    Science.gov (United States)

    Nie, Xiaobing; Zheng, Wei Xing

    2015-05-01

    This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results.

  1. Stability Analysis for Stochastic Neutral-Type Memristive Neural Networks with Time-Varying Delay and S-Type Distributed Delays

    Directory of Open Access Journals (Sweden)

    Changjian Wang

    2017-01-01

    Full Text Available In this paper, we consider the input-to-stability for a class of stochastic neutral-type memristive neural networks. Neutral terms and S-type distributed delays are taken into account in our system. Using the stochastic analysis theory and Itô formula, we obtain the conditions of mean-square exponential input-to-stability for system. A numerical example is given to illustrate the correctness of our conclusions.

  2. Delay-Range-Dependent Global Robust Passivity Analysis of Discrete-Time Uncertain Recurrent Neural Networks with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Chien-Yu Lu

    2009-01-01

    Full Text Available This paper examines a passivity analysis for a class of discrete-time recurrent neural networks (DRNNs with norm-bounded time-varying parameter uncertainties and interval time-varying delay. The activation functions are assumed to be globally Lipschitz continuous. Based on an appropriate type of Lyapunov functional, sufficient passivity conditions for the DRNNs are derived in terms of a family of linear matrix inequalities (LMIs. Two numerical examples are given to illustrate the effectiveness and applicability.

  3. Global Robust Exponential Stability and Periodic Solutions for Interval Cohen-Grossberg Neural Networks with Mixed Delays

    Directory of Open Access Journals (Sweden)

    Yanke Du

    2013-01-01

    Full Text Available A class of interval Cohen-Grossberg neural networks with time-varying delays and infinite distributed delays is investigated. By employing H-matrix and M-matrix theory, homeomorphism techniques, Lyapunov functional method, and linear matrix inequality approach, sufficient conditions are established for the existence, uniqueness, and global robust exponential stability of the equilibrium point and the periodic solution to the neural networks. Our results improve some previously published ones. Finally, numerical examples are given to illustrate the feasibility of the theoretical results and further to exhibit that there is a characteristic sequence of bifurcations leading to a chaotic dynamics, which implies that the system admits rich and complex dynamics.

  4. Adaptive synchronization in an array of linearly coupled neural networks with reaction-diffusion terms and time delays

    Science.gov (United States)

    Wang, Kai; Teng, Zhidong; Jiang, Haijun

    2012-10-01

    In this paper, the adaptive synchronization in an array of linearly coupled neural networks with reaction-diffusion terms and time delays is discussed. Based on the LaSalle invariant principle of functional differential equations and the adaptive feedback control technique, some sufficient conditions for adaptive synchronization of such a system are obtained. Finally, a numerical example is given to show the effectiveness of the proposed synchronization method.

  5. New Results for Periodic Solution of High-Order BAM Neural Networks with Continuously Distributed Delays and Impulses

    Directory of Open Access Journals (Sweden)

    Chang-Bo Yang

    2013-01-01

    Full Text Available By M-matrix theory, inequality techniques, and Lyapunov functional method, certain sufficient conditions are obtained to ensure the existence, uniqueness, and global exponential stability of periodic solution for a new type of high-order BAM neural networks with continuously distributed delays and impulses. These novel conditions extend and improve some previously known results in the literature. Finally, an illustrative example and its numerical simulation are given to show the feasibility and correctness of the derived criteria.

  6. Mean-Square Exponential Stability Analysis of Stochastic Neural Networks with Time-Varying Delays via Fixed Point Method

    Directory of Open Access Journals (Sweden)

    Tianxiang Yao

    2014-01-01

    Full Text Available This work addresses the stability study for stochastic cellular neural networks with time-varying delays. By utilizing the new research technique of the fixed point theory, we find some new and concise sufficient conditions ensuring the existence and uniqueness as well as mean-square global exponential stability of the solution. The presented algebraic stability criteria are easily checked and do not require the differentiability of delays. The paper is finally ended with an example to show the effectiveness of the obtained results.

  7. Robust stability analysis of Takagi-Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays

    Institute of Scientific and Technical Information of China (English)

    M.Syed Ali

    2011-01-01

    In this paper,the global stability of Takagi-Sugeno(TS)uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays(TSUSFRNNs)is considered.A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs.The proposed stability conditions are demonstrated through numerical examples.Furthermore,the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed.Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature.

  8. Novel Robust Exponential Stability of Markovian Jumping Impulsive Delayed Neural Networks of Neutral-Type with Stochastic Perturbation

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2016-01-01

    Full Text Available The robust exponential stability problem for a class of uncertain impulsive stochastic neural networks of neutral-type with Markovian parameters and mixed time-varying delays is investigated. By constructing a proper exponential-type Lyapunov-Krasovskii functional and employing Jensen integral inequality, free-weight matrix method, some novel delay-dependent stability criteria that ensure the robust exponential stability in mean square of the trivial solution of the considered networks are established in the form of linear matrix inequalities (LMIs. The proposed results do not require the derivatives of discrete and distributed time-varying delays to be 0 or smaller than 1. Moreover, the main contribution of the proposed approach compared with related methods lies in the use of three types of impulses. Finally, two numerical examples are worked out to verify the effectiveness and less conservativeness of our theoretical results over existing literature.

  9. Automatic Isolated-Word Arabic Sign Language Recognition System Based on Time Delay Neural Networks

    Directory of Open Access Journals (Sweden)

    Feras Fares Al Mashagba

    2014-03-01

    Full Text Available There have been a little number of attempts to develop an Arabic sign recognition system that can be used as a communication means between hearing-impaired and other people. This study introduces the first automatic isolated-word Arabic Sign Language (ArSL recognition system based on Time Delay Neural Networks (TDNN. The proposed vision-based recognition system that the user wears two simple but different colors gloves when performing the signs in the data sets within this study. The two colored regions are recognized and highlighted within each frame in the video to help in recognizing the signs. This research uses the multivariate Gaussian Mixture Model (GMM based on the characteristics of the well known Hue Saturation Lightness Model (HIS in determining the colors within the video frames. In this research the mean and covariance of the three colored region within the frames are determined and used to help us in segmenting each frame (picture into two colored regions and outlier region. Finally we propose, create and use the following four features as an input to the TDNN; the centroid position for each hand using the center of the upper area for each frame as references, the change in horizontal velocity of both hands across the frames, the change in vertical velocity of both hands across the frames and the area change for each hand across the frames. A large set of samples has been used to recognize 40 isolated words coded by 10 different signers from the Standard Arabic sign language signs. Our proposed system obtains a word recognition rate of 70.0% in testing set.

  10. A recursive delayed output-feedback control to stabilize chaotic systems using linear-in-parameter neural networks

    Science.gov (United States)

    Yadmellat, Peyman; Nikravesh, S. Kamaleddin Yadavar

    2011-01-01

    In this paper, a recursive delayed output-feedback control strategy is considered for stabilizing unstable periodic orbit of unknown nonlinear chaotic systems. An unknown nonlinearity is directly estimated by a linear-in-parameter neural network which is then used in an observer structure. An on-line modified back propagation algorithm with e-modification is used to update the weights of the network. The globally uniformly ultimately boundedness of overall closed-loop system response is analytically ensured using Razumikhin lemma. To verify the effectiveness of the proposed observer-based controller, a set of simulations is performed on a Rossler system in comparison with several previous methods.

  11. Stability Analysis of a Class of Three-Neuron Delayed Cellular Neural Network

    Directory of Open Access Journals (Sweden)

    Poulami D. Gupta

    2010-01-01

    Full Text Available Problem statement: In this study linear stability of a class of three neuron cellular network with transmission delay had been studied. Approach: The model for the problem was first presented. The problem is then formulated analytically and numerical simulations pertaining to the model are carried out. Results: A necessary and sufficient condition for asymptotic stability of trivial steady state in the absence of delay is derived. Then a delay dependent sufficient condition for local asymptotic stability of trivial, steady state and sufficient condition for no stability switching of trivial steady for such a network are derived. Numerical simulation results of the model were presented. Conclusion/Recommendations: From numerical simulation, it appears that there may be a possibility of multiple steady states of the model. It may be possible to investigate the condition for the existence of periodic solutions of the non-linear model analytically.

  12. Event-Triggered State Estimation for a Class of Delayed Recurrent Neural Networks with Sampled-Data Information

    Directory of Open Access Journals (Sweden)

    Hongjie Li

    2012-01-01

    Full Text Available The paper investigates the state estimation problem for a class of recurrent neural networks with sampled-data information and time-varying delays. The main purpose is to estimate the neuron states through output sampled measurement; a novel event-triggered scheme is proposed, which can lead to a significant reduction of the information communication burden in the network; the feature of this scheme is that whether or not the sampled data should be transmitted is determined by the current sampled data and the error between the current sampled data and the latest transmitted data. By using a delayed-input approach, the error dynamic system is equivalent to a dynamic system with two different time-varying delays. Based on the Lyapunov-krasovskii functional approach, a state estimator of the considered neural networks can be achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Finally, a numerical example is provided to show the effectiveness of the proposed event-triggered scheme.

  13. Research on Adaptive Neural Network Control System Based on Nonlinear U-Model with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Fengxia Xu

    2014-01-01

    Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.

  14. Guaranteed Cost Control for Exponential Synchronization of Cellular Neural Networks with Mixed Time-Varying Delays via Hybrid Feedback Control

    Directory of Open Access Journals (Sweden)

    T. Botmart

    2013-01-01

    Full Text Available The problem of guaranteed cost control for exponential synchronization of cellular neural networks with interval nondifferentiable and distributed time-varying delays via hybrid feedback control is considered. The interval time-varying delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals is combined with Leibniz-Newton's formula and the technique of dealing with some integral terms. New delay-dependent sufficient conditions for the exponential synchronization of the error systems with memoryless hybrid feedback control are first established in terms of LMIs without introducing any free-weighting matrices. The optimal guaranteed cost control with linear error hybrid feedback is turned into the solvable problem of a set of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.

  15. Dissipativity analysis of stochastic memristor-based recurrent neural networks with discrete and distributed time-varying delays.

    Science.gov (United States)

    Radhika, Thirunavukkarasu; Nagamani, Gnaneswaran

    2016-01-01

    In this paper, based on the knowledge of memristor-based recurrent neural networks (MRNNs), the model of the stochastic MRNNs with discrete and distributed delays is established. In real nervous systems and in the implementation of very large-scale integration (VLSI) circuits, noise is unavoidable, which leads to the stochastic model of the MRNNs. In this model, the delay interval is decomposed into two subintervals by using the tuning parameter α such that 0 stochastic MRNNs with discrete and distributed delays in the sense of Filippov solutions. Using the stochastic analysis theory and Itô's formula for stochastic differential equations, we establish sufficient conditions for dissipativity criterion. The dissipativity and passivity conditions are presented in terms of linear matrix inequalities, which can be easily solved by using Matlab Tools. Finally, three numerical examples with simulations are presented to demonstrate the effectiveness of the theoretical results.

  16. Time – Delay Simulated Artificial Neural Network Models for Predicting Shelf Life of Processed Cheese

    Directory of Open Access Journals (Sweden)

    Sumit Goyal

    2012-05-01

    Full Text Available This paper highlights the significance of Time-Delay ANN models for predicting shelf life of processed cheese stored at 7-8o^C. Bayesian regularization algorithm was selected as training function. Number of neurons in single and multiple hidden layers varied from 1 to 20. The network was trained with up to 100 epochs. Mean square error, root mean square error, coefficient of determination and nash - Sutcliffe coefficient were used for calculating the prediction capability of the developed models. Time-Delay ANN models with multilayer are quite efficient in predicting the shelf life of processed cheese stored at 7-8o^C.

  17. PERIODIC OSCILLATORY SOLUTION TO DELAYED BAM NEURAL NETWORKS WITH PERIODIC COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,using the continuation theorem of coincidence degree theory,Lyapu- nov functionals and some new inequality techniques,some new sufficient criteria are obtained to ensure the existence and global exponential stability of periodic solution. Our results are less restrictive than previous works and more effective than those in [12],which plays a significant role in designing globally exponentially stable and peri- odic oscillatory BAM neural networks with periodic coefficients.One example is al...

  18. Adaptive statistic tracking control based on two-step neural networks with time delays.

    Science.gov (United States)

    Yi, Yang; Guo, Lei; Wang, Hong

    2009-03-01

    This paper presents a new type of control framework for dynamical stochastic systems, called statistic tracking control (STC). The system considered is general and non-Gaussian and the tracking objective is the statistical information of a given target probability density function (pdf), rather than a deterministic signal. The control aims at making the statistical information of the output pdfs to follow those of a target pdf. For such a control framework, a variable structure adaptive tracking control strategy is first established using two-step neural network models. Following the B-spline neural network approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. The dynamic neural network (DNN) is employed to identify the unknown nonlinear dynamics between the control input and the weights related to the integrated function. To achieve the required control objective, an adaptive controller based on the proposed DNN is developed so as to track a reference trajectory. Stability analysis for both the identification and tracking errors is developed via the use of Lyapunov stability criterion. Simulations are given to demonstrate the efficiency of the proposed approach.

  19. Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays.

    Science.gov (United States)

    Song, Qiankun; Yan, Huan; Zhao, Zhenjiang; Liu, Yurong

    2016-09-01

    This paper investigates the stability problem for a class of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays. By employing the idea of vector Lyapunov function, M-matrix theory and inequality technique, several sufficient conditions are obtained to ensure the global exponential stability of equilibrium point. When the impulsive effects are not considered, several sufficient conditions are also given to guarantee the existence, uniqueness and global exponential stability of equilibrium point. Two examples are given to illustrate the effectiveness and lower level of conservatism of the proposed criteria in comparison with some existing results.

  20. H∞ State Estimation for Discrete-Time Delayed Systems of the Neural Network Type With Multiple Missing Measurements.

    Science.gov (United States)

    Liu, Meiqin; Chen, Haiyang

    2015-12-01

    This paper investigates the H∞ state estimation problem for a class of discrete-time nonlinear systems of the neural network type with random time-varying delays and multiple missing measurements. These nonlinear systems include recurrent neural networks, complex network systems, Lur'e systems, and so on which can be described by a unified model consisting of a linear dynamic system and a static nonlinear operator. The missing phenomenon commonly existing in measurements is assumed to occur randomly by introducing mutually individual random variables satisfying certain kind of probability distribution. Throughout this paper, first a Luenberger-like estimator based on the imperfect output data is constructed to obtain the immeasurable system states. Then, by virtue of Lyapunov stability theory and stochastic method, the H∞ performance of the estimation error dynamical system (augmented system) is analyzed. Based on the analysis, the H∞ estimator gains are deduced such that the augmented system is globally mean square stable. In this paper, both the variation range and distribution probability of the time delay are incorporated into the control laws, which allows us to not only have more accurate models of the real physical systems, but also obtain less conservative results. Finally, three illustrative examples are provided to validate the proposed control laws.

  1. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  2. Fold-Hopf bifurcation in a simplified four-neuron BAM (bidirectional associative memory) neural network with two delays

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The bidirectional associative memory (BAM) neural network with four neurons and two delays is considered in the present paper.A linear stability analysis for the trivial equilibrium is firstly employed to provide a possible critical point at which a zero and a pair of pure imaginary eigenvalues occur in the corresponding characteristic equation.A fold-Hopf bifurcation is proved to happen at this critical point by the nonlinear analysis.The coupling strength and the delay are considered as bifurcation parameters to investigate the dynamical behaviors derived from the fold-Hopf bifurcation.Various dynamical behaviours are qualitatively classified in the neighbourhood of the fold-Hopf bifurcation point by using the center manifold reduction (CMR) together with the normal form.The bifurcating periodic solutions are expressed analytically in an approximate form.The validity of the results is shown by their consistency with the numerical simulation.

  3. Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays.

    Science.gov (United States)

    Zeng, Zhigang; Wang, Jun

    2007-08-01

    In this letter, some sufficient conditions are obtained to guarantee recurrent neural networks with linear saturation activation functions, and time-varying delays have multiequilibria located in the saturation region and the boundaries of the saturation region. These results on pattern characterization are used to analyze and design autoassociative memories, which are directly based on the parameters of the neural networks. Moreover, a formula for the numbers of spurious equilibria is also derived. Four design procedures for recurrent neural networks with linear saturation activation functions and time-varying delays are developed based on stability results. Two of these procedures allow the neural network to be capable of learning and forgetting. Finally, simulation results demonstrate the validity and characteristics of the proposed approach.

  4. Attracting and Quasi-Invariant Sets of Cohen-Grossberg Neural Networks with Time Delay in the Leakage Term under Impulsive Perturbations

    Directory of Open Access Journals (Sweden)

    Guiying Chen

    2015-01-01

    Full Text Available A class of impulsive Cohen-Grossberg neural networks with time delay in the leakage term is investigated. By using the method of M-matrix and the technique of delay differential inequality, the attracting and invariant sets of the networks are obtained. The results in this paper extend and improve the earlier publications. An example is presented to illustrate the effectiveness of our conclusion.

  5. 具有变系数和变时滞的时滞Hopfield神经网络模型的大范围吸引性%GLOBAL ATTRACTIVITY IN DELAYED HOPFIELD NEURAL NETWORK MODEL WITH VARIABLE COEFFICIENTS AND DELAYS

    Institute of Scientific and Technical Information of China (English)

    廖六生

    2001-01-01

    We establish some stability results for delayed Hopfield Neural Network Model d/dt xi(t) = -ci(t)xi(t) + ∑aij(t)fj(xj(t)) + ∑bij(t)fj(xj(t - τij (t))) + Ii(t)with variable coefficients and variable delays, by using the Lyapunov function. These stability criteria are new.

  6. Mean-square exponential input-to-state stability of delayed Cohen-Grossberg neural networks with Markovian switching based on vector Lyapunov functions.

    Science.gov (United States)

    Li, Zhihong; Liu, Lei; Zhu, Quanxin

    2016-12-01

    This paper studies the mean-square exponential input-to-state stability of delayed Cohen-Grossberg neural networks with Markovian switching. By using the vector Lyapunov function and property of M-matrix, two generalized Halanay inequalities are established. By means of the generalized Halanay inequalities, sufficient conditions are also obtained, which can ensure the exponential input-to-state stability of delayed Cohen-Grossberg neural networks with Markovian switching. Two numerical examples are given to illustrate the efficiency of the derived results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  8. Implementation study of an analog spiking neural network for assisting cardiac delay prediction in a cardiac resynchronization therapy device.

    Science.gov (United States)

    Sun, Qing; Schwartz, François; Michel, Jacques; Herve, Yannick; Dalmolin, Renzo

    2011-06-01

    In this paper, we aim at developing an analog spiking neural network (SNN) for reinforcing the performance of conventional cardiac resynchronization therapy (CRT) devices (also called biventricular pacemakers). Targeting an alternative analog solution in 0.13- μm CMOS technology, this paper proposes an approach to improve cardiac delay predictions in every cardiac period in order to assist the CRT device to provide real-time optimal heartbeats. The primary analog SNN architecture is proposed and its implementation is studied to fulfill the requirement of very low energy consumption. By using the Hebbian learning and reinforcement learning algorithms, the intended adaptive CRT device works with different functional modes. The simulations of both learning algorithms have been carried out, and they were shown to demonstrate the global functionalities. To improve the realism of the system, we introduce various heart behavior models (with constant/variable heart rates) that allow pathologic simulations with/without noise on the signals of the input sensors. The simulations of the global system (pacemaker models coupled with heart models) have been investigated and used to validate the analog spiking neural network implementation.

  9. Recurrent-Neural-Network-Based Multivariable Adaptive Control for a Class of Nonlinear Dynamic Systems With Time-Varying Delay.

    Science.gov (United States)

    Hwang, Chih-Lyang; Jan, Chau

    2016-02-01

    At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.

  10. Neural Network-Based Adaptive Leader-Following Consensus Control for a Class of Nonlinear Multiagent State-Delay Systems.

    Science.gov (United States)

    Wen, Guoxing; Chen, C L Philip; Liu, Yan-Jun; Liu, Zhi

    2016-10-11

    Compared with the existing neural network (NN) or fuzzy logic system (FLS) based adaptive consensus methods, the proposed approach can greatly alleviate the computation burden because it needs only to update a few adaptive parameters online. In the multiagent agreement control, the system uncertainties derive from the unknown nonlinear dynamics are counteracted by employing the adaptive NNs; the state delays are compensated by designing a Lyapunov-Krasovskii functional. Finally, based on Lyapunov stability theory, it is demonstrated that the proposed consensus scheme can steer a multiagent system synchronizing to the predefined reference signals. Two simulation examples, a numerical multiagent system and a practical multimanipulator system, are carried out to further verify and testify the effectiveness of the proposed agreement approach.

  11. Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays.

    Science.gov (United States)

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2015-11-01

    The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations.

  12. Optimal Communication Network-Based H∞ Quantized Control With Packet Dropouts for a Class of Discrete-Time Neural Networks With Distributed Time Delay.

    Science.gov (United States)

    Han, Qing-Long; Liu, Yurong; Yang, Fuwen

    2016-02-01

    This paper is concerned with optimal communication network-based H∞ quantized control for a discrete-time neural network with distributed time delay. Control of the neural network (plant) is implemented via a communication network. Both quantization and communication network-induced data packet dropouts are considered simultaneously. It is assumed that the plant state signal is quantized by a logarithmic quantizer before transmission, and communication network-induced packet dropouts can be described by a Bernoulli distributed white sequence. A new approach is developed such that controller design can be reduced to the feasibility of linear matrix inequalities, and a desired optimal control gain can be derived in an explicit expression. It is worth pointing out that some new techniques based on a new sector-like expression of quantization errors, and the singular value decomposition of a matrix are developed and employed in the derivation of main results. An illustrative example is presented to show the effectiveness of the obtained results.

  13. Forecasting of DST index from auroral electrojet indices using time-delay neural network + particle swarm optimization

    Science.gov (United States)

    Lazzús, J. A.; López-Caraballo, C. H.; Rojas, P.; Salfate, I.; Rivera, M.; Palma-Chilla, L.

    2016-05-01

    In this study, an artificial neural network was optimized with particle swarm algorithm and trained to predict the geomagmetic DST index one hour ahead using the past values of DST and auroral electrojet indices. The results show that the proposed neural network model can be properly trained for predicting of DST(t + 1) with acceptable accuracy, and that the geomagnetic indices used have influential effects on the good training and predicting capabilities of the chosen network.

  14. Stability in Switched Cohen-Grossberg Neural Networks with Mixed Time Delays and Non-Lipschitz Activation Functions

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2012-01-01

    neural networks to be globally exponentially stable in terms of LMIs, and the exponential decay estimation is explicitly developed for the states too. Two illustrative examples are given to demonstrate the validity of the theoretical results.

  15. EXISTENCE AND ATTRACTIVITY OF k-ALMOST AUTOMORPHIC SEQUENCE SOLUTION OF A MODEL OF CELLULAR NEURAL NETWORKS WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    Syed ABBAS; Yonghui XIA

    2013-01-01

    In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks.We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution.Almost automorphic function is a good generalization of almost periodic function.This is the first paper considering such solutions of the neural networks.

  16. A fixed point approach towards stability of delay differential equations with applications to neural networks

    NARCIS (Netherlands)

    Chen, Guiling

    2013-01-01

    This thesis studies asymptotic behavior and stability of determinsitic and stochastic delay differential equations. The approach used in this thesis is based on fixed point theory, which does not resort to any Liapunov function or Liapunov functional. The main contribution of this thesis is to study

  17. Multistability analysis of a general class of recurrent neural networks with non-monotonic activation functions and time-varying delays.

    Science.gov (United States)

    Liu, Peng; Zeng, Zhigang; Wang, Jun

    2016-07-01

    This paper addresses the multistability for a general class of recurrent neural networks with time-varying delays. Without assuming the linearity or monotonicity of the activation functions, several new sufficient conditions are obtained to ensure the existence of (2K+1)(n) equilibrium points and the exponential stability of (K+1)(n) equilibrium points among them for n-neuron neural networks, where K is a positive integer and determined by the type of activation functions and the parameters of neural network jointly. The obtained results generalize and improve the earlier publications. Furthermore, the attraction basins of these exponentially stable equilibrium points are estimated. It is revealed that the attraction basins of these exponentially stable equilibrium points can be larger than their originally partitioned subsets. Finally, three illustrative numerical examples show the effectiveness of theoretical results.

  18. LOCAL STABILITY AND BIFURCATION IN A THREE—UNIT DELAYED NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    LINYiping; LIJibin; 等

    2003-01-01

    A system of three-unit networks with coupled cells is investigated.The general formula for bifurcation direction of Hopf bifurcation is calculated and the estimate formula of period of the periodic solution is given.

  19. BIFURCATION OF PERIODIC SOLUTION IN A THREE-UNIT NEURAL NETWORK WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    林怡平; ROLAND LEMMERT; PETER VOLKMANN

    2001-01-01

    A system of three-unit networks with no self-connection is investigated, the general formula for bifurcation direction of Hopf bifurcation is calculated, and the estimation formula of the period for periodic solution is given.

  20. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    Science.gov (United States)

    Stamova, Ivanka; Stamov, Gani

    2017-09-08

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  2. Constructive neural network learning

    OpenAIRE

    Lin, Shaobo; Zeng, Jinshan; Zhang, Xiaoqin

    2016-01-01

    In this paper, we aim at developing scalable neural network-type learning systems. Motivated by the idea of "constructive neural networks" in approximation theory, we focus on "constructing" rather than "training" feed-forward neural networks (FNNs) for learning, and propose a novel FNNs learning system called the constructive feed-forward neural network (CFN). Theoretically, we prove that the proposed method not only overcomes the classical saturation problem for FNN approximation, but also ...

  3. Analysis of global O(t(-α)) stability and global asymptotical periodicity for a class of fractional-order complex-valued neural networks with time varying delays.

    Science.gov (United States)

    Rakkiyappan, R; Sivaranjani, R; Velmurugan, G; Cao, Jinde

    2016-05-01

    In this paper, the problem of the global O(t(-α)) stability and global asymptotic periodicity for a class of fractional-order complex-valued neural networks (FCVNNs) with time varying delays is investigated. By constructing suitable Lyapunov functionals and a Leibniz rule for fractional differentiation, some new sufficient conditions are established to ensure that the addressed FCVNNs are globally O(t(-α)) stable. Moreover, some sufficient conditions for the global asymptotic periodicity of the addressed FCVNNs with time varying delays are derived, showing that all solutions converge to the same periodic function. Finally, numerical examples are given to demonstrate the effectiveness and usefulness of our theoretical results.

  4. Generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2013-03-01

    In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.

  5. Sliding Mode Control of a Class of Uncertain Nonlinear Time-Delay Systems Using LMI and TS Recurrent Fuzzy Neural Network

    Science.gov (United States)

    Chiang, Tung-Sheng; Chiu, Chian-Song

    This paper proposes the sliding mode control using LMI techniques and adaptive recurrent fuzzy neural network (RFNN) for a class of uncertain nonlinear time-delay systems. First, a novel TS recurrent fuzzy neural network (TS-RFNN) is developed to provide more flexible and powerful compensation of system uncertainty. Then, the TS-RFNN based sliding model control is proposed for uncertain time-delay systems. In detail, sliding surface design is derived to cope with the non-Isidori-Bynes canonical form of dynamics, unknown delay time, and mismatched uncertainties. Based on the Lyapunov-Krasoviskii method, the asymptotic stability condition of the sliding motion is formulated into solving a Linear Matrix Inequality (LMI) problem which is independent on the time-varying delay. Furthermore, the input coupling uncertainty is also taken into our consideration. The overall controlled system achieves asymptotic stability even if considering poor modeling. The contributions include: i) asymptotic sliding surface is designed from solving a simple and legible delay-independent LMI; and ii) the TS-RFNN is more realizable (due to fewer fuzzy rules being used). Finally, simulation results demonstrate the validity of the proposed control scheme.

  6. Further improvement of the Lyapunov functional and the delay-dependent stability criterion for a neural network with a constant delay

    Institute of Scientific and Technical Information of China (English)

    Qiu Fang; Zhang Quan-Xin; Deng Xue-Hui

    2012-01-01

    This paper investigates the asymptotical stability problem of a neural system with a constant delay.A new delaydependent stability condition is derived by using the novel augmented Lyapunov-Krasovskii function with triple integral terms,and the additional triple integral terms play a key role in the further reduction of conservativeness.Finally,a numerical example is given to demonstrate the effectiveness and lower conservativeness of the proposed method.

  7. Robust stability analysis for Markovian jumping stochastic neural networks with mode-dependent time-varying interval delay and multiplicative noise

    Institute of Scientific and Technical Information of China (English)

    Zhang Hua-Guang; Fu Jie; Ma Tie-Dong; Tong Shao-Cheng

    2009-01-01

    This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise.Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach,some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties.An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient.Numerical examples are given to illustrate the effectiveness.

  8. Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays.

    Science.gov (United States)

    Li, Xiaodi; Song, Shiji

    2013-06-01

    In this paper, a class of recurrent neural networks with discrete and continuously distributed delays is considered. Sufficient conditions for the existence, uniqueness, and global exponential stability of a periodic solution are obtained by using contraction mapping theorem and stability theory on impulsive functional differential equations. The proposed method, which differs from the existing results in the literature, shows that network models may admit a periodic solution which is globally exponentially stable via proper impulsive control strategies even if it is originally unstable or divergent. Two numerical examples and their computer simulations are offered to show the effectiveness of our new results.

  9. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays.

    Science.gov (United States)

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2016-12-01

    In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5(n) equilibrium points located in ℜ(n), and 3(n) of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Chaotic diagonal recurrent neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  11. Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and the Wiener process based on sampled-data control

    Institute of Scientific and Technical Information of China (English)

    M.Kalpana; P.Balasubramaniam

    2013-01-01

    We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete,unbounded distributed delays,and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach.The Lyapunov-Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous.Restrictions (e.g.,time derivative is smaller than one) are removed to obtain a proposed sampled-data controller.Finally,a numerical example is provided to demonstrate the reliability of the derived results.

  12. Artificial Neural Networks

    OpenAIRE

    Chung-Ming Kuan

    2006-01-01

    Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods.

  13. Global exponential periodicity and stability of discrete-time complex-valued recurrent neural networks with time-delays.

    Science.gov (United States)

    Hu, Jin; Wang, Jun

    2015-06-01

    In recent years, complex-valued recurrent neural networks have been developed and analysed in-depth in view of that they have good modelling performance for some applications involving complex-valued elements. In implementing continuous-time dynamical systems for simulation or computational purposes, it is quite necessary to utilize a discrete-time model which is an analogue of the continuous-time system. In this paper, we analyse a discrete-time complex-valued recurrent neural network model and obtain the sufficient conditions on its global exponential periodicity and exponential stability. Simulation results of several numerical examples are delineated to illustrate the theoretical results and an application on associative memory is also given.

  14. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.

    Science.gov (United States)

    Tan, A H; Lu, N; Xiao, D

    2008-02-01

    This paper presents a neural architecture for learning category nodes encoding mappings across multimodal patterns involving sensory inputs, actions, and rewards. By integrating adaptive resonance theory (ART) and temporal difference (TD) methods, the proposed neural model, called TD fusion architecture for learning, cognition, and navigation (TD-FALCON), enables an autonomous agent to adapt and function in a dynamic environment with immediate as well as delayed evaluative feedback (reinforcement) signals. TD-FALCON learns the value functions of the state-action space estimated through on-policy and off-policy TD learning methods, specifically state-action-reward-state-action (SARSA) and Q-learning. The learned value functions are then used to determine the optimal actions based on an action selection policy. We have developed TD-FALCON systems using various TD learning strategies and compared their performance in terms of task completion, learning speed, as well as time and space efficiency. Experiments based on a minefield navigation task have shown that TD-FALCON systems are able to learn effectively with both immediate and delayed reinforcement and achieve a stable performance in a pace much faster than those of standard gradient-descent-based reinforcement learning systems.

  15. 基于神经网络补偿的非线性时滞系统时滞正反馈控制%Time-delay Positive Feedback Control for Nonlinear Time-delay Systems with Neural Network Compensation

    Institute of Scientific and Technical Information of China (English)

    那靖; 任雪梅; 黄鸿

    2008-01-01

    A new adaptive time-delay positive feedback con-troller (ATPFC) is presented for a class of nonlinear time-delay systems. The proposed control scheme consists of a neural networks-based identification and a time-delay positive feedback controller. Two high-order neural networks (HONN) incorpo-rated with a special dynamic identification model are employed to identify the nonlinear system. Based on the identified model,local linearization compensation is used to deal with the un-known nonlinearity of the system. A time-delay-free inverse model of the linearized system and a desired reference model are utilized to constitute the feedback controller, which can lead the system output to track the trajectory of a reference model.Rigorous stability analysis for both the identification and the tracking error of the closcd-loop control system is provided by means of Lyapunov stability criterion. Simulation results are in-cluded to demonstrate the effectiveness of the proposed scheme.

  16. Existence and uniqueness of pseudo almost-periodic solutions of recurrent neural networks with time-varying coefficients and mixed delays.

    Science.gov (United States)

    Ammar, Boudour; Chérif, Farouk; Alimi, Adel M

    2012-01-01

    This paper is concerned with the existence and uniqueness of pseudo almost-periodic solutions to recurrent delayed neural networks. Several conditions guaranteeing the existence and uniqueness of such solutions are obtained in a suitable convex domain. Furthermore, several methods are applied to establish sufficient criteria for the globally exponential stability of this system. The approaches are based on constructing suitable Lyapunov functionals and the well-known Banach contraction mapping principle. Moreover, the attractivity and exponential stability of the pseudo almost-periodic solution are also considered for the system. A numerical example is given to illustrate the effectiveness of our results.

  17. Global Exponential Stability of Almost Periodic Solution for Neutral-Type Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses.

    Science.gov (United States)

    Xu, Lijun; Jiang, Qi; Gu, Guodong

    2016-01-01

    A kind of neutral-type Cohen-Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses is considered. Firstly, by using the theory of impulsive differential equations and the contracting mapping principle, the existence and uniqueness of the almost periodic solution for the above system are obtained. Secondly, by constructing a suitable Lyapunov functional, the global exponential stability of the unique almost periodic solution is also investigated. The work in this paper improves and extends some results in recent years. As an application, an example and numerical simulations are presented to demonstrate the feasibility and effectiveness of the main results.

  18. Global Exponential Stability of Almost Periodic Solution for Neutral-Type Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses

    Directory of Open Access Journals (Sweden)

    Lijun Xu

    2016-01-01

    Full Text Available A kind of neutral-type Cohen-Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses is considered. Firstly, by using the theory of impulsive differential equations and the contracting mapping principle, the existence and uniqueness of the almost periodic solution for the above system are obtained. Secondly, by constructing a suitable Lyapunov functional, the global exponential stability of the unique almost periodic solution is also investigated. The work in this paper improves and extends some results in recent years. As an application, an example and numerical simulations are presented to demonstrate the feasibility and effectiveness of the main results.

  19. Exponential synchronization of generalized neural networks with mixed time-varying delays and reaction-diffusion terms via aperiodically intermittent control

    Science.gov (United States)

    Gan, Qintao

    2017-01-01

    In this paper, the exponential synchronization problem of generalized reaction-diffusion neural networks with mixed time-varying delays is investigated concerning Dirichlet boundary conditions in terms of p-norm. Under the framework of the Lyapunov stability method, stochastic theory, and mathematical analysis, some novel synchronization criteria are derived, and an aperiodically intermittent control strategy is proposed simultaneously. Moreover, the effects of diffusion coefficients, diffusion space, and stochastic perturbations on the synchronization process are explicitly expressed under the obtained conditions. Finally, some numerical simulations are performed to illustrate the feasibility of the proposed control strategy and show different synchronization dynamics under a periodically/aperiodically intermittent control.

  20. Delay tolerant networks

    CERN Document Server

    Gao, Longxiang; Luan, Tom H

    2015-01-01

    This brief presents emerging and promising communication methods for network reliability via delay tolerant networks (DTNs). Different from traditional networks, DTNs possess unique features, such as long latency and unstable network topology. As a result, DTNs can be widely applied to critical applications, such as space communications, disaster rescue, and battlefield communications. The brief provides a complete investigation of DTNs and their current applications, from an overview to the latest development in the area. The core issue of data forward in DTNs is tackled, including the importance of social characteristics, which is an essential feature if the mobile devices are used for human communication. Security and privacy issues in DTNs are discussed, and future work is also discussed.

  1. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  2. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  3. 时滞依赖的变延时细胞神经网络的指数稳定性%Delay-dependent Exponential Stability for Cellular Neural Networks with Time-varying Delays

    Institute of Scientific and Technical Information of China (English)

    梁金玲; 黄霞

    2005-01-01

    Stability analysis of cellular neural networks (CNNs)has been an important topic in the neuralnetwork field since it has great significance for many applications. The qualitative analysis of the neurodynamics has attracted considerable attention thus far[1~7]. In electronic implementation of neural networks,many problems such as switching delays, integration, and communication delays have arisen. In such a case, a delay parameter must be introduced into the system model. Study of neural dynamics with consideration of delays becomes particularly important in manufacturing high quality microelectronic neural networks. Global stability of delayed cellular neural networks (DCNNs) has been extensively studied[1~11]. Sufficient conditions[5,9,12,13] for global stability of DCNNs have been proposed, but the output of the cell is a piecewise linear function and the time-delay is constant. A wider adaptive range without assuming the output of the cell to be piecewise linear function[10,13] is introduced and the time-delay terms of DCNNs are also constant.Based on the Lyapunov stability theorem as well as some facts about the negative definiteness and inequality of matrices, a new sufficient condition is presented for the existence of a unique equilibrium point and its global exponential stability of the delayed CNNs. This condition imposes constraints on the size of the delay parameter. An illustrative example and its numerical simulation is also given to show the effectiveness of our results.%细胞神经网络(CNNs)由于有许多重要的应用价值,所以它的稳定性分析一直是神经网络领域里的一个重要课题.近年来,神经动力系统的定性分析吸引了众多学者的关注[1-7].在神经网络的电子器件实现中,出现了许多问题,诸如:转换延时,积分器,连接延时等.在这种情况下,在系统模型中一定要引进一个延时参数.要制造高质量的微电子神经网络,研究带有延时的神经动

  4. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  5. Neural Networks for Rapid Design and Analysis

    Science.gov (United States)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  6. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  7. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  8. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  9. Asynchronous Bounded Expected Delay Networks

    CERN Document Server

    Bakhshi, Rena; Fokkink, Wan; Pang, Jun

    2010-01-01

    The commonly used asynchronous bounded delay (ABD) network models assume a fixed bound on message delay. We propose a probabilistic network model, called asynchronous bounded expected delay (ABE) model. Instead of a strict bound, the ABE model requires only a bound on the expected message delay. While the conditions of ABD networks restrict the set of possible executions, in ABE networks all asynchronous executions are possible, but executions with extremely long delays are less probable. In contrast to ABD networks, ABE networks cannot be synchronised efficiently. At the example of an election algorithm, we show that the minimal assumptions of ABE networks are sufficient for the development of efficient algorithms. For anonymous, unidirectional ABE rings of known size N we devise a probabilistic leader election algorithm having average message and time complexity O(N).

  10. Neural networks and graph theory

    Institute of Scientific and Technical Information of China (English)

    许进; 保铮

    2002-01-01

    The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

  11. Adaptive Neural Network Dynamic Surface Control for a Class of Time-Delay Nonlinear Systems With Hysteresis Inputs and Dynamic Uncertainties.

    Science.gov (United States)

    Zhang, Xiuyu; Su, Chun-Yi; Lin, Yan; Ma, Lianwei; Wang, Jianguo

    2015-11-01

    In this paper, an adaptive neural network (NN) dynamic surface control is proposed for a class of time-delay nonlinear systems with dynamic uncertainties and unknown hysteresis. The main advantages of the developed scheme are: 1) NNs are utilized to approximately describe nonlinearities and unknown dynamics of the nonlinear time-delay systems, making it possible to deal with unknown nonlinear uncertain systems and pursue the L∞ performance of the tracking error; 2) using the finite covering lemma together with the NNs approximators, the Krasovskii function is abandoned, which paves the way for obtaining the L∞ performance of the tracking error; 3) by introducing an initializing technique, the L∞ performance of the tracking error can be achieved; 4) using a generalized Prandtl-Ishlinskii (PI) model, the limitation of the traditional PI hysteresis model is overcome; and 5) by applying the Young's inequalities to deal with the weight vector of the NNs, the updated laws are needed only at the last controller design step with only two parameters being estimated, which reduces the computational burden. It is proved that the proposed scheme can guarantee semiglobal stability of the closed-loop system and achieves the L∞ performance of the tracking error. Simulation results for general second-order time-delay nonlinear systems and the tuning metal cutting system are presented to demonstrate the efficiency of the proposed method.

  12. Noninvasive blood glucose sensing using near infra-red spectroscopy and artificial neural networks based on inverse delayed function model of neuron.

    Science.gov (United States)

    Ramasahayam, Swathi; Koppuravuri, Sri Haindavi; Arora, Lavanya; Chowdhury, Shubhajit Roy

    2015-01-01

    In this paper, a non-invasive blood glucose sensing system is presented using near infra-red(NIR) spectroscopy. The signal from the NIR optodes is processed using artificial neural networks (ANN) to estimate the glucose level in blood. In order to obtain accurate values of the synaptic weights of the ANN, inverse delayed (ID) function model of neuron has been used. The ANN model has been implemented on field programmable gate array (FPGA). Error in estimating glucose levels using ANN based on ID function model of neuron implemented on FPGA, came out to be 1.02 mg/dl using 15 hidden neurons in the hidden layer as against 5.48 mg/dl using ANN based on conventional neuron model.

  13. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  14. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  15. Fiber optic Adaline neural networks

    Science.gov (United States)

    Ghosh, Anjan K.; Trepka, Jim; Paparao, Palacharla

    1993-02-01

    Optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators has been discussed recently. We describe the design of a single layer fiber optic Adaline neural network which can be used as a bit pattern classifier. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The new optical neural network described in this paper is designed for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the optically implemented Adaline in the presence of errors in the hardware, and we studied methods for improving the convergence rate of the Adaline.

  16. NARX neural networks for sequence processing tasks

    OpenAIRE

    Hristev, Eugen

    2012-01-01

    This project aims at researching and implementing a neural network architecture system for the NARX (Nonlinear AutoRegressive with eXogenous inputs) model, used in sequence processing tasks and particularly in time series prediction. The model can fallback to different types of architectures including time-delay neural networks and multi layer perceptron. The NARX simulator tests and compares the different architectures for both synthetic and real data, including the time series o...

  17. Speech Recognition Method Based on Multilayer Chaotic Neural Network

    Institute of Scientific and Technical Information of China (English)

    REN Xiaolin; HU Guangrui

    2001-01-01

    In this paper,speech recognitionusing neural networks is investigated.Especially,chaotic dynamics is introduced to neurons,and a mul-tilayer chaotic neural network (MLCNN) architectureis built.A learning algorithm is also derived to trainthe weights of the network.We apply the MLCNNto speech recognition and compare the performanceof the network with those of recurrent neural net-work (RNN) and time-delay neural network (TDNN).Experimental results show that the MLCNN methodoutperforms the other neural networks methods withrespect to average recognition rate.

  18. Fuzzy Multiresolution Neural Networks

    Science.gov (United States)

    Ying, Li; Qigang, Shang; Na, Lei

    A fuzzy multi-resolution neural network (FMRANN) based on particle swarm algorithm is proposed to approximate arbitrary nonlinear function. The active function of the FMRANN consists of not only the wavelet functions, but also the scaling functions, whose translation parameters and dilation parameters are adjustable. A set of fuzzy rules are involved in the FMRANN. Each rule either corresponding to a subset consists of scaling functions, or corresponding to a sub-wavelet neural network consists of wavelets with same dilation parameters. Incorporating the time-frequency localization and multi-resolution properties of wavelets with the ability of self-learning of fuzzy neural network, the approximation ability of FMRANN can be remarkable improved. A particle swarm algorithm is adopted to learn the translation and dilation parameters of the wavelets and adjusting the shape of membership functions. Simulation examples are presented to validate the effectiveness of FMRANN.

  19. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  20. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  1. Compressing Convolutional Neural Networks

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to "absorb" great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected laye...

  2. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  3. Study on Global Existence of Hopf Bifurcation in a Cohen-Grossberg Neural Networks with Time Delays%具有时滞的Cohen-Grossberg神经网络的Hopf分支全局存在性研究

    Institute of Scientific and Technical Information of China (English)

    刘启明; 杜艳可

    2013-01-01

    利用泛函微分方程的度理论,研究一类具有时滞的Cohen-Grossberg神经网络的全局分支的存在性,研究结果为该类神经网络的应用设计提供理论基础.%Based on the degree theory of functional differential equations,global existence of Hopf bifurcation in a class of delayed Cohen-Grossberg neural networks is investigated. The results are theoretical foundation for practical design of the neural networks.

  4. Critical branching neural networks.

    Science.gov (United States)

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  5. Simulation of photosynthetic production using neural network

    Science.gov (United States)

    Kmet, Tibor; Kmetova, Maria

    2013-10-01

    This paper deals with neural network based optimal control synthesis for solving optimal control problems with control and state constraints and discrete time delay. The optimal control problem is transcribed into nonlinear programming problem which is implemented with adaptive critic neural network. This approach is applicable to a wide class of nonlinear systems. The proposed simulation methods is illustrated by the optimal control problem of photosynthetic production described by discrete time delay differential equations. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  6. Generalized Adaptive Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  7. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  8. Quantum Neural Networks

    CERN Document Server

    Gupta, S; Gupta, Sanjay

    2002-01-01

    This paper initiates the study of quantum computing within the constraints of using a polylogarithmic ($O(\\log^k n), k\\geq 1$) number of qubits and a polylogarithmic number of computation steps. The current research in the literature has focussed on using a polynomial number of qubits. A new mathematical model of computation called \\emph{Quantum Neural Networks (QNNs)} is defined, building on Deutsch's model of quantum computational network. The model introduces a nonlinear and irreversible gate, similar to the speculative operator defined by Abrams and Lloyd. The precise dynamics of this operator are defined and while giving examples in which nonlinear Schr\\"{o}dinger's equations are applied, we speculate on its possible implementation. The many practical problems associated with the current model of quantum computing are alleviated in the new model. It is shown that QNNs of logarithmic size and constant depth have the same computational power as threshold circuits, which are used for modeling neural network...

  9. Interval probabilistic neural network.

    Science.gov (United States)

    Kowalski, Piotr A; Kulczycki, Piotr

    2017-01-01

    Automated classification systems have allowed for the rapid development of exploratory data analysis. Such systems increase the independence of human intervention in obtaining the analysis results, especially when inaccurate information is under consideration. The aim of this paper is to present a novel approach, a neural networking, for use in classifying interval information. As presented, neural methodology is a generalization of probabilistic neural network for interval data processing. The simple structure of this neural classification algorithm makes it applicable for research purposes. The procedure is based on the Bayes approach, ensuring minimal potential losses with regard to that which comes about through classification errors. In this article, the topological structure of the network and the learning process are described in detail. Of note, the correctness of the procedure proposed here has been verified by way of numerical tests. These tests include examples of both synthetic data, as well as benchmark instances. The results of numerical verification, carried out for different shapes of data sets, as well as a comparative analysis with other methods of similar conditioning, have validated both the concept presented here and its positive features.

  10. Exponential Stability of Stochastic Delayed Neural Networks with Inverse Hölder Activation Functions and Markovian Jump Parameters

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    properties, the existence and uniqueness of the equilibrium point for SNNs without noise perturbations are proved. Secondly, by applying the Lyapunov-Krasovskii functional approach, stochastic analysis theory, and linear matrix inequality (LMI technique, new delay-dependent sufficient criteria are achieved in terms of LMIs to ensure the SNNs with noise perturbations to be globally exponentially stable in the mean square. Finally, two simulation examples are provided to demonstrate the validity of the theoretical results.

  11. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information.The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems.Ann’s, like people, learn by example.

  12. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  13. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems. Ann’s, like people, learn by example.

  14. Nonlinear dynamics of neural delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Longtin, A.

    1990-01-01

    Neural delayed feedback is a property shared by many circuits in the central and peripheral nervous systems. The evolution of the neural activity in these circuits depends on their present state as well as on their past states, due to finite propagation time of neural activity along the feedback loop. These systems are often seen to undergo a change from a quiescent state characterized by low level fluctuations to an oscillatory state. We discuss the problem of analyzing this transition using techniques from nonlinear dynamics and stochastic processes. Our main goal is to characterize the nonlinearities which enable autonomous oscillations to occur and to uncover the properties of the noise sources these circuits interact with. The concepts are illustrated on the human pupil light reflex (PLR) which has been studied both theoretically and experimentally using this approach. 5 refs., 3 figs.

  15. VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK

    African Journals Online (AJOL)

    VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF RUMUOLA DISTRIBUTION NETWORK. ... The artificial neural networks controller engaged to controlling the dynamic voltage ... Article Metrics.

  16. Trimaran Resistance Artificial Neural Network

    Science.gov (United States)

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  17. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  18. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  19. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  20. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  1. Global Exponential Stability of Cohen-Grossberg Neural Networks with Mixed Delays and Impulses%含混合时滞和脉冲的Cohen-Grossberg神经网络的全局指数稳定性

    Institute of Scientific and Technical Information of China (English)

    韩天勇

    2009-01-01

    本文讨论了含混合时滞和脉冲的Cohen-Grossberg神经网络的稳定性.通过应用M矩阵理论和不等式技巧,得到了含混合时滞的Cohen-Grossberg神经网络平衡态的全局指数稳定性的充分条件.相比以前同类文献,本文减弱了部分条件,推广了部分结论,并在文末给出了两个示例.本文结论对于设计和应用神经网络有一定实用价值.%In this paper,the Cohen-Grossberg neural networks with mixed delays and impulses are considered.Applying the idea of M-matrix theory and inequality technique,several new sufficient conditions are obtained to ensure global exponential stability of equilibrium point for impulsive Cohen-Grossberg neural networks with mixed delays and impulses.These results generalize a few previous known results and remove some restrictions on the neural network.Two examples are given to show the effectiveness of the obtained results.

  2. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  3. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  4. Chaotic Time Series Forecasting Using Higher Order Neural Networks

    Directory of Open Access Journals (Sweden)

    Waddah Waheeb

    2016-10-01

    Full Text Available This study presents a novel application and comparison of higher order neural networks (HONNs to forecast benchmark chaotic time series. Two models of HONNs were implemented, namely functional link neural network (FLNN and pi-sigma neural network (PSNN. These models were tested on two benchmark time series; the monthly smoothed sunspot numbers and the Mackey-Glass time-delay differential equation time series. The forecasting performance of the HONNs is compared against the performance of different models previously used in the literature such as fuzzy and neural networks models. Simulation results showed that FLNN and PSNN offer good performance compared to many previously used hybrid models.

  5. Neural networks in astronomy.

    Science.gov (United States)

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  6. Logic Mining Using Neural Networks

    CERN Document Server

    Sathasivam, Saratha

    2008-01-01

    Knowledge could be gained from experts, specialists in the area of interest, or it can be gained by induction from sets of data. Automatic induction of knowledge from data sets, usually stored in large databases, is called data mining. Data mining methods are important in the management of complex systems. There are many technologies available to data mining practitioners, including Artificial Neural Networks, Regression, and Decision Trees. Neural networks have been successfully applied in wide range of supervised and unsupervised learning applications. Neural network methods are not commonly used for data mining tasks, because they often produce incomprehensible models, and require long training times. One way in which the collective properties of a neural network may be used to implement a computational task is by way of the concept of energy minimization. The Hopfield network is well-known example of such an approach. The Hopfield network is useful as content addressable memory or an analog computer for s...

  7. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  8. Modelling delay propagation within an airport network

    NARCIS (Netherlands)

    Pyrgiotis, N.; Malone, K.M.; Odoni, A.

    2013-01-01

    We describe an analytical queuing and network decomposition model developed to study the complex phenomenon of the propagation of delays within a large network of major airports. The Approximate Network Delays (AND) model computes the delays due to local congestion at individual airports and capture

  9. Modelling delay propagation within an airport network

    NARCIS (Netherlands)

    Pyrgiotis, N.; Malone, K.M.; Odoni, A.

    2013-01-01

    We describe an analytical queuing and network decomposition model developed to study the complex phenomenon of the propagation of delays within a large network of major airports. The Approximate Network Delays (AND) model computes the delays due to local congestion at individual airports and

  10. Medical diagnosis using neural network

    CERN Document Server

    Kamruzzaman, S M; Siddiquee, Abu Bakar; Mazumder, Md Ehsanul Hoque

    2010-01-01

    This research is to search for alternatives to the resolution of complex medical diagnosis where human knowledge should be apprehended in a general fashion. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic system. This paper describes a modified feedforward neural network constructive algorithm (MFNNCA), a new algorithm for medical diagnosis. The new constructive algorithm with backpropagation; offer an approach for the incremental construction of near-minimal neural network architectures for pattern classification. The algorithm starts with minimal number of hidden units in the single hidden layer; additional units are added to the hidden layer one at a time to improve the accuracy of the network and to get an optimal size of a neural network. The MFNNCA was tested on several benchmarking classification problems including the cancer, heart disease and diabetes. Experimental results show that the MFNNCA can produce optimal neural networ...

  11. Artificial Neural Network Analysis System

    Science.gov (United States)

    2007-11-02

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  12. Modular, Hierarchical Learning By Artificial Neural Networks

    Science.gov (United States)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  13. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  14. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models....... - Control concepts including parameter estimation - Control concepts including inverse modelling - Control concepts including optimal control For each of the three groups, different control concepts and specific training methods are detailed described.Further, all control concepts are tested on the same......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  15. 求解一类新的二次规划问题的时滞投影神经网络方法%A Delayed Projection Neural Network for Solving a New Quadratic Programming Problems

    Institute of Scientific and Technical Information of China (English)

    刘德友; 牛九肖

    2013-01-01

    把Q为正定矩阵或半正定矩阵推广到Q为亚正定矩阵,利用时滞投影神经网络模型和李亚普诺夫函数的特性,给出判断这种特殊二次优化最优解的充分条件.最后通过数值仿真说明了该网络的有效性.%In this paper, we studied the stability of the optimal solution of a new quadratic programming problem which is the promotion of the convex quadratic programming. We give the sufficient condition to determine the stability of the e-quilibrium point and propose a delayed projection neural network to solve this quadratic programming. By constructing a suitable Lyapunov function, the proposed neural network is proved to be globally stable. Simulation results with some applications show the efficient of the proposed neural network.

  16. The holographic neural network: Performance comparison with other neural networks

    Science.gov (United States)

    Klepko, Robert

    1991-10-01

    The artificial neural network shows promise for use in recognition of high resolution radar images of ships. The holographic neural network (HNN) promises a very large data storage capacity and excellent generalization capability, both of which can be achieved with only a few learning trials, unlike most neural networks which require on the order of thousands of learning trials. The HNN is specially designed for pattern association storage, and mathematically realizes the storage and retrieval mechanisms of holograms. The pattern recognition capability of the HNN was studied, and its performance was compared with five other commonly used neural networks: the Adaline, Hamming, bidirectional associative memory, recirculation, and back propagation networks. The patterns used for testing represented artificial high resolution radar images of ships, and appear as a two dimensional topology of peaks with various amplitudes. The performance comparisons showed that the HNN does not perform as well as the other neural networks when using the same test data. However, modification of the data to make it appear more Gaussian distributed, improved the performance of the network. The HNN performs best if the data is completely Gaussian distributed.

  17. Neural Network Communications Signal Processing

    Science.gov (United States)

    1994-08-01

    Technical Information Report for the Neural Network Communications Signal Processing Program, CDRL A003, 31 March 1993. Software Development Plan for...track changing jamming conditions to provide the decoder with the best log- likelihood ratio metrics at a given time. As part of our development plan we...Artificial Neural Networks (ICANN-91) Volume 2, June 24-28, 1991, pp. 1677-1680. Kohonen, Teuvo, Raivio, Kimmo, Simula, Oli, Venta , 011i, Henriksson

  18. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  19. On network coding for acyclic networks with delays

    CERN Document Server

    Prasad, K

    2011-01-01

    Problems related to network coding for acyclic, instantaneous networks (where the edges of the acyclic graph representing the network are assumed to have zero-delay) have been extensively dealt with in the recent past. The most prominent of these problems include (a) the existence of network codes that achieve maximum rate of transmission, (b) efficient network code constructions, and (c) field size issues. In practice, however, networks have transmission delays. In network coding theory, such networks with transmission delays are generally abstracted by assuming that their edges have integer delays. Note that using enough memory at the nodes of an acyclic network with integer delays can effectively simulate instantaneous behavior, which is probably why only acyclic instantaneous networks have been primarily focused on thus far. In this work, we elaborate on issues ((a), (b) and (c) above) related to network coding for acyclic networks with integer delays, which have till now been overlooked. We show that the...

  20. 变时滞随机忆阻器神经网络的同步控制%Synchronization Control of Stochastic Memristor-Based Neural Networks with Time-Varying Delays

    Institute of Scientific and Technical Information of China (English)

    沈君; 楼旭阳

    2016-01-01

    Stochastic noise is unavoidable in the implementation of real complex artificial neural network model and large scale integrated circuit. Therefore, the practical research significance of stochastic memristor-based neural network is important. Aiming at the problem of synchronization control of stochastic memristor-based neural networks with time-varying delays, based on non-smooth analysis and the theory of set-valued maps and stochastic differential inclusions, a novel control method is given using the method of Lyapunov functional and the fundamental inequality. State feedback controller has been put forward to achieve synchronization index for the drive system and corresponding response system of the stochastic memristor-based neural network. Meanwhile, a numerical example is given to verify the theoretical analysis in this paper.%在实现实际的复杂人工神经网络模型以及大规模集成电路时,随机噪声是不可避免的.因此,随机忆阻器神经网络具有重要的现实研究意义.针对变时滞随机忆阻器神经网络的同步控制问题,基于非光滑分析以及集值映射、随机微分包含的理论,利用Lyapunov函数和基本不等式的方法,设计了一个线性反馈控制器.通过恰当选择控制器增益,实现了随机忆阻器神经网络驱动系统与相应的响应系统之间的指数同步,所得到的结果保守性更小.最后,给出数值例子验证了理论结果的有效性.

  1. 时变时滞BAM神经网络系统的指数稳定性分析%Exponential Stability Analysis for BAM Neural Networks with Time-Varying Delays

    Institute of Scientific and Technical Information of China (English)

    管巍; 孙虹霞

    2011-01-01

    利用Lyapunov稳定性理论和线性矩阵不等式技术,得到了保证时变时滞BAM神经网络系统指数稳定性的时滞依赖稳定性准则.所给的准则可用Matlab中的LMI控制工具箱进行验证.仿真实例进一步说明了结果的有效性.%By employing the Lyapunov stability theory and linear matrix inequality (LMI) technique, delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory (BAM) neural networks with time-varying delays. The proposed condition can be checked easily by LMI Control Toolbox in Matlab. A numerical example is given to demonstrate the effectiveness of our results.

  2. Exponential Stability of High-order Fuzzy Cellular Neural Networks with Time-Varying Delays%带有变时滞的高阶模糊细胞神经网络的指数稳定性

    Institute of Scientific and Technical Information of China (English)

    郭汴京; 滕志东; 蒋海军

    2008-01-01

    研究了带有变时滞的高阶模糊细胞神经网络(HFCNNs)的全局指数稳定性.通过引入非奇异M-矩阵和使用Lyapunov泛函方法,得到了带有常时滞和变时滞的高阶模糊细胞神经网络全局指数稳定性的充分条件.%In this paper,the global exponential stability of high-order fuzzy cellular neural networks (HFCNNs) with time-varying delays is proposed.Employing nonsingular M-matrix and Lyapunov functional method,some new sufficient conditions are derived for checking global exponential stability of the HFCNNs with constant and time-varying delays.

  3. VLSI implementation of neural networks.

    Science.gov (United States)

    Wilamowski, B M; Binfet, J; Kaynak, M O

    2000-06-01

    Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.

  4. Circuit design and exponential stabilization of memristive neural networks.

    Science.gov (United States)

    Wen, Shiping; Huang, Tingwen; Zeng, Zhigang; Chen, Yiran; Li, Peng

    2015-03-01

    This paper addresses the problem of circuit design and global exponential stabilization of memristive neural networks with time-varying delays and general activation functions. Based on the Lyapunov-Krasovskii functional method and free weighting matrix technique, a delay-dependent criteria for the global exponential stability and stabilization of memristive neural networks are derived in form of linear matrix inequalities (LMIs). Two numerical examples are elaborated to illustrate the characteristics of the results. It is noteworthy that the traditional assumptions on the boundness of the derivative of the time-varying delays are removed.

  5. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  6. 随机时滞反应扩散广义细胞神经网络的均值指数稳定性%Exponential Stability of Stochastic Reaction-Diffusion General Cellular Neural Network with Time-Delays

    Institute of Scientific and Technical Information of China (English)

    周凤燕

    2012-01-01

    研究了一类反应扩散广义时滞细胞神经网络在噪声干扰下的指数稳定性.利用Ito公式,Holder不等式,M矩阵性质和微分不等式技巧,给出了系统均值指数稳定的充分条件,并且判断方法简单易操作.最后给出了主要定理的两个应用实例,表明结论的有效性.%The exponential stability of a class of reaction-diffusion general cellular neural network with time delay and noise perturbation is studied. Using the Ito formula, Holder inequality, M-matric properties and a skill of differential inequality, some sufficient conditions are given to guarantee the mean value exponential stability of the equilibrium for the stochastic reaction-diffusion general cellular neural network with time delay and the sufficient conditions are easier to operate. In the end, two examples are given to illustrate the main theoretical results.

  7. On Delay and Security in Network Coding

    Science.gov (United States)

    Dikaliotis, Theodoros K.

    2013-01-01

    In this thesis, delay and security issues in network coding are considered. First, we study the delay incurred in the transmission of a fixed number of packets through acyclic networks comprised of erasure links. The two transmission schemes studied are routing with hop-by-hop retransmissions, where every node in the network simply stores and…

  8. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  9. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2016-07-14

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  10. ON THE STABILITY OF THE CELLULAR NEURAL NETWORKS WITH TIME LAGS

    OpenAIRE

    Vladimir RASVAN; Daniela DANCIU

    2004-01-01

    Cellular neural networks (CNNs) are recurrent artificial neural networks. Due to their cyclic connections and to the neurons’ nonlinear activation functions, recurrent neural networks are nonlinear dynamic systems, which display stable and unstable fixed points, limit cycles and chaotic behavior. Since the field of neural networks is still a young one, improving the stability conditions for such systems is an obvious and quasipermanent task. This paper focuses on CNNs affected by time delays....

  11. 具混合时滞中立型随机神经网络均方渐近稳定性%Mean Quare Asymptotic Stability for a Class of Neutral Stochastic Neural Networks with Mixed Time Delay

    Institute of Scientific and Technical Information of China (English)

    李亚军; 邓飞其

    2013-01-01

    The problem of robust stability of neutral stochastic neural network system with mixed time-delays and nonlinearity is considered.The uncertainties under consideration are norm-bounded and the mixed time delays comprise both discrete delay and distributed delay.Based on Lyapunov-Krasovskii functional and the stochastic stability analysis method,by means of It(o)'s formula,the sufficient condition which making the system robust stable is provided and proved in the form of LMIs.Numerical example is given to illustrate the effectiveness of the proposed method.%研究了一类具有混合时滞和非线性干扰中立型不确定随机神经网络鲁棒稳定性,所考虑的不确定为范数有界,混合时滞由离散和分布时滞组成,借助李雅普诺夫函数和随机稳定性理论,利用伊藤公式,给出并证明了使系统鲁棒稳定的充分条件,所有结果以线性矩阵不等式的形式给出,数值算例表明了所给方法的有效性.

  12. Design of fiber optic adaline neural networks

    Science.gov (United States)

    Ghosh, Anjan K.; Trepka, Jim

    1997-03-01

    Based on possible optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators we describe the design of a single-layer fiber optic Adaline neural network that can be used as a bit pattern classifier. In our design, we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The described new optical neural network design is for optical processing of guided light wave signals, not electronic signals. We analyze the convergence or learning characteristics of the optoelectronic Adaline in the presence of errors in the hardware. We show that with such an optoelectronic Adaline it is possible to detect a desired code word/token/header with good accuracy.

  13. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  14. Variable sampling approach to mitigate instability in networked control systems with delays.

    Science.gov (United States)

    López-Echeverría, Daniel; Magaña, Mario E

    2012-01-01

    This paper analyzes a new alternative approach to compensate for the effects of time delays on a dynamic networked control system (NCS). The approach is based on the use of time-delay-predicted values as the sampling times of the NCS. We use a one-step-ahead prediction algorithm based on an adaptive time delay neural network. The application of pole placement and linear quadratic regulator methods to compute the feedback gains taking into account the estimated time delays is investigated.

  15. Global stability analysis on a class of cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yi

    2001-01-01

    [1]Chua, L. O., Yang, L., Cellular neural networks: Theory, IEEE Trans. CAS, 1988, (10): 1257.[2]Chua, L. O., Yang, L., Cellular neural networks: Applications, IEEE Trans. CAS, 1988, (10): 1273.[3]Chua, L. O., Roska, T., The CNN paradigm, IEEE Trans. CAS-I, 1993, (3): 147.[4]Matsumoto, T. Chua, L. O., Suzuki, H., CNN cloning template: Connected component detector, IEEE Trans. CAS, 1990, (8): 633.[5]Cao, L, Sun, Y, Yu, J., A CNN-based signature verification system,Proc. ICONIP′95, Beijing, 1995, 913—916.[6]Roska, T., Chua, L. O., The CNN universal machine: An analogic array computer, IEEE Trans. CAS Ⅱ, 1993, (3): 163.[7]Chua, L. O., Roska, T., Stability of a class of nonreciprocal cellular neural networks, IEEE Trans. CAS, 1990, (3): 1520.[8]Roska, T., Wu, C. W., Balsi, M. Et al., Stability and dynamics of delay type general and cellular neural networks, IEEE Trans. CAS, 1992, (6): 487.[9]Roska, T., Wu, C. W., Chua, L. O., Stability of cellular neural networks with dominant nonlinear and delaytype templates, IEEE Trans. CAS, 1993, (4): 270.[10]Civalleri, P. P., On stability of cellular neural networks with delay, IEEE Trans. CAS-I, 1993, (3): 157.[11]Gilli, G., Stability of cellular neural network and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions, IEEE Trans CAS-I, 1994, (8): 518.[12]Baldi, P., Atiya, A. F., How delays affect neural dynamics and learning, IEEE Trans. On Neural Networks, 1994, (4): 612.[13]Liao, X. X., Mathematic foundation of cellular neural networks (Ⅰ), Science in China, Ser. A, 1994, 37(9): 902.[14]Liao, X. X., Mathematic foundation of cellular neural networks (Ⅱ), Science in China, Ser. A, 1994, 37(9): 1037.[15]Zhang, Y., Global exponential stability and periodic solutions of delay Hopfild neural networks, International J. Sys. Sci., 1996, (2): 227.[16]Zhang Yi, Zhong, S. M., Li, Z. L., Periodic solutions and global

  16. Relations Between Wavelet Network and Feedforward Neural Network

    Institute of Scientific and Technical Information of China (English)

    刘志刚; 何正友; 钱清泉

    2002-01-01

    A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.

  17. Delayed excitatory and inhibitory feedback shape neural information transmission

    Science.gov (United States)

    Chacron, Maurice J.; Longtin, André; Maler, Leonard

    2017-01-01

    Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges. PMID:16383655

  18. Spatial warping by oriented line detectors can counteract neural delays

    Directory of Open Access Journals (Sweden)

    Don eVaughn

    2013-11-01

    Full Text Available The slow speed of neural transmission necessitates that cortical visual information from dynamic scenes will lag reality. The perceiving the present (PTP hypothesis suggests that the visual system can mitigate the effect of such delays by spatially warping scenes to look as they will in ~100 ms from now (Changizi, 2001. We here show that the Hering illusion, in which straight lines appear bowed, can be induced by a background of optic flow, consistent with the PTP hypothesis. However, importantly, the bowing direction is the same whether the flow is inward or outward. This suggests that if the warping is meant to counteract latencies, it is accomplished by a simple strategy that is insensitive to motion direction, and that works only under typical (forward-moving circumstances. We also find that the illusion strengthens with longer pulses of optic flow, demonstrating motion integration over ~80 ms. The illusion is identical whether optic flow precedes or follows the flashing of bars, exposing the spatial warping to be equally postdictive and predictive, i.e., peri-dictive. Additionally, the illusion is diminished by cues which suggest the bars are independent of the background movement. Collectively, our findings are consistent with a role for networks of visual orientation-tuned neurons (e.g., simple cells in primary visual cortex in spatial warping. We conclude that under the common condition of forward ego-motion, spatial warping counteracts the disadvantage of neural latencies. It is not possible to prove that this is the purpose of spatial warping, but our findings at minimum place constraints on the PTP hypothesis, demonstrating that any spatial warping for the purpose of counteracting neural delays is not a precise, on-the-fly computation, but instead a heuristic achieved by a simple mechanism that succeeds under normal circumstances.

  19. Delay synchronization of temporal Boolean networks

    Science.gov (United States)

    Wei, Qiang; Xie, Cheng-jun; Liang, Yi; Niu, Yu-jun; Lin, Da

    2016-01-01

    This paper investigates the delay synchronization between two temporal Boolean networks base on semi-tensor product method, which improve complete synchronization. Necessary and sufficient conditions for delay synchronization are drawn base on algebraic expression of temporal Boolean networks. A example is presented to show the effectiveness of theoretical analysis.

  20. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  1. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  2. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  3. Improved transformer protection using probabilistic neural network ...

    African Journals Online (AJOL)

    user

    This article presents a novel technique to distinguish between magnetizing inrush ... Protective relaying, Probabilistic neural network, Active power relays, Power ... Forward Neural Network (MFFNN) with back-propagation learning technique.

  4. Neural Network for Sparse Reconstruction

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  5. The Physics of Neural Networks

    Science.gov (United States)

    Gutfreund, Hanoch; Toulouse, Gerard

    The following sections are included: * Introduction * Historical Perspective * Why Statistical Physics? * Purpose and Outline of the Paper * Basic Elements of Neural Network Models * The Biological Neuron * From the Biological to the Formal Neuron * The Formal Neuron * Network Architecture * Network Dynamics * Basic Functions of Neural Network Models * Associative Memory * Learning * Categorization * Generalization * Optimization * The Hopfield Model * Solution of the Model * The Merit of the Hopfield Model * Beyond the Standard Model * The Gardner Approach * A Microcanonical Formulation * The Case of Biased Patterns * A Canonical Formulation * Constraints on the Synaptic Weights * Learning with Errors * Learning with Noise * Hierarchically Correlated Data and Categorization * Hierarchical Data Structures * Storage of Hierarchical Data Structures * Categorization * Generalization * Learning a Classification Task * The Reference Perceptron Problem * The Contiguity Problem * Discussion - Issues of Relevance * The Notion of Attractors and Modes of Computation * The Nature of Attractors * Temporal versus Spatial Coding * Acknowledgements * References

  6. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  7. Meta-Learning Evolutionary Artificial Neural Networks

    OpenAIRE

    Abraham, Ajith

    2004-01-01

    In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic computational framework for the adaptive optimization of artificial neural networks wherein the neural network architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for function approximation problems. To evaluate the compara...

  8. Building a Chaotic Proved Neural Network

    CERN Document Server

    Bahi, Jacques M; Salomon, Michel

    2011-01-01

    Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.

  9. Move Ordering using Neural Networks

    NARCIS (Netherlands)

    Kocsis, L.; Uiterwijk, J.; Van Den Herik, J.

    2001-01-01

    © Springer-Verlag Berlin Heidelberg 2001. The efficiency of alpha-beta search algorithms heavily depends on the order in which the moves are examined. This paper focuses on using neural networks to estimate the likelihood of a move being the best in a certain position. The moves considered more like

  10. Neural Network based Consumption Forecasting

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2016-01-01

    This paper describe a Neural Network based method for consumption forecasting. This work has been financed by the The ENCOURAGE project. The aims of The ENCOURAGE project is to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable...

  11. Spin glasses and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Parga, N. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche; Universidad Nacional de Cuyo, San Carlos de Bariloche (Argentina). Inst. Balseiro)

    1989-07-01

    The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.).

  12. Artificial neural networks in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  13. Competition Based Neural Networks for Assignment Problems

    Institute of Scientific and Technical Information of China (English)

    李涛; LuyuanFang

    1991-01-01

    Competition based neural networks have been used to solve the generalized assignment problem and the quadratic assignment problem.Both problems are very difficult and are ε approximation complete.The neural network approach has yielded highly competitive performance and good performance for the quadratic assignment problem.These neural networks are guaranteed to produce feasible solutions.

  14. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  15. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  16. Analysis of Neural Networks through Base Functions

    NARCIS (Netherlands)

    Zwaag, van der B.J.; Slump, C.H.; Spaanenburg, L.

    2002-01-01

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  17. Boundedness and Exponential Stability for Nonautonomous Cohen-Grossberg Neural Networks with Distributed Delays%具有分布时滞的非自治Cohen-Grossberg神经网络稳定性研究

    Institute of Scientific and Technical Information of China (English)

    王雪萍; 蒋海军

    2012-01-01

    对具有分布时滞的非自治Cohen-Grossberg神经网络进行了研究.通过构造适当的Lyapunov函数,利用不等式分析方法,引入多参数,得到了一系列解的一致有界性且最终有界性和全局指数稳定性的判别准则.%In this paper,nonautonomous Cohen-Grossberg neural networks with distributed delays are investigated. By applying the inequality analysis technique,introducing inge-niously many real parameters and constructing new Lyapunov functions,we establish a series of new and useful criteria on the ultimate boundedness and global exponential stability of solutions.

  18. 具分布时滞和脉冲的Cohen-Grossberg SICNNs的概周期解%Almost Periodic Solutions for Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses

    Institute of Scientific and Technical Information of China (English)

    农秀丽; 杨莉

    2014-01-01

    研究一类具分布时滞和脉冲的Cohen-Grossberg SICNNs模型。利用不动点定理,得到一些保证所考虑模型存在概周期解的充分条件,并举例说明了所得结果的可行性。%In this paper, a class of Cohen-Grossberg Shunting Inhibitory cellular neural net-works with distributed delays and impulses are considered. Some criteria for the exis-tence of nonzero almost period⁃ic solutions are established by Banach fixed point theorem.Moreover, an example is employed to illus⁃trate our feasible results.

  19. Dynamical Analysis of Cohen-Grossberg Neural Networks with Time-delays%一类具有时滞的Cohen-Grossberg神经网络的指数稳定性

    Institute of Scientific and Technical Information of China (English)

    宋建梅; 李金仙

    2009-01-01

    考虑一类具有时滞的Cohen-Grossberg神经网络,利用Lyapunov方法和微分不等式理论,得到了其全局指数稳定性的判别准则.该准则引入了更多的参数,更便于系统的设计与分析.%A model describing dynamics of Cohen-Grossberg neural networks with time-delays is considered. By means of Lyapunov functionals and differential inequality technique, criteria on global exponential stability of this model are derived. Many adjustable parameters are introduced in criteria to provide flexibility for the design and analysis of the system.

  20. Exponential Stability of a Class of Cellular Neural Networks with Multi-Pantograph Delays%一类具多比例延时的细胞神经网络的指数稳定性

    Institute of Scientific and Technical Information of China (English)

    张迎迎; 周立群

    2012-01-01

    The exponential stability of a class of cellular neural networks with multi-pantograph delays is studied. In view of nonlinear measure,a sufficient condition is derived for the existence,uniqueness and exponential stability of the equilibrium point. And the method gains the exponential convergent velocity of the solutions. Finally,an example is provided to illustrate effectiveness of the method.%讨论了一类具多比例延时的细胞神经网络的指数稳定性.利用非线性测度得到了一个保证平衡点存在唯一且指数稳定的充分条件,并给出了解的指数收敛速度.最后验证了结论的正确性并进行了模拟仿真.

  1. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  2. Modularity Induced Gating and Delays in Neuronal Networks.

    Science.gov (United States)

    Shein-Idelson, Mark; Cohen, Gilad; Ben-Jacob, Eshel; Hanein, Yael

    2016-04-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition.

  3. Delayed Commutation in Quantum Computer Networks

    Science.gov (United States)

    García-Escartín, Juan Carlos; Chamorro-Posada, Pedro

    2006-09-01

    In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communication. We propose a nonclassical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes, we can route a qubit packet after part of it has left the network node.

  4. Delayed commutation in quantum computer networks

    CERN Document Server

    Garcia-Escartin, J C; Chamorro-Posada, Pedro; Garcia-Escartin, Juan Carlos

    2005-01-01

    In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communications. We propose a non-classical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes we can route the information after part of it has left the network node.

  5. Pinning impulsive directed coupled delayed dynamical network and its applications

    Science.gov (United States)

    Lin, Chunnan; Wu, Quanjun; Xiang, Lan; Zhou, Jin

    2015-01-01

    The main objective of the present paper is to further investigate pinning synchronisation of a complex delayed dynamical network with directionally coupling by a single impulsive controller. By developing the analysis procedure of pinning impulsive stability for undirected coupled dynamical network previously, some simple yet general criteria of pinning impulsive synchronisation for such directed coupled network are derived analytically. It is shown that a single impulsive controller can always pin a given directed coupled network to a desired homogenous solution, including an equilibrium point, a periodic orbit, or a chaotic orbit. Subsequently, the theoretical results are illustrated by a directed small-world complex network which is a cellular neural network (CNN) and a directed scale-free complex network with the well-known Hodgkin-Huxley neuron oscillators. Numerical simulations are finally given to demonstrate the effectiveness of the proposed control methodology.

  6. Quantum computing in neural networks

    CERN Document Server

    Gralewicz, P

    2004-01-01

    According to the statistical interpretation of quantum theory, quantum computers form a distinguished class of probabilistic machines (PMs) by encoding n qubits in 2n pbits. This raises the possibility of a large-scale quantum computing using PMs, especially with neural networks which have the innate capability for probabilistic information processing. Restricting ourselves to a particular model, we construct and numerically examine the performance of neural circuits implementing universal quantum gates. A discussion on the physiological plausibility of proposed coding scheme is also provided.

  7. Nonlocal Mechanism for Synchronization of Time Delay Networks

    Science.gov (United States)

    Kanter, Ido; Kopelowitz, Evi; Vardi, Roni; Zigzag, Meital; Cohen, Dana; Kinzel, Wolfgang

    2011-11-01

    We present the interplay between synchronization of networks with heterogeneous delays and the greatest common divisor (GCD) of loops composing the network. We distinguish between two types of networks; (I) chaotic networks and (II) population dynamic networks with periodic activity driven by external stimuli. For type (I), in the weak chaos region, the units of a chaotic network characterized by GCD=1 are in a chaotic zero-lag synchronization, whereas for GCD>1, the network splits into GCD-clusters in which clustered units are in zero-lag synchronization. These results are supported by simulations of chaotic systems, self-consistent and mixing arguments, as well as analytical solutions of Bernoulli maps. Type (II) is exemplified by simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity, synaptic noise and distribution of delays within neurons belonging to a node and between connecting nodes. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the network splits into clusters equal to the greatest common divisor of loops composing the network (spatial) and the periodicity of the external stimuli (temporal). The results suggest that neural information processing may take place in the transient to synchronization and imply a much shorter time scale for the inference of a perceptual entity.

  8. Pattern reverberation in networks of excitable systems with connection delays

    Science.gov (United States)

    Lücken, Leonhard; Rosin, David P.; Worlitzer, Vasco M.; Yanchuk, Serhiy

    2017-01-01

    We consider the recurrent pulse-coupled networks of excitable elements with delayed connections, which are inspired by the biological neural networks. If the delays are tuned appropriately, the network can either stay in the steady resting state, or alternatively, exhibit a desired spiking pattern. It is shown that such a network can be used as a pattern-recognition system. More specifically, the application of the correct pattern as an external input to the network leads to a self-sustained reverberation of the encoded pattern. In terms of the coupling structure, the tolerance and the refractory time of the individual systems, we determine the conditions for the uniqueness of the sustained activity, i.e., for the functionality of the network as an unambiguous pattern detector. We point out the relation of the considered systems with cyclic polychronous groups and show how the assumed delay configurations may arise in a self-organized manner when a spike-time dependent plasticity of the connection delays is assumed. As excitable elements, we employ the simplistic coincidence detector models as well as the Hodgkin-Huxley neuron models. Moreover, the system is implemented experimentally on a Field-Programmable Gate Array.

  9. Discontinuities in recurrent neural networks.

    Science.gov (United States)

    Gavaldá, R; Siegelmann, H T

    1999-04-01

    This article studies the computational power of various discontinuous real computational models that are based on the classical analog recurrent neural network (ARNN). This ARNN consists of finite number of neurons; each neuron computes a polynomial net function and a sigmoid-like continuous activation function. We introduce arithmetic networks as ARNN augmented with a few simple discontinuous (e.g., threshold or zero test) neurons. We argue that even with weights restricted to polynomial time computable reals, arithmetic networks are able to compute arbitrarily complex recursive functions. We identify many types of neural networks that are at least as powerful as arithmetic nets, some of which are not in fact discontinuous, but they boost other arithmetic operations in the net function (e.g., neurons that can use divisions and polynomial net functions inside sigmoid-like continuous activation functions). These arithmetic networks are equivalent to the Blum-Shub-Smale model, when the latter is restricted to a bounded number of registers. With respect to implementation on digital computers, we show that arithmetic networks with rational weights can be simulated with exponential precision, but even with polynomial-time computable real weights, arithmetic networks are not subject to any fixed precision bounds. This is in contrast with the ARNN that are known to demand precision that is linear in the computation time. When nontrivial periodic functions (e.g., fractional part, sine, tangent) are added to arithmetic networks, the resulting networks are computationally equivalent to a massively parallel machine. Thus, these highly discontinuous networks can solve the presumably intractable class of PSPACE-complete problems in polynomial time.

  10. 利用神经网络建立GPS网络RTK的双差对流层误差模型%A TROPOSPHERIC DELAY MODEL FOR GPS NET RTK ESTABLISHED BY USE OF ARTIFICIAL NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    陈远鸿; 邱蕾; 冯玉钊

    2011-01-01

    为减小对流层误差改正数中系统偏差的影响以提高对流层改正精度,提出了基于神经网络的顾及空间的对流层误差建模模型,该模型的对流层延迟误差改正在网内外精度均达5 cm.%In the Virtual Reference Station ( VRS) technology, atmospheric refraction error is the main factor affecting the accuracy of the long-distance RTK. However, the elevation difference between the reference plane and the roving station will cause the deviation of tropospheric error in the system and then the accuracy of troposphere correction will be lowered. A new tropospheric error model based on neural network, taking into account the space troposphere error, is presented. The accuracy of tropospheric delay model is within 5 cm, in spite of interpolation points in the network or out of network.

  11. Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.

    Science.gov (United States)

    Wang, Min; Chen, Bing; Shi, Peng

    2008-06-01

    This paper proposes a novel adaptive neural control scheme for a class of perturbed strict-feedback nonlinear time-delay systems with unknown virtual control coefficients. Based on the radial basis function neural network online approximation capability, an adaptive neural controller is presented by combining the backstepping approach and Lyapunov-Krasovskii functionals. The proposed controller guarantees the semiglobal boundedness of all the signals in the closed-loop system and contains minimal learning parameters. Finally, three simulation examples are given to demonstrate the effectiveness and applicability of the proposed scheme.

  12. Global Synchronization of General Delayed Dynamical Networks

    Institute of Scientific and Technical Information of China (English)

    LI Zhi

    2007-01-01

    Global synchronization of general delayed dynamical networks with linear coupling are investigated. A sufficient condition for the global synchronization is obtained by using the linear matrix inequality and introducing a reference state. This condition is simply given based on the maximum nonzero eigenvalue of the network coupling matrix. Moreover, we show how to construct the coupling matrix to guarantee global synchronization of network,which is very convenient to use. A two-dimension system with delay as a dynamical node in network with global coupling is finally presented to verify the theoretical results of the proposed global synchronization scheme.

  13. Fuzzy logic systems are equivalent to feedforward neural networks

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    2000-01-01

    Fuzzy logic systems and feedforward neural networks are equivalent in essence. First, interpolation representations of fuzzy logic systems are introduced and several important conclusions are given. Then three important kinds of neural networks are defined, i.e. linear neural networks, rectangle wave neural networks and nonlinear neural networks. Then it is proved that nonlinear neural networks can be represented by rectangle wave neural networks. Based on the results mentioned above, the equivalence between fuzzy logic systems and feedforward neural networks is proved, which will be very useful for theoretical research or applications on fuzzy logic systems or neural networks by means of combining fuzzy logic systems with neural networks.

  14. Neural Networks Methodology and Applications

    CERN Document Server

    Dreyfus, Gérard

    2005-01-01

    Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...

  15. Neural Networks for Speech Application.

    Science.gov (United States)

    1987-11-01

    operation and neurocrience theories of how neurons process information in the brain. design. Early studies by McCulloch and Pitts dunng the forties led to...developed the commercially available Mark III and Mark IV neurocom- established by McCulloch and Pits. puters that model neural networks and run...ORGANIZERS Infonuiaonienes (1986) FOR Lashley, K. Brain Mehaius and Cblali (129)SPEECHOTECH 󈨜 McCullch. W and Pitts . W, ’A Logical Calculusof the

  16. Analog electronic neural network circuits

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.P.; Jackel, L.D. (AT and T Bell Labs., Holmdel, NJ (USA))

    1989-07-01

    The large interconnectivity and moderate precision required in neural network models present new opportunities for analog computing. This paper discusses analog circuits for a variety of problems such as pattern matching, optimization, and learning. Most of the circuits build so far are relatively small, exploratory designs. The most mature circuits are those for template matching. Chips performing this function are now being applied to pattern recognition problems.

  17. Adaptive synchronization in an array of asymmetric coupled neural networks

    Institute of Scientific and Technical Information of China (English)

    Gao Ming; Cui Bao-Tong

    2009-01-01

    This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated laws, some sufficient conditions are derived for global synchronization of the coupled neural networks. The coupling configuration matrix is assumed to be asymmetric, which is more coincident with the realistic network. It is shown that the approaches developed here extend and improve the earlier works. Finally, numerical simulations are presented to demonstrate the effectiveness of the theoretical results.

  18. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  19. Process Neural Networks Theory and Applications

    CERN Document Server

    He, Xingui

    2010-01-01

    "Process Neural Networks - Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks, and enhancing the expression capability for practical problems, with broad applicability to solving problems relating to process in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are strictly proved. The application methods, network construction principles, and optimization alg

  20. Neural network subtyping of depression.

    Science.gov (United States)

    Florio, T M; Parker, G; Austin, M P; Hickie, I; Mitchell, P; Wilhelm, K

    1998-10-01

    To examine the applicability of a neural network classification strategy to examine the independent contribution of psychomotor disturbance (PMD) and endogeneity symptoms to the DSM-III-R definition of melancholia. We studied 407 depressed patients with the clinical dataset comprising 17 endogeneity symptoms and the 18-item CORE measure of behaviourally rated PMD. A multilayer perception neural network was used to fit non-linear models of varying complexity. A linear discriminant function analysis was also used to generate a model for comparison with the non-linear models. Models (linear and non-linear) using PMD items only and endogeneity symptoms only had similar rates of successful classification, while non-linear models combining both PMD and symptoms scores achieved the best classifications. Our current non-linear model was superior to a linear analysis, a finding which may have wider application to psychiatric classification. Our non-linear analysis of depressive subtypes supports the binary view that melancholic and non-melancholic depression are separate clinical disorders rather than different forms of the same entity. This study illustrates how non-linear modelling with neural networks is a potentially fruitful approach to the study of the diagnostic taxonomy of psychiatric disorders and to clinical decision-making.

  1. Transcriptional delay stabilizes bistable gene networks

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R.

    2014-01-01

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner. PMID:23952450

  2. Delay tolerant networks protocols and applications

    CERN Document Server

    Vasilakos, Athanasios V; Spyropoulos, Thrasyvoulos

    2011-01-01

    Delay Tolerant Networks (DTN) - which include terrestrial mobile networks, exotic media networks, ad-hoc networks, and sensor networks - are becoming more important and may not be well served by the current end-to-end TCP/IP model. This book provides a self-contained, one-stop reference for researchers and practitioners who are looking toward the future of networking. The text presents a systematic exploration of DTN concepts, architectures, protocols, enabling technologies, and applications. It also discusses various challenges associated with DTN. The author includes a wealth of illustrative

  3. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    OM PRAKASH PATEL; ARUNA TIWARI

    2016-11-01

    In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically and gives large search space to find optimal value of required parameters using Gaussian random number generator. The neural network structure forms constructively having three number of layers input layer: hidden layer and output layer. A constructive way of deciding the network eliminates the unnecessary training of neural network. A new parameter that is a quantum separability parameter (QSP) is introduced here, which finds an optimal separability plane to classify input samples. During learning, it searches for an optimal separability plane. This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and produces improved results than existing quantum inspired and other classification approaches.

  4. Correlated neural variability in persistent state networks.

    Science.gov (United States)

    Polk, Amber; Litwin-Kumar, Ashok; Doiron, Brent

    2012-04-17

    Neural activity that persists long after stimulus presentation is a biological correlate of short-term memory. Variability in spiking activity causes persistent states to drift over time, ultimately degrading memory. Models of short-term memory often assume that the input fluctuations to neural populations are independent across cells, a feature that attenuates population-level variability and stabilizes persistent activity. However, this assumption is at odds with experimental recordings from pairs of cortical neurons showing that both the input currents and output spike trains are correlated. It remains unclear how correlated variability affects the stability of persistent activity and the performance of cognitive tasks that it supports. We consider the stochastic long-timescale attractor dynamics of pairs of mutually inhibitory populations of spiking neurons. In these networks, persistent activity was less variable when correlated variability was globally distributed across both populations compared with the case when correlations were locally distributed only within each population. Using a reduced firing rate model with a continuum of persistent states, we show that, when input fluctuations are correlated across both populations, they drive firing rate fluctuations orthogonal to the persistent state attractor, thereby causing minimal stochastic drift. Using these insights, we establish that distributing correlated fluctuations globally as opposed to locally improves network's performance on a two-interval, delayed response discrimination task. Our work shows that the correlation structure of input fluctuations to a network is an important factor when determining long-timescale, persistent population spiking activity.

  5. Practical neural network recipies in C++

    CERN Document Server

    Masters

    2014-01-01

    This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum

  6. Understanding Neural Networks for Machine Learning using Microsoft Neural Network Algorithm

    National Research Council Canada - National Science Library

    Nagesh Ramprasad

    2016-01-01

    .... In this research, focus is on the Microsoft Neural System Algorithm. The Microsoft Neural System Algorithm is a simple implementation of the adaptable and popular neural networks that are used in the machine learning...

  7. Phase changes in delay propagation networks

    CERN Document Server

    Belkoura, Seddik

    2016-01-01

    The analysis of the dynamics of delays propagation is one of the major topics inside Air Transport Management research. Delays are generated by the elements of the system, but their propagation is a global process fostered by relationships inside the network. If the topology of such propagation process has been extensively studied in the literature, little attention has been devoted to the fact that such topology may have a dynamical nature. Here we differentiate between two phases of the system by applying two causality metrics, respectively describing the standard phase (i.e. propagation of normal delays) and a disrupted one (corresponding to abnormal and unexpected delays). We identify the critical point triggering the change of the topology of the system, in terms of delays magnitude, using a historical data set of flights crossing Europe in 2011. We anticipate that the proposed results will open new doors towards the understanding of the delay propagation dynamics and the mitigation of extreme events.

  8. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  9. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  10. Salience-Affected Neural Networks

    CERN Document Server

    Remmelzwaal, Leendert A; Ellis, George F R

    2010-01-01

    We present a simple neural network model which combines a locally-connected feedforward structure, as is traditionally used to model inter-neuron connectivity, with a layer of undifferentiated connections which model the diffuse projections from the human limbic system to the cortex. This new layer makes it possible to model global effects such as salience, at the same time as the local network processes task-specific or local information. This simple combination network displays interactions between salience and regular processing which correspond to known effects in the developing brain, such as enhanced learning as a result of heightened affect. The cortex biases neuronal responses to affect both learning and memory, through the use of diffuse projections from the limbic system to the cortex. Standard ANNs do not model this non-local flow of information represented by the ascending systems, which are a significant feature of the structure of the brain, and although they do allow associational learning with...

  11. Dynamic Analysis of Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    N. Ahmadi

    2008-01-01

    Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.

  12. Synchronization Control of Neural Networks With State-Dependent Coefficient Matrices.

    Science.gov (United States)

    Zhang, Junfeng; Zhao, Xudong; Huang, Jun

    2016-11-01

    This brief is concerned with synchronization control of a class of neural networks with state-dependent coefficient matrices. Being different from the existing drive-response neural networks in the literature, a novel model of drive-response neural networks is established. The concepts of uniformly ultimately bounded (UUB) synchronization and convex hull Lyapunov function are introduced. Then, by using the convex hull Lyapunov function approach, the UUB synchronization design of the drive-response neural networks is proposed, and a delay-independent control law guaranteeing the bounded synchronization of the neural networks is constructed. All present conditions are formulated in terms of bilinear matrix inequalities. By comparison, it is shown that the neural networks obtained in this brief are less conservative than those ones in the literature, and the bounded synchronization is suitable for the novel drive-response neural networks. Finally, an illustrative example is given to verify the validity of the obtained results.

  13. Fast Algorithms for Convolutional Neural Networks

    OpenAIRE

    Lavin, Andrew; Gray, Scott

    2015-01-01

    Deep convolutional neural networks take GPU days of compute time to train on large data sets. Pedestrian detection for self driving cars requires very low latency. Image recognition for mobile phones is constrained by limited processing resources. The success of convolutional neural networks in these situations is limited by how fast we can compute them. Conventional FFT based convolution is fast for large filters, but state of the art convolutional neural networks use small, 3x3 filters. We ...

  14. Modelling Microwave Devices Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Andrius Katkevičius

    2012-04-01

    Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian

  15. Rule Extraction using Artificial Neural Networks

    OpenAIRE

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can...

  16. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  17. Forecasting Exchange Rate Using Neural Networks

    OpenAIRE

    Raksaseree, Sukhita

    2009-01-01

    The artificial neural network models become increasingly popular among researchers and investors since many studies have shown that it has superior performance over the traditional statistical model. This paper aims to investigate the neural network performance in forecasting foreign exchange rates based on backpropagation algorithm. The forecast of Thai Baht against seven currencies are conducted to observe the performance of the neural network models using the performance criteria for both ...

  18. Semantic Interpretation of An Artificial Neural Network

    Science.gov (United States)

    1995-12-01

    ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of

  19. Feature Weight Tuning for Recursive Neural Networks

    OpenAIRE

    2014-01-01

    This paper addresses how a recursive neural network model can automatically leave out useless information and emphasize important evidence, in other words, to perform "weight tuning" for higher-level representation acquisition. We propose two models, Weighted Neural Network (WNN) and Binary-Expectation Neural Network (BENN), which automatically control how much one specific unit contributes to the higher-level representation. The proposed model can be viewed as incorporating a more powerful c...

  20. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  1. Robust adaptive synchronization of chaotic neural networks by slide technique

    Institute of Scientific and Technical Information of China (English)

    Lou Xu-Yang; Cui Bao-Tong

    2008-01-01

    In this paper,we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay.In order to increase the robustness of the two coupled neural networks,the key idea is that a sliding-mode-type controller is employed.Moreover,without the estimate values of the network unknown parameters taken as an updating object,a new updating object is introduced in the constructing of controller.Using the proposed controller,without any requirements for the boundedness,monotonicity and differentiability of activation functions,and symmetry of connections,the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are.Finally,the numerical simulation validates the effectiveness and feasibility of the proposed technique.

  2. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  3. Neural networks for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  4. Systolic implementation of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, A.J.; Parker, S.R.

    1989-01-01

    The backpropagation algorithm for error gradient calculations in multilayer, feed-forward neural networks is derived in matrix form involving inner and outer products. It is demonstrated that these calculations can be carried out efficiently using systolic processing techniques, particularly using the SPRINT, a 64-element systolic processor developed at Lawrence Livermore National Laboratory. This machine contains one million synapses, and forward-propagates 12 million connections per second, using 100 watts of power. When executing the algorithm, each SPRINT processor performs useful work 97% of the time. The theory and applications are confirmed by some nontrivial examples involving seismic signal recognition. 4 refs., 7 figs.

  5. Magnitude Sensitive Competitive Neural Networks

    OpenAIRE

    Pelayo Campillos, Enrique; Buldain Pérez, David; Orrite Uruñuela, Carlos

    2014-01-01

    En esta Tesis se presentan un conjunto de redes neuronales llamadas Magnitude Sensitive Competitive Neural Networks (MSCNNs). Se trata de un conjunto de algoritmos de Competitive Learning que incluyen un término de magnitud como un factor de modulación de la distancia usada en la competición. Al igual que otros métodos competitivos, MSCNNs realizan la cuantización vectorial de los datos, pero el término de magnitud guía el entrenamiento de los centroides de modo que se representan con alto de...

  6. The Laplacian spectrum of neural networks.

    Science.gov (United States)

    de Lange, Siemon C; de Reus, Marcel A; van den Heuvel, Martijn P

    2014-01-13

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these "conventional" graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks.

  7. The Laplacian spectrum of neural networks

    Science.gov (United States)

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  8. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    Science.gov (United States)

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  9. Neural Network Controlled Visual Saccades

    Science.gov (United States)

    Johnson, Jeffrey D.; Grogan, Timothy A.

    1989-03-01

    The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.

  10. Mean-field equations for stochastic neural fields with spatio-temporal delays

    CERN Document Server

    Touboul, Jonathan

    2011-01-01

    Neurons form large-scale cell assemblies sharing the same individual properties and receiving the same input, in charge of certain functions. Such assemblies have specific space locations and hence interact after some (space dependent) delay due the transport and transfer of the information. Both delays and spatial connectivity structures are understood to shape the collective response of neural assemblies and brain states that are observed through usual recording techniques. Abstracting this setting, we consider here the problem of the asymptotics, as the number of neurons increases, of bio-inspired neuronal networks composed of several populations (up to a continuum), interacting with spatio-temporal delays. The propagation of chaos property is proved under mild assumptions on the neuronal dynamics, valid for most models used in neuroscience, in both the case of finite number and infinite continuum populations (called neural fields). The mean-field equations in these cases are derived and analyzed from the ...

  11. Video Traffic Prediction Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Miloš Oravec

    2008-10-01

    Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].

  12. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  13. Neural Networks for Emotion Classification

    CERN Document Server

    Sun, Yafei

    2011-01-01

    It is argued that for the computer to be able to interact with humans, it needs to have the communication skills of humans. One of these skills is the ability to understand the emotional state of the person. This thesis describes a neural network-based approach for emotion classification. We learn a classifier that can recognize six basic emotions with an average accuracy of 77% over the Cohn-Kanade database. The novelty of this work is that instead of empirically selecting the parameters of the neural network, i.e. the learning rate, activation function parameter, momentum number, the number of nodes in one layer, etc. we developed a strategy that can automatically select comparatively better combination of these parameters. We also introduce another way to perform back propagation. Instead of using the partial differential of the error function, we use optimal algorithm; namely Powell's direction set to minimize the error function. We were also interested in construction an authentic emotion databases. This...

  14. Artificial neural networks in neurosurgery.

    Science.gov (United States)

    Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali

    2015-03-01

    Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery.

  15. Optimizing neural network forecast by immune algorithm

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-xia; LI Xiang; LI Ning; YANG Shang-dong

    2006-01-01

    Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.

  16. Optimising the topology of complex neural networks

    CERN Document Server

    Jiang, Fei; Schoenauer, Marc

    2007-01-01

    In this paper, we study instances of complex neural networks, i.e. neural netwo rks with complex topologies. We use Self-Organizing Map neural networks whose n eighbourhood relationships are defined by a complex network, to classify handwr itten digits. We show that topology has a small impact on performance and robus tness to neuron failures, at least at long learning times. Performance may howe ver be increased (by almost 10%) by artificial evolution of the network topo logy. In our experimental conditions, the evolved networks are more random than their parents, but display a more heterogeneous degree distribution.

  17. Survey of buffer management policies for delay tolerant networks

    OpenAIRE

    Sweta Jain; Meenu Chawla

    2014-01-01

    Delay tolerant networks (DTN) are a class of networks that are a subset of the traditional mobile ad-hoc networks. It differs from mobile ad hoc networks (MANETs) in the sense that it can withstand high delays in delivering data because of frequent network partitions, limited bandwidth and storage constraints persisting in such networks. Owing to these inherent characteristics of the delay tolerant networks improving delivery ratio in such networks depends on two main factors-use of routing s...

  18. Globally Exponential Stability of Neural Networks with Infinite Distributed Delays%无穷分布时滞神经网络的全局指数稳定性

    Institute of Scientific and Technical Information of China (English)

    阮锴; 蒋海军; 胡成

    2014-01-01

    In this paper, the existence of unique equilibrium point of neural networks with infinite distributed delays is discussed by means of Homeomorphism theory and inequality technique. Then, some useful criteria for the globally exponential stability of this model are derived by way of contradiction and the analysis technique which are different from the methods employed in correspondingly previous works. Finally, an example is provided to illustrate the applicability of the result.%通过同胚映射的理论和不等式技巧,研究了一类具有无穷分布时滞神经网络的平衡点的存在唯一性。并在此基础上,利用反证法和分析技巧给出了模型平衡点的全局指数稳定性的条件,这种方法与技巧不同于以往的文章。最后给出一个实例来验证理论结果的有效性。

  19. Stability of Delayed Cellular Neural Networks Basedon M-matrix Theory%基于 M 矩阵理论的时滞细胞神经网络稳定性分析*

    Institute of Scientific and Technical Information of China (English)

    江梅; 何汉林; 严路

    2015-01-01

    This paper deals with the stability of delayed cellular neural networks .By using the M‐matrix theory with its judgment lemma and applying appropriate linear parameter transformation ,the condition of the stability of the system is de‐duced .Compared with the Lyapunov method ,this paper provides a simpler one which reduces the original conservative con‐clusions and improvement the sufficient condition of origin as globally asymptotical stability equilibrium points .The simula‐tion example demonstrates the method is effective .%研究了时滞细胞神经网络的稳定性问题。通过M‐矩阵理论及其判定引理,运用适当的线性参数变换,推导出时滞细胞神经网络的稳定性条件,相比常用的Lyapunov方法,论文为研究多时滞细胞神经网络的稳定性提供了一个更为简单的新方法,降低了原有结论的保守性,进一步推导完善了全局渐近稳定平衡点为原点时的充分条件。仿真实例证明了文章提供的方法有效可行。

  20. Effects of Some Neurobiological Factors in a Self-organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Ming; ZHANG Ying-Yue; CHEN Tian-Lun

    2005-01-01

    Based on an integrate-and-fire mechanism, we investigate the effect of changing the efficacy of the synapse,the transmitting time-delayed, and the relative refractoryperiod on the self-organized criticality in our neural network model.

  1. A new formulation for feedforward neural networks.

    Science.gov (United States)

    Razavi, Saman; Tolson, Bryan A

    2011-10-01

    Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization.

  2. Drift chamber tracking with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  3. Coherence resonance in bursting neural networks.

    Science.gov (United States)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  4. A model for integrating elementary neural functions into delayed-response behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Gisiger

    2006-04-01

    Full Text Available It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning, and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task, or recalling from this image another one that has been associated with it during training (delayed-pair association task. The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  5. Adaptive neural control for a class of nonlinearly parametric time-delay systems.

    Science.gov (United States)

    Ho, Daniel W C; Li, Junmin; Niu, Yugang

    2005-05-01

    In this paper, an adaptive neural controller for a class of time-delay nonlinear systems with unknown nonlinearities is proposed. Based on a wavelet neural network (WNN) online approximation model, a state feedback adaptive controller is obtained by constructing a novel integral-type Lyapunov-Krasovskii functional, which also efficiently overcomes the controller singularity problem. It is shown that the proposed method guarantees the semiglobal boundedness of all signals in the adaptive closed-loop systems. An example is provided to illustrate the application of the approach.

  6. Delayed development of neural language organization in very preterm born children.

    Science.gov (United States)

    Mürner-Lavanchy, Ines; Steinlin, Maja; Kiefer, Claus; Weisstanner, Christian; Ritter, Barbara Catherine; Perrig, Walter; Everts, Regula

    2014-01-01

    This study investigates neural language organization in very preterm born children compared to control children and examines the relationship between language organization, age, and language performance. Fifty-six preterms and 38 controls (7-12 y) completed a functional magnetic resonance imaging language task. Lateralization and signal change were computed for language-relevant brain regions. Younger preterms showed a bilateral language network whereas older preterms revealed left-sided language organization. No age-related differences in language organization were observed in controls. Results indicate that preterms maintain atypical bilateral language organization longer than term born controls. This might reflect a delay of neural language organization due to very premature birth.

  7. Neural Network-Based Active Control for Offshore Platforms

    Institute of Scientific and Technical Information of China (English)

    周亚军; 赵德有

    2003-01-01

    A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.

  8. Neural network classification - A Bayesian interpretation

    Science.gov (United States)

    Wan, Eric A.

    1990-01-01

    The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.

  9. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  10. Isolated Speech Recognition Using Artificial Neural Networks

    Science.gov (United States)

    2007-11-02

    In this project Artificial Neural Networks are used as research tool to accomplish Automated Speech Recognition of normal speech. A small size...the first stage of this work are satisfactory and thus the application of artificial neural networks in conjunction with cepstral analysis in isolated word recognition holds promise.

  11. Neural Network Algorithm for Particle Loading

    Energy Technology Data Exchange (ETDEWEB)

    J. L. V. Lewandowski

    2003-04-25

    An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.

  12. Medical image analysis with artificial neural networks.

    Science.gov (United States)

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Creativity in design and artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Neocleous, C.C.; Esat, I.I. [Brunel Univ. Uxbridge (United Kingdom); Schizas, C.N. [Univ. of Cyprus, Nicosia (Cyprus)

    1996-12-31

    The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.

  14. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  15. Application of Neural Networks for Energy Reconstruction

    CERN Document Server

    Damgov, Jordan

    2002-01-01

    The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.

  16. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  17. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  18. Autaptic self-feedback-induced synchronization transitions in Newman-Watts neuronal network with time delays

    Science.gov (United States)

    Wang, Qi; Gong, Yubing; Wu, Yanan

    2015-04-01

    Autapse is a special synapse that connects a neuron to itself. In this work, we numerically study the effect of chemical autapse on the synchronization of Newman-Watts Hodgkin-Huxley neuron network with time delays. It is found that the neurons exhibit synchronization transitions as autaptic self-feedback delay is varied, and the phenomenon enhances when autaptic self-feedback strength increases. Moreover, this phenomenon becomes strongest when network time delay or coupling strength is optimal. It is also found that the synchronization transitions by network time delay can be enhanced by autaptic activity and become strongest when autaptic delay is optimal. These results show that autaptic delayed self-feedback activity can intermittently enhance and reduce the synchronization of the neuronal network and hence plays an important role in regulating the synchronization of the neurons. These findings could find potential implications for the information processing and transmission in neural systems.

  19. Rule Extraction using Artificial Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can gain a better understanding of the solution. This paper presents an efficient algorithm to extract rules from artificial neural networks. We use two-phase training algorithm for backpropagation learning. In the first phase, the number of hidden nodes of the network is determined automatically in a constructive fashion by adding nodes one after another based on the performance of the network on training data. In the second phase, the number of relevant input units of the network is determined using pruning algorithm. The ...

  20. Neural PID Control Strategy for Networked Process Control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.

  1. Wavelet Neural Networks for Adaptive Equalization

    Institute of Scientific and Technical Information of China (English)

    JIANGMinghu; DENGBeixing; GIELENGeorges; ZHANGBo

    2003-01-01

    A structure based on the Wavelet neural networks (WNNs) is proposed for nonlinear channel equalization in a digital communication system. The construction algorithm of the Minimum error probability (MEP) is presented and applied as a performance criterion to update the parameter matrix of wavelet networks. Our experimental results show that performance of the proposed wavelet networks based on equalizer can significantly improve the neural modeling accuracy, perform quite well in compensating the nonlinear distortion introduced by the channel, and outperform the conventional neural networks in signal to noise ratio and channel non-llnearity.

  2. Subspace learning of neural networks

    CERN Document Server

    Cheng Lv, Jian; Zhou, Jiliu

    2010-01-01

    PrefaceChapter 1. Introduction1.1 Introduction1.1.1 Linear Neural Networks1.1.2 Subspace Learning1.2 Subspace Learning Algorithms1.2.1 PCA Learning Algorithms1.2.2 MCA Learning Algorithms1.2.3 ICA Learning Algorithms1.3 Methods for Convergence Analysis1.3.1 SDT Method1.3.2 DCT Method1.3.3 DDT Method1.4 Block Algorithms1.5 Simulation Data Set and Notation1.6 ConclusionsChapter 2. PCA Learning Algorithms with Constants Learning Rates2.1 Oja's PCA Learning Algorithms2.1.1 The Algorithms2.1.2 Convergence Issue2.2 Invariant Sets2.2.1 Properties of Invariant Sets2.2.2 Conditions for Invariant Sets2.

  3. Neural networks for damage identification

    Energy Technology Data Exchange (ETDEWEB)

    Paez, T.L.; Klenke, S.E.

    1997-11-01

    Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.

  4. Nonlinear programming with feedforward neural networks.

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.

    1999-06-02

    We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.

  5. Learning Processes of Layered Neural Networks

    OpenAIRE

    Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.

    1995-01-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.

  6. Learning Algorithms of Multilayer Neural Networks

    OpenAIRE

    Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.

    1996-01-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward multilayer neural network, with far interlayer synaptic connections, and we obtain a learning rule similar to that of the Boltzmann machine on the same multilayer structure. By applying a mean field approximation to the stochastic feed-forward neural network, the generalized error back-propagation learning rule is derived for a deterministic analog feed-forward multilayer network with the far interlay...

  7. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  8. Research of The Deeper Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao You Rong

    2016-01-01

    Full Text Available Neural networks (NNs have powerful computational abilities and could be used in a variety of applications; however, training these networks is still a difficult problem. With different network structures, many neural models have been constructed. In this report, a deeper neural networks (DNNs architecture is proposed. The training algorithm of deeper neural network insides searching the global optimal point in the actual error surface. Before the training algorithm is designed, the error surface of the deeper neural network is analyzed from simple to complicated, and the features of the error surface is obtained. Based on these characters, the initialization method and training algorithm of DNNs is designed. For the initialization, a block-uniform design method is proposed which separates the error surface into some blocks and finds the optimal block using the uniform design method. For the training algorithm, the improved gradient-descent method is proposed which adds a penalty term into the cost function of the old gradient descent method. This algorithm makes the network have a great approximating ability and keeps the network state stable. All of these improve the practicality of the neural network.

  9. Acute appendicitis diagnosis using artificial neural networks.

    Science.gov (United States)

    Park, Sung Yun; Kim, Sung Min

    2015-01-01

    Artificial neural networks is one of pattern analyzer method which are rapidly applied on a bio-medical field. The aim of this research was to propose an appendicitis diagnosis system using artificial neural networks (ANNs). Data from 801 patients of the university hospital in Dongguk were used to construct artificial neural networks for diagnosing appendicitis and acute appendicitis. A radial basis function neural network structure (RBF), a multilayer neural network structure (MLNN), and a probabilistic neural network structure (PNN) were used for artificial neural network models. The Alvarado clinical scoring system was used for comparison with the ANNs. The accuracy of the RBF, PNN, MLNN, and Alvarado was 99.80%, 99.41%, 97.84%, and 72.19%, respectively. The area under ROC (receiver operating characteristic) curve of RBF, PNN, MLNN, and Alvarado was 0.998, 0.993, 0.985, and 0.633, respectively. The proposed models using ANNs for diagnosing appendicitis showed good performances, and were significantly better than the Alvarado clinical scoring system (p < 0.001). With cooperation among facilities, the accuracy for diagnosing this serious health condition can be improved.

  10. Mobility Prediction in Wireless Ad Hoc Networks using Neural Networks

    CERN Document Server

    Kaaniche, Heni

    2010-01-01

    Mobility prediction allows estimating the stability of paths in a mobile wireless Ad Hoc networks. Identifying stable paths helps to improve routing by reducing the overhead and the number of connection interruptions. In this paper, we introduce a neural network based method for mobility prediction in Ad Hoc networks. This method consists of a multi-layer and recurrent neural network using back propagation through time algorithm for training.

  11. Neural network regulation driven by autonomous neural firings

    Science.gov (United States)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  12. Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.

    Science.gov (United States)

    Min Wang; Xiaoping Liu; Peng Shi

    2011-12-01

    This paper is concerned with robust stabilization problem for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Novel continuous packaged functions are introduced in advance to remove unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay functions, which avoids the functions with control law to be approximated by radial basis function (RBF) neural networks. This technique combining implicit function and mean value theorems overcomes the difficulty in controlling the nonaffine pure-feedback systems. Dynamic surface control (DSC) is used to avoid "the explosion of complexity" in the backstepping design. Design difficulties from unknown time-delay functions are overcome using the function separation technique, the Lyapunov-Krasovskii functionals, and the desirable property of hyperbolic tangent functions. RBF neural networks are employed to approximate desired virtual controls and desired practical control. Under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced significantly, and semiglobal uniform ultimate boundedness of all of the signals in the closed-loop system is guaranteed. Simulation studies are given to demonstrate the effectiveness of the proposed design scheme.

  13. Stability and attractive basins of multiple equilibria in delayed two-neuron networks

    Institute of Scientific and Technical Information of China (English)

    Huang Yu-Jiao; Zhang Hua-Guang; Wang Zhan-Shan

    2012-01-01

    Multiple stability for two-dimensional delayed recurrent neural networks with piecewise linear activation functions of 2r (r ≥ 1) corner points is studied.Sufficient conditions are established for checking the existence of (2r + 1)2 equilibria in delayed recurrent neural networks.Under these conditions,(r + 1)2 equilibria are locally exponentially stable,and (2r + 1)2 - (r + 1)2 - r2 equilibria are unstable.Attractive basins of stable equilibria are estimated,which are larger than invariant sets derived by decomposing state space.One example is provided to illustrate the effectiveness of our results.

  14. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  15. Neural networks techniques applied to reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M. [Gerencia de Proyectos Geotermoelectricos, Morelia (Mexico); Barragan, C. [RockoHill de Mexico, Indiana (Mexico)

    1995-12-31

    Neural Networks are considered the greatest technological advance since the transistor. They are expected to be a common household item by the year 2000. An attempt to apply Neural Networks to an important geothermal problem has been made, predictions on the well production and well completion during drilling in a geothermal field. This was done in Los Humeros geothermal field, using two common types of Neural Network models, available in commercial software. Results show the learning capacity of the developed model, and its precision in the predictions that were made.

  16. Assessing Landslide Hazard Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin

    2011-01-01

    neural network has been developed for use in the stability evaluation of slopes under various geological conditions and engineering requirements. The Artificial neural network model of this research uses slope characteristics as input and leads to the output in form of the probability of failure...... and factor of safety. It can be stated that the trained neural networks are capable of predicting the stability of slopes and safety factor of landslide hazard in study area with an acceptable level of confidence. Landslide hazard analysis and mapping can provide useful information for catastrophic loss...

  17. Estimation of Conditional Quantile using Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1999-01-01

    The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....

  18. Estimation of Conditional Quantile using Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1999-01-01

    The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....

  19. Convolutional Neural Network for Image Recognition

    CERN Document Server

    Seifnashri, Sahand

    2015-01-01

    The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.

  20. Threshold control of chaotic neural network.

    Science.gov (United States)

    He, Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2008-01-01

    The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it is necessary to control chaos in the chaotic neural network. We have studied the chaotic neural network with threshold activated coupling, which provides a controlled network with associative memory dynamics. The network converges to one of its stored patterns or/and reverse patterns which has the smallest Hamming distance from the initial state of the network. The range of the threshold applied to control the neurons in the network depends on the noise level in the initial pattern and decreases with the increase of noise. The chaos control in the chaotic neural network by threshold activated coupling at varying time interval provides controlled output patterns with different temporal periods which depend upon the control parameters.

  1. Nonequilibrium landscape theory of neural networks.

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  2. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  3. Character Recognition Using Novel Optoelectronic Neural Network

    Science.gov (United States)

    1993-04-01

    17 2.3.7. Learning rule ................................................................... 18 3. ADALINE ... ADALINE neuron and linear separability which provides a justification for multilayer networks. The MADALINE (many ADALINE ) multi layer network is also...element used In many neural networks (Figure 3.1). The ADALINE functions as an adaptive threshold logic element. In digital Implementation, an input

  4. Neural Network for Estimating Conditional Distribution

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Kulczycki, P.

    Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...

  5. Nonlinear System Control Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Jaroslava Žilková

    2006-10-01

    Full Text Available The paper is focused especially on presenting possibilities of applying off-linetrained artificial neural networks at creating the system inverse models that are used atdesigning control algorithm for non-linear dynamic system. The ability of cascadefeedforward neural networks to model arbitrary non-linear functions and their inverses isexploited. This paper presents a quasi-inverse neural model, which works as a speedcontroller of an induction motor. The neural speed controller consists of two cascadefeedforward neural networks subsystems. The first subsystem provides desired statorcurrent components for control algorithm and the second subsystem providescorresponding voltage components for PWM converter. The availability of the proposedcontroller is verified through the MATLAB simulation. The effectiveness of the controller isdemonstrated for different operating conditions of the drive system.

  6. Survey on Opportunistic Networks in Delay Tolerant Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Koushik.C.P

    2016-02-01

    Full Text Available Delay Tolerant Network is an emerging research field in Mobile sensor network. It use forwarding technique to transmit the message from source to destination, there is no complete path between sources to destination. Due to mobility of nodes there is frequent change in node paten and difficult to find the path, there is chance that message keep on forwarded inside the network. In this paper we made detail survey on Opportunistic Routing Protocol in mobile network, and in that node getting the message form neighbor node and moving away from Sink. We proposed a technique in Gradient based Routing Protocol to solve node moving away from sink with message.

  7. Recognition of Telugu characters using neural networks.

    Science.gov (United States)

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  8. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    Science.gov (United States)

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  9. Neural Networks for Dynamic Flight Control

    Science.gov (United States)

    1993-12-01

    uses the Adaline (22) model for development of the neural networks. Neural Graphics and other AFIT applications use a slightly different model. The...primary difference in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where standard backprop uses the sigmoid

  10. Synchronization of time-delay chaotic systems on small-world networks with delayed coupling

    Institute of Scientific and Technical Information of China (English)

    Qi Wei; Wang Ying-Hai

    2009-01-01

    By using the well-known Ikeda model as the node dynamics,this paper studies synchronization of time-delay systems on small-world networks where the connections between units involve time delays.It shows that,in contrast with the undelayed case,networks with delays can actually synchronize more easily.Specifically,for randomly distributed delays,time-delayed mutual coupling suppresses the chaotic behaviour by stabilizing a fixed point that is unstable for the uncoupled dynamical system.

  11. Neural networks convergence using physicochemical data.

    Science.gov (United States)

    Karelson, Mati; Dobchev, Dimitar A; Kulshyn, Oleksandr V; Katritzky, Alan R

    2006-01-01

    An investigation of the neural network convergence and prediction based on three optimization algorithms, namely, Levenberg-Marquardt, conjugate gradient, and delta rule, is described. Several simulated neural networks built using the above three algorithms indicated that the Levenberg-Marquardt optimizer implemented as a back-propagation neural network converged faster than the other two algorithms and provides in most of the cases better prediction. These conclusions are based on eight physicochemical data sets, each with a significant number of compounds comparable to that usually used in the QSAR/QSPR modeling. The superiority of the Levenberg-Marquardt algorithm is revealed in terms of functional dependence of the change of the neural network weights with respect to the gradient of the error propagation as well as distribution of the weight values. The prediction of the models is assessed by the error of the validation sets not used in the training process.

  12. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    methods. That is why it is becoming popular in various fields including coastal engineering. Waves and tides will play important roles in coastal erosion or accretion. This paper briefly describes the back-propagation neural networks and its application...

  13. Neural Network Based 3D Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  14. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  15. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  16. TIME SERIES FORECASTING USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    BOGDAN OANCEA

    2013-05-01

    Full Text Available Recent studies have shown the classification and prediction power of the Neural Networks. It has been demonstrated that a NN can approximate any continuous function. Neural networks have been successfully used for forecasting of financial data series. The classical methods used for time series prediction like Box-Jenkins or ARIMA assumes that there is a linear relationship between inputs and outputs. Neural Networks have the advantage that can approximate nonlinear functions. In this paper we compared the performances of different feed forward and recurrent neural networks and training algorithms for predicting the exchange rate EUR/RON and USD/RON. We used data series with daily exchange rates starting from 2005 until 2013.

  17. Artificial neural networks a practical course

    CERN Document Server

    da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco

    2017-01-01

    This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

  18. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  19. Artificial neural network and medicine.

    Science.gov (United States)

    Khan, Z H; Mohapatra, S K; Khodiar, P K; Ragu Kumar, S N

    1998-07-01

    The introduction of human brain functions such as perception and cognition into the computer has been made possible by the use of Artificial Neural Network (ANN). ANN are computer models inspired by the structure and behavior of neurons. Like the brain, ANN can recognize patterns, manage data and most significantly, learn. This learning ability, not seen in other computer models simulating human intelligence, constantly improves its functional accuracy as it keeps on performing. Experience is as important for an ANN as it is for man. It is being increasingly used to supplement and even (may be) replace experts, in medicine. However, there is still scope for improvement in some areas. Its ability to classify and interpret various forms of medical data comes as a helping hand to clinical decision making in both diagnosis and treatment. Treatment planning in medicine, radiotherapy, rehabilitation, etc. is being done using ANN. Morbidity and mortality prediction by ANN in different medical situations can be very helpful for hospital management. ANN has a promising future in fundamental research, medical education and surgical robotics.

  20. Neural network for image segmentation

    Science.gov (United States)

    Skourikhine, Alexei N.; Prasad, Lakshman; Schlei, Bernd R.

    2000-10-01

    Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse- coupled neural network (PCNN) model of the cat visual cortex has proven to have interesting properties for image processing. This article describes the PCNN application to the processing of images of heterogeneous materials; specifically PCNN is applied to image denoising and image segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior to segmentation. We use PCNN for obth smoothing and segmentation. Combining smoothing and segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. This approach makes image processing based on PCNN more automatic in our application and also results in better segmentation.