WorldWideScience

Sample records for delamination growth behavior

  1. The concept of fatigue fracture toughness in fatigue delamination growth behavior

    NARCIS (Netherlands)

    Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This paper provides a study on mode I fatigue delamination growth in composite laminates using energy principles. Experimental data has been obtained from fatigue tests conducted on Double Cantilever Beam (DCB) specimens at various stress ratios. A concept of fatigue fracture toughness is proposed

  2. Cyclic delamination behavior of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates in simulated body fluid.

    Science.gov (United States)

    Otsuka, Yuichi; Kawaguchi, Hayato; Mutoh, Yoshiharu

    2016-10-01

    This study aimed to clarify the effect of a simulated body fluid (SBF) on the cyclic delamination behavior of a plasma-sprayed hydroxapatite (HAp) coating. A HAp coating is deposited on the surfaces of surgical metallic materials in order to enhance the bond between human bone and such surfaces. However, the HAp coating is susceptible to delamination by cyclic loading from the patient's gait. Although hip joints are subjected to both positive and negative moments, only the effects of tensile bending stresses on vertical crack propagation behavior have been investigated. Thus, the cyclic delamination behavior of a HAp coating was observed at the stress ratio R=-1 in order to determine the effects of tensile/compressive loading on the delamination behavior. The delamination growth rate increased with SBF immersion, which decreased the delamination life. Raman spectroscopy analysis revealed that the selective phase dissolution in the HAp coating was promoted at interfaces. Finite element analysis revealed that the energy release rate Gmax showed a positive value even in cases with compressive loading, which is a driving force for the delamination of a HAp coating. A prediction model for the delamination growth life was developed that combines a fracture mechanics parameter with the assumed stress-dependent dissolution rate. The predicted delamination life matched the experimental data well in cases of lower stress amplitudes with SBF. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Characterization of Mode 1 and Mode 2 delamination growth and thresholds in graphite/peek composites

    Science.gov (United States)

    Martin, Roderick H.; Murri, Gretchen B.

    1988-01-01

    Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.

  4. Characterization of Mode I and Mode II delamination growth and thresholds in AS4/PEEK composites

    Science.gov (United States)

    Martin, Roderick H.; Murri, Gretchen Bostaph

    1990-01-01

    Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.

  5. In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Esposito, Vincenzo; Lauridsen, Erik Mejdal

    2014-01-01

    The densification, delamination and crack growth behavior in a Ce0.9Gd0.1O1.95 (CGO) and (La0.85Sr0.15)0.9MnO3 (LSM) multi-layer ceramic sample was studied using in situ X-ray tomographic microscopy (microtomography) to investigate the critical dynamics of crack propagation and delamination...... in a multilayered sample. Naturally occurring defects, caused by the sample preparation process, are shown not to be critical in sample degradation. Instead defects are nucleated during the debinding step. Crack growth is significantly faster along the material layers than perpendicular to them, and crack growth...

  6. Hygrothermal influence on delamination behavior of graphite/epoxy laminates

    Science.gov (United States)

    Garg, A.; Ishai, O.

    1985-01-01

    The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination, and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.

  7. Understanding mixed-mode cyclic fatigue delamination growth in unidirectional composites : An experimental approach

    NARCIS (Netherlands)

    Amaral, L.; Alderliesten, R.C.; Benedictus, R.

    2017-01-01

    Due to the lack of fundamental knowledge of the physics behind delamination growth, certification authorities currently require that composite structures in aircraft are designed such that any delamination will not grow. This usually leads to an overdesign of the structure, hampering weight

  8. Fatigue Crack and Delamination Growth in Fibre Metal Laminates under Variable Amplitude Loading

    NARCIS (Netherlands)

    Khan, S.

    2013-01-01

    This thesis presents the investigation into the fatigue propagation and delamination growth of Fibre Metal Laminates under variable amplitude loading. As explained in the first chapter, the motivation of the research is twofold: first, to obtain a clear understanding and detailed characterization of

  9. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  10. Buckling-driven delamination growth in composite laminates: Guidelines for assessing the threat posed by interlaminar matrix delamination

    DEFF Research Database (Denmark)

    Bhushan, Karihaloo; Stang, Henrik

    2008-01-01

    This paper is concerned with development of a simple procedure to assess the threat posed by interlaminar matrix delaminations to the integrity of composite laminates when they are situated in a compressive stress field. Depending upon the size of the delamination, its location below the surface...

  11. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  12. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    Science.gov (United States)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  13. THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION

    Directory of Open Access Journals (Sweden)

    Navid Zarif Karimi

    2016-02-01

    Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.

  14. Delaminated sodium nonatitanate and a method for producing delaminated sodium nonatitanate

    Science.gov (United States)

    Nyman, May D.

    2016-02-02

    A hydrothermal synthesis method of making a delaminated titanate is disclosed. The delaminated titanate has a unique structure or morphology. The delaminated titanate is first formed by forming at a low temperature a layered sodium nonatitanate (SNT), which may be referred to as layered sodium titanate. The layered SNT has a unique morphology. The layered SNT is then synthesized into a delaminated titanate having a unique morphology.

  15. Delamination behaviour in differently copper laminated REBCO coated conductor tapes under transverse loading

    Energy Technology Data Exchange (ETDEWEB)

    Gorospe, Alking [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of); Department of Engineering, Aurora State College of Technology, Baler Aurora 3200 (Philippines); Nisay, Arman [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of); Shin, Hyung-Seop, E-mail: hsshin@andong.ac.kr [Department of Mechanical Design Engineering, Andong National University, 1375 Kyungdong-Ro, Andong 760-749 (Korea, Republic of)

    2014-09-15

    Highlights: • I{sub c} degradation behavior under transverse tension loading in different CC tape structure. • Weibull distribution analysis applied on delamination mechanism of CC tape. • Delamination mechanism on CC tapes depending on copper lamination type. • SEM and WDS mapping analysis of delamination sites under transverse loading. - Abstract: Laminated HTS coated conductor (CC) tapes having a unique multi-layer structure made them vulnerable when exposed to transverse loading. Electromechanical transport properties of these CC tapes can be affected by excessive transverse stresses. Due to the coefficient of thermal expansion (CTE) mismatch and incompatibility among constituent materials used in coil applications, delamination among layers occurs and causes critical current, I{sub c} degradation in the CC tapes. In this study, the delamination behaviors in copper (Cu) solder-laminated CC tapes by soldering and surround Cu-stabilized ones by electroplating under transverse tension loading were investigated. Similarly to the surround Cu-stabilized CC tapes in our previous reports, the Cu solder-laminated CC tapes also showed an abrupt and gradual I{sub c} degradation behavior. However, the Cu solder-laminated CC tapes showed different delamination morphologies as compared to the surround Cu-stabilized CC tapes; the superconducting side and the substrate side of the Cu solder laminated CC tapes were totally separated by delamination. On the other hand, the brass laminate did not show any significant effect on the delamination strength when it is added upon the surround Cu-stabilized CC tapes.

  16. Delamination R-curve as a material property of unidirectional glass/epoxy composites

    International Nuclear Information System (INIS)

    Shokrieh, M.M.; Heidari-Rarani, M.; Ayatollahi, M.R.

    2012-01-01

    Highlights: → The R-curve behavior of a unidirectional laminate as a material property is investigated. → Effect of initial crack length and thickness on R-curve is experimentally shown. → A mathematical relation is proposed to model the R-curve behavior of any unidirectional laminated composite. -- Abstract: It is still questionable to think of delamination resistance of a double cantilever beam (DCB) as a material property independent of the specimen size and geometry. In this research, the effects of initial crack length and DCB specimen thickness on the mode I delamination resistance curve (R-curve) behavior of different unidirectional glass/epoxy DCB specimens are experimentally investigated. It is observed that the magnitudes of initiation and propagation delamination toughness (G Ic-init and G Ic-prop ) as well as the fiber bridging length are constant in a specific range of the initial crack length to the DCB specimen thickness ratios of 8.5 0 /h < 19. Finally, a mathematical relationship is proposed for prediction of mode I delamination behavior (from the initiation to propagation) of E-glass/epoxy DCB specimens.

  17. An high order Mixed Interpolation Tensorial Components (MITC) shell element approach for modeling the buckling behavior of delaminated composites

    DEFF Research Database (Denmark)

    Gaiotti, Marco; Rizzo, Cesare M.; Branner, Kim

    2014-01-01

    This paper describes the experimental and numerical studies carried out on delaminated fiberglass epoxy resin laminates made-up by different fabrication methods, namely by vacuum infusion and prepreg. While the tested specimens were originally intended for the assessment of buckling behavior...... of composite laminates of wind turbine blades, results were found valuable for the marine industry as well, because similar laminates are used for the hull shell and stiffeners. Systematic calculations were carried out to assess the effects of an embedded delamination on the buckling load, varying the size...

  18. Delaminated rotator cuff tear: extension of delamination and cuff integrity after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Gwak, Heui-Chul; Kim, Chang-Wan; Kim, Jung-Han; Choo, Hye-Jeung; Sagong, Seung-Yeob; Shin, John

    2015-05-01

    The purpose of this study was to evaluate the extension of delamination and the cuff integrity after arthroscopic repair of delaminated rotator cuff tears. Sixty-five patients with delaminated rotator cuff tears were retrospectively reviewed. The delaminated tears were divided into full-thickness delaminated tears and partial-thickness delaminated tears. To evaluate the medial extension, we calculated the coronal size of the delaminated portion. To evaluate the posterior extension, we checked the tendon involved. Cuff integrity was evaluated by computed tomography arthrography. The mean medial extension in the full-thickness and partial-thickness delaminated tears was 18.1 ± 6.0 mm and 22.7 ± 6.3 mm, respectively (P = .0084). The posterior extension into the supraspinatus and the infraspinatus was 36.9% and 32.3%, respectively, in the full-thickness delaminated tears, and it was 27.7% and 3.1%, respectively, in the partial-thickness delaminated tears (P = .0043). With regard to cuff integrity, 35 cases of anatomic healing, 10 cases of partial healing defects, and 17 cases of retear were detected. Among the patients with retear and partial healing of the defect, all the partially healed defects showed delamination. Three retear patients showed delamination, and 14 retear patients did not show delamination; the difference was statistically significant (P = .0001). The full-thickness delaminated tears showed less medial extension and more posterior extension than the partial-thickness delaminated tears. Delamination did not develop in retear patients, but delamination was common in the patients with partially healed defects. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Surface modification of carbon/epoxy prepreg using oxygen plasma and its effect on the delamination resistance behavior of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Kim, M.H.; Rhee, K.Y.; Kim, H.J.; Jung, D.H.

    2007-01-01

    It was shown in previous study that the fracture toughness of carbon/epoxy laminated composites could be significantly improved by modifying the surface of the prepreg using Ar + irradiation in an oxygen environment. In this study, the surface of carbon/epoxy prepreg was modified using an oxygen plasma to improve the delamination resistance behavior of carbon/epoxy laminated composites. The variation of the contact angle on the prepreg surface was determined as a function of the modification time, in order to determine the optimal modification time. An XPS analysis was conducted to investigate the chemical changes on the surface of the prepreg caused by the plasma modification. Mode I delamination resistance curves of the composites with and without surface modification were plotted as a function of the delamination increment. The results showed that the contact angle varied from ∼64 o to ∼47 o depending on the modification time and reached a minimum for a modification time of 30 min. The XPS analysis showed that the hydrophilic carbonyl C=O group was formed by the oxygen plasma modification. The results also showed that the delamination resistance behavior was significantly improved by the plasma modification of the prepreg. This improvement was caused by the better layer-to-layer adhesion as well as increased interfacial strength between the fibers and matrix

  20. Combined effect of matrix cracking and stress-free edge on delamination

    Science.gov (United States)

    Salpekar, S. A.; Obrien, T. K.

    1990-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.

  1. Delamination of Composite Cylinders

    Science.gov (United States)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  2. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  3. The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel

    International Nuclear Information System (INIS)

    Guo, W.; Dong, H.; Lu, M.; Zhao, X.

    2002-01-01

    The effects of thickness and delamination on the fracture toughness and stable crack growth behaviour of high-toughness pipeline steels were investigated experimentally by use of compact tension specimens with thicknesses of 3-15 mm cut from a 17 mm-thick wall pipe. Material resistance curves were generated based on the stress intensity factor (SIF) K and the J-integral. The critical SIF K c and the J-resistance curves are found to be independent of thickness as the delaminations near the crack tip within the material reduce the out-of-plane constraint in thicker specimens. Both fracture mechanism and mechanics analyses shown that the fracture behaviour of the steel is controlled by the strong-coupled effects of thickness and delaminations. With increasing thickness, the out-of-plane stress constraint increases and causes the inclusion separation, growth and coalescence to form delaminations of different sizes before the main crack initiates. The delaminations in turn, reduce the out-of-plane constraint and thus, the thickness effect upon fracture. The advantages and disadvantages of delaminations in a safety assessment of pipelines are also discussed based on three-dimensional fracture theory

  4. Delamination-Debond Behaviour of Composite T- Joints in Wind Turbine Blades

    International Nuclear Information System (INIS)

    Gulasik, H; Coker, D

    2014-01-01

    Wind turbine industry utilizes composite materials in turbine blade structural designs because of their high strength/stiffness to weight ratio. T-joint is one of the design configurations of composite wind turbine blades. T-joints consist of a skin panel and a stiffener co-bonded or co-cured together with a filler material between them. T-joints are prone to delaminations between skin/stiffener plies and debonds between skin-stiffener-filler interfaces. In this study, delamination/debond behavior of a co-bonded composite T-joint is investigated under 0° pull load condition by 2D finite element method. Using Abaqus® commercial FE software, zero-thickness cohesive elements are used to simulate delamination/debond in ply interfaces and bonding lines. Pulling load at 0° is applied and load-displacement behavior and failure scenario are observed. The failure sequence consists of debonding of filler/stringer interface during one load drop followed by a second drop in which the 2nd filler/stringer debonds, filler/skin debonding and skin delamination leading to total loss of load carrying capacity. This type of failure initiation has been observed widely in the literature. When the debond strength is increased 30%, failure pattern is found to change in addition to increasing the load capacity by 200% before total loss of loading carrying capacity occurs. Failure initiation and propagation behavior, initial and max failure loads and stress fields are affected by the property change. In all cases mixed-mode crack tip loading is observed in the failure initiation and propagation stages. In this paper, the detailed delamination/debonding history in T-joints is predicted with cohesive elements for the first time

  5. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  6. Numerical Investigation of Delamination in Drilling of Carbon Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Tang, Wenliang; Chen, Yan; Yang, Haojun; Wang, Hua; Yao, Qiwei

    2018-03-01

    Drilling of carbon fiber reinforced polymer (CFRP) is a challenging task in modern manufacturing sector and machining induced delamination is one of the major problems affecting assembly precision. In this work, a new three-dimensional (3D) finite element model is developed to study the chip formation and entrance delamination in drilling of CFRP composites on the microscopic level. Fiber phase, matrix phase and equivalent homogeneous phase in the multi-phase model have different constitutive behaviors, respectively. A comparative drilling test, in which the cement carbide drill and unidirectional CFRP laminate are employed, is conducted to validate the proposedmodel in terms of the delamination and the similar changing trend is obtained. Microscopic mechanism of entrance delamination together with the chip formation process at four special fiber cutting angles (0°, 45°, 90° and 135°) is investigated. Moreover, the peeling force is also predicted. The results show that the delamination occurrence and the chip formation are both strongly dependent on the fiber cutting angle. The length of entrance delamination rises with increasing fiber cutting angles. Negligible delamination at 0° is attributed to the compression by the minor flank face. For 45° and 90°, the delamination resulted from the mode III fracture. At 135°, serious delamination which is driven by the mode I and III fractures is more inclined to occur and the peeling force reaches its maximum. Such numerical models can help understand the mechanism of hole entrance delamination further and provide guidance for the damage-free drilling of CFRP.

  7. Numerical models of delamination behavior in 2G HTS tapes under transverse tension and peel

    Science.gov (United States)

    Duan, Yujie; Ta, Wurui; Gao, Yuanwen

    2018-02-01

    In extreme operating environments, delamination in 2G HTS tapes occurs within and/or near the superconductor layer from high transverse tensile stresses caused by fabrication, Lorentz forces and thermal mismatch, etc. Generally, transverse opening and peeling off are the main delamination modes, and are always studied in anvil and peel tests, respectively. Numerical models of these modes for 2G HTS tape are presented wherein the mixed-mode traction-separation law at the interface of the silver and superconductor layers is considered. Plastic deformations of copper, silver, and Hastelloy® in the HTS tape are taken into account. The results obtained from the transverse opening model show that the maximum average tensile stress is smaller than the delamination tensile strength because delamination is asynchronous in the tape. When a crack appears in the tape, only a small stress ( ≤ 1 MPa) is required to expand the crack to other stress free areas through peeling. Using the peeling model, the dependency of the peel strength on peeling angle is investigated under constant fracture toughness. Peel strength decreases with the peeling angle until the minimum value is reached at 150°, and thereafter increases slightly. Other results indicate that peel strength depends strongly on delamination strength, fracture toughness, and thickness of copper layer. The fracture toughness of the delamination interface, which is difficult to obtain by experiment, can be extracted using the present model.

  8. Mode I fatigue delamination growth in composite laminates with fibre bridging

    NARCIS (Netherlands)

    Yao, L.

    2015-01-01

    Advanced composite materials have been commonly used in aerospace engineering, because of their good mechanical properties and attractive potential for creating lightweight structures. Susceptibility to delamination is one of the most important issues in the applications of these materials. This

  9. Calibration of a finite element composite delamination model by experiments

    DEFF Research Database (Denmark)

    Gaiotti, M.; Rizzo, C.M.; Branner, Kim

    2013-01-01

    This paper deals with the mechanical behavior under in plane compressive loading of thick and mostly unidirectional glass fiber composite plates made with an initial embedded delamination. The delamination is rectangular in shape, causing the separation of the central part of the plate into two...... distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...

  10. Dynamic behavior of a rotating delaminated composite beam including rotary inertia and shear deformation effects

    Directory of Open Access Journals (Sweden)

    Ramazan-Ali Jafari-Talookolaei

    2015-09-01

    Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.

  11. Acoustic Emission based on sentry function to monitor the initiation of delamination in composite materials

    International Nuclear Information System (INIS)

    Bakhtiary Davijani, A.A.; Hajikhani, M.; Ahmadi, M.

    2011-01-01

    Research highlights: → Constant load does not confirm constant damage in composite materials. → Different damages have different AE events. → Sentry function is a useful tool to monitor the initiation of damage in delamination. → The less sentry function number is the more damage the material has endured. -- Abstract: Delamination is the most common failure mode in composite materials, since it will result in the reduction of stiffness and can grow throughout other layers. Delamination is consisted of two main stages including initiation and propagation. Understanding the behavior of the material in these zones is very important, hence it has been thoroughly studied by different methods such as numerical methods, Acoustic Emission (AE), and modeling. Between these two regions initiation is a more vital stage in the delamination of the material. Once initiation occurs, which normally requires greater amount of force, cracks can easily propagate through the structure with little force and cause the failure of the structure. A better knowledge of initiation can lead to better design and production of stronger materials. Additionally, more knowledge about crack initiation and its internal microevents would help improve other parameters and result in higher strength against crack initiation. AE is a suitable method for in situ monitoring of damage in composite materials. In this study, AE was applied to test different glass/epoxy specimens which were loaded under mode I delamination. A function that combines AE and mechanical information is employed to investigate the initiation of delamination. Scanning electron microscope (SEM) was used to verify the results of this function. It is shown that this method is an appropriate technique to monitor the behavior of the initiation of delamination.

  12. Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites

    Science.gov (United States)

    Juarez, Peter; Leckey, Cara A. C.

    2018-04-01

    Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.

  13. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat s...... layers, Fracture mechanics, Crack closure, Steady state crack propagation.......An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place. Keywords: Delamination, Thin...

  14. Delamination tolerance studies in laminated composite panels

    Indian Academy of Sciences (India)

    Abstract. Determination of levels of tolerance in delaminated composite panels is an important issue in composite structures technology. The primary intention is to analyse delaminated composite panels and estimate Strain. Energy Release Rate (SERR) parameters at the delamination front to feed into acceptability criteria.

  15. Synthesis of mullite nanometers microwave from bentonite delaminated

    International Nuclear Information System (INIS)

    Gomes, J.; Azevedo, N.A.; Vieira, D.A.; Neves, G.A.; Santana, L.N.L.; Menezes, R.R.

    2011-01-01

    The smectite clays present as lamellar structure is formed by two layers of silica tetrahedrons and one layer of aluminum octahedra, which can be individually delaminated, reaching a thickness of about 1mm. Mullite is the only thermodynamically stable crystalline phase of SiO 2 and Al2O 3 system and can be synthesized from minerals that exhibit these oxides in its composition. The microwave synthesis offers advantages over conventional methods, the heating is rapid and uniform, avoiding an undesirable grain growth. This study aims to obtain nanometric mullite from bentonites delamined subjected to microwave heating. The samples were initially treated, then rehydrated, frozen and deagglomeration in a ball mill for 4 and 8 hours. Subsequently subjected to centrifugation, drying and microwave heating. The results showed that nano-mullite was obtained for samples subjected to longer heating and dispersions. (author)

  16. In Search of a Time Efficient Approach to Crack and Delamination Growth Predictions in Composites

    Science.gov (United States)

    Krueger, Ronald; Carvalho, Nelson

    2016-01-01

    Analysis benchmarking was used to assess the accuracy and time efficiency of algorithms suitable for automated delamination growth analysis. First, the Floating Node Method (FNM) was introduced and its combination with a simple exponential growth law (Paris Law) and Virtual Crack Closure technique (VCCT) was discussed. Implementation of the method into a user element (UEL) in Abaqus/Standard(Registered TradeMark) was also presented. For the assessment of growth prediction capabilities, an existing benchmark case based on the Double Cantilever Beam (DCB) specimen was briefly summarized. Additionally, the development of new benchmark cases based on the Mixed-Mode Bending (MMB) specimen to assess the growth prediction capabilities under mixed-mode I/II conditions was discussed in detail. A comparison was presented, in which the benchmark cases were used to assess the existing low-cycle fatigue analysis tool in Abaqus/Standard(Registered TradeMark) in comparison to the FNM-VCCT fatigue growth analysis implementation. The low-cycle fatigue analysis tool in Abaqus/Standard(Registered TradeMark) was able to yield results that were in good agreement with the DCB benchmark example. Results for the MMB benchmark cases, however, only captured the trend correctly. The user element (FNM-VCCT) always yielded results that were in excellent agreement with all benchmark cases, at a fraction of the analysis time. The ability to assess the implementation of two methods in one finite element code illustrated the value of establishing benchmark solutions.

  17. Thermally induced delamination of multilayers

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Sarraute, S.; Jørgensen, O.

    1998-01-01

    Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion coefficie...... coefficients may be an effective way of reducing the delamination energy release rate. Uneven layer thickness and increasing elastic mismatch are shown to raise the energy release rate. Experimental work confirms important trends of the model.......Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion...

  18. Experimental Characterization and Cohesive Laws for Delamination of Off-Axis GFRP Laminates

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Bak, Brian Lau Verndal

    2015-01-01

    This work experimentally characterizes mixed mode delamination in glass fibre reinforced polymer laminates taking into account the influence of the off-axis angle between the lamina orientation and the crack growth direction on the fracture properties. Thus, providing a cohesive law that enables...... analysis of 3D models in which mixed mode crack growth within laminates having anisotropic fracture properties takes place....

  19. Enhancement of delamination strength in Cu-stabilized coated conductor tapes through additional treatments under transverse tension at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyung Seop; Bautista, Zhierwinjay [Andong National University, Andong (Korea, Republic of); Moon, Seung Hyun; Lee, Jae Hun; Mean, Byoung Jean [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2017-06-15

    In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses that could affect its electromechanical transport property. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape’s surface. Since the latter is commonly associated with the delamination problem of multi-layered REBCO CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal and mechanical cycling. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in the multi-layered REBCO CC tapes becomes a critical issue. Various trials to increase the delamination strength by improving interface characteristics at interlayers have been performed. In this study, in order to investigate the influences of laser cleaning and Ag annealing treated at the substrate side surface, transverse tensile tests were conducted under different sample configurations using 4.5mm x 8 mm upper anvil. The mechanical delamination strength of differently processed CC samples was examined at room temperature (RT). As a result, the Sample 1 with the additional laser cleaning and Ag annealing processes and the Sample 2 with additional Ag annealing process only showed higher mechanical delamination strength as compared to the Sample 3 without such additional treatments. Sample 3 showed quite different behavior when the loading direction is to the substrate side where the delamination strength much lower as compared to other cases.

  20. Delamination Detection of Reinforced Concrete Decks Using Modal Identification

    Directory of Open Access Journals (Sweden)

    Shutao Xing

    2012-01-01

    Full Text Available This study addressed delamination detection of concrete slabs by analyzing global dynamic responses of structures. Both numerical and experimental studies are presented. In the numerical examples, delaminations with different sizes and locations were introduced into a concrete slab; the effects of presence, sizes, and locations of delaminations on the modal frequencies and mode shapes of the concrete slab under various support conditions were studied. In the experimental study, four concrete deck specimens with different delamination sizes were constructed, and experimental tests were conducted. Traditional peak-picking, frequency domain decomposition, and stochastic subspace identification methods were applied to the modal identification from dynamic response measurements. The modal parameters identified by these three methods correlated well. The changes in modal frequencies, damping ratios, and mode shapes that were extracted from the dynamic measurements were investigated and correlated to the actual delaminations and can indicate presence and severity of delamination. Finite element (FE models of reinforced concrete decks with different delamination sizes and locations were established. The modal parameters computed from the FE models were compared to those obtained from the laboratory specimens, and the FE models were validated. The delamination detection approach was proved to be effective for concrete decks on beams.

  1. Numerical simulations of the mantle lithosphere delamination

    Science.gov (United States)

    Morency, C.; Doin, M.-P.

    2004-03-01

    Sudden uplift, extension, and increased igneous activity are often explained by rapid mechanical thinning of the lithospheric mantle. Two main thinning mechanisms have been proposed, convective removal of a thickened lithospheric root and delamination of the mantle lithosphere along the Moho. In the latter case, the whole mantle lithosphere peels away from the crust by the propagation of a localized shear zone and sinks into the mantle. To study this mechanism, we perform two-dimensional (2-D) numerical simulations of convection using a viscoplastic rheology with an effective viscosity depending strongly on temperature, depth, composition (crust/mantle), and stress. The simulations develop in four steps. (1) We first obtain "classical" sublithospheric convection for a long time period (˜300 Myr), yielding a slightly heterogeneous lithospheric temperature structure. (2) At some time, in some simulations, a strong thinning of the mantle occurs progressively in a small area (˜100 km wide). This process puts the asthenosphere in direct contact with the lower crust. (3) Large pieces of mantle lithosphere then quickly sink into the mantle by the horizontal propagation of a detachment level away from the "asthenospheric conduit" or by progressive erosion on the flanks of the delaminated area. (4) Delamination pauses or stops when the lithospheric mantle part detaches or when small-scale convection on the flanks of the delaminated area is counterbalanced by heat diffusion. We determine the parameters (crustal thicknesses, activation energies, and friction coefficients) leading to delamination initiation (step 2). We find that delamination initiates where the Moho temperature is the highest, as soon as the crust and mantle viscosities are sufficiently low. Delamination should occur on Earth when the Moho temperature exceeds ˜800°C. This condition can be reached by thermal relaxation in a thickened crust in orogenic setting or by corner flow lithospheric erosion in the

  2. Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis

    Science.gov (United States)

    Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu

    2014-01-01

    Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.

  3. Finite elements modeling of delaminations in composite laminates

    DEFF Research Database (Denmark)

    Gaiotti, m.; Rizzo, C.M.; Branner, Kim

    2011-01-01

    of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.......e., delaminations, which may affect the stiffness and stability of structural components. Especially deep delaminations in the mid surface of laminates are expected to reduce the effective flexural stiffness and lead to collapse, often due to buckling behaviour. This paper deals with the numerical modelling...

  4. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  5. Experimental evaluation of coating delamination in vinyl coated metal forming

    International Nuclear Information System (INIS)

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min; Lee, Jung Min; Byoen, Sang Doek; Lee, Soen Bong

    2012-01-01

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications

  6. Experimental evaluation of coating delamination in vinyl coated metal forming

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min [Pusan National Univ., Busan (Korea, Republic of); Lee, Jung Min [Korea Institute of Industrial Technology, Busan (Korea, Republic of); Byoen, Sang Doek [HA Digital Engineering Gr., Seongsan Gu (Korea, Republic of); Lee, Soen Bong [Keimyung Univ., Daegu (Korea, Republic of)

    2012-10-15

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications.

  7. Non-destructive delamination detection in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I.; Kesler, O. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada)

    2007-05-15

    A finite element model has been developed to simulate the steady state and impedance behaviour of a single operating solid oxide fuel cell (SOFC). The model results suggest that electrode delamination can be detected minimally-invasively by using electrochemical impedance spectroscopy. The presence of cathode delamination causes changes in the cell impedance spectrum that are characteristic of this type of degradation mechanism. These changes include the simultaneous increase in both the series and polarization resistances, in proportion to the delaminated area. Parametric studies show the dependence of these changes on the extent of delamination, on the operating point, and on the kinetic characteristics of the fuel cell under study. (author)

  8. Scattering of guided waves at delaminations in composite plates.

    Science.gov (United States)

    Murat, Bibi I S; Khalili, Pouyan; Fromme, Paul

    2016-06-01

    Carbon fiber laminate composites are increasingly employed for aerospace structures as they offer advantages, such as a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, fiber and matrix breakage or delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing and structural health monitoring of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The scattering of the A0 Lamb wave mode at delaminations was investigated using a full three-dimensional (3D) finite element (FE) analysis. The influence of the delamination geometry (size and depth) was systematically evaluated. In addition to the depth dependency, a significant influence of the delamination width due to sideways reflection of the guided waves within the delamination area was found. Mixed-mode defects were simulated using a combined model of delamination with localized material degradation. The guided wave scattering at cross-ply composite plates with impact damage was measured experimentally using a non-contact laser interferometer. Good agreement between experiments and FE predictions using the mixed-mode model for an approximation of the impact damage was found.

  9. Simulation of delamination crack growth in composite laminates: application of local and non-local interface damage models

    International Nuclear Information System (INIS)

    Ijaz, H.; Asad, M.

    2015-01-01

    The use of composite laminates is increasing in these days due to higher strength and low density values in comparison of metals. Delamination is a major source of failure in composite laminates. Damage mechanics based theories are employed to simulate the delamination phenomena between composite laminates. These damage models are inherently local and can cause the concentration of stresses around the crack tip. In the present study integral type non-local damage formulation is proposed to avoid the localization problem associated to damage formulation. A comprehensive study is carried out for the models and classical local damage model are performed and results are compared with available experimental data for un IMS/924 Carbon/fiber epoxy composite laminate. (author)

  10. 3D finite element analysis of stress distributions and strain energy release rates for adhesive bonded flat composite lap shear joints having pre-existing delaminations

    Energy Technology Data Exchange (ETDEWEB)

    Parida, S. K.; Pradhan, A. K. [Indian Institute of Technology, Bhubaneswar (India)

    2014-02-15

    The rate of propagation of embedded delamination in the strap adherend of lap shear joint (LSJ) made of carbon/epoxy composites has been evaluated employing three-dimensional non-linear finite elements. The delamination has been presumed to pre-exist in the thin resin layer between the first and second plies of the strap adherend. The inter-laminar peel and shear stress distributions have been studied in details and are seen to be predominantly three-dimensional in nature. The components of strain energy release rate (SERR) corresponding to the opening, sliding and cross sliding modes of delamination are significantly different at the two fronts of the embedded delamination. The sequential release of multi-point constraint (MPC) finite elements in the vicinity of the delamination fronts enables to simulate the growth of the delamination at either ends. This simulation procedure can be utilized effectively for evaluation of the status of the structural integrity of the bonded joints.

  11. Failure analysis of multiple delaminated composite plates due

    Indian Academy of Sciences (India)

    The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily located multiple delaminations subjected to transverse static load as well as impact. The theoretical formulation is based on a simple multiple delamination model. Conventional first order shear deformation is assumed using ...

  12. Numerical investigation of the effect of delaminations on fracture characteristics of glare

    Science.gov (United States)

    Bhat, Sunil; Narayanan, S.

    2013-10-01

    A finite element examination of the effect of delaminations on fracture characteristics of fibre metal laminate (Glare), by comparing energy release rates of normal cracks in laminates with and without delaminations, is presented in the paper. Glare comprising thin cracked 2024-T3 aerospace aluminum alloy layers alternately bonded with E-glass fibre based composite prepregs is considered for the analysis. Delaminations are modeled with interface cohesive elements. Energy release rates of normal cracks in laminates with delaminations are found to be higher than those in the laminates without delaminations.

  13. Floating Carpets and the Delamination of Elastic Sheets

    KAUST Repository

    Wagner, Till J. W.

    2011-07-22

    We investigate the deformation of a thin elastic sheet floating on a liquid surface and subject to a uniaxial compression. We show that at a critical compression the sheet delaminates from the liquid over a finite region forming a delamination "blister." This blistering regime adds to the wrinkling and localized folding regimes that have been studied previously. The transition from wrinkled to blistered states occurs when delamination becomes energetically favorable compared with wrinkling. We determine the initial blister size and the evolution of blister size with continuing compression before verifying our theoretical results with experiments at a macroscopic scale. © 2011 American Physical Society.

  14. Study of multilayer packaging delamination mechanisms using different surface analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Garrido-Lopez, Alvaro [Department of Chemistry, University of La Rioja, C/Madre de Dios 51, E-26006 Logrono, La Rioja (Spain); Tena, Maria Teresa, E-mail: maria-teresa.tena@unirioja.es [Department of Chemistry, University of La Rioja, C/Madre de Dios 51, E-26006 Logrono, La Rioja (Spain)

    2010-04-01

    Multilayer packaging, consisting of different layers joined by using an adhesive or an extrusion process, is widely used to promote different products, such as food, cosmetics, etc. The main disadvantage in using this form of packaging is the delamination process. In this work, different surface techniques (X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy) are used to analyse the delaminated surfaces in order to study the mechanisms that cause delamination of multilayer packaging. According to our results, the reaction of migrated molecules with adhesive-aluminium bonds is the main cause of the chemical delamination process. In contrast, the delamination of extruded materials would seem to be caused by the breaking of Van der Waals bonds.

  15. Characterization of Blistering and Delamination in Depleted Uranium Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Biobaum, K. J. M.

    2013-03-01

    Blistering and delamination are the primary failure mechanisms during the processing of depleted uranium (DU) hohlraums. These hohlraums consist of a sputter-deposited DU layer sandwiched between two sputter-deposited layers of gold; a final thick gold layer is electrodeposited on the exterior. The hohlraum is deposited on a copper-coated aluminum mandrel; the Al and Cu are removed with chemical etching after the gold and DU layers are deposited. After the mandrel is removed, blistering and delamination are observed on the interiors of some hohlraums, particularly at the radius region. It is hypothesized that blisters are caused by pinholes in the copper and gold layers; etchant leaking through these holes reaches the DU layer and causes it to oxidize, resulting in a blister. Depending on the residual stress in the deposited layers, blistering can initiate larger-scale delamination at layer interfaces. Scanning electron microscopy indicates that inhomogeneities in the machined aluminum mandrel are replicated in the sputter-deposited copper layer. Furthermore, the Cu layer exhibits columnar growth with pinholes that likely allow etchant to come in contact with the gold layer. Any inhomogeneities or pinholes in this initial gold layer then become nucleation sites for blistering. Using a focused ion beam system to etch through the gold layer and extract a cross-sectional sample for transmission electron microscopy, amorphous, intermixed layers at the gold/DU interfaces are observed. Nanometer-sized bubbles in the sputtered and electrodeposited gold layers are also present. Characterization of the morphology and composition of the deposited layers is the first step in determining modifications to processing parameters, with the goal of attaining a significant improvement in hohlraum yield.

  16. Repair of prestressed concrete cylinder with localized delamination

    International Nuclear Information System (INIS)

    Wang, Shen; Munshi, Javeed A.

    2015-01-01

    For prestressed concrete cylindrical structures such as nuclear containments, tanks and silos, the curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. For example, many prestressed concrete nuclear containments in US, especially those which were not designed following radial reinforcement requirement of ACI-359, are reinforced only in the circumferential (hoop) and meridional (vertical) directions but not in the radial direction. This leaves these structures vulnerable to potential laminar cracking and delamination, especially during post-tensioning and/or detensioning process. Should delamination occur, the structure needs to be repaired by either replacing cracked concrete or by “pinning” the delaminated concrete layers together by post-installed anchors. The latter option of post-installed anchors is less invasive from construction stand point and generally suitable for repairing small or localized delamination only. A comprehensive study is undertaken to explore various aspects and design consideration of post-installed anchors for prestressed concrete cylinders. The radial tension demand is first established by combining a mechanical based model with a detailed finite element analysis. With such design demand for post-installed anchors established, the next step aims at developing the tightness requirement of existing delamination cracks for effective use of post-installed anchors. A comprehensive literature search and evaluation is carried out for shear transfer capacity across cracks of various widths. The findings are used to develop specific recommendations for acceptable crack widths to ensure adequate in-plane shear transfer capacity for various design load conditions. A design process for post-installed anchors is proposed for repairing a delaminated prestressed concrete cylindrical structure at the end of the paper, supplemented by an illustrative

  17. Repair of prestressed concrete cylinder with localized delamination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com; Munshi, Javeed A., E-mail: jamunshi@bechtel.com

    2015-12-15

    For prestressed concrete cylindrical structures such as nuclear containments, tanks and silos, the curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. For example, many prestressed concrete nuclear containments in US, especially those which were not designed following radial reinforcement requirement of ACI-359, are reinforced only in the circumferential (hoop) and meridional (vertical) directions but not in the radial direction. This leaves these structures vulnerable to potential laminar cracking and delamination, especially during post-tensioning and/or detensioning process. Should delamination occur, the structure needs to be repaired by either replacing cracked concrete or by “pinning” the delaminated concrete layers together by post-installed anchors. The latter option of post-installed anchors is less invasive from construction stand point and generally suitable for repairing small or localized delamination only. A comprehensive study is undertaken to explore various aspects and design consideration of post-installed anchors for prestressed concrete cylinders. The radial tension demand is first established by combining a mechanical based model with a detailed finite element analysis. With such design demand for post-installed anchors established, the next step aims at developing the tightness requirement of existing delamination cracks for effective use of post-installed anchors. A comprehensive literature search and evaluation is carried out for shear transfer capacity across cracks of various widths. The findings are used to develop specific recommendations for acceptable crack widths to ensure adequate in-plane shear transfer capacity for various design load conditions. A design process for post-installed anchors is proposed for repairing a delaminated prestressed concrete cylindrical structure at the end of the paper, supplemented by an illustrative

  18. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor

    Science.gov (United States)

    Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.

  19. MR imaging of delamination tears of the rotator cuff tendons

    International Nuclear Information System (INIS)

    Walz, Daniel M.; Chen, Steven; Miller, Theodore T.; Hofman, Josh

    2007-01-01

    The objective was to describe the imaging appearances and location of delamination tears of the rotator cuff tendons on non-contrast conventional MR imaging. This study was reviewed and approved by our Institutional Review Board. The reports of 548 consecutive MR examinations of the shoulder were reviewed, looking for mention or description of delamination tears of the rotator cuff. The images of the identified cases were then reviewed by two radiologists to confirm the findings. Correlation with surgical and arthroscopic information was then performed. Delamination tears were defined as horizontal retraction of either the bursal or articular surface of the tendon, manifest as thickening of the torn retracted edge, and/or interstitial splitting of the tendon, manifest as fluid-like high signal intensity on fat-suppressed T2-weighted oblique coronal images. Fourteen cases of delamination tears were identified in 13 patients. Ten of the cases involved the supraspinatus tendon, all with articular surface involvement. Nine of these supraspinatus cases were isolated tears and one occurred as part of a full thickness tear. All 10 of these supraspinatus cases showed medial retraction of the articular surface of the tendon, with thickening of the retracted edge, and 5 of the 10 had a demonstrable horizontal cleft in the interstitium. Four cases involved the subscapularis tendon, with articular surface disruption in three and pure interstitial delamination in one. Medial subluxation of the tendon of the long head of the biceps was present in all four cases. No delamination tears occurred on the bursal surface. Only three of the 14 shoulders underwent surgical repair with one confirmation of supraspinatus delamination, one confirmation of a subscapularis tear that had become a full thickness tear 10 months after initial imaging and another interstitial subscapularis delamination that was not identified arthroscopically. Delamination tears occur most often in the

  20. MR imaging of delamination tears of the rotator cuff tendons

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Daniel M.; Chen, Steven [North Shore University Hospital, Department of Radiology, Manhasset, NY (United States); Miller, Theodore T. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States); Hofman, Josh [Long Island Jewish Medical Center, New Hyde Park, NY (United States)

    2007-05-15

    The objective was to describe the imaging appearances and location of delamination tears of the rotator cuff tendons on non-contrast conventional MR imaging. This study was reviewed and approved by our Institutional Review Board. The reports of 548 consecutive MR examinations of the shoulder were reviewed, looking for mention or description of delamination tears of the rotator cuff. The images of the identified cases were then reviewed by two radiologists to confirm the findings. Correlation with surgical and arthroscopic information was then performed. Delamination tears were defined as horizontal retraction of either the bursal or articular surface of the tendon, manifest as thickening of the torn retracted edge, and/or interstitial splitting of the tendon, manifest as fluid-like high signal intensity on fat-suppressed T2-weighted oblique coronal images. Fourteen cases of delamination tears were identified in 13 patients. Ten of the cases involved the supraspinatus tendon, all with articular surface involvement. Nine of these supraspinatus cases were isolated tears and one occurred as part of a full thickness tear. All 10 of these supraspinatus cases showed medial retraction of the articular surface of the tendon, with thickening of the retracted edge, and 5 of the 10 had a demonstrable horizontal cleft in the interstitium. Four cases involved the subscapularis tendon, with articular surface disruption in three and pure interstitial delamination in one. Medial subluxation of the tendon of the long head of the biceps was present in all four cases. No delamination tears occurred on the bursal surface. Only three of the 14 shoulders underwent surgical repair with one confirmation of supraspinatus delamination, one confirmation of a subscapularis tear that had become a full thickness tear 10 months after initial imaging and another interstitial subscapularis delamination that was not identified arthroscopically. Delamination tears occur most often in the

  1. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  2. Failure analysis of multiple delaminated composite plates due to ...

    Indian Academy of Sciences (India)

    Unknown

    plates are assumed to contain both single and multiple delaminations. For the case of impact, ... delamination on the first ply failure of the laminate is scarce. ..... 1 in the bottom layer, it was of the opposite sign for the top layer. The plots for ...

  3. Microscopic mechanisms of graphene electrolytic delamination from metal substrates

    International Nuclear Information System (INIS)

    Fisichella, G.; Di Franco, S.; Roccaforte, F.; Giannazzo, F.; Ravesi, S.

    2014-01-01

    In this paper, hydrogen bubbling delamination of graphene (Gr) from copper using a strong electrolyte (KOH) water solution was performed, focusing on the effect of the KOH concentration (C KOH ) on the Gr delamination rate. A factor of ∼10 decrease in the time required for the complete Gr delamination from Cu cathodes with the same geometry was found increasing C KOH from ∼0.05 M to ∼0.60 M. After transfer of the separated Gr membranes to SiO 2 substrates by a highly reproducible thermo-compression printing method, an accurate atomic force microscopy investigation of the changes in Gr morphology as a function of C KOH was performed. Supported by these analyses, a microscopic model of the delamination process has been proposed, where a key role is played by graphene wrinkles acting as nucleation sites for H 2 bubbles at the cathode perimeter. With this approach, the H 2 supersaturation generated at the electrode for different electrolyte concentrations was estimated and the inverse dependence of t d on C KOH was quantitatively explained. Although developed in the case of Cu, this analysis is generally valid and can be applied to describe the electrolytic delamination of graphene from several metal substrates.

  4. Cracking and delamination of vapor-deposited tantalum films

    International Nuclear Information System (INIS)

    Fisher, R.M.; Duan, J.Z.; Liu, J.B.

    1990-01-01

    This paper reports on tantalum films which begin to crack and spall during vapor deposition on glass at a thickness of 180 nm. Islands and ribbons, 10 - 30 μm in size, delaminate by crack growth along the Ta/glass interface for several μm after which the crack penetrates into the glass to a depth of 0.5 - 1 μm and complete spalling occurs. X-ray diffraction showed that about 50% of the original bct, β-tantalum, phase had transformed to the bcc α-Ta phase. When Ta was deposited on glass that was first covered with 52 nm of copper, spalling was observed to begin at a thickness of 105 nm. In this case, the film first cracks and then peels along the Cu/glass interface and curls into scrolls indicating the presence of a small stress gradient. X-ray diffraction of the as-deposited film, and electron diffraction of ion-milled flakes, showed that the Ta films deposited on Cu-coated glass almost completely transform to bcc α-Ta. The critical thickness for delamination along the Cu/glass interface is about 1/2 that for cracking in the glass substrate when an intermediate layer of Cu is not present. All of the above findings are in good agreement with previous observations on Cr films

  5. Characterization of exfoliated/delamination kaolinite

    International Nuclear Information System (INIS)

    Sun, Dewen; Li, Bin; Li, Yanfeng; Yu, Cui; Zhang, Bo; Fei, Huafeng

    2011-01-01

    A novel and facile approach for the preparation of exfoliated/delamination kaolinite was reported in this study. Kaolinite was mechanochemically activated by grinding with dimethylsulfoxide in a globe mill for different periods of time, and then the activated samples were treated for several hours at 120 o C to obtain the precursors of kaolinite. The resulting materials were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The experimental data indicated that the clay layers were well exfoliated/delamination under mechanochemical effect in a significantly short intercalation time. The expansion of the basal spacing (d 001 ) of raw kaolinite by 0.40 nm pointed out that the hydrogen bonds between adjacent kaolinite layers were partially broken as a result of the intercalation with dimethylsulfoxide.

  6. Delamination detection using methods of computational intelligence

    Science.gov (United States)

    Ihesiulor, Obinna K.; Shankar, Krishna; Zhang, Zhifang; Ray, Tapabrata

    2012-11-01

    Abstract Reliable delamination prediction scheme is indispensable in order to prevent potential risks of catastrophic failures in composite structures. The existence of delaminations changes the vibration characteristics of composite laminates and hence such indicators can be used to quantify the health characteristics of laminates. An approach for online health monitoring of in-service composite laminates is presented in this paper that relies on methods based on computational intelligence. Typical changes in the observed vibration characteristics (i.e. change in natural frequencies) are considered as inputs to identify the existence, location and magnitude of delaminations. The performance of the proposed approach is demonstrated using numerical models of composite laminates. Since this identification problem essentially involves the solution of an optimization problem, the use of finite element (FE) methods as the underlying tool for analysis turns out to be computationally expensive. A surrogate assisted optimization approach is hence introduced to contain the computational time within affordable limits. An artificial neural network (ANN) model with Bayesian regularization is used as the underlying approximation scheme while an improved rate of convergence is achieved using a memetic algorithm. However, building of ANN surrogate models usually requires large training datasets. K-means clustering is effectively employed to reduce the size of datasets. ANN is also used via inverse modeling to determine the position, size and location of delaminations using changes in measured natural frequencies. The results clearly highlight the efficiency and the robustness of the approach.

  7. Mechanistic Study of Delamination Fracture in Al-Li Alloy C458 (2099)

    Science.gov (United States)

    Tayon, W. A.; Crooks, R. E.; Domack, M. S.; Wagner, J. A.; Beaudoin, A. J.; McDonald, R. J.

    2009-01-01

    Delamination fracture has limited the use of lightweight Al-Li alloys. In the present study, electron backscattered diffraction (EBSD) methods were used to characterize crack paths in Al-Li alloy C458 (2099). Secondary delamination cracks in fracture toughness samples showed a pronounced tendency for fracture between grain variants of the same deformation texture component. These results were analyzed by EBSD mapping methods and simulated with finite element analyses. Simulation procedures include a description of material anisotropy, local grain orientations, and fracture utilizing crystal plasticity and cohesive zone elements. Taylor factors computed for each grain orientation subjected to normal and shear stresses indicated that grain pairs with the largest Taylor factor differences were adjacent to boundaries that failed by delamination. Examination of matching delamination fracture surface pairs revealed pronounced slip bands in only one of the grains bordering the delamination. These results, along with EBSD studies, plasticity simulations, and Auger electron spectroscopy observations support a hypothesis that delamination fracture occurs due to poor slip accommodation along boundaries between grains with greatly differing plastic response.

  8. An in-situ experimental-numerical approach for interface delamination characterization

    NARCIS (Netherlands)

    Murthy Kolluri, N.V.V.R.

    2011-01-01

    Interfacial delamination is a key reliability challenge in composites and microelectronic systems due to (high density) integration of dissimilar materials. Delamination occurs due to significant stresses generated at the interfaces, for instance, caused by thermal cycling due to the mismatch in

  9. Delamination behaviour of GdBCO coated conductor tapes under transverse tension

    International Nuclear Information System (INIS)

    Gorospe, A.; Nisay, A.; Dizon, J.R.; Shin, H.S.

    2013-01-01

    Highlights: •Installation of a test frame which gives precisely aligned transverse load. •Investigation of I c degradation behaviour depending on the type of sample delamination. •Inhomogeneity of the CC tapes caused large variation on delamination strength. •SEM and EDS analysis of delamination sites under transverse loading. -- Abstract: The electromechanical property behaviour of 2G coated conductor (CC) tapes fabricated by multi-layer deposition process both in the in-plane and transverse direction should be understood. The CC tapes are used in the fabrication of epoxy resin-impregnated coils. In such case, the Lorentz force due to the high magnetic field applied as well as the thermal stress due to the difference in coefficient of thermal expansion (CTE) among constituent layers during cooling to cryogenic temperature will induce transversely applied load to the surface of CC tapes in coils. Hence, the CC tape should have a good mechanical property in the transverse direction in order to maintain its superior performance under magnetic field. In this study, a test frame which gives precisely aligned transverse load was devised. Using the fixture, the delamination behaviours including the delamination strength of the GdBCO CC tapes under transverse tensile loading were investigated. Large variation on the delamination strength of the CC tapes was recorded and might have resulted from the slit edge effect and the inhomogeneity of the CC tapes. The I c degradation behaviour under transverse load was related to the location where delamination occurred in the sample

  10. Impulse response measurements as dependent on crack depth. Delamination

    International Nuclear Information System (INIS)

    Ulriksen, Peter

    2011-02-01

    The purpose of the project is to investigate the impulse-response method's ability to detect delamination at different depths. This method is of particular interest, since some of it's realizations strongly resembles established methods like 'bomknackning' . Since the personnel that will be responsible for future measurements with new technology, should feel confidence in new methods, it is an advantage if the new methods connect to older, accepted methods. The project consists of three parts and a fourth is planned. The first part of the investigation is made with a vibrator connected to an impedance head which in turn is connected to the surface of the concrete test specimen with internal delaminations at different depths. The vibrator is controlled by a dynamic signal analyze, which also measures the force- and acceleration signals from the impedance head and convert them to impedance. Since the impedance head must be glued to the surface of the concrete this method is only of laboratory interest. This method gives a complete description of the behavior of the concrete for the frequencies investigated. Thus in following investigations the frequencies of interest are known. From the experiment it follows that delamination down to a depth of 80-100 mm can be detected through a clear and solitary resonance peak. This resonance frequency is a function of concrete slab thickness and extension, so if the extension can be measured it may be possible to calculate depth. The second part of the investigation is about using an instrumented hammer to hit the different delamination specimens. The hammer is equipped with a force transducer giving an opportunity to measure the force exerted by the strike against the concrete surface. When a hammer is struck against a concrete surface a spectrum of vibrations is created, dependent on the weight of the hammer and the elasticity of the concrete. A light hammer generates higher frequencies than a heavy one. Three different hammer

  11. Influence of substrate topography on cathodic delamination of anticorrosive coatings

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    and thereby the substrate topography, whereas the coating thickness had little influence. The presence of a significant potential gradient between the anode and the cathode and the dependency of the delamination rate on the tortuosity of the steel surface suggests that cathodic delamination is controlled...

  12. Delamination in surface plies of graphite/epoxy caused by the edge trimming process

    Science.gov (United States)

    Colligan, K.; Ramulu, M.

    Delamination in surface plies of graphite/epoxy laminates caused by edge trimming using polycrystalline diamond (PCD) and carbide cutters is investigated. The effect of several machining variables on formation of delaminations in the surface plies of a graphite fiber reinforced composite material is presented. Machining tests were performed to assess the impact of cutter geometry, feedrate, rotation direction, and graphite fiber orientation. Three typical delamination modes were observed and documented. Feedrate was found to have a significant effect on surface ply delamination in graphite/epoxy composite materials.

  13. Application of scanning laser Doppler vibrometry for delamination detection in composite structures

    Science.gov (United States)

    Kudela, Pawel; Wandowski, Tomasz; Malinowski, Pawel; Ostachowicz, Wieslaw

    2017-12-01

    In this paper application of scanning laser Doppler vibrometry for delamination detection in composite structures was presented. Delamination detection was based on a guided wave propagation method. In this papers results from numerical and experimental research were presented. In the case of numerical research, the Spectral Element Method (SEM) was utilized, in which a mesh was composed of 3D spectral elements. SEM model included also a piezoelectric transducer. In the experimental research guided waves were excited using the piezoelectric transducer whereas the sensing process was conducted using scanning laser Doppler vibrometer (SLDV). Analysis of guided wave propagation and its interaction with delamination was based on a full wavefield approach. Attention was focused on interactions of guided waves with delamination manifested by A0 mode reflection, A0 mode entrapment, and S0/A0 mode conversion. Delamination was simulated by a teflon insert located between plies of composite material. Results of interaction with symmetrically and nonsymmetrical placed delamination (in respect to the composite sample thickness) were presented. Moreover, the authors investigated different size of delaminations. Damage detection was based on a new signal processing algorithm proposed by the authors. In this approach the weighted RMS was utilized selectively. It means that the summation in RMS formula was performed only for a specially selected time instances. Results for simple composite panels, panel with honeycomb core, and real stiffened composite panel from the aircraft were presented.

  14. Optimization of Cutting Parameters on Delamination of Drilling Glass-Polyester Composites

    Directory of Open Access Journals (Sweden)

    Majid Habeeb Faidh-Allah

    2018-02-01

    Full Text Available This paper attempted to study the effect of cutting parameters (spindle speed and feed rate on delamination phenomena during the drilling glass-polyester composites. Drilling process was done by CNC machine with 10 mm diameter of high-speed steel (HSS drill bit. Taguchi technique with L16 orthogonal layout was used to analyze the effective parameters on delamination factor. The optimal experiment was no. 13 with spindle speed 1273 rpm and feed 0.05 mm/rev with minimum delamination factor 1.28.

  15. Cartilage Delamination Flap Mimicking a Torn Medial Meniscus

    Directory of Open Access Journals (Sweden)

    Gan Zhi-Wei Jonathan

    2016-01-01

    Full Text Available We report a case of a chondral delamination lesion due to medial parapatellar plica friction syndrome involving the medial femoral condyle. This mimicked a torn medial meniscus in clinical and radiological presentation. Arthroscopy revealed a chondral delamination flap, which was debrided. Diagnosis of chondral lesions in the knee can be challenging. Clinical examination and MRI have good accuracy for diagnosis and should be used in tandem. Early diagnosis and treatment of chondral lesions are important to prevent progression to early osteoarthritis.

  16. Local Guided Wavefield Analysis for Characterization of Delaminations in Composites

    Science.gov (United States)

    Rogge, Matthew D.; Campbell Leckey, Cara A.

    2012-01-01

    Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations. Keywords: Ultrasonic wavefield imaging, Windowed Fourier transforms, Guided waves, Structural health monitoring, Nondestructive evaluation

  17. DELAMINATION PREDICTION IN DRILLING OF CFRP COMPOSITES USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    K. PALANIKUMAR

    2011-04-01

    Full Text Available Carbon fibre reinforced plastic (CFRP materials play a major role in the applications of aeronautic, aerospace, sporting and transportation industries. Machining is indispensible and hence drilling of CFRP materials is considered in this present study with respect to spindle speed in rpm, drill size in mm and feed in mm/min. Delamination is one of the major defects to be dealt with. The experiments are carried out using computer numerical control machine and the results are applied to an artificial neural network (ANN for the prediction of delamination factor at the exit plane of the CFRP material. It is found that ANN model predicts the delamination for any given set of machining parameters with a maximum error of 0.81% and a minimum error of 0.03%. Thus an ANN model is highly suitable for the prediction of delamination in CFRP materials.

  18. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    International Nuclear Information System (INIS)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung

    2016-01-01

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived

  19. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-10-15

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

  20. Modeling Quasi-Static and Fatigue-Driven Delamination Migration

    Science.gov (United States)

    De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.

    2014-01-01

    An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.

  1. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Dam-Johansen, Kim; Erik Weinell, Claus

    2010-01-01

    So-called cathodic delamination is one of the major modes of failure for organic coatings immersed in electrolyte solutions (e.g. seawater). Cathodic delamination occurs as a result of the electrochemical reactions. which takes place on a corroding steel surface. This means that reactants must co...

  2. Reduction of cathodic delamination rates of anticorrosive coatings using free radical scavengers

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Weinell, C. E.; Dam-Johansen, Kim

    2010-01-01

    Cathodic delamination is one of the major modes of failure for anticorrosive coatings subjected to a physical damage and immersed in seawater. The cause of cathodic delamination has been reported to be the result of a chemical attack at the coating-steel interface by free radicals and peroxides...... formed as intermediates in the cathodic reaction during the corrosion process. In this study, antioxidants (i.e., free radical scavengers and peroxide decomposers) have been incorporated into various generic types of coatings to investigate the effect of antioxidants on the rate of cathodic delamination...... of epoxy coatings on cold rolled steel. The addition of free radical scavengers to epoxy coatings improved the resistance toward cathodic delamination by up to 50% during seawater immersion, while peroxide decomposers had a limited effect. Testing using substrates prepared from stainless steel...

  3. Vibration of a Laminated Beam with a Delamination Including Contact Effects

    Directory of Open Access Journals (Sweden)

    W. Ostachowicz

    2004-01-01

    Full Text Available Certain results are presented in this paper on damped vibration of a laminated cantilever beam with a single closing delamination. In order to investigate this task the finite element method has been applied in the current study. For modelling the beam higher order shear deformation beam finite elements have been used. The vibration of the beam is investigated in the time domain using a dynamic contact algorithm developed by the authors. The algorithm is based on the Newmark method and also incorporates a Newton-Raphson based procedure for resolving the equation of motion. The time series obtained from solving the equation of motion have been subsequently analysed in the frequency domain by using FFT (Fast Fourier Transform. The vibration responses of the beam due to various harmonic and impulse excitations, at different delamination locations, and for different delamination lengths, as well as changes in the dissipation of damping energy due to the delamination, have all been considered in the paper.

  4. Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples

    International Nuclear Information System (INIS)

    Khun, N.W.; Frankel, G.S.

    2013-01-01

    Highlights: ► Cathodic delamination of epoxy coated steel samples was studied using SKP. ► Delamination of the coating decreased with increased substrate surface roughness. ► Delamination of the coating was faster on the substrate with parallel surface scratches. ► Delamination of the coating exposed to weathering conditions increased with prolonged exposure. - Abstract: The Scanning Kelvin Probe (SKP) technique was used to investigate the effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel. The cathodic delamination rate of the epoxy coatings dramatically decreased with increased surface roughness of the underlying steel substrate. The surface texture of the steel substrates also had a significant effect in that samples with parallel abrasion lines exhibiting faster cathodic delamination in the direction of the lines compared to the direction perpendicular to the lines. The cathodic delamination kinetics of epoxy coatings previously exposed to weathering conditions increased with prolonged exposure due to pronounced polymer degradation. SEM observation confirmed that the cyclic exposure to UV radiation and water condensation caused severe deterioration in the polymer structures with surface cracking and erosion. The SKP results clearly showed that the cathodic delamination of the epoxy coatings was significantly influenced by the surface features of the underlying steel substrates and the degradation of the coatings.

  5. Delamination detection in reinforced concrete using thermal inertia

    International Nuclear Information System (INIS)

    Del Grande, N K; Durbin, P F.

    1998-01-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  6. The effect of delaminations on local buckling in wind turbine blades

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Bitsche, Robert; Branner, Kim

    2015-01-01

    In this article the effect of delaminations on the load carrying capacity of a large wind turbine blade is studied numerically. For this purpose an 8.65 m long blade section with different initial delaminations in the main spar was subjected to a flapwise dominated bending moment. The model...

  7. Quantitative Evaluation of Delamination in Composites Using Lamb Waves

    Science.gov (United States)

    Michalcová, L.; Hron, R.

    2018-03-01

    Ultrasonic guided wave monitoring has become very popular in the area of structural health monitoring (SHM) of aerospace structures. Any possible type of damage must be reliably assessed. The paper deals with delamination length determination in DCB specimens using Lamb waves. An analytical equation based on the velocity dependence on variable thickness is utilized. The group velocity of the fundamental antisymmetric A0 mode rapidly changes in a particular range of the frequency-thickness product. Using the same actuation frequency the propagation velocity is different for delaminated structure. Lamb wave based delamination lengths were compared to the visually determined lengths. The method of the wave velocity determination proved to be essential. More accurate results were achieved by tracking the maximum amplitude of A0 mode than the first signal arrival. These findings are considered as the basis for the damage evaluation of complex structures.

  8. Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.

    2014-04-01

    The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.

  9. Edge delamination of composite laminates subject to combined tension and torsional loading

    Science.gov (United States)

    Hooper, Steven J.

    1990-01-01

    Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.

  10. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  11. Using glass-graded zirconia to increase delamination growth resistance in porcelain/zirconia dental structures.

    Science.gov (United States)

    Chai, Herzl; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2018-01-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy G C was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Buckling Analysis of Single and Multi Delamination In Composite Beam Using Finite Element Method

    Science.gov (United States)

    Simanjorang, Hans Charles; Syamsudin, Hendri; Giri Suada, Muhammad

    2018-04-01

    Delamination is one type of imperfection in structure which found usually in the composite structure. Delamination may exist due to some factors namely in-service condition where the foreign objects hit the composite structure and creates inner defect and poor manufacturing that causes the initial imperfections. Composite structure is susceptible to the compressive loading. Compressive loading leads the instability phenomenon in the composite structure called buckling. The existence of delamination inside of the structure will cause reduction in buckling strength. This paper will explain the effect of delamination location to the buckling strength. The analysis will use the one-dimensional modelling approach using two- dimensional finite element method.

  13. Delaminated Transfer of CVD Graphene

    Science.gov (United States)

    Clavijo, Alexis; Mao, Jinhai; Tilak, Nikhil; Altvater, Michael; Andrei, Eva

    Single layer graphene is commonly synthesized by dissociation of a carbonaceous gas at high temperatures in the presence of a metallic catalyst in a process known as Chemical Vapor Deposition or CVD. Although it is possible to achieve high quality graphene by CVD, the standard transfer technique of etching away the metallic catalyst is wasteful and jeopardizes the quality of the graphene film by contamination from etchants. Thus, development of a clean transfer technique and preservation of the parent substrate remain prominent hurdles to overcome. In this study, we employ a copper pretreatment technique and optimized parameters for growth of high quality single layer graphene at atmospheric pressure. We address the transfer challenge by utilizing the adhesive properties between a polymer film and graphene to achieve etchant-free transfer of graphene films from a copper substrate. Based on this concept we developed a technique for dry delamination and transferring of graphene to hexagonal boron nitride substrates, which produced high quality graphene films while at the same time preserving the integrity of the copper catalyst for reuse. DOE-FG02-99ER45742, Ronald E. McNair Postbaccalaureate Achievement Program.

  14. Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation

    Science.gov (United States)

    Kesavan, Gokul; Lieven, Oliver; Mamidi, Anant; Öhlin, Zarah Löf; Johansson, Jenny Kristina; Li, Wan-Chun; Lommel, Silvia; Greiner, Thomas Uwe; Semb, Henrik

    2014-01-01

    Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that β cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in β cells inhibits β cell delamination and differentiation. These processes are normally associated with junctional actin and cell-cell junction disassembly and the expression of fate-determining transcription factors, such as Isl1 and MafA. Mechanistically, we demonstrate that genetic ablation of N-WASP in β cells expressing constitutively active Cdc42 partially restores both delamination and β cell differentiation. These findings elucidate how junctional actin dynamics via Cdc42/N-WASP signaling cell-autonomously control not only epithelial delamination but also cell differentiation during mammalian organogenesis. PMID:24449844

  15. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  16. Delamination Detection in Carbon Fibre Reinforced Composites Using Electrical Resistance Measurement

    International Nuclear Information System (INIS)

    Kovalovs, A; Rucevskis, S; Kulakov, V; Aniskevich, A

    2016-01-01

    In the present study 2-D numerical analysis of strip-type laminated composite specimens with and without damage is considered and numerical investigation is carried out by using a finite element method. The surface and oblique resistances are numerically calculated according to the two-probe and four-probe methods. The electrical conductivity of the composite laminate in the longitudinal direction is constant, while the electrical conductivity in the through-thickness direction is used as a variable in the parametric study. The resistance change due to delamination for each case is estimated by comparing the obtained resistance with the corresponding resistance of the specimen without delamination. Applicability and effectiveness of the proposed method are investigated by using various lengths of a delaminated crack in the specimen. (paper)

  17. To improve impact damage response of single and multi-delaminated FRP composites using natural Flax yarn

    International Nuclear Information System (INIS)

    Ghasemnejad, H.; Soroush, V.R.; Mason, P.J.; Weager, B.

    2012-01-01

    Highlights: ► To study the impact resistance of delaminated composite structures. ► To improve the impact resistance of delaminated composite structures using natural Flax yarn. ► To investigate the effect of z-pinning on the damage process of composite materials. ► To develop FE techniques to model the impact process of composite structures using LSDYNA. -- Abstract: The ply delamination which is known as a principle mode of failure of layered composites due to separation along the interfaces of the layers is one of the main concerns in designing of composite material structures. In this regard, the effect of hybrid laminate lay-up in multi-delaminated composite beam was investigated. The Charpy impact test was chosen to study the energy absorbing capability of delaminated composite beam. Hybrid composite beams were fabricated from combination of glass/epoxy and carbon/epoxy composites. To improve the impact behaviour of multi-delaminated composite beams the laminated hybrid composite beams were pinned using Flax yarns before curing process. It was shown that the multi-delaminated composite beams which are pinned in z-direction are able to arrest the crack propagation and consequently absorb more energy in comparison with simple ones in hybrid composite beams. The Charpy impact test of delaminated composite beams was also simulated by finite element software LS-DYNA and the results were verified with the relevant experimental results.

  18. Laser Doppler Vibrometer Based Examination of the Efficiency of Introducing Artificial Delaminations into Composite Shells

    Directory of Open Access Journals (Sweden)

    Kustroń Kamila

    2015-09-01

    Full Text Available During its operation, the laminate shell of the watercraft hull can be exposed to local stability losses caused by the appearance and development of delaminations. The sources of these delaminations are discontinuities, created both in the production process and as a result of bumps of foreign bodies into the hull in operation. In the environment of fatigue loads acting on the hull, the delaminations propagate and lead to the loss of load capacity of the hull structure. There is a need to improve diagnostic systems used in Structural Health Monitoring (SHM of laminate hull elements to detect and monitor the development of the delaminations. Effective diagnostic systems used for delamination assessment base on expert systems. Along with other tools, the expert diagnostic advisory systems make use of the non-destructive examination method which consists in generating elastic waves in the hull shell structure and observing their changes by comparing the recorded signal with damage patterns collected in the expert system database. This system requires introducing certain patterns to its knowledge base, based on the results of experimental examinations performed on specimens with implemented artificial delaminations. The article presents the results of the examination oriented on assessing the delaminations artificially generated in the structure of glass- and carbon-epoxy laminates by introducing local non-adhesive layers with the aid of thin polyethylene film, teflon insert, or thin layer of polyvinyl alcohol. The efficiency of each method was assessed using laser vibrometry. The effect of the depth of delamination position in the laminate on the efficiency of the applied method is documented as well.

  19. Controlled delamination of metal films by hydrogen loading

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Eugen

    2008-11-18

    n this work we quantitatively determine the adhesion energy between metal films and their substrates. Therefore a new controlled buckling technique is established, applying the strong compressive in-plane stress that results in thin films clamped on rigid substrates during hydrogen loading. When the elastic energy stored in the H-loaded thin film exceeds the adhesion energy between film and substrate, delamination occurs. At the onset of delamination, a critical hydrogen concentration, a critical stress value and a critical bending of the substrate are present, which are quantitative measures for the adhesion energy and permit its calculation. As the critical values are determined at the onset of delamination, plastic deformation is negligible, which denies the quantitative determination of adhesion energies in conventional test setups. In multilayer-systems, adhesion energies between substrates and films that hardly absorb hydrogen can be measured by the controlled buckling technique, when the films of interest are coated with hydrogen absorbing films (active layer). The measurements are performed easily and can be repeated under the same test conditions, while variables such as the thickness of the coating materials or the boundary surface structure can be varied and optimized. In this work the adhesion energies of different materials on polycarbonate and niobium on sapphire are investigated. (orig.)

  20. Delamination of Pearlitic Steel Wires: The Defining Role of Prior-Drawing Microstructure

    Science.gov (United States)

    Durgaprasad, A.; Giri, S.; Lenka, S.; Sarkar, Sudip Kumar; Biswas, Aniruddha; Kundu, S.; Mishra, S.; Chandra, S.; Doherty, R. D.; Samajdar, I.

    2018-03-01

    This article reports the occasional (alignment of the pearlite: 22 ± 5 pct vs 34 ± 4 pct in the nondelaminated wires. Although all wires had similar through-thickness texture and stress gradients, delaminated wires had stronger gradients in composition and higher hardness across the ferrite-cementite interface. Carbide dissolution and formation of supersaturated ferrite were clearly correlated with delamination, which could be effectively mitigated by controlled laboratory annealing at 673 K. Direct observations on samples subjected to simple shear revealed significant differences in shear localizations. These were controlled by pearlite morphology and interlamellar spacing. Prior-drawing microstructure of coarse misaligned pearlite thus emerged as a critical factor in the wire drawing-induced delamination of the pearlitic wires.

  1. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Sun, Denghao; Takeda, Nobuo

    2014-01-01

    This study combines our hierarchical fiber-optic-based delamination detection system with a microvascular self-healing material to develop the first autonomous sensing-healing system applicable to large-scale composite structures. In this combined system, embedded vascular modules are connected through check valves to a surface-mounted supply tube of a pressurized healing agent while fiber-optic-based sensors monitor the internal pressure of these vascular modules. When delamination occurs, the healing agent flows into the vascular modules breached by the delamination and infiltrates the damage for healing. At the same time, the pressure sensors identify the damaged modules by detecting internal pressure changes. This paper begins by describing the basic concept of the combined system and by discussing the advantages that arise from its hierarchical nature. The feasibility of the system is then confirmed through delamination infiltration tests. Finally, the hierarchical system is validated in a plate specimen by focusing on the detection and infiltration of the damage. Its self-diagnostic function is also demonstrated. (paper)

  2. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces

    DEFF Research Database (Denmark)

    Sørensen, P.A.; Dam-Johansen, Kim; Weinell, C.E.

    2010-01-01

    So-called cathodic delamination is one of the major modes of failure for organic coatings immersed in electrolyte solutions (e.g. seawater). Cathodic delamination occurs as a result of the electrochemical reactions, which takes place on a corroding steel surface. This means that reactants must...... continuously be transported from the bulk solution to the cathodic areas. The transport of sodium ions from a defect in the coating to the cathodic areas is generally considered the rate-determining step for cathodic delamination because the transport of oxygen and water through the coating is sufficient...... for the corrosion processes. In this work, a novel practical method, which allows direct estimation of the apparent diffusion coefficient of sodium ions in the ultrathin aqueous layer at the coating-steel interface, is described. The apparent diffusion coefficients estimated are of similar magnitude as previously...

  3. Fiber Optic Thermal Detection of Composite Delaminations

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  4. Delamination propensity of pharmaceutical glass containers by accelerated testing with different extraction media.

    Science.gov (United States)

    Guadagnino, Emanuel; Zuccato, Daniele

    2012-01-01

    The delamination of pharmaceutical glass is a serious issue, as it can cause glass particles to appear in vials, a problem that has forced a number of drug product recalls in recent years. In Type I pharmaceutical glass vials, delamination occurs generally at the bottom and shoulder, where extensive flaming during the conversion process can favor a strong evaporation of alkali and borate species and the formation of heavily enriched silica layers. The contact with parenteral preparations dissolved in an alkaline medium increases the rate of glass corrosion, while the differential hydration of these layers can cause the detachment of flakes. The purpose of this study was to investigate the effect of the pH and the composition of the extraction solutions on the propensity of different glass types to delaminate. Repeated autoclave extractions at 121 °C were carried out on different glass types with different extraction media, including organic extractants like citric and glutaric acid. When vials were in contact with alkaline solutions and similarly aggressive media, an increase in silica extraction values indicated glass corrosion and an increasing risk for further delamination. Under such conditions expansion 33 glass is extensively corroded, showing high silica concentration and heavy flaking as compared to other glass types. Sulfur-treated glass also showed early flaking, even if SiO(2) concentration was very low. A similar ranking was observed with extractions carried out with glutaric and citric acids, but at far much higher SiO(2) concentration levels. Extractions with 0.9% KCl solution can be used as an accelerated test to highlight the propensity of a glass to delaminate, but in no case it can be taken as a guarantee that the glass will not delaminate when exposed to the pharmaceutical drug, whose extraction ability requires case-by-case study. How can injectable drug manufacturers prevent glass delamination? The issue of delamination is a serious one, as it

  5. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  6. Mechanism of Electrochemical Delamination of Two-Dimensional Materials from Their Native Substrates by Bubbling.

    Science.gov (United States)

    Sun, Jie; Fan, Xing; Guo, Weiling; Liu, Lihui; Liu, Xin; Deng, Jun; Xu, Chen

    2015-12-16

    A capacitor-based circuit model is proposed to explain the electrochemical delamination of two-dimensional materials from their native substrates where produced gas bubbles squeeze into the interface. The delamination is actually the electric breakdown of the capacitor formed between the solution and substrate. To facilitate the procedure, the backside of the ubstrate has to be shielded so that the capacitor breakdown voltage can be reached. The screening effect can be induced either by nonreactive ions around the electrode or, more effectively, by an undetachable insulator. This mechanism serves as a guideline for the surface science and applications involving the bubbling delamination.

  7. Quantitative Evaluation of Delamination Inside of Composite Materials by ESPI

    International Nuclear Information System (INIS)

    Kim, Koung Suk; Yang, Kwang Young; Kang, Ki Soo; Ji, Chang June

    2004-01-01

    Electronic speckle pattern interferometry (ESPI) for quantitative evaluation of delaminations inside of a composite material plate is described. Delaminations caused by the impact on composite materials are difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of the defects made in the composite plates by impact load. Artificial defects are introduced inside of the composite plate for the development of a reliable ESPI inspection technique. Real defects produced by impact tester are inspected and compared with the results of visual inspection which shows a good agreement within 5% error

  8. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  9. Peeling back the lithosphere: Controlling parameters, surface expressions and the future directions in delamination modeling

    Science.gov (United States)

    Göğüş, Oğuz H.; Ueda, Kosuke

    2018-06-01

    Geodynamical models investigate the rheological and physical properties of the lithosphere that peels back (delaminates) from the upper-middle crust. Meanwhile, model predictions are used to relate to a set of observations in the geological context to the test the validity of delamination. Here, we review numerical and analogue models of delamination from these perspectives and provide a number of first-order topics which future modeling studies may address. Models suggest that the presence of the weak lower crust that resides between the strong mantle lithosphere (at least 100 times more viscous/stronger) and the strong upper crust is necessary to develop delamination. Lower crustal weakening may be induced by melt infiltration, shear heating or it naturally occurs through the jelly sandwich type strength profile of the continental lithosphere. The negative buoyancy of the lithosphere required to facilitate the delamination is induced by the pre-existing ocean subduction and/or the lower crustal eclogitization. Surface expression of the peeling back lithosphere has a distinct transient and migratory imprint on the crust, resulting in rapid surface uplift/subsidence, magmatism, heating and shortening/extension. New generation of geodynamical experiments can explain how different types of melting (e.g hydrated, dry melting) occurs with delamination. Reformation of the lithosphere after removal, three dimensional aspects, and the termination of the process are key investigation areas for future research. The robust model predictions, as with other geodynamic modeling studies should be reconciled with observations.

  10. Numerical evaluation of delamination in CFRP laminates by stereo X-ray pictures

    International Nuclear Information System (INIS)

    Kunoo, Kazuo; Uda, Nobuhide; Ono, Kousei; Onohara, Kaoru; Takahashi, Toshiaki; Tanaka, Hisahiro.

    1989-01-01

    This paper presents a method for quantifying damage in composite laminates by stereo X-ray pictures. A three dimensional image of delamination, which is one of the characteristic types of damage in composite laminates can be reconstructed with this method. A digital image processing technique is used to analyze X-ray pictures. Experimental results of reconstructing delaminations in carbon/epoxy cross-ply laminates show that this method is accurate enough for practical usage. (author)

  11. Piecewise Delamination Drives Uplift in the Atlas Mountains Region of Morocco

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E.; Martin Davila, J.; mimoun, H.; Josep, G.; Palomeras, I.

    2013-12-01

    The elevation of the intra-continental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco by inverting teleseimic p-wave delay times, complemented with local delays, recorded on a dense array of stations in the Iberian peninsula and Morocco. A surface wave model provides constraint on the shallower layers. We determine the geometry of lithospheric cavities and mantle upwelling beneath the Middle Atlas and central High Atlas, and image delaminated lithosphere at ~400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle, sourced from regional upwellings in northern Africa or the Canary Islands, enabled the mobilization of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, where we image the most recent delamination. The Atlas Mountains of Morocco stand as an example of mantle-generated uplift and large-scale lithospheric loss in a mildly contractional orogen.

  12. Mechanism of Electrochemical Delamination of Two-Dimensional Materials from Their Native Substrates by Bubbling

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2015-12-01

    Full Text Available A capacitor-based circuit model is proposed to explain the electrochemical delamination of two-dimensional materials from their native substrates where produced gas bubbles squeeze into the interface. The delamination is actually the electric breakdown of the capacitor formed between the solution and substrate. To facilitate the procedure, the backside of the ubstrate has to be shielded so that the capacitor breakdown voltage can be reached. The screening effect can be induced either by nonreactive ions around the electrode or, more effectively, by an undetachable insulator. This mechanism serves as a guideline for the surface science and applications involving the bubbling delamination.

  13. The influence of a delaminated layer on the impedance spectrum of an operating solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mechanical Engineering; Kesler, O. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    The development of a 2-dimensional finite element model of Solid Oxide Fuel Oxide (SOFC) AC impedance behavior was discussed. The model was developed to simulate the frequency response of a single cell with and without mechanical damage. Impedance spectroscopy was used in the development of a diagnostic technique to identify a delamination failure within a working SOFC. Changes in the impedance spectrum of a working cell were observed on the appearance of a delamination between 2 adjacent layers. The intent was to identify distinctive patterns in the cracked cell spectra that provide enough information about the degradation process so that it can be recognized and distinguished from other electrochemical processes and degradation modes. It was anticipated that the method will provide a useful tool for both maintenance and research purposes, providing insight into the causes of inadequate functioning. Results indicate that the presence of mechanically induced damage within the components of an SOFC can be detected by comparing the frequency response of the undamaged cell with that of a cell in which in-plane cracking or delamination has occurred. The presence of such defects manifests itself as a new semicircle in the Nyquist impedance diagram of the full cell, with a relaxation frequency of approximately 35 kHz. It was concluded that the ability to distinguish the crack-induced semicircle from the semicircles induced by electrochemical reactions depended on the difference between the characteristic relaxation times and their relative sizes. 17 refs., 1 tab.,10 figs.

  14. Effect of Location of Delamination on Free Vibration of Cross-Ply Conical Shells

    Directory of Open Access Journals (Sweden)

    Sudip Dey

    2012-01-01

    Full Text Available Location of delamination is a triggering parameter for structural instability of laminated composites. In this paper, a finite element method is employed to determine the effects of location of delamination on free vibration characteristics of graphite-epoxy cross-ply composite pre-twisted shallow conical shells. The generalized dynamic equilibrium equation is derived from Lagrange's equation of motion neglecting Coriolis effect for moderate rotational speeds. The formulation is exercised by using an eight noded isoparametric plate bending element based on Mindlin's theory. Multi-point constraint algorithm is utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. The standard eigen value problem is solved by applying the QR iteration algorithm. Finite element codes are developed to obtain the numerical results concerning the effects of location of delamination, twist angle and rotational speed on the natural frequencies of cross-ply composite shallow conical shells. The mode shapes are also depicted for a typical laminate configuration. Numerical results obtained from parametric studies of both symmetric and anti-symmetric cross-ply laminates are the first known non-dimensional natural frequencies for the type of analyses carried out here.

  15. Nondestructive testing of delaminated interfaces between two materials using electromagnetic interrogation

    Science.gov (United States)

    Cakoni, Fioralba; de Teresa, Irene; Monk, Peter

    2018-06-01

    We consider the problem of detecting whether two materials that should be in contact have separated or delaminated using electromagnetic radiation. The interface damage is modeled as a thin opening between two materials of different electromagnetic properties. To derive a reconstruction algorithm that focuses on testing for the delamination at the interface between the two materials, we use the approximate asymptotic model for the forward problem derived in de Teresa (2017 PhD Thesis University of Delaware). In this model, the differential equations in the small opening are replaced by approximate transmission conditions for the electromagnetic fields across the interface. We also assume that the undamaged or background state is known and it is desired to find where the delamination has opened. We adapt the linear sampling method to this configuration in order to locate the damaged part of the interface from a knowledge of the scattered field and the undamaged configuration, but without needing to know the electromagnetic properties of the opening. Numerical examples are presented to validate our algorithm.

  16. Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination

    Science.gov (United States)

    Al-Jabr, Haytham M.

    The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample

  17. Transient Dynamic Response of Delaminated Composite Rotating Shallow Shells Subjected to Impact

    Directory of Open Access Journals (Sweden)

    Amit Karmakar

    2006-01-01

    Full Text Available In this paper a transient dynamic finite element analysis is presented to study the response of delaminated composite pretwisted rotating shallow shells subjected to low velocity normal impact. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and moderate rotational speeds are considered wherein the Coriolis effect is negligible. An eight noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. To satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front a multipoint constraint algorithm is incorporated which leads to unsymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are performed in respect of location of delamination, angle of twist and rotational speed for centrally impacted graphite-epoxy composite cylindrical shells.

  18. Quasistatic Delamination of Sandwich-Like Kirchhoff-Love Plates

    Czech Academy of Sciences Publication Activity Database

    Freddi, L.; Roubíček, Tomáš; Zanini, Ch.

    2013-01-01

    Roč. 113, č. 2 (2013), s. 219-250 ISSN 0374-3535 R&D Projects: GA ČR GAP201/10/0357 Institutional research plan: CEZ:AV0Z20760514 Keywords : adhesive contact * delamination * mixed modes Subject RIV: BA - General Mathematics Impact factor: 1.043, year: 2013

  19. Utilization of Large Cohesive Interface Elements for Delamination Simulation

    DEFF Research Database (Denmark)

    Bak, Brian Lau Verndal; Lund, Erik

    2012-01-01

    This paper describes the difficulties of utilizing large interface elements in delamination simulation. Solutions to increase the size of applicable interface elements are described and cover numerical integration of the element and modifications of the cohesive law....

  20. Modeling Delamination of Interfacial Corner Cracks in Multilayered Structures

    DEFF Research Database (Denmark)

    Veluri, Badrinath (Badri); Jensen, Henrik Myhre

    2013-01-01

    Multilayered electronic components, typically of heterogeneous materials, delaminate under thermal and mechanical loading. A phenomenological model focused on modeling the shape of such interface cracks close to corners in layered interconnect structures for calculating the critical stress...

  1. Quasistatic delamination models for Kirchhoff-Love plates

    Czech Academy of Sciences Publication Activity Database

    Freddi, L.; Paroni, R.; Roubíček, Tomáš; Zanini, Ch.

    2011-01-01

    Roč. 91, č. 11 (2011), s. 845-865 ISSN 0044-2267 R&D Projects: GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z20760514 Keywords : brittle delamination * adhesive contact * rate-independent processes Subject RIV: BA - General Mathematics Impact factor: 0.863, year: 2011 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201000171/abstract

  2. Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete overlay

    Science.gov (United States)

    Bao, Yi; Valipour, Mahdi; Meng, Weina; Khayat, Kamal H.; Chen, Genda

    2017-08-01

    This study develops a delamination detection system for smart ultra-high-performance concrete (UHPC) overlays using a fully distributed fiber optic sensor. Three 450 mm (length) × 200 mm (width) × 25 mm (thickness) UHPC overlays were cast over an existing 200 mm thick concrete substrate. The initiation and propagation of delamination due to early-age shrinkage of the UHPC overlay were detected as sudden increases and their extension in spatial distribution of shrinkage-induced strains measured from the sensor based on pulse pre-pump Brillouin optical time domain analysis. The distributed sensor is demonstrated effective in detecting delamination openings from microns to hundreds of microns. A three-dimensional finite element model with experimental material properties is proposed to understand the complete delamination process measured from the distributed sensor. The model is validated using the distributed sensor data. The finite element model with cohesive elements for the overlay-substrate interface can predict the complete delamination process.

  3. Delaminating and restacking MgAl-layered double hydroxide monitored and characterized by a range of instrumental methods

    Science.gov (United States)

    Muráth, Szabolcs; Somosi, Zoltán; Tóth, Ildikó Y.; Tombácz, Etelka; Sipos, Pál; Pálinkó, István

    2017-07-01

    The delamination-restacking properties of MgAl-layered double hydroxide (MgAl-LDH) were studied in various solvents. The LDH samples were successfully delaminated in polar amides (formamide, N-methylformamide, N-methylacetamide). Usually, delamination was finalized by ultrasonic treatment. As rehydrating solutions, numerous Na-salts with single-, double- and triple-charged anions were used. Reconstruction was accomplished with anions of one or two negative charges, but triple-charged ones generally disrupted the rebuilding process, likely, because their salts with the metals of the LDH are very stable, and the thin layers can more readily transform to salts than the ordered materials. Samples and delamination-restacking processes were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX).

  4. The ‘Sticky Elastica’: delamination blisters beyond small deformations

    KAUST Repository

    Wagner, Till J. W.; Vella, Dominic

    2013-01-01

    We consider the form of an elastic loop adhered to a rigid substrate: the 'Sticky Elastica'. In contrast to previous studies of the shape of delamination 'blisters', the theory developed accounts for deflections with large slope (i.e. geometrically

  5. Structural health monitoring strategy for detection of interlaminar delamination in composite plates

    International Nuclear Information System (INIS)

    Quaegebeur, N; Micheau, P; Masson, P; Maslouhi, A

    2010-01-01

    In this paper, a structural health monitoring strategy for detecting interlaminar delamination in a carbon fiber reinforced polymer structure using Lamb waves is proposed. The delamination is simulated by inserting a Teflon tape between two transverse plies and the Lamb wave generation and measurement is enabled by using piezoceramic elements. The Lamb wave theoretical propagation and through thickness strain distribution are studied, in order to determine the optimal configuration of the final system in terms of mode and frequency selection, and piezoceramic sizing and spacing, for detection of cross-sectional delamination. Pitch and catch measurements are performed by comparing wave propagations for different frequencies and along damaged and undamaged paths of the structure, and the analysis of results is performed using the reassigned short time Fourier transform. It appears that in the low frequency range (below 300 kHz), the A0 mode is sensitive to the damage, while in the high frequency range, S1 and A1 modes are both very sensitive to the damage while the propagation of the S0 mode is not affected very much

  6. Identification of delamination interface in composite laminates using scattering characteristics of lamb wave: numerical and experimental studies

    Science.gov (United States)

    Singh, Rakesh Kumar; Ramadas, C.; Balachandra Shetty, P.; Satyanarayana, K. G.

    2017-04-01

    Considering the superior strength properties of polymer based composites over metallic materials, they are being used in primary structures of aircrafts. However, these polymeric materials are much more complex in behaviour due to their structural anisotropy along with existence of different materials unlike in metallic alloys. These pose challenge in flaw detection, residual strength determination and life of a structure with their high susceptibility to impact damage in the form of delaminations/disbonds or cracks. This reduces load-bearing capability and potentially leads to structural failure. With this background, this study presents a method to identify location of delamination interface along thickness of a laminate. Both numerical and experimental studies have been carried out with a view to identify the defect, on propagation, mode conversion and scattering characteristics of fundamental anti-symmetric Lamb mode (Ao) when it passed through a semi-infinite delamination. Further, the reflection and transmission scattering coefficients based on power and amplitude ratios of the scattered waves have been computed. The methodology was applied on numerically simulated delaminations to illustrate the efficacy of the method. Results showed that it could successfully identify delamination interface.

  7. Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Seok [Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904 (Japan); Liu Yufu [Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904 (Japan); Kagawa, Yutaka [Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904 (Japan)]. E-mail: kagawa@iis.u-tokyo.ac.jp

    2007-06-15

    A new simple pushout technique for evaluation of interfacial shear mechanical properties in thermal barrier coatings has been developed. The technique is similar to the pushout test of fiber-reinforced ceramics, except for the specimen shape and support method. The technique has been applied to evaluation of interfacial delamination toughness, {gamma} {sub i}, of the electron beam physical vapor deposition (EB-PVD) ZrO{sub 2} thermal barrier coating (TBC) system. The change of {gamma} {sub i} in the EB-PVD system with thermal exposure is measured and discussed in terms of microstructural change and delamination crack path. The measured delamination toughness varied from {gamma} {sub i} = 10 to 115 J/m{sup 2}. The delamination path and TGO growth were found to be closely related. The delamination toughness significantly decreases due to the formation and growth of a spinel phase in the TGO layer. The relation between delamination toughness and delamination behavior is discussed.

  8. THE INFLUENCE OF THE TOOL POINT ANGLE AND FEED RATE ON THE DELAMINATION AT DRILLING OF PRE-LAMINATED PARTICLEBOARD

    Directory of Open Access Journals (Sweden)

    Mihai ISPAS

    2015-12-01

    Full Text Available Pre-laminated particleboard is a wood based composite extensively used in the furniture industry. Drilling is the most common machining process which prepares the panels for joining using twist/helical drills in the absolute majority of cases. The point angle of the drill bit and the feed speed during drilling play a major role in gaining a good surface quality and minimizing the delamination tendency of the pre-laminated particleboard. The objective of this study was to measure and analyze the influence of the two above-mentioned factors on the processing quality, evaluated by de size of delaminations, both, at the entrance side and the exit side of the drill bit. To assess the defect, two parameters were used: the delamination factor and the effective area of delamination. The results showed that, in general, the combination of small point angle with low feed rate minimizes the delamination of pre-laminated particleboard panels at drilling.

  9. Time dependent response of low velocity impact induced composite conical shells under multiple delamination

    Science.gov (United States)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.

  10. Laser micromachining of indium tin oxide films on polymer substrates by laser-induced delamination

    International Nuclear Information System (INIS)

    Willis, David A; Dreier, Adam L

    2009-01-01

    A Q-switched neodymium : yttrium-aluminium-garnet (Nd : YAG) laser was used to ablate indium tin oxide (ITO) thin films from polyethylene terephthalate substrates. Film damage and partial removal with no evidence of a melt zone was observed above 1.7 J cm -2 . Above the film removal threshold (3.3 J cm -2 ) the entire film thickness was removed without substrate damage, suggesting that ablation was a result of delamination of the film in the solid phase. Measurements of ablated fragment velocities near the ablation threshold were consistent with calculations of velocities caused by stress-induced delamination of the ITO film, except for a high velocity component at higher fluences. Nanosecond time-resolved shadowgraph photography revealed that the high velocity component was a shock wave induced by the rapid compression of ambient air when the film delaminated.

  11. Delamination and debonding failure of laminated composite T-joints

    NARCIS (Netherlands)

    Cui, H.

    2014-01-01

    Composites are increasingly being used in aerospace, automotive and other industries. The T-joint (also named stringer stiffened skin) is a typical connection, broadly used in thin-walled structures, such as the wing and fuselage of aircraft. This thesis presents the analysis of the delamination and

  12. Identification of Delamination in Concrete Slabs by SIBIE Procedure

    International Nuclear Information System (INIS)

    Yamada, M.; Yagi, Y.; Ohtsu, M.

    2017-01-01

    The Impact-Echo method is known as a non-destructive testing for concrete structures. The technique is based on the use of low-frequency elastic waves that propagate in concrete to determine the thickness and to detect internal flaws in concrete. The presence and locations of defects in concrete are estimated from identifying peak frequencies in the frequency spectra, which are responsible for the resonance due to time-of-flight from the defects. In practical applications, however, obtained spectra include so many peak frequencies that it is fairly difficult to identify the defects correctly. In order to improve the Impact-Echo method, Stack Imaging of spectral amplitudes Based on Impact-Echo (SIBIE) procedure is developed as an imaging technique applied to the Impact-Echo data, where defects in concrete are identified visually at the cross-section. In this study, the SIBIE procedure is applied to identify the delamination in a concrete slab. It is demonstrated that the delamination can be identified with reasonable accuracy. (paper)

  13. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2.

    Science.gov (United States)

    Rabadán, M Angeles; Herrera, Antonio; Fanlo, Lucia; Usieto, Susana; Carmona-Fontaine, Carlos; Barriga, Elias H; Mayor, Roberto; Pons, Sebastián; Martí, Elisa

    2016-06-15

    Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/β-catenin signalling. Using two in vivo models, we show that Wnt/β-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/β-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of β-catenin, preventing β-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits β-catenin signalling, which then affects NC delamination. © 2016. Published by The Company of Biologists Ltd.

  14. Analysis of a 'barb test' for measuring the mixed-mode delamination toughness of coatings

    International Nuclear Information System (INIS)

    Liu Yufu; Kagawa, Y.; Evans, A.G.

    2008-01-01

    The durability of thermal barrier coatings (TBCs) employed in most turbine engines is limited by delamination, both within the coating and at the coating-substrate interface. A test used for evaluating the mixed-mode toughness pertinent to such delaminations has been fully-analyzed by determining the steady-state energy release rate, the mode mixity and the critical length for buckling. An analytic solution based on beam theory establishes basic estimates and scaling relationships. Selected finite-element calculations have been used to affirm the fidelity of the results. The energy release rate attains steady-state, but the phase angle changes throughout because of a small (but significant) bending moment induced at the supports. The coating buckles at a critical delamination length, whereupon the energy release rate increases rapidly and violates steady state. The solutions are used to re-interpret measurements reported in the literature for an electron beam physically deposited TBC

  15. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  16. Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom.

    Science.gov (United States)

    Yang, Sang Yoon; Oh, Joong Gun; Jung, Dae Yool; Choi, HongKyw; Yu, Chan Hak; Shin, Jongwoo; Choi, Choon-Gi; Cho, Byung Jin; Choi, Sung-Yool

    2015-01-14

    A method of graphene transfer without metal etching is developed to minimize the contamination of graphene in the transfer process and to endow the transfer process with a greater degree of freedom. The method involves direct delamination of single-layer graphene from a growth substrate, resulting in transferred graphene with nearly zero Dirac voltage due to the absence of residues that would originate from metal etching. Several demonstrations are also presented to show the high degree of freedom and the resulting versatility of this transfer method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Delamination Resistance Of Laminate Made With VBO MTM46/HTS Prepreg

    Directory of Open Access Journals (Sweden)

    Czarnocki Piotr

    2015-09-01

    Full Text Available A laminate made with the Vacuum Bag Only (VBO prepregs can be cured out of autoclave. Because of low curing pressure such a process can result in deterioration of laminate mechanical properties. They can be significantly lower than those displayed by the autoclave cured ones. The resistance against delamination can be among the most affected. Since this property is a week point of all the laminates it was of particular interest. Delamination resistance of unidirectional laminate made from VBO MTM46/HTS(12K prepreg was in the scope of the presented research and the critical values of the Strain Energy Release Rates and the Paris-type equations corresponding to Mode I, Mode II and Mixed-Mode I/II static and cyclic loadings, respectively, were determined.

  18. An enriched cohesive zone model for delamination in brittle interfaces

    NARCIS (Netherlands)

    Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.

    2009-01-01

    Application of standard cohesive zone models in a finite element framework to simulate delamination in brittle interfaces may trigger non-smooth load-displacement responses that lead to the failure of iterative solution procedures. This non-smoothness is an artifact of the discretization; and hence

  19. High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives.

    Science.gov (United States)

    Gil, Barbara; Makowski, Wacław; Marszalek, Bartosz; Roth, Wieslaw J; Kubu, Martin; Čejka, Jiři; Olejniczak, Zbigniew

    2014-07-21

    The unilamellar form of zeolite MWW, MCM-56, which is obtained by direct hydrothermal synthesis has been studied with regard to acidity and porosity in its original and post-synthesis modified pillared and delaminated forms. The acidity measured by FTIR was found to be only slightly lower than the highly active 3-D MWW forms, MCM-22 and MCM-49. Pivalonitrile adsorption, which is a measure of spatial openness, showed 50% accessibility vs. MCM-22/49. It highlights the potential of MCM-56 as a layered material with increased access to acid sites because it does not entail laborious post-synthesis modification. Swelling, pillaring and delamination of MCM-56 are facile but result in a reduction in the number of Brønsted acid sites (BAS) while increasing accessibility to pivalonitrile. The delamination procedure involving sonication and acidification of the highly basic mother liquor produces the most visible increase in surface area and access to all BAS. The accompanying doubling of the solid yield and the decrease in absolute number of BAS suggest significant precipitation of dissolved silica generated during swelling and sonication in high pH medium. The viability of separating surfactant covered layers upon sonication with the consequence of exposing hydrophobic hydrocarbon tails to aqueous environment is addressed.

  20. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies.

    Science.gov (United States)

    Liu, Zhaoping; Ma, Renzhi; Osada, Minoru; Iyi, Nobuo; Ebina, Yasuo; Takada, Kazunori; Sasaki, Takayoshi

    2006-04-12

    This paper describes a systematic study on the synthesis, anion exchange, and delamination of Co-Al layered double hydroxide (LDH), with the aim of achieving fabrication and clarifying the properties of LDH nanosheet/polyanion composite films. Co-Al-CO3 LDH hexagonal platelets of 4 mum in lateral size were synthesized by the urea method under optimized reaction conditions. The as-prepared CO3(2-)-LDH was converted to Cl- -LDH by treating with a NaCl-HCl mixed solution, retaining its high crystallinity and hexagonal platelike morphology. LDHs intercalated with a variety of anions (such as NO3-, ClO4-, acetate, lactate, dodecyl sulfate, and oleate) were further prepared from Cl- -LDH via an anion-exchange process employing corresponding salts. Exchanged products in various anion forms were found to show different delamination behaviors in formamide. Among them, best results were observed for NO3- -LDH in terms of the exfoliating degree and the quality of the exfoliated nanosheets. The delamination gave a pink transparent suspension containing well-defined nanosheets with lateral sizes of up to 2 microm. The resulting nanosheets were assembled layer-by-layer with an anionic polymer, poly(sodium styrene 4-sulfonate) (PSS), onto quartz glass substrates to produce composite films. Magnetic circular dichroism (MCD) measurements revealed that the assembled multilayer films exhibited an interesting magneto-optical response.

  1. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration

    Science.gov (United States)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  2. Fatigue crack propagation and delamination growth in Glare

    NARCIS (Netherlands)

    Alderliesten, R.C.

    2005-01-01

    Fibre Metal Laminate Glare consists of thin aluminium layers bonded together with pre-impregnated glass fibre layers and shows an excellent fatigue crack growth behaviour compared to monolithic aluminium. The fibres are insensitive to the occurring fatigue loads and remain intact while the fatigue

  3. Potential-Induced Degradation-Delamination Mode in Crystalline Silicon Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wohlgemuth, John [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Jichao [SunPower Corporation; Shen, Yu-Chen [SunPower Corporation

    2018-03-21

    A test sequence producing potential-induced degradation-delamination (PID-d) in crystalline silicon modules has been tested and found comparable under visual inspection to cell/encapsulant delamination seen in some fielded modules. Four commercial modules were put through this sequence, 85 degrees C, 85%, 1000 h damp heat, followed by an intensive PID stress sequence of 72 degrees C, 95% RH, and -1000 V, with the module face grounded using a metal foil. The 60 cell c-Si modules exhibiting the highest current transfer (4.4 center dot 10-4 A) exhibited PID-d at the first inspection after 156 h of PID stress. Effects promoting PID-d are reduced adhesion caused by damp heat, sodium migration further reducing adhesion to the cells, and gaseous products of electrochemical reactions driven by the applied system voltage. A new work item proposal for an IEC test standard to evaluate for PID-d is anticipated.

  4. Role of Delamination in Zeolite-Catalyzed Aromatic Alkylation: UCB-3 versus 3-D Al-SSZ-70

    Energy Technology Data Exchange (ETDEWEB)

    Runnebaum, Ron C.; Ouyang, Xiaoying; Edsinga, Jeffrey A.; Rea, Thomas; Arslan, Ilke; Hwang, Son-Jong; Zones, Stacey I.; Katz, Alexander

    2014-07-03

    Delaminated zeolite UCB-3 exhibits 2.4-fold greater catalytic activity relative to its three-dimensional (3D) zeolite counterpart, Al-SSZ-70, and 2.0-fold greater activity (per catalyst mass) when compared with industrial catalyst MCM-22, for the alkylation of toluene with propylene at 523 K. The former increase is nearly equal to the observed relative increase in external surface area and acid sites upon delamination. However, at 423 K for the same reaction, UCB-3 exhibits a 3.5-fold greater catalytic activity relative to 3D Al-SSZ-70. The higher relative rate enhancement for the delaminated material at lower temperature can be elucidated on the basis of increased contributions from internal acid sites. Evidence of possible contributions from such acid sites is obtained by performing catalysis after silanation treatment, which demonstrates that although virtually all catalysis in MCM-22 occurs on the external surface, catalysis also occurs on internal sites for 3D Al-SSZ-70. The additional observed enhancement at low temperatures can therefore be rationalized by greater access to internal active sites as a result of sheet breakage during delamination. Such breakage leads to shorter characteristic internal diffusion paths and was visualized using TEM comparisons of UCB-3 and 3D Al-SSZ-70.

  5. The effect of nylon nanofibers on the dynamic behaviour and the delamination resistance of GFRP composites

    Directory of Open Access Journals (Sweden)

    Garcia Cristobal

    2018-01-01

    Full Text Available Vibrations are responsible for a considerable number of accidents in aircrafts, bridges and other civil engineering structures. Therefore, there is a need to reduce the vibrations on structures made of composite materials. Delamination is a particularly dangerous failure mode for composite materials because delaminated composites can lose up to 60% of their strength and stiffness and still remain unchanged. One of the methods to suppress vibrations and preventing delamination is to incorporate nanofibers into the composite laminates. The aim of the present work is to investigate how nylon nanofibers affect the dynamic behaviour and delamination resistance of glass fibre reinforced polymer (GFRP composites. Experiments and numerical simulations using finite element modelling (FEM analysis are used to estimate the natural frequencies, the damping ratio and inter-laminar strength in GFRP composites with and without nylon nanofibers. It is found that the natural frequencies of the nylon nano-modified composites do not change significantly as compared to the traditional composites. However, nano-modified composites demonstrated a considerable increase in damping ratio and inter-laminar shear strength due to the incorporation of nylon nanofibers. This work contributes to the knowledge about the mechanical and dynamic properties of glass fibre reinforced polymer (GFRP composites with nylon nanofibers.

  6. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    Science.gov (United States)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  7. Zr-doped TiO{sub 2} supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Belver, C., E-mail: carolina.belver@uam.es; Bedia, J.; Rodriguez, J.J.

    2017-01-15

    Highlights: • Novel Zr-doped TiO{sub 2} delaminated clay materials were prepared by a sol-gel process. • Zr is incorporated into the anatase lattice. • Zr-TiO{sub 2} nanoparticles are homogenously distributed over the delaminated clay. • Zr doping enhances the photoactivity by reducing the band gap. • Degradation rates were favored at low concentrations and high radiation intensities. - Abstract: Solar light-active Zr-doped TiO{sub 2} nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO{sub 2} at 65 wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO{sub 2}/clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO{sub 2} particles (15–20 nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO{sub 2}/clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay.

  8. Microwave detection of delaminations between fiber reinforced polymer (FRP) composite and hardened cement paste

    Science.gov (United States)

    Hughes, D.; Kazemi, M.; Marler, K.; Zoughi, R.; Myers, J.; Nanni, A.

    2002-05-01

    Fiber reinforced polymer (FRP) composites are increasingly being used for the rehabilitation of concrete structures. Detection and characterization of delaminations between an FRP composite and a concrete surface are of paramount importance. Consequently, the development of a one sided, non-contact, real time and rapid nondestructive testing (NDT) technique for this purpose is of great interest. Near-field microwave NDT techniques, using open-ended rectangular waveguide probes, have shown great potential for detecting delaminations in layered composite structures such as these. The results of some theoretical and experimental investigations on a specially prepared cement paste specimen are presented here.

  9. Solvent-Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Charge-Separated Layered Compound: [NH4 ][Ag3 (C9 H5 NO4 S)2 (C13 H14 N2 )2 ]⋅8 H2 O.

    Science.gov (United States)

    Sushrutha, Sringeri Ramesh; Mohana, Shivanna; Pal, Somnath; Natarajan, Srinivasan

    2017-01-03

    A new anionic coordination polymer, [NH 4 ][Ag 3 (C 9 H 5 NO 4 S) 2 (C 13 H 14 N 2 ) 2 ]⋅8 H 2 O, with a two-dimensional structure, has been synthesized by a reaction between silver nitrate, 8-hydroxyquinoline-5-sulfonic acid (HQS), and 4,4'-trimethylene dipyridine (TMDP). The compound stabilizes in a noncentrosymmetric space group, and the lattice water molecules and the charge-compensating [NH 4 ] + group occupy the inter-lamellar spaces. The lattice water molecules can be fully removed and reinserted, which is accompanied by a crystalline-amorphous-crystalline transformation. This transformation resembles the collapse/delamination and restacking of the layers. To the best of our knowledge, this is the first observation of delamination and restacking in an inorganic coordination polymer that contains silver. The presence of a natural dipole (the anionic framework and cationic ammonium ions) along with the noncentrosymmetric space group gives rise to the room-temperature ferroelectric behavior of the compound. The ferroelectric behavior is also water-dependent and exhibits a ferroelectric-paraelectric transformation. The temperature-dependent dielectric measurements indicate that the ferroelectric/ paraelectric transformation occurs at 320 K. This transformation has also been investigated by using in-situ IR spectroscopy and PXRD studies. The second-harmonic generation (SHG) study indicated values that are comparable to some of the known SHG solids, such as potassium dihydrogen phosphate (KDP) and urea. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analytical prediction model for non-symmetric fatigue crack growth in Fibre Metal Laminates

    NARCIS (Netherlands)

    Wang, W.; Rans, C.D.; Benedictus, R.

    2017-01-01

    This paper proposes an analytical model for predicting the non-symmetric crack growth and accompanying delamination growth in FMLs. The general approach of this model applies Linear Elastic Fracture Mechanics, the principle of superposition, and displacement compatibility based on the

  11. Feedback amplification loop drives malignant growth in epithelial tissues.

    Science.gov (United States)

    Muzzopappa, Mariana; Murcia, Lada; Milán, Marco

    2017-08-29

    Interactions between cells bearing oncogenic mutations and the surrounding microenvironment, and cooperation between clonally distinct cell populations, can contribute to the growth and malignancy of epithelial tumors. The genetic techniques available in Drosophila have contributed to identify important roles of the TNF-α ligand Eiger and mitogenic molecules in mediating these interactions during the early steps of tumor formation. Here we unravel the existence of a tumor-intrinsic-and microenvironment-independent-self-reinforcement mechanism that drives tumor initiation and growth in an Eiger-independent manner. This mechanism relies on cell interactions between two functionally distinct cell populations, and we present evidence that these cell populations are not necessarily genetically different. Tumor-specific and cell-autonomous activation of the tumorigenic JNK stress-activated pathway drives the expression of secreted signaling molecules and growth factors to delaminating cells, which nonautonomously promote proliferative growth of the partially transformed epithelial tissue. We present evidence that cross-feeding interactions between delaminating and nondelaminating cells increase each other's sizes and that these interactions can explain the unlimited growth potential of these tumors. Our results will open avenues toward our molecular understanding of those social cell interactions with a relevant function in tumor initiation in humans.

  12. Minimizing and predicting delamination of southern plywood in exterior exposure

    Science.gov (United States)

    Peter Koch

    1967-01-01

    Southern pine plywood is substantially all being manufactured with phenolic glue for exterior use. Because panels must not delaminate in service, a reliable predictor of glueline durability is required. Drawing on the experience of the Douglas-fir plywood industry, southern manufacutrers have adopted as a predictor the percentage of wood failure(% WF) observed in...

  13. Mechanics of composite materials - 1983. Proceedings of the Symposium, Boston, MA, November 13-18, 1983

    International Nuclear Information System (INIS)

    Dvorak, G.J.

    1983-01-01

    The present conference discusses plate theories applicable to laminated composites, the analysis of large deformations in layered composite shells, composite plate nonlinear bending effects, hybrid composite constitutive behavior, polymeric material life prediction by means of kinetic fracture mechanics, and crack growth direction in fibrous composites. Also discussed are stress singularities and solution structures, together with the delamination behavior and fracture mechanics parameters, of delamination mechanics in fiber-reinforced composites, followed by the theory and applications of unidirectional composite fracture, impact and fatigue behavior in graphite-epoxy laminates, and the fracture behavior of notched unidirectional boron/aluminum composite laminates

  14. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  15. Delamination Assessment Tool for Spacecraft Composite Structures

    Science.gov (United States)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert

    2012-07-01

    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  16. Contribution to interplay between a delamination test and a sensory analysis of mid-range lipsticks.

    Science.gov (United States)

    Richard, C; Tillé-Salmon, B; Mofid, Y

    2016-02-01

    Lipstick is currently one of the most sold products of cosmetics industry, and the competition between the various manufacturers is significant. Customers mainly seek products with high spreadability, especially long-lasting or long wear on the lips. Evaluation tests of cosmetics are usually performed by sensory analysis. This can then represent a considerable cost. The object of this study was to develop a fast and simple test of delamination (objective method with calibrated instruments) and to interplay the obtained results with those of a discriminative sensory analysis (subjective method) in order to show the relevance of the instrumental test. Three mid-range lipsticks were randomly chosen and were tested. They were made of compositions as described by the International Nomenclature of Cosmetic Ingredients (INCI). Instrumental characterization was performed by texture profile analysis and by a special delamination test. The sensory analysis was voluntarily conducted with an untrained panel as blind test to confirm or reverse the possible interplay. The two approaches or methods gave the same type of classification. The high-fat lipstick had the worst behaviour with the delamination test and the worst notation of the intensity of descriptors with the sensory analysis. There is a high correlation between the sensory analysis and the instrumental measurements in this study. The delamination test carried out should permit to quickly determine the lasting (screening test) and in consequence optimize the basic formula of lipsticks. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    Science.gov (United States)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  18. DETECTION OF DELAMINATION IN A COMPOSITE PLATE BY SEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical method of integration of Green's functi ons of strip element method (SEM) is proposed. The response of ultrasonic sourc e generated by a transducer on the surface of a multi-ply composite plate conta ining a delamination is analyzed by the use of SEM. The numerical results show that the scanning features of the ultrasonic waves may be used to identify the d elamination inside the composite plate .

  19. Shadowgraph studies of laser-assisted non-thermal structuring of thin layers on flexible substrates by shock-wave-induced delamination processes

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Pierre, E-mail: pierre.lorenz@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Smausz, Tomi [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, Tamas [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Ehrhardt, Martin; Zimmer, Klaus [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Hopp, Bela [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2015-05-01

    Highlights: • The shock-wave-induced film delamination (SWIFD) is a laser patterning process. • The SWIFD process of CIGS solar cells was studied by shadowgraph measurements. • The study presented that SWIFD allows the structuring of CIGS solar cells. • The dynamics of the delamination process was analyzed. - Abstract: The laser-assisted microstructuring of thin films especially for electronic applications without damaging the layers or the substrates is a challenge for the laser micromachining techniques. The laser-induced thin-film patterning by ablation of the polymer substrate at the rear side that is called ‘SWIFD’ – shock-wave-induced film delamination patterning has been demonstrated. This study focuses on the temporal sequence of processes that characterize the mechanism of this SWIFD process on a copper indium gallium selenide (CIGS) solar cell stacks on polyimide. For this purpose high-speed shadowgraph experiments were performed in a pump probe experimental set-up using a KrF excimer laser for ablating the rear side of the polyimide substrate and measuring the shock wave generation at laser ablation of the polymer substrate as well as the thin-film delamination. The morphology and size of the thin-film structures were studied by scanning electron microscopy (SEM). Furthermore, the composition after the laser treatment was analyzed by energy dispersive X-ray (EDX) spectroscopy. The shadowgraph experiments allow the time-dependent identification and evaluation of the shock wave formation, substrate bending, and delamination of the thin film in dependence on the laser parameters. These results will contribute to improve the physical understanding of the laser-induced delamination effect for thin-film patterning.

  20. Effect of delaminations on improvement of notch toughness at low temperatures

    International Nuclear Information System (INIS)

    Zhou, W.; Loh, N.L.

    1996-01-01

    The notched-bar impact test is often used to assess the notch toughness of engineering materials. The principle of the test is that a material absorbs a certain amount of energy when it breaks; the energy thus absorbed is an indication of the material's resistance to impact fracture. If the material is brittle, it breaks easily with a small amount of absorbed energy. If it is tough, it will absorb more energy to fracture. It has been well recognized that most engineering materials undergo a transition from notch tough to notch brittle behavior when the temperature is reduced. In the present study, however, an abnormal trend in the transition behavior was found for an austenitic stainless steel. V-notched specimens of the steel were tested under impact loading in a wide temperature range from -196 C to room temperature. Contrary to expectation, the impact energy values obtained at low temperatures were found to be much higher than those obtained at room temperature, indicating that the steel became tougher rather than more brittle when the test temperature was lowered. This intriguing phenomenon cannot be explained simply according to the tensile stress fracture criterion. Strong evidence has been obtained in the present study to show that the improvement of notch toughness at low temperatures is caused by delaminations

  1. Delamination measurement of a laminates composite panel due to hole punching based on the focus variation technique

    Science.gov (United States)

    Abdullah, A. B.; Zain, M. S. M.; Abdullah, M. S.; Samad, Z.

    2017-07-01

    Structural materials, such as composite panels, must be assembled, and such panels are typically constructed via the insertion of a fastener through a drilled hole. The main problem encountered in drilling is delamination, which affects assembly strength. The cost of drilling is also high because of the severe wear on drill bits. The main goal of this research is to develop a new punching method as an alternative to drilling during hole preparation. In this study, the main objective is to investigate the effect of different puncher profiles on the quality of holes punched into carbon fiber reinforcement polymer (CFRP) composite panels. Six types of puncher profiles were fabricated with minimum die clearance (1%), and two quality aspects, namely, incomplete shearing and delamination factor, were measured. The conical puncher incurred the least defects in terms of delamination and yielded an acceptable amount of incomplete shearing in comparison with the other punchers.

  2. Surface modified MXene Ti_3C_2 multilayers by aryl diazonium salts leading to large-scale delamination

    International Nuclear Information System (INIS)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin

    2016-01-01

    Highlights: • A novel and simple method to delaminate MXene Ti_3C_2 multilayers. • Surface modification using aryl diazonium salts induced swelling that conversely weakened the bonds between MXene layers. • The grafting of phenylsulfonic acid groups on MXene surfaces resulted in excellent water dispersibility. - Abstract: Herein we report a simple and facile method to delaminate MXene Ti_3C_2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti_3AlC_2 and the exfoliation of Ti_3AlC_2 into Ti_3C_2 multilayers, followed by Na"+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti_3C_2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti_3C_2 sheets disperse well in water and the solutions obey Lambert–Beer’s law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti_3C_2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti_3C_2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  3. A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells

    Directory of Open Access Journals (Sweden)

    Kalcheim Chaya

    2008-10-01

    Full Text Available Abstract Background Neural crest progenitors arise as epithelial cells and then undergo a process of epithelial to mesenchymal transition that precedes the generation of cellular motility and subsequent migration. We aim at understanding the underlying molecular network. Along this line, possible roles of Rho GTPases that act as molecular switches to control a variety of signal transduction pathways remain virtually unexplored, as are putative interactions between Rho proteins and additional known components of this cascade. Results We investigated the role of Rho/Rock signaling in neural crest delamination. Active RhoA and RhoB are expressed in the membrane of epithelial progenitors and are downregulated upon delamination. In vivo loss-of-function of RhoA or RhoB or of overall Rho signaling by C3 transferase enhanced and/or triggered premature crest delamination yet had no effect on cell specification. Consistently, treatment of explanted neural primordia with membrane-permeable C3 or with the Rock inhibitor Y27632 both accelerated and enhanced crest emigration without affecting cell proliferation. These treatments altered neural crest morphology by reducing stress fibers, focal adhesions and downregulating membrane-bound N-cadherin. Reciprocally, activation of endogenous Rho by lysophosphatidic acid inhibited emigration while enhancing the above. Since delamination is triggered by BMP and requires G1/S transition, we examined their relationship with Rho. Blocking Rho/Rock function rescued crest emigration upon treatment with noggin or with the G1/S inhibitor mimosine. In the latter condition, cells emigrated while arrested at G1. Conversely, BMP4 was unable to rescue cell emigration when endogenous Rho activity was enhanced by lysophosphatidic acid. Conclusion Rho-GTPases, through Rock, act downstream of BMP and of G1/S transition to negatively regulate crest delamination by modifying cytoskeleton assembly and intercellular adhesion.

  4. Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel

    Science.gov (United States)

    Liu, S.; Li, X.; Guo, H.; Yang, S.; Wang, X.; Shang, C.; Misra, R. D. K.

    2018-04-01

    We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0} and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.

  5. Predictions of Poisson's ratio in cross-ply laminates containing matrix cracks and delaminations

    Science.gov (United States)

    Harris, Charles E.; Allen, David H.; Nottorf, Eric W.

    1989-01-01

    A damage-dependent constitutive model for laminated composites has been developed for the combined damage modes of matrix cracks and delaminations. The model is based on the concept of continuum damage mechanics and uses second-order tensor valued internal state variables to represent each mode of damage. The internal state variables are defined as the local volume average of the relative crack face displacements. Since the local volume for delaminations is specified at the laminate level, the constitutive model takes the form of laminate analysis equations modified by the internal state variables. Model implementation is demonstrated for the laminate engineering modulus E(x) and Poisson's ratio nu(xy) of quasi-isotropic and cross-ply laminates. The model predictions are in close agreement to experimental results obtained for graphite/epoxy laminates.

  6. Tribo-chemical behavior of eutectoid steel during rolling contact friction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Cai, Z.B. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China); Peng, J.F. [Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Cao, B.B. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China); Jin, X.S. [Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, M.H., E-mail: zhuminhao@swjtu.cn [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China); Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-12-01

    Highlights: • Tribo-chemical behavior was investigated during rolling contact friction. • Tribo-film may weaken the absorptive ability of O/C atoms on the surface. • Tribo-film is related to a low friction coefficient at rolling friction condition. - Abstract: The tribo-chemical behavior of the eutectoid steel during rolling contact friction is investigated via scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and electron probe X-ray microanalysis. The worn surface is divided into three zones: matrix zone (without friction), tribo-film zone (formed during friction) and delamination zone (tribo-film spalling). The different chemical states of atoms between those three zones and the air were investigated using the XPS analysis. The results showed that the matrix zone is composed of Fe{sub 2}O{sub 3}, FeO and metallic Fe, while the tribo-film and delamination zones only contain Fe{sub 2}O{sub 3} and FeO. Where the tribo-film is formed, the absorptive ability of O and C atoms on the top 2–3 atomic layers is probably weakened, while the exposed fresh metal in the delamination zone tends to be continuously oxidized and form tribo-film. The tribo-chemical reaction in the delamination zone is more activated than that in the other two zones. The protective nature of the tribo-film probably maintains a low friction coefficient under rolling contact friction condition.

  7. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    Science.gov (United States)

    Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  8. Buckle initiation and delamination of patterned ITO layers on a polymer substrate

    NARCIS (Netherlands)

    Abdallah, Amir; Bouten, P.C.P.; Toonder, den J.M.J.; With, de G.

    2011-01-01

    Buckle initiation and delamination of patterned ITO layers on a polymer substrate were studied. Various buckle modes have been observed depending on the type of etch defects and the crack patterns. The buckle density was found to be dependent on the number of etch defects, imperfections, applied

  9. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination

    Science.gov (United States)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin

    2016-10-01

    Herein we report a simple and facile method to delaminate MXene Ti3C2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti3AlC2 and the exfoliation of Ti3AlC2 into Ti3C2 multilayers, followed by Na+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti3C2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti3C2 sheets disperse well in water and the solutions obey Lambert-Beer's law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti3C2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti3C2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  10. Microfractographic analysis of delamination growth in fatigue loaded - carbon fibre/thermosetting matrix composites; Mikrofraktographische Analyse des Delaminationswachstums in zyklisch belasteten Kohlenstoffaser/Duroplastharz-Verbundwerkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Heutling, F.; Franz, H.E. [Daimler-Benz AG, Muenchen (Germany); Friedrich, K. [Kaiserslautern Univ. (Germany). Inst. for Composite Materials Ltd.

    1998-05-01

    Carbon-fibre-reinforced plastics (CFRP) are known to be considerably less sensitive to fatigue loading than aluminium (Al) alloys, for instance. However, even in the presence of small delaminations, the damage tolerance of structural components may be considerably reduced. The scope of the present contribution is to investigate fatigue phenomena in CFRP materials (with thermosetting matrix) by means of microfractography. The microfractographic features of the fracture surfaces mirror the processes of deformation and fracture at the delamination front. The fatigue fracture behaviour of a CFRP laminate subjected to cyclic mixed-mode loading is determined by matrix-controlled failure mechanisms. Under pure mode-II loading conditions, rollers in addition to fatigue striations appear in the fibre imprints whose formation mechanism was explained by means of high-resolution field-emission scanning electron microscopy (FE-SEM). The ratio between the local tensile and shear stress components influences the propagation direction of secondary cracks originating at the fibres. The local fracture propagations in these secondary cracks can be recognised through the fatigue striations appearing on the surface of the matrix. A comparison with static mixed-mode loading reveals that in both cases the crack propagation follows the path of the local maximum main stress. Applying mathematical relationships derived from the theory of elasticity permitted developing a mixed-mode loading model which makes it possible to predict the crack processes and hence to explain the formation of typical fracture-morphological features. (orig.) 26 refs.

  11. Transient subcritical crack-growth behavior in transformation-toughened ceramics

    International Nuclear Information System (INIS)

    Dauskardt, R.H.; Ritchie, R.O.; Carter, W.C.; Veirs, D.K.

    1990-01-01

    Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip, K s , with subcritical crack extension following the applied load change. conditions for continued crack growth, crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in K s compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material

  12. Detecting closing delaminations in laminated composite plates using nonlinear structural intensity and time reversal mirrors

    International Nuclear Information System (INIS)

    Lamberti, Alfredo; Semperlotti, Fabio

    2013-01-01

    Closing delaminations in composite laminated structures exhibit a nonlinear dynamic response when excited by high frequency elastic waves. The contact acoustic nonlinear effects taking place at the damage interface act as a mechanism of energy redistribution from the driving frequency to the nonlinear harmonic frequencies. In this paper, we extend the concept of nonlinear structural intensity (NSI) to the analysis of closing delaminations in composite laminated plates. NSI is calculated using a method based on a combination of finite element and finite difference techniques, which is suitable for processing both numerical and experimental data. NSI is proven to be an effective metric to identify the presence and location of closing delaminations. The highly directional nature of orthotropic composites results in vibrational energy propagating in a different direction from that of the initial elastic wave. This aspect reduces the ability to effectively interrogate the damage and, therefore, the sensitivity to the damage. The time reversal mirror technique is explored as a possible approach to overcome the effect of the material directionality and increase the ability to interrogate the damage. Numerical simulations show that this technique is able to overcome the material directionality and to drastically enhance the ability to interrogate the damage. (paper)

  13. Analysis of Mode I and Mode II Crack Growth Arrest Mechanism with Z-Fibre Pins in Composite Laminated Joint

    Science.gov (United States)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2018-04-01

    This paper presents the numerical study of the mode I and mode II interlaminar crack growth arrest in hybrid laminated curved composite stiffened joint with Z-fibre reinforcement. A FE model of hybrid laminated skin-stiffener joint reinforced with Z-pins is developed to investigate the effect of Z- fibre pins on mode I and mode II crack growth where the delamination is embedded inbetween the skin and stiffener interface. A finite element model was developed using S4R element of a 4-node doubly curved thick shell elements to model the composite laminates and non linear interface elements to simulate the reinforcements. The numerical analyses revealed that Z-fibre pinning were effective in suppressing the delamination growth when propagated due to applied loads. Therefore, the Z-fibre technique effectively improves the crack growth resistance and hence arrests or delays crack growth extension.

  14. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  15. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  16. Correlating bilayer tablet delamination tendencies to micro-environmental thermodynamic conditions during pan coating.

    Science.gov (United States)

    Zacour, Brian M; Pandey, Preetanshu; Subramanian, Ganeshkumar; Gao, Julia Z; Nikfar, Faranak

    2014-06-01

    The objective of this study was to determine the impact that the micro-environment, as measured by PyroButton data loggers, experienced by tablets during the pan coating unit operation had on the layer adhesion of bilayer tablets in open storage conditions. A full factorial design of experiments (DOE) with three center points was conducted to study the impact of final tablet hardness, film coating spray rate and film coating exhaust temperature on the delamination tendencies of bilayer tablets. PyroButton data loggers were placed (fixed) at various locations in a pan coater and were also allowed to freely move with the tablet bed to measure the micro-environmental temperature and humidity conditions of the tablet bed. The variance in the measured micro-environment via PyroButton data loggers accounted for 75% of the variance in the delamination tendencies of bilayer tablets on storage (R(2 )= 0.75). A survival analysis suggested that tablet hardness and coating spray rate significantly impacted the delamination tendencies of the bilayer tablets under open storage conditions. The coating exhaust temperature did not show good correlation with the tablets' propensity to crack indicating that it was not representative of the coating micro-environment. Models created using data obtained from the PyroButton data loggers outperformed models created using primary DOE factors in the prediction of bilayer tablet strength, especially upon equipment or scale transfers. The coating micro-environment experienced by tablets during the pan coating unit operation significantly impacts the strength of the bilayer interface of tablets on storage.

  17. Cathodic delamination of seawater-immersed anticorrosive coatings: Mapping of parameters affecting the rate

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Dam-Johansen, Kim; Weinell, C. E.

    2010-01-01

    Abstract: Cathodic delamination is one of the major modes of failure for organic coatings immersed in seawater and refers to the weakening or loss of adhesion between the coating and the substrate. The diminished adhesion is the result of electrochemical reactions occurring at the coating...

  18. Utilizing the meso-scale grain boundary stress to estimate the onset of delamination in 2099-T861 aluminium–lithium

    International Nuclear Information System (INIS)

    McDonald, Russell J; Beaudoin, Armand J

    2010-01-01

    Aluminium–lithium alloys provide a lower density and higher stiffness alternative to other high strength aluminium alloys. However, many Al–Li alloys exhibit a non-traditional failure mechanism called delamination, which refers to the failure of the elongated grain boundary interface. In this investigation, delaminations were observed after cyclic deformation of both uniaxial and torsion experiments. A cyclically stable rate-independent crystal plasticity framework with kinematic hardening was developed to address many experimental trends of stabilized cyclic plasticity. Utilizing this framework, meso-scale grain boundary interface stresses were estimated with uniform deformation and bi-crystal models. These models are computationally amenable to investigate both orientation dependence and the statistical nature of the grain boundary stresses for a given bulk texture and nominal loading. A coupled shear-normal Findley-based damage parameter was formulated to quantitatively characterize the nucleation of delamination consistently with experimental trends

  19. Surface modified MXene Ti{sub 3}C{sub 2} multilayers by aryl diazonium salts leading to large-scale delamination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongbing [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China); Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, Jiangsu Province 211167 (China); Zhang, Jianfeng, E-mail: jfzhang_sic@163.com [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China); Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China)

    2016-10-30

    Highlights: • A novel and simple method to delaminate MXene Ti{sub 3}C{sub 2} multilayers. • Surface modification using aryl diazonium salts induced swelling that conversely weakened the bonds between MXene layers. • The grafting of phenylsulfonic acid groups on MXene surfaces resulted in excellent water dispersibility. - Abstract: Herein we report a simple and facile method to delaminate MXene Ti{sub 3}C{sub 2} multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti{sub 3}AlC{sub 2} and the exfoliation of Ti{sub 3}AlC{sub 2} into Ti{sub 3}C{sub 2} multilayers, followed by Na{sup +} intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti{sub 3}C{sub 2} flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti{sub 3}C{sub 2} sheets disperse well in water and the solutions obey Lambert–Beer’s law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti{sub 3}C{sub 2} flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti{sub 3}C{sub 2}via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  20. Criteria for initiation of delamination in quasi-static punch-shear tests of a carbon-fiber composite material.

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Eric Brian [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-01

    V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.

  1. EVALUATION OF STRENGTH TO SHEAR AND DELAMINATION IN GLUED LAMINATED WOOD

    Directory of Open Access Journals (Sweden)

    Carlito Calil Neto

    2014-12-01

    Full Text Available The Glued Laminated Wood has a large range of applications. In Brazil, its employment as cross-piece poles for overhead electrical power has attracted the attention of companies in the industry, motivated by the potential use of this material. Among the factors that influence the mechanical performance of Glulam solutions stand out efficiency and affinity of the adhesives to the species of wood used, the type of treatment and moisture content of wood veneer, motivating the development of new research on this topic. This research aimed to investigate, by Design of Experiments (DOE, the influence of wood (pinus, teca, eucalipto, adhesive (Purbond; Cascophen and treatment (CCA, CCB, CCBS in the variable responses shear strength and delamination, consisting in the same combination factors evaluated in ANEEL/EESC-PD220-07 project: Head Crosshead Glulam Series. The results of the statistical analysis showed that the species factor expressed significant effect for both response variables evaluated, did not occur with adhesive and treatment factors. Moisture content was significant in the wood evaluated when analyzed the shear strength, and the teca wood showed the highest shear strength and also relating to the delamination.

  2. A thick level set interface model for simulating fatigue-drive delamination in composites

    NARCIS (Netherlands)

    Latifi, M.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    This paper presents a new damage model for simulating fatigue-driven delamination in composite laminates. This model is developed based on the Thick Level Set approach (TLS) and provides a favorable link between damage mechanics and fracture mechanics through the non-local evaluation of the energy

  3. Ductile film delamination from compliant substrates using hard overlayers.

    Science.gov (United States)

    Cordill, M J; Marx, V M; Kirchlechner, C

    2014-11-28

    Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems.

  4. Quantitative 3D X-ray imaging of densification, delamination and fracture in a micro-composite under compression

    DEFF Research Database (Denmark)

    Bø Fløystad, Jostein; Skjønsfjell, Eirik Torbjørn Bakken; Guizar-Sicairos, Manuel

    2015-01-01

    Phase-contrast three-dimensional tomograms showing in unprecedented detail the mechanical response of a micro-composite subjected to a mechanical compression test are reported. The X-ray ptychography images reveal the deformation and fracture processes of a 10 μm diameter composite, consisting...... X-ray microscopy as a powerful tool for in situ studies of the mechanical properties of nanostructured devices, structures, and composites. Ptychographic X-ray microscopy can be used for quantitatively studying the mechanical properties of microscale composites. Phase-contrast three...... of a spherical polymer bead coated with a nominally 210 nm metal shell. The beginning delamination of the shell from the core can be directly observed at an engineering strain of a few percent. Pre-existing defects are shown to dictate the deformation behavior of both core and shell. The strain state...

  5. Cohesive delamination and frictional contact on joining surface via XFEM

    Directory of Open Access Journals (Sweden)

    Francesco Parrinello

    2018-02-01

    Full Text Available In the present paper, the complex mechanical behaviour of the surfaces joining two differentbodies is analysed by a cohesive-frictional interface constitutive model. The kinematical behaviouris characterized by the presence of discontinuous displacement fields, that take place at the internalconnecting surfaces, both in the fully cohesive phase and in the delamination one. Generally, in order tocatch discontinuous displacement fields, internal connecting surfaces (adhesive layers are modelled bymeans of interface elements, which connect, node by node, the meshes of the joined bodies, requiringthe mesh to be conforming to the geometry of the single bodies and to the relevant connecting surface.In the present paper, the Extended Finite Element Method (XFEM is employed to model, both fromthe geometrical and from the kinematical point of view, the whole domain, including the connectedbodies and the joining surface. The joining surface is not discretized by specific finite elements, butit is defined as an internal discontinuity surface, whose spatial position inside the mesh is analyticallydefined. The proposed approach is developed for two-dimensional composite domains, formed by twoor more material portions joined together by means of a zero thickness adhesive layer. The numericalresults obtained with the proposed approach are compared with the results of the classical interfacefinite element approach. Some examples of delamination and frictional contact are proposed withlinear, circular and curvilinear adhesive layer.

  6. Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer

    International Nuclear Information System (INIS)

    Sohn, H; Yang, J Y; Dutta, D; DeSimio, M; Olson, S; Swenson, E

    2011-01-01

    The paper presents signal and image processing algorithms to automatically detect delamination and disbond in composite plates from wavefield images obtained using a scanning laser Doppler vibrometer (LDV). Lamb waves are excited by a lead zirconate titanate transducer (PZT) mounted on the surface of a composite plate, and the out-of-plane velocity field is measured using an LDV. From the scanned time signals, wavefield images are constructed and processed to study the interaction of Lamb waves with hidden delaminations and disbonds. In particular, the frequency–wavenumber (f–k) domain filter and the Laplacian image filter are used to enhance the visibility of defects in the scanned images. Thereafter, a statistical cluster detection algorithm is used to identify the defect location and distinguish damaged specimens from undamaged ones

  7. Numerical model of glulam beam delamination in dependence on cohesive strength

    Science.gov (United States)

    Kawecki, Bartosz; Podgórski, Jerzy

    2018-01-01

    This paper presents an attempt of using a finite element method for predicting delamination of a glue laminated timber beam through a cohesive layer. There were used cohesive finite elements, quadratic stress damage initiation criterion and mixed mode energy release rate failure model. Finite element damage was equal to its complete stiffness degradation. Timber material was considered to be an orthotropic with plastic behaviour after reaching bending limit.

  8. Ag-Coated Heterostructures of ZnO-TiO2/Delaminated Montmorillonite as Solar Photocatalysts

    Directory of Open Access Journals (Sweden)

    Carolina Belver

    2017-08-01

    Full Text Available Heterostructures based on ZnO-TiO2/delaminated montmorillonite coated with Ag have been prepared by sol–gel and photoreduction procedures, varying the Ag and ZnO contents. They have been thoroughly characterized by XRD, WDXRF, UV–Vis, and XPS spectroscopies, and N2 adsorption, SEM, and TEM. In all cases, the montmorillonite was effectively delaminated with the formation of TiO2 anatase particles anchored on the clay layer’s surface, yielding porous materials with high surface areas. The structural and textural properties of the heterostructures synthesized were unaffected by the ZnO incorporated. The photoreduction led to solids with Ag nanoparticles decorating the surface. These materials were tested as photocatalysts for the degradation of several emerging contaminants with different nitrogen-bearing chemical structures under solar light. The catalysts yielded high rates of disappearance of the starting pollutants and showed quite stable performance upon successive applications.

  9. AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Jae; Arakawa, Kazuo [Kyushu University, kasuga (Japan); Chen, Dingding [National University of Defense Technology, Changsha (China); Han, Seung Wook; Choi, Nak Sam [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    Delamination fracture behavior was investigated using acoustic emission (AE) analysis on carbon fiber-reinforced polymer (CFRP) samples manufactured using vacuum-assisted resin transfer molding (VARTM). CFRP plate was fabricated using unidirectional carbon fiber fabric with a lay-up of six plies [+30/-30]6 , and a Teflon film was inserted as a starter crack. Test pieces were sectioned from the inlet and vent of the mold, and packed between two rectangular epoxy plates to load using a universal testing machine. The AE signals were monitored during tensile loading using two sensors. The average tensile load of the inlet specimens was slightly larger than that of the vent specimens; however, the data exhibited significant scattering due to non-uniform resin distribution, and there was no statistically significant different between the strength of the samples sectioned from the inlet or outlet of the mold. Each of the specimens exhibited similar AE characteristics, regardless of whether they were from the inlet or vent of the mold. Four kinds of damage mechanism were observed: micro-cracking, fiber-resin matrix debonding, fiber pull-out, and fiber failure; and three stages of the crack propagation process were identified.

  10. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  11. Ballistic protection performance of curved armor systems with or without debondings/delaminations

    International Nuclear Information System (INIS)

    Tan, Ping

    2014-01-01

    Highlights: • Influence of pre-existing defect in an armor system on its ballistic performance. • Development of finite element models for the ballistic performance of armor systems. • Prediction of the ballistic limit and back face deformation of curved armor systems. - Abstract: In order to discern how pre-existing defects such as single or multiple debondings/delaminations in a curved armor system may affect its ballistic protection performance, two-dimensional axial finite element models were generated using the commercial software ANSYS/Autodyn. The armor systems considered in this investigation are composed of boron carbide front component and Kevlar/epoxy backing component. They are assumed to be perfectly bonded at the interface without defects. The parametric study shows that for the cases considered, the maximum back face deformation of a curved armor system with or without defects is more sensitive to its curvature, material properties of the ceramic front component, and pre-existing defect size and location than the ballistic limit velocity. Additionally, both the ballistic limit velocity and maximum back face deformation are significantly affected by the backing component thickness, front/backing component thickness ratio and the number of delaminations

  12. Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination

    International Nuclear Information System (INIS)

    Marshall, D.B.; Evans, A.G.

    1984-01-01

    A fracture analysis of indentation-induced delamination of thin films is presented. The analysis is based on a model system in which the section of film above the delaminating crack is treated as a rigidly clamped disc, and the crack extension force is derived from changes in strain energy of the system as the crack extends. Residual deposition stresses influence the cracking response by inducing buckling of the film above the crack and by providing an additional crack driving force once buckling occurs. A relation for the equilibrium crack length is derived in terms of the indenter load and geometry, the film thickness and mechanical properties, the residual stress level and the fracture toughness of the interface. The analysis provides a basis for using controlled indentation cracking as a quantitative measure of interface toughness and for evaluating contact-induced damage in thin films

  13. Sensation Seeking Predicting Growth in Adolescent Problem Behaviors

    Science.gov (United States)

    Byck, Gayle R.; Swann, Greg; Schalet, Benjamin; Bolland, John; Mustanski, Brian

    2014-01-01

    There is limited literature on the relationship between sensation seeking and adolescent risk behaviors, particularly among African Americans. We tested the association between psychometrically-derived subscales of the Zuckerman Sensation Seeking Scale and the intercepts and slopes of individual growth curves of conduct problems, sexual risk taking, and substance use from ages 13-18 years by sex. Boys and girls had different associations between sensation seeking and baseline levels and growth of risk behaviors. The Pleasure Seeking scale was associated with baseline levels of conduct problems in boys and girls, baseline substance use in boys, and growth in sexual risk taking and substance use by girls. Girls had the same pattern of associations with the Danger/Novelty scale as the Pleasure Seeking scale. Knowledge about the relationships between adolescent risk taking and sensation seeking can help in the targeted design of prevention and intervention programs for the understudied population of very low-income, African American adolescents. PMID:25112599

  14. Continental Delamination of the Romanian Eastern Carpathians: A Lower Crustal Origin of the Vrancea Seismogenic Zone?

    Science.gov (United States)

    Fillerup, M. A.; Knapp, J. H.; Knapp, C. C.

    2006-12-01

    Two lithosphere-scale, explosive-source seismic reflection profiles (DRACULA I and DACIA PLAN), inclusive of the hinterland and foreland of the Romanian Eastern Carpathians, provide new evidence for the geodynamic origin of the Vrancea Seismogenic Zone (VSZ) of Romania. These data, collected to evaluate existing subduction-related and delamination geodynamic models proposed to explain the intermediate depth seismicity associated with the Vrancea zone, show evidence of continental crust extending continuously above the VSZ from the Carpathian foreland well into the Transylvanian hinterland. Crustal thicknesses inferred from these data based on reflectivity show a 40-45 km crust below the Transylvanian basin abruptly shallowing to 32 km for ~120 km beneath the fold and thrust belt of the main Carpathian orogen and thickening again to 38-42 km crust in the foreland. This thinned crust outlines an apparent lower crustal sub-orogenic cavity that is overlain by a relatively subhorizontal reflective fabric absent of dipping reflectivity. The northwest dipping Vrancea seismogenic body, a 30x70x200 km volume of intermediate depth earthquakes, is located on the eastern flank of the apparently thin crust beneath the Carpathian orogen. Amplitude decay curves show penetration of seismic energy to a depth of ~60 km in the vicinity of the sub-orogenic cavity, implying this non- reflective zone is a geologic signature. Rotation of the VSZ about a hinge beneath the foreland basin at a depth of ~50 km restores to fill the lower-crustal cavity under the orogen, suggesting the VSZ represents a portion of brittle lower crust delaminated during continental lithospheric delamination which may have caused regional uplift of the Transylvanian basin. The lack of through-going, dipping crustal-scale boundaries along this composite lithospheric transect would appear to preclude subduction as an explanation for seismicity in the VSZ, consistent with abundant surface geologic data. These

  15. Some Aspects of the RHEED Behavior of Low-Temperature GaAs Growth

    International Nuclear Information System (INIS)

    Nemcsics, A.

    2005-01-01

    The reflection high-energy electron diffraction (RHEED) behavior manifested during MBE growth on a GaAs(001) surface under low-temperature (LT) growth conditions is examined in this study. RHEED and its intensity oscillations during LT GaAs growth exhibit some particular behavior. The intensity, phase, and decay of the oscillations depend on the beam equivalent pressure (BEP) ratio and substrate temperature, etc. Here, the intensity dependence of RHEED behavior on the BEP ratio, substrate temperature, and excess of As content in the layer are examined. The change in the decay constant of the RHEED oscillations is also discussed

  16. COMPOSITIONAL AND THERMAL DIFFERENCES BETWEEN LITHOSPHERIC AND ASTHENOSPHERIC MANTLE AND THEIR INFLUENCE ON CONTINENTAL DELAMINATION

    Directory of Open Access Journals (Sweden)

    A. I. Kiselev

    2015-01-01

    Full Text Available The lower part of lithosphere in collisional orogens may delaminate due to density inversion between the asthenosphere and the cold thickened lithospheric mantle. Generally, standard delamination models have neglected density changes within the crust and the lithospheric mantle, which occur due to phase transitions and compositional variations upon changes of P-T parameters. Our attention is focused on effects of phase and density changes that may be very important and even dominant when compared with the effect of a simple change of the thermal mantle structure. The paper presents the results of numerical modeling for eclogitization of basalts of the lower crust as well as phase composition changes and density of underlying peridotite resulted from tectonic thickening of the lithosphere and its foundering into the asthenosphere. As the thickness of the lower crust increases, the mafic granulite (basalt passes into eclogite, and density inversion occurs at the accepted crust-mantle boundary (P=20 kbar because the newly formed eclogite is heavier than the underlying peridotite by 6 % (abyssal peridotite, according to [Boyd, 1989]. The density difference is a potential energy for delamination of the eclogitic portion of the crust. According to the model, P=70 kbar and T=1300 °C correspond to conditions at the lower boundary of the lithosphere. Assuming the temperature adiabatic distribution within the asthenosphere, its value at the given parameters ranges from 1350 °C to 1400 °C. Density inversion at dry conditions occurs with the identical lithospheric and asthenospheric compositions at the expense of the temperature difference at 100 °C with the density difference of only 0.0022 %. Differences of two other asthenospheric compositions (primitive mantle, and lherzolite KH as compared to the lithosphere (abyssal peridotite are not compensated for by a higher temperature. The asthenospheric density is higher than that of the lithospheric base

  17. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring

    Science.gov (United States)

    Kravchenko, O. G.; Pedrazzoli, D.; Kovtun, D.; Qian, X.; Manas-Zloczower, I.

    2018-01-01

    A new approach employing carbon nanostructure (CNS) buckypapers (BP) was used to prepare glass fiber/epoxy composite materials with enhanced resistance to delamination along with damage monitoring capability. The CNS-BP was subjected to plasma treatment to improve its wettability by epoxy and to promote stronger interfacial bonding. An increase up to 20% in interlaminar fracture toughness in mode I and mode II was observed in composite laminates incorporating CNS BP. Morphological analysis of the fracture surfaces indicated that failure in the conductive CNS layer provided a more effective energy dissipation mechanism, resulting in interlaminar fracture toughness increase. Moreover, fracture of the conductive CNS layer enabled damage monitoring of the composite by electrical resistance measurements upon delamination. The proposed approach provides multifunctional ply interphases, allowing to couple damage monitoring with interlaminar reinforcement of composite laminates.

  18. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    Science.gov (United States)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200 to 300 1-hr cycles with only moderate weight gains (0.5 mg/sq cm). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in a video clip which can be viewed by clicking on figure 2 of this report. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  19. Growth motivation as a moderator of behavioral self-handicapping in women.

    Science.gov (United States)

    Brown, Christina M; Park, Sun W; Folger, Susan F

    2012-01-01

    Behavioral self-handicapping is a strategy used to protect attributions about ability. People behaviorally self-handicap by creating an obstacle to their success so failure is attributed to the obstacle instead of to their ability. Although past research has observed behavioral self-handicapping exclusively in men, the current research revealed a moderator of behavioral self-handicapping in women: growth motivation, which reflects the desire to develop one's abilities and learn from failure. Participants (N = 100) completed a test purportedly predictive of successful careers and relationships, and some were given failure feedback about their performance. Participants could behaviorally self-handicap by choosing to complete another test in a performance-impairing environment. Although men self-handicapped more overall, women self-handicapped more after failure when they were low in growth motivation. These results highlight a novel moderator of behavioral self-handicapping in women.

  20. Modeling delamination of FRP laminates under low velocity impact

    Science.gov (United States)

    Jiang, Z.; Wen, H. M.; Ren, S. L.

    2017-09-01

    Fiber reinforced plastic laminates (FRP) have been increasingly used in various engineering such as aeronautics, astronautics, transportation, naval architecture and their impact response and failure are a major concern in academic community. A new numerical model is suggested for fiber reinforced plastic composites. The model considers that FRP laminates has been constituted by unidirectional laminated plates with adhesive layers. A modified adhesive layer damage model that considering strain rate effects is incorporated into the ABAQUS / EXPLICIT finite element program by the user-defined material subroutine VUMAT. It transpires that the present model predicted delamination is in good agreement with the experimental results for low velocity impact.

  1. A comparative study on free vibration analysis of delaminated torsion stiff and bending stiff composite shells

    International Nuclear Information System (INIS)

    Dey, Sudip; Karmakar, Amit

    2013-01-01

    This paper presents a finite element method to compare the effects of delamination on free vibration of graphite-epoxy bending stiff and torsion stiff composite pretwisted shallow conical shells. The generalized dynamic equilibrium equation is derived from Lagrange's equation of motion neglecting the Coriolis effect for moderate rotational speeds. An eight noded isoparametric plate bending element is employed incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The multipoint constraint; algorithm is utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. The standard eigen value problem is solved by applying the QR iteration algorithm. Mode shapes for typical configurations are also depicted. Numerical results obtained are the first known non-dimensional frequencies which could serve as reference solutions for the future investigators.

  2. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    Science.gov (United States)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-12-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  3. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  4. A study on fatigue crack growth behavior subjected to a single tensile overload

    International Nuclear Information System (INIS)

    Lee, S.Y.; Liaw, P.K.; Choo, H.; Rogge, R.B.

    2011-01-01

    Neutron diffraction and electric potential experiments were carried out to investigate the growth behavior of a fatigue crack subjected to a single tensile overload. The specific objectives were to (i) probe the crack tip deformation and fracture behaviors under applied loads; (ii) examine the overload-induced transient crack growth micromechanism; (iii) validate the effective stress intensity factor range based on the crack closure approach as the fatigue crack tip driving force; and (iv) establish a quantitative relationship between the crack tip driving force and crack growth behavior. Immediately after a single tensile overload was introduced and then unloaded, the crack tip became blunt and enlarged compressive residual stresses in both magnitude and zone size were observed around the crack tip. The results show that the combined contributions of the overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are responsible for the observed changes in the crack opening load and the resultant post-overload transient crack growth behavior.

  5. inhibition of germination and growth behavior of some cowpea

    African Journals Online (AJOL)

    DR. AMIN

    2011-12-02

    Dec 2, 2011 ... COWPEA VARIETIES USING NEEM (AZADIRACTA INDICA) LEAF WATER. EXTRACTS ... Keywords: Neem, Allelopathic effect, Leaf extract, Germination, Growth behavior ... and lotion today, as well as biological insecticide.

  6. Analysis and modeling of delamination factor in drilling of woven kenaf fiber reinforced epoxy using Box Behnken experimental design

    Science.gov (United States)

    Suhaily, M.; Che Hassan, C. H.; Jaharah, A. G.; Afifah, M. A.; Nor Khairusshima, M. K.

    2018-01-01

    In this research study, it presents a comprehensive mathematical model for correlating the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates using the Box Behnken experimental design. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated HSS drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs.

  7. Restraining Na-Montmorillonite Delamination in Water by Adsorption of Sodium Dodecyl Sulfate or Octadecyl Trimethyl Ammonium Chloride on the Edges

    Directory of Open Access Journals (Sweden)

    Hongliang Li

    2016-08-01

    Full Text Available The delamination of montmorillonite in water leads to sliming in ore slurry, which is detrimental to mineral flotation and solid/water separation. In this work, the delamination of Na-montmorillonite (Na-MMT has been restrained by sodium dodecyl sulfate (SDS or octadecyl trimethyl ammonium chloride (1831 through the adsorption on the edge of the mineral. The experimental results have shown that the pretreatment by adding SDS and 1831 could greatly reduce the Stokes size percentage of −1.1 µm particles in the aqueous Na-MMT suspension. From the X-ray diffractometer (XRD results, the interlayer spacing of the MMT pre-treated by SDS and 1831 is smaller than that of original MMT particles. Adsorption position of SDS and 1831 on MMT surfaces was analyzed by the measurements of adsorption capacity of SDS and 1831, inductively-coupled plasma spectra, and zeta potential before and after the plane surface of MMT was covered with tetraethylenepentaminecopper ([Cu(tetren]2+. The results indicated that SDS and 1831 are adsorbed on the edge and the whole surface of Na-MMT, respectively. Delamination of MMT could be well restrained by the adsorption of SDS and 1831 on the edges of MMT.

  8. Confinement - assisted shock-wave-induced thin-film delamination (SWIFD) of copper indium gallium diselenide (CIGS) on a flexible substrate

    Science.gov (United States)

    Lorenz, Pierre; Zagoranskiy, Igor; Ehrhardt, Martin; Han, Bing; Bayer, Lukas; Zimmer, Klaus

    2017-12-01

    The laser structuring of CIGS (copper indium gallium (di)selenide) solar cell material without influence and damaging the functionality of the active layer is a challenge for laser methods The shock-wave-induced thin-film delamination (SWIFD) process allows structuring without thermal modifications due to a spatial separation of the laser absorption from the functional layer removal process. In the present study, SWIFD structuring of CIGS solar cell stacks was investigated. The rear side of the polyimide was irradiated with a KrF-Excimer laser. The laser-induced ablation process generates a traverse shock wave, and the interaction of the shock wave with the layer-substrate interface results in a delamination process. The effect of a water confinement on the SWIFD process was studied where the rear side of the substrate was covered with a ∼2 mm thick water layer. The resultant surface morphology was analysed and discussed. At a sufficient number of laser pulses N and laser fluences Φ, the CIGS layer can be selectively removed from the Mo back contact. The water confinement, as well as the increasing laser beam size A0 and N, results in the reduction of the necessary minimal laser fluence Φth. Further, the delaminated CIGS area increased with increasing Φ, N, and A0.

  9. Effects of tensile and compressive in-plane stress fields on adhesion in laser induced delamination experiments

    NARCIS (Netherlands)

    Fedorov, A.; Vellinga, W. P.; De Hosson, J. Th. M.

    2008-01-01

    In this work, the adhesion of a polymer coating on steel substrate subjected to uniaxial tensile plastic deformations was studied with the laser induced delamination technique. A decrease in the practical work of adhesion has been measured as the deformation of the substrate progressed. Moreover, it

  10. Investigation Analysis of Crack Growth Arresting with Fasteners in Hybrid Laminated Skin-Stiffener Joint

    Science.gov (United States)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2018-02-01

    In recent years carbon fibre-reinforced polymers (CFRP) emerged its increasing demand in aerospace engineering. Due to their high specific strength to weight ratio, these composites offer more characteristics and considerable advantages compared to metals. Metals, unlike composites, offer plasticity effects to evade high stress concentrations during postbuckling. Under compressive load, composite structures show a wide range of damage mechanisms where a set of damage modes combined together might lead to the eventual structural collapse. Crack is one of the most critical damages in fiber composites, which are being employed in primary aircraft structures. A parametric study is conducted to investigate the arrest mechanism of the delamination or crack growth with installation of multiple fasteners when the delamination is embedded in between the skin and stiffener interface.

  11. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation.

    Science.gov (United States)

    Negres, Raluca A; Norton, Mary A; Cross, David A; Carr, Christopher W

    2010-09-13

    The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range.

  12. Crack growth behavior of low-alloy bainitic 51CrV4 steel

    OpenAIRE

    Canadinç, Demircan; Lambers, H. G.; Gorny B.; Tschumak, S.; Maier, H.J.

    2010-01-01

    The crack growth behavior of low-alloy bainitic 51CrV4 steel was investigated. The current results indicate that the stress state present during the isothermal bainitic transformation has a strong influence on the crack propagation behavior in the near threshold regime, when the crack growth direction is perpendicular to the loading axis of the original sample undergoing phase transformation. However, the influence of stresses superimposed during the bainitic transformation on the crack growt...

  13. Irradiation creep and growth behavior of Zircaloy-4 inner shell of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jong-Ha; Cho, Yeong-Garp; Kim, Jong-In [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2012-03-15

    The inner shell of the reflector vessel of HANARO was made of Zircaloy-4 rolled plate. Zircaloy-4 rolled plate shows highly anisotropic behavior by fast neutron irradiation. This paper describes the analysis method for the irradiation induced creep and growth of the inner shell of HANARO. The anisotropic irradiation creep behavior was modeled as uniaxial strain-hardening power law modified by Hill's stress potential and the anisotropic irradiation growth was modeled by using volumetric swelling with anisotropic strain rate. In this study, the irradiation induced creep and growth behavior of the inner shell of the HANARO reflector vessel was re-evaluated. The rolling direction, the fast neutron flux, and the boundary conditions were applied with the same conditions as the actual inner shell. Analysis results show that deformation of the inner shell due to irradiation does not raise any problem for the lifetime of HANARO. (author)

  14. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-10-02

    Oct 2, 2013 ... contrasting root growth behavior and salinity tolerance in rice will help us to identify key genes controlling ..... In order to screen plants showing altered response ... were found to remain green even after 15 days of salinity.

  15. Eating behavior, prenatal and postnatal growth in Angelman syndrome

    DEFF Research Database (Denmark)

    Mertz, Line Granild Bie; Christensen, Rikke; Vogel, Ida

    2014-01-01

    to children with a deletion. At birth, one child showed microcephaly. At five years of age, microcephaly was observed in half of the deletion cases, but in none Of the cases with a UBE3A mutation or pUPD. The apparently normal cranial growth in the UBE3A and pUPD patients should however be regarded......The objectives of the present study were to investigate eating behavior and growth parameters in Angelman syndrome. We included 39 patients with Angelman syndrome. Twelve cases had a larger Class I deletion, eighteen had a smaller Class II deletion, whereas paternal uniparental disomy (p......UPD) or a verified UBE3A mutation were present in five and four cases, respectively. Eating behavior was assessed by a questionnaire. Anthropometric measures were obtained from medical records and compared to Danish reference data. Children with pUPD had significantly larger birth weight and birth length than...

  16. Automatic delamination defect detection in radiographic sequence of rocket boosters

    International Nuclear Information System (INIS)

    Rebuffel, V.; Pires, S.; Caplier, A.; Lamarque, P.

    2003-01-01

    Solid rocket motors are routinely examined in real-time X-ray radioscopic mode. The large and cylindrical boosters are rotating between a high energy source and a two dimensional detector. The purpose of this control is to detect possible defects all through the sample. In the tangential configuration, the part of the object that intersects the X-rays beam is the peripheral one, allowing to detect the delamination defect between the propellant and the external metal envelope. But the defect detectability is very poor due to the strong attenuation of the X-rays through the motors. During the rotation of the booster, the system acquires a sequence of radiographs where the defects are visible over several successive instants. We have previously developed a real-time tomo-synthesis system, processing the radiographs on line, and based on a tomo-synthesis reconstruction algorithm in order to improve the signal-to-noise ratio. This system is installed at the industrial site of Kourou, and is currently used by the operators in charge of the visual inspection of the boosters. In this paper, we present a method that processes the digital images obtained by the system in the purpose of automatically extracting the delamination defects. Due to the size and the poor contrast of the defects, a single image is not sufficient to perform this detection. A spatio-temporal aspect is required for the algorithm to be robust and efficient. In a first step, the proposed method computes the apparent local displacement between the current radiograph and a reference one. This reference image is acquired at the beginning of the rotation, with few noise, and is supposed to be defect free. The apparent displacement is due to the non-perfect rotation positioning. It may be uniform or not, depending on the deformation of the insulation liner of the metallic wall. The images are then registered and compared. On the resulting difference image we apply a smoothed threshold to obtain an

  17. Characterization of the adhesion of thin film by Cross-Sectional Nanoindentation. Analysis of the substrate edge chipping and the film delamination

    Science.gov (United States)

    Felder, Eric; Roy, Sébastien; Darque-Ceretti, Evelyne

    2011-07-01

    Cross-Sectional Nanoindentation (CSN) is a recent method for adhesion measurement of nanoscale thin films in Ultra-Large Scale Integrated circuits. In the case of ductile thin films, the motion of the substrate chip implies significant plastic deformation of the film and complex geometry of delaminated areas. This article recalls first the experimental procedure and the two main features observed in this test performed on various plane copper films deposited on silicon: the critical force producing silicon edge chipping increases linearly with the distance of the indenter to the interface; on the section the delaminated length of the film ( a-b) is proportional to the residual silicon chip displacement u and the ratio S=u/(a-b) depends on the manufacturing process of the film, and is so related to its adhesion to the substrate. One proposes a simple analysis of the silicon edge chipping. Then a model of pull-off of an elastic-strain hardening plastic film is developed, which suggests an explanation for the delamination process. Application of the model to experimental results starting from films plastic properties deduced from nanoindentation measurements provides plausible results. Some improvements for performing the CSN test are proposed in order to make easier its interpretation.

  18. Comparison of histologic healing and biomechanical characteristics between repair techniques for a delaminated rotator cuff tear in rabbits.

    Science.gov (United States)

    Cheon, Sang-Jin; Kim, Jung-Han; Gwak, Heui-Chul; Kim, Chang-Wan; Kim, Jeon-Kyo; Park, Ji-Hwan

    2017-05-01

    The purpose of this study was to compare histologic healing and biomechanical characteristics between 2 repair techniques (layer by layer, repair of each layer to bone separately; and whole layer, repair of each layer to the bone en masse) for delaminated rotator cuff tear. Rabbits were used as subjects and classified into 2 groups: group A, right side, the layer-by-layer repair group; and group B, left side, the whole-layer repair group. Histologic evaluations were done at 3 weeks (n = 7) and 6 weeks (n = 4) after operation. Biomechanical tests to evaluate the tensile property were done at time 0 (n = 5) and 3 weeks (n = 5) after operation. Histologic healing improved in all groups. A smaller cleft was found between layers in group B compared with the cleft in group A at 3 weeks after operation. At time 0, group A showed a higher yield load and ultimate failure load (67 ± 10.5 N and 80 ± 7.8 N, respectively). However, at 3 weeks after operation, group B showed a higher yield load (48 ± 7.6 N). In the delaminated rotator cuff tear model in the rabbit, the whole-layer repair showed a narrow gap between layers and a higher yield load at 3 weeks after operation. Surgical techniques that unite the cleft in a delaminated tear could improve biomechanical strength after operation. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    Science.gov (United States)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  20. Behavioral characteristics of Hanwoo ( steers at different growth stages and seasons

    Directory of Open Access Journals (Sweden)

    Na Yeon Kim

    2017-10-01

    Full Text Available Objective This research analyzed behavioral characteristics of Hanwoo (Bos taurus coreanae steers during each season and growth stage to enable measurement of the animals’ welfare level for precision livestock farming. Methods A hundred-eight beef steers were divided into three equal groups at a Hanwoo farm according to their growth stage: growing stage (GS, 8 months; early-fattening stage (EFS, 19 months; and late-fattening stage (LFS, 30 months. Twelve behavioral categories were continuously recorded for 13 day-time hours in each four seasons with three replications. Results Time spent standing was found to be significantly longer in summer at all growth stages (p<0.05. Hanwoos at the GS spent significantly longer standing time in spring and summer than those at the EFS and LFS (p<0.05. Lying time in summer was the shortest for all growth stages (p<0.05. Steers at the LFS spent significantly longer lying time than that at the GS (p<0.05 in summer. For GS and EFS, time spent eating in spring and autumn were longer than in summer and winter (p<0.05. Eating time was the longest for the GS in spring, autumn, and winter, excluding for the LFS in winter (p<0.05. Regarding ruminating, steers at the LFS spent significantly shorter time than those at other stages in all seasons (p<0.05. GS and EFS steers showed the longest walking time in summer compared with other seasons (p<0.05. At GS and LFS, drinking time in summer was the longest of all seasons (p<0.05. Sleeping time was significantly shorter in summer compared with the other seasons (p<0.05. Self-grooming time was the longest in winter for all growth stages (p<0.05. Conclusion Steers were found to have more variable behavioral patterns during summer and the GS and less active behaviors during the LFS, thus extra care seems necessary during the GS, LFS, and summer period.

  1. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    Generation, screening and isolating mutants for any developmental and adaptive traits plays a major role in plant functional genomics research. Identification and exploitation of mutants possessing contrasting root growth behavior and salinity tolerance in rice will help us to identify key genes controlling these traits and in ...

  2. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  3. Growth behaviors of bacteria in biofouling cake layer in a dead-end microfiltration system.

    Science.gov (United States)

    Chao, Yuanqing; Zhang, Tong

    2011-01-01

    The growth behaviors of three bacterial species, i.e. Escherichia coli, Pseudomonas putida and Aquabaculum hongkongensis, in biofouling cake layer (attached form) were investigated using an unstirred dead-end continuous microfiltration system, and were compared with those in suspended form. Results showed that all the three bacteria had larger average growth rates in suspended form than in attached form under high substrates levels. Under oligotrophic conditions, the average growth rates in the attached form were faster than those in the suspended form, especially for A. hongkongensis. The growth behaviors analysis presented the same results due to all the tested bacteria had higher maximum growth rate and saturation constant in suspended form than attached form, indicating the dominant growth mode would be shifted from attached form to suspended form with substrate concentration increase. Finally, total filtration resistance determined in the experiments increased significantly with the bacterial growth in filtration system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Living bacteria rheology: Population growth, aggregation patterns, and collective behavior under different shear flows

    Science.gov (United States)

    Patrício, P.; Almeida, P. L.; Portela, R.; Sobral, R. G.; Grilo, I. R.; Cidade, T.; Leal, C. R.

    2014-08-01

    The activity of growing living bacteria was investigated using real-time and in situ rheology—in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus—strain COL and its isogenic cell wall autolysis mutant, RUSAL9—were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of the cultures of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the cultures of the two strains follows different and rich behaviors, with no counterpart in the optical density or in the population's colony-forming units measurements. While the viscosity of strain COL culture keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain culture decreases steeply, still in the exponential phase, remains constant for some time, and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviors, which were observed to be shear-stress-dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL culture, obtained with oscillatory shear, exhibit power-law behaviors whose exponents are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant culture have complex behaviors, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. Nevertheless, these behaviors reflect the bacteria growth stage.

  5. The ‘Sticky Elastica’: delamination blisters beyond small deformations

    KAUST Repository

    Wagner, Till J. W.

    2013-01-01

    We consider the form of an elastic loop adhered to a rigid substrate: the \\'Sticky Elastica\\'. In contrast to previous studies of the shape of delamination \\'blisters\\', the theory developed accounts for deflections with large slope (i.e. geometrically nonlinear). Starting from the classical Euler Elastica we provide numerical results for the dimensions of such blisters for a variety of end-end confinements and develop asymptotic expressions that reproduce these results well, even up to the point of self-contact. Interestingly, we find that the width of such blisters does not grow monotonically with increased confinement. Our theoretical predictions are confirmed by simple desktop experiments and suggest a new method for the measurement of the elastocapillary length for deformations that cannot be considered small. We discuss the implications of our results for applications such as flexible electronics. © 2013 The Royal Society of Chemistry.

  6. Study of creep crack growth behavior of 316LN welds

    International Nuclear Information System (INIS)

    Venugopal, S.; Kumar, Yatindra; Sasikala, G.

    2016-01-01

    Creep crack growth (CCG) behavior plays an important role in the assessment of structural integrity of components operating at elevated temperature under load/stress condition. Integrity of the welded components is decided primarily by that of the weld. Creep crack growth behavior of 316LN welds prepared using consumables developed indigenously for welding the 316L(N) SS components for the Prototype Fast Breeder Reactor has been studied. The composition of the consumable is tailored to ensure about 5 FN (ferrite number) of δ ferrite in the weld deposit. Constant load CCG tests were carried out as per ASTM E1457 at different applied loads at temperatures in the range 823-923 K on CT specimens fabricated from 'V-type' weld joints with notch in the weld centre. The creep crack growth rate (α) is commonly correlated to a time dependent fracture mechanics parameter known as C*. The α3-C* correlations (α=D(C*) φ ) were established in the temperature range 823-923 K. The crack growth rates at different temperature have been compared with that given in RCC-MR. Extensive microstructural and fractographic studies using optical and scanning electron microscopy were carried out on the CCG tested specimens to understand the effect of transformation of delta ferrite on the creep damage and fracture mechanisms associated with CCG in the weld metal at different test conditions. (author)

  7. The growth benefits of aggressive behavior vary with individual metabolism and resource predictability

    NARCIS (Netherlands)

    Hoogenboom, Mia O.; Armstrong, John D.; Groothuis, Ton G. G.; Metcalfe, Neil B.

    2013-01-01

    Differences in behavioral responses to environmental conditions and biological interactions are a key determinant of individual performance. This study investigated how the availability and predictability of food resources modulates the growth of animals that adopt different behavioral strategies.

  8. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  9. Layered zinc hydroxide salts: Delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil

    2011-01-01

    Roč. 360, č. 2 (2011), s. 532-539 ISSN 0021-9797 R&D Projects: GA MŠk ME09058; GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505; CEZ:AV0Z40400503 Keywords : layered zinc hydroxide * delamination * exfoliation * hydroxide layer * ZnO Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  10. The Effect of Veneer Layers on the Bending Shear Strength and Delamination of Laminated Veneer Lumber (LVL) from Oil Palm Trunk (OPT)

    Science.gov (United States)

    Jamaludin, M. A.; Nordin, K.; Bahari, S. A.; Ahmad, M.

    2010-03-01

    The aim of this study was to evaluate the effects of the number of veneer layers on the bending shear strength and delamination of Laminated Veneer Lumber (LVL) from oil palm trunk (OPT). Five (5), Six (6) and Seven (7) veneer layers of OPT LVL were manufactured. The dimension of the boards was 45 cm by 45 cm by 1.9 cm. The boards were hot pressed for 13 minutes at a pressure of 31 kgf per m2. Urea formaldehyde (UF) supplied by a local adhesive manufacturer was used as the binder for the boards. The bending shear tests consisted of the edgewise and flatwise tests, whereas the delamination test consisted of the cold and hot water boil tests. The preparation of the test specimens and tests set-up was in accordance to the Japanese Standards, JAS-1991 [1]. Six replications were used for each test. The results were analyzed by Analysis of Variance (ANOVA) using the Duncan's Multiple Range Test to test for significant differences. The results indicated that as the number of layers increased the strength also increased. All the boards passed the standard. The difference in strength between the different types of samples was significant at 95 percent confidence level. Bending shear failures were primarily in the veneers. It is possible to use the boards as light weight interior building and furniture components. Over the years, the supply of quality timber resources from the natural forest has decrease as the wood-based industry experienced rapid growth. The supply of rubberwood for the furniture industry is also decreasing as a result of increase latex price. Accordingly, OPT LVL can be an alternative or supplementary raw material for the wood-based industry.

  11. Novel method of assessing delamination of the anterior lens capsule using spectral-domain optical coherence tomography

    OpenAIRE

    Tan, Deborah KL; Aung, Tin; Perera, Shamira A

    2012-01-01

    Deborah KL Tan,1 Tin Aung,1–3 Shamira A Perera1,21Singapore National Eye Centre, Singapore; 2Singapore Eye Research Institute, Singapore; 3National University of Singapore, Yong Loo Lin School of Medicine, SingaporeBackground: Delamination of the anterior lens capsule producing a double-ring sign during continuous curvilinear capsulorhexis is commonly associated with true exfoliation syndrome.Methods: Previous studies have concentrated on light- and transmission-electron microscopic...

  12. Growth behavior of off-flavor-forming microorganisms in apple juice.

    Science.gov (United States)

    Siegmund, Barbara; Pöllinger-Zierler, Barbara

    2007-08-08

    Alicyclobacillus acidoterrestris and Streptomyces griseus griseus are two bacteria species that are frequently found in apple juice as spoilage bacteria. They both show thermoacidophilic behavior, adapting to the low pH of the juices and being able to survive high temperatures. They are able to regerminate in the shelf-stable product and spoil the juice by the formation of off-flavor compounds (i.e., guaiacol and 2,6-dibromophenol as metabolites of A. acidoterrestris and 2-isopropyl-3-methoxypyrazine, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, and geosmin as important metabolites of S. griseus). In this study the growth behavior of the strains and the impact on apple juice were investigated under different conditions (i.e., temperature, oxygen supply, and mutual influence of the strains). The off-flavor formation was monitored by GC-MS after headspace SPME and subsequent calculation of the odor activity values. The results showed that S. griseus grows and consequently spoils the product even at 4 degrees C, whereas A. acidoterrestris needs at least room temperature to show significant growth. Limited oxygen supply did not significantly reduce off-flavor formation for any of the strains. The simultaneous presence of the strains in the juice reduced the growth of both species; nevertheless, off-flavor was detected.

  13. Adhesion-delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices

    International Nuclear Information System (INIS)

    Khanna, V K

    2011-01-01

    Physico-chemical mechanisms of adhesion and debonding at the various surfaces and interfaces of semiconductor devices, integrated circuits and microelectromechanical systems are systematically examined, starting from chip manufacturing and traversing the process stages to the ultimate finished product. Sources of intrinsic and thermal stresses in these devices are pointed out. Thin film ohmic contacts to the devices call for careful attention. The role of an adhesion layer in multilayer metallization schemes is highlighted. In packaged devices, sites facing potential risks of delamination are indicated. As MEMS devices incorporate moving parts, there are additional issues due to adhesion of suspended structures to surfaces in the vicinity, both during chip fabrication and their subsequent operation. Proper surface treatments for preventing adhesion together with design considerations for overcoming stiction pave the way to reliable functioning of these devices. Adhesion-delamination issues in microelectronics and MEMS continue to pose significant challenges to both design and process engineers. This paper is an attempt to survey the adhesion characteristics of materials, their compatibilities and limitations and look at future research trends. In addition, it addresses some of the techniques for improved or reduced adhesion, as demanded by the situation. The paper encompasses fundamental aspects to contemporary applications.

  14. MODELLING THE DELAMINATION FAILURE ALONG THE CFRP-CFST BEAM INTERACTION SURFACE USING DIFFERENT FINITE ELEMENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    AHMED W. AL-ZAND

    2017-01-01

    Full Text Available Nonlinear finite element (FE models are prepared to investigate the behaviour of concrete-filled steel tube (CFST beams strengthened by carbon fibre reinforced polymer (CFRP sheets. The beams are strengthened from the bottom side only by varied sheet lengths (full and partial beam lengths and then subjected to ultimate flexural loads. Three surface interaction techniques are used to implement the bonding behaviour between the steel tube and the CFRP sheet, namely, full tie interaction (TI, cohesive element (CE and cohesive behaviour (CB techniques using ABAQUS software. Results of the comparison between the FE analysis and existing experimental study confirm that the FE models with the TI technique could be applicable for beams strengthened by CFRP sheets with a full wrapping length; the technique could not accurately implement the CFRP delamination failure, which occurred for beams with a partial wrapping length. Meanwhile, the FE models with the CE and CB techniques are applicable in the implementation of both CFRP failures (rapture and delamination for both full and partial wrapping lengths, respectively. Where, the ultimate loads' ratios achieved by the FE models using TI, CE and CB techniques about 1.122, 1.047 and 1.045, respectively, comparing to the results of existing experimental tests.

  15. Detection of Delamination in Laminate Wind Turbine Blades Using One-Dimensional Wavelet Analysis of Modal Responses

    Directory of Open Access Journals (Sweden)

    Łukasz Doliński

    2018-01-01

    Full Text Available This paper demonstrates the effectiveness of a nondestructive diagnostic technique used to determine the location and size of delamination in laminated coatings of wind turbine blades. This is realized based on results of numerical and experimental investigations obtained by the use of the finite element method (FEM and laser scanning vibrometry (LSV. The proposed method is based on the one-dimensional continuous wavelet transform of vibration parameters of a wind turbine blade. The investigations were conducted for a 1 : 10 scaled-down blade of a 36 m rotor wind turbine. Glass fibres and epoxy resin were used as laminate components. For numerical studies, a simple delamination model was proposed. The results obtained by the authors were used to determine the optimal set of parameters of the continuous wavelet transform. The application of high-quality LSV for experimental measurements allowed determining the optimal conditions of measuring procedures. At the same time the capabilities and limitations, resulting from the nature of the measurement method, were identified. In order to maximize the effectiveness of the detection method, preliminary signal processing was performed. Beside base wavelets also different waveform families were tested. The results obtained by the authors showed that it is possible to identify and localize even relatively small damage.

  16. Kinetic Behavior of Exchange-Driven Growth with Catalyzed-Birth Processes

    Science.gov (United States)

    Wang, Hai-Feng; Lin, Zhen-Quan; Kong, Xiang-Mu

    2006-12-01

    Two catalyzed-birth models of n-species (n>=2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Amk and Amj of the same species with the rate kernels Km(k,j) = Kmkj (m = 1,2,...,n, n>=2), and aggregates of An species catalyze a monomer-birth of Al species (l = 1,2,...,n-1) with the catalysis rate kernel Jl(k,j) = Jlkjυ. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution alk(t) of Al species depends crucially on the value of the catalysis rate parameter υ: (i) alk(t) obeys the conventional scaling law in the case of υ0. In the second model, the mechanism of monomer-birth of An-species catalyzed by Al species is added on the basis of the first model, that is, the aggregates of Al and An species catalyze each other to cause monomer-birth. The kinetic behaviors of Al and An species are found to fall into two categories for the different υ: (i) growth obeying conventional scaling form with υ0.

  17. Impact behavior of basalt/epoxy composite: Comparison between flat and twill fabric

    Science.gov (United States)

    Papa, I.; Ricciardi, M. R.; Antonucci, V.; Langella, A.; Lopresto, V.

    2018-05-01

    Two types of basalt fibre reinforced epoxy laminates were realized by overlapping flat and twill woven basalt fabrics by resin infusion. Rectangular specimens, cut from the panels were impacted at penetration and at increasing energy values, to investigate the damage onset and propagation. A non-destructive technique, Ultrasound testing (UT), was adopted to investigate the internal damage. Despite the difficulties to obtain information by UT method due to the high amount of signal absorbed, the technique, properly calibrated, proved to be very useful in providing information about the presence, the shape and the extent of the delaminations. The results were compared at the aim to investigate the effect of the fiber architecture (textile). The experimental results indicate a similar impact behavior between basalt flat and twill composites but in the case of the twill a minor delaminated area was detected, even if a higher absorbed energy was recorded

  18. Effects of Cp2Mg supply on MOVPE growth behavior of InN

    International Nuclear Information System (INIS)

    Sugita, K.; Sasamoto, K.; Hashimoto, A.; Yamamoto, A.

    2011-01-01

    This report shows the effect of Cp 2 Mg supply on MOVPE growth behavior of InN. At low growth temperature (∝600 C), the formation of adducts occurred, which degenerates the crystal quality. With increasing the growth temperature, the adduct formation was suppressed because the decomposition of Cp 2 Mg was enhanced and thus the incorporation of carbon into the film was suppressed. The use of Cp 2 Mg during InN growth increases the growth rate in the lateral direction. Non-doped InN film grown on GaN buffer has an In-face of the top side. On the other hand, the inversion domains seems to be formed in the highly Mg-doped InN. Tilt distribution decreases from 65 to 30 arcmin with the increase of Cp 2 Mg/TMI molar ratio 0 to 0.06. The donor is produced in highly Mg-doped MOVPE-grown InN (Cp 2 Mg/TMI molar ratio > 0.005). Therefore, the effect of Cp 2 Mg supply on MOVPE growth behavior of InN is found to improve a macro-scale crystal quality but also produces the donor (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. A fiber bridging model for fatigue delamination in composite materials

    International Nuclear Information System (INIS)

    Gregory, Jeremy R.; Spearing, S. Mark

    2004-01-01

    A fiber bridging model has been created to examine the effects of bridging on Mode I delamination fatigue fracture in a carbon fiber polymer-matrix composite. The model uses a cohesive zone law that is derived from quasi-static R-curves to determine the bridging energy applied in the bridged region. Timoshenko beam theory and an iterative self-consistent scheme are used to calculate the bridging tractions and displacements. After applying the bridging model to crack propagation data the scatter in the data was significantly reduced and clear trends were observed as a function of temperature that were not apparent previously. This indicated that the model appropriately accounted for the bridging in the experiments. Scanning electron microscopy crack opening displacement measurements were performed to validate the model's predictions. The measurements showed that the predictions were close to the actual bridging levels in the specimen

  20. Effects of growth rate on structural property and adatom migration behaviors for growth of GaInNAs/GaAs (001) by molecular beam epitaxy

    Science.gov (United States)

    Li, Jingling; Gao, Peng; Zhang, Shuguang; Wen, Lei; Gao, Fangliang; Li, Guoqiang

    2018-03-01

    We have investigated the structural properties and the growth mode of GaInNAs films prepared at different growth rates (Rg) by molecular beam epitaxy. The crystalline structure is studied by high resolution X-ray diffraction, and the evolution of GaInNAs film surface morphologies is studied by atomic force microscopy. It is found that both the crystallinity and the surface roughness are improved by increasing Rg, and the change in the growth mode is attributed to the adatom migration behaviors particularly for In atoms, which is verified by elemental analysis. In addition, we have presented some theoretical calculation results related to the N adsorption energy to show the unique N migration behavior, which is instructive to interpret the growth mechanism of GaInNAs films.

  1. Fracture and subcritical crack-growth behavior of Y-Si-Al-O-N glasses and Si3N4 ceramics

    International Nuclear Information System (INIS)

    Bhatnagar, A.; Hoffman, M.J.; Dauskardt, R.H.

    2000-01-01

    Fracture and environmentally assisted subcritical crack-growth processes are examined in bulk Y-Si-Al-O-N oxynitride glasses with compositions typical of the grain boundary phase of silicon nitride ceramics. Both long-crack (in compact tension specimens) as well as short-crack behavior (using indentation techniques) were investigated to establish a reliable fracture toughness and to elucidate the anomalous densification behavior of the oxynitride glass. Environmentally assisted subcritical crack-growth processes were studied in inert, moist, and wet environments under both cyclic and static loading conditions. Behavior is discussed in terms of the interaction of the environment with the crack tip. Likely mechanisms for environmentally assisted crack growth are discussed and related to the subcritical crack-growth behavior of silicon nitride ceramics

  2. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  3. Implementing statistical analysis in multi-channel acoustic impact-echo testing of concrete bridge decks: Determining thresholds for delamination detection

    Science.gov (United States)

    Hendricks, Lorin; Spencer Guthrie, W.; Mazzeo, Brian

    2018-04-01

    An automated acoustic impact-echo testing device with seven channels has been developed for faster surveying of bridge decks. Due to potential variations in bridge deck overlay thickness, varying conditions between testing passes, and occasional imprecise equipment calibrations, a method that can account for variations in deck properties and testing conditions was necessary to correctly interpret the acoustic data. A new methodology involving statistical analyses was therefore developed. After acoustic impact-echo data are collected and analyzed, the results are normalized by the median for each channel, a Gaussian distribution is fit to the histogram of the data, and the Kullback-Leibler divergence test or Otsu's method is then used to determine the optimum threshold for differentiating between intact and delaminated concrete. The new methodology was successfully applied to individual channels of previously unusable acoustic impact-echo data obtained from a three-lane interstate bridge deck surfaced with a polymer overlay, and the resulting delamination map compared very favorably with the results of a manual deck sounding survey.

  4. Acetate-intercalated Ni–In layered double hydroxides with low infrared emissivity: Synthesis, delamination and restacked to form the multilayer films

    International Nuclear Information System (INIS)

    Wang, Yongjuan; Zhou, Yuming; Zhang, Tao; He, Man; Bu, Xiaohai; Yang, Xiaoming

    2014-01-01

    The low-emissive membrane materials have potential applications in infrared detecting technologies. Herein, we report a novel LDHs film with low infrared emissivity, which was based on the deposition of the exfoliated LDH nanosheets. The monodispersed hexagonal plate-like particles of Ni–In–CO 3 2− LDHs were prepared by coprecipitation method with hydrothermal treatment under optimized conditions. In order to exfoliate the LDHs into nanosheets, acetate-intercalated Ni–In LDHs were prepared by anion-exchange of Ni–In–CO 3 2− LDHs. The as-prepared acetate-intercalated LDHs exhibited excellent delaminating behavior in water and unilamellar nanosheets were easily obtained. The resulting positive-charged nanosheets were assembled onto quartz substrates to produce the multilayer films. The infrared emissivity values of all the samples were characterized. It was found that the incorporation of Ni 2+ and In 3+ in the host layer significantly reduced the infrared emissivity value. Moreover, the value was further reduced by the fabrication of multilayer ultrathin films, which can be ascribed to the dense orderly structure and smooth surface morphology.

  5. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  6. A combined experimental and theoretical approach to establish the relationship between shear force and clay platelet delamination in melt-processed polypropylene nanocomposites

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2014-04-01

    Full Text Available In this article, a combined experimental and theoretical approach has been proposed to establish a relationship between the required shear force and the degree of delamination of clay tactoids during the melt-processing of polymer nanocomposites...

  7. Controlling Water Intercalation Is Key to a Direct Graphene Transfer.

    Science.gov (United States)

    Verguts, Ken; Schouteden, Koen; Wu, Cheng-Han; Peters, Lisanne; Vrancken, Nandi; Wu, Xiangyu; Li, Zhe; Erkens, Maksiem; Porret, Clement; Huyghebaert, Cedric; Van Haesendonck, Chris; De Gendt, Stefan; Brems, Steven

    2017-10-25

    The key steps of a transfer of two-dimensional (2D) materials are the delamination of the as-grown material from a growth substrate and the lamination of the 2D material on a target substrate. In state-of-the-art transfer experiments, these steps remain very challenging, and transfer variations often result in unreliable 2D material properties. Here, it is demonstrated that interfacial water can insert between graphene and its growth substrate despite the hydrophobic behavior of graphene. It is understood that interfacial water is essential for an electrochemistry-based graphene delamination from a Pt surface. Additionally, the lamination of graphene to a target wafer is hindered by intercalation effects, which can even result in graphene delamination from the target wafer. For circumvention of these issues, a direct, support-free graphene transfer process is demonstrated, which relies on the formation of interfacial water between graphene and its growth surface, while avoiding water intercalation between graphene and the target wafer by using hydrophobic silane layers on the target wafer. The proposed direct graphene transfer also avoids polymer contamination (no temporary support layer) and eliminates the need for etching of the catalyst metal. Therefore, recycling of the growth template becomes feasible. The proposed transfer process might even open the door for the suggested atomic-scale interlocking-toy-brick-based stacking of different 2D materials, which will enable a more reliable fabrication of van der Waals heterostructure-based devices and applications.

  8. Partial delamination of continental mantle lithosphere, uplift-related crust mantle decoupling, volcanism and basin formation: a new model for the Pliocene Quaternary evolution of the southern East-Carpathians, Romania

    Science.gov (United States)

    Chalot-Prat, F.; Girbacea, R.

    2000-11-01

    A geodynamic model is proposed for the Mid-Miocene to Quaternary evolution of the southern East-Carpathians in order to explain the relationships between shallow and deep geological phenomena that occurred synchronously during late-collision tectonics. In this area, an active volcanic zone cross-cuts since 2 My the suture between the overriding Tisza-Dacia and subducting European continental plates. Mafic calc-alkaline and alkaline magmas (south Harghita and Persani volcanoes) erupted contemporaneously. These magmas were supplied by partial melting of the mantle lithosphere of the subducting, and not of the overriding, plate. In an effort to decipher this geodynamically a-typical setting of magma generation, the spatial and temporal distribution of shallow and deep phenomena was successively examined in order to establish the degree of their interdependence. Our model indicates that intra-mantle delamination of the subducting European plate is the principal cause of a succession of events. It caused upwelling of the hot asthenosphere below a thinned continental lithosphere of the Carpathians, inducing the uplift of the lithosphere and its internal decoupling at the Moho level by isostatic and mostly thermal effects. During this uplift, the crust deformed flexurally whilst the mantle deformed in a ductile way. This triggered decompressional partial melting of the uppermost mantle lithosphere. Flexural deformation of the crust induced its fracturing, allowing for the rapid ascent of magmas to the surface, as well as reactivation of an older detachment horizon at the base of the Carpathian nappe stack above which the Brasov, Ciuc and Gheorghieni hinterland basins formed by extension and gravity spreading. The rapid subsidence of the Focsani foreland basin is controlled by the load exerted on the lithosphere by the delaminated mantle slab that is still attached to it. In this model, crust-mantle decoupling, magma genesis and volcanism, local near-surface hinterland

  9. Comparison of Ductile-to-Brittle Transition Behavior in Two Similar Ferritic Oxide Dispersion Strengthened Alloys

    Science.gov (United States)

    Chao, Jesus; Rementeria, Rosalia; Aranda, Maria; Capdevila, Carlos; Gonzalez-Carrasco, Jose Luis

    2016-01-01

    The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell–Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic. PMID:28773764

  10. Comparison of Ductile-to-Brittle Transition Behavior in Two Similar Ferritic Oxide Dispersion Strengthened Alloys.

    Science.gov (United States)

    Chao, Jesus; Rementeria, Rosalia; Aranda, Maria; Capdevila, Carlos; Gonzalez-Carrasco, Jose Luis

    2016-07-29

    The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell-Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic.

  11. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...

  12. Meat supplementation improves growth, cognitive, and behavioral outcomes in Kenyan children

    NARCIS (Netherlands)

    Neumann, C.G.; Murphy, S.P.; Gewa, C.; Grillenberger, M.; Bwibo, N.O.

    2007-01-01

    A randomized, controlled school feeding study was conducted in rural Embu District, Kenya to test for a causal link between animal-source food intake and changes in micronutrient nutrition and growth, cognitive, and behavioral outcomes. Twelve primary schools were randomly assigned to 1 of 4 groups.

  13. Fatigue-crack growth behavior in dissimilar metal weldments

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were used to characterize fatigue-crack propagation behavior in three dissimilar metal weldments at test temperatures of 800 0 F (427 0 C) and 1000 0 F (538 0 C). The weldments studied included Inconel 718/Type 316, all using Inconel 82 as the filler metal. In general, fatigue-crack growth rates in the weldments were equal to, or less than, those observed in the base metals. Crack deviation from the expected path perpendicular to the loading axis was noted in some cases, and is discussed

  14. Etiology of Stability and Growth of Internalizing and Externalizing Behavior Problems Across Childhood and Adolescence.

    Science.gov (United States)

    Hatoum, Alexander S; Rhee, Soo Hyun; Corley, Robin P; Hewitt, John K; Friedman, Naomi P

    2018-04-20

    Internalizing and externalizing behaviors are heritable, and show genetic stability during childhood and adolescence. Less work has explored how genes influence individual differences in developmental trajectories. We estimated ACE biometrical latent growth curve models for the Teacher Report Form (TRF) and parent Child Behavior Checklist (CBCL) internalizing and externalizing scales from ages 7 to 16 years in 408 twin pairs from the Colorado Longitudinal Twin Study. We found that Intercept factors were highly heritable for both internalizing and externalizing behaviors (a2 = .61-.92), with small and nonsignificant environmental influences for teacher-rated data but significant nonshared environmental influences for parent-rated data. There was some evidence of heritability of decline in internalizing behavior (Slopes for teacher and parent ratings), but the Slope genetic variance was almost entirely shared with that for the Intercept when different than zero. These results suggest that genetic effects on these developmental trajectories operate primarily on initial levels and stability, with no significant unique genetic influences for change. Finally, cross-rater analyses of the growth factor scores revealed moderate to large genetic and environmental associations between growth factors derived from parents' and teachers' ratings, particularly the Intercepts.

  15. Aloysia triphylla in the zebrafish food: effects on physiology, behavior, and growth performance.

    Science.gov (United States)

    Zago, Daniane C; Santos, Alessandro C; Lanes, Carlos F C; Almeida, Daniela V; Koakoski, Gessi; de Abreu, Murilo S; Zeppenfeld, Carla C; Heinzmann, Berta M; Marins, Luis F; Baldisserotto, Bernardo; Barcellos, Leonardo J G; Cunha, Mauro A

    2018-04-01

    Dietary supplements are commonly used by animals and humans and play key roles in diverse systems, such as the immune and reproductive systems, and in metabolism. Essential oils (EOs), which are natural substances, have potential for use in food supplementation; however, their effects on organisms remain to be elucidated. Here, we examine the effects of dietary Aloysia triphylla EO supplementation on zebrafish behavior, metabolism, stress response, and growth performance. We show that fish fed diets containing A. triphylla EO presented an anxiolytic response, with reduced exploratory activity and oxygen consumption; no changes were observed in neuroendocrine stress axis functioning and growth was not impaired. Taken together, these results suggest that the A. triphylla EO supplementation is a strong candidate for use in feed, since it ensures fish welfare (anxiolytic behavior) with decreased oxygen consumption. This makes it suitable for use in high-density production systems without causing damage to the neuroendocrine stress axis and without growth performance being impaired.

  16. Determination of a cohesive law for delamination modelling - Accounting for variation in crack opening and stress state across the test specimen width

    DEFF Research Database (Denmark)

    Joki, R. K.; Grytten, F.; Hayman, Brian

    2016-01-01

    by differentiating the fracture resistance with respect to opening displacement at the initial location of the crack tip, measured at the specimen edge. 2) Extend the bridging law to a cohesive law by accounting for crack tip fracture energy. 3) Fine-tune the cohesive law through an iterative modelling approach so......The cohesive law for Mode I delamination in glass fibre Non-Crimped Fabric reinforced vinylester is determined for use in finite element models. The cohesive law is derived from a delamination test based on DCB specimens loaded with pure bending moments taking into account the presence of large...... that the changing state of stress and deformation across the width of the test specimen is taken into account. The changing state of stress and deformation across the specimen width is shown to be significant for small openings (small fracture process zone size). This will also be important for the initial part...

  17. Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Kwon, Oh Yang; Jang, Yong Joon

    2007-01-01

    The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by using the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location

  18. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    Science.gov (United States)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  19. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Terachi, T.; Yamada, T.; Miyamoto, T.; Arioka, K.

    2012-07-01

    The rates of SCC growth were measured under simulated PWR primary water conditions (500 ppm B + 2 ppm Li + 30 cm3/kg-H2O-STP DH2) using cold worked 316SS and 304SS. The direct current potential drop method was applied to measure the crack growth rates for 53 specimens. Dependence of the major engineering factors, such as yield strength, temperature and stress intensity was systematically examined. The rates of crack growth were proportional to the 2.9 power of yield strength, and directly proportional to the apparent yield strength. The estimated apparent activation energy was 84 kJ/mol. No significant differences in the SCC growth rates and behaviors were identified between 316SS and 304SS. Based on the measured results, an empirical equation for crack growth rate was proposed for engineering applications. Although there were deviations, 92.8% of the measured crack growth rates did not exceed twice the value calculated by the empirical equation.

  20. Artificial Plant Root System Growth for Distributed Optimization: Models and Emergent Behaviors

    Directory of Open Access Journals (Sweden)

    Su Weixing

    2016-01-01

    Full Text Available Plant root foraging exhibits complex behaviors analogous to those of animals, including the adaptability to continuous changes in soil environments. In this work, we adapt the optimality principles in the study of plant root foraging behavior to create one possible bio-inspired optimization framework for solving complex engineering problems. This provides us with novel models of plant root foraging behavior and with new methods for global optimization. This framework is instantiated as a new search paradigm, which combines the root tip growth, branching, random walk, and death. We perform a comprehensive simulation to demonstrate that the proposed model accurately reflects the characteristics of natural plant root systems. In order to be able to climb the noise-filled gradients of nutrients in soil, the foraging behaviors of root systems are social and cooperative, and analogous to animal foraging behaviors.

  1. A propagator matrix method for the Rayleigh-Taylor instability of multiple layers: a case study on crustal delamination in the early Earth

    Science.gov (United States)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability, a gravitational instability associated with unstable density stratification, is of profound importance in various geophysical contexts. When more than two layers are involved, a semi-analytical technique based on the biharmonic formulation of Stokes flow has been extensively used to obtain such dispersion relation. However, this technique may become cumbersome when applied to lithospheric dynamics, where a number of layers are necessary to represent the continuous variation of viscosity over many orders of magnitude. Here, we present an alternative and more efficient method based on the propagator matrix formulation of Stokes flow. With this approach, the original instability problem is reduced to a compact eigenvalue equation whose size is solely determined by the number of primary density contrasts. We apply this new technique to the stability of the early crust, and combined with the Monte Carlo sensitivity analysis, we derive an empirical formula to compute the growth rate of the Rayleigh-Taylor instability for this particular geophysical setting. Our analysis indicates that the likelihood of crustal delamination hinges critically on the effective viscosity of eclogite.

  2. Skin Conductance Level Reactivity Moderates the Association Between Harsh Parenting and Growth in Child Externalizing Behavior

    OpenAIRE

    Erath, Stephen A.; El-Sheikh, Mona; Hinnant, J. Benjamin; Cummings, E. Mark

    2011-01-01

    Skin conductance level reactivity (SCLR) was examined as a moderator of the association between harsh parenting at age 8 years and growth in child externalizing behavior from age 8 to age 10 (N = 251). Mothers and fathers provided reports of harsh parenting and their children’s externalizing behavior; children also provided reports of harsh parenting. SCLR was assessed in response to a socioemotional stress task and a problem-solving challenge task. Latent growth modeling revealed that boys w...

  3. Variable amplitude fatigue crack growth behavior - a short overview

    International Nuclear Information System (INIS)

    Singh, Konjengbam Darunkumar; Parry, Matthew Roger; Sinclair, Ian

    2011-01-01

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented

  4. Variable amplitude fatigue crack growth behavior - a short overview

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol (United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-03-15

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented.

  5. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    Science.gov (United States)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  6. Growth restriction, leptin, and the programming of adult behavior in mice.

    Science.gov (United States)

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, phormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Kinetic Behavior of Exchange-Driven Growth with Catalyzed-Birth Processes

    International Nuclear Information System (INIS)

    Wang Haifeng; Lin Zhenquan; Kong Xiangmu

    2006-01-01

    Two catalyzed-birth models of n-species (n≥2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates A m k and A m j of the same species with the rate kernels K m (k,j) = K m kj (m = 1,2,...,n, n≥2), and aggregates of A n species catalyze a monomer-birth of A l species (l = 1,2,...,n-1) with the catalysis rate kernel J l (k,j) = J l kj υ . The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution a l k (t) of A l species depends crucially on the value of the catalysis rate parameter υ: (i) a l k (t) obeys the conventional scaling law in the case of υ≤0, (ii) a l k (t) satisfies a modified scaling form in the case of υ>0. In the second model, the mechanism of monomer-birth of A n -species catalyzed by A l species is added on the basis of the first model, that is, the aggregates of A l and A n species catalyze each other to cause monomer-birth. The kinetic behaviors of A l and A n species are found to fall into two categories for the different υ: (i) growth obeying conventional scaling form with υ≤0, (ii) gelling at finite time with υ>0.

  8. Subcritical crack growth behavior of AI2O3-Glass dental composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2003-01-01

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with

  9. Approaches based on behavioral economics could help nudge patients and providers toward lower health spending growth.

    Science.gov (United States)

    King, Dominic; Greaves, Felix; Vlaev, Ivo; Darzi, Ara

    2013-04-01

    Policies that change the environment or context in which decisions are made and "nudge" people toward particular choices have been relatively ignored in health care. This article examines the role that approaches based on behavioral economics could play in "nudging" providers and patients in ways that could slow health care spending growth. The basic insight of behavioral economics is that behavior is guided by the very fallible human brain and greatly influenced by the environment or context in which choices are made. In policy arenas such as pensions and personal savings, approaches based on behavioral economics have provided notable results. In health care, such approaches have been used successfully but in limited ways, as in the use of surgical checklists that have increased patient safety and reduced costs. With health care spending climbing at unsustainable rates, we review the role that approaches based on behavioral economics could play in offering policy makers a potential set of new tools to slow spending growth.

  10. Fatigue Crack Growth Behavior of Austempered AISI 4140 Steel with Dissolved Hydrogen

    Directory of Open Access Journals (Sweden)

    Varun Ramasagara Nagarajan

    2017-11-01

    Full Text Available The focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behavior of an austempered low-alloy AISI 4140 steel. The investigation also examined the influence of dissolved hydrogen on the fatigue threshold in this material. The material was tested in two conditions, as-received (cold rolled and annealed and austempered (austenitized at 882 °C for 1 h and austempered at 332 °C for 1 h. The microstructure of the annealed specimens consisted of a mix of ferrite and fine pearlite; the microstructure of the austempered specimens was lower bainite. Tensile and Compact Tension specimens were prepared. To examine the influence of dissolved hydrogen, two subsets of the CT specimens were charged with hydrogen for three different time periods between 150 and 250 h. All of the CT samples were then subjected to fatigue crack growth tests in the threshold and linear regions at room temperature. The test results indicate that austempering resulted in significant improvement in the yield and tensile strength as well as the fracture toughness of the material. The test results also show that, in the absence of dissolved hydrogen, the crack growth rate in the threshold and linear regions was lower in austempered samples compared to the as-received (annealed samples. The fatigue threshold was also slightly greater in the austempered samples. In presence of dissolved hydrogen, the crack growth rate was dependent upon the ∆K value. In the low ∆K region (<30 MPa√m, the presence of dissolved hydrogen caused the crack growth rate to be higher in the austempered samples as compared to annealed samples. Above this value, the crack growth rate was increasingly greater in the annealed specimens when compared to the austempered specimens in presence of dissolved hydrogen. It is concluded that austempering of 4140 steel appears to provide a processing route by which the strength, hardness, and fracture toughness of

  11. RETRACTED: Growth behavior and microstructure evolution of ZnO nanorods grown on Si in aqueous solution

    Science.gov (United States)

    Liou, Sz-Chian; Hsiao, Chi-Sheng; Chen, San-Yuan

    2005-02-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editor-in-Chief. Two papers published in the Journal of Crystal Growth are being retracted due to a case of misrepresentation and reuse of data. A reader of the Journal has brought to our attention the reuse of data within two published papers: Growth behavior and microstructure evolution of ZnO nanorods grown on Si in aqueous solution, Sz-Chian Liou, Chi-Sheng Hsiao, San-Yuan Chen, Journal of Crystal Growth 274 (2005) 438-446. Nucleation and growth behavior of well-aligned ZnO nanorods on organic substrates in aqueous solutions, Chin-Ching Lin, San-Yuan Chen, and Syh-Yuh Cheng, Journal of Crystal Growth 283 (2005) 141-146. In these papers the same transmission electron micrograph was used to describe two different experimental situations and results bringing into question the content of these papers. The reuse of data without proper attribution is not acceptable within the scientific publishing community. In the present case, this is compounded by the attribution of the micrograph to a different experimental situation and drawing, as a result, new conclusions from data obtained from different samples. Such behavior undermines the integrity of the scientific publishing endeavor and is not acceptable. The authors are responsible for the content of their papers.

  12. Predicting Condom Use Using the Information-Motivation-Behavioral Skills (IMB) Model: A Multivariate Latent Growth Curve Analysis

    Science.gov (United States)

    Senn, Theresa E.; Scott-Sheldon, Lori A. J.; Vanable, Peter A.; Carey, Michael P.

    2011-01-01

    Background The Information-Motivation-Behavioral Skills (IMB) model often guides sexual risk reduction programs even though no studies have examined covariation in the theory’s constructs in a dynamic fashion with longitudinal data. Purpose Using new developments in latent growth modeling, we explore how changes in information, motivation, and behavioral skills over 9 months relate to changes in condom use among STD clinic patients. Methods Participants (N = 1281, 50% female, 66% African American) completed measures of IMB constructs at three time points. We used parallel process latent growth modeling to examine associations among intercepts and slopes of IMB constructs. Results Initial levels of motivation, behavioral skills, and condom use were all positively associated, with behavioral skills partially mediating associations between motivation and condom use. Changes over time in behavioral skills positively related to changes in condom use. Conclusions Results support the key role of behavioral skills in sexual risk reduction, suggesting these skills should be targeted in HIV prevention interventions. PMID:21638196

  13. Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental–numerical approach

    NARCIS (Netherlands)

    Sluis, van der O.; Abdallah, Amir; Bouten, P.C.P.; Timmermans, P.H.M.; Toonder, den J.M.J.; With, de G.

    2011-01-01

    Layer buckling and delamination is a common interfacial failure phenomenon in thin film multi-layer structures that are used in flexible display applications. Typically, the substrate is coated on both sides with a hybrid coating, calleda hard coat (HC), which acts as a gas barrier and also

  14. The effects of maternal corticosterone levels on offspring behavior in fast- and slow-growth garter snakes (Thamnophis elegans).

    Science.gov (United States)

    Robert, Kylie A; Vleck, Carol; Bronikowski, Anne M

    2009-01-01

    During embryonic development, viviparous offspring are exposed to maternally circulating hormones. Maternal stress increases offspring exposure to corticosterone and this hormonal exposure has the potential to influence developmental, morphological and behavioral traits of the resulting offspring. We treated pregnant female garter snakes (Thamnophis elegans) with low levels of corticosterone after determining both natural corticosterone levels in the field and pre-treatment levels upon arrival in the lab. Additional measurements of plasma corticosterone were taken at days 1, 5, and 10 during the 10-day exposure, which occurred during the last third of gestation (of 4-month gestation). These pregnant snakes were from replicate populations of fast- and slow-growth ecotypes occurring in Northern California, with concomitant short and long lifespans. Field corticosterone levels of pregnant females of the slow-growth ecotype were an order of magnitude higher than fast-growth dams. In the laboratory, corticosterone levels increased over the 10 days of corticosterone manipulation for animals of both ecotypes, and reached similar plateaus for both control and treated dams. Despite similar plasma corticosterone levels in treated and control mothers, corticosterone-treated dams produced more stillborn offspring and exhibited higher total reproductive failure than control dams. At one month of age, offspring from fast-growth females had higher plasma corticosterone levels than offspring from slow-growth females, which is opposite the maternal pattern. Offspring from corticosterone-treated mothers, although unaffected in their slither speed, exhibited changes in escape behaviors and morphology that were dependent upon maternal ecotype. Offspring from corticosterone-treated fast-growth females exhibited less anti-predator reversal behavior; offspring from corticosterone-treated slow-growth females exhibited less anti-predator tail lashing behavior.

  15. Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, M., E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-04-07

    Research highlights: > The microstructure of the surface layer consisted of carbides embedded in a Co-rich solid solution with dendritic structure. Primary phases formed during the process were identified as Co(FCC) and lamellar eutectic phases (M{sub 23}C{sub 6}, M{sub 6}C, Cr{sub 7}C{sub 3}). > Microhardness profiles showed that hardness increases from interface to the coating surface. This is due to the finer size of the grains at coating surface in comparison to that at interface and also diffusion of Fe adjacent to the interface. > The delamination was suggested as the dominant mechanism of the wear. In this regard, plate-like wear debris consisted of voids and cracks. In addition, due to increase in surface temperature, Cr{sub 2}O{sub 3} oxide phase was formed during wear tests. - Abstract: This paper deals with the investigation of the microstructure and wear behavior of the stellite 6 cladding on precipitation hardening martensitic stainless steel (17-4PH) using gas tungsten arc welding (GTAW) method. 17-4 PH stainless steel is widely used in oil and gas industries. Optical metallography, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to study the microstructure and wear mechanisms. X-ray diffraction analysis was also used to identify phases formed in the coating. The results showed that the microstructure of the surface layer consisted of carbides embedded in a Co-rich solid solution with a dendritic structure. In addition, the dendritic growth in the coating was epitaxial. Primary phases formed during the process were Co (fcc), Co (hcp), lamellar eutectic phases, M{sub 23}C{sub 6} and Cr{sub 7}C{sub 3} type carbides. The results of the wear tests indicated that the delamination was the dominant mechanism. So, it is necessary to apply an inter-layer between the substrate and top coat.

  16. Rare behavior of growth processes via umbrella sampling of trajectories

    Science.gov (United States)

    Klymko, Katherine; Geissler, Phillip L.; Garrahan, Juan P.; Whitelam, Stephen

    2018-03-01

    We compute probability distributions of trajectory observables for reversible and irreversible growth processes. These results reveal a correspondence between reversible and irreversible processes, at particular points in parameter space, in terms of their typical and atypical trajectories. Thus key features of growth processes can be insensitive to the precise form of the rate constants used to generate them, recalling the insensitivity to microscopic details of certain equilibrium behavior. We obtained these results using a sampling method, inspired by the "s -ensemble" large-deviation formalism, that amounts to umbrella sampling in trajectory space. The method is a simple variant of existing approaches, and applies to ensembles of trajectories controlled by the total number of events. It can be used to determine large-deviation rate functions for trajectory observables in or out of equilibrium.

  17. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  18. Ethogram of Immature Green Turtles: Behavioral Strategies for Somatic Growth in Large Marine Herbivores

    Science.gov (United States)

    Okuyama, Junichi; Nakajima, Kana; Noda, Takuji; Kimura, Satoko; Kamihata, Hiroko; Kobayashi, Masato; Arai, Nobuaki; Kagawa, Shiro; Kawabata, Yuuki; Yamada, Hideaki

    2013-01-01

    Animals are assumed to obtain/conserve energy effectively to maximise their fitness, which manifests itself in a variety of behavioral strategies. For marine animals, however, these behavioral strategies are generally unknown due to the lack of high-resolution monitoring techniques in marine habitats. As large marine herbivores, immature green turtles do not need to allocate energy to reproduction but are at risk of shark predation, although it is a rare occurrence. They are therefore assumed to select/use feeding and resting sites that maximise their fitness in terms of somatic growth, while avoiding predation. We investigated fine-scale behavioral patterns (feeding, resting and other behaviors), microhabitat use and time spent on each behavior for eight immature green turtles using data loggers including: depth, global positioning system, head acceleration, speed and video sensors. Immature green turtles at Iriomote Island, Japan, spent an average of 4.8 h feeding on seagrass each day, with two peaks, between 5∶00 and 9∶00, and between 17∶00 and 20∶00. This feeding pattern appeared to be restricted by gut capacity, and thus maximised energy acquisition. Meanwhile, most of the remaining time was spent resting at locations close to feeding grounds, which allowed turtles to conserve energy spent travelling and reduced the duration of periods exposed to predation. These behavioral patterns and time allocations allow immature green turtles to effectively obtain/conserve energy for growth, thus maximising their fitness. PMID:23840367

  19. Ethogram of Immature Green Turtles: Behavioral Strategies for Somatic Growth in Large Marine Herbivores.

    Directory of Open Access Journals (Sweden)

    Junichi Okuyama

    Full Text Available Animals are assumed to obtain/conserve energy effectively to maximise their fitness, which manifests itself in a variety of behavioral strategies. For marine animals, however, these behavioral strategies are generally unknown due to the lack of high-resolution monitoring techniques in marine habitats. As large marine herbivores, immature green turtles do not need to allocate energy to reproduction but are at risk of shark predation, although it is a rare occurrence. They are therefore assumed to select/use feeding and resting sites that maximise their fitness in terms of somatic growth, while avoiding predation. We investigated fine-scale behavioral patterns (feeding, resting and other behaviors, microhabitat use and time spent on each behavior for eight immature green turtles using data loggers including: depth, global positioning system, head acceleration, speed and video sensors. Immature green turtles at Iriomote Island, Japan, spent an average of 4.8 h feeding on seagrass each day, with two peaks, between 5∶00 and 9∶00, and between 17∶00 and 20∶00. This feeding pattern appeared to be restricted by gut capacity, and thus maximised energy acquisition. Meanwhile, most of the remaining time was spent resting at locations close to feeding grounds, which allowed turtles to conserve energy spent travelling and reduced the duration of periods exposed to predation. These behavioral patterns and time allocations allow immature green turtles to effectively obtain/conserve energy for growth, thus maximising their fitness.

  20. Enhancement of low temperature toughness of nanoprecipitates strengthened ferritic steel by delamination structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu; Xu, Songsong; Li, Junpeng; Zhang, Jian [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China); Sun, Liangwei; Chen, Liang; Sun, Guangai; Peng, Shuming [Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 621999 (China); Zhang, Zhongwu, E-mail: zwzhang@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China)

    2017-04-13

    This study investigated the effects of aging and thermomechanical treatments on the microstructure evolution and mechanical properties of a nanoprecipitates strengthened ferritic steel. The toughness of steel at various temperatures was measured carefully and correlated with microstructural features. Tensile tests show that aging can improve the mechanical strength without scarifying the ductility. With high yield strength of ~1000 MPa, excellent low temperature Charpy impact energy more than 300 J at −80 °C can be obtained. The ductile brittle transition temperature (DBTT) is lower than −80 °C. The high strength can be contributed by the nanocluster precipitation as determined by small angle neutron scattering and transmission electron microscopy. The excellent low temperature toughness is attributed to the delamination structure of the steel, which blunts the cracks and restrains the crack propagation.

  1. Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-05-01

    Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)

  2. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains.

    Directory of Open Access Journals (Sweden)

    Jie Min

    Full Text Available The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains.Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated.The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes.Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings.

  3. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood

    Directory of Open Access Journals (Sweden)

    Nora Wiium

    2015-10-01

    Full Text Available Based on nine waves of data collected during a period of 17 years (1990–2007, the present study explored different developmental trajectories of the following unhealthy behaviors: regular smoking, lack of regular exercise, lack of daily fruit intake, and drunkenness. A baseline sample of 1195 13-year-old pupils was from 22 randomly selected schools in the Hordaland County in western Norway. Latent class growth analysis revealed three developmental trajectories. The first trajectory was a conventional trajectory, comprising 36.3% of participants, who showed changes in smoking, physical exercise, fruit intake, and drunkenness consistent with the prevailing age specific norms of these behaviors in the Norwegian society at the time. The second trajectory was a passive trajectory, comprising 25.5% of participants, who reported low levels of both healthy and unhealthy behaviors during the 17-year period. The third trajectory was an unhealthy trajectory, comprising 38.2% of participants, who had high levels of unhealthy behaviors over time. Several covariates were examined, but only sex and mother’s and father’s educational levels were found to be significantly associated with the identified trajectories. While these findings need to be replicated in future studies, the identification of the different trajectories suggests the need to tailor intervention according to specific needs.

  4. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood

    Science.gov (United States)

    Wiium, Nora; Breivik, Kyrre; Wold, Bente

    2015-01-01

    Based on nine waves of data collected during a period of 17 years (1990–2007), the present study explored different developmental trajectories of the following unhealthy behaviors: regular smoking, lack of regular exercise, lack of daily fruit intake, and drunkenness. A baseline sample of 1195 13-year-old pupils was from 22 randomly selected schools in the Hordaland County in western Norway. Latent class growth analysis revealed three developmental trajectories. The first trajectory was a conventional trajectory, comprising 36.3% of participants, who showed changes in smoking, physical exercise, fruit intake, and drunkenness consistent with the prevailing age specific norms of these behaviors in the Norwegian society at the time. The second trajectory was a passive trajectory, comprising 25.5% of participants, who reported low levels of both healthy and unhealthy behaviors during the 17-year period. The third trajectory was an unhealthy trajectory, comprising 38.2% of participants, who had high levels of unhealthy behaviors over time. Several covariates were examined, but only sex and mother’s and father’s educational levels were found to be significantly associated with the identified trajectories. While these findings need to be replicated in future studies, the identification of the different trajectories suggests the need to tailor intervention according to specific needs. PMID:26516889

  5. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood.

    Science.gov (United States)

    Wiium, Nora; Breivik, Kyrre; Wold, Bente

    2015-10-28

    Based on nine waves of data collected during a period of 17 years (1990-2007), the present study explored different developmental trajectories of the following unhealthy behaviors: regular smoking, lack of regular exercise, lack of daily fruit intake, and drunkenness. A baseline sample of 1195 13-year-old pupils was from 22 randomly selected schools in the Hordaland County in western Norway. Latent class growth analysis revealed three developmental trajectories. The first trajectory was a conventional trajectory, comprising 36.3% of participants, who showed changes in smoking, physical exercise, fruit intake, and drunkenness consistent with the prevailing age specific norms of these behaviors in the Norwegian society at the time. The second trajectory was a passive trajectory, comprising 25.5% of participants, who reported low levels of both healthy and unhealthy behaviors during the 17-year period. The third trajectory was an unhealthy trajectory, comprising 38.2% of participants, who had high levels of unhealthy behaviors over time. Several covariates were examined, but only sex and mother's and father's educational levels were found to be significantly associated with the identified trajectories. While these findings need to be replicated in future studies, the identification of the different trajectories suggests the need to tailor intervention according to specific needs.

  6. Characterization of the failure behavior of zinc coating on dual phase steel under tensile deformation

    International Nuclear Information System (INIS)

    Song Guiming; Sloof, Willem G.

    2011-01-01

    Highlights: → The microcracks and voids at the zinc grain boundaries are the initial sites for the coating cracking. → The crack spacing of the fragmentally fractured zinc coating is mainly determined by the zinc grain size. → Small zinc grain size and the c-axis direction of zinc grain parallel to the zinc surface are beneficial to the mitigation of the zinc coating delamination. - Abstract: The failure behavior of hot-dip galvanized zinc coatings on dual phase steels under tensile deformation is characterized with in situ scanning electron microscopy (SEM). Under tension, the pre-existed microcracks and voids at the zinc grain boundaries propagate along the zinc grain boundaries to form crack nets within the coating, leading to a segmented fracture of the zinc coating with the crack spacing approximately equal to the zinc grain size. With further loading, the coating segments partially delaminated along the interface between the top zinc layer and the inhibition layer instead of the interface between the inhibition layer and steel substrate. As the c-axis of zinc grains trends to be normal to the tensile loading direction, the twinning deformation became more noticeable, and meanwhile the coating delamination was diminished. The transverse and incline tunneling cracks occurred in the inhibition layer with tensile deformation. The existence of the brittle FeZn 13 particles on top of the inhibition layer was unfavorable to the coating adhesion.

  7. [Clinical research of arthroscopic separate double-layer suture bridge technique for delaminated rotator cuff tear].

    Science.gov (United States)

    Ren, Jiangtao; Xu, Cong; Liu, Xianglin; Wang, Jiansong; Li, Zhihuai; Lü, Yongming

    2017-10-01

    To explore the effectiveness of the arthroscopic separate double-layer suture bridge technique in treatment of the delaminated rotator cuff tear. Between May 2013 and May 2015, 54 patients with the delaminated rotator cuff tears were recruited in the study. They were randomly allocated into 2 groups to receive repair either using arthroscopic separate double-layer suture bridge technique (trial group, n =28) or using arthroscopic whole-layer suture bridge technique (control group, n =26). There was no significant difference in gender, age, injured side, tear type, and preoperative visual analogue scale (VAS) score, Constants score, American Shoulder and Elbow Surgeons (ASES) score, University of California Los Angeles (UCLA) score, and the range of motion of shoulder joint between 2 groups ( P >0.05). Postoperative functional scores, range of motion, and recurrence rate of tear in 2 groups were observed and compared. The operation time was significant longer in trial group than in control group ( t =8.383, P =0.000). All incisions healed at stage Ⅰ without postoperative complication. All the patients were followed up 12 months. At 12 months postoperatively, the UCLA score, ASES score, VAS score, Constant score, and the range of motion were significantly improved when compared with the preoperative values in 2 groups ( P 0.05). Four cases (14.3%) of rotator cuff tear recurred in trial group while 5 cases (19.2%) in control group, showing no significant difference ( χ 2 =0.237, P =0.626). Compared with the arthroscopic whole-layer suture bridge technique, arthroscopic separate double-layer suture bridge technique presents no significant difference in the shoulder function score, the range of motion, and recurrence of rotator cuff tear, while having a longer operation time.

  8. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    Science.gov (United States)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  9. Skin Conductance Level Reactivity Moderates the Association between Harsh Parenting and Growth in Child Externalizing Behavior

    Science.gov (United States)

    Erath, Stephen A.; El-Sheikh, Mona; Hinnant, J. Benjamin; Cummings, E. Mark

    2011-01-01

    Skin conductance level reactivity (SCLR) was examined as a moderator of the association between harsh parenting at age 8 years and growth in child externalizing behavior from age 8 to age 10 (N = 251). Mothers and fathers provided reports of harsh parenting and their children's externalizing behavior; children also provided reports of harsh…

  10. Effects of Phytoplankton Growth Phase on Delayed Settling Behavior of Marine Snow Aggregates at Sharp Density Transitions

    Science.gov (United States)

    Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.

    2016-02-01

    Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.

  11. Delamination-restacking behaviour of surfactant intercalated layered hydroxy double salts, M 3Zn 2(OH) 8(surf) 2ṡ2H 2O [M = Ni, Co and surf = dodecyl sulphate (DS), dodecyl benzene sulphonate (DBS)

    Science.gov (United States)

    Rajamathi, Jacqueline T.; Ravishankar, N.; Rajamathi, Michael

    2005-02-01

    Surfactant anion intercalated nickel-zinc and cobalt-zinc layered hydroxy double salts were prepared through a modified acetate hydrolysis route. These organo-inorganic hybrids delaminate readily in alcohols such as 1-butanol to give stable translucent colloids. The extent of delamination and the stability of the colloids obtained are comparable to what has been observed in the case of layered double hydroxides (LDHs). The original layered solid could be obtained either by evaporation of the colloid or precipitation by the addition of a polar solvent such as acetone.

  12. Effect of heat-treatment on elevated temperature fatigue-crack growth behavior of two heats of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1978-05-01

    The room temperature and elevated temperature fatigue-crack growth behavior of two heats of Alloy 718 was characterized within a linear-elastic fracture mechanics framework. Two different heat-treatments were used: the ''conventional'' (ASTM A637) treatment, and a ''modified'' heat-treatment designed to improve the toughness of Alloy 718 base metal and weldments. Heat-to-heat variations in the fatigue-crack propagation behavior were observed in the conventionally-treated material. On the other hand, no heat-to-heat variations were observed in the modified condition. Furthermore, both heats of Alloy 718 exhibited superior fatigue-crack growth resistance when given the modified heat-treatment. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that the operative crack growth mechanisms were dependent on heat-treatment, temperature, and ΔK level

  13. Effect of gallic acid on the wear behavior of early carious enamel

    International Nuclear Information System (INIS)

    Gao, S S; Huang, S B; Yu, H Y; Qian, L M

    2009-01-01

    The purpose of this research was to investigate the wear behavior of early carious enamel remineralized with gallic acid. Forty natural human premolar specimens with early caries lesions were prepared. A remineralization pH-cycling treatment agent of 4000 ppm gallic acid was used for 12 days to treat the early lesions. The changes in microhardness were monitored. Nanoscratch tests were used to evaluate wear resistance. The experimental data were analyzed by using a t-test. The widths of traces were measured by an AMBIOS XP-2 stylus profilometer. After remineralization, all samples re-hardened significantly. The coefficients of friction became higher, and the widths of scratches were larger than they were before remineralization. Gallic acid significantly improved the early carious enamel's hardness. The wear damage of the samples treated with gallic acid was more severe than that of the control group. There were more obvious cracks and delaminations on the traces of the treated group. Compared with the control group, the enamel remineralized with gallic acid had inferior wear resistance. After remineralization, the dominant damage mechanisms of early carious enamel had changed from plastic deformation and adhesive wear to a combination of brittle cracks and delamination of enamel.

  14. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    Science.gov (United States)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  15. Larval Helicoverpa zea Transcriptional, Growth and Behavioral Responses to Nicotine and Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Linus Gog

    2014-09-01

    Full Text Available The polyphagous feeding habits of the corn earworm, Helicoverpa zea (Boddie, underscore its status as a major agricultural pest with a wide geographic distribution and host plant repertoire. To study the transcriptomic response to toxins in diet, we conducted a microarray analysis of H. zea caterpillars feeding on artificial diet, diet laced with nicotine and Nicotiana tabacum (L. plants. We supplemented our analysis with growth and aversion bioassays. The transcriptome reflects an abundant expression of proteases, chitin, cytochrome P450 and immune-related genes, many of which are shared between the two experimental treatments. However, the tobacco treatment tended to elicit stronger transcriptional responses than nicotine-laced diet. The salivary factor glucose oxidase, known to suppress nicotine induction in the plant, was upregulated by H. zea in response to tobacco but not to nicotine-laced diet. Reduced caterpillar growth rates accompanied the broad regulation of genes associated with growth, such as juvenile hormone epoxide hydrolase. The differential expression of chemosensory proteins, such as odorant binding-protein-2 precursor, as well as the neurotransmitter nicotinic-acetylcholine-receptor subunit 9, highlights candidate genes regulating aversive behavior towards nicotine. We suggest that an observed coincidental rise in cannibalistic behavior and regulation of proteases and protease inhibitors in H. zea larvae signify a compensatory response to induced plant defenses.

  16. RETRACTED: Nucleation and growth behavior of well-aligned ZnO nanorods on organic substrates in aqueous solutions

    Science.gov (United States)

    Lin, Chin-Ching; Chen, San-Yuan; Cheng, Syh-Yuh

    2005-09-01

    Available online : 21 July 2005 This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Two papers published in the Journal of Crystal Growth are being retracted due to a case of misrepresentation and reuse of data. A reader of the Journal has brought to our attention the reuse of data within two published papers: Growth behavior and microstructure evolution of ZnO nanorods grown on Si in aqueous solution, Sz-Chian Liou, Chi-Sheng Hsiao, San-Yuan Chen, Journal of Crystal Growth 274 (2005) 438-446. DOI: 10.1016/j.jcrysgro.2004.10.025 Nucleation and growth behavior of well-aligned ZnO nanorods on organic substrates in aqueous solutions, Chin-Ching Lin, San-Yuan Chen, and Syh-Yuh Cheng, Journal of Crystal Growth 283 (2005) 141-146. DOI: 10.1016/j.jcrysgro.2005.05.065 In these papers the same transmission electron micrograph was used to describe two different experimental situations and results bringing into question the content of these papers. The reuse of data without proper attribution is not acceptable within the scientific publishing community. In the present case, this is compounded by the attribution of the micrograph to a different experimental situation and drawing , as a result, new conclusions from data obtained from different samples. Such behavior undermines the integrity of the scientific publishing endeavor and is not acceptable. The authors are responsible for the content of their papers.

  17. Behavior and sensitivity of an optimal tree diameter growth model under data uncertainty

    Science.gov (United States)

    Don C. Bragg

    2005-01-01

    Using loblolly pine, shortleaf pine, white oak, and northern red oak as examples, this paper considers the behavior of potential relative increment (PRI) models of optimal tree diameter growth under data uncertainity. Recommendations on intial sample size and the PRI iteractive curve fitting process are provided. Combining different state inventories prior to PRI model...

  18. Does family control of small business lead to under exploitation of their financial growth potential? Evidence of the existence of conservative growth behavior in family controlled French SMEs.

    OpenAIRE

    Anaïs Hamelin

    2010-01-01

    This paper uses a very large sample of French SMEs to study growth of small businesses. Firms are distinguished according to the intensity of family control. The estimated relationship accounts for firm characteristics of size, age, sector, and ease to access credit. The results show that firms with greater family control are prone to exhibit lower rates of sales growth than feasible, given firm internal financing resources (ie they adopt a conservative growth behavior). Because firm growth i...

  19. Amphibole Fractional Crystallization and Delamination in Arc Roots: Implications for the `Missing' Nb Reservoir in the Earth

    Science.gov (United States)

    Galster, F.; Chatterjee, R. N.; Stockli, D. F.

    2017-12-01

    Most geologic processes should not fractionate Nb from Ta but Earth's major silicate reservoirs have subchondritic Nb/Ta values. Nb/Ta of >10000 basalts and basaltic andesites from different tectonic settings (GEOROC) cluster around 16, indistinguishable from upper mantle values. In contrast, Nb/Ta in more evolved arc volcanics have progressively lower values, reaching continental crust estimates, and correlate negatively with SiO2 (see figure) and positively with TiO2 and MgO. This global trend suggests that differentiation processes in magmatic arcs could explain bulk crustal Nb/Ta estimates. Understanding processes that govern fractionation of Nb from Ta in arcs can provide key insights on continental crust formation and help identify Earth's `missing' Nb reservoir. Ti-rich phases (rutile, titanite and ilmenite) have DNb/DTa values in the evolved liquid. Lack of correlation between Nb/Ta and K2O in global volcanic rocks implies that biotite plays a minor role in fractionating Nb from Ta during differentiation. Experimental petrology and evidence from exposed arc sections indicate that amphibole fractionation and delamination of island arc roots can explain the andesitic composition of bulk continental crust. Experimental studies have shown that amphibole Mg# correlate with DNb/DTa and amphibole could effectively fractionate Nb from Ta. Preliminary data from lower to middle crustal amphiboles from preserved arcs show sub- to super-chondritic Nb/Ta up to >60. This suggests that delamination of amphibole-rich cumulates can be a viable mechanism for the preferential removal of Nb from the continental crust. Future examination of Nb/Ta ratios in lower crustal amphiboles from various preserved arcs will provide improved constraints on the Nb-Ta paradox of the silicate Earth.

  20. Influence of boundary conditions on the response of multilayered plates with cohesive interfaces and delaminations using a homogenized approach

    Directory of Open Access Journals (Sweden)

    R. Massabò

    2014-07-01

    Full Text Available Stress and displacement fields in multilayered composites with interfacial imperfections, such as imperfect bonding of the layers or delaminations, or where the plies are separated by thin interlayers allowing relative motion, have large variations in the thickness, with characteristic zigzag patterns and jumps at the layer interfaces. These effects are well captured by a model recently formulated by the author for multilayered plates with imperfect interfaces and affine interfacial traction laws (Massabò & Campi, Meccanica, 2014, in press; Compos Struct, 2014, 116, 311-324. The model defines a homogenized displacement field, which satisfies interfacial continuity, and uses a variational technique to derive equilibrium equations depending on only six generalized displacement functions, for any arbitrary numbers of layers and interfaces. The model accurately predicts stresses and displacements in simply supported, highly anisotropic, thick plates with continuous, sliding interfaces. In this paper the model is applied to wide plates with clamped edges and some inconsistencies, which have been noted in the literature for models based on similar approaches and have limited their utilization, are explained. A generalized transverse shear force is introduced as the gross stress resultant which is directly related to the bending moment in the equilibrium equations of multilayered structures with imperfect interfaces and substitutes for the shear force of single-layer theory. An application to a delaminated wide plate highlights the potential and limitations of the proposed model for the solution of fracture mechanics problems.

  1. Fatigue crack growth behavior and AE signal recognition from a composite patch repaired Ai thein plate

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Kwon, Oh Yang

    2004-01-01

    The fatigue crack growth behavior of a fatigue-cracked and patch-repaired AA2024-T3 plate has been monitored. It was found that the overall crack growth rate was reduced and the crack propagation into the adjacent hole was also retarded. Signals due to crack growth after patch-repair and those due to debonding of the plate-patch interface were discriminated each other by using principal component analysis. The former showed higher center frequency and lower amplitude, whereas the latter showed longer rise time, lower frequency and higher amplitude.

  2. An overview on the origin of post-collisional Miocene magmatism in the Kabylies (northern Algeria): Evidence for crustal stacking, delamination and slab detachment

    Science.gov (United States)

    Chazot, Gilles; Abbassene, Fatiha; Maury, René C.; Déverchère, Jacques; Bellon, Hervé; Ouabadi, Aziouz; Bosch, Delphine

    2017-01-01

    Miocene (17-11 Ma) magmatic activity in the Kabylies emplaced K-rich (and minor medium-K) calc-alkaline plutonic and volcanic rocks in five zones, delineating a ∼450 km long EW trending strip located along the northern coast of Algeria, between Annaba and Algiers. Their most likely source is the Kabylian subcontinental lithospheric mantle previously metasomatized during the Paleogene subduction of the Tethys oceanic lithosphere. Our preferred tectono-magmatic model involves a Tethyan slab detachment combined with African mantle delamination and crustal stacking, leading to the superimposition of the African continental crust over the Kabylian metasomatized lithospheric mantle. At ca. 17 Ma, the asthenospheric upwelling arising from lithospheric delamination and Tethyan slab tear triggered the thermal erosion of the latter mantle, inducing its partial melting. The corresponding mafic medium-K calc-alkaline magmas interacted with the African basement units during their ascent, generating intermediate to felsic K-rich calc-alkaline melts that display a characteristic trace element and isotopic crustal signature. Later on, slab tears propagated eastward and westward, promoting slab rollback perpendicular to plate convergence and inducing the emplacement of magmatic rocks of decreasing ages from central-eastern Algeria towards Tunisia and Morocco.

  3. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    Science.gov (United States)

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  4. Yolk hormones influence in ovo chemosensory learning, growth, and feeding behavior in domestic chicks.

    Science.gov (United States)

    Bertin, Aline; Meurisse, Maryse; Arnould, Cécile; Leterrier, Christine; Constantin, Paul; Cornilleau, Fabien; Vaudin, Pascal; Burlot, Thierry; Delaveau, Joel; Rat, Christophe; Calandreau, Ludovic

    2016-03-01

    In this study, we assessed whether prenatal exposure to elevated yolk steroid hormones can influence in ovo chemosensory learning and the behavior of domestic chicks. We simulated a maternal environmental challenge by experimentally enhancing yolk progesterone, testosterone, and estradiol concentrations in hen eggs prior to incubation. The embryos from these hormones-treated eggs (HO) as well as sham embryos (O) that had received the vehicle-only were exposed to the odor of fish oil (menhaden) between embryonic Days 11 and 20. An additional group of control embryos (C) was not exposed to the odor. All chicks were tested following hatching for their feeding preferences between foods that were or were not odorized with the menhaden odor. In the 3-min choice tests, the behavior of O chicks differed significantly according to the type of food whereas C and HO chicks showed no preference between odorized and non-odorized food. Our result suggests weaker response in HO chicks. In addition, HO chicks showed impaired growth and reduced intake of an unfamiliar food on the 24-h time scale compared to controls. Our data suggest that embryonic exposure to increased yolk hormone levels can alter growth, chemosensory learning, and the development of feeding behaviors. © 2015 Wiley Periodicals, Inc.

  5. Austenite Grain Growth Behavior of AISI 4140 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2013-01-01

    Full Text Available AISI 4140 alloy steel is widely applied in the manufacture of various parts such as gears, rams, and spindles due to its good performance of strength, toughness, and wear resistance. The former researches most focused on its deformation and recrystallization behaviors under high temperature. However, the evolution laws of austenite grain growth were rarely studied. This behavior also plays an important role in the mechanical properties of parts made of this steel. In this study, samples are heated to a certain temperature of 1073 K, 1173 K, 1273 K, and 1373 K at a heating rate of 5 K per second and hold for different times of 0 s, 120 s, 240 s, 360 s, and 480 s before being quenched with water. The experimental results suggest that the austenite grains enlarge with increasing temperature and holding time. A mathematical model and an application developed in Matlab environment are established on the basis of previous works and experimental results to predict austenite grains size in hot deformation processes. The predicted results are in good agreement with experimental results which indicates that the model and the application are reliable.

  6. Poisson Growth Mixture Modeling of Intensive Longitudinal Data: An Application to Smoking Cessation Behavior

    Science.gov (United States)

    Shiyko, Mariya P.; Li, Yuelin; Rindskopf, David

    2012-01-01

    Intensive longitudinal data (ILD) have become increasingly common in the social and behavioral sciences; count variables, such as the number of daily smoked cigarettes, are frequently used outcomes in many ILD studies. We demonstrate a generalized extension of growth mixture modeling (GMM) to Poisson-distributed ILD for identifying qualitatively…

  7. A Longitudinal Study of Children's Social Behaviors and Their Causal Relationship to Reading Growth

    Science.gov (United States)

    Lim, Hyo Jin; Kim, Junyeop

    2011-01-01

    This paper aims at investigating the causal effects of social behaviors on subsequent reading growth in elementary school, using the "Early Childhood Longitudinal Study-Kindergarten" ("ECLS-K") data. The sample was 8,869 subjects who provided longitudinal measures of reading IRT scores from kindergarten (1998-1999) to fifth…

  8. AFSC/RACE/FBEP/Ryer: Growth and distributional correlates of behavior in three co-occurring juvenile flatfishes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is from laboratory experiments that explored anti-predator behavior and intrinsic growth in three co-occurring juvenile flatfish species (English sole...

  9. Crack closure and growth behavior of short fatigue cracks under random loading (part I : details of crack closure behavior)

    International Nuclear Information System (INIS)

    Lee, Shin Young; Song, Ji Ho

    2000-01-01

    Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks

  10. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  11. Delamination Growth in Composites under Fatigue Loading

    NARCIS (Netherlands)

    Khan, R.

    2013-01-01

    Fiber reinforced composites are attractive for aerospace applications due to high specific strength and stiffness. Their use has been gradually increased to 50% by weight of the aircraft over past decades. As a consequence, modern aircraft utilize composites in the primary structures like wing skin

  12. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    Science.gov (United States)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  13. Hepatocyte growth factor is crucial for development of the carapace in turtles.

    Science.gov (United States)

    Kawashima-Ohya, Yoshie; Narita, Yuichi; Nagashima, Hiroshi; Usuda, Ryo; Kuratani, Shigeru

    2011-01-01

    Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan. © 2011 Wiley Periodicals, Inc.

  14. The association of self-leadership, health behaviors, and posttraumatic growth with health-related quality of life in patients with cancer.

    Science.gov (United States)

    Yun, Young Ho; Sim, Jin Ah; Jung, Ju Youn; Noh, Dong-Young; Lee, Eun Sook; Kim, Young Woo; Oh, Jae Hwan; Ro, Jung Sil; Park, Sang Yoon; Park, Sang Jae; Cho, Kwan Ho; Chang, Yoon Jung; Bae, Yeon Min; Kim, Si Young; Jung, Kyung Hae; Zo, Zae Ill; Lim, Jae-Young; Lee, Soon Nam

    2014-12-01

    We tried to evaluate the association of self-leadership, effective health behaviors, and posttraumatic growth with health-related quality of life (HRQOL). We recruited survivors of cancer from seven hospitals in Korea between 2011 and 2012. The patients completed the Seven Habits Profile (7HP) to evaluate leadership competency, the 10 rules for highly effective health behavior to evaluate health behavior, the Posttraumatic Growth Inventory (PTGI) to evaluate posttraumatic growth, the Short Form 36 (SF-36) to evaluate HRQOL, and the Hospital Anxiety and Depression Scale (HADS) to evaluate anxiety and depression. We performed multiple logistic regressions to identify significant associations. A total of 668 patients with cancer participated in the study. Patients who scored high on the leadership subscales of Be Proactive, Begin with the End in Mind, Put First Things First, Think Win-Win, Synergize, and Sharpen the Saw in 7HP tried to practice and keep their health behaviors more. The Begin with the End in Mind, Put First Things First, Synergize, and Sharpen the Saw subscales of the 7HP were also significantly correlated with subscales on the PTGI. Patients who scored high on the leadership subscales of Life Balance, Be Proactive, Begin with the End in Mind, Think Win-Win, and Sharpen the Saw had higher physical and mental component scale scores on the SF-36 and lower anxiety and depression subscale scores on the HADS. Self-leadership, health behaviors, and posttraumatic growth are associated with QOL in survivors of cancer. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Fatigue crack growth behavior of a new single crystal nickel-based superalloy (CMSX-4) at 650 C

    International Nuclear Information System (INIS)

    Sengupta, A.; Putatunda, S.K.

    1994-01-01

    CMSX-4 is a recently developed rhenium containing single crystal nickel-based superalloy. This alloy has potential applications in many critical high-temperature applications such as turbine blades, rotors, nuclear reactors, etc. The fatigue crack growth rate and the fatigue threshold data of this material is extremely important for accurate life prediction, as well as failure safe design, at elevated temperatures. In this paper, the fatigue crack growth behavior of CMSX-4 has been studied at 650 C. The investigation also examined the influence of γ' precipitates (size and distribution) on the near-threshold fatigue crack growth rate and the fatigue threshold. The influence of load ratio on the fatigue crack growth rate and the fatigue threshold was also examined. Detailed fractographic studies were carried out to determine the crack growth mechanism in fatigue in the threshold region. Compact tension specimens were prepared from the single crystal nickel-based superalloy CMSX-4 with [001] orientation as the tensile loading axis direction. These specimens were given three different heat treatments to produce three different γ' precipitate sizes and distributions. Fatigue crack growth behavior of these specimens was studied at 650 C in air. The results of the present investigation indicate that the near-threshold fatigue crack growth rate decreases and that the fatigue threshold increases with an increase in the γ' precipitate size at 650 C. The fatigue threshold decreased linearly with an increase in load ratio. Fractographs at 650 C show a stage 2 type of crack growth along {100} type of crystal planes in the threshold region, and along {111} type of crystal planes in the high ΔK region

  16. Effect of gallic acid on the wear behavior of early carious enamel

    Energy Technology Data Exchange (ETDEWEB)

    Gao, S S; Huang, S B; Yu, H Y [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Qian, L M, E-mail: yhyang6812@scu.edu.c [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2009-06-15

    The purpose of this research was to investigate the wear behavior of early carious enamel remineralized with gallic acid. Forty natural human premolar specimens with early caries lesions were prepared. A remineralization pH-cycling treatment agent of 4000 ppm gallic acid was used for 12 days to treat the early lesions. The changes in microhardness were monitored. Nanoscratch tests were used to evaluate wear resistance. The experimental data were analyzed by using a t-test. The widths of traces were measured by an AMBIOS XP-2 stylus profilometer. After remineralization, all samples re-hardened significantly. The coefficients of friction became higher, and the widths of scratches were larger than they were before remineralization. Gallic acid significantly improved the early carious enamel's hardness. The wear damage of the samples treated with gallic acid was more severe than that of the control group. There were more obvious cracks and delaminations on the traces of the treated group. Compared with the control group, the enamel remineralized with gallic acid had inferior wear resistance. After remineralization, the dominant damage mechanisms of early carious enamel had changed from plastic deformation and adhesive wear to a combination of brittle cracks and delamination of enamel.

  17. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  18. Statistical analysis of fatigue crack growth behavior for grade B cast steel

    International Nuclear Information System (INIS)

    Li, W.; Sakai, T.; Li, Q.; Wang, P.

    2011-01-01

    Tests for fatigue crack growth rate (FCGR) and crack-tip opening displacement (CTOD) were performed to clarify the fatigue crack growth behavior of a railway grade B cast steel. The threshold values of this steel with specific survival probabilities are evaluated, in which the mean value is 8.3516 MPa m 1/2 , very similar to the experimental value, about 8.7279 MPa m 1/2 . Under the conditions of plane strain and small-scale yielding, the values of fracture toughness for this steel with specific survival probabilities are converted from the corresponding critical CTOD values, in which the mean value is about 138.4256 MPa m 1/2 . In consideration of the inherent variability of crack growth rates, six statistical models are proposed to represent the probabilistic FCGR curves of this steel in entire crack propagation region from the viewpoints of statistical evaluation on the number of cycles at a given crack size and the crack growth rate at a given stress intensity factor range, stochastic characteristic of crack growth as well as statistical analysis of coefficient and exponent in FCGR power law equation. Based on the model adequacy checking, result shows that all models are basically in good agreement with test data. Although the probabilistic damage-tolerant design based on some models may involve a certain amount of risk in stable crack propagation region, they just accord with the fact that the dispersion degree of test data in this region is relatively smaller.

  19. The effect of cerium-based conversion treatment on the cathodic delamination and corrosion protection performance of carbon steel-fusion-bonded epoxy coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh@aut.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), 16765-654, Tehran (Iran, Islamic Republic of)

    2017-01-15

    Highlights: • Steel surface was treated by Ce and acid phosphoric solutions. • Ce treatment considerably enhanced the surface energy and produce nanoscale roughness. • Ce treated samples showed enhanced adhesion to FBE coating. • Ce treatment of steel significantly reduced the FBE cathodic delamination rate. • Ce treated sample showed enhanced corrosion resistance. - Abstract: The effect of surface pre-treatment of pipe surface by green cerium compound and phosphoric acid solution on the fusion-bonded epoxy (FBE) coating performance was studied. The composition and surface morphology of the steel samples treated by acid and Ce solutions were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), equipped with energy dispersive spectroscopy (EDS). Also, the surface free energy was evaluated on these samples through contact angle measurements. In addition, the effect of Ce and acid washing procedures on the adhesion properties and corrosion protection performance of the FBE was examined by pull-off, salt spray and electrochemical impedance spectroscopy (EIS) tests. Results showed that compared to acid washing, the chemical treatment by Ce solution noticeably increased the surface free energy of steel, improved the adhesion properties of FBE, decreased the cathodic delamination rate of FBE, and enhanced the coating corrosion resistance compared to the acid washed samples.

  20. ``The Princess and the Pea'' at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles

    Science.gov (United States)

    Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael S.; Einstein, Theodore L.; Cullen, William G.

    2012-10-01

    Thin membranes exhibit complex responses to external forces or geometrical constraints. A familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, that results from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate, detached only in small regions around the nanoparticles. With increasing nanoparticle density, we observe the formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, global delamination from the substrate is observed. The observations can be well understood within a continuum-elastic model and have important implications for strain-engineering the electronic properties of graphene.

  1. Stable crack growth behaviors in welded CT specimens -- finite element analyses and simplified assessments

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Aoki, Shigeru; Kikuchi, Masanori; Arai, Yoshio; Kashima, Koichi; Watanabe, Takayuki; Shimakawa, Takashi

    1993-01-01

    The paper describes stable crack growth behaviors in welded CT specimens made of nuclear pressure vessel A533B class 1 steel, in which initial cracks are placed to be normal to fusion line. At first, using the relations between the load-line displacement (δ) and the crack extension amount (Δa) measured in experiments, the generation phase finite element crack growth analyses are performed, calculating the applied load (P) and various kinds of J-integrals. Next, the simplified crack growth analyses based on the GE/EPRI method and the reference stress method are performed using the same experimental results. Some modification procedures of the two simplified assessment schemes are discussed to make them applicable to inhomogeneous materials. Finally, a neural network approach is proposed to optimize the above modification procedures. 20 refs., 13 figs., 1 tab

  2. Fatigue crack growth behavior of RAFM steel in Paris and threshold regimes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Sasikala, G., E-mail: gsasi@igcar.gov.in; Dutt, B. Shashank; Venugopal, S.; Bhaduri, A.K.; Jayakumar, T.

    2014-04-01

    Fatigue crack growth (FCG) behavior of a reduced activation ferritic martensitic (indigenous RAFM) steel has been evaluated at 300, 653 and 823 K in Paris and threshold regimes. The effect of temperature on threshold stress intensity factor range and associated crack closure mechanisms is highlighted. The FCG results were compared with those for EUROFER 97. Further, crack tip effective stress intensity factor ranges (ΔK{sub tip,eff}) have been evaluated by taking crack tip shielding into account in order to examine the effect of temperature on true intrinsic FCG behavior.

  3. Fetal Growth Restriction with Brain Sparing: Neurocognitive and Behavioral Outcomes at 12 Years of Age

    NARCIS (Netherlands)

    Beukers, Fenny; Aarnoudse-Moens, Cornelieke S. H.; van Weissenbruch, Mirjam M.; Ganzevoort, Wessel; van Goudoever, Johannes B.; van Wassenaer-Leemhuis, Aleid G.

    2017-01-01

    Objective To study neurocognitive functions and behavior in children with a history of fetal growth restriction (FGR) with brain sparing. We hypothesized that children with FGR would have poorer outcomes on these domains. Study design Subjects were 12-year-old children with a history of FGR born to

  4. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    Science.gov (United States)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  5. The coupled kinetics of grain growth and fission product behavior in nuclear fuel under degraded-core accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1985-01-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, and cesium release from (1) irradiated high-burnup LWR fuel in a flowing steam atmosphere during high-temperature, in-cell heating tests (performed at Oak Ridge National Laboratory) and (2) trace-irratiated LWR fuel during severe-fuel-damage (SFD) tests (performed in the PBF reactor in Idaho). A theory of grain boundary sweeping of gas bubbles has been included within the FASTGRASS-VFP formalism. This theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges, and provides a means of determining whether gas bubbles are caught up and moved along by a moving grain boundary or whether the grain boundary is only temporarily retarded by the bubbles and then breaks away. In addition, as FASTGRASS-VFP provides for a mechanistic calculation of intra- and intergranular fission product behavior, the coupled calculation between fission gas behavior and grain growth is kinetically comprehensive. Results of the analyses demonstrate that intragranular fission product behavior during both types of tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. The effect of fuel oxidation by steam on fission product and grain growth behavior is also considered. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in high-burnup fuel are highlighted. (orig.)

  6. Interaction of neonatal irradiation and single-genes upon growth and behavior in mice

    International Nuclear Information System (INIS)

    Nash, D.J.

    1977-01-01

    Postnatal growth and behavior following neonatal irradiation were studied in congenic strains of mice. Mice were genetically similar except for single-gene substitutions at either the steel or dominant spotting loci. Adult behavior was measured by locomotion and elimination in the open field and by spontaneous activity in exercise wheels. In general, neonatal irradiation caused a decrease in body weight, activity in exercise wheels, and elimination in the open field, but an increase in locomotion in the open field. Significant differences due to genotype and sex were observed for locomotion and body weight. Differential responses of the genotypes to neonatal irradiation were observed in body weight and in activity in exercise wheels. The genotypes, in order of increasing sensitivity, were +/+, Wsup(a)/+, and Slsup(gb)/+. (author)

  7. Numerical Flexural Strength Analysis of Thermally Stressed Delaminated Composite Structure under Sinusoidal Loading

    Science.gov (United States)

    Hirwani, C. K.; Biswash, S.; Mehar, K.; Panda, S. K.

    2018-03-01

    In this article, we investigate the thermomechanical deflection characteristics of the debonded composite plate structure using an isoparametric type of higher-order finite element model. The current formulation is derived using higher-order kinematic theory and the displacement variables described as constant along the thickness direction whereas varying nonlinearly for the in-plane directions. The present mid-plane kinematic model mainly obsoletes the use of shear correction factor as in the other lower-order theories. The separation between the adjacent layers is modeled via the sub-laminate technique and the intermittent continuity conditions imposed to avoid the mathematical ill conditions. The governing equation of equilibrium of the damaged plate structure under the combined state of loading are obtained using the variational principle and solved numerically to compute the deflection values. Further, the convergence test has been performed by refining the numbers of elements and validated through comparing the present results with available published values. The usefulness of the proposed formulation has been discussed by solving the different kind of numerical examples including the size, location and position of delamination.

  8. Alps, Carpathians and Dinarides-Hellenides: about plates, micro-plates and delaminated crustal blocks

    Science.gov (United States)

    Schmid, Stefan

    2014-05-01

    Before the onset of Europe-Africa continental collision in the Dinarides-Hellenides (around 60Ma) and in the Alps and Western Carpathians (around 35 Ma), and at a large scale, the dynamics of orogenic processes in the Mediterranean Alpine chains were governed by Europe-Africa plate convergence leading to the disappearance of large parts of intervening oceanic lithosphere, i.e. the northern branch of Neotethys along the Sava-Izmir-Ankara suture and Alpine Tethys along the Valais-Magura suture (Schmid et al. 2008). In spite of this, two major problems concerning the pre-collisional stage are still poorly understood: (1) by now we only start to understand geometry, kinematics and dynamics of the along-strike changes in the polarity of subduction between Alps-Carpathians and Dinarides-Hellenides, and (2) it is not clear yet during exactly which episodes and to what extent intervening rifted continental fragments such as, for example, Iberia-Briançonnais, Tisza, Dacia, Adria-Taurides moved independently as micro-plates, and during which episodes they remained firmly attached to Europa or Africa from which they broke away. As Europe-Africa plate convergence slowed down well below 1 cm/yr at around 30 Ma ago these pre-collisional processes driven by plate convergence on a global scale gave way to more local processes of combined roll-back and crustal delamination in the Pannonian basin of the Carpathian embayment and in the Aegean (as well as in the Western Mediterranean, not discussed in this contribution). In the case of the Carpathian embayment E-directed roll back totally unrelated to Europe-Africa N-S-directed convergence, started at around 20 Ma ago, due to the presence relict oceanic lithosphere in the future Pannonian basin that remained un-subducted during collision. Due to total delamination of the crust from the eastward rolling back European mantle lithosphere the anticlockwise rotating ALCAPA crustal block, consisting of Eastern Alps and Western Carpathian

  9. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  10. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  11. Corrosion behavior of Cu during graphene growth by CVD

    International Nuclear Information System (INIS)

    Dong, Yuhua; Liu, Qingqing; Zhou, Qiong

    2014-01-01

    Highlights: • Graphene films were deposited on the Cu by chemical vapor deposition method. • Annealing affects the corrosion property of Cu. • Graphene films improve corrosion performance of Cu for a short period of time. - Abstract: The corrosion performance of Cu samples may be affected by annealing at high temperatures during graphene growth via the chemical vapor deposition method. In this study, multiple graphene films were deposited on Cu and characterized by Raman spectroscopy and transmission electron microscopy. The corrosion behavior of Cu immersed in 3.5 wt.% NaCl solution was investigated using electrochemical impedance spectroscopy. The Cu morphology was observed by optical microscopy and scanning electron microscopy. Results indicated that annealing affects the corrosion process of Cu. The presence of graphene films on the Cu substrate improved the corrosion performance of the material for a short period of time

  12. Optimum Electrode Configurations for Two-Probe, Four-Probe and Multi-Probe Schemes in Electrical Resistance Tomography for Delamination Identification in Carbon Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Luis Waldo Escalona-Galvis

    2018-04-01

    Full Text Available Internal damage in Carbon Fiber Reinforced Polymer (CFRP composites modifies the internal electrical conductivity of the composite material. Electrical Resistance Tomography (ERT is a non-destructive evaluation (NDE technique that determines the extent of damage based on electrical conductivity changes. Implementation of ERT for damage identification in CFRP composites requires the optimal selection of the sensing sites for accurate results. This selection depends on the measuring scheme used. The present work uses an effective independence (EI measure for selecting the minimum set of measurements for ERT damage identification using three measuring schemes: two-probe, four-probe and multi-probe. The electrical potential field in two CFRP laminate layups with 14 electrodes is calculated using finite element analyses (FEA for a set of specified delamination damage cases. The measuring schemes consider the cases of 14 electrodes distributed on both sides and seven electrodes on only one side of the laminate for each layup. The effectiveness of EI reduction is demonstrated by comparing the inverse identification results of delamination cases for the full and the reduced sets using the measuring schemes and electrode sets. This work shows that the EI measure optimally reduces electrode and electrode combinations in ERT based damage identification for different measuring schemes.

  13. Cocaine Use and Delinquent Behavior among High-Risk Youths: A Growth Model of Parallel Processes

    Science.gov (United States)

    Dembo, Richard; Sullivan, Christopher

    2009-01-01

    We report the results of a parallel-process, latent growth model analysis examining the relationships between cocaine use and delinquent behavior among youths. The study examined a sample of 278 justice-involved juveniles completing at least one of three follow-up interviews as part of a National Institute on Drug Abuse-funded study. The results…

  14. Modeling Growth in Boys' Aggressive Behavior across Elementary School: Links to Later Criminal Involvement, Conduct Disorder, and Antisocial Personality Disorder

    Science.gov (United States)

    Schaeffer, Cindy M.; Petras, Hanno; Ialongo, Nicholas; Poduska, Jeanne; Kellam, Sheppard

    2003-01-01

    The present study used general growth mixture modeling to identify pathways of antisocial behavior development within an epidemiological sample of urban, primarily African American boys. Teacher-rated aggression, measured longitudinally from 1st to 7th grade, was used to define growth trajectories. Three high-risk trajectories (chronic high,…

  15. Fatigue life assessment based on crack growth behavior in reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Sato, Yuki; Hasegawa, Akira

    2010-01-01

    Crack growth behavior under low cycle fatigue in reduced activation ferritic/martensitic steel, F82H IEA-heat (Fe-8Cr-2W-0.2V-0.02Ta), was investigated to improve the fatigue life assessment method of fusion reactor structural material. Low cycle fatigue test was carried out at room temperature in air at a total strain range of 0.4-1.5% using an hourglass-type miniature fatigue specimen. The relationship between the surface crack length and life fraction was described using one equation independent of the total strain range. Therefore, the fatigue life and residual life could be estimated using the surface crack length. Moreover, the microcrack initiation life could be estimated using the total strain range if there was a one-to-one correspondence between the total strain range and number of cycles to failure. The crack growth rate could be estimated using the total strain range and surface crack length by introducing the concept of the normalized crack growth rate. (author)

  16. “The Princess and the Pea” at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mahito Yamamoto

    2012-12-01

    Full Text Available Thin membranes exhibit complex responses to external forces or geometrical constraints. A familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, that results from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate, detached only in small regions around the nanoparticles. With increasing nanoparticle density, we observe the formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, global delamination from the substrate is observed. The observations can be well understood within a continuum-elastic model and have important implications for strain-engineering the electronic properties of graphene.

  17. Ultrasonic signal analysis according to laser ultrasound generation position for the detection of delamination in composites

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung Min; Choi In Young; Kim, Seong Jong; Kang, Young June [Chonbuk National University, Jeonju (Korea, Republic of); Lee, Gil Dong [GP Inc., Daejeon (Korea, Republic of)

    2015-11-15

    Carbon-fiber-reinforced plastic should be inspected in the fabrication process to enhance quality by preventing defects, such as delamination and voids. Conventional ultrasonic evaluation methods cannot be applied during the fabrication process because they require contact measurement by a transducer. Thus, an optical method using a laser was employed in this study for non-contact ultrasonic evaluation. Ultrasonic signals were generated by a pulsed laser and received by using a laser interferometer. First, an ultrasonic signal was generated from the back side of a material sample with artificial internal defects in the composite. The ultrasonic signal directed through the interior of the specimen was then detected at the front side. After determining the locations of the internal defects, the defects were quantitatively evaluated from the front side of the composite by using ultrasonic signal generation and reception.

  18. Investigations on in situ diagnostics by an infrared camera to distinguish between the plasma facing tiles with carbonaceous surface layer and defect in the underneath junction

    International Nuclear Information System (INIS)

    Cai, Laizhong; Gauthier, Eric; Corre, Yann; Liu, Jian

    2013-01-01

    Both a deposition surface layer and a delamination underneath junction existing on plasma facing components (PFCs) can result in abnormal high surface temperature under normal heating conditions. The tile with delamination has to be replaced to prevent from a critical failure (complete delamination) during plasma operation while the carbon deposit can be removed without any repairing. Therefore, distinguishing in situ deposited tiles and junction defect tiles is crucial to avoid the critical failure without unwanted shutdown. In this paper, the thermal behaviors of junction defect tiles and carbon deposit tiles are simulated numerically. A modified time constant method is then introduced to analyze the thermal behaviors of deposited tiles and junction defect tiles. The feasibility of discrimination by analyzing the thermal behaviors of tiles is discussed and the requirements of this method for discrimination are described. Finally, the time resolution requirement of IR cameras to do the discrimination is mentioned

  19. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera)

    Science.gov (United States)

    Pankiw, Tanya; Roman, Roman; Sagili, Ramesh R.; Zhu-Salzman, Keyan

    2004-12-01

    The success of a species depends on its ability to assess its environment and to decide accordingly which behaviors are most appropriate. Many animal species, from bacteria to mammals, are able to communicate using interspecies chemicals called pheromones. In addition to exerting physiological effects on individuals, for social species, pheromones communicate group social structure. Communication of social structure is important to social insects for the allocation of its working members into coordinated suites of behaviors. We tested effects of long-term treatment with brood pheromone on suites of honey bee brood rearing and foraging behaviors. Pheromone-treated colonies reared significantly greater brood areas and more adults than controls, while amounts of stored pollen and honey remained statistically similar. Brood pheromone increased the number of pollen foragers and the pollen load weights they returned. It appeared that the pheromone-induced increase in pollen intake was directly canalized into more brood rearing. A two-way pheromone priming effect was observed, such that some workers from the same age cohorts showed an increased and extended capacity to rear larvae, while others were recruited at significantly younger ages into pollen-specific foraging. Brood pheromone affected suites of nursing and foraging behaviors allocating worker and pollen resources associated with an important fitness trait, colony growth.

  20. Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

    Directory of Open Access Journals (Sweden)

    Elenice Maria Rodrigues

    2005-09-01

    Full Text Available Aluminum-lithium alloys are candidate materials for many aerospace applications because of their high specific strength and elastic modulus. These alloys have several unique characteristics such as excellent fatigue crack growth resistance when compared with that of the conventional 2000 and 7000 series alloys. In this study, fatigue crack propagation behavior has been examined in a commercial thin plate of Al-Li-Cu-Mg alloy (8090, with specific emphasis at the fatigue threshold. The results are compared with those of the traditional Al-Cu-Mg alloy (2024. Fatigue crack closure is used to explain the different behavior of the compared alloys.

  1. Termovision and electricity capacitance measurements as a evaluation of a helicopter rotor’s blades delamination

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej

    2015-12-01

    Full Text Available The article presents essential elements reached during investigations of heat section of rotor blades which have been done in AFIT. The investigations were related to a valuation of helicopter’s rotor blades delamination. They used a method of thermal field measurement as well as a electricity capacitance between an airframe and a heat element of the installation. A suggestion of such measurements appeared during the disassembly of rotor blade heat sections when some local unglue of heat element’s tape from the structure of blade’s heating pack has seen. Spots nearby separation of adhesive are a potential area of a local temperature increase, both the electric heating element and the mechanical structure of the blade. This is especially dangerous for composite structures. Overheated composite structures characterized by reduced flexibility and becomes prone to cracking. Therefore, the possibility of non-invasive monitoring adhesive spots, without removing the blades would be particularly useful.

  2. Late Miocene extensional systems in northern Tunisia and their relation with SE directed delamination of the African subcontinental mantle lithosphere

    Science.gov (United States)

    Booth-Rea, Guillermo; Gaidi, Seif; Melki, Fetheddine; Pérez-Peña, Vicente; Marzougui, Wissem; Azañón, Jose Miguel; Galve, Jorge Pedro

    2017-04-01

    Recent work has proposed the delamination of the subcontinental mantle lithosphere under northern Tunisia during the late Miocene. This process is required to explain the present location of the Tunisian segment of the African slab, imaged by seismic tomography, hanging under the Gulf of Gabes to the south of Tunisia. Thus, having retreated towards the SE several hundred km from its original position under the Tellian-Atlas nappe contact that crops out along the north of Tunisia. However, no tectonic structures have been described which could be related to this mechanism of lithospheric mantle peeling. Here we describe for the first time extensional fault systems in northern Tunisia that strongly thinned the Tellian nappes, exhuming rocks from the Tunisian Atlas in the core of folded extensional detachments. Two normal fault systems with sub-orthogonal extensional transport occur. These were active during the late Miocene associated to the extrusion of 13 Ma granodiorite and 9 Ma rhyodacite in the footwall of the Nefza detachment. We have differentiated an extensional system formed by low-angle normal faults with NE- and SW-directed transport cutting through the Early to Middle Miocene Tellian nappen stack and a later system of low and high-angle normal faults that cuts down into the underlying Tunisian Atlas units with SE-directed transport, which root in the Nefza detachment. Both normal fault systems have been later folded and cut by thrusts during Plio-Quaternary NW-SE directed compression. These findings change the interpretation of the tectonic evolution of Tunisia that has always been framed in a transpressive to compressive setting, manifesting the extensional effects of Late Miocene lithospheric mantle delamination under northern Tunisia.

  3. Assessment of Composite Delamination Self-Healing Via Micro-Encapsulation

    Science.gov (United States)

    O'Brien, T. Kevin; White, Scott R.

    2008-01-01

    Composite skin/stringer flange debond specimens manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin walled spheres were tested. As a crack develops and grows in the base polymer, the spheres fracture releasing the healing agent. The agent reacts with catalyst and polymerizes healing the crack. In addition, through-thickness reinforcement, in the form of pultruded carbon z-pins were included near the flange tips to improve the resistance to debonding. Specimens were manufactured with 14 plies in the skin and 10 plies in the stiffener flange. Three-point bend tests were performed to measure the skin/stiffener debonding strength and the recovered strength after healing. The first three tests performed indicated no healing following unloading and reloading. Micrographs showed that delaminations could migrate to the top of the interleaf layer due to the asymmetric loading, and hence, bypass most of the embedded capsules. For two subsequent tests, specimens were clamped in reverse bending before reloading. In one case, healing was observed as evidenced by healing agent that leaked to the specimen edge forming a visible "scar". The residual strength measured upon reloading was 96% of the original strength indicating healing had occurred. Hence, self-healing is possible in fiber reinforced composite material under controlled conditions, i.e., given enough time and contact with pressure on the crack surfaces. The micro-encapsulation technique may prove more robust when capsule sizes can be produced that are small enough to be embedded in the matrix resin without the need for using an interleaf layer. However, in either configuration, the amount of healing that can occur may be limited to the volume of healing agent available relative to the crack volume that must be filled.

  4. Study of rare gases behavior in uranium dioxide: diffusion and bubble nucleation and growth mechanisms

    International Nuclear Information System (INIS)

    Michel, A.

    2011-01-01

    During in-reactor irradiation of the nuclear fuel, fission gases, mainly xenon and krypton, are generated that are subject to several phenomena: diffusion and precipitation. These phenomena can have adverse consequences on the fuel physical and chemical properties and its in-reactor behavior. The purpose of this work is to better understand the behavior of fission gases by identifying diffusion, bubble nucleation and growth mechanisms. To do this, studies involving separate effects have been established coupling ion irradiations/implantations with fine characterizations on Large Scale Facilities. The influence of several parameters such as gas type, concentration and temperature has been identified separately. Interpretation of the Thermal Desorption Spectrometry (TDS) measurements has enabled us to determine xenon and krypton diffusion coefficients in uranium dioxide. A heterogeneous nucleation mechanism on defects was determined by means of experiments on the JANNuS platform in Orsay that consists of a coupling of an implantor, an accelerator and a Transmission Electron Microscope (TEM). Finally, TEM and X-ray Absorption Spectroscopy characterizations of implanted and annealed samples put in relieve a bubble growth mechanism by atoms and vacancies capture. (author) [fr

  5. Protective role of Arapaima gigas fish scales: structure and mechanical behavior.

    Science.gov (United States)

    Yang, Wen; Sherman, Vincent R; Gludovatz, Bernd; Mackey, Mason; Zimmermann, Elizabeth A; Chang, Edwin H; Schaible, Eric; Qin, Zhao; Buehler, Markus J; Ritchie, Robert O; Meyers, Marc A

    2014-08-01

    The scales of the arapaima (Arapaima gigas), one of the largest freshwater fish in the world, can serve as inspiration for the design of flexible dermal armor. Each scale is composed of two layers: a laminate composite of parallel collagen fibrils and a hard, highly mineralized surface layer. We review the structure of the arapaima scales and examine the functions of the different layers, focusing on the mechanical behavior, including tension and penetration of the scales, with and without the highly mineralized outer layer. We show that the fracture of the mineral and the stretching, rotation and delamination of collagen fibrils dissipate a significant amount of energy prior to catastrophic failure, providing high toughness and resistance to penetration by predator teeth. We show that the arapaima's scale has evolved to minimize damage from penetration by predator teeth through a Bouligand-like arrangement of successive layers, each consisting of parallel collagen fibrils with different orientations. This inhibits crack propagation and restricts damage to an area adjoining the penetration. The flexibility of the lamellae is instrumental to the redistribution of the compressive stresses in the underlying tissue, decreasing the severity of the concentrated load produced by the action of a tooth. The experimental results, combined with small-angle X-ray scattering characterization and molecular dynamics simulations, provide a complete picture of the mechanisms of deformation, delamination and rotation of the lamellae during tensile extension of the scale. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  6. The effect of environment on the creep crack growth behavior of several structural alloys

    International Nuclear Information System (INIS)

    Sadananda, K.; Shahinian, P.

    1980-01-01

    The creep crack growth behaviors of alloy 718, Inconel X-750, Udimet 700 and cold-worked type 304 and annealed and cold-worked type 316 austenitic stainless steels were determined in vacuum at elevated temperatures and the results were compared with those previously obtained in air. Alloy 718 and Inconel X-750 were found to be significantly sensitive to air with crack growth rates one to two orders of magnitude greater than those in vacuum. Udimet 700 is less sensitive to the environment and it is more sensitive to small changes in microstructure than to the environment per se. The austenitic stainless steels are least sensitive of all. Since the environmental sensitivity varies significantly for different materials, the service environment should be considered in the selection of materials for high temperature components. (Auth.)

  7. Layered rare-earth hydroxide (LRH, R = Tb, Y) composites with fluorescein: delamination, tunable luminescence and application in chemosensoring for detecting Fe(iii) ions.

    Science.gov (United States)

    Su, Feifei; Guo, Rong; Yu, Zihuan; Li, Jian; Liang, Zupei; Shi, Keren; Ma, Shulan; Sun, Genban; Li, Huifeng

    2018-04-17

    We demonstrate a novel example of tunable luminescence and the application of the delaminated FLN/OS-LRH composites (LRHs are layered rare-earth hydroxides, R = Tb, Y; FLN is the fluorescein named 2-(6-hydroxy-3-oxo-(3H)-xanthen-9-yl)benzoic acid; OS is the anionic surfactant 1-octane sulfonic acid sodium) in detecting Fe(iii) ions. The FLNxOS1-x species (x = 0.02, 0.05, 0.10, and 0.20) are intercalated into the LTbyY1-yH layers (y = 1, 0.9, 0.7, 0.5, 0.3, 0.1 and 0) by ion exchange reactions to yield the composites FLNxOS1-x-LTbyY1-yH. In the solid state, the LYH composites display green emission (564 nm) arising from the organic FLN, while in LTbH composites, the luminescence of the Tb3+ in the layers (545 nm) and the FLN in the interlayers is co-quenched. In the delaminated state in formamide (FM), FLNxOS1-x-LTbH composites display green to yellowish-green luminescence (540-574 nm) following the increasing FLN/OS ratio; while the FLN0.02OS0.98-LTbyY1-yH composites show green emission at ∼540 nm. The fluorescence lifetimes of the composites (4.22-4.63 ns) are comparable to the free FLN-Na, and the quantum yields (31.62-78.70%) of the composites especially that (78.70%) of the FLN0.02OS0.98-LYH are much higher than that (28.40%) of free FLN-Na. The recognition ability of the FLN0.02OS0.98-LYH composite for metal cations is researched. The delaminated FLN0.02OS0.98-LYH colloidal suspension exhibits high selectivity for Fe3+ over other ions (Mg2+, Al3+, Ni2+, Co2+, Cu2+, Zn2+, Mn2+, Pb2+, and Cd2+) with fluorescence quenching, which can work as a kind of turn-off fluorescence sensor for the detection of Fe3+. The detection limit of Fe3+ is determined to be 2.58 × 10-8 M and the quenching constant (Ksv) is 1.70 × 103 M-1. This is the first work on LRH materials working as a chemosensor for recognising metal cations. It provides a new approach for the design of LRH materials to be applied in fluorescence chemosensing.

  8. Effect of behavior training on learning and memory of young rats with fetal growth restriction

    Institute of Scientific and Technical Information of China (English)

    Li Xuelan; Gou Wenli; Huang Pu; Li Chunfang; Sun Yunping

    2008-01-01

    Objective: To investigate the effect of behavior training on the learning and memory of young rats with fetal growth restriction (FGR). Methods: The model of FGR was established by passive smoking method to pregnant rats.The new-born rats were divided into FGR group and normal group, and then randomly subdivided into trained and untrained group respectively. Morris water maze behavior training was performed on postnatal months 2 and 4, then learning and memory abilities of young rats were measured by dark-avoidance testing and step-down testing. Results: In the dark-avoidance and step-down testing, the young rats' performance of FGR group was worse than that of control group, and the trained group was better than the untrained group significantly. Conclusion: FGR young rats have descended learning and memory abilities. Behavior training could improve the young rats' learning and memory abilities, especially for the FGR young rats.

  9. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    Science.gov (United States)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  10. Measurement of interfacial shear mechanical properties in thermal barrier coating systems by a barb pullout method

    International Nuclear Information System (INIS)

    Guo, S.Q.; Mumm, D.R.; Karlsson, A.M.; Kagawa, Y.

    2005-01-01

    A test technique has been developed to facilitate evaluation of the fracture characteristics of coatings and interfaces in thermal barrier coating (TBC) systems. The methodology has particular application in analyzing delamination crack growth, where crack propagation occurs under predominantly mode II loading. The technique has been demonstrated by quantitatively measuring the effective delamination fracture resistance of an electron-beam physical vapor deposition TBC

  11. Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    Science.gov (United States)

    Pasterski, Vickie; Acerini, Carlo L; Dunger, David B; Ong, Ken K; Hughes, Ieuan A; Thankamony, Ajay; Hines, Melissa

    2015-03-01

    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development. Copyright © 2015. Published by Elsevier Inc.

  12. Research on Oxidation Wear Behavior of a New Hot Forging Die Steel

    Science.gov (United States)

    Shi, Yuanji; Wu, Xiaochun

    2018-01-01

    Dry sliding tests for the hot forging die steel DM were performed in air under the test temperature at 400-700 °C and the time of 0.5-4 h by a UMT-3 high-temperature wear tester. The wear behavior and characteristics were studied systematically to explore the general characters in severe oxidation conditions. The results showed that a mild-to-severe oxidation wear transition occurred with an increase in the test temperature and duration. The reason was clarified as the unstable M6C carbides coarsening should be responsible for the severe delamination of tribo-oxide layer. More importantly, an intense oxidation wear with lower wear rates was found when the experimental temperature reaches 700 °C or after 4 h of test time at 600 °C, which was closely related to the degradation behavior during wear test. Furthermore, a new schematic diagram of oxidation wear of DM steel was proposed.

  13. Functions of Research in Radical Behaviorism for the Further Development of Behavior Analysis

    Science.gov (United States)

    Leigland, Sam

    2010-01-01

    The experimental analysis of behavior began as an inductively oriented, empirically based scientific field. As the field grew, its distinctive system of science--radical behaviorism--grew with it. The continuing growth of the empirical base of the field has been accompanied by the growth of the literature on radical behaviorism and its…

  14. Fatigue Crack Growth Behavior of 2099-T83 Extrusions in two Different Environments

    Science.gov (United States)

    Goma, Franck Armel Tchitembo; Larouche, Daniel; Bois-Brochu, Alexandre; Blais, Carls; Boselli, Julien; Brochu, Mathieu

    Aluminum-lithium alloy 2099-T83 is an advanced material with superior mechanical properties, as compared to traditional alloys used in structural applications, and has been selected for use in the latest generation of airplanes. While this alloy exhibits improved fatigue crack growth (FCG) performance over non-Li alloys, it is of interest to simulate the impact of fluctuating loads under variable temperature during airplane service, particularly in terms of the potential effects of material processing history. In the present paper, the FCG behavior in an Integrally Stiffened Panel (ISP) has been investigated both at room temperature and at 243 K. It has been shown that the resistance to crack growth in a cold environment was higher than in ambient laboratory air. Results of this investigation are discussed from the microfractographic point of view, with regard to the variation of the local extrusion aspect ratio, a parameter which correlates with both the crystallographic texture and the grain structure.

  15. Effect of Nb on the Growth Behavior of Co3Sn2 Phase in Undercooled Co-Sn Melts

    Science.gov (United States)

    Kang, Jilong; Xu, Wanqiang; Wei, Xiuxun; Ferry, Michael; Li, Jinfu

    2016-12-01

    The growth behavior of the primary β-Co3Sn2 phase in (Co67Sn33)100- x Nb x ( x = 0, 0.5, 0.8, 1.0) hypereutectic alloys at different melt undercoolings was investigated systematically. The growth pattern of the β-Co3Sn2 phase at low undercooling changes with the Nb content from fractal seaweed ( x = 0, 0.5) into dendrite ( x = 0.8) and then returns to fractal seaweed ( x = 1.0) as a response to the changes in interface energy anisotropy and interface kinetic anisotropy. As undercooling increases, the dendritic growth of the β-Co3Sn2 phase in (Co67Sn33)99.2Nb0.8 alloy gives way to fractal seaweed growth at an undercooling of 32 K (-241 °C). At larger undercooling, the fractal seaweed growth is further replaced by compact seaweed growth, which occurred in the other three alloys investigated. The growth velocity of the β-Co3Sn2 phase slightly increases at low and intermediate undercooling but clearly decreases at larger undercooling due to the Nb addition. The growth velocity sharply increases as the growth pattern of the Co3Sn2 phase transits from fractal seaweed into compact seaweed.

  16. Study on evolution of internal damage in CFRP in fatigue process; Hiro katei ni okeru CFRP no naibu sonsho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K. [Nagoya Univ. (Japan); Murakami, S. [Nagoya Univ. (Japan). Faculty of Engineering

    1998-05-15

    Development of internal damage evolution in plates and thin tubular speciments of CFRP laminates under static and dynamic loadings are discussed by means of Acoustic Emission measurements and micrographical observations. The mechanical behavior of three kinds of speciments, i.e. undamaged laminate plates [+45deg{sub 4}/-45deg{sub 4}]{sub s}, damaged plates [+45deg{sub 4}/-45deg{sub 4}]{sub s} subjected to drop-weight impact and undamaged tubular speciments [ 45deg]{sub 4}, under quasi-static and fatigue loadings is observed first. Then the mechanism of the resulting inelastic behavior and the change in the mechanical properties are discussed in relation to the evolution of internal damage. Finally the distribution and the evolution of matrix crecks and delamination in the sliced section of the speciments are measured quantitatively in several stages of fatigue process. The dependence of damage distribution on the loading condition is elucidated. Namely, in the case of the stress ratio R=-0.25, the growth of damage zone involving the main crack is localized, and the main crack forms large delamination. On the other hand, for the stress ratio R=0, small cracks are distributed sparsely, but the main crack is not observed until the final stage of the fatifue process. 8 refs., 12 figs.

  17. Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.

    Science.gov (United States)

    Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki

    2013-11-01

    Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.

  18. Tribomechanical behavior of B{sub 4}C{sub p} reinforced Al 359 composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Deivasigamani; Rathanasamy, Rajasekar [Kongu Engineering College, Tamil Nadu (India). Dept. of Mechanical Engineering; Subramanian, Mohan Kumar; Kaliyannan, Gobinath Velu [PAAVAI Engineering College, Tamil Nadu (India). Dept. of Mechatronics Engineering; Palaniappan, Sathish Kumar [Indian Institute of Technology, Kharagpur, West Bengal (India); Durairaj, Jayanth

    2017-03-01

    n the present investigation, the influence of B{sub 4}C{sub p} particles on the mechanical and tribological behavior of Al 359 composites has been studied. B{sub 4}C{sub p} particle reinforced Al 359 composite samples were prepared by stir casting process. Hardness, tensile strength and wear behavior of the composites were studied and compared with a control specimen. Hardness of B{sub 4}C{sub p} particles reinforced Al 359 matrix increases compared to base matrix due to the presence of the ceramic phase. Coefficient of friction considerably increases with up to 20 wt.-% addition of B{sub 4}C{sub p} in base matrix. Specimens were subjected to wear tests under different load conditions and the following five different wear mechanisms such as wear groove, abrasion, delamination, oxidation and plastic deformation were evaluated. The abrasion results prove the increase in wear resistance of B{sub 4}C{sub p} reinforced composites compared to a control specimen.

  19. Brief Report: Examining children’s disruptive behavior in the wake of trauma - A two-piece growth curve model before and after a school shooting

    Science.gov (United States)

    Liao, Yue; Shonkoff, Eleanor T.; Barnett, Elizabeth; Wen, CK Fred; Miller, Kimberly A.; Eddy, J. Mark

    2015-01-01

    School shootings may have serious negative impacts on children years after the event. Previous research suggests that children exposed to traumatic events experience heightened fear, anxiety, and feelings of vulnerability, but little research has examined potential aggressive and disruptive behavioral reactions. Utilizing a longitudinal dataset in which a local school shooting occurred during the course of data collection, this study sought to investigate whether the trajectory of disruptive behaviors was affected by the shooting. A two-piece growth curve model was used to examine the trajectory of disruptive behaviors during the pre-shooting years (i.e., piece one) and post-shooting years (i.e., piece two). Results indicated that the two-piece growth curve model fit the data better than the one-piece model and that the school shooting precipitated a faster decline in aggressive behaviors. This study demonstrated a novel approach to examining effects of an unexpected traumatic event on behavioral trajectories using an existing longitudinal data set. PMID:26298676

  20. ToF-SIMS study of growth behavior in all-nanoparticle multilayer films using a novel indicator layer

    International Nuclear Information System (INIS)

    Chen, B.-J.; Yin, Y.-S.; Ling, Y.-C.

    2008-01-01

    All-nanoparticle multilayer films found novel applications in the areas of photonics, catalysis, sensors, and biomaterials. The assembly of nanoparticles into conformal and uniform films with precise control over chemical and physical properties poses a significant challenge. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS), we have investigated the growth behavior in all-nanoparticle multilayer films using a novel indicator layer. The all-nanoparticle multilayer films were prepared by dipping the polyester substrate with electrostatic charges alternatively into solutions containing three different types of nanoparticles (TiO 2 , Al 2 O 3 , and SiO 2 ). Upon the deposition of each layer, ToF-SIMS was employed to determine the surface chemical composition of intermediate products. The intermixing extent of TiO 2 indicator layer was used to reveal the stratification of each layer. Combining with zeta-potential measurements, the solvation and deposition of the under-layer species in the aqueous environment during fresh layer formation was proposed as a plausible cause for mutilayers not stratified into well-defined layers but displaying a nonlinear growth behavior.

  1. Brief report: Examining children's disruptive behavior in the wake of trauma - A two-piece growth curve model before and after a school shooting.

    Science.gov (United States)

    Liao, Yue; Shonkoff, Eleanor T; Barnett, Elizabeth; Wen, C K Fred; Miller, Kimberly A; Eddy, J Mark

    2015-10-01

    School shootings may have serious negative impacts on children years after the event. Previous research suggests that children exposed to traumatic events experience heightened fear, anxiety, and feelings of vulnerability, but little research has examined potential aggressive and disruptive behavioral reactions. Utilizing a longitudinal dataset in which a local school shooting occurred during the course of data collection, this study sought to investigate whether the trajectory of disruptive behaviors was affected by the shooting. A two-piece growth curve model was used to examine the trajectory of disruptive behaviors during the pre-shooting years (i.e., piece one) and post-shooting years (i.e., piece two). Results indicated that the two-piece growth curve model fit the data better than the one-piece model and that the school shooting precipitated a faster decline in aggressive behaviors. This study demonstrated a novel approach to examining effects of an unexpected traumatic event on behavioral trajectories using an existing longitudinal data set. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  2. Kinetic Behavior of Aggregation-Exchange Growth Process with Catalyzed-Birth

    International Nuclear Information System (INIS)

    Han Anjia; Chen Yu; Lin Zhenquan; Ke Jianhong

    2007-01-01

    We propose an aggregation model of a two-species system to mimic the growth of cities' population and assets, in which irreversible coagulation reactions and exchange reactions occur between any two aggregates of the same species, and the monomer-birth reactions of one species occur by the catalysis of the other species. In the case with population-catalyzed birth of assets, the rate kernel of an asset aggregate B k of size k grows to become an aggregate B k+1 through a monomer-birth catalyzed by a population aggregate A j of size j is J(k,j) = Jkj λ . And in mutually catalyzed birth model, the birth rate kernels of population and assets are H(k,j) = Hkj η and J(k,j) = Jkj λ , respectively. The kinetics of the system is investigated based on the mean-field theory. In the model of population-catalyzed birth of assets, the long-time asymptotic behavior of the assets aggregate size distribution obeys the conventional or modified scaling form. In mutually catalyzed birth system, the asymptotic behaviors of population and assets obey the conventional scaling form in the case of η = λ = 0, and they obey the modified scaling form in the case of η = 0,λ = 1. In the case of η = λ = 1, the total mass of population aggregates and that of asset aggregates both grow much faster than those in population-catalyzed birth of assets model, and they approaches to infinite values in finite time.

  3. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Arabi Jeshvaghani, R.; Jaberzadeh, M.; Zohdi, H.; Shamanian, M.

    2014-01-01

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M 23 C 6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M 23 C 6 . Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  4. Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Solís-Fernández, Pablo [Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580 (Japan); Yunus, Rozan Mohamad [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Hibino, Hiroki [School of Science and Technology, Kwansei Gakuin University, Hyogo, 669-1337 (Japan); Ago, Hiroki, E-mail: ago.hiroki.974@m.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580 (Japan)

    2017-06-30

    Highlights: • Growth mechanism of large graphene grains on oxidized Cu was revealed by investigating the behavior of oxygen in the Cu. • Only the heating up step was found to be crucial for obtaining large graphene grains. • The copper oxide layer was found to promote some oxygen atoms to dissolve into the Cu foil. • The dissolved oxygen contributes to the reduction of a nucleation density of graphene. - Abstract: Decreasing the nucleation density of graphene grown on copper (Cu) foil by chemical vapor deposition (CVD) is essential for the synthesis of large-area single-crystalline graphene. Here, the behavior of the copper oxide layer and its impact on the graphene growth have been investigated. We found that a small amount of oxygen dissolves into the Cu when the oxide layer decomposes during the heating up in a non-reducing Ar environment. The remaining oxygen in the Cu foil can play an important role in decreasing the graphene nucleation density. The dissolved oxygen can withstand at high temperatures even in reducing H{sub 2} environments without completely losing its effectiveness for maintaining a low graphene nucleation density. However, heating up in a H{sub 2} environment significantly reduces the copper oxide layer during the very first moments of the process at low temperatures, preventing the oxygen to dissolve into the Cu and significantly increasing the nucleation density. These findings will help to improve the graphene growth on Cu catalyst by increasing the grain size while decreasing the grain density.

  5. Effects of stitch density and stitch thread thickness on mode II delamination properties of Vectran stitched composites

    KAUST Repository

    Herwan, J.

    2014-11-01

    © Institute of Materials, Minerals and Mining 2014. Mode II delamination properties of Vectran stitched composites were investigated, and tabbed end notch flexural specimen testing was used to prevent premature failure. The effects of stitch density and stitch thread thickness were explored, and fibre compaction due to the stitching process was also verified. The results show that, in moderately stitched laminates (low stitch density), the improvement in GIIC was negligible. Crack bridging by the stitch threads at the crack zone were mostly compensated for the effect of fibre compaction, which reduced the GIIC values. Conversely, in densely stitched laminates (high stitch density), GIIC values were improved significantly (2·4 times higher than those of unstitched laminates). The effects of stitch thread thickness appeared to be negligible in moderately stitched laminates. For densely stitched laminates, thicker stitch thread (500 denier) possessed GIIC values that were 45·7% higher than thinner stitch thread (200 denier).

  6. Effects of stitch density and stitch thread thickness on mode II delamination properties of Vectran stitched composites

    KAUST Repository

    Herwan, J.; Kondo, A.; Morooka, S.; Watanabe, N.

    2014-01-01

    © Institute of Materials, Minerals and Mining 2014. Mode II delamination properties of Vectran stitched composites were investigated, and tabbed end notch flexural specimen testing was used to prevent premature failure. The effects of stitch density and stitch thread thickness were explored, and fibre compaction due to the stitching process was also verified. The results show that, in moderately stitched laminates (low stitch density), the improvement in GIIC was negligible. Crack bridging by the stitch threads at the crack zone were mostly compensated for the effect of fibre compaction, which reduced the GIIC values. Conversely, in densely stitched laminates (high stitch density), GIIC values were improved significantly (2·4 times higher than those of unstitched laminates). The effects of stitch thread thickness appeared to be negligible in moderately stitched laminates. For densely stitched laminates, thicker stitch thread (500 denier) possessed GIIC values that were 45·7% higher than thinner stitch thread (200 denier).

  7. An experimental study on the factors that affect fatigue crack growth retardation behavior in SM45C steel

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Kim, Jong Hoon; Ahn, Seok Hwan

    2000-01-01

    Constant ΔK fatigue crack growth tests were performed applying an intermediate multiple overload for SM45C steel. The purpose of the present study is to investigate the effects of specimen thickness at various baseline stress intensity levels(ΔK b ), overload application position(a/W) and overload application frequency(OL Hz ) on fatigue crack growth retardation behavior. The principal results are summarized as follows. The amount of retardation for a given ΔK b level is increased with increasing the baseline stress intensity level in all specimen thickness. The normalized minimum crack growth rate is increased with increasing the specimen thickness, except for ΔK=45MPa√m. The retardation cycle is decreased with increasing the overload application position and increased with the overload application frequency

  8. Geometrical versus Random β-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behavior.

    Directory of Open Access Journals (Sweden)

    Lauren Sweet

    Full Text Available Numerous studies have demonstrated that Schwann cells (SCs play a role in nerve regeneration; however, their role in innervating a bioceramic scaffold for potential application in bone regeneration is still unknown. Here we report the cell growth and functional behavior of SCs on β-tricalcium phosphate (β-TCP scaffolds arranged in 3D printed-lattice (P-β-TCP and randomly-porous, template-casted (N-β-TCP structures. Our results indicate that SCs proliferated well and expressed the phenotypic markers p75LNGFR and the S100-β subunit of SCs as well as displayed growth morphology on both scaffolds, but SCs showed spindle-shaped morphology with a significant degree of SCs alignment on the P-β-TCP scaffolds, seen to a lesser degree in the N-β-TCP scaffold. The gene expressions of nerve growth factor (β-ngf, neutrophin-3 (nt-3, platelet-derived growth factor (pdgf-bb, and vascular endothelial growth factor (vegf-a were higher at day 7 than at day 14. While no significant differences in protein secretion were measured between these last two time points, the scaffolds promoted the protein secretion at day 3 compared to that on the cell culture plates. These results together imply that the β-TCP scaffolds can support SC cell growth and that the 3D-printed scaffold appeared to significantly promote the alignment of SCs along the struts. Further studies are needed to investigate the early and late stage relationship between gene expression and protein secretion of SCs on the scaffolds with refined characteristics, thus better exploring the potential of SCs to support vascularization and innervation in synthetic bone grafts.

  9. Impact of Witnessing Violence on Growth Curves for Problem Behaviors among Early Adolescents in Urban and Rural Settings

    Science.gov (United States)

    Farrell, Albert D.; Sullivan, Terri N.

    2004-01-01

    Two studies used latent growth-curve analysis to examine the relation between witnessing violence and changes in problem behaviors (drug use, aggression, and delinquency) and attitudes during early adolescence. In Study 1, six waves of data covering 6th to 8th grades were collected from 731 students in urban schools serving mostly African-American…

  10. Microstructure evolution, thermal stability and fractal behavior of water vapor flow assisted in situ growth poly(vinylcarbazole)-titania quantum dots nanocomposites

    Science.gov (United States)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Alvaro W.

    2017-12-01

    Here, we report a novel strategy for the preparation of TiO2 quantum dots fillers prepared from alkoxide precursor via in situ water vapor flow diffusion into poly(N-vinylcarbazole) host. A detailed characterization by means of infrared and Raman spectroscopy, X-ray powder diffraction, small angle X-ray scattering and differential scanning calorimetry is reported. The growth mechanism of both crystallites and particles was mostly governed by the classical coarsening reaction limited growth and the polymer host showed no detectable chemical modifications at the interface or active participation in the growing process. The main relevance of our strategy respect to the typical sol-gel growth in solution is the possibility of the interruption of the reaction by simple stopping the water vapor flow diffusion into the polymer host thus achieving good control in the nanoparticles size. The thermal stability and fractal behavior of our nanocomposites were also studied by differential scanning calorimetry and in situ small angle X-ray scattering versus temperature. Strong correlations between modifications in the fractal behavior and glass transition or fusion processes were observed for these nanocomposites.

  11. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process.

    Science.gov (United States)

    Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Du, Yang; Gerald, Rex E; Tang, Yan; Huang, Jie

    2017-11-22

    This paper presents an extrinsic Fabry-Perot interferometer-based optical fiber sensor (EFPI) for measuring three-dimensional (3D) displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate) during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology.

  12. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-11-01

    Full Text Available This paper presents an extrinsic Fabry–Perot interferometer-based optical fiber sensor (EFPI for measuring three-dimensional (3D displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology.

  13. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy’s Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanning calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  14. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    International Nuclear Information System (INIS)

    Fox, K.; Amoroso, J.; Mcclane, D.

    2017-01-01

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy's Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanning calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  15. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  16. Numerical and Experimental Investigations on Mechanical Behavior of Composite Corrugated Core

    Science.gov (United States)

    Dayyani, Iman; Ziaei-Rad, Saeed; Salehi, Hamid

    2012-06-01

    Tensile and flexural characteristics of corrugated laminate panels were studied using numerical and analytical methods and compared with experimental data. Prepreg laminates of glass fiber plain woven cloth were hand-laid by use of a heat gun to ease the creation of the panel. The corrugated panels were then manufactured by using a trapezoidal machined aluminium mould. First, a series of simple tension tests were performed on standard samples to evaluate the material characteristics. Next, the corrugated panels were subjected to tensile and three-point bending tests. The force-displacement graphs were recorded. Numerical and analytical solutions were proposed to simulate the mechanical behavior of the panels. In order to model the energy dissipation due to delamination phenomenon observed in tensile tests in all members of corrugated core, plastic behavior was assigned to the whole geometry, not only to the corner regions. Contrary to the literature, it is shown that the three-stage mechanical behavior of composite corrugated core is not confined to aramid reinforced corrugated laminates and can be observed in other types such as fiber glass. The results reveal that the mechanical behavior of the core in tension is sensitive to the variation of core height. In addition, for the first time, the behavior of composite corrugated core was studied and verified in bending. Finally, the analytical and numerical results were validated by comparing them with experimental data. A good degree of correlation was observed which showed the suitability of the finite element model for predicting the mechanical behavior of corrugated laminate panels.

  17. Morphology and growth behavior of O_2-free chemical bath deposited ZnS thin films

    International Nuclear Information System (INIS)

    Jet Meitzner, K.; Tillotson, Brock M.; Siedschlag, Amanda T.; Moore, Frederick G.; Kevan, Stephen D.; Richmond, Geraldine L.

    2015-01-01

    We investigate the role of reagent concentrations and ambient O_2 on the morphology and growth behavior of ZnS thin films grown with the chemical bath deposition method. We investigate the role of substrate on film morphology, and find significant differences between films deposited on SiO_2 versus Si. The films are also sensitive to dissolved O_2 in the bath, as it causes a layer of SiO_2 to form at the ZnS/Si interface during deposition. Degassing of solutions and an N_2 atmosphere are effective to minimize this oxidation, allowing deposition of ZnS films directly onto Si. Under these conditions, we examine film properties as they relate to reagent bath concentrations. As the reagent concentrations are decreased, both the film roughness and growth rate decrease linearly. We also observe deformation and shifting of X-ray diffraction peaks that increases with decreasing reagent concentrations. The shifts are characteristic of lattice compression (caused by the substitution of oxygen for sulfur), and the deformation is characteristic of distortion of the lattice near crystal grain interfaces (caused by tensile stress from interatomic forces between neighboring crystal grains). At the weakest concentrations, the low roughness suggests a mixed growth mode in which both clusters and individual ZnS nanocrystallites contribute to film growth. With increasing reagent concentrations, the growth mode shifts and becomes dominated by deposition of clusters. - Highlights: • We deposit ZnS thin films by chemical bath deposition in an O_2-free environment. • The O_2-free environment is effective to minimize oxidation of the Si substrate. • The dominant growth mechanism changes with reagent concentrations. • Film morphology and composition change with reagent concentrations. • X-ray diffraction reveals tensile stress between ZnS crystal grains.

  18. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets

    OpenAIRE

    Graziele C Oliveira; Willyam L Vieira; Suzana C Bertolli; Ana Claudia Pacheco

    2016-01-01

    The modulation of light is of importance during cultivation of medicinal plants to obtain desirable morphological and physiological changes associated with the maximum production of active principles. This study aimed to evaluate the effect of the light spectrum transmitted by colored shade nets on growth, essential oil production and photosynthetic behavior in plants of lemon balm (Melissa officinalis L.) Plants were cultivated in pots for 4-mo under black, red, and blue nets with 50% shadin...

  19. Corrosion behavior of ceramic-coated ZIRLO™ exposed to supercritical water

    Science.gov (United States)

    Mandapaka, Kiran K.; Cahyadi, Rico S.; Yalisove, Steven; Kuang, Wenjun; Sickafus, K.; Patel, Maulik K.; Was, Gary S.

    2018-01-01

    The corrosion behavior of ceramic coated ZIRLO™ tubing was evaluated in a supercritical water (SCW) environment to determine its behavior in high temperature water. Two coating architectures were analyzed; a 4 bi-layer TiAlN/TiN coating with Ti bond coat, and a TiN monolithic coating with Ti bond layer on ZIRLO™ tubes using cathodic arc physical vapor deposition (CA-PVD) technique. Femtosecond laser ablation was used to introduce reproducible defects in some of the coated tubes. On exposure to deaerated supercritical water at 542 °C for 48 h, coated tubes exhibited significantly higher weight gain compared to uncoated ZIRLO™. Examination revealed formation of a uniform ZrO2 layer beneath the coating of a thickness similar to that on the uncoated tube inner surface. The defects generated during the coating process acted as preferential paths for diffusion of oxygen resulting in the oxidation of substrate ZIRLO™. However, there was no delamination of the coating. There were insignificant differences in the oxidation weight gain between laser ablated and non-ablated tubes and the laser induced defects did not spread beyond their original size.

  20. Behavior analysis and the growth of behavioral pharmacology

    OpenAIRE

    Laties, Victor G.

    2003-01-01

    Psychologists, particularly those influenced by the work of B. F. Skinner, played a major part in the development of behavioral pharmacology in the 1950s and 1960s. Revolutionary changes in pharmacology and psychiatry, including the discovery of powerful therapeutic agents such as chlorpromazine and reserpine, had produced a surge of interest in drug research. Pharmaceutical companies began hiring psychologists with operant conditioning backgrounds so as to compete successfully in the search ...

  1. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  2. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperatures and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 538 degrees C: crystallographic faceting at low stress intensity range (ΔK) levels, striation, formation at intermediate values, and dimples coupled with striations in the highest (ΔK) regime. At 649 degrees C, the heat-treated welds exhibited extensive intergranular cracking. Laves and δ particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused on overall acceleration in crack growth rates at intermediate and high ΔK levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 19 refs., 16 figs

  3. The tensile deformation behavior of nuclear-grade isotropic graphite posterior to hydrostatic loading

    International Nuclear Information System (INIS)

    Yoda, S.; Eto, M.

    1983-01-01

    The effects of prehydrostatic loading on microstructural changes and tensile deformation behavior of nuclear-grade isotropic graphite have been examined. Scanning electron micrographs show that formation of microcracks associated with delamination between basal planes occurs under hydrostatic loading. Hydrostatic loading on specimens results in the decrease in tensile strength and increase in residual strain generated by the applied tensile stress at various levels, indicating that the graphite material is weakened by hydrostatic loading. A relationship between residual strain and applied tensile stress for graphite hydrostatically-loaded at several pressure levels can be approximately expressed as element of= (AP + B) sigmasup(n) over a wide range hydrostatic pressure, where element of, P and sigma denote residual strain, hydrostatic pressure and applied tensile stress, respectively; A, B and n are constant. The effects of prehydrostatic loading on the tensile stress-strain behavior of the graphite were examined in more detail. The ratio of stress after hydrostatic loading to that before hydrostatic loading on the stress-strain relationship remains almost unchanged irrespective of strain. (orig.)

  4. Testing and Life Prediction for Composite Rotor Hub Flexbeams

    Science.gov (United States)

    Murri, Gretchen B.

    2004-01-01

    A summary of several studies of delamination in tapered composite laminates with internal ply-drops is presented. Initial studies used 2D FE models to calculate interlaminar stresses at the ply-ending locations in linear tapered laminates under tension loading. Strain energy release rates for delamination in these laminates indicated that delamination would likely start at the juncture of the tapered and thin regions and grow unstably in both directions. Tests of glass/epoxy and graphite/epoxy linear tapered laminates under axial tension delaminated as predicted. Nonlinear tapered specimens were cut from a full-size helicopter rotor hub and were tested under combined constant axial tension and cyclic transverse bending loading to simulate the loading experienced by a rotorhub flexbeam in flight. For all the tested specimens, delamination began at the tip of the outermost dropped ply group and grew first toward the tapered region. A 2D FE model was created that duplicated the test flexbeam layup, geometry, and loading. Surface strains calculated by the model agreed very closely with the measured surface strains in the specimens. The delamination patterns observed in the tests were simulated in the model by releasing pairs of MPCs along those interfaces. Strain energy release rates associated with the delamination growth were calculated for several configurations and using two different FE analysis codes. Calculations from the codes agreed very closely. The strain energy release rate results were used with material characterization data to predict fatigue delamination onset lives for nonlinear tapered flexbeams with two different ply-dropping schemes. The predicted curves agreed well with the test data for each case studied.

  5. The effect of the weak androgen oxandrolone on psychological and behavioral characteristics in growth hormone-treated girls with Turner syndrome.

    NARCIS (Netherlands)

    Menke, L.A.; Sas, T.C.J.; Visser, M. de; Kreukels, B.P.; Stijnen, T.; Zandwijken, G.R.; Muinck Keizer-Schrama, S.M.P.F. de; Otten, B.J.; Wit, J.M.; Cohen-Kettenis, P.T.

    2010-01-01

    The weak androgen oxandrolone (Ox) increases height gain in growth-hormone (GH) treated girls with Turner syndrome (TS), but may also give rise to virilizing side effects. To assess the effect of Ox, at a conventional and low dosage, on behavior, aggression, romantic and sexual interest, mood, and

  6. The effect of the weak androgen oxandrolone on psychological and behavioral characteristics in growth hormone-treated girls with Turner syndrome

    NARCIS (Netherlands)

    Menke, L.A.; Sas, T.C.J.; Visser, M.; Kreukels, B.P.C.; Stijnen, T.; Zandwijken, G.R.J.; Keizer-Schrama, S.M.P.F.; Otten, B.J.; Wit, J.M.; Cohen-Kettenis, P.T.

    2010-01-01

    The weak androgen oxandrolone (Ox) increases height gain in growth-hormone (GH) treated girls with Turner syndrome (TS), but may also give rise to virilizing side effects. To assess the effect of Ox, at a conventional and low dosage, on behavior, aggression, romantic and sexual interest, mood, and

  7. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice

    Directory of Open Access Journals (Sweden)

    Dantzer Robert

    2011-02-01

    Full Text Available Abstract Exogenous administration of insulin-like growth factor (IGF-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng was administered intracerebroventricularly (i.c.v. to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng. Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST. Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß, tumor necrosis factor-(TNFα, inducible nitric oxide synthase (iNOS and glial fibrillary acidic protein (GFAP. Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior.

  8. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice

    Science.gov (United States)

    2011-01-01

    Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng). Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß), tumor necrosis factor-(TNF)α, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior. PMID:21306618

  9. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    Energy Technology Data Exchange (ETDEWEB)

    Framil Carpeño, David, E-mail: david.framil-carpeno@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Ohmura, Takahito; Zhang, Ling [Strength Design Group, Structural Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Leveneur, Jérôme [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Dickinson, Michelle [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Seal, Christopher [International Centre for Advanced Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Kennedy, John [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Hyland, Margaret [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-07-15

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation.

  10. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    International Nuclear Information System (INIS)

    Framil Carpeño, David; Ohmura, Takahito; Zhang, Ling; Leveneur, Jérôme; Dickinson, Michelle; Seal, Christopher; Kennedy, John; Hyland, Margaret

    2015-01-01

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation

  11. Delamination of plasters applied to historical masonry walls: analysis by acoustic emission technique and numerical model

    Science.gov (United States)

    Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.

    2018-06-01

    Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.

  12. A conceptual model for the growth, persistence, and blooming behavior of the benthic mat-forming diatom Didymosphenia geminata (Invited)

    Science.gov (United States)

    Cullis, J. D.; Gillis, C.; Bothwell, M.; Kilroy, C.; Packman, A. I.; Hassan, M. A.

    2010-12-01

    The nuisance diatom Didymosphenia geminata (didymo) presents an ecological paradox. How can this benthic algae produce such large amounts of biomass in cold, fast flowing, low nutrient streams? The aim of this paper is to present a conceptual model for the growth, persistence, and blooming behavior of this benthic mat-forming diatom that may help to explain this paradox. The conceptual model highlights the importance of distinguishing between mat thickness and cell growth. It presents evidence gathered from a range of existing studies around the world to support the proposed relationship between growth and light, nutrients and temperature as well as the importance of flood events and bed disturbance in mat removal. It is anticipated that this conceptual model will not only help in identifying the key controlling variables and set a framework for future studies but also support the future management of this nuisance algae. Summary of the conceptual model for didymo growth showing the proposed relationships for the growth of cells and mats with nutrients, radiation and water temperature and the dependence of removal on bed shear stress and the potential for physical bed disturbance.

  13. Evaluation of crack growth behavior and probabilistic S–N characteristics of carburized Cr–Mn–Si steel with multiple failure modes

    International Nuclear Information System (INIS)

    Li, Wei; Sun, Zhenduo; Zhang, Zhenyu; Deng, Hailong; Sakai, Tatsuo

    2014-01-01

    Highlights: • The stepwise S–N characteristics only for interior induced failure was observed. • The interior crack growth behavior with threshold conditions in different stages was clarified. • The distribution characteristics of test data in transition failure region was evaluated. • A model for evaluating the probabilistic S–N curve with multiple failure modes was developed. - Abstract: The unexpected failures of case-hardened steels in long life regime have been a critical issue in modern engineering design. In this study, the failure behavior of a carburized Cr–Mn–Si steel under very high cycle fatigue (VHCF) was investigated, and a model for evaluating the probabilistic S–N curve associated with multiple failure modes was developed. Results show that the carburized Cr–Mn–Si steel exhibits three failure modes including the surface flaw-induced failure, the interior inclusion-induced failure without the fine granular area (FGA) and the interior inclusion-induced failure with the FGA. As the predominant failure mode in the VHCF regime, the interior failure process can be divided into four stages: (i) the small crack growth around the inclusion, (ii) the stable macroscopic crack growth outside the FGA, (iii) the unstable crack growth outside the fish-eye and (iv) the momentary fracture outside the final crack growth zone. The threshold values are successively evaluated to be 2.33 MPa m 1/2 , 4.13 MPa m 1/2 , 18.51 MPa m 1/2 and 29.26 MPa m 1/2 . The distribution characteristics of the test data in transition failure region can be well characterized by the mixed two-parameter Weibull distribution function. The developed probabilistic S–N curve model is in good agreement with the test data with multiple failure modes. Although the result is somewhat conservative in the VHCF regime, it is acceptable for safety considerations

  14. Growth curve and diet density affect eating motivation, behavior, and body composition of broiler breeders during rearing.

    Science.gov (United States)

    de Los Mozos, J; García-Ruiz, A I; den Hartog, L A; Villamide, M J

    2017-08-01

    The aim of this work has been to assess the effect of diet density [control (CON) or 15% diluted (DIL)] and growth curve [recommended by the genetic line (RBW) or 15% heavier (HBW)] and their interaction on BW uniformity, feeding motivation, behavior, and body composition of broiler breeder pullets. A total of 3,000 one-day-old female breeders Ross 308, distributed in 20 pens, was randomly assigned to each treatment. Feed allowance was weekly adjusted to reach the desired BW. Feed was provided as pelleted (zero to 3 wk) and crumble (4 to 19 wk). Time eating was measured at 7, 11, and 19 weeks. A feeding rate test was performed after 11 weeks. Behavior was observed at 9 and 15 wk, by visual scan. At 6, 13, and 19 wk of age, one bird/pen was slaughtered for weighing different organs and analyzing the composition of empty whole bodies. Treatments did not affect BW uniformity; relative weights of the ovary, oviduct, or gizzard; or protein content of empty BW. Time eating varied with the growth curve at 19 wk (P motivation. Behavior was affected by the age and by the time of the d measured, but it did not change with the treatments. Birds spent most time pecking objects (50%), feeding (28%), and drinking (17%). Pullets fed DIL had 8% lower breast yield at different ages and higher empty digestive tracts at 6 weeks. Body composition varied with age; fat content increased from 12.7 to 15.9 to 19.8% for 6, 13, and 19 wk, respectively. The lowest body fat was observed for RBW pullets fed DIL (P = 0.003) at 19 weeks. Feeding DIL diets to HBW pullets could be done to increase the time spent eating and reduce their feeling of hunger without negative effects on body composition. However, its influence on behavior and BW uniformity was not proved. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  15. Controlling wear failure of graphite-like carbon film in aqueous environment: Two feasible approaches

    International Nuclear Information System (INIS)

    Wang Yongxin; Wang Liping; Xue Qunji

    2011-01-01

    Friction and wear behaviors of graphite-like carbon (GLC) films in aqueous environment were investigated by a reciprocating sliding tribo-meter with ball-on-disc contact. Film structures and wear scars were studied by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and a non-contact 3D surface profiler. A comprehensive wear model of the GLC film in aqueous environment was established, and two feasible approaches to control critical factor to the corresponding wear failure were discussed. Results showed that wear loss of GLC films in aqueous environment was characterized by micro-plough and local delamination. Due to the significant material loss, local delamination of films was critical to wear failure of GLC film in aqueous environment if the film was not prepared properly. The initiation and propagation of micro-cracks within whole films closely related to the occurrence of the films delamination from the interface between interlayer and substrate. The increase of film density by adjusting the deposition condition would significantly reduce the film delamination from substrate, meanwhile, fabricating a proper interlayer between substrate and GLC films to prevent the penetration of water molecules into the interface between interlayer and substrate could effectively eliminate the delamination.

  16. Effect of Cationic Surfactant Head Groups on Synthesis, Growth and Agglomeration Behavior of ZnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehta SK

    2009-01-01

    Full Text Available Abstract Colloidal nanodispersions of ZnS have been prepared using aqueous micellar solution of two cationic surfactants of trimethylammonium/pyridinium series with different head groups i.e., cetyltrimethylammonium chloride (CTAC and cetyltrimethylpyridinium chloride (CPyC. The role of these surfactants in controlling size, agglomeration behavior and photophysical properties of ZnS nanoparticles has been discussed. UV–visible spectroscopy has been carried out for determination of optical band gap and size of ZnS nanoparticles. Transmission electron microscopy and dynamic light scattering were used to measure sizes and size distribution of ZnS nanoparticles. Powder X-ray analysis (Powder XRD reveals the cubic structure of nanocrystallite in powdered sample. The photoluminescence emission band exhibits red shift for ZnS nanoparticles in CTAC compared to those in CPyC. The aggregation behavior in two surfactants has been compared using turbidity measurements after redispersing the nanoparticles in water. In situ evolution and growth of ZnS nanoparticles in two different surfactants have been compared through time-dependent absorption behavior and UV irradiation studies. Electrical conductivity measurements reveal that CPyC micelles better stabilize the nanoparticles than that of CTAC.

  17. Numerical modeling of mechanical behavior of multilayered composite plates with defects under static loading

    Science.gov (United States)

    Korepanov, V. V.; Serovaev, G. S.

    2017-06-01

    Evaluation of the mechanical state of a structure or its components in the process of operation based on detection of internal damages (damage detection) becomes especially important in such rapidly developing spheres of production as machine building, aerospace industry, etc. One of the most important features of these industries is the application of new types of materials among which polymer based composite materials occupy a significant position. Hence, they must have sufficient operational rigidity and strength. However, defects of various kinds may arise during the manufacture. Delamination is the most common defect in structures made from composite materials and represents a phenomenon that involves the complex fracture of layers and interlayer compounds. Among the reasons of delamination occurrence are: disposition of anti-adhesive lubricants, films; insufficient content of binder, high content of volatile elements; violation of the molding regime; poor quality of anti-adhesive coating on the surface of the tooling. One of the effective methods for analyzing the influence of defects is numerical simulation. With the help of numerical methods, it is possible to track the evolution of various parameters when the defect size and quantity change. In the paper, a multilayered plate of an equally resistant carbon fiber reinforced plastic was considered, with a thickness of each layer equal to 0.2 mm. Various static loading cases are studied: uniaxial tension, three and four-point bending. For each type of loading, a numerical calculation of the stress-strain state was performed for healthy and delaminated plates, with different number and size of the defects. Contact interaction between adjacent surfaces in the zone of delamination was taken into account.

  18. Growth of the lower continental crust via the relamination of arc magma

    Science.gov (United States)

    He, Yumei; Zheng, Tianyu; Ai, Yinshuang; Hou, Guangbing; Chen, Qi-Fu

    2018-01-01

    How does continental crust transition from basaltic mantle-derived magmas into an andesitic composition? The relamination hypothesis has been presented as an alternative dynamical mechanism to classical delamination theory to explain new crust generation and has been supported by petrological and geochemical studies as well as by thermomechanical numerical modeling. However, direct evidence of this process from detailed seismic velocity structures is lacking. Here, we imaged the three-dimensional (3D) velocity structures of the crust and uppermost mantle beneath the geologically stable Ordos terrane of the North China Craton (NCC). We identify a region of continental crust that exhibits extreme growth using teleseismic data and an imaging technique that models the Common Conversion Point (CCP) stacking profiles. Our results show an approximately 400 × 400 km2 wide growth zone that underlies the primitive crust at depths of 30-50 km and exhibits a gradual increase of velocity with depth. The upper layer of the growth zone has a shear wave velocity of 3.6-3.9 km/s (Vp = 6.2-6.8 km/s), indicating felsic material, and the lower layer has a shear wave velocity of 4.1-4.3 km/s (Vp = 7.2-7.5 km/s), which corresponds to mafic material. We suggest that this vertical evolution of the layered structure could be created by relamination and that the keel structure formed by relamination may be the root of the supernormal stability of the ancient Ordos terrane.

  19. Developmental programming of somatic growth, behavior and endocannabinoid metabolism by variation of early postnatal nutrition in a cross-fostering mouse model.

    Science.gov (United States)

    Schreiner, Felix; Ackermann, Merle; Michalik, Michael; Hucklenbruch-Rother, Eva; Bilkei-Gorzo, Andras; Racz, Ildiko; Bindila, Laura; Lutz, Beat; Dötsch, Jörg; Zimmer, Andreas; Woelfle, Joachim

    2017-01-01

    Nutrient deprivation during early development has been associated with the predisposition to metabolic disorders in adulthood. Considering its interaction with metabolism, appetite and behavior, the endocannabinoid (eCB) system represents a promising target of developmental programming. By cross-fostering and variation of litter size, early postnatal nutrition of CB6F1-hybrid mice was controlled during the lactation period (3, 6, or 10 pups/mother). After weaning and redistribution at P21, all pups received standard chow ad libitum. Gene expression analyses (liver, visceral fat, hypothalamus) were performed at P50, eCB concentrations were determined in liver and visceral fat. Locomotor activity and social behavior were analyzed by means of computer-assisted videotracking. Body growth was permanently altered, with differences for length, weight, body mass index and fat mass persisting beyond P100 (all 3>6>10,p6>10 (DAGLα p6>10 (FAAH pOpen-field social behavior testing revealed significant group differences, with formerly underfed mice turning out to be the most sociable animals (p<0.01). Locomotor activity did not differ. Our data indicate a developmental plasticity of somatic growth, behavior and parameters of the eCB system, with long-lasting impact of early postnatal nutrition. Developmental programming of the eCB system in metabolically active tissues, as shown here for liver and fat, may play a role in the formation of the adult cardiometabolic risk profile following perinatal malnutrition in humans.

  20. Individual growth and reproductive behavior in a newly established population of northern snakehead (Channa argus), Potomac River, USA

    Science.gov (United States)

    Landis, Andrew M. Gascho; Lapointe, Nicolas W. R.; Angermeier, Paul L.

    2010-01-01

    Northern snakehead (Channa argus) were first found in the Potomac River in 2004. In 2007, we documented feeding and reproductive behavior to better understand how this species is performing in this novel environment. From April to October, we used electrofishing surveys to collect data on growth, condition, and gonad weight of adult fish. Growth rates of young were measured on a daily basis for several weeks. Mean length-at-age for Potomac River northern snakehead was lower than for fish from China, Russia, and Uzbekistan. Fish condition was above average during spring and fall, but below average in summer. Below-average condition corresponded to periods of high spawning activity. Gonadosomatic index indicated that females began spawning at the end of April and continued through August. Peak spawning occurred at the beginning of June when average temperatures reached 26°C. Larval fish growth rate, after the transition to exogenous feeding, was 2.3 (SD ± 0.7) mm (total length, TL) per day. Although Potomac River northern snakehead exhibited lower overall growth rates when compared to other populations, these fish demonstrated plasticity in timing of reproduction and rapid larval growth rates. Such life history characteristics likely contribute to the success of northern snakehead in its new environment and limit managers’ options for significant control of its invasion.

  1. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  2. Pulse-echo phased array ultrasonic inspection of pultruded rod stitched efficient unitized structure (PRSEUS)

    International Nuclear Information System (INIS)

    Johnston, P. H.

    2011-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading.

  3. Role of organoclay in controlling the morphology and crystal-growth behavior of biodegradable polymer-blend thin films studied using atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-09-01

    Full Text Available clays, their organic modifications and their initial d(sub001)-spacing on the morphology and crystal growth behavior of the PLA/PBSA blend were studied. An atomic force microscopy equipped with a hot-stage scanner was used to examine the crystalline...

  4. Endochondral Growth Defect and Deployment of Transient Chondrocyte Behaviors Underlie Osteoarthritis Onset in a Natural Murine Model

    Science.gov (United States)

    Staines, K. A.; Madi, K.; Mirczuk, S. M.; Parker, S.; Burleigh, A.; Poulet, B.; Hopkinson, M.; Bodey, A. J.; Fowkes, R. C.; Farquharson, C.; Lee, P. D.

    2016-01-01

    Objective To explore whether aberrant transient chondrocyte behaviors occur in the joints of STR/Ort mice (which spontaneously develop osteoarthritis [OA]) and whether they are attributable to an endochondral growth defect. Methods Knee joints from STR/Ort mice with advanced OA and age‐matched CBA (control) mice were examined by Affymetrix microarray profiling, multiplex polymerase chain reaction (PCR) analysis, and immunohistochemical labeling of endochondral markers, including sclerostin and MEPE. The endochondral phenotype of STR/Ort mice was analyzed by histologic examination, micro–computed tomography, and ex vivo organ culture. A novel protocol for quantifying bony bridges across the murine epiphysis (growth plate fusion) using synchrotron x‐ray computed microtomography was developed and applied. Results Meta‐analysis of transcription profiles showed significant elevation in functions linked with endochondral ossification in STR/Ort mice (compared to CBA mice; P mice. Our novel synchrotron radiation microtomography method showed increased numbers (P mice compared to age‐matched CBA mice. Conclusion Taken together, our data support the notion of an inherent endochondral defect that is linked to growth dynamics and subject to regulation by the MEPE/sclerostin axis and may represent an underlying mechanism of pathologic ossification in OA. PMID:26605758

  5. Finite-Element Thermal Analysis and Grain Growth Behavior of HAZ on Argon Tungsten-Arc Welding of 443 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-03-01

    Full Text Available This paper presents a numerical and infrared experimental study of thermal and grain growth behavior during argon tungsten arc welding of 443 stainless steel. A 3D finite element model was proposed to simulate the welding process. The simulations were carried out via the Ansys Parametric Design Language (APDL available in the finite-element code, ANSYS. To validate the simulation accuracy, a series of experiments using a fully-automated welding process was conducted. The results of the numerical analysis show that the simulation weld bead size and the experiment results have good agreement. The grain growth in the heat-affected zone of 443 stainless steel is influenced via three factors: (1 the thermal cycle experienced; (2 grain boundary migration; and (3 particle precipitation. Grain boundary migration is the main factor. The modified coefficient k of the grain growth index is calculated. The value is 1.16. Moreover, the microhardness of the weld bead softened slightly compared to the base metal.

  6. Measuring laves phase particle size and thermodynamic calculating its growth and coarsening behavior in P92 steels

    DEFF Research Database (Denmark)

    Yao, Bing-Yin; Zhou, Rong-Can; Fan, Chang-Xin

    2010-01-01

    The growth of Laves phase particles in three kinds of P92 steels were investigated. Laves phase particles can be easily separated and distinguished from the matrix and other particles by atom number contrast using comparisons of the backscatter electrons (BSE) images and the secondary electrons (SE......) images in scanning electron microscope (SEM). The smaller Laves phase particle size results in higher creep strength and longer creep exposure time at the same conditions. DICTRA software was used to model the growth and coarsening behavior of Laves phase in the three P92 steels. Good agreements were...... attained between measurements in SEM and modeling by DICTRA. Ostwald ripening should be used for the coarsening calculation of Laves phase in P92 steels for time longer than 20000 h and 50000 h at 650°C and 600°C, respectively. © 2010 Chin. Soc. for Elec. Eng....

  7. Self-Reported Risk and Delinquent Behavior and Problem Behavioral Intention in Hong Kong Adolescents: The Role of Moral Competence and Spirituality.

    Science.gov (United States)

    Shek, Daniel T L; Zhu, Xiaoqin

    2018-01-01

    Based on the six-wave data collected from Grade 7 to Grade 12 students ( N = 3,328 at Wave 1), this pioneer study examined the development of problem behaviors (risk and delinquent behavior and problem behavioral intention) and the predictors (moral competence and spirituality) among adolescents in Hong Kong. Individual growth curve models revealed that while risk and delinquent behavior accelerated and then slowed down in the high school years, adolescent problem behavioral intention slightly accelerated over time. After controlling the background socio-demographic factors, moral competence and spirituality were negatively associated with risk and delinquent behavior as well as problem behavioral intention across all waves as predicted. Regarding the rate of change in the outcome measures, while the initial level of spirituality was positively linked to the growth rate of risk and delinquent behavior, the initial level of moral competence was negatively associated with the growth rate of problem behavioral intention. The theoretical and practical implications of the present findings are discussed with reference to the role of moral competence and spirituality in the development of adolescent problem behavior.

  8. Self-Reported Risk and Delinquent Behavior and Problem Behavioral Intention in Hong Kong Adolescents: The Role of Moral Competence and Spirituality

    Science.gov (United States)

    Shek, Daniel T. L.; Zhu, Xiaoqin

    2018-01-01

    Based on the six-wave data collected from Grade 7 to Grade 12 students (N = 3,328 at Wave 1), this pioneer study examined the development of problem behaviors (risk and delinquent behavior and problem behavioral intention) and the predictors (moral competence and spirituality) among adolescents in Hong Kong. Individual growth curve models revealed that while risk and delinquent behavior accelerated and then slowed down in the high school years, adolescent problem behavioral intention slightly accelerated over time. After controlling the background socio-demographic factors, moral competence and spirituality were negatively associated with risk and delinquent behavior as well as problem behavioral intention across all waves as predicted. Regarding the rate of change in the outcome measures, while the initial level of spirituality was positively linked to the growth rate of risk and delinquent behavior, the initial level of moral competence was negatively associated with the growth rate of problem behavioral intention. The theoretical and practical implications of the present findings are discussed with reference to the role of moral competence and spirituality in the development of adolescent problem behavior. PMID:29651269

  9. Short fatigue cracks growth and closure behavior in an austenitic stainless steel at 600 C and 650 C

    International Nuclear Information System (INIS)

    Polvora, J.P.; Laiarinandrasana, L.; Drubay, B.; Piques, R.; Martelet, B.

    1995-01-01

    In this work, following fatigue crack growth tests carried out at the CEN-SACLAY (AMORFIS program) by Laiarinandrasana (1994) on 316 L(N) CT specimens at 650 0 C and 600 0 C, short crack behavior of cracks emanating from machined notches is investigated. Experimental results are presented and discussions are directed to notch plasticity effect in relation with variations in crack opening stress intensity factor, K op , with crack lenght (author). 12 refs., 5 figs., 2 tab

  10. Growth Problems

    Science.gov (United States)

    ... Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & Safety Doctors & ... hypothyroidism is feeling tired or sluggish. A blood test measuring thyroid ... not affect intelligence or brain function. The cause of growth hormone ...

  11. Comparison of time-restricted and ad libitum self-feeding on the growth, feeding behavior and daily digestive enzyme profiles of Atlantic salmon

    Science.gov (United States)

    Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang

    2017-07-01

    Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon ( Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms ( P>0.05). Pepsin activity of TR fish also showed a significant daily rhythm ( P0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.

  12. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  13. Growth behavior of fatigue cracks in ultrafine grained Cu smooth specimens with a small hole

    Directory of Open Access Journals (Sweden)

    Masahiro Goto

    2015-10-01

    Full Text Available In order to study the growth mechanism of fatigue cracks in ultrafine grained copper, stresscontrolled fatigue tests of round-bar specimens with a small blind hole as a crack starter were conducted. The hole was drilled on the surface where an intersection between the shear plane of the final ECAP processing and the specimen surface makes an angle of 45° or 90° with respect to the loading axis. At a low stress (  a = 90 MPa, the direction of crack paths was nearly perpendicular to the loading direction regardless of the location of the hole. Profile of crack face was examined, showing the aspect ratio (b/a of b/a = 0.82. At a high stress (  a = 240 MPa, although the growth directions inclined 45° and 90° to the loading-axis were observed depending on the location of the drilling hole, crack faces in these cracks were extended along one set of maximum shear stress planes, corresponding to the final ECAP shear plane. The value of aspect ratios was b/a = 0.38 and 1.10 for the cracks with 45° and 90° inclined path directions, respectively. The role of deformation mode at the crack tip areas on crack growth behavior were discussed in terms of the mixed-mode stress intensity factor. The crack path formation at high stress amplitudes was affected by the in-plane shear-mode deformation at the crack tip.

  14. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    Science.gov (United States)

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  15. Behavior of scoliosis during growth in children with osteogenesis imperfecta.

    Science.gov (United States)

    Anissipour, Alireza K; Hammerberg, Kim W; Caudill, Angela; Kostiuk, Theodore; Tarima, Sergey; Zhao, Heather Shi; Krzak, Joseph J; Smith, Peter A

    2014-02-05

    Spinal deformities are common in patients with osteogenesis imperfecta, a heritable disorder that causes bone fragility. The purpose of this study was to describe the behavior of spinal curvature during growth in patients with osteogenesis imperfecta and establish its relationship to disease severity and medical treatment with bisphosphonates. The medical records and radiographs of 316 patients with osteogenesis imperfecta were retrospectively reviewed. The severity of osteogenesis imperfecta was classified with the modified Sillence classification. Serial curve measurements were recorded throughout the follow-up period for each patient with scoliosis. Regression analysis was used to determine the effect of disease severity (Sillence type), patient age, and bisphosphonate treatment on the progression of scoliosis as measured with the Cobb method. Of the 316 patients with osteogenesis imperfecta, 157 had associated scoliosis, a prevalence of 50%. Scoliosis prevalence (68%) and mean progression rate (6° per year) were the highest in the group of patients with the most severe osteogenesis imperfecta (modified Sillence type III). A group with intermediate osteogenesis imperfecta severity, modified Sillence type IV, demonstrated intermediate scoliosis values (54%, 4° per year). The patient group with the mildest form of osteogenesis imperfecta, modified Sillence type I, had the lowest scoliosis prevalence (39%) and rate of progression (1° per year). Early treatment-before the patient reached the age of six years-of type-III osteogenesis imperfecta with bisphosphonate therapy decreased the curve progression rate by 3.8° per year, which was a significant decrease. Bisphosphonate treatment had no demonstrated beneficial effect on curve behavior in patients with other types of osteogenesis imperfecta or in patients of older age. The prevalence of scoliosis in association with osteogenesis imperfecta is high. Progression rates of scoliosis in children with osteogenesis

  16. Effects of irradiation and thermal aging upon fatigue-crack growth behavior of reactor pressure boundary materials. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    James, L. A.

    1978-10-01

    Two processes that have the potential to produce degradation in the properties of pressure boundary materials are neutron irradiation and long-time thermal aging. This paper uses linear-elastic fracture mechanics techniques to assess the effect of these two processes upon the fatigue-crack growth behavior of a number of alloys commonly employed in reactor pressure boundaries. The materials evaluated include ferritic steels, austenitic stainless steels, and nickel-base alloys typical of those employed in a number of reactor types including water-cooled, gas-cooled, and liquid-metal-cooled designs.

  17. Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis

    Science.gov (United States)

    Xu, Jinyang; El Mansori, Mohamed

    2016-01-01

    In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824

  18. Studies on the growth behavior of Chlorella, Haematococcus and ...

    African Journals Online (AJOL)

    Growth studies were conducted on green algae Chlorella, Scenedesmus and Haematococcus strains in batch mode cultures. In this study, the effect of sodium bicarbonate salt (NaHCO3) and carbon dioxide (CO2) gas as carbon source on microalgal cultures were investigated. For this purpose, growth response of the ...

  19. Characteristics of Chinese Driver Behavior

    NARCIS (Netherlands)

    Li, J.

    2014-01-01

    The high growth rate of vehicle ownership and many novel drivers in China determine the special features of Chinese driver behavior. This thesis introduces a comparative study on driver behavior by the analysis of saturation flow at urban intersections, Driver Behavior Questionnaire surveys, focus

  20. Effect of substrate storage conditions on the stability of “Smart” films used for mammalian cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Bluestein, Blake M.; Reed, Jamie A.; Canavan, Heather E., E-mail: Canavan@unm.edu

    2017-01-15

    Highlights: • pNIPAM can be deposited onto a surface using plasma polymerization or spin coating. • Storage conditions can affect both surfaces although thermoresponse is maintained. • spNIPAM surfaces delaminate over time, regardless of storage conditions. • Delamination will affect cell attachment/detachment, resulting in limited attachment. • ppNIPAM surfaces are more stable, regardless of storage conditions. - Abstract: When poly(N-isopropyl acrylamide) (pNIPAM) is tethered to a surface, it can induce the spontaneous release of a sheet of mammalian cells. The release of cells is a result of the reversible phase transition the polymer undergoes at its lower critical solution temperature (LCST). Many techniques are used for the deposition of pNIPAM onto cell culture substrates. Previously, we compared two methods of deposition (plasma polymerization, and co-deposition with a sol-gel). We proved that although both were technically appropriate for obtaining thermoresponsive pNIPAM films, the surfaces that were co-deposited with a sol-gel caused some disruption in cell activity. The variation of cell behavior could be due to the delamination of pNIPAM films leaching toxic chemicals into solution. In this work, we assessed the stability of these pNIPAM films by manipulating the storage conditions and analyzing the surface chemistry using X-ray photoelectron spectroscopy (XPS) and contact angle measurements over the amount of time required to obtain confluent cell sheets. From XPS, we demonstrated that ppNIPAM (plasma polymerized NIPAM) films remains stable across all storage conditions while sol-gel deposition show large deviations after 48 h of storage. Cell response of the deposited films was assessed by investigating the cytotoxicity and biocompatibility. The 37 °C and high humidity storage affects sol-gel deposited films, inhibiting normal cell growth and proper thermoresponse of the film. Surface chemistry, thermoresponse and cell growth remained

  1. Corporal punishment and the growth trajectory of children's antisocial behavior.

    Science.gov (United States)

    Grogan-Kaylor, Andrew

    2005-08-01

    Despite considerable research, the relationship between corporal punishment and antisocial behavior is unclear. This analysis examined (a) the functional form of this relationship, (b) the correlation of initial antisocial behavior and changes in antisocial behavior, (c) differences in the relationship of corporal punishment and antisocial behavior by race, and (d) whether this relationship could be accounted for by unmeasured characteristics of children and their families. Data from 6,912 children in the National Longitudinal Survey of Youth were analyzed using hierarchical linear models. Findings suggested that corporal punishment has a relationship with children's initial antisocial behavior and with changes in antisocial behavior. No evidence was found for differences in the effect of corporal punishment across racial groups. The relationship between corporal punishment and antisocial behavior persists even when accounting for unmeasured time invariant characteristics of children and families. The findings suggest that corporal punishment is not a preferable technique for disciplining children.

  2. Short fatigue cracks growth and closure behavior in an austenitic stainless steel at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Polvora, J.P.; Laiarinandrasana, L.; Drubay, B.; Piques, R.; Martelet, B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    In this work, following fatigue crack growth tests carried out at the CEN-SACLAY (AMORFIS program) by Laiarinandrasana (1994) on 316 L(N) CT specimens at 650{sup 0}C and 600{sup 0}C, short crack behavior of cracks emanating from machined notches is investigated. Experimental results are presented and discussions are directed to notch plasticity effect in relation with variations in crack opening stress intensity factor, K{sub op}, with crack lenght (author). 12 refs., 5 figs., 2 tab.

  3. Black patients sustain vision loss while White and South Asian patients gain vision following delamination or segmentation surgery for tractional complications associated with proliferative diabetic retinopathy.

    Science.gov (United States)

    Mastropasqua, R; Luo, Y H-L; Cheah, Y S; Egan, C; Lewis, J J; da Cruz, L

    2017-10-01

    PurposeThis retrospective comparative case series aims to determine whether patient ethnicity (White versus South Asian versus Black) is related to the outcome of surgical treatment for traction complications of severe proliferative diabetic retinopathy (PDR).SettingMoorfields Eye Hospital London, UK.MethodsAll patients who underwent vitrectomy with, delamination and/or segmentation for PDR over a 5-year period (2009-2014) were reviewed retrospectively. Patients were divided into White, South Asian or Black groups, and their age, gender, HbA1C and type of diabetes were recorded. A total of 484 patients (253 White, 117 South Asian, 114 Black) were included. Twenty-one patients were excluded due to inadequate documentation.OutcomesLogMAR Visual acuity (converted from Snellen) (VA), was recorded pre-operatively and ~6 months post surgery (range 5-8 months). Surgical outcome was classified according to the type and duration of tamponade required post-operatively.ResultsPre-operative VA and HbA1C values were similar across all three ethnic groups (P=0.64 and 0.569, respectively). Change in VA (mean±SD) was 0.41±0.78, 0.14±0.76 and -0.26±0.57 in White, South Asian and Black patient groups respectively (PAsian patient groups.ConclusionsThis study demonstrates that Black patients on average lose vision following delamination surgery for traction complications of PDR while White and South Asian patients gain vision. The same group is also at higher risk of retaining silicone more than 6 months after surgery. This difference remains even when corrected for glycaemic control. The higher risk of visual loss and long-term retention of silicone oil in black patients requires further investigation. If these results are confirmed, surgeons should consider their patients' ethnicity before proceeding with surgical treatment of diabetic tractional detachment.

  4. A review on mode-I interlaminar fracture toughness of fibre reinforced composites

    Science.gov (United States)

    Nasuha, N.; Azmi, A. I.; Tan, C. L.

    2017-10-01

    Composite material has been growing rapidly throughout the year for its unique properties in comparisons with metal. Recently, there has been a growth on studying the way to reduce the delamination failure, which is the primary challenge on laminated fibre composite. This failure can degrade the strength of composite materials, hence loses its function. In this review, database search was performed using the keywords search on “interlaminar fracture toughness”, “double cantilever beam”, “delamination resistance” and “Mode-I GIC”. The searches were performed on Google Scholar, Scopus and Web of Science with further cross-referencing with other databases. Most relevant studies were selected for review and referencing by the author. This review paper gives a brief explanation on Mode-I interlaminar fracture toughness of composite material. This fracture mode is the most common modes on studying the delamination failure.

  5. Taurine and β-alanine intraperitoneal injection in lactating mice modifies the growth and behavior of offspring.

    Science.gov (United States)

    Nishigawa, Takuma; Nagamachi, Satsuki; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2018-01-08

    Taurine, one of the sulfur-containing amino acids, has several functions in vivo. It has been reported that taurine acts on γ-aminobutyric acid receptors as an agonist and to promote inhibitory neurotransmission. Milk, especially colostrum, contains taurine and it is known that milk taurine is essential for the normal development of offspring. β-Alanine is transported via a taurine transporter and a protein-assisted amino acid transporter, the same ones that transport taurine. The present study aimed to investigate whether the growth and behavior of offspring could be altered by modification of the taurine concentration in milk. Pregnant ICR mice were separated into 3 groups: 1) a control group, 2) a taurine group, and 3) a β-alanine group. During the lactation periods, dams were administered, respectively, with 0.9% saline (10 ml/kg, i.p.), taurine dissolved in 0.9% saline (43 mg/10 ml/kg, i.p.), or β-alanine dissolved in 0.9% saline (31 mg/10 ml/kg, i.p.). Interestingly, the taurine concentration in milk was significantly decreased by the administration of β-alanine, but not altered by the taurine treatment. The body weight of offspring was significantly lower in the β-alanine group. β-Alanine treatment caused a significant decline in taurine concentration in the brains of offspring, and it was negatively correlated with total distance traveled in the open field test at postnatal day 15. Thus, decreased taurine concentration in the brain induced hyperactivity in offspring. These results suggested that milk taurine may have important role of regulating the growth and behavior of offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. B2 Grain Growth Behavior of a Ti-22Al-25Nb Alloy Fabricated by Hot Pressing Sintering

    Science.gov (United States)

    Jia, Jianbo; Liu, Wenchao; Xu, Yan; Chen, Chen; Yang, Yue; Luo, Junting; Zhang, Kaifeng

    2018-05-01

    Grain growth behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy was investigated by applying a series of isothermal treatment tests over a wide range of temperatures and holding times. An isothermal treatment scheme was conducted in the B2 phase region (1070-1110 °C) and α 2 + B2 phase region (1010-1050 °C) at holding times of 10, 30 min, 1, 2, and 3 h, respectively. The effects of temperature and holding time on the microstructure evolution and microhardness of the P/M Ti-22Al-25Nb alloy at elevated temperatures were evaluated using optical microscope, scanning electron microscope, x-ray diffraction, and Vickers hardness test techniques. The results revealed that the alloy's treated microstructure was closely linked to temperature and holding time, respectively. The change law of B2 grain growth with holding time and temperature can be well interpreted by the Beck equation and Hillert equation, respectively. The B2 grain growth exponent n and activation energy Q were acquired based on experimental data in the α 2 + B2 and B2 phase regions. In addition, the grain growth contour map for the P/M Ti-22Al-25Nb alloy was constructed to depict variations in B2 grain size based on holding time and temperature.

  7. Mode I type delamination fracture toughness of YBCO coated conductor with additional Cu layer

    International Nuclear Information System (INIS)

    Miyazato, T.; Hojo, M.; Sugano, M.; Adachi, T.; Inoue, Y.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2011-01-01

    A fracture toughness test method was developed for a YBCO coated conductor with an additional Cu layer. Mode I type tests were carried out using double cantilever beam (DCB) specimens. Delamination propagated into the YBCO layer, and sometimes reached the Ag/YBCO interface. The fracture toughness for YBCO was about 10 J/m 2 . That for Ag/YBCO interface was about 100 J/m 2 . Although interlaminar fracture at a YBa 2 Cu 3 O 7-δ (YBCO)/CeO 2 interface was reported for YBCO coated conductors, this has not yet been investigated by a fracture mechanical approach. In the present study, we developed a mode I type fracture toughness test method for a YBCO coated conductor with an additional Cu layer using double cantilever beam (DCB) specimens. Fracture mechanism was investigated by microscopic observation by a scanning electron microscope (SEM), together with composition analysis by an energy dispersive X-ray spectroscope (EDS). A pre-crack introduced at the YBCO/CeO 2 interface deviated from the interface, and propagated into the YBCO layer, and sometimes reached the Ag/YBCO interface. The fracture toughness, G R , for YBCO and the Ag/YBCO interface was evaluated to be 7-10 J/m 2 and 80-120 J/m 2 , respectively. The complex stress intensity factor ratio, K 2 /K 1 , at YBCO/CeO 2 interface was evaluated to be -0.19, and this ratio controlled the formation of microcracks in the YBCO layer. The main crack propagated into the YBCO layer accompanied with the formation of microcracks.

  8. Behavioral control in at-risk toddlers: the influence of the family check-up.

    Science.gov (United States)

    Shelleby, Elizabeth C; Shaw, Daniel S; Cheong, Jeewon; Chang, Hyein; Gardner, Frances; Dishion, Thomas J; Wilson, Melvin N

    2012-01-01

    This study examines the role of one component of emotion regulation, behavioral control, in the growth of children's early behavior problems by examining whether increases in parental positive behavior support brought about by a family-centered intervention were associated with greater child behavioral control, and whether greater behavioral control at age 3 mediated the association between improvements in aspects of positive behavior support from ages 2 to 3 and decreases in growth of behavior problems from ages 2 to 4. The sample included 713 at-risk children (50% female) and their primary caregivers (50% European American, 28% African American, 13% biracial, 9% other) who were randomly assigned to the intervention or control group. Children had a mean age of 29.91 months at the initial assessment. Data were collected through home visits at child ages 2 to 4, which involved questionnaires for primary caregivers and structured and unstructured play activities for children with primary and alternative caregivers and siblings. Results indicated that the intervention improved parental positive behavior support and reduced growth of child behavior problems. One dimension of positive behavior support, proactive parenting, was modestly associated with behavioral control at age 3, which in turn was significantly associated with growth in behavior problems from ages 2 to 4, with greater behavioral control related to lower levels of growth in behavior problems. Results provide support for the notion that proactive parenting is an important factor in the development of children's behavioral control and that behavioral control plays an important role in the growth of behavior problems.

  9. Influence of Asthma on the Longitudinal Trajectories of Cigarette Use Behaviors From Adolescence to Adulthood Using Latent Growth Curve Models

    Directory of Open Access Journals (Sweden)

    Jisuk Bae

    2015-03-01

    Full Text Available Objectives: While epidemiologic research indicates that the prevalence of risk-taking behaviors including cigarette smoking among young people with asthma is substantial, the longitudinal patterns of cigarette smoking in this vulnerable population have received little attention. The aim of this study was to evaluate differences in the longitudinal trajectories of cigarette use behaviors from adolescence to adulthood between young people with and without asthma. Methods: Data from the National Longitudinal Study of Adolescent to Adult Health (Add Health during the years 1994 to 1995 (Wave I, adolescence, 2001 to 2002 (Wave III, young adulthood, and 2007 to 2008 (Wave IV, adulthood were analyzed (n=12 244. Latent growth curve models were used to examine the longitudinal trajectories of cigarette use behaviors during the transition to adulthood according to asthma status. Results: Regardless of asthma status, the trajectory means of cigarette use behaviors were found to increase, and then slightly decrease from adolescence to adulthood. In total participants, there were no statistically significant differences in initial levels and changes in cigarette use behaviors according to asthma status. However, in select sex and race subgroups (i.e., females and non-whites, former asthmatics showed greater escalation in cigarette use behaviors than did non-asthmatics or current asthmatics. Conclusions: This study indicated that the changing patterns of cigarette use behaviors during the transition to adulthood among young people with asthma are comparable to or even more drastic than those among young people without asthma.

  10. Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China

    Science.gov (United States)

    Zhang, Liqi; Zhang, Hongfei; Zhang, Shasha; Xiong, Ziliang; Luo, Biji; Yang, He; Pan, Fabin; Zhou, Xiaochun; Xu, Wangchun; Guo, Liang

    2017-09-01

    Post-collisional granitoids are widespread in the North Qilian and southern margin of the Alxa block and their petrogenesis can provide important insights into the lithospheric processes in a post-collisional setting. This paper carries out an integrated study of U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions for five early Paleozoic intrusive plutons from the North Qilian to southern margin of the Alxa block. The geochronological and geochemical results show that their magmatism can be divided into three periods with distinct geochemical features. The early-period intrusive rocks ( 440 Ma) include the Lianhuashan (LHS) and Mengjiadawan (MJDW) granodiorites. Both of them display high Sr/Y ratios (52-91), coupled with low Y and HREE contents, implying that they were derived from partial melting of thickened lower crust, with garnet in the residue. The middle-period intrusive rocks ( 430 Ma), including the MJDW quartz diorites and Yangqiandashan (YQDS) granodiorites, are high-K calc-alkaline with low Sr/Y values. The geochemical and isotopic data suggest that they are generated from partial melting of lower crust without garnet in the residue. The late-period intrusive rocks (414-422 Ma), represented by the Shengrongsi (SRS) and Xinkaigou (XKG) plutons, are A-type or alkali-feldspar granites. They are possibly derived from partial melting of felsic crustal material under lower pressure condition. Our data show decreasing magma crystallization ages from MJDW pluton in the north and LHS pluton in the south to the SRS and XKG plutons in the central part of the study area. We suggest that such spatial and temporal variations of magmatic suites were caused by lithospheric delamination after the collision between the Central Qilian and the Alxa block. A more plausible explanation is that the delamination propagated from the margin part of the thickened lithosphere to inward beneath the North Qilian and southern margin of the Alxa block.

  11. [Changes in ingestive behavior during growth affects the functional maturation of temporomandibular joint nociceptive neurons of rats].

    Science.gov (United States)

    Hiranuma, Maya

    2013-03-01

    Temporomandibular joint (TMJ) loading during development promotes its growth and maintains normal structure/function. Continuous change in diet consistency is related to development and maturation of the peripheral nervous system, including the nociceptive system. However, the functional modulation of TMJ-nociceptive neurons under different ingestive behavior is unclear. We fed growing rats a liquid diet to investigate the effects of low TMJ loading on the response properties of neurons in the trigeminal spinal tract subnucleus caudalis (Sp5C). Forty 2-week-old male rats were used. They were fed chow pellets (n = 20, C group) or a liquid diet (n = 20, LD group) soon after weaning. Firing activities of single sensory units in response to TMJ pressure stimuli were recorded at 4, 5, 7 and 9 weeks. In TMJ-nociceptive neurons, the firing threshold (FT) in the LD group was significantly lower than that in the C group at each recording age. The FT in the C group remained unchanged throughout the recording period, whereas that in the LD group was the highest at 4 weeks, and gradually decreased. On the other hand, the initial firing frequency (IFF) was significantly higher in the LD group than in the C group at each recording age. The IFF in the C group remained unchanged throughout the experimental period, whereas that in the LD group was at its lowest at 4 weeks, and gradually increased. Based on these findings, ingestive behavior that results from continuous changes in the physical consistency of the diet during growth may affect the functional maturation of TMJ-nociceptive neurons.

  12. The combined effects of prior-corrosion and aggressive chemical environments on fatigue crack growth behavior in aluminum alloy 7075-T651

    Science.gov (United States)

    Mills, Thomas Brian

    1997-11-01

    Exfoliation corrosion is a potentially severe form of corrosion that frequently affects high-strength aluminum, particularly 2xxx- and 7xxx-series alloys. Exfoliation degrades components such as sheets, plates, and extrusions that have highly elongated grain structures. Few attempts have been made to investigate the effects of this form of corrosion on the fatigue performance of these materials, so a preliminary study was conducted to determine the effects of exfoliation corrosion on the fatigue response of quarter-inch 7075-T651 aluminum alloy plate. This was accomplished by subjecting aluminum panels to an ASTM standard corrosive solution known as EXCO then fatiguing the panels in corrosion fatigue environments of dry air, humid air, and artificial acid rain. Statistical analyses of the fatigue crack growth data suggest that prior-corrosion and corrosion fatigue are competing mechanisms that both have the potential of accelerating crack growth rates. In the dry air cases, exfoliation accelerated crack growth rates a maximum of 4.75 times over the uncorroded material at lower stress intensities such as 5 ksi surdinch. This accelerated behavior dropped off rapidly, however, and was nonexistent at higher stress intensities. Humid air increased crack velocities considerably as compared to the dry air uncorroded case, but the addition of exfoliation corrosion to the humid cases did not have a significant effect on crack growth behavior. On the other hand, specimens containing exfoliation corrosion and then exposed to artificial acid rain had significantly higher crack growth rates than their uncorroded counterparts. Finally, fractographic examinations of the specimens revealed evidence of lower energy, quasi-cleavage fracture persisting near to the exfoliated edge of specimens tested in the dry air, humid air, and artificial acid rain environments. The implications of this research are that prior-corrosion damage has the ability to significantly increase crack growth

  13. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  14. The behavioral impact of growth hormone treatment for children and adolescents with Prader-Willi syndrome: a 2-year, controlled study.

    Science.gov (United States)

    Whitman, Barbara Y; Myers, Susan; Carrel, Aaron; Allen, David

    2002-02-01

    Prader-Willi syndrome (PWS) is characterized by obesity, hypotonia, hypogonadism, hyperphagia, short stature, and a neurobehavioral profile that includes cognitive deficits, learning problems, and behavioral difficulties that increase in both quantity and severity over time. PWS results from an alteration in the molecular composition of a critical region of C#15q. Morbid obesity resulting from hyperphagia is amplified by decreased energy expenditure and reduced physical activity. The hyperphagia has proven refractory to all psychopharmocologic intervention; the behavioral components are equally resistant to psychotropic intervention. PWS patients' body composition resembles that of individuals with growth hormone (GH) deficiency, including short stature and reduced lean body mass with concomitant increased fat mass. We hypothesized that GH administration to children with PWS, in addition to stimulating linear growth, would improve body composition, increase energy expenditure and fat utilization, and improve muscle strength, physical agility, and pulmonary function. Two recent reports from this study document significant positive effects of GH treatment on these children's physical parameters measured in a 2-year, controlled study. However, the behavioral impact of GH treatment in this population remains incompletely described. A psychosocial burden, including emotional, behavioral, and cognitive disturbances associated with short stature, has been previously described in a non-PWS population with GH deficiency and idiopathic short stature. An impaired quality of life and psychosocial status is also documented in otherwise normal adults with GH deficiency. In both populations, growth hormone replacement therapy (GHRT) is reported to improve alertness, activity level, endurance, irritability, tendency to worry, and extroversion resulting in better personal relationships with fewer conflicts. This report focuses on that portion of the study investigating the

  15. Helicopter rotor blade frequency evolution with damage growth and signal processing

    Science.gov (United States)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  16. Carbonate anion controlled growth of LiCoPO4/C nanorods and its improved electrochemical behavior

    International Nuclear Information System (INIS)

    Gangulibabu; Nallathamby, Kalaiselvi; Meyrick, Danielle; Minakshi, Manickam

    2013-01-01

    Highlights: ► Carbonate anion controlled growth of LiCoPO 4 nanorods has been prepared. ► Mixture of H 2 CO 3 + (NH 4 ) 2 CO 3 increases the CO 3 2− concentration and acts as an effective growth inhibitor. ► Heating the carbonate rich precursor in an inert atmosphere produces a Co 2 P phase that is conductive. ► Addition of super P carbon resulted in an amorphous carbon coating on LiCoPO 4 particles. ► LiCoPO 4 /C nanorods with a co-existence of Co 2 P exhibit excellent discharge capacity with retention on multiple cycling. -- Abstract: LiCoPO 4 /C nanocomposite with growth controlled by carbonate anions was synthesized via a unique solid-state fusion method. Carbonate anions in the form of H 2 CO 3 or a mixture of H 2 CO 3 + (NH 4 ) 2 CO 3 have been used as a growth inhibiting modifier to produce morphology controlled lithium cobalt phosphate. The presence of cobalt phosphide (Co 2 P) as a second phase improved the conductivity and electrochemical properties of the parent LiCoPO 4. The formation of Co 2 P is found to be achievable only in an inert atmosphere. Super P ® carbon (10 wt.%) provided an adherent carbon coating on pristine LiCoPO 4 resulting in the LiCoPO 4 /C composite cathode. This electrode exhibited enhanced electrochemical properties: capacity of 123 mAh g −1 with excellent capacity retention of 89% after 30 cycles, and reasonable rate capability of up to 5 C rate. The synergistic effect of carbonate anions and formation of Co 2 P under inert atmosphere has influenced the electrochemical behavior of LiCoPO 4 /C cathode through controlling the morphology and increasing the conductivity

  17. Fatigue crack growth behavior in equine cortical bone

    Science.gov (United States)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  18. Distinction of [220] and [204] textures of Cu(In,Ga)Se{sub 2} film and their growth behaviors depending on substrate nature and Na incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae-Hyung, E-mail: dhcho@etri.re.kr [IT Components and Materials Industry Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Kim, Jeha [Department of Solar & Energy Engineering, Cheongju University, 298 Daeseongro, Sangdang-gu, Cheongju, Chungbuk 360-764 (Korea, Republic of); Chung, Yong-Duck [IT Components and Materials Industry Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2015-08-31

    For better understanding of the structural property of polycrystalline tetragonal Cu(In,Ga)Se{sub 2} (CIGS) thin films grown on soda-lime glass, it is necessary to characterize the [220]- and [204]-oriented textures clearly that are related to the different physical properties. However, the distinction between the [220]- and [204]-oriented textures is very difficult because of their nearly identical plane spacings and atomic arrangements. Using X-ray diffraction techniques of high resolution θ–2θ scanning and reciprocal space mapping, we distinguished the [220]- and [204]-oriented textures of CIGS films and observed that the behaviors of [220] and [204] textures independently depended on both substrate nature and Na presence. We report the Na- and substrate-related dependence of the physical properties of the CIGS film was attributed to the independent growth behaviors of the [220] and [204] textures in the CIGS. - Highlights: • We investigated [220]- and [204]-oriented textures of Cu(In,Ga)Se{sub 2} (CIGS) films. • X-ray diffraction methods distinguished two textures. • The growth behaviors were influenced by underlying substrate and Na. • The [220] and [204] textures in CIGS should be differentially observed.

  19. Observations concerning the COMPBRN III fire growth code

    International Nuclear Information System (INIS)

    Nicolette, V.F.; Nowlen, S.P.; Lambright, J.A.

    1989-01-01

    Nuclear power plant fire probabilistic risk assessments (PRAs) usually involve application of a fire growth model to calculate fire growth and the time required to damage critical safety equipment. Attempts to use the fire growth model COMPBRN III resulted in the observation of problems and nonphysical behavior in the code. In this paper the causes of these problems and nonphysical behavior are identified and possible modifications suggested. Incorporation of these modifications into COMPBRN III results in some significant differences in the calculated fire damage times, as well as making the code more physically realistic. 12 refs., 6 figs

  20. Phenotypic and genetic relationships of feeding behavior with feed intake, growth performance, feed efficiency, and carcass merit traits in Angus and Charolais steers.

    Science.gov (United States)

    Chen, L; Mao, F; Crews, D H; Vinsky, M; Li, C

    2014-03-01

    Feeding behavior traits including daily feeding duration (FD), daily feeding head down time (HD), average feeding duration per feeding event (FD_AVE), average feeding head down time per feeding event (HD_AVE), feeding frequency (FF), and meal eating rate (ER) were analyzed to estimate their phenotypic and genetic correlations with feed intake, growth performance, residual feed intake (RFI), ultrasound, and carcass merit traits in Angus and Charolais finishing steers. Heritability estimates for FD, HD, FD_AVE, HD_AVE, FF, and ER were 0.27 ± 0.09 (SE), 0.25 ± 0.09, 0.19 ± 0.06, 0.11 ± 0.05, 0.24 ± 0.08, and 0.38 ± 0.10, respectively, in the Angus population and 0.49 ± 0.12, 0.38 ± 0.11, 0.31 ± 0.09, 0.29 ± 0.10, 0.43 ± 0.11, and 0.56 ± 0.13, respectively, in the Charolais population. In both the Angus and Charolais steer populations, FD and HD had relatively stronger phenotypic (0.17 ± 0.06 to 0.32 ± 0.04) and genetic (0.29 ± 0.17 to 0.54 ± 0.18) correlations with RFI in comparison to other feeding behavior traits investigated, suggesting the potential of FD and HD as indicators in assessing variation of RFI. In general, feeding behavior traits had weak phenotypic correlations with most of the ultrasound and carcass merit traits; however, estimated genetic correlations of the feeding behavior traits with some fat deposition related traits were moderate to moderately strong but differed in magnitude or sign between the Angus and Charolais steer populations, likely reflecting their different biological types. Genetic parameter estimation studies involving feeding behavior traits in beef cattle are lacking and more research is needed to better characterize the relationships between feeding behavior and feed intake, growth, feed utilization, and carcass merit traits, in particular with respect to different biological types of cattle.

  1. Innovation and nested preferential growth in chess playing behavior

    Science.gov (United States)

    Perotti, J. I.; Jo, H.-H.; Schaigorodsky, A. L.; Billoni, O. V.

    2013-11-01

    Complexity develops via the incorporation of innovative properties. Chess is one of the most complex strategy games, where expert contenders exercise decision making by imitating old games or introducing innovations. In this work, we study innovation in chess by analyzing how different move sequences are played at the population level. It is found that the probability of exploring a new or innovative move decreases as a power law with the frequency of the preceding move sequence. Chess players also exploit already known move sequences according to their frequencies, following a preferential growth mechanism. Furthermore, innovation in chess exhibits Heaps' law suggesting similarities with the process of vocabulary growth. We propose a robust generative mechanism based on nested Yule-Simon preferential growth processes that reproduces the empirical observations. These results, supporting the self-similar nature of innovations in chess are important in the context of decision making in a competitive scenario, and extend the scope of relevant findings recently discovered regarding the emergence of Zipf's law in chess.

  2. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  3. Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    Science.gov (United States)

    Wagner, John A.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.

  4. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels

    International Nuclear Information System (INIS)

    Li, D.Z.; Xiao, N.M.; Lan, Y.J.; Zheng, C.W.; Li, Y.Y.

    2007-01-01

    The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)-ferrite (α) transformation. In these models, the γ-α phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation

  5. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  6. Nucleation and growth of intermetallic precipitates in Zircaloy-2 and zircaloy-4 and correlation to nodular corrosion behavior

    International Nuclear Information System (INIS)

    Maussner, G.; Steinberg, E.; Tenckhoff, E.

    1987-01-01

    One of the fundamental aspects in the history of the development of zirconium alloys for nuclear applications is the corrosion behavior under in-pile conditions. In boiling-water reactors (BWRs) and pressurized-water reactors (PWRs) the zirconium alloys Zircaloy-2 and Zircaloy-4 are the most commonly used materials, permitting attainment of a very high level of integrity and reliability. Nevertheless, efforts are required to optimize these well-established alloys with regard to their resistance to nodular corrosion, where improvements will give long-term advantages in fuel integrity and fuel economy. Phenomenological studies allow correlation of the nodular corrosion behavior with the morphological appearance of precipitated intermetallic phases in the microstructures of Zry-2 and Zry-4. To understand the fundamental processes of precipitation, particle nucleation-and-growth studies were made with Zry-2 and Zry-4 in different fabrication dimensions and with variations in β-quenching rates followed by isothermal and isochronical heat treatments. The microstructural characteristics of the precipitates were investigated by optical and transmission-electron microscopy. The macroscopic behavior was studied by electrical-resistivity measurements and hardness measurements. The nodular-corrosion susceptibility was determined by weight-gain and nodule distribution measurements after a 500 0 C laboratory-autoclave test

  7. Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy

    Science.gov (United States)

    Wang, Zhang; Cai, Zhen-bing; Chen, Zhi-qiang; Sun, Yang; Zhu, Min-hao

    2017-11-01

    The impact tests were conducted on metallic materials with different bulk hardness and Young's moduli. Analysis of the dynamics response during the tribological process showed that the tested materials had similar energy absorption, where the peak contact force increased as the tests continued. Moreover, wear volume decreased with the increase in Young's modulus of metals, except for Cr with a relatively low hardness. Wear rate was gradually reduced to a steady stage with increasing cycles, which was attributed to the decrease in contact stress and work-hardening effect. The main wear mechanism of impact was characterized by delamination, and the specific surface degradation mechanisms were depending on the mechanical properties of materials. The absorbed energy was used to the propagation of micro-cracks in the subsurface instead of plastic deformation, when resistance of friction wear and plastic behavior was improved. Hence, both the hardness and Young's modulus played important roles in the impact wear of metallic materials.

  8. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Science.gov (United States)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  9. A new algebraic growth of nonlinear tearing mode

    International Nuclear Information System (INIS)

    Li, D.

    1995-01-01

    It is found that the quasilinear modification of magnetic field produces a nonlinear Lorentz force opposing the linear driving force and slowing down the vortex flow. A new algebraic growth appears due to this damping mechanism to oppose the linear growth of the tearing mode. This effect was eliminated in Rutherford's model [Phys. Fluids 16, 1903 (1973)] under the flux average operation and the assumption ∂/∂t much-lt η/δ 2 (here η is the resistivity, δ is the resistive layer width). A unified analytical model is developed by using standard perturbation theory for the linear and nonlinear growth of the tearing mode. The inertia effect and quasilinear effects of both the current density and the magnetic field have been included. A nonlinear evolution equation is analytically derived for the tearing mode to describe the linear growth, Rutherford's behavior, and the new behavior. The classical linear result is exactly recovered as the quasilinear effects are negligible. It is shown that a more slowly algebraic growth like Ψ 1 ∝t can become dominant in the nonlinear phase instead of Rutherford behavior like Ψ 1 ∝t 2 , provided the tearing mode in the linear phase is strongly unstable. Here Ψ 1 is the magnetic flux perturbation. copyright 1995 American Institute of Physics

  10. Growth, behavior, development and intelligence in rural children between 1-3 years of life.

    Science.gov (United States)

    Agarwal, D K; Awasthy, A; Upadhyay, S K; Singh, P; Kumar, J; Agarwal, K N

    1992-04-01

    In a rural cohort of 625 children registered from 1981 to 1983 in 10 villages of K.V. Block, Varanasi, 196 children were assessed for physical growth, development, intelligence and concept development between 1 and 3 years of age. Home environment was also assessed using Caldwell Home inventory. These rural children remained below 3rd centile of NCHS standard for weight, height, skull and mid-arm circumferences throughout the study. Malnourished children scored poorly in all the areas of development, i.e., motor, adaptive, language and personal social, 9% in Grade I and 16.6% children in Grade II + III had IQ less than 79 (inferior). Concept for color shape and size was poorly developed in malnourished children. Maternal involvement and stimulation was strongly associated with better behavior development and intelligence. Multiple regression analysis showed that the effect of home environment on development and intelligence was of a higher magnitude as compared to status and family variables and nutritional status during 1-3 years of age.

  11. Behavior of palladium and its impact on intermetallic growth in palladium-coated Cu wire bonding

    International Nuclear Information System (INIS)

    Xu Hui; Qin, Ivy; Clauberg, Horst; Chylak, Bob; Acoff, Viola L.

    2013-01-01

    This paper describes the behavior of palladium in palladium-coated Cu (PdCu) wire bonding and its impact on bond reliability by utilizing transmission electron microscopy (TEM). A Pd layer approximately 80 nm thick, which is coated on the surface of Cu wire, dissolves into the Cu matrix during ball formation (under N 2 gas protection) when the wire tip is melted to form a ball. As a result of dissolving the very thin Pd layer into the ball, Pd is almost undetectable along the entire bond interface between the ball and the Al pad. The behavior of Pd during thermal aging in air, however, is different for central and peripheral interfaces. At the central interface, less than 5 at.% Pd is present after 168 h aging at 175 °C. At the periphery, however, Pd diffuses back and congregates, reaching a level of ∼12 at.% after 24 h, and a Pd-rich (Cu,Pd) 9 Al 4 layer (>40 at.% Pd) forms after 168 h. Pd acts substitutionally in Cu 9 Al 4 but cannot penetrate into the CuAl 2 or CuAl. By comparison of intermetallic thickness and interfacial morphology between PdCu and bare Cu wire bonds, it is concluded that the presence of Pd reduces intermetallic growth rate, and is associated with numerous nanovoids in PdCu bonds.

  12. Time-dependent crack growth in steam generator tube leakage

    International Nuclear Information System (INIS)

    Chung, H.D.; Lee, J.H.; Park, Y.W.; Choi, Y.H.

    2006-01-01

    In general, cracks found in steam generator tubes have semi-elliptical shapes and it is assumed to be rectangular shape for conservatism after crack penetration. Hence, the leak and crack growth behavior has not been clearly understood after the elliptical crack penetrates the tube wall. Several experimental results performed by Argonne Nation Laboratory exhibited time-dependent crack growth behavior of rectangular flaws as well as trapezoidal flaws under constant pressure. The crack growth faster than expected was observed in both cases, which is likely attributed to time-dependent crack growth accompanied by fatigue sources such as the interaction between active jet and crack. The stress intensity factor, K 1 , is necessary for the prediction of the observed fatigue crack growth behavior. However, no K 1 solution is available for a trapezoidal flaw. The objective of this study is to develop the stress intensity factor which can be used for the fatigue analysis of a trapezoidal crack. To simplify the analysis, the crack is assumed to be a symmetric trapezoidal shape. A new K 1 formula for axial trapezoidal through-wall cracks was proposed based on the FEM results. (author)

  13. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    Science.gov (United States)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  14. Engineering growth factors for regenerative medicine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  15. Mechanical Behavior of a Hi-Nicalon(tm)/SiC Composite Having a Polycarbosilane Derived Matrix

    Science.gov (United States)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.

    1999-01-01

    Polymer infiltration of a rigidized preform, followed by pyrolysis to convert the polymer to a ceramic, potentially offers a lower cost alternative to CVD. It also offers more moderate temperature requirements than melt infiltration approaches, which should minimize potential fiber damage during processing. However, polymer infiltration and pyrolysis results in a more microcracked matrix. Preliminary mechanical property characterization, including elevated temperature (1204 C) tensile, 500 h stress rupture behavior and low cycle fatigue, was conducted on Hi-Nicalon (TM)/Si-C-(O) composites having a dual layer BN/SiC interface and a matrix derived by impregnation and pyrolysis of allylhydridopolycarbosilane (AHPCS). Microstructural evaluation of failure surfaces and of polished transverse and longitudinal cross sections of the failed specimens was used to identify predominant failure mechanisms. In stress rupture testing at 1093 C, the failure was interface dominated, while at 1204 C in both stress rupture and two hour hold/fatigue tests failure was matrix dominated, resulting in specimen delamination.

  16. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    Directory of Open Access Journals (Sweden)

    Farzad Sadeghi-Tohidi

    2014-01-01

    Full Text Available The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface.

  17. Tribological Behavior of Babbitt Alloy Rubbing Against Si3N4 and Steel Under Dry Friction Condition

    Science.gov (United States)

    Ji, Xianbing; Chen, Yinxia

    2016-03-01

    The tribological behavior of Babbitt alloy rubbing with Si3N4 ball and steel ball with various sliding speeds at dry friction condition was investigated. It was found that B88 alloy rubbing with Si3N4 ball and steel ball possesses a low sliding wear resistance at dry friction. The wear rate is above 10-4 mm3/Nm, and the friction coefficient is from 0.2 to 0.4. At low sliding speed of 0.05-0.1 m/s, the mainly wear mechanisms are microgroove and fatigue wear, while at high sliding speed of 0.5 m/s, the wear mechanisms depend on plastic deformation and delamination. The high wear rate indicates that it is needed to prevent Babbitt alloy from working at dry friction conditions, while the low friction coefficient suggests that it is not easy to the occurrence of cold weld.

  18. Influences of Biological and Adoptive Mothers’ Depression and Antisocial Behavior on Adoptees’ Early Behavior Trajectories

    Science.gov (United States)

    Kerr, David C. R.; Leve, Leslie D.; Harold, Gordon T.; Natsuaki, Misaki; Neiderhiser, Jenae M.; Shaw, Daniel S.; Reiss, David

    2013-01-01

    Research clearly demonstrates that parents pass risk for depression and antisocial behavior on to their children. However, most research confounds genetic and environmental mechanisms by studying genetically related individuals. Furthermore, most studies focus on either depression or antisocial behavior in parents or children, despite evidence of co-occurrence and shared etiology, and few consider the early origins of these problems in childhood. We estimated the influence of biological and adoptive mothers’ depression and antisocial behavior on growth in child externalizing and internalizing behaviors across early childhood using data from a prospective adoption study. Participants were 346 matched triads of physically healthy children (196 boys; 150 girls), biological mothers (BM), and adoptive mothers (AM). Latent growth curve models were estimated using AM reports of child internalizing and externalizing behaviors at ages 18, 27, and 54 months. Predictors of intercept (18 months) but not slope were identified. BM lifetime histories of major depressive disorder predicted child externalizing behaviors and BM antisocial behavior predicted child internalizing behavior. AM depressive symptoms and antisocial behavior were associated with both child outcomes. AM paths, but not BM paths were partially replicated using adopted fathers’ reports of child outcomes. BM obstetric complications, prenatal depressive symptoms, and postnatal adoptive family contact with BM did not account for BM paths. This adoption study distinguished risks conferred by biological mothers’ depression and antisocial behavior to children’s behaviors from those associated with adoptive mothers’ related symptoms. Future studies should examine gene-environment interplay to explain the emergence of serious problem trajectories in later childhood. PMID:23408036

  19. Influences of biological and adoptive mothers' depression and antisocial behavior on adoptees' early behavior trajectories.

    Science.gov (United States)

    Kerr, David C R; Leve, Leslie D; Harold, Gordon T; Natsuaki, Misaki N; Neiderhiser, Jenae M; Shaw, Daniel S; Reiss, David

    2013-07-01

    Research clearly demonstrates that parents pass risk for depression and antisocial behavior on to their children. However, most research confounds genetic and environmental mechanisms by studying genetically related individuals. Furthermore, most studies focus on either depression or antisocial behavior in parents or children, despite evidence of co-occurrence and shared etiology, and few consider the early origins of these problems in childhood. We estimated the influence of biological and adoptive mothers' depression and antisocial behavior on growth in child externalizing and internalizing behaviors across early childhood using data from a prospective adoption study. Participants were 346 matched triads of physically healthy children (196 boys; 150 girls), biological mothers (BM), and adoptive mothers (AM). Latent growth curve models were estimated using AM reports of child internalizing and externalizing behaviors at ages 18, 27, and 54 months. Predictors of intercept (18 months) but not slope were identified. BM lifetime histories of major depressive disorder predicted child externalizing behaviors and BM antisocial behavior predicted child internalizing behavior. AM depressive symptoms and antisocial behavior were associated with both child outcomes. AM paths, but not BM paths were partially replicated using adopted fathers' reports of child outcomes. BM obstetric complications, prenatal depressive symptoms, and postnatal adoptive family contact with BM did not account for BM paths. This adoption study distinguished risks conferred by biological mothers' depression and antisocial behavior to children's behaviors from those associated with adoptive mothers' related symptoms. Future studies should examine gene-environment interplay to explain the emergence of serious problem trajectories in later childhood.

  20. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure.

    Science.gov (United States)

    Paek, Seung-Min; Yoo, EunJoo; Honma, Itaru

    2009-01-01

    To fabricate nanoporous electrode materials with delaminated structure, the graphene nanosheets (GNS) in the ethylene glycol solution were reassembled in the presence of rutile SnO(2) nanoparticles. According to the TEM analysis, the graphene nanosheets are homogeneously distributed between the loosely packed SnO(2) nanoparticles in such a way that the nanoporous structure with a large amount of void spaces could be prepared. The obtained SnO(2)/GNS exhibits a reversible capacity of 810 mAh/g; furthermore, its cycling performance is drastically enhanced in comparison with that of the bare SnO(2) nanoparticle. After 30 cycles, the charge capacity of SnO(2)/GNS still remained 570 mAh/g, that is, about 70% retention of the reversible capacity, while the specific capacity of the bare SnO(2) nanoparticle on the first charge was 550 mAh/g, dropping rapidly to 60 mAh/g only after 15 cycles. The dimensional confinement of tin oxide nanoparticles by the surrounding GNS limits the volume expansion upon lithium insertion, and the developed pores between SnO(2) and GNS could be used as buffered spaces during charge/discharge, resulting in the superior cyclic performances.

  1. Annual Growth of Contract Costs for Major Programs in Development and Early Production

    Science.gov (United States)

    2016-03-21

    also affect cost growth behavior . Second, periods of structural changes contributed additional constant shifts in the growth. Two such overlapping...implementation of the Better Buying Power (BBP) initiatives to emphasize cost consciousness, improve efficiency, strengthen acquisition workforce...our modeling indicates that the defense system exhibits a self-correcting behavior that adjusts for prior differences between the actual growth and the

  2. Entrepreneurs’ growth-expectations: Enhanced by their networking and by national growth-policy

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Ashourizadeh, Shayegheh

    or running the business. The entrepreneur’s expectation is shaped partly by individual behavior, including networking with others who give advice on the business. The entrepreneur’s expectation is also shaped by the societal context, including policies. Policy for growth-entrepreneurship is the societal...

  3. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  4. Stick–slip behavior identified in helium cluster growth in the subsurface of tungsten: effects of cluster depth

    International Nuclear Information System (INIS)

    Wang, Jinlong; Niu, Liang-Liang; Shu, Xiaolin; Zhang, Ying

    2015-01-01

    We have performed a molecular dynamics study on the growth of helium (He) clusters in the subsurface of tungsten (W) (1 0 0) at 300 K, focusing on the role of cluster depth. Irregular ‘stick–slip’ behavior exhibited during the evolution of the He cluster growth is identified, which is due to the combined effects of the continuous cluster growth and the loop punching induced pressure relief. We demonstrate that the He cluster grows via trap-mutation and loop punching mechanisms. Initially, the self-interstitial atom SIA clusters are almost always attached to the He cluster; while they are instantly emitted to the surface once a critical cluster pressure is reached. The repetition of this process results in the He cluster approaching the surface via a ‘stop-and-go’ manner and the formation of surface adatom islands (surface roughening), ultimately leading to cluster bursting and He escape. We reveal that, for the Nth loop punching event, the critical size of the He cluster to trigger loop punching and the size of the emitted SIA clusters are correspondingly increased with the increasing initial cluster depth. We tentatively attribute the observed depth effects to the lower formation energies of Frenkel pairs and the greatly reduced barriers for loop punching in the stress field of the W subsurface. In addition, some intriguing features emerge, such as the morphological transformation of the He cluster from ‘platelet-like’ to spherical, to ellipsoidal with a ‘bullet-like’ tip, and finally to a ‘bottle-like’ shape after cluster rupture. (paper)

  5. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, Tilman, E-mail: tilman@santarius.de [Visiting Scholar, Institute of European Studies and Energy and Resources Group, University of California, Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 (United States)

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  6. Studies in Cup Drawing Behavior of Polymer Laminated Sheet Metal

    Science.gov (United States)

    Elnagmi, M.; Jain, M.; Bruhis, M.; Nielsen, K.

    2011-08-01

    Axisymmetric deep drawing behavior of a polymer laminated sheet metal (PLSM) is investigated using an axisymmetric cup drawing test. PLSMs are of interest as a replacement for painted finishes for automotive applications as they have the potential to achieve good quality long lasting and aesthetically appealing surfaces on stamped parts. However, there is limited understanding of PLSMs in automotive deep drawing situations to produce complex 3-D parts. The tests are carried out using well-controlled, laboratory-based, dual-action, servo-hydraulic forming presses under blank-holder force and punch displacement control conditions. An optical strain mapping system is used to measure the surface strains (and to construct 3D strain maps) from the film side of the deformed samples for a range of forming conditions. Deep drawing characteristics such as punch load versus punch displacement traces, strain distribution along the cup profile, flange wrinkling and fracture characteristics are experimentally assessed for stainless steel-plastic film laminated sheet materials. Also the effect of lamination pressure on wrinkling and delamination is investigated for a decorative pressure sensitive adhesive film affixed to the stainless steel sheet.

  7. A quantitative in vitro method to predict the adhesion lifetime of diamond-like carbon thin films on biomedical implants.

    Science.gov (United States)

    Falub, Claudiu Valentin; Thorwarth, Götz; Affolter, Christian; Müller, Ulrich; Voisard, Cyril; Hauert, Roland

    2009-10-01

    A quantitative method using Rockwell C indentation was developed to study the adhesion of diamond-like carbon (DLC) protective coatings to the CoCrMo biomedical implant alloy when immersed in phosphate-buffered saline (PBS) solution at 37 degrees C. Two kinds of coatings with thicknesses ranging from 0.5 up to 16 microns were investigated, namely DLC and DLC/Si-DLC, where Si-DLC denotes a 90 nm thick DLC interlayer containing Si. The time-dependent delamination of the coating around the indentation was quantified by means of optical investigations of the advancing crack front and calculations of the induced stress using the finite element method (FEM). The cause of delamination for both types of coatings was revealed to be stress-corrosion cracking (SCC) of the interface material. For the DLC coating a typical SCC behavior was observed, including a threshold region (60J m(-2)) and a "stage 1" crack propagation with a crack-growth exponent of 3.0, comparable to that found for ductile metals. The DLC/Si-DLC coating exhibits an SCC process with a crack-growth exponent of 3.3 and a threshold region at 470 Jm(-2), indicating an adhesion in PBS at 37 degrees C that is about eight times better than that of the DLC coating. The SCC curves were fitted to the reaction controlled model typically used to explain the crack propagation in bulk soda lime glass. As this model falls short of accurately describing all the SCC curves, limitations of its application to the interface between a brittle coating and a ductile substrate are discussed.

  8. Behavioral Teratology Comes to the Classroom.

    Science.gov (United States)

    Brackbill, Yvonne

    1987-01-01

    The article discusses types of teratogenic agents, (behavioral defects caused by toxic agents) behavioral targets, organismic vulnerability during growth spurts, teratogenic "routing" (path to the brain), exposure, and duration of effects. Lead is used as a paradigm of chemical neurotoxins known to affect cognitive and noncognitive…

  9. Escaping the snare of chronological growth and launching a free curve alternative: general deviance as latent growth model.

    Science.gov (United States)

    Wood, Phillip Karl; Jackson, Kristina M

    2013-08-01

    Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating "protective" or "launch" factors or as "developmental snares." These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of "general deviance" over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the "general deviance" model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of "general deviance" can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve

  10. Conditions for mould growth on typical interior surfaces

    DEFF Research Database (Denmark)

    Møller, Eva B.; Andersen, Birgitte; Rode, Carsten

    2017-01-01

    Prediction of the risk for mould growth is an important parameter for the analysis and design of the hygrothermal performance of building constructions. However, in practice the mould growth does not always follow the predicted behavior described by the mould growth models. This is often explained...... by uncertainty in the real conditions of exposure. In this study, laboratory experiments were designed to determine mould growth at controlled transient climate compared to growth at constant climate. The experiment included three building materials with four different surface treatments. The samples were...

  11. Time-dependent crack growth in Alloy 718: An interim assessment

    International Nuclear Information System (INIS)

    James, L.A.

    1982-08-01

    Previous results on the time-dependent nature of fatigue-crack propagation (FCP) in Alloy 718 at elevated temperatures were reviewed. Additional experiments were conducted to further define certain aspects of the time-dependent crack growth behavior. it was found that loading waveform influenced FCP behavior, with tensile hold-times producing higher growth rates than continuous cycling at the same frequency. Crack growth rates under hold-time conditions tended to increase with decreasing grain size. Finally, experiments were conducted which tended to cast some doubt upon the ability of linear-elastic fracture mechanics (LEFM) techniques to characterize cracking behavior in this alloy under hold-time conditions. However, since a superior correlating parameter has not yet been proven, it is suggested that LEFM methods be used in the interim with appropriate safety factors to account for the potential errors. 34 refs., 10 figs., 4 tabs

  12. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  13. IGSCC growth behaviors of Alloy 690 in hydrogenated high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, K.; Yamada, T.; Miyamoto, T.; Terachi, T. [INSS, (Japan)

    2011-07-01

    The rate of growth of stress corrosion cracking (SCC) was measured for cold worked and thermally treated and solution treated Alloy 690 (UNS N06690, CW TT690, CW ST690) in hydrogenated pressurized water reactor (PWR) primary water under static load condition. Three important patterns were observed: First, Intergranular stress corrosion cracking (IGSCC) was observed on both TT and ST690 even in static load condition if materials were heavily cold worked although the rate of SCC growth was much slower than that of CW mill annealed Alloy 600. Furthermore much rapid SCC growth was recognized in 20% CW TT690 than that of 20% CW ST690. This is quite different result in the literature in high temperature caustic solution. Second, in order to assess the role of creep, rates of creep crack growth were measured in air, argon, and hydrogen gas environments using 20% CW TT690, and 20% CW MA600 in the range of temperatures between 360 and 460 C; intergranular creep cracking (IG creep cracking) was observed on the test materials even in air. Similar slope of 1/T-type temperature dependencies on IGSCC and IG creep crack growth were observed on 20% CW TT690. Similar fracture morphologies and similar 1/T-type temperature dependencies suggest that creep is important in the growth of IGSCC of CW TT690 in high temperature water. Third, cavities and pores were observed at grain boundaries near tips of SCC and creep although the size of the cavities and pores of SCC were much smaller than that of creep cracks. Also the population and size of cavities seem to decrease with decreasing test temperature. These results suggest that the difference in the size and population of cavities might be related with the difference in crack growth rate. And the cavities seem to be formed result from collapse of vacancies at grain boundaries as the crack embryo. This result suggests that diffusion of condensation of vacancies in high stressed fields occurs in high temperature water and gas environments

  14. Influence of the volume-contact area ratio on the growth behavior of the Cu-Sn intermetallic phase

    Science.gov (United States)

    Giddaluri, Venkatakamakshi Supraja

    Solder Joints play a very important role in electronic packaging industry by serving as mechanical support and provides integrity to the device. The increasing demand for high performance, environmental and economic feasibility and miniaturization led to the development of high density interconnects. With the reduction in the size/standoff height of the solder reliability issues in the surface mount assemblies and packaging structures under various rigorous environments are becoming significant. One of the most important impact factors that affect the solder joint reliability is the growth rate IMC formed between the solder and substrate with reduction in joint size. IMC formation is required to ensure good bonding and connectivity of the device in packaging. However excess IMC growth rate is detrimental to the device from mechanical aspects due to its brittle nature. Thus there is a need to study effect the IMC growth rate behavior with the solder joint size/standoff height. In this present study, two solder joints of different standoff heights and same composition (pure Sn solder) are used subjected to reflow process at 270°C for 1--7 min to study solid liquid interfacial reaction on joint size and the same experiment is repeated with SAC alloy of composition (96.5% Sn, 3.0% Ag, 0.5% Cu) to investigate the effect of joint size and initial copper concentration on IMC growth rate. The IMC thickness of the Sn 15microm solder joint at 1 min and 7 min is found to be 1.52microm and 2.86microm respectively while that of Sn 150microm solder joint is 1.31microm and 3.16 microm. The thickness is high in low standoff height sample at the early stage of reaction with decrease in IMC growth rate as the time of reflow increases. In case of 25microm SAC alloy solder joint the IMC thickness from 1 and 7 min is found to be 2.1microm and 3.5microm while that of 250microm SAC alloy solder joint its 1.43microm and3.235microm. Similar trend is observed but the IMC thickness is more

  15. Which Diet-Related Behaviors in Childhood Influence a Healthier Dietary Pattern? From the Ewha Birth and Growth Cohort.

    Science.gov (United States)

    Lee, Hye Ah; Hwang, Hyo Jeong; Oh, Se Young; Park, Eun Ae; Cho, Su Jin; Kim, Hae Soon; Park, Hyesook

    2016-12-23

    This study was performed to examine how childhood dietary patterns change over the short term and which changes in diet-related behaviors influence later changes in individual dietary patterns. Using food frequency questionnaire data obtained from children at 7 and 9 years of age from the Ewha Birth and Growth Cohort, we examined dietary patterns by principal component analysis. We calculated the individual changes in dietary pattern scores. Changes in dietary habits such as eating a variety of food over two years were defined as "increased", "stable", or "decreased". The dietary patterns, termed "healthy intake", "animal food intake", and "snack intake", were similar at 7 and 9 years of age. These patterns explained 32.3% and 39.1% of total variation at the ages of 7 and 9 years, respectively. The tracking coefficient of snack intake had the highest coefficient (γ = 0.53) and that of animal food intake had the lowest (γ = 0.21). Intra-individual stability in dietary habits ranged from 0.23 to 0.47, based on the sex-adjusted weighted kappa values. Of the various behavioral factors, eating breakfast every day was most common in the "stable" group (83.1%), whereas consuming milk or dairy products every day was the least common (49.0%). Moreover, changes in behavior that improved the consumption of milk or dairy products or encouraged the consumption of vegetables with every meal had favorable effects on changes in healthy dietary pattern scores over two years. However, those with worsened habits, such as less food variety and more than two portions of fried or stir-fried food every week, had unfavorable effects on changes in healthy dietary pattern scores. Our results suggest that diet-related behaviors can change, even over a short period, and these changes can affect changes in dietary pattern.

  16. A study of growth and thermal dewetting behavior of ultra-thin gold films using transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Sudheer

    2017-07-01

    Full Text Available The growth and solid-state dewetting behavior of Au thin films (0.7 to 8.4 nm deposited on the formvar film (substrate by sputtering technique have been studied using transmission electron microscopy. The size and number density of the Au nanoparticles (NPs change with an increase in the film thickness (0.7 to 2.8 nm. Nearly spherical Au NPs are obtained for 6 nm show capability to be used as an irreversible temperature sensor with a sensitivity of ∼0.1 CAF/°C. It is observed that annealing affects the crystallinity of the Au grains in the films. The electron diffraction measurement also shows annealing induced morphological evolution in the percolated Au thin films (≥3 nm during solid-state dewetting and recrystallization of the grains.

  17. Contraceptive‑seeking Behavior of Women Attending Antenatal ...

    African Journals Online (AJOL)

    Contraceptive‑seeking Behavior of Women Attending Antenatal Care in a Developing Country: A Veritable Tool for Slowing Population Growth. ... Background: The use of modern contraceptives has been embraced by developed nations as a means of achieving controlled growth rate. Nigeria, Africa's most populous nation ...

  18. Abnormal growth of faceted (WC) grains in a (Co) liquid matrix

    International Nuclear Information System (INIS)

    Park, Y.J.; Yoon, D.Y.

    1996-01-01

    If the grains dispersed in a liquid matrix are spherical, their surface atomic structure is expected to be rough (diffuse), and their coarsening has been observed to be controlled by diffusion in the matrix. They do not, furthermore, undergo abnormal growth. On the other hand, in some compound material systems, the grains in liquid matrices are faceted and often show abnormal coarsening behavior. Their faceted surface planes are expected to be singular (atomically flat) and therefore grow by a defect-assisted process and two-dimensional (2-D) nucleation. Contrary to the usual coarsening theories, their growth velocity is not linearly dependent on the driving force arising from the grain size difference. If the growth of the faceted grains occurs by 2-D nucleation, the rate is expected to increase abruptly at a critical supersaturation, as has been observed in crystal growth in melts and solutions. It is proposed that this growth mechanism leads to the abnormal grain coarsening. The 2-D nucleation theory predicts that there is a threshold initial grain size for the abnormal grain growth (AGG), and the propensity for AGG will increase with the heat-treatment temperature. The AGG behavior will also vary with the defects in the grains. These predictions are qualitatively confirmed in the sintered WC-Co alloy prepared from fine (0.85-microm) and coarse (5.48-microm) WC powders and their mixtures. The observed dependence of the AGG behavior on the sintering temperature and the milling of the WC powder is also qualitatively consistent with the predicted behavior

  19. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  20. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    International Nuclear Information System (INIS)

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-01-01

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: ► The EGF-induced cellular mechanical response is regionally specific. ► The EGF-induced cellular mechanical response is time and dose dependent. ► A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  1. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  2. Analysis of the three-dimensional delamination behavior of stretchable electronics applications

    NARCIS (Netherlands)

    Sluis, van der O.; Timmermans, P.H.M.; Zanden, van der E.J.L.; Hoefnagels, J.P.M.; Ernst, L.J.

    2009-01-01

    Stretchable electronics offer potential application areasin biological implants interacting with human tissue. Furthermore, they facilitate increased design freedom of electronic products. Typical applications can be found in healthcare, wellness and functional clothes. A key requirement on these

  3. Benefits Innovations in Employee Behavioral Health.

    Science.gov (United States)

    Sherman, Bruce; Block, Lori

    2017-01-01

    More and more employers recognize the business impact of behavioral health concerns in the workplace. This article provides insights into some of the current innovations in behavioral health benefits, along with their rationale for development. Areas of innovation include conceptual and delivery models, technological advance- ments, tools for engaging employees and ways of quantifying the business value of behavioral health benefits. The rapid growth of innovative behavioral health services should provide employers with confidence that they can tailor a program best suited to their priorities, organizational culture and cost limitations.

  4. Exposure to social defeat stress in adolescence improves the working memory and anxiety-like behavior of adult female rats with intrauterine growth restriction, independently of hippocampal neurogenesis.

    Science.gov (United States)

    Furuta, Miyako; Ninomiya-Baba, Midori; Chiba, Shuichi; Funabashi, Toshiya; Akema, Tatsuo; Kunugi, Hiroshi

    2015-04-01

    Intrauterine growth restriction (IUGR) is a risk factor for memory impairment and emotional disturbance during growth and adulthood. However, this risk might be modulated by environmental factors during development. Here we examined whether exposing adolescent male and female rats with thromboxane A2-induced IUGR to social defeat stress (SDS) affected their working memory and anxiety-like behavior in adulthood. We also used BrdU staining to investigate hippocampal cellular proliferation and BrdU and NeuN double staining to investigate neural differentiation in female IUGR rats. In the absence of adolescent stress, IUGR female rats, but not male rats, scored significantly lower in the T-maze test of working memory and exhibited higher anxiety-like behavior in the elevated-plus maze test compared with controls. Adolescent exposure to SDS abolished these behavioral impairments in IUGR females. In the absence of adolescent stress, hippocampal cellular proliferation was significantly higher in IUGR females than in non-IUGR female controls and was not influenced by adolescent exposure to SDS. Hippocampal neural differentiation was equivalent in non-stressed control and IUGR females. Neural differentiation was significantly increased by adolescent exposure to SDS in controls but not in IUGR females. There was no significant difference in the serum corticosterone concentrations between non-stressed control and IUGR females; however, adolescent exposure to SDS significantly increased serum corticosterone concentration in control females but not in IUGR females. These results demonstrate that adolescent exposure to SDS improves behavioral impairment independent of hippocampal neurogenesis in adult rats with IUGR. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Comparative investigation of indicators of growth and behavioral disorders in children with normal, low, and very low birth weight at pre-school age in Isfahan during 2015

    Directory of Open Access Journals (Sweden)

    Marzieh Yousefi

    2017-01-01

    Full Text Available Introduction: Birth weight is one of the most important indicators of infant's health and could predict their health condition in future. This study was conducted to determine and compare indicators of growth [weight, height, and body mass index (BMI] and behavioral disorders in children with normal, low, and very low birth weight at pre-school age. Materials and Methods: In this descriptive analytical study, 236 children (126 with normal weight, 100 with low birth weight, and 10 with very low birth weight at pre-school age were investigated in three groups. Data collection tools were a two-part questionnaire including the Rutter Children Behavior Questionnaire for parents, and parents' and children's demographic characteristics questionnaire, scale, and stadiometer. Data were analyzed using descriptive statistics, variance analysis, Chi square, and Kruskal–Wallis tests. Results: The mean of weight, height, and BMI at pre-school age in three groups had a significant difference (P = 0.009 and it was lower in the group with very low birth weight than the other two groups; however, the difference between the group with normal birth weight and the group with low birth weight was not significant (P = 0.10. The mean score of behavioral disorder had no significant difference between groups (P = 0.49. Conclusions: Results showed that children with very low birth weight grew less than the other two groups. Therefore, this group needs special attention and long-term follow-up for taking care of them to ensure better growth. It is recommended to conduct more extended studies to evaluate behavioral disorders in these children.

  6. The Assessing of the Failure Behavior of Glass/Polyester Composites Subject to Quasi Static Stresses

    Science.gov (United States)

    Stanciu, M. D.; Savin, A.; Teodorescu-Drăghicescu, H.

    2017-06-01

    Using glass fabric reinforced composites for structure of wind turbine blades requires high mechanical strengths especially to cyclic stresses. Studies have shown that approximately 50% of composite material failure occurs because of fatigue. Composites behavior to cyclic stresses involves three stages regarding to stiffness variation: the first stage is characterized by the accelerated decline of stiffness with micro-cracks, the second stage - a slight decrease of stiffness characterized by the occurrence of delamination and third stage characterized by higher decreases of resistance and occurrence of fracture thereof. The aim of the paper is to analyzed the behavior of composites reinforced with glass fibers fabric type RT500 and polyester resin subjected to tensile cyclic loading with pulsating quasi-static regime with asymmetry coefficient R = 0. The samples were tested with the universal tensile machine LS100 Lloyd Instruments Plus, with a load capacity of 100 kN. The load was applied with different speeds of 1 mm/min, 10 mm/min and 20 mm/min. After tests, it was observed that the greatest permanent strains were recorded in the first load cycles when the total energy storage by material was lost due to internal friction. With increasing number of cycles, the glass/polyester composites ability to store energy of deformation decreases, the flow phenomenon characterized by large displacements to smaller loading forces appearing.

  7. Delinquent Behavior in High School Students in Hong Kong: Sociodemographic, Personal, and Family Determinants.

    Science.gov (United States)

    Shek, Daniel T L; Lin, Li

    2016-02-01

    On the basis of longitudinal data collected over 6 years, the changes in delinquent behavior and the related sociodemographic, personal, and family determinants were examined in this study. DESIGN, SETTING, PARTICIPANTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: A 6-year longitudinal research design was used. Students responded to a questionnaire containing sociodemographic questions and validated measures of positive youth development, family functioning, and delinquent behavior. There was an increasing trend of delinquent behavior with the growth rate slowing down over the high school years. Male adolescents reported higher levels of delinquent behavior and showed a greater increase of delinquent behavior relative to female adolescents. Although positive youth development and family functioning were negatively associated with the initial level of delinquent behavior, they were positively associated with the growth rate of delinquent behavior over time. Delinquent behavior could be described by a quadratic growth curve during high school years. Gender, positive youth development, and family functioning influence the level and developmental trajectory of delinquent behavior in adolescence. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  8. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  9. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  10. Posttraumatic Growth Moderates Suicide Risk among Trauma Exposed Undergraduates

    Science.gov (United States)

    Sheline, Kelly T.; Rosén, Lee A.

    2017-01-01

    We assessed the moderating role of posttraumatic growth on the relationship between traumatic life events and suicidal ideation and behavior, suicide risk, and college adjustment. The sample of 557 college students completed questionnaires measuring their severity and number of traumatic life events, posttraumatic growth, suicidal thoughts,…

  11. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling

    Directory of Open Access Journals (Sweden)

    Virginia W. Manner

    2017-06-01

    Full Text Available The microstructure of plastic bonded explosives (PBXs is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB or glycidyl azide polymer (GAP cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.

  12. Cracks in functionally graded materials

    International Nuclear Information System (INIS)

    Bahr, H.-A.; Balke, H.; Fett, T.; Hofinger, I.; Kirchhoff, G.; Munz, D.; Neubrand, A.; Semenov, A.S.; Weiss, H.-J.; Yang, Y.Y.

    2003-01-01

    The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking→delamination→blistering→spalling. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage

  13. Relationship between information-seeking behavior and innovative behavior in Chinese nursing students.

    Science.gov (United States)

    Zhong, Zhuqing; Hu, Dehua; Zheng, Feng; Ding, Siqing; Luo, Aijing

    2018-04-01

    In the information-based economy, information literacy has become the foundation of scientific literacy, and provides the basis for innovative growth. Exploring the relationship between information-seeking behaviors and innovative behaviors of nursing students could help guide the development of information literacy education and training for nursing students. The relationship between information-seeking behavior and innovative behavior in nursing students has received little attention, however. This study aims to explore the relationship between information-seeking behavior and innovative behavior of nursing students. Nursing students in Xiangya Medical School, Central South University and Medical School of Hunan Normal University in the Chinese Province of Hunan were surveyed with an information-seeking behavior scale and an innovative behavior scale. A total of 1247 nursing students were included in the final analysis. The results showed that both information-seeking behavior and innovative behavior were significantly better in undergraduates than in junior college nursing students (P information-seeking behavior was positively related to innovative behavior (r = 0.63, P information-seeking behavior were also correlated with innovative behavior in varying degrees. Furthermore, information utilization was proved to be the strongest predictor of innovative behavior. Information-seeking behavior is positively associated with innovative behavior among nursing students. There is a need to integrate information literacy education with information retrieval courses, especially in the aspects of information utilization, retrieval, and assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Fatigue crack growth and fracture behavior of bainitic rail steels.

    Science.gov (United States)

    2011-09-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  15. Fourth-quarter Economic Growth and Time-varying Expected Returns

    DEFF Research Database (Denmark)

    Møller, Stig V.; Rangvid, Jesper

    not predict returns. Fourth-quarter economic growth rates contain considerably more information about expected returns than standard variables used in the literature, are robust to the choice of macro variable, and work in-sample, out-of-sample, and in subsamples. To help explain these results, we show...... that economic growth and growth in consumer confidence are correlated during the fourth quarter, but not during the other quarters: When economic growth is low during the fourth quarter, confidence in the economy is also low such that investors require higher future returns. We discuss rational and behavioral...... reasons why fourth-quarter economic growth, growth in consumer confidence, and expected returns are related....

  16. Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Shen, Y.-H.; Hung, I-M.; Wen, S.-B.; Lee, H.-E.; Wang, M.-C.

    2009-01-01

    The effect of Y 2 O 3 (8 mol% ≤ Y 2 O 3 ≤ 10 mol%) addition on the crystal growth and sintering behavior of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O ethanol-water solutions at low temperatures has been studied. X-ray diffraction (XRD), Brunauer-Emmett-Teller specific surface area analyses (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and dilatometric analysis (DA) have been utilized to characterize the YSZ nanocrystallites. Characterization reveals that the YSZ nanopowders are weakly agglomerated. When calcined at various temperatures for 2 h, the crystallite size increases and the surface area of the YSZ powders decreases when the calcination temperature increased from 673 to 1273 K. A nanocrystallite size distribution between 10 and 15 nm is obtained in the TEM examination, which is consistent with the XRD investigation. The activation energy for crystal growth were determined as 5.75 ± 0.68, 4.22 ± 0.51, and 5.24 ± 0.20 kJ/mol for 8, 9 and 10 YSZ precipitates, respectively. The morphology of the YSZ sintered at high temperature indicates the abnormal growth is due to the low activation energy for crystallite growth

  17. Value function in economic growth model

    Science.gov (United States)

    Bagno, Alexander; Tarasyev, Alexandr A.; Tarasyev, Alexander M.

    2017-11-01

    Properties of the value function are examined in an infinite horizon optimal control problem with an unlimited integrand index appearing in the quality functional with a discount factor. Optimal control problems of such type describe solutions in models of economic growth. Necessary and sufficient conditions are derived to ensure that the value function satisfies the infinitesimal stability properties. It is proved that value function coincides with the minimax solution of the Hamilton-Jacobi equation. Description of the growth asymptotic behavior for the value function is provided for the logarithmic, power and exponential quality functionals and an example is given to illustrate construction of the value function in economic growth models.

  18. Latent Growth and Dynamic Structural Equation Models.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam

    2018-05-07

    Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.

  19. Creep and Creep Crack Growth Behaviors for SMAW Weldments of Gr. 91 Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Park, Ji Yeon; Hong, Sung Deok; Kim, Yong Wan; Park, Jae Young

    2010-01-01

    High Cr ferritic resistance steels with tempered martensite microstructures posses enhanced creep strength at the elevated temperatures. Those steels as represented by a modified 9Cr-1Mo steel (ASME Grade 91, hereafter Gr.91) are regarded as main structural materials of sodium-cooled fast reactors (SFR) and reactor pressure vessel materials of very high temperature reactors (VHTR). The SFR and VHTR systems are designed during long-term duration reaching 60 years at elevated temperatures and often subjected to non-uniform stress and temperature distribution during service. These conditions may generate localized creep damage and propagate the cracks and ultimately may cause a fracture. A significant portion of its life is spent in crack propagation. Therefore, a creep crack growth rate (CCGR) due to creep damage should be assessed for both the base metal (BM) and welded metal (WM). Enough CCGR data for them should be provided for assessing their structural integrities. However, their CCGR data for the Gr. 91 steels is still insufficient. In this study, the CCGR for the BM and the WM of the Gr. 91 steel was comparatively investigated. A series of the CCG tests were conducted under different applied loads for the BM and the WM at 600 .deg. C. The CCGR was characterized in terms of the C parameter, and their CCG behavior were compared, respectively

  20. Fatigue-crack propagation behavior of Inconel 718

    International Nuclear Information System (INIS)

    James, L.A.

    1975-09-01

    The techniques of linear-elastic fracture mechanics were used to characterize the effect of several variables (temperature, environment, cyclic frequency, stress ratio, and heat-treatment variations) upon the fatigue-crack growth behavior of Inconel 718 base metal and weldments. Relevant crack growth data on this alloy from other laboratories is also presented. (33 fig, 39 references)