WorldWideScience

Sample records for dehydrogenase-a re-sensitizes taxol-resistant

  1. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    International Nuclear Information System (INIS)

    Huang, Shang-Lang; Chao, Chuck C.-K.

    2015-01-01

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug

  2. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Lang [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chao, Chuck C.-K., E-mail: cckchao@mail.cgu.edu.tw [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (China)

    2015-06-16

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug.

  3. Alterations in phosphatidylcholine synthesis are associated with taxol resistance

    International Nuclear Information System (INIS)

    Sorbara, L.R.

    1986-01-01

    A taxol resistant variant (J7/TAX-50) of the murine macrophage-like cell line J774.2 has been developed in vitro. The LD 50 of taxol for the resistant cells is 800-fold greater than that for the parental cell line. The J7/TAX-50 cells display phenotypic traits which are associated with multidrug resistance. J7/TAX-50 is unstably resistant and must be maintained in the presence of taxol. Cells grown in the absence of taxol for 30 days revert to drug sensitivity, and the membrane phosphoglycoprotein is lost. In contrast, the return to a normal level of drug accumulation is prolonged and requires over 8 months of growth in the absence of taxol. To characterize further the parental, resistant and revertant cell lines, the major lipids have been analyzed by 2D-chromatography and HPLC. The steady-state level of phosphatidylcholine (PC) in J7/TAX-50 is greater than in the parental or revertant cell lines. Pulse-chase studies performed with 14 C-choline or 32 P-orthophosphate demonstrated an increase in the turnover of PC in J7/TAX-50. Analysis by gas chromatography/mass spectrometry of the composition of the major phospholipids indicated that fatty acids attached to the sn1- and 2-positions of PC are the same in the resistant and parental cell lines. These studies suggest that an increased level of PC in the membrane may be related to drug resistance and responsible for the prolonged decrease in steady-state drug association in J7/TAX-50 grown in the absence of taxol

  4. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  5. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    Full Text Available Yong-Wan Kim,1 Eun Young Kim,1 Doin Jeon,1 Juinn-Lin Liu,2 Helena Suhyun Kim,3 Jin Woo Choi,4 Woong Shick Ahn5 1Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea; 2Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA; 3Cancer Rehab Laboratory, RH Healthcare Systems Inc, TX, USA; 4Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA; 5Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea Abstract: Paclitaxel (Taxol resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the

  6. Subadditive interaction of radiation and taxol in vitro

    International Nuclear Information System (INIS)

    Ingram, Michael L.; Redpath, J. Leslie

    1997-01-01

    Purpose: To examine the dependency of Taxol-radiation interactions on the scheduling of the two agents. Methods and Materials: The human laryngeal squamous cell carcinoma line SCC20 was used for this study. Cells were irradiated as subconfluent cultures using Cs-137 gamma rays at a dose rate of 1.75 Gy/min. Cultures were pretreated with Taxol (7.5 nM for 12 h, S.F. 0.4) and then irradiated with graded doses followed by either immediate plating or holding for 6 h either in the absence or presence of 7.5 nM Taxol prior to plating for colony-forming ability. Experiments in which cells were irradiated and then exposed to 7.5 nM Taxol for both 12 and 18 h were also performed. Parallel-flow cytometric analyses of cell-cycle distribution of the various treated populations were carried out. Results: The results indicate that pretreatment with Taxol induced a G2 block which was maintained during 6 h postirradiation holding either in the presence or absence of Taxol. No modification of radiosensitivity in the low-dose region was seen for cells treated with Taxol, irradiated, and plated immediately, with the resulting survival being compatible with an additive effect. However, for Taxol-pretreated cells held for 6 h postirradiation, either in the absence or presence of Taxol, the resulting survival reproducibly demonstrated a marked less than additive effect. This was particularly prominent for cells held in the presence of Taxol. Subsequent experiments in which Taxol was added to cells immediately postirradiation again demonstrated a less than additive effect of the two modalities. Conclusion: The results of this study are consistent with a dual mechanism of action involving Taxol-induced radiation resistance, possibly as a consequence of postirradiation holding in G2, and radiation-induced Taxol resistance through an as-yet-undefined mechanism

  7. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro

    International Nuclear Information System (INIS)

    Ferreira, Paulo; Oliveira, Maria Jose; Beraldi, Eliana; Mateus, Ana Rita; Nakajima, Takashi; Gleave, Martin; Yokota, Jun; Carneiro, Fatima; Huntsman, David; Seruca, Raquel; Suriano, Gianpaolo

    2005-01-01

    Experimental evidence supports a role for E-cadherin in suppressing invasion, metastasis, and proliferation. Germline mutations of the E-cadherin represent the genetic cause of hereditary diffuse gastric cancer (HDGC). In this type of tumor, isolated cancer cells permeate the basal membrane and paradoxically survive in the gastric wall in the absence of contact with neighbor epithelial cells or with the extracellular matrix. This suggests that upon E-cadherin deregulation, cells acquired resistance to apoptosis. To test this hypothesis, CHO cells stably expressing either wild-type E-cadherin or the HDGC-related germline mutations T340A and V832M were seeded either on a thin layer of collagen type I or on plastic and then subjected to the apoptotic agent taxol. We found that in vitro functional E-cadherin renders cells more sensitive to the effect of taxol. Our results also indicate that this effect is associated to decreased level of the anti-apoptotic bcl-2 protein

  8. Driving p53 Response to Bax Activation Greatly Enhances Sensitivity to Taxol by Inducing Massive Apoptosis

    Directory of Open Access Journals (Sweden)

    Paola De Feudis

    2000-05-01

    Full Text Available The proapoptotic gene bax is one of the downstream effectors of p53. The p53 binding site in the bax promoter is less responsive to p53 than the one in the growth arrest mediating gene p21. We introduced the bax gene under the control of 13 copies of a strong p53 responsive element into two ovarian cancer cell lines. The clones expressing bax under the control of p53 obtained from the wild-type (wt p53-expressing cell line A2780 were much more sensitive (500- to 1000-fold to the anticancer agent taxol than the parent cell line, with a higher percentage of cells undergoing apoptosis after drug treatment that was clearly p53-dependent and bax-mediated. Xenografts established in nude mice from one selected clone (A2780/C3 were more responsive to taxol than the parental line and the apoptotic response of A2780/C3 tumors was also increased after treatment. Introduction of the same plasmid into the p53 null SKOV3 cell line did not alter the sensitivity to taxol or the induction of apoptosis. In conclusion, driving the p53 response (after taxol treatment by activating the bax gene rather than the p21 gene results in induction of massive apoptosis, in vitro and in vivo, and greatly enhances sensitivity to the drug.

  9. Darkness: A Crucial Factor in Fungal Taxol Production

    Directory of Open Access Journals (Sweden)

    Sameh S. M. Soliman

    2018-03-01

    Full Text Available Fungal Taxol acquired lots of attention in the last few decades mainly because of the hope that fungi could be manipulated more easily than yew trees to scale up the production level of this valuable anticancer drug. Several researchers have studied diverse factors to enhance fungal Taxol production. However, up to date fungal Taxol production has never been enhanced to the commercial level. We have hypothesized that optimization of fungal Taxol production may require clear understanding of the fungal habitat in its original host plant. One major feature shared by all fungal endophytes is that they are located in the internal plant tissues where darkness is prominent; hence here the effect of light on fungal Taxol production was tested. Incubation of Taxol-producing endophytic SSM001 fungus in light prior to inoculation in Taxol production culture media showed dramatic loss of Taxol accumulation, significant reduction in Taxol-containing resin bodies and reduction in the expression of genes known to be involved in Taxol biosynthesis. The loss of Taxol production was accompanied by production of dark green pigments. Pigmentation is a fungal protection mechanism which is photoreceptor mediated and induced by light. Opsin, a known photoreceptor involved in light perception and pigment production, was identified in SSM001 by genome sequencing. SSM001 opsin gene expression was induced by white light. The results from this study indicated that the endophytic fungus SSM001 required the dark habitat of its host plant for Taxol production and hence this biosynthetic pathway shows a negative response to light.

  10. In vitro therapy study combined with low doses of radiation (Rn-222) and chemotherapy (taxol)

    International Nuclear Information System (INIS)

    Soto, J.; Sainz, C.; Cos, S.; Gonzalez-Lamuno, D.

    2004-01-01

    A study was carried out to test the possibility that breast cancer cells show increased sensitivity to the chemotherapeutic agent taxol when they have been treated with low radiation doses from the gas radon. To this end, the cells were cultivated in a medium containing dissolved radon and then in a second medium containing a concentration of taxol. After the culture phase the surviving cells were counted and their viability was assessed. The results obtained indicate that the cells treated with low doses of radon exhibit increased sensitivity when treated with certain concentrations of taxol; in particular a lower survival rate and lower viability were observed in cells treated with radon and 50 nM of taxol in cells treated with the same concentration of taxol alone. These effects seem to result from the influence of the radon on the expression of apoptosis -related genes, which is complementary to the action of taxol on bcl-x related genes. (author)

  11. Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients

    DEFF Research Database (Denmark)

    Meier, Anders; Hadrup, Sine Reker; Svane, Inge Marie

    2005-01-01

    for immunotherapy of cancer. To identify HLA-A* 02.01 - restricted epitopes from TRAG-3, we screened cancer patients for spontaneous cytotoxic T-cell responses against TRAG-3 - derived peptides. The TRAG-3 protein sequence was screened for 9mer and 10mer peptides possessing HLA-A* 02.01 - binding motifs. Of 12......Expression of the cancer-testis antigen Taxol resistance - associated gene-3 (TRAG-3) protein is associated with acquired paclitaxel ( Taxol) resistance, and is expressed in various cancer types; e. g., breast cancer, leukemia, and melanoma. Thus, TRAG-3 represents an attractive target...... potential binders, 9 peptides were indeed capable of binding to the HLA-A* 02.01 molecule, with binding affinities ranging from strong to weak binders. Subsequently, lymphocytes from cancer patients ( 9 breast cancer patients, 12 melanoma patients, and 13 patients with hematopoietic malignancies) were...

  12. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  13. Isolation, Purification, and Identification of Taxol and Related Taxanes from Taxol-Producing Fungus Aspergillus niger subsp. taxi.

    Science.gov (United States)

    Li, Dan; Fu, Dongwei; Zhang, Yue; Ma, Xueling; Gao, Liguo; Wang, Xioahua; Zhou, Dongpo; Zhao, Kai

    2017-08-28

    The content of taxol in the bark of yews is very low, and this is not affordable from the environmental point of view. Thus, it is a necessity to look for alternative sources of taxol production to solve its supply. Currently, a large portion of the taxol in the market comes from chemical semi-synthesis, but the semi-synthetic precursors such as baccatin III and 10-deacetyl-baccatin III are extracted from needles and twigs of yew trees. Taxol-producing fungi as a renewable resource is a very promising way to increase the scale of taxol production. Our group has obtained a taxol-producing endophytic fungus, Aspergillus niger subsp. taxi HD86-9, to examine if A. niger can produce the taxanes. Six compounds from the fermentation broth of strain HD86-9 were isolated and identified by 1 H NMR, 13 C NMR, and ESI-MS. The results showed that the six compounds included four taxane diterpenoids (taxol, cephalomannine, baccatin III, and 10-deacetyl-baccatin III) and two non-taxane compounds (β-sitosterol and flavonoid isovitexin). The study verified that the taxanes can be produced by the A. niger , which is very important to taxol production via chemical semi-synthesis. Additionally, the finding is potentially very significant to solve the taxol semi-synthetic precursors extracted from needles and twigs of yew trees, and the precursor production can be easily increased through the culture condition optimization, genetic breeding, and metabolic engineering of the A. niger .

  14. A new taxol-producing fungus ( Pestalotiopsis malicola ) and ...

    African Journals Online (AJOL)

    A new taxol-producing fungus ( Pestalotiopsis malicola ) and evidence for taxol as a transient product in the culture. ... African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives.

  15. In vitro TAXOL production, by Pestalotiopsis breviseta--a first report.

    Science.gov (United States)

    Kathiravan, Govindarajan; Sri Raman, Vithiyanathan

    2010-09-01

    Coelomycetous fungi were screened for the production of TAXOL. TAXOL production of Pestalotiopsis breviseta fungi is confirmed by Ultra Violet (UV) spectroscopic analysis, Infra Red (IR) analysis, high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and LC-MASS spectroscopy. TAXOL isolated from the P. breviseta fungus was identical with authentic TAXOL and produces 0.064 mg/L (0.128% dry weight of fungal mat). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Taxol synthesis | Guo | African Journal of Biotechnology

    African Journals Online (AJOL)

    Being a complex diterpenoid, the potent anticancer drug, Taxol, requires complicated steps for its biosynthesis. In the present article, recent advances on Taxol biosynthesis pathway are reviewed, including many recently reported genes that regulate Taxol biosynthesis. To meet the urgent need of clinic and scientific ...

  17. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.

    Science.gov (United States)

    Lee, Yong Heon; Kingston, Anthony W; Helmann, John D

    2012-03-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.

  18. Taxol crystals can masquerade as stabilized microtubules.

    Directory of Open Access Journals (Sweden)

    Margit Foss

    Full Text Available Taxol is a potent anti-mitotic drug used in chemotherapy, angioplastic stents, and cell biology research. By binding and stabilizing microtubules, Taxol inhibits their dynamics, crucial for cell division, motility, and survival. The drug has also been reported to induce formation of asters and bundles composed of stabilized microtubules. Surprisingly, at commonly used concentrations, Taxol forms crystals that rapidly bind fluorescent tubulin subunits, generating structures with an uncanny resemblance to microtubule asters and bundles. Kinetic and topological considerations suggest that tubulin subunits, rather than microtubules, bind the crystals. This sequestration of tubulin from the subunit pool would be expected to shift the equilibrium of free to polymerized tubulin to disfavor assembly. Our results imply that some previously reported Taxol-induced asters or bundles could include or be composed of tubulin-decorated Taxol crystals. Thus, reevaluation of certain morphological, chemical, and physical properties of Taxol-treated microtubules may be necessary. Moreover, our findings suggest a novel mechanism for chemotherapy-induced cytotoxicity in non-dividing cells, with far-reaching medical implications.

  19. Schedule-dependent interaction of paclitaxel (taxol[reg]) and irradiation in vitro

    International Nuclear Information System (INIS)

    Plasswilm, Ludwig; Cordes, Nils

    1996-01-01

    Purpose/Objective: The optimal dose and schedule of paclitaxel in combination with irradiation has not been determined yet. The aim of our study was first to compare the in vitro cytotoxicity and enhancement of radiation sensitization as a function of single dose versus fractionated paclitaxel administration. Secondly the cytotoxicity of the solvent cremophor/ethanol alone was evaluated and compared to the effect of Taxol[reg]. Materials and Methods: A fibroblast cell line (B14) in exponential growth phase with a doubling time of approximately 12 hours was used. Untreated cells and cells treated with phosphate buffered saline (PBS) were plated and used as control. Single dose and fractionated irradiation of 0 to 20 Gy (2.2 Gy/min) was delivered to the cells. Cytotoxicity of Taxol[reg] was examined at concentrations varied from 2 to 50 nmol compared to aliquots of cremophor/ethanol. Single dose (1x10 nmol) versus fractionated (2 nmol/day, day 1 to day 5) administration of Taxol[reg] was investigated. The combination of Taxol[reg] plus irradiation as single dose and fractionated administration was accomplished with 10 nmol Taxol[reg] on day 1 plus 10 Gy irradiation on day 1 (single dose administration) versus Taxol[reg], 2 nmol/day, day 1 to day 5, plus irradiation, 2 Gy/day, day 1 to day 5 (fractionated administration). Taxol[reg] administration was always performed for a 3 hour period with a 1-hour and 9-hour interval between Taxol[reg] administration and irradiation. All experiments were repeated in the same schedule with single dose and fractional administration of cremophor/ethanol. The clonogenic assay was applied to determine cell survival. Flow cytometric measurements were performed to study cell cycle DNA distribution. Results: Untreated controls and PBS treated cells (single dose and fractionated schedule) demonstrate an average plating efficiency of 93%. Single dose Taxol[reg] (1x10 nmol) administration show an average clonogenic survival of 88% (cremophor

  20. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    International Nuclear Information System (INIS)

    Androic, Ilija; Krämer, Andrea; Yan, Ruilan; Rödel, Franz; Gätje, Regine; Kaufmann, Manfred; Strebhardt, Klaus; Yuan, Juping

    2008-01-01

    Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

  1. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    Science.gov (United States)

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. SELECTIVE C-2 AND C-4 DEACYLATION AND ACYLATION OF TAXOL - THE FIRST SYNTHESIS OF A C-4 SUBSTITUTED TAXOL ANALOG

    DEFF Research Database (Denmark)

    GEORG, GI; ALI, SM; BOGE, TC

    1994-01-01

    Hydrolytic procedures for selective 2-debenzoylation and 2,4-dideacylation of 2'-0-tert-butyldimethylsilyl-7-0-(triethylsilyl)taxol are reported. The first synthesis and biological evaluation of a 4-substituted analogue, 4-deacetyl-4-isobutanoyltaxol, is presented. The chemistry described in this...... in this letter is suitable for the facile synthesis of taxol congeners modified at C-2 and/or C-4....

  3. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  4. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  5. Creatine Kinase and Lactate Dehydrogenase Responses After Different Resistance and Aerobic Exercise Protocols

    Directory of Open Access Journals (Sweden)

    Callegari Gustavo A.

    2017-08-01

    Full Text Available The aim of this study was to investigate the responses of creatine kinase (CK and lactate dehydrogenase (LDH after performing different resistance and aerobic exercise protocols. Twelve recreationally trained men (age, 23.2 ± 5.6 years; body mass, 84.3 ± 9.3 kg; body height, 178.9 ± 4.5 cm; and BMI, 26.3 ± 2.3 kg·m2 volunteered to participate in this study. All subjects were randomly assigned to four experimental protocols (crossover: (a aerobic training at 60% of VO2max, (b aerobic training at 80% of VO2max, (c a resistance exercise (RE session with a bi-set protocol, and (d an RE session with a multiple sets protocol. Blood samples were collected before, immediately after and 24 hours following the experimental protocols. After 24 hours, there was a significant increase in CK for the 80% of VO2max protocol vs. the bi-set RE session (p = 0.016. Immediately after the protocols, we observed a significant increase in LDH among certain groups compared to others, as follows: multiple sets RE session vs. 60% of VO2max, bi-set RE session vs. 60% of VO2max, multiple sets RE session vs. 80% of VO2max, and bi-set RE session vs. 80% of VO2max (p = 0.008, p = 0.013; p = 0.002, p = 0.004, respectively. In conclusion, aerobic exercise performed at 80% of VO2max appears to elevate plasma CK levels more than bi-set RE sessions. However, the bi-set and multiple sets RE sessions appeared to trigger greater levels of blood LDH compared to aerobic protocols performed at 60% and 80% of VO2max.

  6. The chemistry and biology of the anticancer agent, taxol: A review ...

    African Journals Online (AJOL)

    Taxol, is conceivably the single most essential anticancer drug, today. It was first isolated in exceptionally low yield from the bark of the Western Yew, Taxus brevifolia. The clinical effectiveness of Taxol has impelled an incredible endeavor to obtain this intricate molecule synthetically. Owing to the chemical complication of ...

  7. Screening of potent anticancer drug taxol from Entophytic fungus ...

    African Journals Online (AJOL)

    Muthumary

    2011-02-21

    Feb 21, 2011 ... Isolation and detection of taxol, an anticancer drug produced from ... cancer cell line, taxol produced by the test fungus in MID culture medium was isolated for its .... then plotted on a graph. RESULTS AND ... Wavelength (nm).

  8. Paclitaxel-resistant HeLa cells have up-regulated levels of reactive oxygen species and increased expression of taxol resistance gene 1.

    Science.gov (United States)

    Bi, Wenxiang; Wang, Yuxia; Sun, Gaoying; Zhang, Xiaojin; Wei, Yongqing; Li, Lu; Wang, Xiaoyuan

    2014-07-01

    This study is to establish a paclitaxel (PTX)-resistant human cervical carcinoma HeLa cell line (HeLa/PTX) and to investigate its redox characteristics and the expression of taxol resistance gene 1 (Txr1). HeLa cells were treated with PTX and effects of PTX on cell proliferation were detected through cell counting and the MTT assay. Levels of cellular reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG) as well as the ratio of GSH to GSSG were measured by the 2,7-difluorescein diacetate (DCFH-DA) method and the 5,5'dithiobis(2-nitrobenzoic acid) (DTNB) method. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined by the nitrite formation method, the molybdate colorimetric method, and the DTNB colorimetric method, respectively. The level of Txr1 mRNA was determined by real-time PCR. Compared with the regular HeLa cells, HeLa/PTX cells were larger in size and had more cytoplasmic granules. The population doubling time for HeLa/PTX cells was 1.32 times of that of HeLa cells (PHeLa/PTX cells showed stronger resistance to PTX than HeLa cells with a resistance index of 122.69. HeLa/PTX cells had higher levels of ROS (PHeLa cells. HeLa/PTX cells, with higher levels of ROS and Txr1 mRNA expression, are more resistant to PTX than HeLa cells.

  9. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

    Science.gov (United States)

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.

  10. Greater taxol yield of fungus Pestalotiopsis hainanensis from dermatitic scurf of the giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Gu, Yu; Wang, Yanlin; Ma, Xiaoping; Wang, Chengdong; Yue, Guizhou; Zhang, Yuetian; Zhang, Yunyan; Li, Shanshan; Ling, Shanshan; Liu, Xiaomin; Wen, Xintian; Cao, Sanjie; Huang, Xiaobo; Deng, Junliang; Zuo, Zhicai; Yu, Shumin; Shen, Liuhong; Wu, Rui

    2015-01-01

    While taxol yields of fungi from non-animal sources are still low, whether Pestalotiopsis hainanensis isolated from the scurf of a dermatitic giant panda, Ailuropoda melanoleuca, provides a greater taxol yield remains unknown. The objective of the study was to determine the corresponding taxol yield. The structure of the taxol produced by the fungus was evaluated by thin layer chromatography (TLC), ultraviolet (UV) spectroscopy, high-performance liquid chromatography (HPLC), (1)H and (13)C nuclear magnetic resonance spectroscopy ((1)H-NMR and (13)C-NMR), and time-of-flight mass spectrometry (TOF-MS), with standard taxol as a control. The results demonstrated that the P. hainanensis fungus produced taxol, which had the same structure as the standard taxol and yield of 1,466.87 μg/L. This fungal taxol yield from the dermatitic giant panda was significantly greater than those of fungus from non-animal sources. The taxol-producing fungus may be a potential candidate for the production of taxol on an industrial scale.

  11. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi.

    Science.gov (United States)

    González, Laura; García-Huertas, Paola; Triana-Chávez, Omar; García, Gabriela Andrea; Murta, Silvane Maria Fonseca; Mejía-Jaramillo, Ana M

    2017-12-01

    The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole. © 2017 John Wiley & Sons Ltd.

  12. Effects of taxol and ionizing radiation on cytotoxicity and prostaglandin production in KB, RPMI-2650, SW-13 and L929

    International Nuclear Information System (INIS)

    Lee, Keon Il; Yoo, Dong Soo

    1998-01-01

    The author evaluated the effects of taxol, a microtubular inhibitor, as a possible radiation sensitizer and the production of prostaglandins on three human cancer cell lines (KB, RPMI-2650 and SW-13) and one murine cell line (L929). Each cell line was divided into four groups (control, taxol only, radiation only and combination of taxol and radiation). The treatment consisted of a single irradiation of 10 Gy and graded doses (5, 50, 100, 200, 300, 500 nM) of taxol for a 24-h period. The cytotoxicity of taxol alone was measured at 1 day after (1-day group) and 4 days after (4-day group) the treatment. The survival ratio of cell was analyzed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyl tetrazolium bromide) test. Prostaglandins (PGE2 and PGI2) were measured in the culture medium by a radioimmunoassay. The results obtained were as follows ; 1. There was a significantly in creased cytotoxicity of KB cells in 4-day group than those in 1-day group. There was a high correlation between doses of taxol and cell viability in both groups (1-day group R=0.82741, 4-day group R=0.84655). 2. There was a significantly increased cytotoxicity of RPMI-2650 cells treated with high concentration of taxol in 4-day group than those in 1-day group. Also there was a high correlation between doses of taxol and cell viability in 4-day group (R=0.93917). 3. There was a significantly increased cytotoxicity of SW-13 cell treated with high concentration of taxol in 4-day group than those in 1-day group. However no high correlation was observed between doses of taxol and cell viability in both groups (1-day group R=0.46362, 4-day group R=0.65425). 4. There was a significantly increased cytotoxicity of L929 cells treated with low concentration of taxol in 4-day group than those in 1-day group. At the same time, there was a low correlation between doses of taxol and cell viability in both groups (1-day group R=0.34237, 4-day group R=0.23381). 5. In 1-day group of L929 cells, higher

  13. Identification of a taxol-producing endophytic fungus EFY-36

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Morphological and molecular methods were used to identify the statues of an isolate, EFY-36, a taxol- ... of the spores. The analysis of endophytic fungus. 18S ribosome RNA sequence used PCR cloning technology. DNA was extracted by the CTAB method. ... of the fungal mycelium (magnification: 400 ×).

  14. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    International Nuclear Information System (INIS)

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-01-01

    Potassium tellurite (K 2 TeO 3 ) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  15. A simple and rapid method for the determination of taxol produced by fungal endophytes from medicinal plants using high performance thin layer chromatography.

    Science.gov (United States)

    Gangadevi, V; Muthumary, J

    2008-01-01

    Taxol is an important anticancer drug used widely in the clinical field. In this study, some endophytic fungi were isolated from selected medicinal plants, and were screened for their potential in the production of taxol, using a rapid separation technique of high performance thin layer chromatography (HPTLC). Of the 20 screened fungi, only 13 fungal species produced taxol in the artificial culture medium. The results of HPTLC showed that the 13 fungal species had identical ultraviolet (UV) characteristics, positive reactivity with a spray reagent, yielding a blue spot, which turned to dark gray after 24 hours, and had Rf values identical to that of the authentic taxol. The amount of taxol was also quantified by comparing the peak area and the peak height of the fungal samples with those of authentic taxol.

  16. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum.

    Science.gov (United States)

    Wang, Yong; Duan, Yabing; Wang, Jianxin; Zhou, Mingguo

    2015-09-01

    Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid-resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid-sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild-type strains, BR and GSM (SdhB gene in the wild-type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron-sulfur subunit of SDH. These results suggest that resistance based on non-conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  17. Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Kuo, H.-C.; Lee, H.-J.; Hu, C.-C.; Shun, H.-I; Tseng, T.-H.

    2006-01-01

    The potential use of low dose chemotherapy has been appealing since lower dosages are more attainable during cancer therapy and cause less toxicity in patients. Combination therapy of Taxol, a promising frontline chemotherapy agent, with natural anti-tumor agents that are considerably less toxic with a capability of activating additional apoptotic signals or inhibiting survival signals may provide a rational molecular basis for novel chemotherapeutic strategies. Esculetin, a well-known lipoxygenase inhibitor, showed an inhibitory effect on the cell cycle progression of HL-60 cells in our previous study. In this report, the effects of a concomitant administration of esculetin and Taxol were investigated in human hepatoma HepG2 cells. Firstly, esculetin alone could exert an antiproliferation effect together with an inhibitory effect on the activation of ERKs and p38 MAPK. As compared to the treatment with Taxol only, a co-administration with esculetin and Taxol could result in a further enhancement of apoptosis as revealed by DNA fragmentation assay and Annexin-V-based assay. Meanwhile, immunoblotting analysis also showed that the co-administration of esculetin and Taxol could increase the expression of Bax and the cytosolic release of cytochrome C and enhance the expression of Fas and Fas ligand while the activation of caspase-8 and caspase-3 was also increased. Finally, the ERK cascade was proven to be involved in the enhancement of esculetin on the Taxol-induced apoptosis

  18. Solvent optimization on Taxol extraction from Taxus baccata L., using HPLC and LC-MS

    Directory of Open Access Journals (Sweden)

    H Sadeghi-aliabadi

    2009-10-01

    Full Text Available "nBackground and the purpose of the study: Taxol, a natural antitumor agent, was first isolated from the extract of the bark of Taxus brevifolia Nutt., which is potentially a limited source for Taxol. In the search of an alternative source, optimum and cost benefit extracting solvents, various solvents with different percentage were utilized to extract Taxol from needles of Taxus baccata. "nMethods: One g of the dried needles of Taxus baccata, collected from Torkaman and Noor cities of Iran, was extracted with pure ethanol or acetone and 50% and 20% of ethanol or acetone in water. Solvents were evaporated to dryness and the residues were dissolved in 5 ml of methanol and filtered. To one ml of the filtrate was added 50 μl of cinamyl acetate as the internal standard and 20 μl of the resulting solution was subjected to the HPLC to determine the extraction efficiencies of tested solvents. Five μl of filtrate was also subjected to the LC-MS using water/acetonitrile (10/90 as mobile phase and applying positive electrospray ionization (ESI to identify the authenticity of Taxol. "nResults: Results of this study indicated that Taxol extraction efficiency was enhanced as the percentage of ethanol or acetone was increased. HPLC analysis showed that Taxol could be quantified by UV detection using standard curve. The standard curve covering the concentration ranges of 7.8 - 500 μg/ml was linear (r2= 0.9992 and CV% ranged from 0.52 to 15.36. LC-MS analysis using ESI in positive-ion mode confirmed the authenticity of Taxol (m/z 854; M+H, as well as some adduct ions such as M+Na (m/z 876, M+K (m/z 892 and M+CH3CN+H2O (m/z 913. "nConclusions: The results suggest that 100% acetone is the best solvent for the extraction of Taxol from Taxus baccata needles.

  19. Sensitivities of baseline isolates and boscalid-resistant mutants of Alternaria alternata from pistachio to fluopyram, penthiopyrad, and fluxapyroxad

    NARCIS (Netherlands)

    Avenot, H.F.; Biggelaar, van den H.; Morgan, D.P.; Moral, J.; Joosten, M.H.A.J.; Michailides, T.J.

    2014-01-01

    Resistance of Alternaria alternata to boscalid, the first succinate dehydrogenase inhibitor (SDHI) fungicide labeled on pistachio, has become a common occurrence in California pistachio orchards and affects the performance of this fungicide. In this study, we established the baseline sensitivities

  20. Cordyceps sinensis Health Supplement Enhances Recovery from Taxol-Induced Leukopenia

    OpenAIRE

    Liu, Wei-Chung; Chuang, Wei-Ling; Tsai, Min-Lung; Hong, Ji-Hong; McBride, William H.; Chiang, Chi-Shiun

    2008-01-01

    This study aimed to evaluate the ability of the health food supplement Cordyceps sinensis (CS) to ameliorate suppressive effects of chemotherapy on bone marrow function as a model for cancer treatment Mice were treated with Taxol (17 mg/kg body wt) one day before oral administration of a hot-water extract of CS (50 mg/kg daily) that was given daily for 3 weeks. White blood cell counts in peripheral blood of mice receiving Taxol were at 50% of normal levels on day 28 but had recovered complete...

  1. Structure of Dynamic, Taxol-Stabilized, and GMPPCP-Stabilized Microtubule.

    Science.gov (United States)

    Ginsburg, Avi; Shemesh, Asaf; Millgram, Abigail; Dharan, Raviv; Levi-Kalisman, Yael; Ringel, Israel; Raviv, Uri

    2017-09-14

    Microtubule (MT) is made of αβ-tubulin heterodimers that dynamically assemble into a hollow nanotube composed of straight protofilaments. MT dynamics is facilitated by hydrolysis of guanosine-5'-triphosphate (GTP) and can be inhibited by either anticancer agents like taxol or the nonhydrolyzable GTP analogues like GMPPCP. Using high-resolution synchrotron X-ray scattering, we have measured and analyzed the scattering curves from solutions of dynamic MT (in other words, in the presence of excess GTP and free of dynamic-inhibiting agents) and examined the effect of two MT stabilizers: taxol and GMPPCP. Previously, we have analyzed the structure of dynamic MT by docking the atomic model of tubulin dimer onto a 3-start left handed helical lattice, derived from the PDB ID 3J6F . 3J6F corresponds to a MT with 14 protofilaments. In this paper, we took into account the possibility of having MT structures containing between 12 and 15 protofilaments. MTs with 12 protofilaments were never observed. We determined the radii, the pitch, and the distribution of protofilament number that best fit the scattering data from dynamic MT or stabilized MT by taxol or GMPPCP. We found that the protofilament number distribution shifted when the MT was stabilized. Taxol increased the mass fraction of MT with 13 protofilaments and decreased the mass fraction of MT with 14 protofilaments. GMPPCP reduced the mass fraction of MT with 15 protofilaments and increased the mass fraction of MT with 14 protofilaments. The pitch, however, remained unchanged regardless of whether the MT was dynamic or stabilized. Higher tubulin concentrations increased the fraction of dynamic MT with 14 protofilaments.

  2. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, B.; Vendelbo, M.H.; Nielsen, Thomas Svava

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  3. Activation of acetyl-coenzyme A carboxylase is involved in Taxol-induced ovarian cancer cell death.

    Science.gov (United States)

    Wu, Jiang; Ji, Fang; DI, Wen; Chen, Hongduo; Wan, Yinsheng

    2011-05-01

    Acetyl-coenzyme A carboxylase (ACC) is an attractive target for research into the treatment of a variety of human diseases, including diabetes, obesity and cancer. Mounting evidence suggests that the inhibition of ACC induced of cancer cell apoptosis. However, whether the inhibition of ACC regulates apoptosis in CaOV3 cancer cells has yet to be addressed. This study investigated the cytotoxic mechanism of action of ACC inhibition. Results showed that 5-(tetradecyloxy)-2-furoic acid (TOFA), an ACC inhibitor, enhanced Taxol-induced CaOV3 human ovarian cancer cell apoptosis. Notably, when TOFA was administered as a monotherapy, it induced CaOV3 cell apoptosis. Pre-treatment with the EGFR inhibitor PD153035 was found to markedly enhance ACC phosphorylation, whereas AMP-activated protein kinase (AMPK) activator AICAR was found to marginally enhance ACC phosphorylation. Taken together, the data showed ACC is a potential novel molecular target of Taxol. Additionally, ACC inhibition partially contributed to the cytotoxic effect of Taxol in ovarian cancer cells.

  4. Isolation of Taxol-Producing Endophytic Fungi from Iranian Yew Through Novel Molecular Approach and Their Effects on Human Breast Cancer Cell Line.

    Science.gov (United States)

    Kasaei, Abdollah; Mobini-Dehkordi, Mohsen; Mahjoubi, Foruzandeh; Saffar, Behnaz

    2017-06-01

    Taxol or paclitaxel, an approved drug by the Food and Drug Administration, is being used for the treatment of human cancers. This study aimed to isolate and determine different species of native endophytic fungi from Iranian Taxus baccata (yew) plants located in the northern forests of Iran. To do so, a novel molecular screening approach was performed for 50 isolated endophytic fungi through amplification of exon No. 1 of taxadine synthase as a key gene in taxol production pathway. We used effective colony-polymerase chain reaction technique for rapid screening of potent taxol-producing fungi instead of genomic DNA extraction. Production of taxol was performed in batch culture by selected fungi individually and produced taxol was assayed quantitatively by high-performance liquid chromatography using standard taxanes. We found that only six fungi could produce taxol and baccatin III. Interestingly, after 7 days of incubation, the highest level of taxol was found to be 129 and that of baccatin 139.2 mg/kg dw for two native isolated Cladosporium sp. named F1 and F3. The fungal taxols could decrease cell viability in MTT assay same as commercial taxol. The fungal taxols semi-quantitatively showed antimitotic effects on MCF-7 cells as human breast cancer cell line. The expression of bcl-2 anti-apoptotic gene, in contrast to bax pro-apoptotic gene, significantly decreased after treatment by standard and fungal taxols. As fungal taxol was produced simpler than other methods and could significantly affect viability and specific genes expression profile, it is recommended that using of taxol-producing fungi from Iranian yew could be a safe and confident procedure to overcome challenges of using other methods.

  5. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    Science.gov (United States)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  6. An investigation of nitrile transforming enzymes in the chemo-enzymatic synthesis of the taxol sidechain.

    Science.gov (United States)

    Wilding, Birgit; Veselá, Alicja B; Perry, Justin J B; Black, Gary W; Zhang, Meng; Martínková, Ludmila; Klempier, Norbert

    2015-07-28

    Paclitaxel (taxol) is an antimicrotubule agent widely used in the treatment of cancer. Taxol is prepared in a semisynthetic route by coupling the N-benzoyl-(2R,3S)-3-phenylisoserine sidechain to the baccatin III core structure. Precursors of the taxol sidechain have previously been prepared in chemoenzymatic approaches using acylases, lipases, and reductases, mostly featuring the enantioselective, enzymatic step early in the reaction pathway. Here, nitrile hydrolysing enzymes, namely nitrile hydratases and nitrilases, are investigated for the enzymatic hydrolysis of two different sidechain precursors. Both sidechain precursors, an openchain α-hydroxy-β-amino nitrile and a cyanodihydrooxazole, are suitable for coupling to baccatin III directly after the enzymatic step. An extensive set of nitrilases and nitrile hydratases was screened towards their activity and selectivity in the hydrolysis of two taxol sidechain precursors and their epimers. A number of nitrilases and nitrile hydratases converted both sidechain precursors and their epimers.

  7. Molecular characterization of boscalid- and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram.

    Science.gov (United States)

    Avenot, Hervé F; Thomas, Anna; Gitaitis, Ronald D; Langston, David B; Stevenson, Katherine L

    2012-04-01

    Didymella bryoniae has a history of developing resistance to single-site fungicides. A recent example is with the succinate-dehydrogenase-inhibiting fungicide (SDHI) boscalid. In laboratory assays, out of 103 isolates of this fungus, 82 and seven were found to be very highly resistant (B(VHR) ) and highly resistant (B(HR) ) to boscalid respectively. Cross-resistance studies with the new SDHI penthiopyrad showed that the B(VHR) isolates were only highly resistant to penthiopyrad (B(VHR) -P(HR) ), while the B(HR) isolates appeared sensitive to penthiopyrad (B(HR) -P(S) ). In this study, the molecular mechanism of resistance in these two phenotypes (B(VHR) -P(HR) and B(HR) -P(S) ) was elucidated, and their sensitivity to the new SDHI fluopyram was assessed. A 456 bp cDNA amplified fragment of the succinate dehydrogenase iron sulfur gene (DbSDHB) was initially cloned and sequenced from two sensitive (B(S) -P(S) ), two B(VHR) -P(HR) and one B(HR) -P(S) isolate of D. bryoniae. Comparative analysis of the DbSDHB protein revealed that a highly conserved histidine residue involved in the binding of SDHIs and present in wild-type isolates was replaced by tyrosine (H277Y) or arginine (H277R) in the B(VHR) -P(HR) and B(HR) -P(S) variants respectively. Further examination of the role and extent of these alterations showed that the H/Y and H/R substitutions were present in the remaining B(VHR) -P(HR) and B(HR) -P(S) variants respectively. Analysis of the sensitivity to fluopyram of representative isolates showed that both SDHB mutants were sensitive to this fungicide as the wild-type isolates. The genotype-specific cross-resistance relationships between the SDHIs boscalid and penthiopyrad and the lack of cross-resistance between these fungicides and fluopyram should be taken into account when selecting SDHIs for gummy stem blight management. Copyright © 2011 Society of Chemical Industry.

  8. Production of CNT-taxol-embedded PCL microspheres using an ammonium-based room temperature ionic liquid: as a sustained drug delivery system.

    Science.gov (United States)

    Kim, Seong Yeol; Hwang, Ji-Young; Seo, Jae-Won; Shin, Ueon Sang

    2015-03-15

    We describe a one-pot method for the mass production of polymeric microspheres containing water-soluble carbon-nanotube (w-CNT)-taxol complexes using an ammonium-based room temperature ionic liquid. Polycaprolactone (PCL), trioctylmethylammonium chloride (TOMAC; liquid state from -20 to 240°C), and taxol were used, respectively, as a model polymer, room temperature ionic liquid, and drug. Large quantities of white colored PCL powder without w-CNT-taxol complexes and gray colored PCL powders containing w-CNT-taxol (1:1 or 1:2 wt/wt) complexes were produced by phase separation between the hydrophilic TOMAC and the hydrophobic PCL. Both microsphere types had a uniform, spherical structure of average diameter 3-5μm. The amount of taxol embedded in PCL microspheres was determined by HPLC and (1)H NMR to be 8-12μg per 1.0mg of PCL (loading capacity (LC): 0.8-1.2%; entrapment efficiency (EE): 16-24%). An in vitro HPLC release assay showed sustain release of taxol without an initial burst over 60days at an average rate of 0.003-0.0073mg per day. The viability patterns of human breast cancer cells (MCF-7) for PCTx-1 and -2 showed dose-dependent inhibitory effects. In the presence of PCTx-1 and -2, the MCF-7 cells showed high viability in the concentration level of, respectably, <70 and <5μg/mL. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine

    NARCIS (Netherlands)

    Sietsma, H; Veldman, Robert; Ausema, B; Nijhof, W; Kamps, W; Vellenga, E; Kok, JW

    In this study, we show that an inhibitor of glycosphingolipid biosynthesis, D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), increases the chemosensitivity of neuroblastoma tumor cells for Taxol and vincristine. At noneffective low doses of Taxol or vincristine, the addition of a

  10. Cordyceps sinensis health supplement enhances recovery from taxol-induced leukopenia.

    Science.gov (United States)

    Liu, Wei-Chung; Chuang, Wei-Ling; Tsai, Min-Lung; Hong, Ji-Hong; McBride, William H; Chiang, Chi-Shiun

    2008-04-01

    This study aimed to evaluate the ability of the health food supplement Cordyceps sinensis (CS) to ameliorate suppressive effects of chemotherapy on bone marrow function as a model for cancer treatment. Mice were treated with Taxol (17 mg/kg body wt) one day before oral administration of a hot-water extract of CS (50 mg/kg daily) that was given daily for 3 weeks. White blood cell counts in peripheral blood of mice receiving Taxol were at 50% of normal levels on day 28 but had recovered completely in mice treated with CS. In vitro assays showed that CS enhanced the colony-forming ability of both granulocyte macrophage colony forming unit (GM-CFU) and osteogenic cells from bone marrow preparations and promoted the differentiation of bone marrow mesenchymal stromal cells into adipocytes, alkaline phosphatase-positive osteoblasts, and bone tissue. This result could be attributed to enhanced expression of Cbfa1 (core binding factor a) and BMP-2 (bone morphogenetic protein) with concurrent suppression of ODF (osteoclast differentiation factor/RANK [receptor activator of NF-kappaB]) ligand. In summary, CS enhances recovery of mice from leukopenia caused by Taxol treatment. It appears to do so by protecting both hematopoietic progenitor cells directly and the bone marrow stem cell niche through its effects on osteoblast differentiation.

  11. STABILITY AND COMPATIBILITY OF TAXOL WITH VARIOUS DRUGS DURING SIMULATED Y-SITE ADMINISTRATION

    Directory of Open Access Journals (Sweden)

    JIN PIL BURM

    2005-01-01

    Full Text Available This study evaluates the compatibility and stability of Taxol with ondansetron, ranitidine, vancomycin and cephalosporins in 5% dextrose injection and 0.9% sodium chloride injection during simulated Y-site administration. Two stock solutions of Taxol 0.3 and 1.2 mg/mL and each stock solutions of ondansetron 0.03, 0.1 and 0.3 mg/mL, ranitidine 0.5 and 2 mg/mL, vancomycin 1, 5 and 10 mg/mL and cephalosporins 20 mg/mL were prepared in glass bottles. Two mL of Taxol stock solution was mixed with 2 mL of each stock solution. Samples were removed at room temperature at time zero, one, two, four and 12 hours for immediate assay. Taxol concentrations were analyzed by High Performance Liquid Chromatography. All solutions were prepared in triplicate, and each drug was assayed in duplicate. At the time of sampling assay and before any dilution, each sample was visually inspected for clarity, color and precipitation. The pH was also determined. Taxol in concentrations of 0.3 and 1.2 mg/mL was stable when mixed with either ondansetron (0.03, 0.1 or 0.3 mg/mL, as the hydrochloride salt, ranitidine (0.5 or 2.0 mg/mL, as the hydrochloride salt, vancomycin (1, 5 or 10 mg/mL, as the hydrochloride salt or cephalosporins 20 mg/mL and stored in glass containers for 12 hours. No precipitates, color changes, or haziness was seen. The changes in pH were minor.

  12. Treatment of mice with a novel antineoplastic agent taxol before irradiation increases the frequency of micronuclei in the bone marrow

    International Nuclear Information System (INIS)

    Jagetia, Ganesh Chandra; Nayak, Vijayashree

    1995-01-01

    The frequency of micronucleated polychromatic erythrocytes (MPCE) and the normochromatic erythrocytes (MNCE) and polychromatic and normochromatic erythrocyte ratio (P/N ratio) was studied at 12, 24 and 36 h postirradiation in the bone marrow of male mice treated or not with taxol before exposure to 0-4 Gy of 60 Co gamma radiation. The frequency of MPCE increased with the increase in radiation dose in a dose-related manner in the irradiated control group. A peak frequency of MPCE was observed at 24 h postirradiation in irradiated control group. The pattern of increase in MNCE was similar to that of MPCE except that a highest number of MNCE was scored at 36 h postirradiation. Taxol administration to animals before irradiation resulted in a significant elevation in the frequency of MPCE and MNCE at all the postirradiation time periods studied. This increase was dose related as observed in the irradiated control group. Irradiation resulted in a dose-dependent decline in the P/N ratio at all the postirradiation time periods studied. The P/N ratio was significantly lower in the taxol+irradiated group compared to the irradiated control group at all postirradiation time periods. A maximum decline in P/N ratio was observed at 36 h postirradiation for both irradiated control and taxol+irradiated groups. The dose response for MPCE, MNCE and P/N ratio was linear quadratic for both the irradiated and taxol+irradiated groups

  13. Lack of relationship between 11 beta-hydroxysteroid dehydrogenase setpoint and insulin sensitivity in the basal state and after 24h of insulin infusion in healthy subjects and type 2 diabetic patients

    NARCIS (Netherlands)

    Kerstens, MN; Riemens, SC; Sluiter, WJ; Pratt, JJ; Wolthers, BG; Dullaart, RPF

    OBJECTIVES To test whether insulin resistance in type 2 diabetes mellitus is associated with an altered overall setpoint of the 11 beta-hydroxysteroid dehydrogenase (11 beta HSD) mediated cortisol to cortisone interconversion towards cortisol, and to evaluate whether changes in insulin sensitivity

  14. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    Science.gov (United States)

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  15. Isolation of taxol, an anticancer drug produced by the endophytic ...

    African Journals Online (AJOL)

    IR), nuclear magnetic resonance (NMR), liquid chromatography–mass spectrometry (LC-MS); and chromatographic: thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) methods of analysis. The taxol ...

  16. Optimized integration of T-DNA in the taxol-producing fungus ...

    African Journals Online (AJOL)

    We previously reported a taxol-producing fungus Pestalotiopsis malicola. There, we described the transformation of the fungus mediated by Agrobacterium tumefaciens. T-DNA carrying the selection marker was transferred into the fungus and randomly integrated into the genome as shown by Southern blotting.

  17. Increased anaerobic metabolism is a distinctive signature in a colorectal cancer cellular model of resistance to antiepidermal growth factor receptor antibody.

    Science.gov (United States)

    Monteleone, Francesca; Rosa, Roberta; Vitale, Monica; D'Ambrosio, Chiara; Succoio, Mariangela; Formisano, Luigi; Nappi, Lucia; Romano, Maria Fiammetta; Scaloni, Andrea; Tortora, Giampaolo; Bianco, Roberto; Zambrano, Nicola

    2013-03-01

    Cetuximab is a chimeric antibody approved for the treatment of metastatic colorectal cancer that selectively targets epidermal growth factor receptor (EGFR) signaling. Treatment efficacy with this drug is often impaired by acquired resistance and poor information has been accumulated on the mechanisms underlying such a phenomenon. By taking advantage of a syngenic cellular system of sensitivity and acquired resistance to anti-EGFR therapy in the colorectal carcinoma GEO cell line, we profiled protein expression differences between Cetuximab-sensitive and -resistant cells. Combined 2D DIGE and MS analyses revealed a main proteomic signature resulting from selective deregulation of various metabolic enzymes, including glucose-6-phosphate dehydrogenase, transketolase, lactate dehydrogenase B, and pyruvate dehydrogenase E1, which was also confirmed by Western blotting experiments. Lactate dehydrogenase B downregulation has been already related to an increased anaerobic utilization of glucose by tumor cells; accordingly, we verified that Cetuximab-resistant cells have a significantly higher production of lactate. Resistant cells also showed decreased nicotinamide adenine dinucleotide phosphate (NADPH) levels. Observed protein deregulations were not related to functional alterations of the hypoxia-inducible factor 1-associated pathways. Our data demonstrate that increased anaerobic metabolism is a prominent feature observed in the GEO syngenic model of acquired resistance to anti-EGFR therapy in colorectal cancer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A highly selective biosensor with nanomolar sensitivity based on cytokinin dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Faming Tian

    Full Text Available We have developed a N6-dimethylallyladenine (cytokinin dehydrogenase-based microbiosensor for real-time determination of the family of hormones known as cytokinins. Cytokinin dehydrogenase from Zea mays (ZmCKX1 was immobilised concurrently with electrodeposition of a silica gel film on the surface of a Pt microelectrode, which was further functionalized by free electron mediator 2,6-dichlorophenolindophenol (DCPIP in supporting electrolyte to give a bioactive film capable of selective oxidative cleavage of the N6- side chain of cytokinins. The rapid electron shuffling between freely diffusible DCPIP and the FAD redox group in ZmCKX1 endowed the microbiosensor with a fast response time of less than 10 s. The immobilised ZmCKX1 retained a high affinity for its preferred substrate N6-(Δ2-isopentenyl adenine (iP, and gave the miniaturized biosensor a large linear dynamic range from 10 nM to 10 µM, a detection limit of 3.9 nM and a high sensitivity to iP of 603.3 µAmM-1cm-2 (n = 4, R2 = 0.9999. Excellent selectivity was displayed for several other aliphatic cytokinins and their ribosides, including N6-(Δ2-isopentenyl adenine, N6-(Δ2-isopentenyl adenosine, cis-zeatin, trans-zeatin and trans-zeatin riboside. Aromatic cytokinins and metabolites such as cytokinin glucosides were generally poor substrates. The microbiosensors exhibited excellent stability in terms of pH and long-term storage and have been used successfully to determine low nanomolar cytokinin concentrations in tomato xylem sap exudates.

  19. Chemo-enzymatic Synthesis of Propionyl-ester-linked Taxol-monosaccharide Conjugate and its Drug Delivery System Using Hybrid-Bio-nanocapsules Targeting Brain Glioma Cells

    Directory of Open Access Journals (Sweden)

    Hiroki Hamada

    2013-01-01

    Full Text Available Taxol is recognized as one of the most potent anticancer agents used in the treatment of breast and ovarian cancers, which are common cancers in women. To overcome its shortcomings, that is, its low water-solubility that reduces drug loading capacity of DDS carriers when incorporating taxol, chemo-enzymatic synthesis of ester-linked taxol-glucose conjugate, i.e., 7-propionyltaxol 2′- O -α-D-glucoside, as a water soluble taxol prodrug was achieved by using a-glucosidase as a glucosylation catalyst. The water-solubility of 7-propionyltaxol 2′- O -α-D-glucoside (25 mM was 63 fold higher than that of taxol (0.4 mM. The pre-S1 peptide which displays on the surface of bio-nanocapsules, which are nanoparticles composed of the hepatitis B virus surface antigen, was replaced with the antibody affinity motif of protein A. Conjugation of such bio-nanocapsules with anti-human epidermal growth factor receptor antibody gave hybrid bio-nanocapsules. The hybrid bio-nanocapsules were effective for delivering 7-propionyltaxol 2′- O -α-D-glucoside to human brain glioma cells. 7-Propionyltaxol 2′- O -α-D-glucoside was effectively hydrolyzed to give taxol in 95% by human glioma cells. The drug loading capacity of hybrid bio-nanocapsules incorporating 7-propionyltaxol 2′- O -α-D-glucoside was 120 times higher than that incorporating taxol itself.

  20. Bioreactor engineering as an enabling technology to tap biodiversity. The case of taxol.

    Science.gov (United States)

    Shuler, M L

    1994-11-30

    One barrier to exploiting the chemical and genetic diversity in nature is the difficulty of cultivating many organisms in a controlled manner. In some cases it is difficult to achieve growth. In many others, good growth is achieved, but the expression of the organism's genetic potential to make a desired product is not realized. The thesis of this paper is that a coupling of an understanding of reactor engineering principles with the basic knowledge of the biology is often necessary to circumvent these barriers. In many cases the construction of appropriate cultivation systems is a necessary step to better understanding of cellular physiology. In some cases the chemical of interest is of high social utility and comes from a natural source that is uncommon and difficult to secure. In these cases a method of controlled cultivation becomes a prerequisite for commercial exploitation. These points were illustrated using a taxol. Taxol is an important new anticancer drug whose development has been greatly impeded by supply problems. Taxol has been derived from the park of the pacific yew tree, a process that kills the tree. The pacific yew is a relatively uncommon tree and very slow growing. One alternative to the natural source is plant cell culture. Such cultures can produce significant levels of taxol with substantial release into the medium. Taxane products not observed in typical extracts from field-grown plants can be found in cell cultures, indicating the potential unmasking of pathways. These cultures are quite responsive to changes in their environments as illustrated by the summary of initial observations. With regard to natural compounds, biochemical engineers can play a major role in the capture and preservation of producing systems, in the discovery of useful compounds, and in providing the basis for commercial production of natural compounds.

  1. Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells.

    Science.gov (United States)

    Zhou, Kairui; Shi, Xiaoli; Huo, Jinling; Liu, Weihua; Yang, Dongxiao; Yang, Tengjiao; Qin, Tiantian; Wang, Cong

    2017-08-01

    Drug resistance and metastasis significantly hinder chemotherapy and worsen prognoses in cancer. Bone morphogenetic protein 4 (BMP4) belongs to the TGF-β superfamily, has broad biological activities in cell proliferation and cartilage differentiation and is also able to induce migration and invasion. Herein, we investigated the role of BMP4 in the regulation of metastasis in paclitaxel-resistant human esophageal carcinoma EC109 cells (EC109/Taxol) and docetaxel-resistant human gastric cancer MGC803 cells (MGC/Doc). In these drug-resistant cell lines, we found the cell motility was enhanced and BMP4 was up-regulated relative to their respective parental cell lines. Consistent with in vitro assays, migration potential and BMP4 expression were increased in EC109/Taxol nude mice. Furthermore, to address whether BMP4 was required to enhance the metastatic in EC109/Taxol cells, the pharmacological inhibitor of BMP signaling dorsomorphin was used; meanwhile, we found that the migration and invasion abilities were inhibited. Moreover, the canonical Smad signaling pathway was investigated. Overall, our studies demonstrated that BMP4 participates in the regulation of invasion and migration by EC109/Taxol cells, and inhibition of BMP4 may be a novel strategy to interfere with metastasis in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Differences between the succinate dehydrogenase sequences of isopyrazam sensitive Zymoseptoria tritici and insensitive Fusarium graminearum strains.

    Science.gov (United States)

    Dubos, Tiphaine; Pasquali, Matias; Pogoda, Friederike; Casanova, Angèle; Hoffmann, Lucien; Beyer, Marco

    2013-01-01

    Forty-one Zymoseptoria tritici strains isolated in Luxembourg between 2009 and 2010 were highly sensitive towards the new succinate dehydrogenase inhibitor (SDHI) isopyrazam, with concentrations inhibiting fungal growth by 50% (EC50) ranging from 0.0281 to 4.53μM, whereas 41 Fusarium graminearum strains isolated in Europe and Northern America between 1969 and 2009 were insensitive with the average rate of inhibition converging towards 28% with increasing isopyrazam concentration. Seven isolates of both species covering the range of isopyrazam sensitivities observed in the present study were selected for the sequencing of the subunits B, C and D of the succinate dehydrogenase (sdh) gene. Predicted sdh amino acid sequences of subunits B, C and D were identical among F. graminearum strains. By comparing with fungal strains where resistance towards SDHIs was previously reported, three variations were unique to F. graminearum; B-D130N located in the iron-sulfur cluster [2Fe-2S], B-A275T located in the [3Fe-4S] cluster and an additional S at amino acid position 83-84 of sdhC, probably modifying structurally the ubiquinone binding site and therefore the biological activity of the fungicide. No variation was found among the Z. tritici strains in subunits B and D. Two variations were observed within the subunit C sequences of Z. tritici strains: C-N33T and C-N34T. The difference in EC50 values between Z. tritici strains with the NN and TT configuration was non-significant at P=0.289. Two outliers in the Z. tritici group with significantly higher EC50 values that were not related to mutations in the sdhB, sdhC, or sdhD were detected. The role of isopyrazam for the control of F. graminearum and Z. tritici in Luxembourg is discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Polarization sensitive behaviour of the band-edge transitions in ReS2 and ReSe2 layered semiconductors

    International Nuclear Information System (INIS)

    Ho, C H; Lee, H W; Wu, C C

    2004-01-01

    The polarization sensitive behaviour of the band-edge transitions in ReS 2 and ReSe 2 layered compounds was studied using polarized-transmission and polarized-thermoreflectance (PTR) measurements with polarization angles from θ = 0 deg. (Evector parallel b-axis) to θ = 90 deg. (Evector perpendicular b-axis) at 300 K. The polarization dependence of the polarized energy gaps of ReS 2 and ReSe 2 shows a sinusoidal-like variation with respect to the angular change of the linearly polarized light. The angular dependences of the polarized energy gaps of ReS 2 and ReSe 2 were evaluated. The polarization sensitive behaviour of the band-edge excitons in rhenium disulfide and diselenide was characterized using angular dependent PTR measurements from θ = 0 deg. to 90 deg. The polarized transition intensities of the band-edge excitons (E 1 ex and E 2 ex ) of ReX 2 (X = S, Se) demonstrate a sinusoidal variation with respect to the angular change of the linearly polarized light. The angular dependence of the polarized transition probabilities of E 1 ex and E 2 ex is analysed. The polarization sensitive behaviours of ReX 2 (X = S, Se) layers are discussed

  4. Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP.

    Science.gov (United States)

    Wei, Yunyan; Wu, Shuangshuang; Xu, Wei; Liang, Yan; Li, Yue; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Cisplatin is the standard first-line chemotherapeutic agent for the treatment of non-small cell lung cancer (NSCLC). However, resistance to chemotherapy has been a major obstacle in the management of NSCLC. Aldehyde dehydrogenase 1A1 (ALDH1A1) overexpression has been observed in a variety of cancers, including lung cancer. The purpose of this study was to investigate the effect of ALDH1A1 expression on cisplatin resistance and explore the mechanism responsible. Reverse transcriptase-PCR was applied to measure the messenger RNA expression of ALDH1A1, while Western blot assay was employed to evaluate the protein expression of ALDH1A1, B-cell lymphoma 2, Bcl-2-like protein 4, phospho-protein kinase B (p-AKT) and AKT. A short hairpin RNA was used to knockdown ALDH1A1 expression. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effect of ALDH1A1 decrease on cell viability. The cell apoptotic rate was tested using flow cytometry assay. ALDH1A1 is overexpressed in cisplatin resistant cell line A549/DDP, compared with A549. ALDH1A1 depletion significantly decreased A549/DDP proliferation, increased apoptosis, and reduced cisplatin resistance. In addition, the phosphoinositide 3-kinase (PI3K) / AKT pathway is activated in A549/DDP, and ALDH1A1 knockdown reduced the phosphorylation level of AKT. Moreover, the combination of ALDH1A1-short hairpin RNA and PI3K/AKT pathway inhibitor LY294002 markedly inhibited cell viability, enhanced apoptotic cell death, and increased cisplatin sensitivity. These results suggest that ALDH1A1 depletion could reverse cisplatin resistance in human lung cancer cell line A549/DDP, and may act as a potential target for the treatment of lung cancers resistant to cisplatin. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    Science.gov (United States)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-09-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 °C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 °C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation.

  6. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    International Nuclear Information System (INIS)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-01-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 o C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 o C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D 10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D 10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation

  7. Nano-Ionic Solid State Resistive Memories (Re-RAM): A Review.

    Science.gov (United States)

    Sahoo, Satyajeet; Prabaharan, S R S

    2017-01-01

    Nano-ionic devices based on modest to fast ion conductors as active materials intrigued a revolution in the field of nano solid state resistive memories (the so-called Re-RAM) ever since HP labs unveiled the first solid state memristor device based on titanium dioxide (TiO2). This has brought impetus to the practical implementation of fourth missing element called “Memristor” correlating charge (q) and flux (φ) based on the conceptual thought by Chua in 1971 completing a missing gap between the passive electronic components (R, C and L). It depicts various functional features as memory element in terms of ionic charge transport in solid state by virtue of external electric flux variations. Consequently, a new avenue has been found by manipulating the ionic charge carriers creating a fast switching resistive random access memory (Re-RAM) or the so-called Memristors. The recent research has led to low power, faster switching speed, high endurance and high retention time devices that can be scaled down the order of few nanometers dimension and the 3D stacking is employed that significantly reduces the die area. This review is organized to provide the progress hitherto accomplished in the materials arena to make memristor devices with respect to current research attempts, different stack structures of ReRAM cells using various materials as well as the application of memristive system. Different synthesis approaches to make nano-ionic conducting metal oxides, the fabrication methods for ReRAM cells and its memory performance are reviewed comprehensively.

  8. Overcoming cetuximab resistance in Ewing's sarcoma by inhibiting lactate dehydrogenase-A.

    Science.gov (United States)

    Fu, Jiaxin; Jiang, Han; Wu, Chenxuan; Jiang, Yi; Xiao, Lianping; Tian, Yonggang

    2016-07-01

    Ewing's sarcoma, the second most common type of malignant bone tumor, generally occurs in children and young adults. The current treatment of Ewing's sarcoma comprises systemic anti‑cancer chemotherapy with complete surgical resection. However, the majority of patients with Ewing's sarcoma develop resistance to chemotherapy. The present study revealed an oncogenic role of lactate dehydrogenase‑A (LDHA) in the resistance of Ewing's sarcoma to cetuximab. LDHA was shown to be upregulated at the protein and mRNA level in cetuximab‑resistant Ewing's sarcoma tissues and a cell line. In addition, a link between LDHA‑induced glycolysis and cetuximab resistance in Ewing's sarcoma cells was revealed. Of note, inhibition of LDHA by either small interfering RNA or LDHA inhibitor oxamate significantly re‑sensitized cetuximab‑resistant cells to cetuximab. Combined treatment with LDHA inhibitor and cetuximab synergistically reduced the viability of cetuximab-resistant cells through the suppression of LDHA. The present study revealed a novel mechanism of cetuximab resistance from the perspective of cancer‑cell metabolism and provided a sensitization approach, which may aid in the development of anti-chemoresistance strategies for the treatment of cetuximab-resistant Ewing's sarcoma.

  9. Abnormal muscle afferent function in a model of Taxol chemotherapy-induced painful neuropathy

    OpenAIRE

    Chen, Xiaojie; Green, Paul G.; Levine, Jon D.

    2011-01-01

    Despite muscle pain being a well-described symptom in patients with diverse forms of peripheral neuropathy, the role of neuropathic mechanisms in muscle pain have received remarkably little attention. We have recently demonstrated in a well-established model of chemotherapy-induced painful neuropathy (CIPN) that the anti-tumor drug paclitaxel (Taxol) produces mechanical hyperalgesia in skeletal muscle, of similar time course to and with shared mechanism with cutaneous symptoms. In the present...

  10. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  11. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Myocardial Insulin Resistance and Endoplasmic Reticulum Stress

    OpenAIRE

    Li, Shi-Yan; Gilbert, Sara A.B.; Li, Qun; Ren, Jun

    2009-01-01

    Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken β-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 wks. Cell shorteni...

  12. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    DEFF Research Database (Denmark)

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non-diab......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  13. Effects of dimethylsulfoxide (DMSO), nocodazole, and taxol on mast cell histamine secretion

    DEFF Research Database (Denmark)

    Nielsen, E H; Johansen, Torben

    1986-01-01

    Nocodazole depolymerized microtubules and increased the number of microfilaments, and dimethylsulfoxide increased the number of microfilaments. Both drugs inhibited compound 48/80-induced histamine release from rat mast cells. Taxol, which increased the number of microtubules, had no effect on hi...

  14. An Asymmetric Synthetic Approach to the A-ring of the Taxol Family of Anti-Cancer Compounds

    Directory of Open Access Journals (Sweden)

    M. L. Marin

    1998-02-01

    Full Text Available A synthetic route developed for the preparation of the A-ring of Taxol family of molecules is reported. By means of an intramolecular Diels-Alder reaction an asymmetric approach to this ring has been accomplished. Also, initial studies to prepare the A ring using an intramolecular Diels-Alder reaction have been successful.

  15. Damage-recognition proteins as a potential indicator of DNA-damage-mediated sensitivity or resistance of human cells to ultraviolet radiation

    International Nuclear Information System (INIS)

    Chao, C.C.-K.

    1992-01-01

    The authors compared damage-recognition proteins in cells expressing different sensitivities to DNA damage. An increase in damage-recognition proteins and an enhancement of plasmid re-activation were detected in HeLa cells resistant to cisplatin and u.v. However, repair-defective cells derived from xeroderma-pigmentosum (a rare skin disease) patients did not express less cisplatin damage-recognition proteins than repair-competent cells, suggesting that damage-recognition-protein expression may not be related to DNA repair. By contrast, cells resistant to DNA damage consistently expressed high levels of u.v.-modified-DNA damage-recognition proteins. The results support the notion that u.v. damage-recognition proteins are different from those that bind to cisplatin. Findings also suggest that the damage-recognition proteins identified could be used as potential indicators of the sensitivity or resistance of cells to u.v. (author)

  16. Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis.

    Science.gov (United States)

    Zhang, Meng; Chen, Ying; Nie, Lin; Jin, Xiaofei; Liao, Weifang; Zhao, Shengying; Fu, Chunhua; Yu, Longjiang

    2018-03-26

    WRKY, a plant-specific transcription factor family, plays important roles in pathogen defense, abiotic cues, phytohormone signaling, and regulation of plant secondary metabolism. However, little is known about the roles, functions, and mechanisms of WRKY in taxane biosynthesis in Taxus spp. In this study, 61 transcripts were identified from Taxus chinensis transcriptome datasets by using hidden Markov model search. All of these transcripts encoded proteins containing WRKY domains, which were designated as TcWRKY1-61. After phylogenetic analysis of the WRKY domains of TcWRKYs and AtWRKYs, 16, 8, 10, 14, 5, 7, and 1 TcWRKYs were cladded into Group I, IIa-IIe, and III, respectively. Then, six representative TcWRKYs were selected to classify their effects on taxol biosynthesis. After MeJA (methyl jasmonate acid) and SA (salicylic acid) treatments, all of the six TcWRKYs were upregulated by MeJA treatment. TcWRKY44 (IId) and TcWRKY47 (IIa) were upregulated, whereas TcWRKY8 (IIc), TcWRKY20 (III), TcWRKY26 (I), TcWRKY41 (IIe), and TcWRKY52 (IIb) were downregulated by SA treatment. Overexpression experiments showed that the six selected TcWRKYs exerted different effects on taxol biosynthesis. In specific, TcWRKY8 and TcWRKY47 significantly improved the expression levels of taxol-biosynthesis-related genes. Transcriptome-wide identification of WRKY factors in Taxus not only enhances our understanding of plant WRKY factors but also identifies candidate regulators of taxol biosynthesis.

  17. Resistance risk assessment within herbicide authorisation--a call for sensitivity data.

    Science.gov (United States)

    Ulber, Lena; Nordmeyer, Henning; Zwerger, Peter

    2013-02-01

    In most European countries, the risk of herbicide resistance is assessed as part of the authorisation of herbicides in accordance with EPPO Standard PP 1/213(2). Because the susceptibility of weed populations to a certain herbicide may vary greatly, one part of resistance risk assessment is the testing for sensitivity variation among different populations of target weed species with a high resistance risk. This paper emphasises the importance of sensitivity data provision with regard to the recent EU Regulation (EC) 1107/2009 concerning the placing of plant protection products on the market and outlines the main technical requirements for sensitivity data. A useful principle is that sensitivity data should be provided for all herbicides with a high resistance risk regardless of whether resistance has already evolved against the herbicidal substance. Methodical details regarding the generation of sensitivity data are discussed, together with remaining questions that will need to be addressed if a harmonised assessment of herbicide resistance risk is to be achieved. Copyright © 2012 Society of Chemical Industry.

  18. 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors.

    LENUS (Irish Health Repository)

    Yan, Min

    2009-06-09

    Pharmacologic inhibitors of the prostaglandin-synthesizing COX-2 oncogene prevent the development of premalignant human colon adenomas. However, resistance to treatment is common. In this study, we show that the adenoma prevention activity of the COX-2 inhibitor celecoxib requires the concomitant presence of the 15-hydroxyprostaglandin dehydrogenase (15-PGDH) tumor suppressor gene, and that loss of 15-PGDH expression imparts resistance to celecoxib\\'s anti-tumor effects. We first demonstrate that the adenoma-preventive activity of celecoxib is abrogated in mice genetically lacking 15-PGDH. In FVB mice, celecoxib prevents 85% of azoxymethane-induced tumors >1 mm in size, but is essentially inactive in preventing tumor induction in 15-PGDH-null animals. Indeed, celecoxib treated 15-PGDH null animals develop more tumors than do celecoxib naive WT mice. In parallel with the loss of tumor prevention activity, celecoxib-mediated suppression of colonic PGE(2) levels is also markedly attenuated in 15-PGDH-null versus WT mice. Finally, as predicted by the murine models, humans with low colonic 15-PGDH levels also exhibit celecoxib resistance. Specifically, in a colon adenoma prevention trial, in all cases tested, individuals who developed new adenomas while receiving celecoxib treatment were also found as having low colonic 15-PGDH levels.

  19. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  20. Cisplatinum and Taxol Induce Different Patterns of p53 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Giovanna Damia

    2001-01-01

    Full Text Available Posttranslational modifications of p53 induced by two widely used anticancer agents, cisplatinum (DDP and taxol were investigated in two human cancer cell lines. Although both drugs were able to induce phosphorylation at serine 20 (Ser20, only DDP treatment induced p53 phosphorylation at serine 15 (Ser15. Moreover, both drug treatments were able to increase p53 levels and consequently the transcription of waf1 and mdm-2 genes, although DDP treatment resulted in a stronger inducer of both genes. Using two ataxia telangiectasia mutated (ATM cell lines, the role of ATM in druginduced p53 phosphorylations was investigated. No differences in drug-induced p53 phosphorylation could be observed, indicating that ATM is not the kinase involved in these phosphorylation events. In addition, inhibition of DNA-dependent protein kinase activity by wortmannin did not abolish p53 phosphorylation at Ser15 and Ser20, again indicating that DNA-PK is unlikely to be the kinase involved. After both taxol and DDP treatments, an activation of hCHK2 was found and this is likely to be responsible for phosphorylation at Ser20. In contrast, only DDP was able to activate ATR, which is the candidate kinase for phosphorylation of Ser15 by this drug. This data clearly suggests that differential mechanisms are involved in phosphorylation and activation of p53 depending on the drug type.

  1. A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi

    Directory of Open Access Journals (Sweden)

    Mortensen Uffe H

    2011-09-01

    Full Text Available Abstract Background Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA, an immunosuppressant molecule produced by several Penicillium species. The target of MPA is inosine-5'-monophosphate dehydrogenase (IMPDH, which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from Penicillium brevicompactum revealed an extra copy of the IMPDH-encoding gene (mpaF embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by mpaF. Results In accordance with our hypothesis, heterologous expression of mpaF dramatically increased MPA resistance in a model fungus, Aspergillus nidulans, which does not produce MPA. The growth of an A. nidulans strain expressing mpaF was only marginally affected by MPA at concentrations as high as 200 μg/ml. To further substantiate the role of mpaF in MPA resistance, we searched for mpaF orthologs in six MPA producer/non-producer strains from Penicillium subgenus Penicillium. All six strains were found to hold two copies of IMPDH. A cladistic analysis based on the corresponding cDNA sequences revealed a novel group constituting mpaF homologs. Interestingly, a conserved tyrosine residue in the original class of IMPDHs is replaced by a phenylalanine residue in the new IMPDH class. Conclusions We identified a novel variant of the IMPDH-encoding gene in six different strains from Penicillium subgenus Penicillium. The novel IMPDH variant from MPA producer P. brevicompactum was shown to confer a high degree of MPA resistance when expressed in a non-producer fungus. Our study provides a basis for understanding the molecular mechanism of MPA resistance and has relevance for biotechnological and pharmaceutical applications.

  2. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol

    KAUST Repository

    Liu, Xiang; Bastian, Sabine; Snow, Christopher D.; Brustad, Eric M.; Saleski, Tatyana E.; Xu, Jian-He; Meinhold, Peter; Arnold, Frances H.

    2013-01-01

    We have determined the X-ray crystal structures of the NADH-dependent alcohol dehydrogenase LlAdhA from Lactococcus lactis and its laboratory-evolved variant LlAdhA(RE1) at 1.9Å and 2.5Å resolution, respectively. LlAdhA(RE1), which contains three

  3. A Research of nasal methicillin resistant/sensitive Staphylococcus ...

    African Journals Online (AJOL)

    A Research of nasal methicillin resistant/sensitive Staphylococcus aureus and pharyngeal beta-haemolytic Streptococcus carriage in midwifery students in Kahramanmaras, Eastern Mediterranean Region of Turkey.

  4. A simple and rapid method for the determination of taxol produced by fungal endophytes from medicinal plants using high performance thin layer chromatography%高效薄层色谱法快速测定由药用植物内生真菌产生的紫杉醇

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Taxol is an important anticancer drug used widely in the clinical field. In this study, some endophytic fungi were isolated from selected medicinal plants, and were screened for their potential in the production of taxol, using a rapid separation technique of high performance thin layer chromatography ( HPTLC ). Of the 20 screened fungi, only 13 fungal species produced taxol in the artificial culture medium.The results of HPTLC showed that the 13 fungal species had identical ultraviolet (UV) characteristics, positive reactivity with a spray reagent, yielding a blue spot, which turned to dark gray after 24 hours, and had Rf values identical to that of the authentic taxol. The amount of taxol was also quantified by comparing the peak area and the peak height of the fungal samples with those of authentic taxol.

  5. Primary resistance to osimertinib due to SCLC transformation: Issue of T790M determination on liquid re-biopsy.

    Science.gov (United States)

    Minari, R; Bordi, P; Del Re, M; Facchinetti, F; Mazzoni, F; Barbieri, F; Camerini, A; Comin, C E; Gnetti, L; Azzoni, C; Nizzoli, R; Bortesi, B; Rofi, E; Petreni, P; Campanini, N; Rossi, G; Danesi, R; Tiseo, M

    2018-01-01

    EGFR T790M mutation is the most common mechanism of resistance to first-/second-generation EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) and could be overcome by third-generation EGFR-TKIs, such as osimertinib. Liquid biopsy, a non-invasive technique used to test the presence of the resistant mutation, may help avoiding tissue re-biopsy. However, analysing only circulating-free DNA, information about other less frequent and coexisting resistance mechanisms may remain unrevealed. All patients reported in this series participated in the ASTRIS trial, a real world treatment study testing the efficacy of osimertinib (80mg os die) in advanced T790M-positive NSCLC progressed to prior EGFR-TKI. Patients were considered eligible to osimertinib if T790M positive on tissue or plasma samples. In our patients, EGFR molecular testing on blood sample was conducted with digital droplet PCR (ddPCR). We report our experience of five patients treated with osimertinib after T790M detection on liquid biopsy that presented a disease progression at first tumor assessment mediated by SCLC transformation, as evidenced at tissue re-biopsies. All patients showed low ratio T790M/activating mutation in the blood before osimertinib (lower than 0.03). For three patients, EGFR mutational analysis was T790M-negative when re-assessed by using a less sensitive method (therascreen ® ) on the same liquid biopsy sample analysed by ddPCR before osimertinib therapy. Although liquid biopsy is a relevant tool to diagnose T790M presence in NSCLC patients resistant to EGFR-TKI, in case of a low ratio T790M/activating mutation, tissue biopsy should be considered to exclude the presence of SCLC transformation and/or other concomitant resistance mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evaluation of a rapid screening test for rifampicin resistance in re ...

    African Journals Online (AJOL)

    Sensitivity, specificity and overall accuracy of the phage test were determined compared with gold standard culture and DST. Discrepant results were resolved by molecular detection of mutations conferring rifampicin resistance. The proportion of rifampicin-resistant strains that were MDR was also determined. Results.

  7. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial

    Science.gov (United States)

    The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and se...

  8. Diffuse Reflectance Spectroscopy (DRS) of radiation-induced re-oxygenation in sensitive and resistant head and neck tumor xenografts

    Science.gov (United States)

    Dadgar, Sina; Rodríguez Troncoso, Joel; Rajaram, Narasimhan

    2018-02-01

    Currently, anatomical assessment of tumor volume performed several weeks after completion of treatment is the clinical standard to determine whether a cancer patient has responded to a treatment. However, functional changes within the tumor could potentially provide information regarding treatment resistance or response much earlier than anatomical changes. We have used diffuse reflectance spectroscopy to assess the short and long-term re-oxygenation kinetics of a human head and neck squamous cell carcinoma xenografts in response to radiation therapy. First, we injected UM-SCC-22B cell line into the flank of 50 mice to grow xenografts. Once the tumor volume reached 200 mm3 (designated as Day 1), the mice were distributed into radiation and control groups. Members of radiation group underwent a clinical dose of radiation of 2 Gy/day on Days 1, 4, 7, and 10 for a cumulative dose of 8 Gy. DRS spectra of these tumors were collected for 14 days during and after therapy, and the collected spectra of each tumor were converted to its optical properties using a lookup table-base inverse model. We found statistically significant differences in tumor growth rate between two groups which is in indication of the sensitivity of this cell line to radiation. We further acquired significantly different contents of hemoglobin and scattering magnitude and size in two groups. The scattering has previously been associated with necrosis. We furthermore found significantly different time-dependent changes in vascular oxygenation and tumor hemoglobin concentration in post-radiation days.

  9. Structure-activity relationships of diverse xanthones against multidrug resistant human tumor cells.

    Science.gov (United States)

    Wang, Qiwen; Ma, Chenyao; Ma, Yun; Li, Xiang; Chen, Yong; Chen, Jianwei

    2017-02-01

    Thirteen xanthones were isolated naturally from the stem of Securidaca inappendiculata Hassk, and structure-activity relationships (SARs) of these compounds were comparatively predicted for their cytotoxic activity against three human multidrug resistant (MDR) cell lines MCF-7/ADR, SMMC-7721/Taxol, and A549/Taxol cells. The results showed that the selected xanthones exhibited different potent cytotoxic activity against the growth of different human tumor cell lines, and most of the xanthones exhibited selective cytotoxicity against SMMC-7721/Taxol cells. Furthermore, some tested xanthones showed stronger cytotoxicity than Cisplatin, which has been used in clinical application extensively. The SARs analysis revealed that the cytotoxic activities of diverse xanthones were affected mostly by the number and position of methoxyl and hydroxyl groups. Xanthones with more free hydroxyl and methoxyl groups increased the cytotoxic activity significantly, especially for those with the presence of C-3 hydroxyl and C-4 methoxyl groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Heat sensitive persons with multiple sclerosis are more tolerant to resistance exercise than to endurance exercise

    DEFF Research Database (Denmark)

    Skjerbæk, Anders G; Møller, Andreas Buch; Jensen, Ellen

    2012-01-01

    BACKGROUND: Heat sensitivity (HS) is reported by 58% of all persons with multiple sclerosis (MS), causing symptom exacerbation possibly limiting exercise participation. OBJECTIVE: The purpose of this study was to test the hypotheses that (a) a relationship between exercise-induced changes in core...... randomly completed a session of RE and EE, or EE and RE, respectively. Testing was conducted pre, post and one hour after exercise and consisted of Visual Analogue Scale (VAS) scoring (fatigue, spasticity, pain, strength, walking and balance), the 5-time sit-to-stand (5STS), the Multiple Sclerosis......-temperature (C(temp)) and changes in symptom intensity exists, and (b) that resistance exercise (RE), as a consequence of a minor increase in core temperature, will induce a lesser worsening of symptoms than endurance exercise (EE) in HS persons with MS. METHODS: On two separate days, 16 HS persons with MS...

  11. An improved method for the assay of platelet pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  12. [Role of ATP-sensitive potassium channel activators in liver mitochondrial function in rats with different resistance to hypoxia].

    Science.gov (United States)

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2003-01-01

    Effects of ATP-sensitive potassium (KATP) channels opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) in rats with different resistance to hypoxia on indices of ADP-stimulation of mitochondrial respiration by Chance, calcium capacity and processes of lipid peroxidation in liver has been investigated. We used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate. Additional analyses contain the next inhibitors: mitochondrial fermentative complex I-10 mkM rotenone, succinate dehydrogenase 2 mM malonic acid. It was shown that effects of pinacidil induced the increasing of oxidative phosporylation efficacy and ATP synthesis together with lowering of calcium capacity in rats with low resistance to hypoxia. Effects of pinacidil were leveled by glibenclamide. These changes are connected with the increasing of respiratory rate, calcium overload and intensification of lipid peroxidation processes. A conclusion was made about protective effect of pinacidil on mitochondrial functioning by economization of oxygen-dependent processes, adaptive potentialities of organisms with low resistance to hypoxia being increased.

  13. Design and synthesis of new hybrids from 2-cyano-3,12-dioxooleana- 9-dien-28-oic acid and O2-(2,4-dinitrophenyl) diazeniumdiolate for intervention of drug-resistant lung cancer.

    Science.gov (United States)

    Kang, Fenghua; Ai, Yong; Zhang, Yihua; Huang, Zhangjian

    2018-04-10

    To search for new drugs for intervention of drug-resistant lung cancer, a series of hybrids 4-15 from 2-cyano-3,12-dioxooleana-9-dien-28-oic acid (CDDO) and O 2 -(2,4-dinitrophenyl) diazeniumdiolate were designed, synthesized and biologically evaluated. The most active compound 7 produced relatively high levels of nitric oxide (NO) and reactive oxygen species (ROS) in drug-resistant lung cancer A549/Taxol cells which over-express glutathione S-transferase π (GSTπ), and significantly inhibited the cells' proliferation (IC 50  = 0.349 ± 0.051 μM), superior to the positive controls CDDO-Me, JS-K and Taxol. The inhibitory activity of 7 could be attenuated by an NO scavenger, ROS scavenger or GSTπ inhibitor. In addition, 7 suppressed the Lon protease expression as well as induced cell apoptosis and cycle arrest in A549/Taxol cells more strongly than CDDO-Me or JS-K. Together, our findings suggest that 7 may be worth studying further for intervention of drug-resistant lung cancer. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Sensitivity of Amoxicillin-Resistant Helicobacter pylori to Other Penicillins

    Science.gov (United States)

    Dore, Maria P.; Graham, David Y.; Sepulveda, Antonia R.; Realdi, Giuseppe; Osato, Michael S.

    1999-01-01

    The sensitivities to penicillins and to a penicillin and β-lactamase inhibitor combination agent were determined for Helicobacter pylori strains that were sensitive, moderately resistant, or highly resistant to amoxicillin. All strains were resistant to nafcillin and oxacillin. Moderately resistant strains showed an intermediate zone of inhibition to ticarcillin, mezlocillin, piperacillin, and amoxicillin-clavulanic acid. High-level resistance was associated with the smallest zone size for all penicillins tested. PMID:10390249

  15. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    Science.gov (United States)

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  16. Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria

    Science.gov (United States)

    2012-01-01

    Background Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions. Results Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter. Conclusions Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short

  17. Why sensitive bacteria are resistant to hospital infection control

    Science.gov (United States)

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. Methods: We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio ( IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. Results: For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤  0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while communityacquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Conclusions: Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally, following differences in their adaptation to hospital and community

  18. Why sensitive bacteria are resistant to hospital infection control.

    Science.gov (United States)

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio (IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤ 0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while community acquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally. This follows from differences in their adaptation to hospital- and community-based transmission. Observed lack of

  19. Immobilisation and characterisation of glucose dehydrogenase immobilised on ReSyn: a proprietary polyethylenimine support matrix

    CSIR Research Space (South Africa)

    Twala, BV

    2010-01-01

    Full Text Available Immobilisation of enzymes is of considerable interest due to the advantages over soluble enzymes, including improved stability and recovery. Glucose Dehydrogenase (GDH) is an important biocatalytic enzyme due to is ability to recycle the biological...

  20. Sensitivity of a numerical wave model on wind re-analysis datasets

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  1. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor β mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor β 1 and β 3 . Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor βmRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs

  2. A wheat cinnamyl alcohol dehydrogenase TaCAD12 contributes to host resistance to the sharp eyespot disease

    Directory of Open Access Journals (Sweden)

    Wei Rong

    2016-11-01

    Full Text Available Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.. In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies towards both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1 and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1 were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.

  3. The complementary roles of cellular and humoral immunity in resistance to re-infection with LCM virus

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1988-01-01

    The mechanisms underlying resistance to re-infection with lymphocytic choriomeningitis virus (LCMV) were investigated. Rechallenge with moderate doses of virus (10(3) LD50) did not lead to detectable re-infection nor to re-induction of virus-specific cytotoxicity. When higher doses of virus were ...

  4. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol

    KAUST Repository

    Liu, Xiang

    2013-03-01

    We have determined the X-ray crystal structures of the NADH-dependent alcohol dehydrogenase LlAdhA from Lactococcus lactis and its laboratory-evolved variant LlAdhA(RE1) at 1.9Å and 2.5Å resolution, respectively. LlAdhA(RE1), which contains three amino acid mutations (Y50F, I212T, and L264V), was engineered to increase the microbial production of isobutanol (2-methylpropan-1-ol) from isobutyraldehyde (2-methylpropanal). Structural comparison of LlAdhA and LlAdhA(RE1) indicates that the enhanced activity on isobutyraldehyde stems from increases in the protein\\'s active site size, hydrophobicity, and substrate access. Further structure-guided mutagenesis generated a quadruple mutant (Y50F/N110S/I212T/L264V), whose KM for isobutyraldehyde is ∼17-fold lower and catalytic efficiency (kcat/KM) is ∼160-fold higher than wild-type LlAdhA. Combining detailed structural information and directed evolution, we have achieved significant improvements in non-native alcohol dehydrogenase activity that will facilitate the production of next-generation fuels such as isobutanol from renewable resources.

  5. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  6. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  7. A new surface resistance measurement method with ultrahigh sensitivity

    International Nuclear Information System (INIS)

    Liang, Changnian.

    1993-01-01

    A superconducting niobium triaxial cavity has been designed and fabricated to study residual surface resistance of planar superconducting materials. The edge of a 25.4 mm or larger diameter sample in the triaxial cavity is located outside the strong field region. Therefore, the edge effects and possible losses between the thin film and the substrate have been minimized, ensuring that induced RF losses are intrinsic to the test material. The fundamental resonant frequency of the cavity is the same as the working frequency of CEBAF cavities. The cavity has a compact size compared to its TE 011 counterpart, which makes it more sensitive to the sample's loss. For even higher sensitivity, a calorimetry method has been used to measure the RF losses on the superconducting sample. At 2 K, a 2 μK temperature change can be resolved by using carbon resistor sensors. The temperature distribution caused by RF heating is measured by 16 carbon composition resistor sensors. A 0.05 μW heating power can be detected as such a resolution, which translates to a surface resistance of 0.02 nΩ at a surface magnetic field of 52 Oe. This is the most sensitive device for surface resistance measurements to date. In addition, losses due to the indium seal, coupling probes, field emission sites other than the sample, and all of the high field resonator surface, are excluded in the measurement. Surface resistance of both niobium and high-Tc superconducting thin films has been measured. A low R s of 35.2 μΩ was measured for a 25.4 mm diameter YBa 2 Cu 3 O 7 thin film at 1.5 GHz and at 2 K. The measurement result is the first result for a large area epitaxially grown thin film sample at such a low RF frequency. The abrupt disappearance of multipacting between two parallel plates has been observed and monitored with the 16 temperature mapping sensors. Field emission or some field dependent anomalous RF losses on the niobium plate have also been observed

  8. Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells.

    Science.gov (United States)

    Ma, Jiao; Lu, Pin; Guo, Ailin; Cheng, Shuhua; Zong, Hongliang; Martin, Peter; Coleman, Morton; Wang, Y Lynn

    2014-09-01

    Ibrutinib inhibits Bruton tyrosine kinase (BTK), a key component of early B-cell receptor (BCR) signalling pathways. A multicentre phase 2 trial of ibrutinib in patients with relapsed/refractory mantle cell lymphoma (MCL) demonstrated a remarkable response rate. However, approximately one-third of patients have primary resistance to the drug while other patients appear to lose response and develop secondary resistance. Understanding the molecular mechanisms underlying ibrutinib sensitivity is of paramount importance. In this study, we investigated cell lines and primary MCL cells that display differential sensitivity to ibrutinib. We found that the primary cells display a higher BTK activity than normal B cells and MCL cells show differential sensitivity to BTK inhibition. Genetic knockdown of BTK inhibits the growth, survival and proliferation of ibrutinib-sensitive but not resistant MCL cell lines, suggesting that ibrutinib acts through BTK to produce its anti-tumour activities. Interestingly, inhibition of ERK1/2 and AKT, but not BTK phosphorylation per se, correlates well with cellular response to BTK inhibition in cell lines as well as in primary tumours. Our study suggests that, to prevent primary resistance or to overcome secondary resistance to BTK inhibition, a combinatory strategy that targets multiple components or multiple pathways may represent the most effective approach. © 2014 John Wiley & Sons Ltd.

  9. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer.

    Science.gov (United States)

    Zhang, Ting; Luo, Jingwen; Fu, Yao; Li, Hanmei; Ding, Rui; Gong, Tao; Zhang, Zhirong

    2017-02-01

    Paclitaxel (PTX) is a widely used antineoplastic drug in clinic. Due to poor aqueous solubility, it is administrated by intravenous infusion of cremophor EL containing formulation with serious adverse effects. The low oral bioavailability is a great challenge for oral formulation development. In addition, P-gp mediated multidrug resistance limit its clinical use in various resistant cancers. In this study, a novel super-antiresistant PTX micelle formulation for oral administration was developed. A P-gp inhibitor, bromotetrandrine (W198) was co-encapsulated in the micelle. The micelles were composed of Solutol HS 15 and d-a-tocopheryl polyethylene glycol succinate to avoid Cremophor EL induced toxicity. The micelles were round with a mean particle size of ∼13nm and an encapsulation efficiency of ∼90%. A series of in vitro evaluations were performed in non-resistant MCF-7 cells and resistant MCF-7/Adr cells. The super-antiresistant PTX micelles showed higher cell uptake efficiency, significantly increased cytotoxicity and antimitotic effect in drug resistant MCF-7/Adr cells when compared with Taxol and other PTX micelle formulations. Compared with Taxol, the super-antiresistant PTX micelles significantly improved bioavailability after oral administration in rats, and inhibited tumor growth in multidrug resistance xenografted MCF-7/Adr nude mice. In summary, the noval super-antiresistant PTX micelles showed a great potential for oral delivery of PTX against resistant breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Regulation of Muscle Pyruvate Dehydrogenase Complex in Insulin Resistance: Effects of Exercise and Dichloroacetate

    Directory of Open Access Journals (Sweden)

    Dumitru Constantin-Teodosiu

    2013-10-01

    Full Text Available Since the mitochondrial pyruvate dehydrogenase complex (PDC controls the rate of carbohydrate oxidation, impairment of PDC activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic syndrome, and the onset of type 2 diabetes (T2D. There are also situations where muscle insulin resistance can occur independently from high-fat dietary intake such as sepsis, inflammation, or drug administration though they all may share the same underlying mechanism, i.e., via activation of forkhead box family of transcription factors, and to a lower extent via peroxisome proliferator-activated receptors. The main feature of T2D is a chronic elevation in blood glucose levels. Chronic systemic hyperglycaemia is toxic and can lead to cellular dysfunction that may become irreversible over time due to deterioration of the pericyte cell's ability to provide vascular stability and control to endothelial proliferation. Therefore, it may not be surprising that T2D's complications are mainly macrovascular and microvascular related, i.e., neuropathy, retinopathy, nephropathy, coronary artery, and peripheral vascular diseases. However, life style intervention such as exercise, which is the most potent physiological activator of muscle PDC, along with pharmacological intervention such as administration of dichloroacetate or L-carnitine can prove to be viable strategies for treating muscle insulin resistance in obesity and T2D as they can potentially restore whole body glucose disposal.

  11. Hypermutability of a UV-sensitive aphidicolin-resistant mutant of Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Liu, P.K.; Chang, C.; Trosko, J.E.

    1982-01-01

    An ultraviolet light (UV)-sensitive thymidine auxotroph of Chinese hamster V79 cells that exhibits pleiotropic effects such as a high level of deoxycytidine triphosphate, slow growth, sensitivity to cytidine, and high frequencies of site-specific bromodeoxyuridine-dependent chromosomal aberrations was selected by its resistance to aphidicolin. The UV-induced mutability of this mutant and one of its revertants, which retains some of the phenotypes listed above, was studied in 3 mutation assay systems. The results showed that the mutant was hypermutable for ouabain and diphtheria-toxin-resistant mutations compared to wild-type V79 cells at the same UV dose or the same survival level. The mutant exhibits a delayed expression of maximal frequency of induced 6-thioguanine-resistant mutants. When maximal frequencies are compared at the same UV dose, the mutant also has higher mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase locus. The revertant was similar to the wild-type in UV sensitivity and mutability. (orig./AJ)

  12. Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Guangming, E-mail: zgming@hnu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li Zhen, E-mail: happylizhen@yeah.ne [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Tang Lin; Wu Mengshi; Lei Xiaoxia; Liu Yuanyuan; Liu Can; Pang Ya; Zhang Yi [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2011-05-01

    Highlights: > Gold nanoparticles/multiwalled carbon nanotubes/poly (1,5-naphthalenediamine) modified electrode was fabricated. > The sensor was applied for the detection of cellobiose dehydrogenase genes. > An effective method to distribute MWCNTs and attach to the electrode was proposed. > The composite films greatly improved the sensitivity and enhanced the DNA immobilization. > The DNA biosensor exhibited fairly high sensitivity and quite low detection limit. - Abstract: An electrochemical sensor based on gold nanoparticles (GNPs)/multiwalled carbon nanotubes (MWCNTs)/poly (1,5-naphthalenediamine) films modified glassy carbon electrode (GCE) was fabricated. The effectiveness of the sensor was confirmed by sensitive detection of cellobiose dehydrogenase (CDH) gene which was extracted from Phanerochaete chrysosporium using polymerase chain reaction (PCR). The monomer of 1,5-naphthalenediamine was electropolymerized on the GCE surface with abundant free amino groups which enhanced the stability of MWCNTs modified electrode. Congo red (CR)-functionalized MWCNTs possess excellent conductivity as well as high solubility in water which enabled to form the uniform and stable network nanostructures easily and created a large number of binding sites for electrodeposition of GNPs. The continuous GNPs together with MWCNTs greatly increased the surface area, conductivity and electrocatalytic activity. This electrode structure significantly improved the sensitivity of sensor and enhanced the DNA immobilization and hybridization. The thiol modified capture probes were immobilized onto the composite films-modified GCE by a direct formation of thiol-Au bond and horseradish peroxidase-streptavidin (HRP-SA) conjugates were labeled to the biotinylated detection probes through biotin-streptavidin bond. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the film assembly and DNA hybridization processes

  13. Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in lestaurtinib (CEP-701)-resistant FLT3-ITD positive acute myeloid leukemia

    International Nuclear Information System (INIS)

    Al-Jamal, Hamid Ali Nagi; Mat Jusoh, Siti Asmaa; Hassan, Rosline; Johan, Muhammad Farid

    2015-01-01

    Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of the JAK/STAT pathway. Transcriptional silencing of SHP-1 plays a critical role in the development and progression of cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1 on sensitivity to CEP-701 in resistant AML cells. Resistant cells harboring the FLT3-ITD were developed by overexposure of MV4-11 to CEP-701, and the effects of 5-Aza treatment were investigated. Apoptosis and cytotoxicity of CEP-701 were determined using Annexin V and MTS assays, respectively. Gene expression was performed by quantitative real-time PCR. STATs activity was examined by western blotting and the methylation profile of SHP-1 was studied using MS-PCR and pyrosequencing analysis. Repeated-measures ANOVA and Kruskal–Wallis tests were used for statistical analysis. The cytotoxic dose of CEP-701 on resistant cells was significantly higher in comparison with parental and MV4-11R-cep + 5-Aza cells (p = 0.004). The resistant cells showed a significant higher viability and lower apoptosis compared with other cells (p < 0.001). Expression of SHP-1 was 7-fold higher in MV4-11R-cep + 5-Aza cells compared to parental and resistant cells (p = 0.011). STAT3 was activated in resistant cells. Methylation of SHP-1 was significantly decreased in MV4-11R-cep + 5-Aza cells (p = 0

  14. Galactonolactone Dehydrogenase Requires a Redox-Sensitive Thiol for Optimal Production of Vitamin C1.

    NARCIS (Netherlands)

    Leferink, N.G.H.; Duijn, van E.; Barendregt, A.; Heck, A.J.R.; Berkel, van W.J.H.

    2009-01-01

    The mitochondrial flavoenzyme L-galactono--lactone dehydrogenase (GALDH) catalyzes the ultimate step of vitamin C biosynthesis in plants. We found that recombinant GALDH from Arabidopsis (Arabidopsis thaliana) is inactivated by hydrogen peroxide due to selective oxidation of cysteine (Cys)-340,

  15. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  16. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription

    International Nuclear Information System (INIS)

    Bergstralh, Daniel T.; Conti, Brian J.; Moore, Chris B.; Brickey, W. June; Taxman, Debra J.; Ting, Jenny P.-Y.

    2007-01-01

    Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1β) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAF I 48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells

  17. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells

    International Nuclear Information System (INIS)

    Flamant, Lionel; Roegiers, Edith; Pierre, Michael; Hayez, Aurélie; Sterpin, Christiane; De Backer, Olivier; Arnould, Thierry; Poumay, Yves; Michiels, Carine

    2012-01-01

    Hypoxia is a common characteristic of solid tumors associated with reduced response to radio- and chemotherapy, therefore increasing the probability of tumor recurrence. The aim of this study was to identify new mechanisms responsible for hypoxia-induced resistance in breast cancer cells. MDA-MB-231 and HepG2 cells were incubated in the presence of taxol or etoposide respectively under normoxia and hypoxia and apoptosis was analysed. A whole transcriptome analysis was performed in order to identify genes whose expression profile was correlated with apoptosis. The effect of gene invalidation using siRNA was studied on drug-induced apoptosis. MDA-MB-231 cells incubated in the presence of taxol were protected from apoptosis and cell death by hypoxia. We demonstrated that TMEM45A expression was associated with taxol resistance. TMEM45A expression was increased both in MDA-MB-231 human breast cancer cells and in HepG2 human hepatoma cells in conditions where protection of cells against apoptosis induced by chemotherapeutic agents was observed, i.e. under hypoxia in the presence of taxol or etoposide. Moreover, this resistance was suppressed by siRNA-mediated silencing of TMEM45A. Kaplan Meier curve showed an association between high TMEM45A expression and poor prognostic in breast cancer patients. Finally, TMEM45 is highly expressed in normal differentiated keratinocytes both in vitro and in vivo, suggesting that this protein is involved in epithelial functions. Altogether, our results unravel a new mechanism for taxol and etoposide resistance mediated by TMEM45A. High levels of TMEM45A expression in tumors may be indicative of potential resistance to cancer therapy, making TMEM45A an interesting biomarker for resistance

  18. Re-test reliability of gustatory testing and introduction of the sensitive Taste-Drop-Test

    DEFF Research Database (Denmark)

    Fjaeldstad, A; Niklassen, A; Fernandes, H

    2018-01-01

    . Testing gustatory function can be important for diagnostics and assessment of treatment effects. However, the gustatory tests applied are required to be both sensitive and reliable.In this study, we investigate the re-test validity of popular Taste Strips gustatory test for gustatory screening....... Furthermore, we introduce a new sensitive Taste-Drop-Test, which was found to be superior for detecting a more accurate measure of tastant sensitivity....

  19. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    Science.gov (United States)

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  20. Hit discovery of Mycobacterium tuberculosis inosine 5'-monophosphate dehydrogenase, GuaB2, inhibitors.

    Science.gov (United States)

    Sahu, Niteshkumar U; Singh, Vinayak; Ferraris, Davide M; Rizzi, Menico; Kharkar, Prashant S

    2018-04-18

    Tuberculosis remains a global concern. There is an urgent need of newer antitubercular drugs due to the development of resistant forms of Mycobacterium tuberculosis (Mtb). Inosine 5'-monophosphate dehydrogenase (IMPDH), guaB2, of Mtb, required for guanine nucleotide biosynthesis, is an attractive target for drug development. In this study, we screened a focused library of 73 drug-like molecules with desirable calculated/predicted physicochemical properties, for growth inhibitory activity against drug-sensitive MtbH37Rv. The eight hits and mycophenolic acid, a prototype IMPDH inhibitor, were further evaluated for activity on purified Mtb-GuaB2 enzyme, target selectivity using a conditional knockdown mutant of guaB2 in Mtb, followed by cross-resistance to IMPDH inhibitor-resistant SRMV2.6 strain of Mtb, and activity on human IMPDH2 isoform. One of the hits, 13, a 5-amidophthalide derivative, has shown growth inhibitory potential and target specificity against the Mtb-GuaB2 enzyme. The hit, 13, is a promising molecule with potential for further development as an antitubercular agent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Sensitivity of resistive and Hall measurements to local inhomogeneities

    DEFF Research Database (Denmark)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth

    2014-01-01

    We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. ...... simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.......We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We...

  2. microRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer

    Science.gov (United States)

    2017-09-01

    CYP17A1 inhibition with abiraterone in castration- resistant prostate cancer : induction of steroidogenesis and androgen receptor splice variants...AWARD NUMBER: W81XWH-15-1-0353 TITLE: microRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer PRINCIPAL...TITLE AND SUBTITLE microRNA Biomarkers to Generate Sensitivity to Abiraterone- Resistant Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  3. Proteomic differences between tellurite-sensitive and tellurite-resistant E.coli.

    Directory of Open Access Journals (Sweden)

    Jana Aradská

    Full Text Available Tellurite containing compounds are in use for industrial processes and increasing delivery into the environment generates specific pollution that may well result in contamination and subsequent potential adverse effects on public health. It was the aim of the current study to reveal mechanism of toxicity in tellurite-sensitive and tellurite-resistant E. coli at the protein level. In this work an approach using gel-based mass spectrometrical analysis to identify a differential protein profile related to tellurite toxicity was used and the mechanism of ter operon-mediated tellurite resistance was addressed. E. coli BL21 was genetically manipulated for tellurite-resistance by the introduction of the resistance-conferring ter genes on the pLK18 plasmid. Potassium tellurite was added to cultures in order to obtain a final 3.9 micromolar concentration. Proteins from tellurite-sensitive and tellurite-resistant E. coli were run on 2-D gel electrophoresis, spots of interest were picked, in-gel digested and subsequently analysed by nano-LC-MS/MS (ion trap. In addition, Western blotting and measurement of enzymatic activity were performed to verify the expression of certain candidate proteins. Following exposure to tellurite, in contrast to tellurite-resistant bacteria, sensitive cells exhibited increased levels of antioxidant enzymes superoxide dismutases, catalase and oxidoreductase YqhD. Cysteine desulfurase, known to be related to tellurite toxicity as well as proteins involved in protein folding: GroEL, DnaK and EF-Tu were upregulated in sensitive cells. In resistant bacteria, several isoforms of four essential Ter proteins were observed and following tellurite treatment the abovementioned protein levels did not show any significant proteome changes as compared to the sensitive control. The absence of general defense mechanisms against tellurite toxicity in resistant bacteria thus provides further evidence that the four proteins of the ter operon

  4. Effects of annealing on the microstructure, corrosion resistance, and mechanical properties of RE{sub 65}Co{sub 25}Al{sub 10} (RE=Ce, La, Pr, Sm, and Gd) bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhou [School of Materials Science and Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China); Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China); Xing, Qi; Sun, Zhenxi; Xu, Jing; Zhao, Zhengfeng [School of Materials Science and Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China); Chen, Shuying; Liaw, Peter K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Wang, Yan, E-mail: mse_wangy@ujn.edu.cn [School of Materials Science and Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China); Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China)

    2015-02-25

    The effects of annealing on the microstructure, corrosion resistance and mechanical properties of the RE{sub 65}Co{sub 25}Al{sub 10} (RE=Ce, La, Pr, Sm, and Gd) bulk metallic glasses (BMGs) were studied. Microstructural changes are induced after annealing below the onset crystallization temperature of 484 K, resulting in the variation of thermal stability and crystallization behavior. A proper annealing enhances the corrosion resistance in 3.5 wt% NaCl solution, which can be attributed to reduction of the electrochemical activity and galvanic coupling effects in the chloride solution. Moreover, the RE-based BMG annealed at 484 K possesses the higher corrosion potential and lower corrosion current density, combined with the corrosion morphologies, which suggests the best corrosion resistance. Annealing can also obviously change the mechanical properties and fracture morphologies. It presents that free volume annihilation can cause more difficulty in the elastic atom rearrangement for the as-annealed RE-based BMGs.

  5. Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon.

    Science.gov (United States)

    Sharick, Joe T; Favreau, Peter F; Gillette, Amani A; Sdao, Sophia M; Merrins, Matthew J; Skala, Melissa C

    2018-04-03

    While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (τ 2 ) was sensitive to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H τ 2 offers the ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may support mechanisms of drug resistance.

  6. Reversal of apomorphine locomotor sensitization by a single post-conditioning trial treatment with a low autoreceptor dose of apomorphine: a memory re-consolidation approach.

    Science.gov (United States)

    Carrera, Marinete Pinheiro; Carey, Robert J; Dias, Flávia Regina Cruz; de Matos, Liana Wermelinger

    2011-07-01

    Sensitization is a common feature of psychostimulants and sensitization effects are generally considered to be linked to the addictive properties of these drugs. We used a conventional paired/unpaired Pavlovian protocol to induce a context specific sensitization to the locomotor stimulant effect of a high dose of apomorphine (2.0mg/kg). Two days following a 5 session sensitization induction phase, a brief 5min non-drug test for conditioning was conducted. Only the paired groups exhibited locomotor stimulant conditioned response effects. Immediately following this brief test for conditioning, the paired and the unpaired groups received injections of 0.05mg/kg apomorphine, 2.0mg/kg apomorphine or vehicle designed to differentially impact memory re-consolidation of the conditioning. Two days later, all groups received a sensitization challenge test with 2.0mg/kg apomorphine. The 2.0mg/kg apomorphine post-trial treatment potentiated sensitization while the 0.05mg/kg eliminated sensitization. These effects were only observed in the paired groups. The activation of dopaminergic systems by the high dose of apomorphine strengthened the drug/environment association whereas the inhibition of dopamine activity by the low auto-receptor dose eliminated this association. The results point to the importance of conditioning to context specific sensitization and targeting memory re-consolidation of conditioning as a paradigm to modify sensitization. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Differential Sensitivities of Fast- and Slow-Cycling Cancer Cells to Inosine Monophosphate Dehydrogenase 2 Inhibition by Mycophenolic Acid

    Science.gov (United States)

    Chen, Kan; Cao, Wanlu; Li, Juan; Sprengers, Dave; Hernanda, Pratika Y; Kong, Xiangdong; van der Laan, Luc JW; Man, Kwan; Kwekkeboom, Jaap; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2015-01-01

    As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA. PMID:26467706

  8. Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice.

    Science.gov (United States)

    Kim, Jong Min; Park, Chang Hyeon; Park, Seon Kyeong; Seung, Tae Wan; Kang, Jin Yong; Ha, Jeong Su; Lee, Du Sang; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2017-04-05

    The ameliorating effects of ginsenoside Re (G Re) on high fat diet (HFD)-induced insulin resistance in C57BL/6 mice were investigated to assess its physiological function. In the results of behavioral tests, G Re improved cognitive dysfunction in diabetic mice using Y-maze, passive avoidance, and Morris water maze tests. G Re also significantly recovered hyperglycemia and fasting blood glucose level. In the results of serum analysis, G Re decreased triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDLC), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) and increased the ratio of high-density lipoprotein cholesterol (HDLC). G Re regulated acetylcholine (ACh), acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), and oxidized glutathione (GSH)/total GSH by regulating the c-Jun N-terminal protein kinase (JNK) pathway. These findings suggest that G Re could be used to improve HFD-induced insulin resistance condition by ameliorating hyperglycemia via protecting the cholinergic and antioxidant systems in the mouse brains.

  9. Taxol®-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor® EL

    DEFF Research Database (Denmark)

    Vader, Pieter; Fens, Marcel HAM; Sachini, Nikoleta

    2013-01-01

    The conventional clinical formulation of paclitaxel (PTX), Taxol®, consists of Cremophor® EL (CrEL) and ethanol. CrEL-formulated PTX is associated with acute hypersensitivity reactions, anemia and cardiovascular events. In this study, the authors investigated the effects of CrEL-PTX on red blood ...

  10. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia.

    Science.gov (United States)

    Santiago, Rocío; Alarcón, Borja; de Armas, Roberto; Vicente, Carlos; Legaz, María Estrella

    2012-06-01

    This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD. Copyright © Physiologia Plantarum 2012.

  11. Prospects for robust biocatalysis: engineering of novel specificity in a halophilic amino acid dehydrogenase.

    Science.gov (United States)

    Munawar, Nayla; Engel, Paul C

    2013-01-01

    Heat- and solvent-tolerant enzymes from halophiles, potentially important industrially, offer a robust framework for protein engineering, but few solved halophilic structures exist to guide this. Homology modelling has guided mutations in glutamate dehydrogenase (GDH) from Halobacterium salinarum to emulate conversion of a mesophilic GDH to a methionine dehydrogenase. Replacement of K89, A163 and S367 by leucine, glycine and alanine converted halophilic GDH into a dehydrogenase accepting L-methionine, L-norleucine and L-norvaline as substrates. Over-expression in the halophilic expression host Haloferax volcanii and three-step purification gave ~98 % pure protein exhibiting maximum activity at pH 10. This enzyme also showed enhanced thermostability and organic solvent tolerance even at 70 °C, offering a biocatalyst resistant to harsh industrial environments. To our knowledge, this is the first reported amino acid specificity change engineered in a halophilic enzyme, encouraging use of mesophilic models to guide engineering of novel halophilic biocatalysts for industrial application. Calibrated gel filtration experiments show that both the mutant and the wild-type enzyme are stable hexamers.

  12. Re-challenge Studies in Non-celiac Gluten Sensitivity: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Elena Lionetti

    2017-09-01

    Full Text Available Background: Non-celiac gluten sensitivity (NCGS is a clinical entity characterized by intestinal and/or extra-intestinal symptoms related to the ingestion of gluten in individuals that are not affected by either celiac disease (CD or wheat allergy (WA. Since we do not have specific biomarkers for NCGS, the diagnosis is based on the evidence of a clear relationship between the ingestion of gluten (re-challenge and clinical symptoms, after a remission during the gluten-free diet (GFD. Several re-challenge studies have been published so far to evaluate the real prevalence of NCGS, reporting conflicting results. In the present article, we provide a systematic review with meta-analysis of the existing literature on re-challenge studies to evaluate prevalence figures of NCGS after re-challenge procedures.Methods: All clinical trials performing a gluten re-challenge with or without a placebo control in patients with a suspected diagnosis of NCGS were included. Search results were limited to studies published in English language. No publication date or publication status restrictions were imposed.Results: Eleven studies were included in the meta-analysis. There was a considerable heterogeneity related to different sample size, type, and amount of gluten administered, duration of challenge and different type of placebo. The overall pooled percentage of patients with a diagnosis of NCGS relapsing after a gluten challenge was 30%, ranging between 7 and 77%. The meta-analysis showed a not significant relative risk (RR of relapse after gluten challenge as compared to placebo (RR = 0.4; 95% CI = −0.15–0.9; p = 0.16. The overall pooled percentage of patients with a diagnosis of NCGS relapsing after a gluten challenge performed according to the recent Salerno criteria was significantly higher as compared to the percentage of patients relapsing after placebo (40 vs. 24%; p = 0.003, with a significant RR of relapse after gluten challenge as compared to

  13. Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines

    Science.gov (United States)

    Franco, Domenico; Trusso, Sebastiano; Fazio, Enza; Allegra, Alessandro; Musolino, Caterina; Speciale, Antonio; Cimino, Francesco; Saija, Antonella; Neri, Fortunato; Nicolò, Marco S.; Guglielmino, Salvatore P. P.

    2017-12-01

    Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.

  14. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents.

    Science.gov (United States)

    Xue, Kai; Gu, Juan J; Zhang, Qunling; Mavis, Cory; Hernandez-Ilizaliturri, Francisco J; Czuczman, Myron S; Guo, Ye

    2016-02-01

    Preclinical models of chemotherapy resistance and clinical observations derived from the prospective multicenter phase III collaborative trial in relapsed aggressive lymphoma (CORAL) study demonstrated that primary refractory/relapsed B cell diffuse large B cell lymphoma has a poor clinical outcome with current available second-line treatments. Preclinically, we found that rituximab resistance is associated with a deregulation on the mitochondrial potential rendering lymphoma cells resistant to chemotherapy-induced apoptotic stimuli. There is a dire need to develop agents capable to execute alternative pathways of cell death in an attempt to overcome chemotherapy resistance. Posttranscriptional histone modification plays an important role in regulating gene transcription and is altered by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs regulate several key cellular functions, including cell proliferation, cell cycle, apoptosis, angiogenesis, migration, antigen presentation, and/or immune regulation. Given their influence in multiple regulatory pathways, HDAC inhibition is an attractive strategy to evaluate its anti-proliferation activity in cancer cells. To this end, we studied the anti-proliferation activity and mechanisms of action of suberoylanilide hydroxamic acid (SAHA, vorinostat) in rituximab-chemotherapy-resistant preclinical models. A panel of rituximab-chemotherapy-sensitive (RSCL) and rituximab-chemotherapy-resistant cell lines (RRCL) and primary tumor cells isolated from relapsed/refractory B cell lymphoma patients were exposed to escalating doses of vorinostat. Changes in mitochondrial potential, ATP synthesis, and cell cycle distribution were determined by Alamar blue reduction, Titer-Glo luminescent assays, and flow cytometric, respectively. Protein lysates were isolated from vorinostat-exposed cells, and changes in members of Bcl-2 family, cell cycle regulatory proteins, and the acetylation status of histone H3 were

  15. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    International Nuclear Information System (INIS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-01-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  16. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiwei [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Gao, Bo, E-mail: surfgao@aliyun.com [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Yin, Shaohua [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-12-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  17. Cellular defense against UVB-induced phototoxicity by cytosolic NADP+-dependent isocitrate dehydrogenase

    International Nuclear Information System (INIS)

    Jo, Seung-Hee; Lee, So-Hyun; Suk Chun, Hang; Min Lee, Su; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-01-01

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury

  18. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-03-29

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).

  19. Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking

    Science.gov (United States)

    Manouras, Theodoros; Kazazis, Dimitrios; Koufakis, Eleftherios; Ekinci, Yasin; Vamvakaki, Maria; Argitis, Panagiotis

    2018-03-01

    The main target of the current work was to develop new sensitive polymeric materials for lithographic applications, focusing in particular to EUV lithography, the main chain of which is cleaved under the influence of photogenerated acid. Resist materials based on the cleavage of polymer main chain are in principle capable to create very small structures, to the dimensions of the monomers that they consist of. Nevertheless, in the case of the commonly used nonchemically amplified materials of this type issues like sensitivity and poor etch resistance limit their areas of application, whereas inadequate etch resistance and non- satisfactory process reliability are the usual problems encountered in acid catalysed materials based on main chain scission. In our material design the acid catalyzed chain cleavable polymers contain very sensitive moieties in their backbone while they remain intact in alkaline ambient. These newly synthesized polymers bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behavior, adhesion to the substrate). Our approach for achieving acceptable etch resistance, a main drawback in other main chain cleavable resists, is based on the introduction of polyaromatic hydrocarbons in the polymeric backbone, whereas the incorporation of an inorganic component further enhances the etch resistance. Single component systems can also be designed following the proposed approach by the incorporation of suitable PAGs and base quencher molecules in the main chain. Resist formulations based on a random copolymer designed according to the described rules evaluated in EUV exhibit ultrahigh sensitivity, capability for high resolution patterning and overall processing characteristics that make them strong candidates for industrial use upon further optimization.

  20. Analysis of the moments of the sensitivity function for resistivity over a homogeneous half-space: Rules of thumb for pseudoposition, offline sensitivity and resolution

    Science.gov (United States)

    Butler, S. L.

    2017-08-01

    It is instructive to consider the sensitivity function for a homogeneous half space for resistivity since it has a simple mathematical formula and it does not require a priori knowledge of the resistivity of the ground. Past analyses of this function have allowed visualization of the regions that contribute most to apparent resistivity measurements with given array configurations. The horizontally integrated form of this equation gives the sensitivity function for an infinitesimally thick horizontal slab with a small resistivity contrast and analysis of this function has admitted estimates of the depth of investigation for a given electrode array. Recently, it has been shown that the average of the vertical coordinate over this function yields a simple formula that can be used to estimate the depth of investigation. The sensitivity function for a vertical inline slab has also been previously calculated. In this contribution, I show that the sensitivity function for a homogeneous half-space can also be integrated so as to give sensitivity functions to semi-infinite vertical slabs that are perpendicular to the array axis. These horizontal sensitivity functions can, in turn, be integrated over the spatial coordinates to give the mean horizontal positions of the sensitivity functions. The mean horizontal positions give estimates for the centres of the regions that affect apparent resistivity measurements for arbitrary array configuration and can be used as horizontal positions when plotting pseudosections even for non-collinear arrays. The mean of the horizontal coordinate that is perpendicular to a collinear array also gives a simple formula for estimating the distance over which offline resistivity anomalies will have a significant effect. The root mean square (rms) widths of the sensitivity functions are also calculated in each of the coordinate directions as an estimate of the inverse of the resolution of a given array. For depth and in the direction perpendicular

  1. Fracture-resistant ultralloys for space-power systems: nuclear-thermionic-conversion implications of W,27Re

    International Nuclear Information System (INIS)

    Moraga, N.O.; Jacobsen, D.L.; Morris, J.F.

    1989-01-01

    Rhenium (Re) added to tungsten (W) improves the creep strength, recrystallization resistance and ductility. W,27Re is a good workable ultra alloy for use in space nuclear reactor (SNR) systems and perhaps its most practical processing procedure is sintering. A promising SNR application for such ultralloys is very-high-temperature thermionic energy conversion. Therefore determinations of thermionic and thermal emissive characteristics for sintered W,27Re at temperatures near and above 2000 K in hard vacuum enable both scientific and pragmatic progress. Such research results comprise the data and interpretive presentations in this paper. These findings emphasize the fallacy of characterizing ultralloys similar to W,27Re with single-valued thermophysicochemical properties - such as the work function. They further stress the necessity for investigations of this type to determine and demonstrate effective prototypic ultralloy compositions and processing methods. (author)

  2. Simple PCR assays improve the sensitivity of HIV-1 subtype B drug resistance testing and allow linking of resistance mutations.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Johnson

    Full Text Available BACKGROUND: The success of antiretroviral therapy is known to be compromised by drug-resistant HIV-1 at frequencies detectable by conventional bulk sequencing. Currently, there is a need to assess the clinical consequences of low-frequency drug resistant variants occurring below the detection limit of conventional genotyping. Sensitive detection of drug-resistant subpopulations, however, requires simple and practical methods for routine testing. METHODOLOGY: We developed highly-sensitive and simple real-time PCR assays for nine key drug resistance mutations and show that these tests overcome substantial sequence heterogeneity in HIV-1 clinical specimens. We specifically used early wildtype virus samples from the pre-antiretroviral drug era to measure background reactivity and were able to define highly-specific screening cut-offs that are up to 67-fold more sensitive than conventional genotyping. We also demonstrate that sequencing the mutation-specific PCR products provided a direct and novel strategy to further detect and link associated resistance mutations, allowing easy identification of multi-drug-resistant variants. Resistance mutation associations revealed in mutation-specific amplicon sequences were verified by clonal sequencing. SIGNIFICANCE: Combined, sensitive real-time PCR testing and mutation-specific amplicon sequencing provides a powerful and simple approach that allows for improved detection and evaluation of HIV-1 drug resistance mutations.

  3. Effect of Punica granatum fruit peel on glucose-6-phosphate dehydrogenase and malate dehydrogenase in amphistome Gastrothylax indicus.

    Science.gov (United States)

    Aggarwal, Rama; Bagai, Upma

    2017-03-01

    Increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against helminth parasite in sheep. Important lipogenic enzymes like glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) show subcellular distribution pattern. Activity of G-6-PDH was largely restricted to cytosolic fraction while MDH was found in both cytosolic and mitochondrial fraction in Gastrothylax indicus. Following in vitro treatment with ethanolic and aqueous extracts of Punica granatum fruit peel and commercial anthelmintic, albendazole G-6-PDH activity was decreased by 19-32 %, whereas MDH was suppressed by 24-41 %, compared to the respective control. Albendazole was quite effective when compared with negative control and both the extracts. The results indicate that phytochemicals of plant may act as potential vermifuge or vermicide.

  4. Insights into oxazaphosphorine resistance and possible approaches to its circumvention.

    Science.gov (United States)

    Zhang, Jing; Tian, Quan; Chan, Sui Yung; Duan, Wei; Zhou, Shufeng

    2005-10-01

    The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the

  5. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Aguayo, María Francisca; Ampuero, Diego; Mandujano, Patricio; Parada, Roberto; Muñoz, Rodrigo; Gallart, Marta; Altabella, Teresa; Cabrera, Ricardo; Stange, Claudia; Handford, Michael

    2013-05-01

    Sorbitol is converted to fructose in Rosaceae species by SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14), especially in sink organs. SDH has also been found in non-Rosaceae species and here we show that the protein encoded by At5g51970 in Arabidopsis thaliana (L.) Heynh. possesses the molecular characteristics of an SDH. Using a green fluorescent protein-tagged version and anti-SDH antisera, we determined that SDH is cytosolically localized, consistent with bioinformatic predictions. We also show that SDH is widely expressed, and that SDH protein accumulates in both source and sink organs. In the presence of NAD+, recombinant SDH exhibited greatest oxidative activity with sorbitol, ribitol and xylitol as substrates; other sugar alcohols were oxidized to a lesser extent. Under standard growth conditions, three independent sdh- mutants developed as wild-type. Nevertheless, all three exhibited reduced dry weight and primary root length compared to wild-type when grown in the presence of sorbitol. Additionally, under short-day conditions, the mutants were more resistant to dehydration stress, as shown by a reduced loss of leaf water content when watering was withheld, and a greater survival rate on re-watering. This evidence suggests that limitations in the metabolism of sugar alcohols alter the growth of Arabidopsis and its response to drought. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. A Sensitive and Specific Diagnostic Panel to Distinguish Diffuse Astrocytoma from Astrocytosis: Chromosome 7 Gain with Mutant Isocitrate Dehydrogenase 1 and p53

    Science.gov (United States)

    Camelo-Piragua, Sandra; Jansen, Michael; Ganguly, Aniruddha; Kim, J. ChulMin; Cosper, Arjola K.; Dias-Santagata, Dora; Nutt, Catherine L.; Iafrate, A. John; Louis, David N.

    2011-01-01

    One of the major challenges of surgical neuropathology is the distinction of diffuse astrocytoma (World Health Organization [WHO] grade II) from astrocytosis. The most commonly used ancillary tool to solve this problem is p53 immunohistochemistry (IHC), but this is neither sensitive nor specific. Isocitrate dehydrogenase 1 (IDH1) mutations are common in lower grade gliomas, with most causing a specific amino acid change (R132H) that can be detected with a monoclonal antibody. IDH2 mutations are rare, but also occur in gliomas. In addition, gains of chromosome 7 are common in gliomas. In this study we assessed the status of p53, IDH1/2 and chromosome 7 to determine the most useful panel to distinguish astrocytoma from astrocytosis. We studied biopsy specimens from 21 WHO grade II diffuse astrocytomas and 20 reactive conditions. The single most sensitive test to identify astrocytoma is fluorescence in situ hybridization (FISH) for chromosome 7 gain (76.2%). The combination of p53 and mutant IDH1 IHC provides a higher sensitivity (71.4%) than either test alone (47.8%); this combination offers a practical initial approach for the surgical pathologist. The best overall sensitivity (95%) is achieved when FISH for chromosome 7 gain is added to the p53-mutant IDH1 IHC panel. PMID:21343879

  7. Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Liu, Wen; Yao, Yue; Wei, Yunxie; Chan, Zhulong

    2017-09-01

    Although the transcriptional regulation and upstream transcription factors of AtADH1 in response to abiotic stress are widely revealed, the in vivo roles of AtADH1 remain unknown. In this study, we found that the expression of AtADH1 was largely induced after salt, drought, cold and pathogen infection. Further studies found that AtADH1 overexpressing plants were more sensitive to abscisic acid (ABA) in comparison to wide type (WT), while AtADH1 knockout mutants showed no significant difference compared with WT in ABA sensitivity. Consistently, AtADH1 overexpressing plants showed improved stress resistance to salt, drought, cold and pathogen infection than WT, but the AtADH1 knockout mutants had no significant difference in abiotic and biotic stress resistance. Moreover, overexpression of AtADH1 expression increased the transcript levels of multiple stress-related genes, accumulation of soluble sugars and callose depositions. All these results indicate that AtADH1 confers enhanced resistance to both abiotic and biotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Why sensitive bacteria are resistant to hospital infection control [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Esther van Kleef

    2017-11-01

    Full Text Available Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. Methods: We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio (IRR associated with the intervention was calculated for hospital- and community-acquired infections of both strains. Results: For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6 and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤  0.9. These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9, while communityacquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2. The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Conclusions: Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally, following differences in their adaptation to hospital and

  9. A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodes

    International Nuclear Information System (INIS)

    Safina, Gulnara; Ludwig, Roland; Gorton, Lo

    2010-01-01

    A rapid and simple approach of lactose analysis is proposed based on 3rd generation amperometric biosensors employing cellobiose dehydrogenase (CDH) from Trametes villosa or Phanerochaete sordida immobilised on screen-printed carbon electrodes (SPCEs). After optimisation of the working conditions of the biosensors - pH of the carrier buffer, flow rate and applied potential - the sensors were able to detect lactose in a concentration range between 0.5-200 μM and 0.5-100 μM employing T. villosa and P. sordida CDH, respectively. The limit of detection is 250 nM (90 μg/L) for both. Biosensors based on SPCEs modified with multiwalled carbon nanotubes showed a higher sensitivity than unmodified SPCEs. Cross-linking with glutaraldehyde or poly(ethyleneglycol)diglycidyl ether improved not only the stability but also the analytical response. The developed sensor has been successfully applied for the determination of lactose in dairy (milk with different percentages of fat, lactose-free milk and yogurt) with a good reproducibility (RSD = 1.5-2.2%). No sample preparation except a simple dilution process is needed. The biosensor is easy to make and operate, is inexpensive and reveals a high sensitivity and reliability.

  10. A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Safina, Gulnara, E-mail: Gulnara.Safina@chem.gu.s [Department of Analytical Chemistry/Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); Ludwig, Roland [Department of Analytical Chemistry/Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); Research Centre Applied Biocatalysis, Petersgasse 18, 8010 Graz (Austria); Gorton, Lo, E-mail: Lo.Gorton@biochemistry.lu.s [Department of Analytical Chemistry/Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden)

    2010-11-01

    A rapid and simple approach of lactose analysis is proposed based on 3rd generation amperometric biosensors employing cellobiose dehydrogenase (CDH) from Trametes villosa or Phanerochaete sordida immobilised on screen-printed carbon electrodes (SPCEs). After optimisation of the working conditions of the biosensors - pH of the carrier buffer, flow rate and applied potential - the sensors were able to detect lactose in a concentration range between 0.5-200 {mu}M and 0.5-100 {mu}M employing T. villosa and P. sordida CDH, respectively. The limit of detection is 250 nM (90 {mu}g/L) for both. Biosensors based on SPCEs modified with multiwalled carbon nanotubes showed a higher sensitivity than unmodified SPCEs. Cross-linking with glutaraldehyde or poly(ethyleneglycol)diglycidyl ether improved not only the stability but also the analytical response. The developed sensor has been successfully applied for the determination of lactose in dairy (milk with different percentages of fat, lactose-free milk and yogurt) with a good reproducibility (RSD = 1.5-2.2%). No sample preparation except a simple dilution process is needed. The biosensor is easy to make and operate, is inexpensive and reveals a high sensitivity and reliability.

  11. The Diagnostic Significance of Serum Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase Activity in Urinary Bladder Cancer Patients.

    Science.gov (United States)

    Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej

    2017-07-01

    The aim of this study was to investigate a potential role of alcohol dehydrogenase and aldehyde dehydrogenase as tumor markers for urinary bladder cancer. Serum samples were obtained from 41 patients with bladder cancer and 52 healthy individuals. Class III and IV of ADH and total ADH activity were measured by the photometric method. For measurement of class I and II ADH and ALDH activity, the fluorometric method was employed. Significantly higher total activity of ADH was found in sera of both, low-grade and high-grade bladder cancer patients. The diagnostic sensitivity for total ADH activity was 81.5%, specificity 98.1%, positive (PPV) and negative (NPV) predictive values were 97.4% and 92.3% respectively. Area under ROC curve for total ADH activity was 0.848. A potential role of total ADH activity as a marker for bladder cancer, is herein proposed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  13. Microstructural analysis of the creep resistance of die-cast Mg-4Al-2RE alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.M. [CAST CRC, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)], E-mail: suming.zhu@eng.monash.edu.au; Gibson, M.A. [CAST CRC, CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, Clayton, Victoria 3169 (Australia); Nie, J.F.; Easton, M.A. [CAST CRC, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Abbott, T.B. [Advanced Magnesium Technologies, Milton, Queensland 4064 (Australia)

    2008-03-15

    The microstructure and microstructural stability of die-cast AE42 (Mg-4Al-2RE) alloy were investigated by transmission electron microscopy. It is shown that the formation of Mg{sub 17}Al{sub 12} after ageing at 200 deg. C is not due to the decomposition of A1{sub 11}RE{sub 3} as reported in the literature, but, rather, is associated with the supersaturation of Al solute in the {alpha}-Mg matrix. The level of Al solute retained in the {alpha}-Mg matrix after die-casting is suggested to be an important factor in influencing creep resistance.

  14. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-02-27

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  16. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf

    2008-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  17. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus

    DEFF Research Database (Denmark)

    de Evgrafov, Mari Cristina Rodriguez; Gumpert, Heidi; Munck, Christian

    2015-01-01

    As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations......, to reflect drug concentrations more likely to be encountered during treatment. We performed a series of adaptive evolution experiments using Staphylococcus aureus. Interestingly, no relationship between drug interaction type and resistance evolution was found as resistance increased significantly beyond wild......-type levels. All drug combinations, irrespective of interaction types, effectively limited resistance evolution compared with monotreatment. Cross-resistance and collateral sensitivity were found to be important factors in the extent of resistance evolution toward a combination. Comparative genomic analyses...

  18. Antibiotic sensitivity and resistance in Ornithobacterium rhinotracheale strains from Belgian broiler chickens.

    Science.gov (United States)

    Devriese, L A; De Herdt, P; Haesebrouck, F

    2001-06-01

    Establishing the antibiotic sensitivity of the avian respiratory pathogen Ornithobacterium rhinotracheale is difficult because of the organism's complex growth requirements and the unusually frequent occurrence of resistance. The minimal inhibitory concentrations of 10 antibiotics were determined for 45 strains of O. rhinotracheale from Belgian broiler chickens collected from 45 farms between 1995 and 1998. They were compared with the type strain, which was isolated from a turkey, and a strain isolated from a rook. All the broiler strains were resistant to lincomycin and to the beta-lactams ampicillin and ceftiofur. Less than 10% of the strains were sensitive to the macrolides tylosin and spiramycin, tilmicosin and flumequine. A few strains were sensitive to enrofloxacin and doxycycline. All strains were sensitive to tiamulin.

  19. Antibiotic resistant pattern of methicillin resistant and sensitive Staphylococcus aureus isolated from patients durining 2009-2010, Ahvaz, Iran.

    Directory of Open Access Journals (Sweden)

    N Parhizgari

    2013-12-01

    Full Text Available Abstract Background & aim: Staphylococcus aureus is one of the most important nosocomial infecting agents resistant to commonly used antibiotics. Nowadays, methicillin-resistant S. aureus (MRSA is considered one of the main causes of nosocomial infections. The aim of this study was to identify the antibiotic resistance pattern of methicicllin- resistant and susceptible strains in Ahwaz, Iran. Methods: In the present cross - sectional study, a number of 255 clinically suspected cases of Staphylococcus aureus were collected during a 19 month period. The bacteria were investigated using standard biochemical tests such as catalase, mannitol fermentation, coagulase and Dnase. Sensitive strains were confirmed by disk diffusion method compared to commonly used antibiotics. The collected data were analyzed using descriptive statistical tests. Results: of 255 suspected cases, 180 were confirmed as S.aureus, a total of 59 strains of S. aureus (2/37 percent were resistant to methicillin. Resistance to S. aureus strains resistant to methicillin included: chloramphenicol (3.38%, rifampin (45.76%, norfloxacin (89.83%, gentamicin (89.83%, ciprofloxacin, (91.52%, azithromycin, (88.13%, cotrimoxazole (86.44% and all isolates strains were sensitive to vancomycin and nitrofurantoin. A total of 10 different patterns of antibiotic resistance in methicillin-resistant Staphylococcus aureus strains were identified. Conclusion: Expression of new resistance factor in nosocomial infection is one of the major challenges in treating these infections. This study showed a high prevalence of resistance against some class of antibiotics in MRSA isolated from Imam Khomeini and Golestan hospital of Ahwaz, Iran. Key words: Nosocomial infection, Methicillin Resistant Staphylococcus aureus (MRSA, Antibiotic Resistant Pattern

  20. Requirement of Osteopontin in the migration and protection against Taxol-induced apoptosis via the ATX-LPA axis in SGC7901 cells

    Directory of Open Access Journals (Sweden)

    Huang Zuhu

    2011-03-01

    Full Text Available Abstract Background Autotaxin (ATX possesses lysophospholipase D (lyso PLD activity, which converts lysophosphatidylcholine (LPC into lysophosphatidic acid (LPA. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation and tumor progression. Osteopontin (OPN is an important chemokine involved in the survival, proliferation, migration, invasion and metastasis of gastric cancer cells. The focus of the present study was to investigate the relationship between the ATX-LPA axis and OPN. Results In comparison with non-treated cells, we found that the ATX-LPA axis up-regulated OPN expression by 1.92-fold in protein levels and 1.3-fold in mRNA levels. The ATX-LPA axis activates LPA2, Akt, ERK and ELK-1 and also protects SGC7901 cells from apoptosis induced by Taxol treatment. Conclusions This study provides the first evidence that expression of OPN induced by ATX-LPA axis is mediated by the activation of Akt and MAPK/ERK pathways through the LPA2 receptor. In addition, OPN is required for the protective effects of ATX-LPA against Taxol-induced apoptosis and ATX-LPA-induced migration of SGC7901 cells.

  1. A highly sensitive method for detection of molybdenum-containing proteins

    International Nuclear Information System (INIS)

    Kalakutskii, K.L.; Shvetsov, A.A.; Bursakov, S.A.; Letarov, A.V.; Zabolotnyi, A.I.; L'vov, N.P.

    1992-01-01

    A highly sensitive method for detection of molybdenum-containing proteins in gels after electrophoresis has been developed. The method involves in vitro labeling of the proteins with the radioactive isotope 185 W. The method used to detect molybdenum-accumulating proteins in lupine seeds, xanthine dehydrogenase and another molybdenum-containing protein in wheat, barley, and pea seedlings, and nitrate reductase and xanthine dehydrogenase in bacteroides from lupine nodules. Nitrogenase could not be detected by the method. 16 refs., 5 figs

  2. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    Science.gov (United States)

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  3. Metabolic changes during development of Walker-256 carcinosarcoma resistance to doxorubicin.

    Science.gov (United States)

    Todor, I N; Lukyanova, N Yu; Shvets, Yu V; Lozovska, Yu V; Chekhun, V F

    2015-03-01

    To study indices of energy metabolism, content of K(+) and Mg(++) both in peripheral blood and in Walker-256 carcinosarcoma during development of resistance to doxorubicin. Resistance of Walker-256 carcinosarcoma to doxorubicin has been developed through 12 subsequent transplantations of tumor after the chemotherapy. Parental strain was inhibited by drug by 65%, while transitional resistant substrains - by 30% and 2%, respectively. Determination of biochemical indices in blood serum and homogenates of tumor tissue, level of potassium, magnesium, lactate, glucose, activities of lactate dehydrogenase and glucose-6-phosphate dehydrogenase was performed with the help of biochemical and immune-enzyme analyzer GBG ChemWell 2990 (USA) using standard kits. Polarography was used to determine indices of mitochondrial oxidative phosphorylation. Study of mitochondrial membrane potential was carried out on flow cytometer Beckman Coulter Epics XL using dye JC-1. It has been determined that development of drug resistance causes the decrease of K(+), Mg(++), glucose content in blood serum and increase of these indices in tumor tissue. At the same time, gradual tumor's loss of sensitivity is characterized by decrease of glycolysis activity in it and activation of mitochondrial oxidative phosphorylation and pentose phosphate pathway of glucose degradation, which causes more intensive formation of NADPH. Development of drug resistance of tumor causes certain metabolic changes in organism and tumor. Further study of such changes will make possible to determine tumor and extratumor markers of resistance.

  4. Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase

    International Nuclear Information System (INIS)

    Neeff, J.; Haegele, E.; Nauhaus, J.; Heer, U.; Mecke, D.

    1978-01-01

    The cytoplasmic malate dehydrogenase of Saccharomyces cerevisiae was radioactively labeled during its synthesis on a glucose-free derepression medium. After purification a sensitive radioimmunoassay for this enzyme could be developed. The assay showed that after the physiological, glucose-dependent 'catabolite inactivation' of cytoplasmic malate dehydrogenase an inactive enzyme protein is immunologically not detectable. Together with the irreversibility of this reaction in vivo this finding strongly suggests a proteolytic mechanism of enzyme inactivation. For this process the term 'catabolite degradation' is used. (orig.) [de

  5. High CDK6 protects cells from fulvestrant-mediated apoptosis and is a predictor of resistance to fulvestrant in estrogen receptor-positive metastatic breast cancer

    DEFF Research Database (Denmark)

    Alves, Carla Maria Lourenco; Elias, Daniel; Lyng, Maria B

    2016-01-01

    expression impaired fulvestrant-resistant cell growth and induced apoptosis. Treatment with palbociclib re-sensitized fulvestrant-resistant cells to fulvestrant through alteration of retinoblastoma protein phosphorylation. High CDK6 levels in metastatic samples from two independent cohorts of breast cancer...

  6. Engineering of Class II Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Rahman, Mahbubur; Zangrilli, Beatrice

    2017-01-01

    The front cover artwork is provided by Prof. Lo Gorton from Lund University (Sweden) and his co-workers. The image shows mutated cellobiose dehydrogenase (CDH) immobilized on a graphite electrode and how preferentially glucose is oxidized by this enzyme. Read the full text of the Article at 10.1002...

  7. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    International Nuclear Information System (INIS)

    Holland, S.E.

    2000-01-01

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels

  8. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    International Nuclear Information System (INIS)

    Bree, Chris van; Kreder, Natasja Castro; Loves, Willem J.P.; Franken, Nicolaas A.P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel, 5-fluorouracil (5-FU), methotrexate (MTX), cytarabine (ara-C), and dFdC was measured by a proliferation assay. Radiosensitivity and radioenhancement by dFdC of this cell panel and the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000 were determined by clonogenic assay. Bivariate flowcytometry was performed to study cell cycle changes. Results: In the SWg, a complete deoxycytidine kinase (dCK) deficiency was found on mRNA and protein level. This was accompanied by a 10-fold decrease in dCK activity which resulted in the >1000-fold resistance to dFdC. Sensitivity to other anti-tumor drugs was not altered, except for ara-C (>100-fold resistance). Radiosensitivity was not altered in the dFdC-resistant cell lines SWg and AG6000. High concentrations (50-100 μM dFdC) induced radioenhancement in the dFdC-resistant cell lines similar to the radioenhancement obtained at lower concentrations (10 nM dFdC) in the parental lines. An early S-phase arrest was found in all cell lines after dFdC treatment where radioenhancement was achieved. Conclusions: In the dFdC-resistant lung tumor cell line SWg, the deficiency in dCK is related to the resistance to dFdC and ara-C. No cross-resistance was observed to other anti-tumor drugs used for the treatment in lung cancer. Sensitivity to ionizing radiation was not altered in two different dFdC-resistant cell lines. Resistance to dFdC does not eliminate the ability of dFdC to sensitize cells to radiation

  9. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  10. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Fukuda, Jun; Tsujimura, Seiya; Kano, Kenji

    2008-01-01

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 μL was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change (ΔG o ') is negative; (2) α-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive ΔG o ' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of α-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total ΔG o ' value negative

  11. Broncho-pulmonary toxicity in stage III non small cell lung cancer patients treated with taxol containing chemotherapy and concurrent preoperative or definitive radiation therapy

    International Nuclear Information System (INIS)

    Sharma, M. Maddie; Gupta-Burt, Shalina; Recine, Diane C.; Faber, L. Penfield; Warren, William H.; LaFollette, Suzanne; Lincoln, Sarah T.; Bonomi, Philip D.

    1997-01-01

    Purpose/Objective: The objective of this trial was to test the feasibility of taxol containing combination chemotherapy and concurrent radiation as preoperative or definitive treatment for stage III non small cell lung cancer patients. Methods and Materials: Thirty-three patients were treated on this trial. The initial regimen was (Group 1 pts.): paraplatin (P) (AUC of 4) on day 2, etoposide (E) 50 mg po days 1-5 and 8-12, cisplatin (C) 50 mg/m2 on day 21 and taxol (T) 35 mg/m2 escalated to 45 mg/m2 on days 1 and 8, 24 hr. infusion. After treatment of 10 pts., the regimen was modified as follows (Group 2 pts.): P (AUC of 4) on day 1, E 40 mg/m2 IV daily and days 2-5, and T 80 mg/m2 escalated to 120 mg/m2 on day 1, 3 hr. infusion. After the next 16 pts., the regimen was modified again as follows (Group 3 pts.): P (AUC of 4) on day 1 and T 120 mg/m2 escalated to 140 mg/m2 on day 1, 3 hr. infusion. Seven patients were treated on the latest version of the regimen for a total of 33 pts. The radiation given was uniform throughout the 3 groups. A dose of 4000 cGy in 20 fxs was given in the surgical arm and 6000 cGy in 30 fxs in the non surgical arm. Treatments were given at 200 cGy/fx. once a day, on a 2 weeks on, 2 weeks off basis. The RTOG Acute Radiation Morbidity Scoring Criteria was used to grade pneumonitis. Post-operative complications were defined as occurring early (less than or equal to 30 days) or late (greater than 30 days) following surgery. Results: Sixteen of the 33 patients went to surgery. Grade 3 radiation pneumonitis developed in 4 of the 33 patients (12%). There were no episodes of Grade 4 pneumonitis. Grade 3 pneumonitis occured in: One patient in Group 1, (RT dose 5800 cGy), 2 pts in Group 2 (RT dose 4000 cGy and 6000 cGy, respectively), and 1 pt in Group 3 (RT dose 6000 cGy). Major post-operative complications occurred in 6 of the 16 patients (37.5%) who went to surgery. In Group 1, 1 pt. required oxygen supplementation secondary to a significant

  12. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  13. Abiraterone in the treatment of metastatic castration-resistant prostate cancer

    International Nuclear Information System (INIS)

    Mostaghel, Elahe A

    2014-01-01

    Androgen deprivation therapy remains the single most effective treatment for the initial therapy of advanced prostate cancer, but is uniformly marked by progression to castration-resistant prostate cancer (CRPC). Residual tumor androgens and androgen axis activation are now recognized to play a prominent role in mediating CRPC progression. Despite suppression of circulating testosterone to castrate levels, castration does not eliminate androgens from the prostate tumor microenvironment and residual androgen levels are well within the range capable of activating the androgen receptor (AR) and AR-mediated gene expression. Accordingly, therapeutic strategies that more effectively target production of intratumoral androgens are necessary. The introduction of abiraterone, a potent suppressor of cytochrome P450 17 α-hydroxysteroid dehydrogenase-mediated androgen production, has heralded a new era in the hormonal treatment of men with metastatic CRPC. Herein, the androgen and AR-mediated mechanisms that contribute to CRPC progression and establish cytochrome P450 17 α-hydroxysteroid dehydrogenase as a critical therapeutic target are briefly reviewed. The mechanism of action and pharmacokinetics of abiraterone are reviewed and its recently described activity against AR and 3-β-hydroxysteroid dehydrogenase is discussed. The Phase I and II data initially demonstrating the efficacy of abiraterone and Phase III data supporting its approval for patients with metastatic CRPC are reviewed. The safety and tolerability of abiraterone, including the incidence and management of side effects and potential drug interactions, are discussed. The current place of abiraterone in CRPC therapy is reviewed and early evidence regarding cross-resistance of abiraterone with taxane therapy, mechanisms of resistance to abiraterone, and observations of an abiraterone withdrawal response are presented. Future directions in the use of abiraterone, including optimal dosing strategies, the role of

  14. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells

    International Nuclear Information System (INIS)

    Ramu, A.; Cohen, L.; Glaubiger, D.

    1984-01-01

    One of the proposed mechanisms for the cytotoxic effects of anthracycline compounds suggests that the effect is mediated through the formation of intracellular superoxide radicals. It is therefore possible that doxorubicin resistance is associated with increased intracellular enzyme capacity to convert these superoxide radicals to inactive metabolites. We have measured the relative activities of superoxide dismutase, glutathione peroxidase, and catalase in P388 mouse leukemia cells and in a doxorubicin-resistant subline. Since oxygen-reactive metabolites also play a role in mediating the cytotoxicity of ionizing radiation, the radiosensitivity of both cell lines was also studied. No significant differences in superoxide dismutase activity between these cell lines was observed, indicating that they have a similar capacity to convert superoxide anion radicals to hydrogen peroxide. P388 cells that are resistant to doxorubicin have 1.5 times the glutathione content and 1.5 times the activity of glutathione peroxidase measured in drug-sensitive P388 cells. However, incubation with 1-chloro-2,4-dinitrobenzene, which covalently binds glutathione, had no effect on the sensitivity of either cell line to doxorubicin. Measured catalase activity in drug-resistant P388 cells was one-third of the activity measured in doxorubicin-sensitive P388 cells. The activity of this enzyme was much higher than that of glutathione peroxidase in terms of H 2 O 2 deactivation in both cell lines. It is therefore unlikely that doxorubicin-resistant P388 cells have an increased ability to detoxify reactive oxygen metabolites when compared to drug-sensitive cells. Doxorubicin-resistant P388 cells were significantly more sensitive to X-irradiation than were drug-sensitive P388 cells. These observations suggest that the difference in catalase activity in these cell lines may be associated with the observed differences in radiosensitivity

  15. [Bactericidal activity of serum and chemotherapy in sensitive and resistant exciter (author's transl)].

    Science.gov (United States)

    Eyer, H; Metz, H; Preac-Mursic, V

    1975-11-21

    Comparing examinations with Ampicillin sensitive and resistant bacteria-strains show that the bactericidal activity of serum is dependent on the bacteria-strains, on the Ampicillin sensitivity of the particular exciter and on the number of bacteria/ml (germ count). Bactericide effect could always be obtained with sensitive strains as a result of additional chemotherapy. With several resistant strains a bactericide effect could not be obtained in this case the continuous optimal Ampicillin addition was the decisive factor. Because of the extremely complicated process of the bactericide one should not make general conclusions from the individual experimental results.

  16. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    Science.gov (United States)

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (PPCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (P<0.001) and increased upper body fat distribution (P<0.01) were associated with increased expression of 11beta-HSD1, but neither 11beta-HSD2 nor H6PDH. Polycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  17. Abiraterone in the treatment of metastatic castration-resistant prostate cancer

    Directory of Open Access Journals (Sweden)

    Mostaghel EA

    2014-01-01

    Full Text Available Elahe A Mostaghel Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Abstract: Androgen deprivation therapy remains the single most effective treatment for the initial therapy of advanced prostate cancer, but is uniformly marked by progression to castration-resistant prostate cancer (CRPC. Residual tumor androgens and androgen axis activation are now recognized to play a prominent role in mediating CRPC progression. Despite suppression of circulating testosterone to castrate levels, castration does not eliminate androgens from the prostate tumor microenvironment and residual androgen levels are well within the range capable of activating the androgen receptor (AR and AR-mediated gene expression. Accordingly, therapeutic strategies that more effectively target production of intratumoral androgens are necessary. The introduction of abiraterone, a potent suppressor of cytochrome P450 17 α-hydroxysteroid dehydrogenase-mediated androgen production, has heralded a new era in the hormonal treatment of men with metastatic CRPC. Herein, the androgen and AR-mediated mechanisms that contribute to CRPC progression and establish cytochrome P450 17 α-hydroxysteroid dehydrogenase as a critical therapeutic target are briefly reviewed. The mechanism of action and pharmacokinetics of abiraterone are reviewed and its recently described activity against AR and 3-β-hydroxysteroid dehydrogenase is discussed. The Phase I and II data initially demonstrating the efficacy of abiraterone and Phase III data supporting its approval for patients with metastatic CRPC are reviewed. The safety and tolerability of abiraterone, including the incidence and management of side effects and potential drug interactions, are discussed. The current place of abiraterone in CRPC therapy is reviewed and early evidence regarding cross-resistance of abiraterone with taxane therapy, mechanisms of resistance to abiraterone, and observations of an

  18. Clinical study of carbapenem sensitive and resistant Gram-negative bacteremia in neutropenic and nonneutropenic patients: The first series from India.

    Science.gov (United States)

    Ghafur, A K; Vidyalakshmi, P R; Kannaian, P; Balasubramaniam, R

    2014-01-01

    Carbapenem resistance is a growing global concern. There is a lack of published clinical studies on the topic from Indian subcontinent. Aim of this study was to analyze clinical profile of patients with carbapenem sensitive and resistant bacteremia among neutropenic and nonneutropenic patients. Retrospective analysis of 141 patients who had carbapenem resistant or sensitive Gram-negative bacteremia, identified over a period of 1-year was done by medical records review, in Apollo Specialty Hospital, a 300-bedded tertiary care Oncology, neurosurgical and orthopedic center in South India. Of the total 141 patients with Gram-negative bacteremia, 44 had carbapenem resistant ones. Of these 44 patients, 17 were neutropenics (resistant neutropenic group) and 27 nonneutropenic patients (resistant nonneutropenic group). Of the 97 patients with carbapenem sensitive bacteremia, 43 were neutropenic (sensitive neutropenic group) and 54 nonneutropenics (sensitive nonneutropenic group). The 28 days mortality was significantly higher in carbapenem resistant bacteremic group compared to the sensitive one (P = 0.008). This is the first study from India comparing clinical features of patients with carbapenem sensitive and resistant blood stream infections. Patients with carbapenem resistant bacteremia had higher mortality compared to patients with sensitive bacteremia.

  19. Post-trial apomorphine at an autoreceptor dose level can eliminate apomorphine conditioning and sensitization: support for the critical role of dopamine in re-consolidation.

    Science.gov (United States)

    Carrera, Marinete Pinheiro; Carey, Robert J; Cruz Dias, Flávia Regina; dos Santos Sampaio, Maria de Fátima; de Matos, Liana Wermelinger

    2013-01-01

    Re-exposure to conditioned drug stimuli triggers re-consolidation processes. In the present study post-trial apomorphine treatments were administered in order to interact with the re-consolidation of an apomorphine conditioned/sensitized locomotor response. A low (0.05 mg/kg) and a high (2.0mg/kg) dose were used to inhibit or to enhance dopamine activity, respectively. Initially, groups received 5 daily apomorphine (2.0mg/kg)/vehicle treatments either paired or unpaired to open-field placement. The paired treatments generated a progressive locomotor response. Subsequently, all groups received a 5 min non-drug test for conditioning and a conditioned locomotor response was observed in the paired group. The groups received another apomorphine (2.0mg/kg)/vehicle treatment as a re-induction treatment. At this stage the post-trial protocol was initiated. One set of paired, unpaired and vehicle groups were given a low dose of apomorphine (0.05 mg/kg) post-trial; another set received a high dose of apomorphine (2.0mg/kg) post-trial. The remaining group set received vehicle post-trial. The low dose post-trial treatment eliminated the conditioned and sensitized locomotor response and the high dose post-trial treatment enhanced the conditioned and sensitized locomotor response. The efficacy of the post-trial apomorphine treatments to modify the conditioned and the sensitized response after a brief non-drug exposure to test cues supports the proposition that exteroceptive cues control conditioning and sensitization and that the interoceptive drug cues make little or no associational contribution to apomorphine conditioning and sensitization. In addition, the findings point to the importance of dopamine activation in both the acquisition and re-consolidation of conditioning processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  1. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    Science.gov (United States)

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  2. The Effect of Physical Resistance Training on Baroreflex Sensitivity of Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Moisés Felipe Pereira Gomes

    Full Text Available Abstract Background: Baroreceptors act as regulators of blood pressure (BP; however, its sensitivity is impaired in hypertensive patients. Among the recommendations for BP reduction, exercise training has become an important adjuvant therapy in this population. However, there are many doubts about the effects of resistance exercise training in this population. Objective: To evaluate the effect of resistance exercise training on BP and baroreceptor sensitivity in spontaneously hypertensive rats (SHR. Method: Rats SHR (n = 16 and Wistar (n = 16 at 8 weeks of age, at the beginning of the experiment, were randomly divided into 4 groups: sedentary control (CS, n = 8; trained control (CT, n = 8; sedentary SHR (HS, n = 8 and trained SHR (HT, n = 8. Resistance exercise training was performed in a stairmaster-type equipment (1.1 × 0.18 m, 2 cm between the steps, 80° incline with weights attached to their tails, (5 days/week, 8 weeks. Baroreceptor reflex control of heart rate (HR was tested by loading/unloading of baroreceptors with phenylephrine and sodium nitroprusside. Results: Resistance exercise training increased the soleus muscle mass in SHR when compared to HS (HS 0.027 ± 0.002 g/mm and HT 0.056 ± 0.003 g/mm. Resistance exercise training did not alter BP. On the other hand, in relation to baroreflex sensitivity, bradycardic response was improved in the TH group when compared to HS (HS -1.3 ± 0.1 bpm/mmHg and HT -2.6 ± 0.2 bpm/mmHg although tachycardia response was not altered by resistance exercise (CS -3.3 ± 0.2 bpm/mmHg, CT -3.3 ± 0.1 bpm/mmHg, HS -1.47 ± 0.06 bpm/mmHg and HT -1.6 ± 0.1 bpm/mmHg. Conclusion: Resistance exercise training was able to promote improvements on baroreflex sensitivity of SHR rats, through the improvement of bradycardic response, despite not having reduced BP.

  3. Biochemical characterization of recombinant dihydroorotate dehydrogenase from the opportunistic pathogenic yeast Candida albicans

    DEFF Research Database (Denmark)

    Zameitat, E.; Gojkovic, Zoran; Knecht, Wolfgang

    2006-01-01

    Candida albicans is the most prevalent yeast pathogen in humans, and recently it has become increasingly resistant to the current antifungal agents. In this study we investigated C. albicans dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), which catalyzes the fourth step of de novo pyrimidine...

  4. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes.

    Science.gov (United States)

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar; Qimron, Udi

    2012-02-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant.

  5. ReTrust: attack-resistant and lightweight trust management for medical sensor networks.

    Science.gov (United States)

    He, Daojing; Chen, Chun; Chan, Sammy; Bu, Jiajun; Vasilakos, Athanasios V

    2012-07-01

    Wireless medical sensor networks (MSNs) enable ubiquitous health monitoring of users during their everyday lives, at health sites, without restricting their freedom. Establishing trust among distributed network entities has been recognized as a powerful tool to improve the security and performance of distributed networks such as mobile ad hoc networks and sensor networks. However, most existing trust systems are not well suited for MSNs due to the unique operational and security requirements of MSNs. Moreover, similar to most security schemes, trust management methods themselves can be vulnerable to attacks. Unfortunately, this issue is often ignored in existing trust systems. In this paper, we identify the security and performance challenges facing a sensor network for wireless medical monitoring and suggest it should follow a two-tier architecture. Based on such an architecture, we develop an attack-resistant and lightweight trust management scheme named ReTrust. This paper also reports the experimental results of the Collection Tree Protocol using our proposed system in a network of TelosB motes, which show that ReTrust not only can efficiently detect malicious/faulty behaviors, but can also significantly improve the network performance in practice.

  6. Use of Direct Current Resistivity Measurements to Assess AISI 304 Austenitic Stainless Steel Sensitization

    OpenAIRE

    Mesquita, Ramaiany Carneiro; Mecury, José Manoel Rivas; Tanaka, Auro Atsumi; Sousa, Regina Célia de

    2015-01-01

    This paper describes the feasibility of using direct current electrical resistivity measurements to evaluate AISI 304 austenitic stainless steel sensitization. ASTM A262 – Practice A and double loop electrochemical potentiodynamic reactivation (DL-EPR) tests were performed to assess the degree of sensitization (DoS) qualitatively and quantitatively, and electrical resistivity (ER) was measured by the four-point direct-current potential drop method. The results indicate that the DoS incr...

  7. The Alcohol Dehydrogenase Isoenzyme as a Potential Marker of Pancreatitis.

    Science.gov (United States)

    Jelski, Wojciech; Piechota, Joanna; Orywal, Karolina; Szmitkowski, Maciej

    2018-05-01

    Human pancreas parenchyma contains various alcohol dehydrogenase (ADH) isoenzymes and also possesses aldehyde dehydrogenase (ALDH) activity. The altered activities of ADH and ALDH in damaged pancreatic tissue in the course of pancreatitis are reflected in the human serum. The aim of this study was to investigate a potential role of ADH and ALDH as markers for acute (AP) and chronic pancreatitis (CP). Serum samples were collected for routine biochemical investigations from 75 patients suffering from acute pancreatitis and 70 patients with chronic pancreatitis. Fluorometric methods were used to measure the activity of class I and II ADH and ALDH activity. The total ADH activity and activity of class III and IV isoenzymes were measured by a photometric method. There was a significant increase in the activity of ADH III isoenzyme (15.06 mU/l and 14.62 mU/l vs. 11.82 mU/l; ppancreatitis or chronic pancreatitis compared to the control. The diagnostic sensitivity for ADH III was about 84%, specificity was 92 %, positive and negative predictive values were 93% and 87% respectively in acute pancreatitis. Area under the Receiver Operating Curve (ROC) curve for ADH III in AP and CP was 0.88 and 0.86 respectively. ADH III has a potential role as a marker of acute and chronic pancreatitis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Effects of protein kinase C activators on phorbol ester-sensitive and -resistant EL4 thymoma cells.

    Science.gov (United States)

    Sansbury, H M; Wisehart-Johnson, A E; Qi, C; Fulwood, S; Meier, K E

    1997-09-01

    Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.

  9. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells.

    LENUS (Irish Health Repository)

    Doherty, Ben

    2014-01-01

    KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer.

  10. Plant Formate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  11. Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor.

    Science.gov (United States)

    Ruhal, A; Rana, J S; Kumar, S; Kumar, A

    2012-12-22

    An amperometric malic acid biosensor was developed by immobilizing malate dehydrogenase on multi-walled carbon nanotubes (MWCNT) coated on screen printed carbon electrode. The screen printed carbon electrode is made up of three electrodes viz., carbon as working, platinum as counter and silver as reference electrode. Detection of L-malic acid concentration provides important information about the ripening and shelf life of the fruits. The NADP specific malate dehydrogenase was immobilized on carboxylated multiwalled carbon nanotubes using cross linker EDC [1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide] on screen printed carbon electrode. An amperometric current was measured by differential pulse voltammetry (DPV) which increases with increasing concentrations of malic acid at fixed concentration of NADP. Enzyme electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The detection limit of malic acid by the sensor was 60 - 120 μM and sensitivity of the sensor was 60 μM with a response time of 60s. The usual detection methods of malic acid are nonspecific, time consuming and less sensitive. However, an amperometric malic acid nanosensor is quick, specific and more sensitive for detection of malic acid in test samples.

  12. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  13. Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction.

    Science.gov (United States)

    Chen, Hengyi; Wang, Yubo; Lin, Caiyu; Lu, Conghua; Han, Rui; Jiao, Lin; Li, Li; He, Yong

    2017-11-07

    There is a close relationship between low expression of BIM and resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Vorinostat is a pan-histone deacetylase inhibitor (HDACi) that augments BIM expression in various types of tumor cells, however, this effect is attenuated by the high expression of anti-apoptotic proteins in EGFR-TKI resistant non-small cell lung cancer (NSCLC) cells. Vorinostat in combination with metformin - a compound that can inhibit anti-apoptotic proteins expression, might cooperate to activate apoptotic signaling and overcome EGFR-TKI resistance. This study aimed to investigate the cooperative effect and evaluate possible molecular mechanisms. The results showed that vorinostat combined with gefitinib augmented BIM expression and increased the sensitivity of EGFR-TKI resistant NSCLC cells to gefitinib, adding metformin simultaneously could obviously inhibit the expression of anti-apoptotic proteins, and further increased expression levels of BIM and BAX, and as a result, further improved the sensitivity of gefitinib both on the NSCLC cells with intrinsic and acquired resistance to EGFR-TKI. In addition, autophagy induced by gefitinib and vorinostat could be significantly suppressed by metformin, which might also contribute to enhance apoptosis and improve sensitivity of gefitinib. These results suggested that the combination of vorinostat and metformin might represent a novel strategy to overcome EGFR-TKI resistance associated with BIM-dependent apoptosis in larger heterogeneous populations.

  14. Sensitivity enhancement of chemically amplified resists and performance study using EUV interference lithography

    Science.gov (United States)

    Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin

    2016-03-01

    Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity (S or best energy BE) and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (LRS trade-off) among these parameters for chemically amplified resists (CARs). Here we present early proof-of-principle results for a multi-exposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a Photosensitized Chemically Amplified Resist (PSCAR). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV flood exposure (λ = 365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR and EL high performance requirements with the aim of resolving line space (L/S) features for the 7 and 5 nm logic node (16 nm and 13 nm half-pitch HP, respectively) for HVM. Several CARs were additionally found to be well resolved down to 12 nm and 11 nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and

  15. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2010-04-01

    Full Text Available The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibited dehydrogenase activities. Generally, phenol is less toxic than substituted phenols. Estimations of the degree of inhibition/stimulation of dehydrogenase activities showed significant dose-dependent responses that are describable by logistic functions. The toxicity thresholds varied significantly (P < 0.05 among the bacterial strains and phenolic compounds. The median inhibitory concentrations (IC50s ranged from 4.118 ± 0.097 mg.L-1 for 4-nitrophenol against Pseudomonas sp. DAF1 to 1407.997 ± 7.091 mg.L-1 for phenol against Bacillus sp. DISK1. This study suggested that the organisms have moderate sensitivity to phenols and have the potential to be used as indicators for assessment of chemical toxicity. They could also be used as catalysts for degradation of phenols in effluents.

  16. Effects of extra virgin olive oil phenols on HL60 cell lines sensitive and resistant to anthracyclines

    Directory of Open Access Journals (Sweden)

    M. Crescimanno

    2009-01-01

    Full Text Available The aim of our study was to evaluate the capability of a crude extract of phenols from extra virgin olive oil of Moraiolo cultivar to induce apoptosis and/or differentiation in sensitive and resistant HL60 cell lines to anticancer drugs (Typical Multidrug Resistance. Our data highlight that the crude extract is able to induce apoptosis on both sensitive and resistant cells, whereas the exposure to a number of anticancer drugs does not induce apoptosis in resistant cells. In differentiation experiments we investigated the capability of crude extract of phenols to induce the expression of CD11 granulocytic or CD14 monocytic cell surface antigen in sensitive and resistant HL60 cell lines. At IC50 dose level (17 ug/ml and 32 ug/ml respectively for sensitive and resistant cell lines, the crude extract induced differentiation associated with the expression of CD14 monocytic cell lines but not that of CD11 granulocityc cell surface antigen. Further investigations are in progress to better clarify the mechanism by which olive oil phenols induce diffentiation on this cell line.

  17. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development

    DEFF Research Database (Denmark)

    Imamovic, Lejla; Sommer, Morten

    2013-01-01

    collateral sensitivity and resistance profiles, revealing a complex collateral sensitivity network. On the basis of these data, we propose a new treatment framework-collateral sensitivity cycling-in which drugs with compatible collateral sensitivity profiles are used sequentially to treat infection...... pathogens. These results provide proof of principle for collateral sensitivity cycling as a sustainable treatment paradigm that may be generally applicable to infectious diseases and cancer....

  18. Electronic and atomic disorder in icosahedral AlPdRe

    International Nuclear Information System (INIS)

    Rapp, Oe; Karkin, A A; Goshchitskii, B N; Voronin, V I; Srinivas, V; Poon, S J

    2008-01-01

    Relations between electronic and atomic disorder of i-AlPdRe have been investigated by studies of neutron irradiated and annealed samples. The advantage with this technique is that a single sample can be monitored over a significant range of varying electronic properties, without concern for any influence of varying impurities. X-ray diffraction, the electrical resistivity and its temperature dependence, and the magnetoresistance are studied. The results show that annealings of an irradiated sample lead to improvement of the atomic order, as reflected in increased intensities of the x-ray diffraction peaks, while electronic properties change in the direction of increasing electronic disorder towards a metal-insulator transition. The observed relation in quasicrystals that improved atomic structure is associated with stronger anomalies in transport properties is thus also seen in i-AlPdRe. In particular, the variation of the diffusion constant in the region of small values of the resistivity is found to be similar for annealed polygrain samples and for single grain samples with varying Pd concentration, as evaluated from literature data, indicating a similar development of electronic disorder in both sets of samples. However, the problem remains as to why the resistivity is small in single grain samples which are atomically well-ordered. The possibility of a strong sensitivity to concentration differences is pointed out

  19. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.

    Science.gov (United States)

    Beseli, Aydin; Goulart da Silva, Marilia; Daub, Margaret E

    2015-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides and plant pathogenic fungus Cercospora nicotianae have been used as models for understanding resistance to singlet oxygen ((1)O(2)), a highly toxic reactive oxygen species. In Rhodobacter and Cercospora, (1)O(2) is derived, respectively, from photosynthesis and from the (1)O(2)-generating toxin cercosporin which the fungus produces to parasitize plants. We identified common genes recovered in transcriptome studies of putative (1)O(2)-resistance genes in these two systems, suggesting common (1)O(2)-resistance mechanisms. To determine if the Cercospora homologs of R. sphaeroides (1)O(2)-resistance genes are involved in resistance to cercosporin, we expressed the genes in the cercosporin-sensitive fungus Neurospora crassa and assayed for increases in cercosporin resistance. Neurospora crassa transformants expressing genes encoding aldo/keto reductase, succinyl-CoA ligase, O-acetylhomoserine (thiol) lyase, peptide methionine sulphoxide reductase and glutathione S-transferase did not have elevated levels of cercosporin resistance. Several transformants expressing aldehyde dehydrogenase were significantly more resistant to cercosporin. Expression of the transgene and enzyme activity did not correlate with resistance, however. We conclude that although the genes tested in this study are important in (1)O(2) resistance in R. sphaeroides, their Cercospora homologs are not involved in resistance to (1)O(2) generated from cercosporin. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Selection of resistance and sensitive cultivars of lentil in Ardabil ...

    African Journals Online (AJOL)

    Selection of resistance and sensitive cultivars of lentil in Ardabil region of Iran ... irrigation from planting until maturity and non-irrigation from seed emergence ... Key words: Lentil, yield, normal and stress conditions, drought tolerance index.

  1. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Dhindsa G

    2004-04-01

    Full Text Available It is estimated that 5-10% of women of reproductive age have polycystic ovarian syndrome (PCOS. While insulin resistance is not part of the diagnostic criteria for PCOS, its importance in the pathogenesis of PCOS cannot be denied. PCOS is associated with insulin resistance independent of total or fat-free body mass. Post-receptor defects in the action of insulin have been described in PCOS which are similar to those found in obesity and type 2 diabetes. Treatment with insulin sensitizers, metformin and thiazolidinediones, improve both metabolic and hormonal patterns and also improve ovulation in PCOS. Recent studies have shown that PCOS women have higher circulating levels of inflammatory mediators like C-reactive protein, tumour necrosis factor- , tissue plasminogen activator and plasminogen activator inhibitor-1 (PAI-1 . It is possible that the beneficial effect of insulin sensitizers in PCOS may be partly due to a decrease in inflammation.

  2. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  3. Rare-Earth Calcium Oxyborate Piezoelectric Crystals ReCa4O(BO33: Growth and Piezoelectric Characterizations

    Directory of Open Access Journals (Sweden)

    Fapeng Yu

    2014-07-01

    Full Text Available Rare-earth calcium oxyborate crystals, ReCa4O(BO33 (ReCOB, Re = Er, Y, Gd, Sm, Nd, Pr, and La , are potential piezoelectric materials for ultrahigh temperature sensor applications, due to their high electrical resistivity at elevated temperature, high piezoelectric sensitivity and temperature stability. In this paper, different techniques for ReCOB single-crystal growth are introduced, including the Bridgman and Czochralski pulling methods. Crystal orientations and the relationships between the crystallographic and physical axes of the monoclinic ReCOB crystals are discussed. The procedures for dielectric, elastic, electromechanical and piezoelectric property characterization, taking advantage of the impedance method, are presented. In addition, the maximum piezoelectric coefficients for different piezoelectric vibration modes are explored, and the optimized crystal cuts free of piezoelectric cross-talk are obtained by rotation calculations.

  4. Re-sensitizing Multidrug Resistant Bacteria to Antibiotics by Targeting Bacterial Response Regulators: Characterization and Comparison of Interactions between 2-Aminoimidazoles and the Response Regulators BfmR from Acinetobacter baumannii and QseB from Francisella spp.

    Directory of Open Access Journals (Sweden)

    Morgan E. Milton

    2018-02-01

    Full Text Available 2-aminoimidazole (2-AI compounds inhibit the formation of bacterial biofilms, disperse preformed biofilms, and re-sensitize multidrug resistant bacteria to antibiotics. 2-AIs have previously been shown to interact with bacterial response regulators, but the mechanism of interaction is still unknown. Response regulators are one part of two-component systems (TCS. TCSs allow cells to respond to changes in their environment, and are used to trigger quorum sensing, virulence factors, and antibiotic resistance. Drugs that target the TCS signaling process can inhibit pathogenic behavior, making this a potent new therapeutic approach that has not yet been fully exploited. We previously laid the groundwork for the interaction of the Acinetobacter baumannii response regulator BfmR with an early 2-AI derivative. Here, we further investigate the response regulator/2-AI interaction and look at a wider library of 2-AI compounds. By combining molecular modeling with biochemical and cellular studies, we expand on a potential mechanism for interaction between response regulators and 2-AIs. We also establish that Francisella tularensis/novicida, encoding for only three known response regulators, can be a model system to study the interaction between 2-AIs and response regulators. We show that knowledge gained from studying Francisella can be applied to the more complex A. baumannii system, which contains over 50 response regulators. Understanding the impact of 2-AIs on response regulators and their mechanism of interaction will lead to the development of more potent compounds that will serve as adjuvant therapies to broad-range antibiotics.

  5. A targeted enzyme approach to sensitization of tyrosine kinase inhibitor-resistant breast cancer cells.

    Science.gov (United States)

    Giordano, Courtney R; Mueller, Kelly L; Terlecky, Laura J; Krentz, Kendra A; Bollig-Fischer, Aliccia; Terlecky, Stanley R; Boerner, Julie L

    2012-10-01

    Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of potential use in patients with breast cancer. Unfortunately, in clinical studies, gefitinib is often ineffective indicating that resistance to EGFR inhibitors may be a common occurrence in cancer of the breast. EGFR has been shown to be overexpressed in breast cancer, and in particular remains hyperphosphorylated in cell lines such as MDA-MB-468 that are resistant to EGFR inhibitors. Here, we investigate the cause of this sustained phosphorylation and the molecular basis for the ineffectiveness of gefitinib. We show that reactive oxygen species (ROS), known to damage cellular macromolecules and to modulate signaling cascades in a variety of human diseases including cancers, appear to play a critical role in mediating EGFR TKI-resistance. Furthermore, elimination of these ROS through use of a cell-penetrating catalase derivative sensitizes the cells to gefitinib. These results suggest a new approach for the treatment of TKI-resistant breast cancer patients specifically, the targeting of ROS and attendant downstream oxidative stress and their effects on signaling cascades. Copyright © 2012. Published by Elsevier Inc.

  6. Resistive plate chamber neutron and gamma sensitivity measurement with a {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Altieri, S.; Baratti, V.; Barnaba, O.; Belli, G.; Bruno, G.; Colaleo, A.; DeVecchi, C.; Guida, R. E-mail: roberto.guida@pv.infn.it; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardo, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P.; Volpe, F

    2003-06-21

    A bakelite double gap Resistive Plate Chamber (RPC), operating in avalanche mode, has been exposed to the radiation emitted from a {sup 252}Cf source to measure its neutron and gamma sensitivity. One of the two gaps underwent the traditional electrodes surface coating with linseed oil. RPC signals were triggered by fission events detected using BaF{sub 2} scintillators. A Monte Carlo code, inside the GEANT 3.21 framework with MICAP interface, has been used to identify the gamma and neutron contributions to the total number of collected RPC signals. A neutron sensitivity of (0.63{+-}0.02)x10{sup -3} (average energy 2 MeV) and a gamma sensitivity of (14.0{+-}0.5)x10{sup -3} (average energy 1.5 MeV) have been measured in double gap mode. Measurements done in single gap mode have shown that both neutron and gamma sensitivity are independent of the oiling treatment.

  7. Phorbol esters induce interleukin 2 mRNA in sensitive but not in resistant EL4 cells

    International Nuclear Information System (INIS)

    Harrison, J.R.; Lynch, K.R.; Sando, J.J.

    1986-01-01

    Phorbol ester (PE) sensitive EL4 cells are growth-inhibited and produce interleukin 2 (IL2) when treated with PE. Resistant EL4 cells lack both responses. To determine whether the defect in resistant cells occurs pre or post-transcriptionally, an assay for IL2 mRNA was developed using a synthetic oligonucleotide to mouse IL2 as a probe. Total RNA (15 μg) from cells +/- PE was electrophoresed, blotted onto a cationic nylon membrane, and probed with radiolabeled oligomer. This probe hybridized to a 1.1 kb band in RNA from PE-treated sensitive cells. This RNA was detectable within 3h of PE administration, was clearly visible by 6h, and peaked by 9 to 12h. No bands hybridizing with the IL2 probe were detected in RNA isolated from unstimulated cells or from resistant EL4 cells at any time following PE stimulation. Since levels of the protooncogene c-myc have been shown to decrease in a number of cell lines during differentiation and growth inhibition, total RNA from EL4 cells was probed with a nick-translated plasmid containing the protein coding region of the c-myc gene. In PE sensitive cells, levels of c-myc RNA are markedly reduced by 3h. In a pilot experiment with resistant cells, c-myc levels appeared to remain constant. These results demonstrate that PE induced IL2 mRNA in PE sensitive but not resistant EL4 cells. Sensitive and resistant EL4 cell lines provide a useful model for the investigation of the regulation of gene expression by PE

  8. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    NARCIS (Netherlands)

    van Bree, Chris; Castro Kreder, Natasja; Loves, Willem J. P.; Franken, Nicolaas A. P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel,

  9. Correlation of viral RNA biosynthesis with glucose-6-phosphate dehydrogenase activity and host resistance

    Czech Academy of Sciences Publication Activity Database

    Šindelář, Luděk; Šindelářová, Milada

    2002-01-01

    Roč. 215, - (2002), s. 862-869 ISSN 0032-0935 R&D Projects: GA ČR GA522/99/1264 Institutional research plan: CEZ:AV0Z5038910 Keywords : Glucose 6 phosphate dehydrogenase * Nicotiana (viral infection) * Plant viruses Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.960, year: 2002

  10. Sensitivity of resistive and Hall measurements to local inhomogeneities

    DEFF Research Database (Denmark)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth

    2013-01-01

    We derive exact, analytic expressions for the sensitivity of resistive and Hall measurements to local inhomogeneities in a specimen's material properties in the combined linear limit of a weak perturbation over an infinitesimal area in a small magnetic field. We apply these expressions both to four-point...... probe measurements on an infinite plane and to symmetric, circular van der Pauw discs, obtaining functions consistent with published results. These new expressions speed up calculation of the sensitivity for a specimen of arbitrary shape to little more than the solution of two Laplace equation boundary......-value problems of the order of N3 calculations, rather than N2 problems of total order N5, and in a few cases produces an analytic expression for the sensitivity. These functions provide an intuitive, visual explanation of how, for example, measurements can predict the wrong carrier type in n-type ZnO....

  11. Overexpression of CYP3A4 in a COLO 205 Colon Cancer Stem Cell Model in vitro

    International Nuclear Information System (INIS)

    Olszewski, Ulrike; Liedauer, Richard; Ausch, Christoph; Thalhammer, Theresia; Hamilton, Gerhard

    2011-01-01

    Cancer stem cells (CSCs) seem to constitute a subpopulation of tumor cells that escape from chemotherapy and cause recurrent disease. Low proliferation rates, protection in a stem cell niche and overexpression of drug resistance proteins are considered to confer chemoresistance. We established an in vitro colon CSC-like model using the COLO 205 cell line, which revealed transiently increased expression of CD133 when transferred to serum-free stem cell culture medium. Assessment of global gene expression of COLO 205 cells under these conditions identified a set of upregulated genes including cytochrome P450 3A4 (CYP3A4) and aldehyde dehydrogenase 1A1 (ALDH1A1), as confirmed by real-time qPCR. ALDH1A1 is a CSC marker for certain tumor entities and confers resistance to cyclophosphamide. CYP3A4 is expressed in liver and colon and its overexpression seems particularly relevant in colon cancer, since it inactivates irinotecan and other xenobiotics, such as taxols and vinca alkaloids. In conclusion, this COLO 205 model provides evidence for CD133 induction concomitant with overexpression of CYP3A4, which, together with ATP-binding cassette, subfamily G, member 2 (ABCG2) and others, may have a role in chemoresistant colon CSCs and a negative impact on disease-free survival in colon cancer patients

  12. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  13. Sensitivity enhancement of chemically amplified resists and performance study using extreme ultraviolet interference lithography

    Science.gov (United States)

    Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin

    2016-07-01

    Extreme ultraviolet lithography (EUVL, λ=13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high-power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity [S or best energy (BE)], and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (line width roughness, resolution and sensitivity trade-off) among these parameters for chemically amplified resists (CARs). We present early proof-of-principle results for a multiexposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a "Photosensitized Chemically Amplified Resist™" (PSCAR™). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV-flood exposure (λ=365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR, and EL high-performance requirements with the aim of resolving line space (L/S) features for the 7- and 5-nm logic node [16- and 13-nm half-pitch (HP), respectively] for HVM. Several CARs were additionally found to be well resolved down to 12- and 11-nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated

  14. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.

    Science.gov (United States)

    Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K

    2014-06-01

    Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

  15. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  16. Review of radiation effects on ReRAM devices and technology

    Science.gov (United States)

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  17. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  18. γ-irradiation resistance and UV-sensitivity of extremely thermophilic archebacteria and eubacteria

    International Nuclear Information System (INIS)

    Kopylov, V.M.; Bonch-Osmolovskaya, E.A.; Svetlichnyi, V.A.; Miroshnichenko, M.L.; Skobkin, V.S.

    1993-01-01

    Cells of extremely thermophilic sulfur-dependent archebacteria Desulfurococcus amylolyticus Z533 and Thermococcus stelleri K15 are resistant to γ-irradiation. These archebacteria survive γ-irradiation at a dose of up to 5 kGy but are no longer viable after 8-9 kGy. Comparison of the survival profiles showed that archebacteria are 12 to 25 times more resistant to γ-irradiation at moderate doses (LD 50 and LD 90 ) than E. coli K12 but are 2 to 2.5 times more sensitive than D. radiodurans. γ-irradiation at a dose of 1 to 2.5 kGy killed extremely thermophilic anaerobic eubacteria Thermotoga maritima 2706 and Thermodesulfobacterium P. All extreme thermophiles studied were more sensitive to UV-irradiation than E. coli

  19. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    2008-03-01

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  20. Bioelectrochemical fuel cell and sensor based on quinoprotein alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G; Hill, H A.O.; Aston, W J; Higgins, I J; Turner, A P.F.

    1983-09-01

    A biofuel cell, yielding a stable and continuous low-power output, based on the enzymatic oxidation of methanol to formic acid has been designed and investigated. The homogeneous kinetics of the electrochemically-coupled enzymatic oxidation reaction were investigated and optimized. The biofuel cell also functioned as a sensitive method for the detection of primary alcohols. A method for medium-scale preparation of the enzyme alcohol dehydrogenase (alcohol: (acceptor) oxidoreductase, EC 1.1.99.8) is described. (Refs. 14).

  1. BACTERIAL PROFILE, ANTIBIOTIC SENSITIVITY AND RESISTANCE OF LOWER RESPIRATORY TRACT INFECTIONS IN UPPER EGYPT

    Directory of Open Access Journals (Sweden)

    Gamal Agmy

    2013-09-01

    Full Text Available BACKGROUND: Lower respiratory tract infections (LRTI account for a considerable proportion of morbidity and antibiotic use. We aimed to identify the causative bacteria, antibiotic sensitivity and resistance of hospitalized adult patients due to LRTI in Upper Egypt. METHODS: A multicentre prospective study was performed at 3 University Hospitals for 3 years. Samples included sputum or bronchoalveolar lavage (BAL for staining and culture, and serum for serology. Samples were cultured on 3 bacteriological media (Nutrient, Chocolate ,MacConkey's agars.Colonies were identified via MicroScan WalkAway-96. Pneumoslide IgM kit was used for detection of atypical pathogens via indirect immunofluorescent assay. RESULTS: The predominant isolates in 360 patients with CAP were S.pneumoniae (36%, C. pneumoniae (18%, and M. pneumoniae (12%. A higher sensitivity was recorded for moxifloxacin, levofloxacin, macrolides, and cefepime. A higher of resistance was recorded for doxycycline, cephalosporins, and β-lactam-β-lactamase inhibitors. The predominant isolates in 318 patients with HAP were, methicillin-resistant Staphylococcus aureus; MRSA (23%, K. pneumoniae (14%, and polymicrobial in 12%. A higher sensitivity was recorded for vancomycin, ciprofloxacin, and moxifloxacin. Very high resistance was recorded for β-lactam-β-lactamase inhibitors and cephalosporins. The predominant organisms in 376 patients with acute exacerbation of chronic obstructive pulmonary diseases (AECOPD were H. influnzae (30%, S. pneumoniae (25%, and M. catarrhalis(18%. A higher sensitivity was recorded for moxifloxacin, macrolides and cefepime. A higher rate of resistance was recorded for aminoglycosides and cephalosporins CONCLUSIONS: The most predominant bacteria for CAP in Upper Egypt are S. pneumoniae and atypical organisms, while that for HAP are MRSA and Gram negative bacteria. For acute exacerbation of COPD,H.influnzae was the commonest organism. Respiratory quinolones

  2. Tamoxifen-resistant breast cancer cells are resistant to DNA-damaging chemotherapy because of upregulated BARD1 and BRCA1.

    Science.gov (United States)

    Zhu, Yinghua; Liu, Yujie; Zhang, Chao; Chu, Junjun; Wu, Yanqing; Li, Yudong; Liu, Jieqiong; Li, Qian; Li, Shunying; Shi, Qianfeng; Jin, Liang; Zhao, Jianli; Yin, Dong; Efroni, Sol; Su, Fengxi; Yao, Herui; Song, Erwei; Liu, Qiang

    2018-04-23

    Tamoxifen resistance is accountable for relapse in many ER-positive breast cancer patients. Most of these recurrent patients receive chemotherapy, but their chemosensitivity is unknown. Here, we report that tamoxifen-resistant breast cancer cells express significantly more BARD1 and BRCA1, leading to resistance to DNA-damaging chemotherapy including cisplatin and adriamycin, but not to paclitaxel. Silencing BARD1 or BRCA1 expression or inhibition of BRCA1 phosphorylation by Dinaciclib restores the sensitivity to cisplatin in tamoxifen-resistant cells. Furthermore, we show that activated PI3K/AKT pathway is responsible for the upregulation of BARD1 and BRCA1. PI3K inhibitors decrease the expression of BARD1 and BRCA1 in tamoxifen-resistant cells and re-sensitize them to cisplatin both in vitro and in vivo. Higher BARD1 and BRCA1 expression is associated with worse prognosis of early breast cancer patients, especially the ones that received radiotherapy, indicating the potential use of PI3K inhibitors to reverse chemoresistance and radioresistance in ER-positive breast cancer patients.

  3. Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase.

    Science.gov (United States)

    Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian; Khowsathit, Jittasak; Van Tyne, Daria; Moynié, Lucile; Gilmore, Michael S; Karanicolas, John; Sieber, Stephan A; Wuest, William M

    2018-02-07

    Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.

  4. A study on plate anchor detailing systems of shear re-bar

    International Nuclear Information System (INIS)

    Tsurumaki, S.; Ujiie, K.; Nishikawa, T.; Kitayama, K.

    1995-01-01

    For shell walls and base slabs in reactor buildings, besides a large amount of main bars, numerous shear re-bars have been employed to resist to out-of-plane force. As a result , detailing work involving shear re-bar is extremely involved. For example, the employed re-bar anchor method differs from the ordinary methods in which, a end of shear re-bar with 135-degrees hook or with anchor plate type and another re-bar end with 90-degrees hook are used. However the structural characteristics in members using shear re-bar of the bolt-mounted anchor plate have not yet been examined. A test was performed to confirm the effects of anchor methods for shear re-bars on shearing behavior of members. This paper describes the test plan, method and results. (author). 12 figs., 7 tabs

  5. Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: Cross-resistance patterns, stability and biochemical mechanisms.

    Science.gov (United States)

    Askari-Saryazdi, Ghasem; Hejazi, Mir Jalil; Ferguson, J Scott; Rashidi, Mohammad-Reza

    2015-10-01

    The vegetable leafminer (VLM), Liriomyza sativae (Diptera: Agromyzidae) is a serious pest of vegetable crops and ornamentals worldwide. In cropping systems with inappropriate management strategies, development of resistance to insecticides in leafminers is probable. Chlorpyrifos is a commonly used pesticide for controlling leafminers in Iran, but resistance to this insecticide in leafminers has not been characterized. In order to develop strategies to minimize resistance in the field and greenhouse, a laboratory selected chlorpyrifos resistant strain of L. sativae was used to characterize resistance and determine the rate of development and stability of resistance. Selecting for resistance in the laboratory after 23 generations yielded a chlorpyrifos resistant selected strain (CRSS) with a resistance ratio of 40.34, determined on the larval stage. CRSS exhibited no cross-resistance to other tested insecticides except for diazinon. Synergism and biochemical assays indicated that esterases (EST) had a key role in metabolic resistance to chlorpyrifos, but glutathione S-transferase (GST) and mixed function oxidase (MFO) were not mediators in this resistance. In CRSS acetylcholinesterase (AChE) was more active than the susceptible strain, Sharif (SH). AChE in CRSS was also less sensitive to inhibition by propoxur. The kinetics parameters (Km and Vmax) of AChE indicated that affinities and hydrolyzing efficiencies of this enzyme in CRSS were higher than SH. Susceptibility to chlorpyrifos in L. sativae was re-gained in the absence of insecticide pressure. Synergism, biochemical and cross-resistance assays revealed that overactivity of metabolic enzymes and reduction in target site sensitivity are probably joint factors in chlorpyrifos resistance. An effective insecticide resistance management program is necessary to prevent fast resistance development in crop systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine.

    Science.gov (United States)

    Lee, Su-Min; Park, Sin Young; Shin, Seoung Woo; Kil, In Sup; Yang, Eun Sun; Park, Jeen-Woo

    2009-02-01

    Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.

  7. Predictive value of mid-trimester amniotic fluid high-sensitive C-reactive protein, ferritin, and lactate dehydrogenase for fetal growth restriction

    Directory of Open Access Journals (Sweden)

    Borna Sedigheh

    2009-10-01

    Full Text Available Background: Fetal growth restriction (FGR is surprisingly common with placental dysfunction occurring in about 3% of pregnancies and despite advances in obstetric care, FGR remains a major problem in developed countries. Aim: The purpose of this study is to find out the predictive value of amniotic fluid high sensitive C-reactive protein (hs-CRP, ferritin, and lactate dehydrogenase (LDH for FGR. Materials and Methods: This prospective strategy of this study has been conducted on pregnant women who underwent genetic amniocentesis between 15th and 20th weeks of gestation. All patients were followed up on until delivery. Patients with abnormal karyotype and iatrogenic preterm delivery for fetal and maternal indications were excluded. The samples were immediately sent to laboratory for cytogenetic and biochemical examination. Non-parametric tests and receiver-operator characteristic curve analysis were used for statistical purpose. Results: A significant correlation between incremental amniotic fluid alpha fetoprotein (αFPr and LDH levels and FGR at gestational weeks 15th-20th was found out. We also found an optimum cut-off value> 140 IU/L for the amniotic fluid LDH concentration with a sensitivity of 87.5% and a specificity of 82.4% for the prediction of FGR. Conclusion: Once the LDH value is confirmed, it could serve as a prediction factor for FGR at the time of genetic amniocentesis at gestational weeks 15-20.

  8. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.

    Science.gov (United States)

    Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui

    2016-08-01

    To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.

  9. Antimicrobial sensitivity and frequency of DRUG resistance among bacterial strains isolated from cancer patients

    International Nuclear Information System (INIS)

    Faiz, M.; Bashir, T.

    2004-01-01

    Blood stream infections (bacteremia) is potentially life threatening. Concomitant with a change in the incidence and epidemiology of infecting organisms, there has been an increase in resistance to many antibiotic compounds. The widespread emergence of resistance among bacterial pathogens has an impact on our ability to treat patients effectively. The changing spectrum of microbial pathogens and widespread emergence of microbial resistance to antibiotic drugs has emphasized the need to monitor the prevalence of resistance in these strains. In the present study frequency of isolation of clinically significant bacteria and their susceptibility and resistance pattern against a wide range of antimicrobial drugs from positive blood cultures collected during 2001-2003 was studied. A total of 102 consecutive isolates were found with 63% gram positive and 44% gram negative strains. The dominating pathogens were Staphylococcus aureus (51%), Streptococci (31%), Pseudomonas (40%), Proteus (13%), Klebsiella (13%). The isolated strains were tested against a wide range of antibiotics belonging to cephalosporins, aminoglycosides and quinolone derivative group by disk diffusion method. It has been observed that isolated strains among gram positive and negative strains showed different level of resistance against aminoglycosides and cephalosporin group of antibiotics with gram positives showing highest number and frequency of resistance against aminoglycosides (40-50%) and cephalosporins.(35-45%) whereas cephalosporins were found to be more effective against gram negatives with low frequency of resistant strains. Cabapenem and quinolone derivative drugs were found to be most effective among other groups in both gram positive and negative strains with 23-41% strains found sensitive to these two drugs. The frequency of sensitive strains against aminoglycoside and cephalosporin in gram negative and gram positive strains were found to be decreasing yearwise with a trend towards an

  10. Antimicrobial resistance patterns in community acquired urinary tract infections

    International Nuclear Information System (INIS)

    Gilani, S.Y.H; Ahmad, N.; Shah, S.R.A.

    2016-01-01

    Urinary tract infection (UTI) is the most frequent disease for which patients seek medical care. The antimicrobial agents causing UTI and their sensitivity patterns have remarkably changed throughout the world over the past few years. Hence, the present study was designed to explore the uropathogens and their susceptibility to various molecules in our region. Methods: This descriptive cross sectional study was conducted at Medical C Unit of Ayub Teaching Hospital, Abbottabad from January 2015 to January 2016. Patients with clinical features of UTI were evaluated using Urine R/E and Urine culture and sensitivity. Ten antibiotics were checked for susceptibility. Results were analysed using SPSS 17. Results: A total of 630 patients presented with urinary complaints. Of these, 236 patients had more than 8-10 pus cells on urine R/E. They were further evaluated using culture and sensitivity and positive culture was obtained in 75 patients. Of these 34 (45.3%) were males and 41 (54.7%) were females. E Coli was the predominant isolate being present in 49 (65.3%) patients. This was followed by Klebsiella in 9 (12%) patients. Tazobactam-piperacillin and cefoperazone-sulbactam were the most sensitive drugs having overall sensitivity of 96% and 93.3% respectively. The isolates were highly resistant to Fluoroquinolones 77.3% followed by Penicillins 72% and TMP-SMX 69.3%.Conclusion: Antibiotic sensitivity patterns have enormously changed over the past decade. Newer agents are quite efficacious but their use should be highly judicious to prevent the development of resistance to these molecules. (author)

  11. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    Science.gov (United States)

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P) + -dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD + Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD + /NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the

  12. Experimental study on the influence of chemical sensitizer on pressure resistance in deep water of emulsion explosives

    Science.gov (United States)

    Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao

    2018-03-01

    The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.

  13. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  14. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  15. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    KAUST Repository

    Hunt, Paul

    2010-09-16

    Background: Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.Results: A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (IlluminaSolexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.Conclusions: This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. 2010 Hunt et al; licensee BioMed Central Ltd.

  16. TiO$_2$-based Memristors and ReRAM: Materials, Mechanisms and Models (a Review)

    OpenAIRE

    Gale, Ella

    2016-01-01

    The memristor is the fundamental non-linear circuit element, with uses in computing and computer memory. ReRAM (Resistive Random Access Memory) is a resistive switching memory proposed as a non-volatile memory. In this review we shall summarise the state of the art for these closely-related fields, concentrating on titanium dioxide, the well-utilised and archetypal material for both. We shall cover material properties, switching mechanisms and models to demonstrate what ReRAM and memristor sc...

  17. Position-sensitive proportional counter with low-resistance metal-wire anode

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which uses a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counther. A pair of specially designed activecapacitance preamplifiers terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, lownoise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at te anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates

  18. One-year refractive results, contrast sensitivity, high-order aberrations and complications after myopic small-incision lenticule extraction (ReLEx SMILE).

    Science.gov (United States)

    Sekundo, Walter; Gertnere, Jana; Bertelmann, Thomas; Solomatin, Igor

    2014-05-01

    To report one year results of the first cohort of routine refractive lenticule extraction through a small incision (ReLEx SMILE) for correction of myopia and myopic astigmatism. Fifty-four eyes of 27 patients with spherical equivalent of -4.68 ± 1.29D who underwent routine ReLEx SMILE by a single surgeon were prospectively followed-up for 1 year. We used the VisuMax femtosecond laser system (Carl Zeiss Meditec AG, Germany) with a 500 kHz repetition rate. Folow-up intervals were at 1 day, 1 week, 1, 3, 6, and 12 months after surgery. We obtained following parameters: uncorrected (UDVA) and distance-corrected visual acuity (CDVA), contrast sensitivity, and wave front measurements. We also recorded all complications. Because of suction loss in one eye, 12-month results were obtained in 53 eyes as follows. After 1 year, 88% of eyes with plano target had an UDVA of 20/20 or better. Twelve percent of eyes lost 1 line of CDVA, while 31% gained 1 line and 3% gained 2 lines. The mean SE after 1 year was -0.19 ± 0.19. The mean refraction change between month 1 and 12 was 0.08 D. Neither mesopic nor photopic contrast sensitivity showed any significant changes. The high-order aberrations (HOA) increased from 0.17 to 0.27 μm (Malacara notation). No visually threatening complications were observed. In this first cohort, ReLEx SMILE produced satisfactory refractive outcomes with moderate induction of HOA and unaffected contrast sensitivity after 1 year.

  19. Beam test results of the first full-scale prototype of CMS RE 1/2 resistive plate chamber

    International Nuclear Information System (INIS)

    Ying Jun; Ban Yong; Ye Yanlin; Cai Jianxin; Qian Sijin; Wang Quanjin; Liu Hongtao

    2005-01-01

    The authors reported the muon beam test results of the first full-scale prototype of CMS RE 1/2 Resistive Plate Chamber (RPC). The bakelite surface is treated using a special technology without oil to make it smooth enough. The full scale RE 1/2 RPC with honeycomb supporting frame is strong and thin enough to be fitted to the limited space of CMS design for the inner Forward RPC. The muon beam test was performed at CERN Gamma Irradiation Facility (GIF). The detection efficiency of this full scale RPC prototype is >95% even at very high irradiation background. The time resolution (less than 1.2 ns) and spatial resolution are satisfactory for the muon trigger device in future CMS experiments. The noise rate is also calculated and discussed

  20. A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrPSc.

    Directory of Open Access Journals (Sweden)

    Laura Pirisinu

    Full Text Available Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrP(Sc, a disease-associated isoform of the host-encoded cellular protein (PrP(C. Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrP(Sc. However, PrP(Sc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrP(Sc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrP(C and PrP(Sc by means of differential centrifugation. The conformational solubility and stability assay (CSSA was then developed by measuring PrP(Sc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl](1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl](1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M, followed by sheep scrapie (2.2 M and by MM2 sCJD (1.6 M. In order to test the ability of CSSA to characterise protease-sensitive PrP(Sc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrP(Sc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrP(Sc conformational stabilities of protease-resistant and protease-sensitive PrP(Sc and that it is a valuable tool

  1. Molecular Basis for Converting (2S-Methylsuccinyl-CoA Dehydrogenase into an Oxidase

    Directory of Open Access Journals (Sweden)

    Simon Burgener

    2017-12-01

    Full Text Available Although flavoenzymes have been studied in detail, the molecular basis of their dioxygen reactivity is only partially understood. The members of the flavin adenosine dinucleotide (FAD-dependent acyl-CoA dehydrogenase and acyl-CoA oxidase families catalyze similar reactions and share common structural features. However, both enzyme families feature opposing reaction specificities in respect to dioxygen. Dehydrogenases react with electron transfer flavoproteins as terminal electron acceptors and do not show a considerable reactivity with dioxygen, whereas dioxygen serves as a bona fide substrate for oxidases. We recently engineered (2S-methylsuccinyl-CoA dehydrogenase towards oxidase activity by rational mutagenesis. Here we characterized the (2S-methylsuccinyl-CoA dehydrogenase wild-type, as well as the engineered (2S-methylsuccinyl-CoA oxidase, in detail. Using stopped-flow UV-spectroscopy and liquid chromatography-mass spectrometry (LC-MS based assays, we explain the molecular base for dioxygen reactivity in the engineered oxidase and show that the increased oxidase function of the engineered enzyme comes at a decreased dehydrogenase activity. Our findings add to the common notion that an increased activity for a specific substrate is achieved at the expense of reaction promiscuity and provide guidelines for rational engineering efforts of acyl-CoA dehydrogenases and oxidases.

  2. Factors determining sensitivity or resistance of tumor cell lines towards artesunate.

    Science.gov (United States)

    Sertel, Serkan; Eichhorn, Tolga; Sieber, Sebastian; Sauer, Alexandra; Weiss, Johanna; Plinkert, Peter K; Efferth, Thomas

    2010-04-15

    Clinical oncology is still challenged by the development of drug resistance of tumors that result in poor prognosis for patients. There is an urgent necessity to understand the molecular mechanisms of resistance and to develop novel therapy strategies. Artesunate (ART) is an anti-malarial drug, which also exerts profound cytotoxic activity towards cancer cells. We first applied a gene-hunting approach using cluster and COMPARE analyses of microarray-based transcriptome-wide mRNA expression profiles. Among the genes identified by this approach were genes from diverse functional groups such as structural constituents of ribosomes (RPL6, RPL7, RPS12, RPS15A), kinases (CABC1, CCT2, RPL41), transcriptional and translational regulators (SFRS2, TUFM, ZBTB4), signal transducers (FLNA), control of cell growth and proliferation (RPS6), angiogenesis promoting factors (ITGB1), and others (SLC25A19, NCKAP1, BST1, DBH, FZD7, NACA, MTHFD2). Furthermore, we applied a candidate gene approach and tested the role of resistance mechanisms towards established anti-cancer drugs for ART resistance. By using transfected or knockout cell models we found that the tumor suppressor p16(INK4A) and the anti-oxidant protein, catalase, conferred resistance towards ART, while the oncogene HPV-E6 conferred sensitivity towards ART. The tumor suppressor p53 and its downstream protein, p21, as well as the anti-oxidant manganese-dependent superoxide dismutase did not affect cellular response to ART. In conclusion, our pharmacogenomic approach revealed that response of tumor cells towards ART is multi-factorial and is determined by gene expression associated with either ART sensitivity or resistance. At least some of the functional groups of genes (e.g. angiogenesis promoting factors, cell growth and proliferation-associated genes signal transducers and kinases) are also implicated in clinical responsiveness of tumors towards chemotherapy. It merits further investigation, whether ART is responsive in

  3. Selective recruitment of Th I cells induced by re-infection of succeptible and resistant mice with Pseudomonas aerugionosa in the lungs indicates protective role of IL-12

    DEFF Research Database (Denmark)

    Moser, C; Jensen, P O; Kobayashi, O

    2002-01-01

    , resistance to re-infection was paralleled by a shift towards a Th1-dominated response and increased IL-12 production. No significant increase in serum IgG was observed in the re-infected mice. In conclusion, these results indicate a protective role for a Th1-dominated response, independent of antibody...

  4. Simulation of Resistive Plate Chamber sensitivity to neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S. E-mail: saverio.altieri@pv.infn.it; Belli, G.; Bruno, G.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P.; Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F

    2001-04-01

    The Resistive Plate Chambers (RPCs) sensitivity to neutrons has been simulated using GEANT code with MICAP and FLUKA interfaces. The calculations have been performed as a function of the neutrons energy in the range 0.02 eV-1 GeV. To evaluate the response of the detector in the LHC background environment, the neutron energy spectrum expected in the CMS muon barrel has been taken into account; a hit rate due to neutrons of about 0.6 Hz cm{sup -2} has been estimated for a 250x250 cm{sup 2} RPC in the RB1 station.

  5. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte

    Directory of Open Access Journals (Sweden)

    Shane C. Quinonez

    2014-01-01

    Full Text Available Dihydrolipoamide dehydrogenase deficiency, also known as maple syrup urine disease (MSUD type III, is caused by the deficiency of the E3 subunit of branched chain alpha-ketoacid dehydrogenase (BCKDH, α-ketoglutarate dehydrogenase (αKGDH, and pyruvate dehydrogenase (PDH. DLD deficiency variably presents with either a severe neonatal encephalopathic phenotype or a primarily hepatic phenotype. As a variant form of MSUD, it is considered a core condition recommended for newborn screening. The detection of variant MSUD forms has proven difficult in the past with no asymptomatic DLD deficiency patients identified by current newborn screening strategies. Citrulline has recently been identified as an elevated dried blood spot (DBS metabolite in symptomatic patients affected with DLD deficiency. Here we report the retrospective DBS analysis and second-tier allo-isoleucine testing of 2 DLD deficiency patients. We show that an elevated citrulline and an elevated allo-isoleucine on second-tier testing can be used to successfully detect DLD deficiency. We additionally recommend that DLD deficiency be included in the “citrullinemia/elevated citrulline” ACMG Act Sheet and Algorithm.

  6. MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kumar Smriti

    2011-09-01

    Full Text Available Abstract Background Ovarian cancer is the leading cause of death from gynecologic cancer in women worldwide. According to the National Cancer Institute, ovarian cancer has the highest mortality rate among all the reproductive cancers in women. Advanced stage diagnosis and chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The most commonly employed chemotherapeutic drug for ovarian cancer treatment is cis-platin. As with most chemotherapeutic drugs, many patients eventually become resistant to cis-platin and therefore, diminishing its effect. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Methods The present study is focused on identifying the differential expression of regulatory microRNAs (miRNAs between cis-platin sensitive (A2780, and cis-platin resistant (A2780/CP70 cell lines. Cell proliferation assays were conducted to test the sensitivity of the two cell lines to cis-platin. Differential expression patterns of miRNA between cis-platin sensitive and cis-platin resistant cell lines were analyzed using novel LNA technology. Results Our results revealed changes in expression of 11 miRNAs out of 1,500 miRNAs analyzed. Out of the 11 miRNAs identified, 5 were up-regulated in the A2780/CP70 cell line and 6 were down regulated as compared to cis-platin sensitive A2780 cells. Our microRNA data was further validated by quantitative real-time PCR for these selected miRNAs. Ingenuity Pathway Analysis (IPA and Kyoto Encyclopedia of Genes and Genomes (KEGG analysis was performed for the selected miRNAs and their putative targets to identify the potential pathways and networks involved in cis-platin resistance. Conclusions Our data clearly showed the differential expression of 11 miRNAs in cis-platin resistant cells, which could potentially target many important pathways including MAPK, TGF-β signaling, actin cytoskeleton, ubiquitin mediated

  7. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China.

    Science.gov (United States)

    Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li

    2018-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9

  8. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  9. Soil dehydrogenase activity of natural macro aggregates in a toposequence of forest soil

    Directory of Open Access Journals (Sweden)

    Maira Kussainova

    2013-01-01

    Full Text Available The main objective of this study was to determine changes in soil dehydrogenase activity in natural macro aggregates development along a slope in forest soils. This study was carried out in Kocadag, Samsun, Turkey. Four landscape positions i.e., summit, shoulder backslope and footslope, were selected. For each landseape position, soil macro aggregates were separated into six aggregate size classes using a dry sieving method and then dehydrogenase activity was analyzed. In this research, topography influenced the macroaggregate size and dehydrogenase activity within the aggregates. At all landscape positions, the contents of macro aggregates (especially > 6.3 mm and 2.00–4.75 mm in all soil samples were higher than other macro aggregate contents. In footslope position, the soils had generally the higher dehydrogenase activity than the other positions at all landscape positions. In all positions, except for shoulder, dehydrogenase activity was greater macro aggregates of <1 mm than in the other macro aggregate size.

  10. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  11. Proliferation and clonal survival of human lung cancer cells treated with fractionated irradiation in combination with paclitaxel

    International Nuclear Information System (INIS)

    Rijn, Johannes van; Berg, Jaap van den; Meijer, Otto W.M.

    1995-01-01

    Purpose: This study was performed to determine the effects of a continuous exposure to paclitaxel (taxol) in combination with fractionated irradiation on cell proliferation and survival. Methods and Materials: Human lung carcinoma cells (SW1573) were given a daily treatment with 3 Gy of x-rays during 5 days in the continuous presence of 5 nM taxol. The surviving fraction and the total number of cells were determined every 24 h before and immediately after irradiation. Results: Irradiation with 5 x 3 Gy and 5 nM taxol cause approximately the same inhibition of cell proliferation. In combination these treatments have an additional effect and the cell population increases no further after the first 24 h. Whereas the cells become more resistant to taxol after the first 24 h with a minimum survival of 42%, taxol progressively reduces the population of surviving cells in combination with x-rays when the number of fractions increases, up to 25-fold relative to irradiation alone. The enhancement effect of 5 nM taxol is likely to be attributed to an inhibition of the repopulation during fractionated irradiation and not to an increased radiosensitivity. Only after treatment with 10 or 100 nM taxol for 24 h, which is attended with a high cytotoxicity, is moderate radiosensitization observed. Conclusion: Taxol, continuously present at a low concentration with little cytotoxicity, causes a progressive reduction of the surviving cell population in combination with fractionated irradiation, mainly by an inhibition of the repopulation of surviving cells between the dose fractions

  12. Engineering of Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Rahman, Mahbubur; Zangrilli, Beatrice

    2017-01-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular flavocytochrome capable of direct electron transfer (DET). Unlike other CDHs, the pH optimum for CDHs from Corynascus thermophilus (CtCDH) and Humicola insolens (HiCDH) is close to the human physiological pH in blood (7.4). These are......, therefore, interesting candidates for glucose measurements in human blood and the application in enzymatic fuel cells is, however, limited by their relatively low activity with this substrate. In this work, the substrate specificities of CtCDH and HiCDH have been altered by a single cysteine to tyrosine...... substitution in the active sites of CtCDH (position 291) and HiCDH (position 285), which resulted in improved kinetic constants with glucose while decreasing the activity with several disaccharides, including maltose. The DET properties of the generated CDH variants were tested in the absence...

  13. Coexistence of protease sensitive and resistant prion protein in 129VV homozygous sporadic Creutzfeldt–Jakob disease: a case report

    Directory of Open Access Journals (Sweden)

    Rodríguez-Martínez Ana B

    2012-10-01

    Full Text Available Abstract Introduction The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation A 74-year-old Caucasian woman showed a sporadic Creutzfeldt–Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient’s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt–Jakob disease. This highlights the

  14. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors

    International Nuclear Information System (INIS)

    Serban, Simona; El Murr, Nabil

    2006-01-01

    A generic amperometric bioassay based on the enzymatic oxidation catalysed by the stable NADH oxidase (NAox) from Thermus thermophilus has been developed for NADH measurements. The NAox uses O 2 as its natural electron acceptor and produces H 2 O 2 in a two-electron process. Electrochemical and spectrophotometric experiments showed that the NAox used in this work, presents a very good activity towards its substrate and, in contrary to previously mentioned NADH oxidases, does not require the addition of any exogenous flavin cofactor neither to promote nor to maintain its activity. In addition, the NAox used also works with artificial electron acceptors like ferrocene derivatives. O 2 was successfully replaced by redox mediators such as hydroxymethyl ferrocene (FcCH 2 OH) for the regeneration of the active enzyme. Combining the NAox with the mediator and the horseradish peroxidase we developed an original, high sensitive 'redox-flexible' NADH amperometric bioassay working in a large window of applied potentials in both oxidation and reduction modes. The biosensor has a continuous and complementary linearity range permitting to measure NADH concentrations starting from 5 x 10 -6 M in reduction until 2 x 10 3 M in oxidation. This redox-flexibility allows choosing the applied potential in order to avoid electrochemical interferences. The association of the 'redox-flexible' concept with NADH dependent enzymes opens a novel strategy for dehydrogenases based bioassays and biosensors. The great number of dehydrogenases available makes the concept applicable for numerous substrates to analyse. Moreover it allows the development of a wide range of biosensors on the basis of a generic platform. This gives several advantages over the previous manufacturing techniques and offers a general and flexible scheme for the fabrication of biosensors presenting high sensitivities, wide calibration ranges and less affected by electrochemical interferences

  15. [Metabolic profile in obese patients with obstructive sleep apnea. A comparison between patients with insulin resistance and with insulin sensitivity].

    Science.gov (United States)

    Dumitrache-Rujinski, Stefan; Dinu, Ioana; Călcăianu, George; Erhan, Ionela; Cocieru, Alexandru; Zaharia, Dragoş; Toma, Claudia Lucia; Bogdan, Miron Alexandru

    2014-01-01

    Obstructive sleep apnea syndrome (OSAS) may induce metabolic abnormalities through intermittent hypoxemia and simpathetic activation. It is difficult to demonstrate an independent role of OSAS in the occurrence of metabolic abnormalities, as obesity represents an important risk factor for both OSAS and metabolic abnormalities. to assess the relations between insulin resistance (IR), insulin sensitivity (IS), OSAS severity and nocturnal oxyhaemoglobin levels in obese, nondiabetic patients with daytime sleepiness. We evaluated 99 consecutive, obese, nondiabetic patients (fasting glycemia 5/hour and daytime sleepiness) by an ambulatory six channel cardio-respiratory polygraphy. Hight, weight serum triglycerides (TG), high density lipoprotein-cholesterol (HDL-C) levels were evaluated. Correlations between Apneea Hypopnea Index (AHI), Oxygen Desaturation Index (ODI), average and lowest oxyhaemoglobin saturation (SaO), body mass index (BMI) and insulin resistance or sensitivity were assesed. IR was defined as a TG/ HDL-Cratio > 3, and insulin sensitivity (IS) as a TG/HDL-C ratio obese nondiabetic patients. Preserving insulin sensitivity is more likely when oxyhaemoglobin levels are higher and ODI is lower. Mean lowest nocturnal SaO2 levels seems to be independently involved in the development of insulin resistance as no statistically significant differences were found for BMI between the two groups.

  16. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells.

    Science.gov (United States)

    Saeed, Mohamed E M; Meyer, Marion; Hussein, Ahmed; Efferth, Thomas

    2016-06-20

    Traditional medicine plays a major role for primary health care worldwide. Cancer belongs to the leading disease burden in industrialized and developing countries. Successful cancer therapy is hampered by the development of resistance towards established anticancer drugs. In the present study, we investigated the cytotoxicity of 29 extracts from 26 medicinal plants of South-Africa against leukemia cell lines, most of which are used traditionally to treat cancer and related symptoms. We have investigated the plant extracts for their cytotoxic activity towards drug-sensitive parental CCRF-CEM leukemia cells and their multidrug-resistant P-glycoprotein-overexpressing subline, CEM/ADR5000 by means of the resazurin assay. A panel of 60 NCI tumor cell lines have been investigated for correlations between selected phytochemicals from medicinal plants and the expression of resistance-conferring genes (ABC-transporters, oncogenes, tumor suppressor genes). Seven extracts inhibited both cell lines (Acokanthera oppositifolia, Hypoestes aristata, Laurus nobilis, Leonotis leonurus, Plectranthus barbatus, Plectranthus ciliates, Salvia apiana). CEM/ADR5000 cells exhibited a low degree of cross-resistance (3.35-fold) towards the L. leonurus extract, while no cross-resistance was observed to other plant extracts, although CEM/ADR5000 cells were highly resistant to clinically established drugs. The log10IC50 values for two out of 14 selected phytochemicals from these plants (acovenoside A and ouabain) of 60 tumor cell lines were correlated to the expression of ABC-transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS) and tumor suppressors (TP53). Sensitivity or resistance of the cell lines were not statistically associated with the expression of these genes, indicating that multidrug-resistant, refractory tumors expressing these genes may still respond to acovenoside A and ouabain. The bioactivity of South African medicinal plants may represent a basis for the development

  17. Acquired multiple Acyl-CoA dehydrogenase deficiency in 10 horses with atypical myopathy.

    Science.gov (United States)

    Westermann, C M; Dorland, L; Votion, D M; de Sain-van der Velden, M G M; Wijnberg, I D; Wanders, R J A; Spliet, W G M; Testerink, N; Berger, R; Ruiter, J P N; van der Kolk, J H

    2008-05-01

    The aim of the current study was to assess lipid metabolism in horses with atypical myopathy. Urine samples from 10 cases were subjected to analysis of organic acids, glycine conjugates, and acylcarnitines revealing increased mean excretion of lactic acid, ethylmalonic acid, 2-methylsuccinic acid, butyrylglycine, (iso)valerylglycine, hexanoylglycine, free carnitine, C2-, C3-, C4-, C5-, C6-, C8-, C8:1-, C10:1-, and C10:2-carnitine as compared with 15 control horses (12 healthy and three with acute myopathy due to other causes). Analysis of plasma revealed similar results for these predominantly short-chain acylcarnitines. Furthermore, measurement of dehydrogenase activities in lateral vastus muscle from one horse with atypical myopathy indeed showed deficiencies of short-chain acyl-CoA dehydrogenase (0.66 as compared with 2.27 and 2.48 in two controls), medium-chain acyl-CoA dehydrogenase (0.36 as compared with 4.31 and 4.82 in two controls) and isovaleryl-CoA dehydrogenase (0.74 as compared with 1.43 and 1.61 nmol min(-1) mg(-1) in two controls). A deficiency of several mitochondrial dehydrogenases that utilize flavin adenine dinucleotide as cofactor including the acyl-CoA dehydrogenases of fatty acid beta-oxidation, and enzymes that degrade the CoA-esters of glutaric acid, isovaleric acid, 2-methylbutyric acid, isobutyric acid, and sarcosine was suspected in 10 out of 10 cases as the possible etiology for a highly fatal and prevalent toxic equine muscle disease similar to the combined metabolic derangements seen in human multiple acyl-CoA dehydrogenase deficiency also known as glutaric acidemia type II.

  18. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    International Nuclear Information System (INIS)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina; Michaelis, Martin; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2006-01-01

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe, and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients

  19. Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies.

    Science.gov (United States)

    Murray, S; Briasoulis, E; Linardou, H; Bafaloukos, D; Papadimitriou, C

    2012-11-01

    Taxanes are established in the treatment of metastatic breast cancer (MBC) and early breast cancer (EBC) as potent chemotherapy agents. However, their therapeutic usefulness is limited by de-novo refractoriness or acquired resistance, which are common drawbacks to most anti-cancer cytotoxics. Considering that the taxanes will remain principle chemotherapeutic agents for the treatment of breast cancer, we reviewed known mechanisms of resistance in with an outlook of optimizing their clinical use. We searched the PubMed and MEDLINE databases for articles (from inception through to 9th January 2012; last search 10/01/2012) and journals known to publish information relevant to taxane chemotherapy. We imposed no language restrictions. Search terms included: cancer, breast cancer, response, resistance, taxane, paclitaxel, docetaxel, taxol. Due to the possibility of alternative mechanisms of resistance all combination chemotherapy treated data sets were removed from our overview. Over-expression of the MDR-1 gene product Pgp was extensively studied in vitro in association with taxane resistance, but data are conflicting. Similarly, the target components microtubules, which are thought to mediate refractoriness through alterations of the expression pattern of tubulins or microtubule associated proteins and the expression of alternative tubulin isoforms, failed to confirm such associations. Little consensus has been generated for reported associations between taxane-sensitivity and mutated p53, or taxane-resistance and overexpression of Bcl-2, Bcl-xL or NFkB. In contrary sufficient in vitro data support an association of spindle assembly checkpoint (SAC) defects with resistance. Clinical data have been limited and inconsistent, which relate to the variety of methods used, lack of standardization of cut-offs for quantitation, differences in clinical endpoints measured and in methods of tissue collection preparation and storage, and study/patient heterogeneity. The most

  20. Design of a charge sensitive preamplifier on high resistivity silicon

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.; Rescia, S.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Strueder, L.; Kemmer, J.

    1987-01-01

    A low noise, fast charge sensitive preamplifier was designed on high resistivity, detector grade silicon. It is built at the surface of a fully depleted region of n-type silicon. This allows the preamplifier to be placed very close to a detector anode. The preamplifier uses the classical input cascode configuration with a capacitor and a high value resistor in the feedback loop. The output stage of the preamplifier can drive a load up to 20pF. The power dissipation of the preamplifier is 13mW. The amplifying elements are ''Single Sided Gate JFETs'' developed especially for this application. Preamplifiers connected to a low capacitance anode of a drift type detector should achieve a rise time of 20ns and have an equivalent noise charge (ENC), after a suitable shaping, of less than 50 electrons. This performance translates to a position resolution better than 3μm for silicon drift detectors. 6 refs., 9 figs

  1. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  2. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  3. 11β-Hydroxysteroid Dehydrogenases and Hypertension in the Metabolic Syndrome.

    Science.gov (United States)

    Bailey, Matthew A

    2017-11-14

    The metabolic syndrome describes a clustering of risk factors-visceral obesity, dyslipidaemia, insulin resistance, and salt-sensitive hypertension-that increases mortality related to cardiovascular disease, type 2 diabetes, cancer, and non-alcoholic fatty liver disease. The prevalence of these concurrent comorbidities is ~ 25-30% worldwide, and metabolic syndrome therefore presents a significant global public health burden. Evidence from clinical and preclinical studies indicates that glucocorticoid excess is a key causal feature of metabolic syndrome. This is not increased systemic in circulating cortisol, rather increased bioavailability of active glucocorticoids within tissues. This review examines the role of covert glucocorticoid excess on the hypertension of the metabolic syndrome. Here, the role of the 11β-hydroxysteroid dehydrogenase enzymes, which exert intracrine and paracrine control over glucocorticoid signalling, is examined. 11βHSD1 amplifies glucocorticoid action in cells and contributes to hypertension through direct and indirect effects on the kidney and vasculature. The deactivation of glucocorticoid by 11βHSD2 controls ligand access to glucocorticoid and mineralocorticoid receptors: loss of function promotes salt retention and hypertension. As for hypertension in general, high blood pressure in the metabolic syndrome reflects a complex interaction between multiple systems. The clear association between high dietary salt, glucocorticoid production, and metabolic disorders has major relevance for human health and warrants systematic evaluation.

  4. [Clinical efficacy and adverse effects of taxol plus carboplatin or gemcitabine plus carboplatin in patients with advanced non-small-cell lung carcinoma].

    Science.gov (United States)

    Wang, Xiao-Yun; Zhao, Yu-Liang

    2010-12-21

    To observe the clinical efficacy and adverse effects of taxol plus carboplatin (TP) or gemcitabine plus carboplatin (GP) in patients with advanced non-small-cell lung carcinoma. A total of 86 patients with advanced non-small-cell lung carcinoma with a histologically confirmed diagnosis at our department were treated with at least two cycles of drug therapy according to the WHO standard. There were 43 cases in TP group and 43 cases in GP group. TP group: taxol 150 mg/m(2), d1, carboplatin 300 mg/m(2) in d1; GP group: gemcitabine 1000 mg/m(2), 30 min, d1, 8, carboplatin 300 mg/m(2) in d1, 3 weeks a cycle. The efficacy and side effects were analyzed after two cycles of chemotherapy. When TP and GP groups were compared, the effective rate was 44.2% vs 39.5%; disease control rate (CR + PR + SD): 81.4% vs 74.4%; median time to progress (TTP): 4.6 vs 4.5 months; medium survivals: 8.6 vs 8.8 months; 1-year survival rates: 17.2% vs 18.1%; 2-year survival rates: 8% vs 10%. The statistic analysis showed that the two groups had no significant difference. The main cytotoxicities of GP and TP groups were predominantly thrombocytopenia and leucopenia respectively. The two groups had no significant statistical difference. The incidences of allergen, alopecia and peripheral neurotoxicity were higher in the TP group. The two groups had statistical difference. Tolerance was excellent in both groups. The therapeutic effect and tolerance are excellent for advanced non-small cell lung carcinoma. The efficacy and survival rate of two groups show no statistical difference.

  5. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S.; Rouchka, Eric C.; Hill, Bradford G.; Klinge, Carolyn M.

    2016-01-01

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  6. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S. [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Rouchka, Eric C. [Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292 (United States); Hill, Bradford G. [Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Klinge, Carolyn M., E-mail: carolyn.klinge@louisville.edu [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States)

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  7. Antibacterial susceptibility patterns and cross-resistance of methicillin resistant and sensitive Staphyloccus aureus isolated from the hospitalized patients in Shiraz, Iran

    Directory of Open Access Journals (Sweden)

    Aziz Japoni

    2010-10-01

    Full Text Available Nosocomial infections caused by methicillin-resistant staphylococci (MRSA pose a serious problem in many countries. This study aimed to determine the antibacterial susceptibility patterns of methicillin sensitive and resistant Staphylococcus aureus isolates from the hospitalized patients. Totally 356 isolates of Staphylococcus aureus (S. aureus including 200, 137 and 19 corresponding to MSSA, MRSA, and intermediate MRSA strains, respectively were isolated. Antibacterial susceptibility patterns of the isolates to 14 antibiotics were examined using Kirby-Bauer method. MICs of 15 antibiotics to 156 MRSA isolates were determined by E test method. Cross-resistances of MRSA isolates (137+19 to the other tested antibiotics were also determined. S.aureus with high frequencies were isolated from the blood, sputum and deep wound samples. All of 200 MSSA isolates were sensitive to oxacillin, vancomycin, tecoplanin, rifampin, linezolid, quinupristin/dalfopristin, mupirocin and fusidic acid. A gradient of reduced susceptibility of MSSA to cephalexin, co-trimoxazole, ciprofloxacin, clindamycin, tetracycline, erythromycin and gentamicin were evident. MRSA isolates were sensitive to vancomycin, tecoplanin, linezolid, quinupristin/dalfopristin, mupirocin and fusidic acid, while reduced susceptibility of them to rifampin, co-trimoxazole, clindamycin, cephalexin, tetracycline, ciprofloxacin, erythromycin and gentamicin were observed. MRSA isolates exhibited a high range of cross-resistance to the eight tested antibiotics. Overall, co-trimoxazole, ciprofloxacin, clindamycin, tetracycline, erythromycin and gentamicin showed low activity against MSSA and MRSA isolates which may indicate they are not suitable to be used in clinical practices. To preserve the effectiveness of antibiotics, rational prescription and concomitant application of preventive measures against the spread of MRSA are recommended.

  8. Mechanisms of UVB-resistance in rice: Cultivar differences in the sensitivity to UVB radiation in rice

    International Nuclear Information System (INIS)

    Hidema, J.

    2001-01-01

    In a study on the sensitivity to UVB radiation of rice cultivars of 5 Asian rice ecotypes, results showed that the rice cultivars widely varied in UVB sensitivity; among the Japanese rice cultivars, Sasanishiki was more resistant to UVB, while Norin 1 was less resistant; UV-sensitive Norin 1 was deficient in photorepair of cyclobutane pyrimidine dimers (UV-induced DNA damage), and the sensitivity to UVB radiation significantly correlated with deficient CPD photorepair; and that this deficiency in Norin 1 resulted from a functionally altered photolyase. The results suggest that photorepair capacity is a principal factor in determining UVB sensitivity in rice. The effects of supplemental UVB radiation on the growth and yield of Japanese rice cultivars under field conditions were also studied in Japan since 1993. The results indicate that supplemental UVB radiation had inhibitory effects on the growth and yield of rice. Furthermore, grain size was smaller with supplemental UVB radiation

  9. Reconceptualizing resistance: sociology and the affective dimension of resistance.

    Science.gov (United States)

    Hynes, Maria

    2013-12-01

    This paper re-examines the sociological study of resistance in light of growing interest in the concept of affect. Recent claims that we are witness to an 'affective turn' and calls for a 'new sociological empiricism' sensitive to affect indicate an emerging paradigm shift in sociology. Yet, mainstream sociological study of resistance tends to have been largely unaffected by this shift. To this end, this paper presents a case for the significance of affect as a lens by which to approach the study of resistance. My claim is not simply that the forms of actions we would normally recognize as resistance have an affective dimension. Rather, it is that the theory of affect broadens 'resistance' beyond the purview of the two dominant modes of analysis in sociology; namely, the study of macropolitical forms, on the one hand, and the micropolitics of everyday resistance on the other. This broadened perspective challenges the persistent assumption that ideological forms of power and resistance are the most pertinent to the contemporary world, suggesting that much power and resistance today is of a more affective nature. In making this argument, it is a Deleuzian reading of affect that is pursued, which opens up to a level of analysis beyond the common understanding of affect as emotion. I argue that an affective approach to resistance would pay attention to those barely perceptible transitions in power and mobilizations of bodily potential that operate below the conscious perceptions and subjective emotions of social actors. These affective transitions constitute a new site at which both power and resistance operate. © London School of Economics and Political Science 2013.

  10. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.

    Science.gov (United States)

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun

    2013-02-01

    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. TiO2-based memristors and ReRAM: materials, mechanisms and models (a review)

    Science.gov (United States)

    Gale, Ella

    2014-10-01

    The memristor is the fundamental nonlinear circuit element, with uses in computing and computer memory. Resistive Random Access Memory (ReRAM) is a resistive switching memory proposed as a non-volatile memory. In this review we shall summarize the state of the art for these closely-related fields, concentrating on titanium dioxide, the well-utilized and archetypal material for both. We shall cover material properties, switching mechanisms and models to demonstrate what ReRAM and memristor scientists can learn from each other and examine the outlook for these technologies.

  12. TiO2-based memristors and ReRAM: materials, mechanisms and models (a review)

    International Nuclear Information System (INIS)

    Gale, Ella

    2014-01-01

    The memristor is the fundamental nonlinear circuit element, with uses in computing and computer memory. Resistive Random Access Memory (ReRAM) is a resistive switching memory proposed as a non-volatile memory. In this review we shall summarize the state of the art for these closely-related fields, concentrating on titanium dioxide, the well-utilized and archetypal material for both. We shall cover material properties, switching mechanisms and models to demonstrate what ReRAM and memristor scientists can learn from each other and examine the outlook for these technologies. (invited review)

  13. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    Science.gov (United States)

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  14. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh....... Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel...

  15. Characterization and isolation of some genes of the shikimate pathway in sensitive and resistant Centaurea jacea plants after ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Francini, A. [Dipartimento di Coltivazione e Difesa delle Specie Legnose ' Giovanni Scaramuzzi' , University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Nali, C. [Dipartimento di Coltivazione e Difesa delle Specie Legnose ' Giovanni Scaramuzzi' , University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy)], E-mail: cristina.nali@agr.unipi.it; Pellegrini, E.; Lorenzini, G. [Dipartimento di Coltivazione e Difesa delle Specie Legnose ' Giovanni Scaramuzzi' , University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy)

    2008-01-15

    Centaurea jacea has been suggested as a potential bioindicator for ozone, but little is known about its intraspecific variation in sensitivity, especially at molecular level. The effects of ozone (200 ppb, 5 h) on sensitive and resistant lines of Centaurea have been investigated at the end of fumigation. Sensitive plants showed characteristic symptoms of injury in the form of diffuse discoloration stipples on leaves. A PCR-based approach was used to identify and isolate a partial-length cDNA coding for PAL and CHS genes. The northern analysis of PAL showed accumulation of transcript in both lines correlated with a typical increase of PAL activity (+41 and +91% in resistant and sensitive material, respectively, compared to controls). On the contrary, the transcripts of CHS, in resistant and sensitive plants, did not change after treatment. Total phenols were not affected by ozone, while anthocyanins were quickly utilised by resistant clone as antioxidant compounds. - Characterization and isolation of PAL and CHS genes in Centaurea jacea exposed to O{sub 3}.

  16. Structural sensitivity of cyclic crack resistance of rotor steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Kozak, L.Yu.

    1984-01-01

    Comparative evaluation of cyclic crack resistance of hardened rotor set steel 35KhN3MFA in different cstructural states during tesis in agea geseous hydrogen, in the air and in vacuum, has been mde made. It is shown, that structural sensitivity of near-threshold crack resistance of the studied rotor steel in gaseous hydrogen is to a high extent determined by the closing and morphology of fatigue crack. The decrease in crack closing (CC) observed during tests in hydrogen in low-strenght and crack branching in high-strength steels results in the fact, that in contrast to well-known notions on a higher sensitivity to hydrogen embrittlement of high-strenght alloys the negative effect of hydrogen on the near-threshold cyclic crack resistance is manifested only in steel in low-strenght state. The considered regularities in crack growth in low-alloyed steel under the effect of gaseous hydrogen are just only for high-frequency loading. In all probability in the case of fatigue crack growth (GCG) at low frequencies of loading not only the medium activity, but also the role o, closing and crack geometty in the kinetics of fatigue fracture, the clarifying of which requires further studieds, will change

  17. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  18. Engineering Isoprenoid Biosynthesis in Artemisia annua L. for the Production of Taxadiene: A Key Intermediate of Taxol

    Directory of Open Access Journals (Sweden)

    Meiya Li

    2015-01-01

    Full Text Available Taxadiene is the first committed precursor to paclitaxel, marketed as Taxol, arguably the most important anticancer agent against ovarian and breast cancer. In Taxus, taxadiene is directly synthesized from geranylgeranyl diphosphate (GGPP that is the common precursor for diterpenoids and is found in most plants and microbes. In this study, Artemisia annua L., a Chinese medicinal herb that grows fast and is rich in terpenoids, was used as a genetic engineering host to produce taxadiene. The TXS (taxadiene synthase gene, cloned from Taxus and inserted into pCAMBIA1304, was transformed into Artemisia annua L. using the Agrobacterium tumefaciens-mediated method. Thirty independent transgenic plants were obtained, and GC-MS analysis was used to confirm that taxadiene was produced and accumulated up to 129.7 μg/g dry mass. However, the high expression of TXS did not affect plant growth or photosynthesis in transgenic Artemisia annua L. It is notable that artemisinin is produced and stored in leaves and most taxadiene accumulated in the stem of transgenic Artemisia annua L., suggesting a new way to produce two important compounds in one transgenic plant: leaves for artemisinin and stem for taxadiene. Overall, this study demonstrates that genetic engineering of the taxane biosynthetic pathway in Artemisia annua L. for the production of taxadiene is feasible.

  19. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells

    NARCIS (Netherlands)

    Hettinga, JVE; Lemstra, W; Meijer, C; Dam, WA; Uges, DRA; Konings, AWT; DeVries, EGE; Kampinga, HH

    1997-01-01

    In this study, the mechanism(s) by which heat increases cis-diamminedichloroplatinum (cisplatin, cDDP) sensitivity in cDDP-sensitive and -resistant cell lines of murine as well as human origin were investigated. Heating cells at 43 degrees C during cDDP exposure was found to increase drug

  20. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance.

    Science.gov (United States)

    Le Page, Gareth; Gunnarsson, Lina; Snape, Jason; Tyler, Charles R

    2017-12-01

    Antibiotics are vital in the treatment of bacterial infectious diseases but when released into the environment they may impact non-target organisms that perform vital ecosystem services and enhance antimicrobial resistance development with significant consequences for human health. We evaluate whether the current environmental risk assessment regulatory guidance is protective of antibiotic impacts on the environment, protective of antimicrobial resistance, and propose science-based protection goals for antibiotic manufacturing discharges. A review and meta-analysis was conducted of aquatic ecotoxicity data for antibiotics and for minimum selective concentration data derived from clinically relevant bacteria. Relative species sensitivity was investigated applying general linear models, and predicted no effect concentrations were generated for toxicity to aquatic organisms and compared with predicted no effect concentrations for resistance development. Prokaryotes were most sensitive to antibiotics but the range of sensitivities spanned up to several orders of magnitude. We show reliance on one species of (cyano)bacteria and the 'activated sludge respiration inhibition test' is not sufficient to set protection levels for the environment. Individually, neither traditional aquatic predicted no effect concentrations nor predicted no effect concentrations suggested to safeguard for antimicrobial resistance, protect against environmental or human health effects (via antimicrobial resistance development). Including data from clinically relevant bacteria and also more species of environmentally relevant bacteria in the regulatory framework would help in defining safe discharge concentrations for antibiotics for patient use and manufacturing that would protect environmental and human health. It would also support ending unnecessary testing on metazoan species. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Rebelling against the (Insulin Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Jaime L. Clark

    2018-03-01

    Full Text Available Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.

  2. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  3. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents.

    Directory of Open Access Journals (Sweden)

    Richard C Wang

    Full Text Available One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1. In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs than the non-resistant cells.Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT and the wild type parental cell line (MCF-7CC to examine if taxane-resistant breast cancer cells are sensitive to microtubule-destabilizing agents including vinca alkaloids and CSBAs. Cytotoxicity assays, immunoblotting, indirect immunofluorescence and live imaging were used to study drug resistance, apoptosis, mitotic arrest, microtubule formation, and microtubule dynamics.MCF-7TXT cells were demonstrated to be cross resistant to vinca alkaloids, but were more sensitive to treatment with colchicine compared to parental non-resistant MCF-7CC cells. Cytotoxicity assays indicated that the IC50 of MCF-7TXT cell to vinorelbine and vinblastine was more than 6 and 3 times higher, respectively, than that of MCF-7CC cells. By contrast, the IC50 of MCF-7TXT cell for colchincine was 4 times lower than that of MCF-7CC cells. Indirect immunofluorescence showed that all MTAs induced the disorganization of microtubules and the chromatin morphology and interestingly each with a unique pattern. In terms of microtubule and chromain morphology, MCF-7TXT cells were

  4. Metabolic Study of Cancer Cells Using a pH Sensitive Hydrogel Nanofiber Light Addressable Potentiometric Sensor.

    Science.gov (United States)

    Shaibani, Parmiss Mojir; Etayash, Hashem; Naicker, Selvaraj; Kaur, Kamaljit; Thundat, Thomas

    2017-01-27

    We report a simple, fast, and cost-effective approach that measures cancer cell metabolism and their response to anticancer drugs in real time. Using a Light Addressable Potentiometric Sensor integrated with pH sensitive hydrogel nanofibers (NF-LAPS), we detect localized changes in pH of the media as cancer cells consume glucose and release lactate. NF-LAPS shows a sensitivity response of 74 mV/pH for cancer cells. Cancer cells (MDA MB231) showed a response of ∼0.4 unit change in pH compared to virtually no change observed for normal cells (MCF10A). We also observed a drop in pH for the multidrug-resistant cancer cells (MDA-MB-435MDR) in the presence of doxorubicin. However, inhibition of the metabolic enzymes such as hexokinase and lactate dehydrogenase-A suggested an improvement in the efficacy of doxorubicin by decreasing the level of acidification. This approach, based on extracellular acidification, enhances our understanding of cancer cell metabolic modes and their response to chemotherapies, which will help in the development of better treatments, including choice of drugs and dosages.

  5. Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal.

    Science.gov (United States)

    Wei, Muyun; Mao, Shaowei; Lu, Guoliang; Li, Liang; Lan, Xiaopeng; Huang, Zhongxian; Chen, Yougen; Zhao, Miaoqing; Zhao, Yueran; Xia, Qinghua

    2018-04-17

    synergistic cytotoxicity with metformin but also counteracts resistance to metformin in renal cell carcinoma cell. The re-sensitization to metformin induced by VPA in metformin-resistant cells may help treat renal cell carcinoma patients.

  6. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula

    OpenAIRE

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A.; Hahn, Michael G.; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A.

    2013-01-01

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis in...

  7. Targeting the UPR to Circumvent Endocrine Resistance in Breast Cancer

    Science.gov (United States)

    2016-12-01

    cells, and re-sensitize resistant cells, to both estrogen withdrawal (analogous to treatment with an AI ) and to two different classes of AE (TAM and...following hits for NPPTA-TsOH and JS20- TsOH: NPPTA-TsOH: c-KIT<PDGFRB<FLT-3 JS20-TsOH: MEK6<NEK1 Future directions and publication(s): Currently

  8. Sensitivity Analysis of a Land-Use Change Model with and without Agents to Assess Land Abandonment and Long-Term Re-Forestation in a Swiss Mountain Region

    Directory of Open Access Journals (Sweden)

    Julia Maria Brändle

    2015-06-01

    Full Text Available Land abandonment and the subsequent re-forestation are important drivers behind the loss of ecosystem services in mountain regions. Agent-based models can help to identify global change impacts on farmland abandonment and can test policy and management options to counteract this development. Realigning the representation of human decision making with time scales of ecological processes such as reforestation presents a major challenge in this context. Models either focus on the agent-specific behavior anchored in the current generation of farmers at the expense of representing longer scale environmental processes or they emphasize the simulation of long-term economic and forest developments where representation of human behavior is simplified in time and space. In this context, we compare the representation of individual and aggregated decision-making in the same model structure and by doing so address some implications of choosing short or long term time horizons in land-use modeling. Based on survey data, we integrate dynamic agents into a comparative static economic sector supply model in a Swiss mountain region. The results from an extensive sensitivity analysis show that this agent-based land-use change model can reproduce observed data correctly and that both model versions are sensitive to the same model parameters. In particular, in both models the specification of opportunity costs determines the extent of production activities and land-use changes by restricting the output space. Our results point out that the agent-based model can capture short and medium term developments in land abandonment better than the aggregated version without losing its sensitivity to important socio-economic drivers. For comparative static approaches, extensive sensitivity analysis with respect to opportunity costs, i.e., the measure of benefits forgone due to alternative uses of labor is essential for the assessment of the impact of climate change on land

  9. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian

    2015-10-28

    To explore the surface effect on resistive random-access memory (ReRAM), the impact of surface roughness on the characteristics of ZnO ReRAM were studied. The thickness-independent resistance and the higher switching probability of ZnO ReRAM with rough surfaces indicate the importance of surface oxygen chemisorption on the switching process. Furthermore, the improvements in switching probability, switching voltage and resistance distribution observed for ReRAM with rough surfaces can be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  10. CD10-/ALDH- cells are the sole cisplatin-resistant component of a novel ovarian cancer stem cell hierarchy.

    Science.gov (United States)

    Ffrench, Brendan; Gasch, Claudia; Hokamp, Karsten; Spillane, Cathy; Blackshields, Gordon; Mahgoub, Thamir Mahmoud; Bates, Mark; Kehoe, Louise; Mooney, Aoibhinn; Doyle, Ronan; Doyle, Brendan; O'Donnell, Dearbhaile; Gleeson, Noreen; Hennessy, Bryan T; Stordal, Britta; O'Riain, Ciaran; Lambkin, Helen; O'Toole, Sharon; O'Leary, John J; Gallagher, Michael F

    2017-10-19

    It is long established that tumour-initiating cancer stem cells (CSCs) possess chemoresistant properties. However, little is known of the mechanisms involved, particularly with respect to the organisation of CSCs as stem-progenitor-differentiated cell hierarchies. Here we aimed to elucidate the relationship between CSC hierarchies and chemoresistance in an ovarian cancer model. Using a single cell-based approach to CSC discovery and validation, we report a novel, four-component CSC hierarchy based around the markers cluster of differentiation 10 (CD10) and aldehyde dehydrogenase (ALDH). In a change to our understanding of CSC biology, resistance to chemotherapy drug cisplatin was found to be the sole property of CD10 - /ALDH - CSCs, while all four CSC types were sensitive to chemotherapy drug paclitaxel. Cisplatin treatment quickly altered the hierarchy, resulting in a three-component hierarchy dominated by the cisplatin-resistant CD10 - /ALDH - CSC. This organisation was found to be hard-wired in a long-term cisplatin-adapted model, where again CD10 - /ALDH - CSCs were the sole cisplatin-resistant component, and all CSC types remained paclitaxel-sensitive. Molecular analysis indicated that cisplatin resistance is associated with inherent- and adaptive-specific drug efflux and DNA-damage repair mechanisms. Clinically, low CD10 expression was consistent with a specific set of ovarian cancer patient samples. Collectively, these data advance our understanding of the relationship between CSC hierarchies and chemoresistance, which was shown to be CSC- and drug-type specific, and facilitated by specific and synergistic inherent and adaptive mechanisms. Furthermore, our data indicate that primary stage targeting of CD10 - /ALDH - CSCs in specific ovarian cancer patients in future may facilitate targeting of recurrent disease, before it ever develops.

  11. Shikimate dehydrogenase from Pinu sylvestris L. needles

    International Nuclear Information System (INIS)

    Osipov, V.I.; Shein, I.V.

    1986-01-01

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP + , but also with NAD + . The values of K/sub m/ for shikimate, when NADP + and NAD + are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed

  12. Return of chloroquine sensitivity to Africa? Surveillance of African Plasmodium falciparum chloroquine resistance through malaria imported to China.

    Science.gov (United States)

    Lu, Feng; Zhang, Meihua; Culleton, Richard L; Xu, Sui; Tang, Jianxia; Zhou, Huayun; Zhu, Guoding; Gu, Yaping; Zhang, Chao; Liu, Yaobao; Wang, Weiming; Cao, Yuanyuan; Li, Julin; He, Xinlong; Cao, Jun; Gao, Qi

    2017-07-26

    Chloroquine (CQ) was the cornerstone of anti-malarial treatment in Africa for almost 50 years, but has been widely withdrawn due to the emergence and spread of resistance. Recent reports have suggested that CQ-susceptibility may return following the cessation of CQ usage. Here, we monitor CQ sensitivity and determine the prevalence of genetic polymorphisms in the CQ resistance transporter gene (pfcrt) of Plasmodium falciparum isolates recently imported from Africa to China. Blood samples were collected from falciparum malaria patients returning to China from various countries in Africa. Isolates were tested for their sensitivity to CQ using the SYBR Green I test ex vivo, and for a subset of samples, in vitro following culture adaptation. Mutations at positions 72-76 and codon 220 of the pfcrt gene were analyzed by sequencing and confirmed by PCR-RFLP. Correlations between drug sensitivity and pfcrt polymorphisms were investigated. Of 32 culture adapted isolates assayed, 17 (53.1%), 6 (18.8%) and 9 (28.1%) were classified as sensitive, moderately resistant, and highly resistant, respectively. In vitro CQ susceptibility was related to point mutations in the pfcrt gene, the results indicating a strong association between pfcrt genotype and drug sensitivity. A total of 292 isolates were typed at the pfcrt locus, and the prevalence of the wild type (CQ sensitive) haplotype CVMNK in isolates from East, South, North, West and Central Africa were 91.4%, 80.0%, 73.3%, 53.3% and 51.7%, respectively. The only mutant haplotype observed was CVIET, and this was almost always linked to an additional mutation at A220S. Our results suggest that a reduction in drug pressure following withdrawal of CQ as a first-line drug may lead to a resurgence in CQ sensitive parasites. The prevalence of wild-type pfcrt CQ sensitive parasites from East, South and North Africa was higher than from the West and Central areas, but this varied greatly between countries. Further surveillance is

  13. Aldehyde dehydrogenase (ALDH activity does not select for cells with enhanced aggressive properties in malignant melanoma.

    Directory of Open Access Journals (Sweden)

    Lina Prasmickaite

    Full Text Available BACKGROUND: Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC, exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties. METHODS AND FINDINGS: In several other cancer forms, Aldehyde Dehydrogenase (ALDH, which plays a role in stem cell biology and resistance, is a valuable functional marker for identification of cells that show enhanced aggressiveness and drug-resistance. Furthermore, the presence of ALDH(+ cells is linked to poor clinical prognosis in these cancers. By analyzing cell cultures, xenografts and patient biopsies, we showed that aggressive melanoma harboured a large, distinguishable ALDH(+ subpopulation. In vivo, ALDH(+ cells gave rise to ALDH(- cells, while the opposite conversion was rare, indicating a higher abilities of ALDH(+ cells to reestablish tumour heterogeneity with respect to the ALDH phenotype. However, both ALDH(+ and ALDH(- cells demonstrated similarly high abilities for clone formation in vitro and tumour initiation in vivo. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab. CONCLUSIONS: These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a "universal" marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not

  14. BACTERIOLOGICAL STUDY OF COAGULASE-POSITIVE AND COAGULASE-NEGATIVE STAPHYLOCOCCI IN RELATION TO METHICILLIN SENSITIVITY TESTING

    Directory of Open Access Journals (Sweden)

    Padmanabham Yalangi

    2016-10-01

    Full Text Available BACKGROUND Staphylococcus aureus has long been recognised as an important pathogen in human disease. Staphylococci infection occurs regularly in hospitalised patients and has serious consequences despite antibiotic therapy. Shortly after introduction of methicillin after clinical use Methicillin-Resistant Staphylococcus Aureus (MRSA were identified in many countries and become one of the most common causes of nosocomial infections. The aim of the study is to know the methicillin sensitivity of both coagulase-negative and coagulase-positive staphylococci isolated from various samples. MATERIALS AND METHODS 100 strains of staphylococci both coagulase positive and coagulase negative were isolated in the Department of Microbiology from various clinical samples. They were confirmed by morphology, staining methods and by using standard bacteriological procedures and biochemical reactions. Antibiotic susceptibility testing was performed by Kirby Bauer disc diffusion test. RESULTS Predominant species from pus were S. epidermidis (42.42% and from sputum S. haemolyticus (31.81% from blood S. haemolyticus (53.33%. 53% of strains produced beta-lactamase. Majority 47.22% by S. epidermidis from pus followed by S. haemolyticus 23.33% from pus. Beta-lactamase production was least from throat swab (5.55%. Out of 32 coagulase-positive staphylococci tested to methicillin 15 (46.87% were found to be sensitive, 17 (53.13% were found to be resistant. Out of 68 coagulase-negative staphylococci tested, 13 (19.11% were found to sensitive and 55 (80.88% were found to be resistant. 72% of strains were sensitive to novobiocin and 28% resistant to novobiocin. 43% showed drug resistance to 2 drugs. 14% to 3 drugs and 5 drugs. 6% of staphylococci sensitive to all the 10 drugs. CONCLUSION MRSA is a type of bacteria that is resistant to a number of widely used antibiotics. This means MRSA infections can be more difficult to treat than other bacterial infections. In recent years

  15. Developments with melt spun RE-Fe-B powder for bonded magnets

    International Nuclear Information System (INIS)

    Brown, D.N.; Chen, Z.; Guschl, P.; Campbell, P.

    2006-01-01

    Rapidly quenched isotropic rare earth iron boride (RE-Fe-B) powders have found many applications throughout the electronics, automotive and white goods industries. The magnetic performance, thermal stability, corrosion resistance and processability of a powder are important factors when selecting a RE-Fe-B powder for a particular application. For electronic devices that operate at ambient temperatures, high remanence (B r ) tends to be a priority and RE 2 Fe 14 B/α-Fe nanocomposite powder magnets are favoured. Alternatively, automotive applications tend to require greater thermal stability and corrosion resistance, which are satisfied by single-phase RE 2 Fe 14 B powder magnets with higher intrinsic coercivity (H ci ). This article reviews the performance of commercially available rapidly solidified RE-Fe-B powders and recent developments made to address the demands of applications

  16. Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability.

    Science.gov (United States)

    Anderson, Will; Lane, Rebecca; Korbie, Darren; Trau, Matt

    2015-06-16

    Size distribution and concentration measurements of exosomes are essential when investigating their cellular function and uptake. Recently, a particle size distribution and concentration measurement platform known as tunable resistive pulse sensing (TRPS) has seen increased use for the characterization of exosome samples. TRPS measures the brief increase in electrical resistance (a resistive pulse) produced by individual submicrometer/nanoscale particles as they translocate through a size-tunable submicrometer/micrometer-sized pore, embedded in an elastic membrane. Unfortunately, TRPS measurements are susceptible to issues surrounding system stability, where the pore can become blocked by particles, and sensitivity issues, where particles are too small to be detected against the background noise of the system. Herein, we provide a comprehensive analysis of the parameters involved in TRPS exosome measurements and demonstrate the ability to improve system sensitivity and stability by the optimization of system parameters. We also provide the first analysis of system noise, sensitivity cutoff limits, and accuracy with respect to exosome measurements and offer an explicit definition of system sensitivity that indicates the smallest particle diameter that can be detected within the noise of the trans-membrane current. A comparison of exosome size measurements from both TRPS and cryo-electron microscopy is also provided, finding that a significant number of smaller exosomes fell below the detection limit of the TRPS platform and offering one potential insight as to why there is such large variability in the exosome size distribution reported in the literature. We believe the observations reported here may assist others in improving TRPS measurements for exosome samples and other submicrometer biological and nonbiological particles.

  17. Treatment outcomes of rifabutin-containing regimens for rifabutin-sensitive multidrug-resistant pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Hyun Lee

    2017-12-01

    Full Text Available Objectives: The aim of this study was to evaluate whether rifabutin can improve treatment outcomes in patients with rifabutin-sensitive MDR-TB. Methods: A retrospective cohort study was performed on 76 patients with rifabutin-sensitive MDR-TB who were treated with or without rifabutin between 2006 and 2011. Results: Overall, 75% (57/76 of patients achieved favorable outcomes, including cure (53/76, 70% and treatment completion (4/76, 5%. In contrast, 25% (19/76 had unfavorable treatment outcomes, which included treatment failure (6/76, 8%, death (2/76, 3%, loss to follow-up (4/76. 5%, and no evaluation due to transfer to other institutions (7/76, 9%. Rifabutin was given to 52 (68% of the 76 patients with rifabutin-sensitive MDR-TB. Although favorable treatment outcomes were more frequent in patients who received rifabutin [81% (42/52] than in those who did not receive rifabutin [63% (15/24], this difference was not statistically significant (P = 0.154. However, in multivariable regression logistic analysis, use of rifabutin was significantly associated with favorable treatment outcomes in patients with rifabutin-sensitive MDR-TB (adjusted odds ratio = 9.80, 95% confidence interval = 1.65–58.37, P = 0.012. Conclusions: These results suggest that the use of rifabutin can improve treatment outcomes in patients with rifabutin-sensitive MDR-TB. Keywords: Multidrug-resistant tuberculosis, Extensively drug-resistant tuberculosis, Rifabutin, Treatment outcome

  18. Exploring a post-traumatic stress disorder paradigm in Flinders sensitive line rats to model treatment-resistant depression I: bio-behavioural validation and response to imipramine.

    Science.gov (United States)

    Brand, Sarel Jacobus; Harvey, Brian Herbert

    2017-08-01

    Co-morbid depression with post-traumatic stress disorder (PTSD) is often treatment resistant. In developing a preclinical model of treatment-resistant depression (TRD), we combined animal models of depression and PTSD to produce an animal with more severe as well as treatment-resistant depressive-like behaviours. Male Flinders sensitive line (FSL) rats, a genetic animal model of depression, were exposed to a stress re-stress model of PTSD [time-dependent sensitisation (TDS)] and compared with stress-naive controls. Seven days after TDS stress, depressive-like and coping behaviours as well as hippocampal and cortical noradrenaline (NA) and 5-hydroxyindoleacetic acid (5HIAA) levels were analysed. Response to sub-chronic imipramine treatment (IMI; 10 mg/kg s.c.×7 days) was subsequently studied. FSL rats demonstrated bio-behavioural characteristics of depression. Exposure to TDS stress in FSL rats correlated negatively with weight gain, while demonstrating reduced swimming behaviour and increased immobility versus unstressed FSL rats. IMI significantly reversed depressive-like (immobility) behaviour and enhanced active coping behaviour (swimming and climbing) in FSL rats. The latter was significantly attenuated in FSL rats exposed to TDS versus unstressed FSL rats. IMI reversed reduced 5HIAA levels in unstressed FSL rats, whereas exposure to TDS negated this effect. Lowered NA levels in FSL rats were sustained after TDS with IMI significantly reversing this in the hippocampus. Combining a gene-X-environment model of depression with a PTSD paradigm produces exaggerated depressive-like symptoms that display an attenuated response to antidepressant treatment. This work confirms combining FSL rats with TDS exposure as a putative animal model of TRD.

  19. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    2010-10-01

    Full Text Available Uncoupling protein-2 (UCP2 is known to suppress mitochondrial reactive oxygen species (ROS production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  20. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Trienens Monika

    2011-07-01

    Full Text Available Abstract Background Fungal secondary metabolites have been suggested to function as chemical defenses against insect antagonists, i.e. predators and competitors. Because insects and fungi often compete for dead organic material, insects may achieve protection against fungi by reducing sensitivity to fungal chemicals. This, in turn, may lead to increased resistance allowing insects better to suppress the spread of antagonistic but non-pathogenic microbes in their habitat. However, it remains controversial whether fungal toxins serve as a chemical shield that selects for insects that are less sensitive to toxins, and hence favors the evolution of insect resistance against microbial competitors. Results To examine the relationship between the ability to survive competition with toxic fungi, sensitivity to fungal toxins and resistance, we created fungal-selected (FS replicated insect lines by exposing Drosophila melanogaster larvae to the fungal competitor Aspergillus nidulans over 26 insect generations. Compared to unselected control lines (UC, larvae from the FS lines had higher survival rates in the presence of A. nidulans indicating selection for increased protection against the fungal antagonist. In line with our expectation, FS lines were less susceptible to the A. nidulans mycotoxin Sterigmatocystin. Of particular interest is that evolved protection against A. nidulans and Sterigmatocytin was not correlated with increased insect survival in the presence of other fungi and mycotoxins. We found no evidence that FS lines were better at suppressing the expansion of fungal colonies but observed a trend towards a less detrimental effect of FS larvae on fungal growth. Conclusion Antagonistic but non-pathogenic fungi favor insect variants better protected against the fungal chemical arsenal. This highlights the often proposed but experimentally underexplored importance of secondary metabolites in driving animal-fungus interactions. Instead of

  1. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis

    NARCIS (Netherlands)

    Gupta, Ravindra K.; Gregson, John; Parkin, Neil; Haile-Selassie, Hiwot; Tanuri, Amilcar; Andrade Forero, Liliana; Kaleebu, Pontiano; Watera, Christine; Aghokeng, Avelin; Mutenda, Nicholus; Dzangare, Janet; Hone, San; Hang, Zaw Zaw; Garcia, Judith; Garcia, Zully; Marchorro, Paola; Beteta, Enrique; Giron, Amalia; Hamers, Raph; Inzaule, Seth; Frenkel, Lisa M.; Chung, Michael H.; de Oliveira, Tulio; Pillay, Deenan; Naidoo, Kogie; Kharsany, Ayesha; Kugathasan, Ruthiran; Cutino, Teresa; Hunt, Gillian; Avila Rios, Santiago; Doherty, Meg; Jordan, Michael R.; Bertagnolio, Silvia

    2018-01-01

    Pretreatment drug resistance in people initiating or re-initiating antiretroviral therapy (ART) containing non-nucleoside reverse transcriptase inhibitors (NNRTIs) might compromise HIV control in low-income and middle-income countries (LMICs). We aimed to assess the scale of this problem and whether

  2. A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: functional characterisation and signatures of selection.

    Science.gov (United States)

    Wilding, Craig S; Smith, Ian; Lynd, Amy; Yawson, Alexander Egyir; Weetman, David; Paine, Mark J I; Donnelly, Martin J

    2012-09-01

    Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Culex quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in Escherichia coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10× expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to C. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised

  3. Sensitivity enhancement of polysilicon piezo-resistive pressure sensors with phosphorous diffused resistors

    International Nuclear Information System (INIS)

    Sivakumar, K; Dasgupta, N; Bhat, K N; Natarajan, K

    2006-01-01

    It is generally accepted that the piezo-resistive coefficient in single crystal silicon is higher when P-type impurities such as boron are used for doping the resistors. In this paper we demonstrate that the sensitivity of polycrystalline silicon piezo-resistive pressure sensors can be enhanced considerably when phosphorus diffusion source is used instead of boron dopant for realizing the piezo-resistors. Pressure sensors have been designed and fabricated with the polycrystalline piezo-resistors connected in the form of a Wheatstone bridge and laid out on thermal oxide grown on membranes obtained with a Silicon On Insulator (SOI) approach. The SOI wafers required for this purpose have been realized in-house by Silicon Fusion Bonding (SFB) and etch back technique in our laboratory. This approach provides excellent isolation between the resistors and enables zero temperature coefficient of the polysilicon resistor. The results obtained in our laboratory have clearly demonstrated that by optimizing the phosphorus diffusion temperature and duration, it is possible to achieve sensitivities in excess of 20mV /Bar for bridge input voltage of 10V, with linearity within 1% over a differential pressure range up to 10Bar (10 6 Pascal), and burst pressure in excess of 50 Bar as compared to the 10mV /Bar sensitivity obtained with boron doped polysilicon piezo-resistors. This enhancement is attributed to grain boundary passivation by phosphorous atoms

  4. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Clausen, Mathias Porsmose; Bennetzen, Martin

    2009-01-01

    , the compound is now also recognized as a multitargeting drug with diverse potential applications, for example, it has antiproliferative properties and it can reverse resistance toward antibiotics in bacteria. Furthermore, chlorpromazine can reverse multidrug resistance caused by overexpression of P......Tamoxifen resistance is a major clinical problem in the treatment of estrogen receptor a-positive breast tumors. It is, at present, unclear what exactly causes tamoxifen resistance. For decades, chlorpromazine has been used for treating psychotic diseases, such as schizophrenia. However......-sensitive breast cancer cell line, MCF-7, and in a tamoxifen-resistant cell line, established from the MCF-7 cells. Tamoxifen-sensitive and tamoxifen-resistant cells were killed equally well by combined treatment with chlorpromazine and tamoxifen. This synergistic effect could be prevented by addition of estrogen...

  5. A novel steel RE-borosulphurizing and mechanical properties of the produced RE-borosulfide layer

    Science.gov (United States)

    Wang, Dong; Li, Yun-dong; Zhang, Xiu-li

    2013-07-01

    In this study, 45# carbon steels were boronized, borosulphurized and RE-borosulphurized at 950 °C for 6 h, respectively. The samples were then characterized by scanning electron microscopy, X-ray diffraction, Auger electron spectroscopy, microhardness tester and ring-on-block wear tester. It has shown that the diffusion front (the interface between the diffusion layer and the substrate) of the boride layer (BL) and the boro-sulfide layer (BSL) is saw tooth shape, while the diffusion front of the RE-boro-sulfide layer (RBSL) is flat. Compared with BSL layer, RBSL layer has a smaller and more uniform grain size, and a flatter hardness gradient from the surface to the diffusion front. The RBSL layer, consisting of an outer layer (from surface to 30 μm) mainly composed of Fe-B and an inner layer (from 30 μm to the diffusion front) mainly composed of Fe-S, has the best wear resistance and the most sufficient adhesion among those three.

  6. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  7. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  8. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  9. Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases. PMID:29628915

  10. Sensitivity Pattern of Second Line Anti-Tuberculosis Drugs against Clinical Isolates of Multidrug Resistant Mycobacterium Tuberculosis

    International Nuclear Information System (INIS)

    Ghafoor, T.; Ikram, A.; Abbasi, S. A.; Zaman, G.; Ayyub, M.; Palomino, J. C.; Vandamme, P.; Martin, A.

    2015-01-01

    Objective:To determine the current sensitivity pattern of second line anti-tuberculosis drugs against clinical isolates of Multidrug Resistant Mycobacterium tuberculosis (MDR-TB). Study Design: A cross-sectional study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from November 2011 to April 2013. Methodology: Samples received during the study period were processed on BACTEC MGIT 960 system for Mycobacterium tuberculosis (MTB) culture followed by first line drugs susceptibility testing of culture proven MTB isolates. On the basis of resistance to rifampicin and isoniazid, 100 clinical isolates of MDR-TB were further subjected to susceptibility testing against amikacin (AMK), capreomycin (CAP), ofloxacin (OFL) and ethionamide (ETH) as per standard BACTEC MGIT 960 instructions. Results: Out of 100 MDR-TB isolates, 62% were from male patients and 38% from female patients. 97% were sensitive to AMK, 53% to OFL, 87% to CAP; and 87% were sensitive to ETH. Conclusion: The majority of the MDR-TB isolates showed excellent sensitivity against AMK, CAP and ETH. However, sensitivity of MDR-TB isolates against fluoroquinolones like OFL was not encouraging. (author)

  11. A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Logemann, E; Reinold, S; Somssich, I E; Hahlbrock, K

    1997-08-01

    We describe an aromatic alcohol dehydrogenase with properties indicating a novel type of function in the defense response of plants to pathogens. To obtain the enzyme free of contamination with possible isoforms, a parsley (Petroselinum crispum) cDNA comprising the entire coding region of the elicitor-responsive gene, ELI3, was expressed in Escherichia coli. In accord with large amino acid sequence similarities with established cinnamyl and benzyl alcohol dehydrogenases from other plants, the enzyme efficiently reduced various cinnamyl and benzyl aldehydes using NADPH as a co-substrate. Highest substrate affinities were observed for cinnamaldehyde, 4-coumaraldehyde and coniferaldehyde, whereas sinapaldehyde, one of the most efficient substrates of several previously analyzed cinnamyl alcohol dehydrogenases and a characteristic precursor molecule of angiosperm lignin, was not converted. A single form of ELI3 mRNA was strongly and rapidly induced in fungal elicitor-treated parsley cells. These results, together with earlier findings that the ELI3 gene is strongly activated both in elicitor-treated parsley cells and at fungal infection sites in parsley leaves, but not in lignifying tissue, suggest a specific role of this enzyme in pathogen defense-related phenylpropanoid metabolism.

  12. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  13. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  14. The relationship between powdery mildew (Sphaerotheca fuliginea) resistance and leaf chlorosis sensitivity in cucumber (Cucumis sativus) studied in single seed descent lines

    NARCIS (Netherlands)

    Zijlstra, S.; Jansen, R.C.; Groot, S.P.C.

    1995-01-01

    The genetic relation between powdery mildew resistance and sensitivity for leaf chlorosis of glasshouse cucumber was investigated. The powdery mildew resistant, leaf chlorosis sensitive hybrid variety 'Profito' was crossed with the powdery mildew susceptible, non chlorosis sensitive hybrid variety

  15. The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation.

    Science.gov (United States)

    Kano, Akihito; Fukumoto, Takeshi; Ohtani, Kouhei; Yoshihara, Akihide; Ohara, Toshiaki; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ohkouchi, Takeo; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Gomi, Kenji; Akimitsu, Kazuya

    2013-11-01

    Only D-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to D-allose. D-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-D-allose, a structural derivative of D-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding D-allose kinase to increase D-allose 6-phosphate synthesis were more sensitive to D-allose, but E. coli AlsI encoding D-allose 6-phosphate isomerase expression to decrease D-allose 6-phosphate reduced sensitivity. A D-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, D-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of D-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of D-allose to D-allose 6-phosphate, and treatment with D-allose might prove to be useful for reducing disease development in rice.

  16. Absolute counting of 188Re radiopharmaceuticals

    International Nuclear Information System (INIS)

    Ravindra, Anuradha; Kulkarni, D.B.; Joseph, Leena; Kulkarni, M.S.

    2018-01-01

    Rhenium-188 is radiopharmaceutical that belongs to the group of strong beta-weak gamma emitters. It emits high energy beta particles, (E β m ax = 2.12MeV) and weak gamma rays (E γ = 155 keV) hence makes it suitable for wide variety of therapeutic as well as diagnostic applications. Therapeutic applications include therapy of tumors, radionuclide synovectomy, bone pain palliation, intra vascular radiation therapy etc. 188 Re-labeled medicines have been employed increasingly in the therapy of tumors and vascular restenosis. To ensure that patient receives the appropriate radiation dose during the treatment, both the activity standardization and the determination of sensitivity coefficient of the secondary standard for 188 Re have become important tasks. This paper presents the methods and results obtained for the following measurements a) Standardisation of the 188 Re by using the 4π proportional counter (4πPC)-gamma extrapolation method b) Determination of sensitivity coefficient (pA/MBq) of the secondary standard ionization chamber type Centronic IG12, 20A for 188 Re

  17. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  18. Effect of Skull Resistivity on the Relative Sensitivity Distributions of EEG and MEG Measurements

    National Research Council Canada - National Science Library

    Malmivuo, J

    2001-01-01

    The authors have previously published calculations that show that, despite the high resistivity of the skull, the spatial sensitivity of magnetoencephalography, MEG, is no better than that of electroencephalography, EEG...

  19. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    Science.gov (United States)

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  20. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    International Nuclear Information System (INIS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  1. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  2. Investigation of colistin sensitivity via three different methods in Acinetobacter baumannii isolates with multiple antibiotic resistance.

    Science.gov (United States)

    Sinirtaş, Melda; Akalin, Halis; Gedikoğlu, Suna

    2009-09-01

    In recent years there has been an increase in life-threatening infections caused by Acinetobacter baumannii with multiple antibiotic resistance, which has lead to the use of polymyxins, especially colistin, being reconsidered. The aim of this study was to investigate the colistin sensitivity of A. baumannii isolates with multiple antibiotic resistance via different methods, and to evaluate the disk diffusion method for colistin against multi-resistant Acinetobacter isolates, in comparison to the E-test and Phoenix system. The study was carried out on 100 strains of A. baumannii (colonization or infection) isolated from the microbiological samples of different patients followed in the clinics and intensive care units of Uludağ University Medical School between the years 2004 and 2005. Strains were identified and characterized for their antibiotic sensitivity by Phoenix system (Becton Dickinson, Sparks, MD, USA). In all studied A. baumannii strains, susceptibility to colistin was determined to be 100% with the disk diffusion, E-test, and broth microdilution methods. Results of the E-test and broth microdilution method, which are accepted as reference methods, were found to be 100% consistent with the results of the disk diffusion tests; no very major or major error was identified upon comparison of the tests. The sensitivity and the positive predictive value of the disk diffusion method were found to be 100%. Colistin resistance in A. baumannii was not detected in our region, and disk diffusion method results are in accordance with those of E-test and broth microdilution methods.

  3. How can sensitivity analysis improve the robustness of mathematical models utilized by the re/insurance industry?

    Science.gov (United States)

    Noacco, V.; Wagener, T.; Pianosi, F.; Philp, T.

    2017-12-01

    Insurance companies provide insurance against a wide range of threats, such as natural catastrophes, nuclear incidents and terrorism. To quantify risk and support investment decisions, mathematical models are used, for example to set the premiums charged to clients that protect from financial loss, should deleterious events occur. While these models are essential tools for adequately assessing the risk attached to an insurer's portfolio, their development is costly and their value for decision-making may be limited by an incomplete understanding of uncertainty and sensitivity. Aside from the business need to understand risk and uncertainty, the insurance sector also faces regulation which requires them to test their models in such a way that uncertainties are appropriately captured and that plans are in place to assess the risks and their mitigation. The building and testing of models constitutes a high cost for insurance companies, and it is a time intensive activity. This study uses an established global sensitivity analysis toolbox (SAFE) to more efficiently capture the uncertainties and sensitivities embedded in models used by a leading re/insurance firm, with structured approaches to validate these models and test the impact of assumptions on the model predictions. It is hoped that this in turn will lead to better-informed and more robust business decisions.

  4. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  5. Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins.

    Science.gov (United States)

    Pan, Xia; Yang, Xiaoyan; Zang, Jinglei; Zhang, Si; Huang, Nan; Guan, Xinxin; Zhang, Jianhua; Wang, Zhihui; Li, Xi; Lei, Xiaoyong

    2017-06-01

    Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3'-untranslated region of eukaryotic translation initiation factor 4-γ 1 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.

  6. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  7. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    Science.gov (United States)

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.

  8. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    Science.gov (United States)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  9. Chronic myeloid leukemia patients sensitive and resistant to imatinib treatment show different metabolic responses.

    Directory of Open Access Journals (Sweden)

    Jiye A

    Full Text Available The BCR-ABL tyrosine kinase inhibitor imatinib is highly effective for chronic myeloid leukemia (CML. However, some patients gradually develop resistance to imatinib, resulting in therapeutic failure. Metabonomic and genomic profiling of patients' responses to drug interventions can provide novel information about the in vivo metabolism of low-molecular-weight compounds and extend our insight into the mechanism of drug resistance. Based on a multi-platform of high-throughput metabonomics, SNP array analysis, karyotype and mutation, the metabolic phenotypes and genomic polymorphisms of CML patients and their diverse responses to imatinib were characterized. The untreated CML patients (UCML showed different metabolic patterns from those of healthy controls, and the discriminatory metabolites suggested the perturbed metabolism of the urea cycle, tricarboxylic acid cycle, lipid metabolism, and amino acid turnover in UCML. After imatinib treatment, patients sensitive to imatinib (SCML and patients resistant to imatinib (RCML had similar metabolic phenotypes to those of healthy controls and UCML, respectively. SCML showed a significant metabolic response to imatinib, with marked restoration of the perturbed metabolism. Most of the metabolites characterizing CML were adjusted to normal levels, including the intermediates of the urea cycle and tricarboxylic acid cycle (TCA. In contrast, neither cytogenetic nor metabonomic analysis indicated any positive response to imatinib in RCML. We report for the first time the associated genetic and metabonomic responses of CML patients to imatinib and show that the perturbed in vivo metabolism of UCML is independent of imatinib treatment in resistant patients. Thus, metabonomics can potentially characterize patients' sensitivity or resistance to drug intervention.

  10. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  11. Leishmania donovani: an in vitro study of antimony-resistant amphotericin B-sensitive isolates

    DEFF Research Database (Denmark)

    Sharief, Abdalla Hassan; Gasim Khalil, Eltahir Awad; Theander, Thor G

    2006-01-01

    Drug sensitivity of clinically antimony-unresponsive Leishmania donovani isolates from Eastern Sudan was evaluated in an in vitro culture system against sodium stibogluconate (Pentostam) and Amphotericin B. Eight isolates, six from antimony-resistant and two from clinically responsive patients were...

  12. Cytotoxicity of cardiotonic steroids in sensitive and multidrug-resistant leukemia cells and the link with Na(+)/K(+)-ATPase.

    Science.gov (United States)

    Zeino, Maen; Brenk, Ruth; Gruber, Lisa; Zehl, Martin; Urban, Ernst; Kopp, Brigitte; Efferth, Thomas

    2015-06-01

    Cardiotonic steroids have long been in clinical use for treatment of heart failure and are now emerging as promising agents in various diseases, especially cancer. Their main target is Na(+)/K(+)-ATPase, a membrane protein involved in cellular ion homeostasis. Na(+)/K(+)-ATPase has been implicated in cancer biology by affecting several cellular events and signaling pathways in both sensitive and drug-resistant cancer cells. Hence, we investigated the cytotoxic activities of 66 cardiotonic steroids and cardiotonic steroid derivatives in sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. Data were then subjected to quantitative structure-activity relationship analysis (QSAR) and molecular docking into Na(+)/K(+)-ATPase, which both indicated a possible differential expression of the pump in the mentioned cell lines. This finding was confirmed by western blotting, intracellular potassium labeling and next generation sequencing which showed that Na(+)/K(+)-ATPase was less expressed in multidrug-resistant than in sensitive cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    Science.gov (United States)

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  14. Researching Effective Strategies to Improve Insulin Sensitivity in Children and Teenagers - RESIST. A randomised control trial investigating the effects of two different diets on insulin sensitivity in young people with insulin resistance and/or pre-diabetes.

    Directory of Open Access Journals (Sweden)

    De Sukanya

    2010-09-01

    Full Text Available Abstract Background Concomitant with the rise in childhood obesity there has been a significant increase in the number of adolescents with clinical features of insulin resistance and prediabetes. Clinical insulin resistance and prediabetes are likely to progress to type 2 diabetes and early atherosclerosis if not targeted for early intervention. There are no efficacy trials of lifestyle intervention in this group to inform clinical practice. The primary aim of this randomised control trial (RCT is to determine the efficacy and effectiveness of two different structured lifestyle interventions differing in diet composition on insulin sensitivity, in adolescents with clinical insulin resistance and/or prediabetes treated with metformin. Methods/design This study protocol describes the design of an ongoing RCT. We are recruiting 108 (54 each treatment arm 10 to 17 year olds with clinical features of insulin resistance and/or prediabetes, through physician referral, into a multi-centred RCT. All participants are prescribed metformin and participate in a diet and exercise program. The lifestyle program is the same for all participants except for diet composition. The diets are a high carbohydrate, low fat diet and a moderate carbohydrate, increased protein diet. The program commences with an intensive 3 month dietary intervention, implemented by trained dietitians, followed by a 3 month intensive gym and home based exercise program, supervised by certified physical trainers. To measure the longer term effectiveness, after the intensive intervention trial participants are managed by either their usual physician or study physician and followed up by the study dietitians for an additional 6 months. The primary outcome measure, change in insulin sensitivity, is measured at 3, 6 and 12 months. Discussion Clinical insulin resistance and prediabetes in the paediatric population are rapidly emerging clinical problems with serious health outcomes. With

  15. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    International Nuclear Information System (INIS)

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-01-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo

  16. Profile of antibiotic consumption, sensitivity and resistance in an urban area of Andhra Pradesh, India.

    Science.gov (United States)

    Peripi, Sunita Bhargavi; Thadepalli, Venu Gopala Rao; Khagga, Mukkanti; Tripuraribhatla, Prasanna Krishna; Bharadwaj, Dinesh Kumar

    2012-04-01

    Antibiotics are an important category of drugs in which indiscriminate use can affect the susceptibility patterns among infectious organisms, resulting in antibiotic resistance. Data on antibiotic usage and susceptibility patterns were collected from public and private health centres in Vijayawada, Andhra Pradesh, India, through the use of questionnaires. The data collected were then coded, tabulated, computed and evaluated using statistical analysis. The consumption profile of the different categories of drugs used in public and private hospitals was as follows: nutrition and metabolism products 19.0%; gastrointestinal disorder-related drugs 18.5%; antibiotics 16.8%; anti-pyretics and anti-analgesics 20.6%. These drugs were found to be in high demand. Among the antibiotics, aminoglycosides (amikacin), quinolones (ofloxacin, ciprofloxacin), tetracyclines (doxycycline), penicillin (ampicillin) and sulphonamides (co-trimoxazole) were the most commonly prescribed drugs for antibiotic therapy. 46% of the culture laboratory reports were positive with the following organism profile: Escherichia coli (36%), Klebsiella pneumoniae (16%), Staphylococcus aureus (29%), Enterococcus faecalis (9%) and Pseudomonas aeruginosa (10%). In terms of the sensitivity profile of antibacterials, amikacin (66.9%) was the only antibiotic showing sensitivity patterns, while the majority of antibiotics, such as cotrimoxazole, nalidixic acid, amoxicillin, gentamycin and norfloxacin, had acquired a resistance rate of 55.1%-80.6%. The results of this study suggest that indiscriminate prescription and consumption of new broad-spectrum antibiotics against sensitive organisms results in the development of antimicrobial resistance. Therefore, there is an urgent need to curb the excessive use of antibiotics in local hospitals in order to control the trend of increasing antimicrobial resistance to antibiotics.

  17. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  18. Ex vivo piperaquine resistance developed rapidly in Plasmodium falciparum isolates in northern Cambodia compared to Thailand

    Directory of Open Access Journals (Sweden)

    Suwanna Chaorattanakawee

    2016-10-01

    Full Text Available Abstract Background The recent dramatic decline in dihydroartemisinin-piperaquine (DHA-PPQ efficacy in northwestern Cambodia has raised concerns about the rapid spread of piperaquine resistance just as DHA-PPQ is being introduced as first-line therapy in neighbouring countries. Methods Ex vivo parasite susceptibilities were tracked to determine the rate of progression of DHA, PPQ and mefloquine (MQ resistance from sentinel sites on the Thai–Cambodian and Thai–Myanmar borders from 2010 to 2015. Immediate ex vivo (IEV histidine-rich protein 2 (HRP-2 assays were used on fresh patient Plasmodium falciparum isolates to determine drug susceptibility profiles. Results IEV HRP-2 assays detected the precipitous emergence of PPQ resistance in Cambodia beginning in 2013 when 40 % of isolates had an IC90 greater than the upper limit of prior years, and this rate doubled to 80 % by 2015. In contrast, Thai–Myanmar isolates from 2013 to 14 remained PPQ-sensitive, while northeastern Thai isolates appeared to have an intermediate resistance profile. The opposite trend was observed for MQ where Cambodian isolates appeared to have a modest increase in overall sensitivity during the same period, with IC50 declining to median levels comparable to those found in Thailand. A significant association between increased PPQ IC50 and IC90 among Cambodian isolates with DHA-PPQ treatment failure was observed. Nearly all Cambodian and Thai isolates were deemed artemisinin resistant with a >1 % survival rate for DHA in the ring-stage assay (RSA, though there was no correlation among isolates to indicate cross-resistance between PPQ and artemisinins. Conclusions Clinical DHA-PPQ failures appear to be associated with declines in the long-acting partner drug PPQ, though sensitivity appears to remain largely intact for now in western Thailand. Rapid progression of PPQ resistance associated with DHA-PPQ treatment failures in northern Cambodia limits drugs of choice in

  19. Curcumin increases the sensitivity of Paclitaxel-resistant NSCLC cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction.

    Science.gov (United States)

    Lu, Yimin; Wang, Jun; Liu, Lei; Yu, Lequn; Zhao, Nian; Zhou, Xingju; Lu, Xudong

    2017-04-01

    Non-small-cell lung cancer is one of the most lethal cancers in the worldwide. Although Paclitaxel-based combinational therapies have long been used as a standard treatment in aggressive non-small-cell lung cancers, Paclitaxel resistance emerges as a major clinical problem. It has been demonstrated that Curcumin from Curcuma longa as a traditional Chinese medicine can inhibit cancer cell proliferation. However, the role of Curcumin in Paclitaxel-resistant non-small-cell lung cancer cells is not clear. In this study, we investigated the effect of Curcumin on the Paclitaxel-resistant non-small-cell lung cancer cells and found that Curcumin treatment markedly increased the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel. Mechanically, the study revealed that Curcumin could reduce the expression of metastasis-associated gene 1 (MTA1) gene through upregulation of microRNA-30c in Paclitaxel-resistant non-small-cell lung cancer cells. During the course, MTA1 reduction sensitized Paclitaxel-resistant non-small-cell lung cancer cells and enhanced the effect of Paclitaxel. Taken together, our studies indicate that Curcumin increases the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction. Curcumin might be a potential adjuvant for non-small-cell lung cancer patients during Paclitaxel treatment.

  20. Mitochondrial Proteomics of Antimony and Miltefosine Resistant Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Isabel M. Vincent

    2015-10-01

    Full Text Available Antimony (SbIII and miltefosine (MIL are important drugs for the treatment of Leishmania parasite infections. The mitochondrion is likely to play a central role in SbIII and MIL induced cell death in this parasite. Enriched mitochondrial samples from Leishmania promastigotes selected step by step for in vitro resistance to SbIII and MIL were subjected to differential proteomic analysis. A shared decrease in both mutants in the levels of pyruvate dehydrogenase, dihydrolipoamide dehydrogenase, and isocitrate dehydrogenase was observed, as well as a differential abundance in two calcium-binding proteins and the unique dynamin-1-like protein of the parasite. Both mutants presented a shared increase in the succinyl-CoA:3-ketoacid-coenzyme A transferase and the abundance of numerous hypothetical proteins was also altered in both mutants. In general, the proteomic changes observed in the MIL mutant were less pronounced than in the SbIII mutant, probably due to the early appearance of a mutation in the miltefosine transporter abrogating the need for a strong mitochondrial adaptation. This study is the first analysis of the Leishmania mitochondrial proteome and offers powerful insights into the adaptations to this organelle during SbIII and MIL drug resistance.

  1. [Enzyme kinetic glucose determination by the glucose dehydrogenase method. Enzyme kinetic substrate determination using competitive inhibitors, II (author's transl)].

    Science.gov (United States)

    Müller-Matthesius, R

    1975-05-01

    The sensitivity of enzyme kinetic substrate determinations can be improved with the aid of competitive inhibitors. As an example, the determination of glucose dehydrogenase in the presence of potassium thiocyanate is described. The method has the advantage of rapid operation with satisfactory precision.

  2. Switching characteristics in Cu:SiO2 by chemical soak methods for resistive random access memory (ReRAM)

    Science.gov (United States)

    Chin, Fun-Tat; Lin, Yu-Hsien; Yang, Wen-Luh; Liao, Chin-Hsuan; Lin, Li-Min; Hsiao, Yu-Ping; Chao, Tien-Sheng

    2015-01-01

    A limited copper (Cu)-source Cu:SiO2 switching layer composed of various Cu concentrations was fabricated using a chemical soaking (CS) technique. The switching layer was then studied for developing applications in resistive random access memory (ReRAM) devices. Observing the resistive switching mechanism exhibited by all the samples suggested that Cu conductive filaments formed and ruptured during the set/reset process. The experimental results indicated that the endurance property failure that occurred was related to the joule heating effect. Moreover, the endurance switching cycle increased as the Cu concentration decreased. In high-temperature tests, the samples demonstrated that the operating (set/reset) voltages decreased as the temperature increased, and an Arrhenius plot was used to calculate the activation energy of the set/reset process. In addition, the samples demonstrated stable data retention properties when baked at 85 °C, but the samples with low Cu concentrations exhibited short retention times in the low-resistance state (LRS) during 125 °C tests. Therefore, Cu concentration is a crucial factor in the trade-off between the endurance and retention properties; furthermore, the Cu concentration can be easily modulated using this CS technique.

  3. Purification of 2-oxo acid dehydrogenase multienzyme complexes from ox heart by a new method.

    OpenAIRE

    Stanley, C J; Perham, R N

    1980-01-01

    A new method is described that allows the parallel purification of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart without the need for prior isolation of mitochondria. All the assayable activity of the 2-oxo acid dehydrogenase complexes in the disrupted tissue is made soluble by the inclusion of non-ionic detergents such as Triton X-100 or Tween-80 in the buffer used for the initial extraction of the enzyme complexes. The yields of the pyruvate...

  4. Emergence of fluoroquinolone resistance among drug resistant tuberculosis patients at a tertiary care facility in Karachi, Pakistan.

    Science.gov (United States)

    Zaidi, Syed Mohammad Asad; Haseeb, Abdul; Habib, Shifa Salman; Malik, Amyn; Khowaja, Saira; SaifUllah, Nausheen; Rizvi, Nadeem

    2017-07-25

    Pakistan is classified as one of the high multi-drug resistant tuberculosis (MDR-TB) burden countries. A poorly regulated private sector, over-prescription of antibiotics and self-medication has led to augmented rates of drug-resistance in the country. Pakistan's first national anti-tuberculosis drug resistance survey identified high prevalence of fluoroquinolone resistance among MDR-TB patients. Further institutional evidence of fluoroquinolone drug-resistance can support re-evaluation of treatment regimens as well as invigorate efforts to control antibiotic resistance in the country. In this study, data for drug-susceptibility testing (DST) was retrospectively analyzed for a total of 133 patients receiving MDR-TB treatment at the Chest Department of Jinnah Postgraduate Medical Center, Karachi, Pakistan. Frequency analyses for resistance patterns was carried out and association of fluoroquinolone (ofloxacin) resistance with demographics and past TB treatment category were assessed. Within first-line drugs, resistance to isoniazid was detected in 97.7% of cases, followed by rifampicin (96.9%), pyrazinamide (86.4%), ethambutol (69.2%) and streptomycin (64.6%). Within second-line drugs, ofloxacin resistance was detected in 34.6% of cases. Resistance to ethionamide and amikacin was 2.3% and 1.6%, respectively. Combined resistance of oflaxacin and isoniazid was detected in 33.9% of cases. Age, gender and past TB treatment category were not significantly associated with resistance to ofloxacin. Fluoroquinolone resistance was observed in an alarmingly high proportion of MDR-TB cases. Our results suggest caution in their use for empirical management of MDR-TB cases and recommended treatment regimens for MDR-TB may require re-evaluation. Greater engagement of private providers and stringent pharmacy regulations are urgently required.

  5. The Role of Protein Elongation Factor EEF1A2 in Breast Cancer

    National Research Council Canada - National Science Library

    Lee, Jonathan M

    2004-01-01

    ... overexpression can be used as a breast cancer prognostic factor. In addition, we proposed to test the idea that EEF1A2 expression modulates sensitivity to cisplatin and taxol and that EEF1A2-inactivation could be used as a treatment for breast cancer...

  6. Microflora of conjunctiva in children and its sensitivity and resistance to antibacterial drugs

    Directory of Open Access Journals (Sweden)

    T. N. Vorontsova

    2014-07-01

    Full Text Available Purpose: Investigation of microflora of conjunctiva and its resistance to antibacterial drugs in healthy children and patients with various inflammatory eye diseases.Methods: We examined 402 children (421 eyes in the age from 1 month till 17 years: 62 healthy children (70 eyes and 340 pa- tients with different inflammatory diseases of anterior segment of eye (351 eyes. the smear was done in all children for plating and definition of sensitivity of microflora to antibacterial drugs by method of diffusion to agar.Results: the plating was positive even in 72.9% of healthy children who entered the hospital for the planned surgery. Most often we revealed Staphylococcus epidermidis (44.3%, Staphylococcus aureus (12.8%, Streptococcus faecalis (5.7% and Enterobacter (2.9%. In children with inflammatory diseases Staphylococcus epidermidis and Staphylococcus aureus (62.6% were found fre- quently. the analysis of data showed high level of resistance of all microflora to aminoglycosides (neomycin 37.8% and tobramycin 32.7% and chloramphenicol — 37.1%. the lowest resistance of all microflora was registered to levofloxacin (11.1% and ciprofloxacin (10.5%. In gram-negative microflora we revealed the maximal sensitivity to ciprofloxacin, in gram-positive — to levofloxacin.We detected the maximal resistance of microflora to ampicillin (66.1%, and minimal — to cephalosporines (4.5% among the antibiotics of systemic application.Conclusion: the findings allow us to recommend drops containing levofloxacin (Signicef for clinical practice in pediatric ophthalmology. 

  7. Microflora of conjunctiva in children and its sensitivity and resistance to antibacterial drugs

    Directory of Open Access Journals (Sweden)

    T. N. Vorontsova

    2012-01-01

    Full Text Available Purpose: Investigation of microflora of conjunctiva and its resistance to antibacterial drugs in healthy children and patients with various inflammatory eye diseases.Methods: We examined 402 children (421 eyes in the age from 1 month till 17 years: 62 healthy children (70 eyes and 340 pa- tients with different inflammatory diseases of anterior segment of eye (351 eyes. the smear was done in all children for plating and definition of sensitivity of microflora to antibacterial drugs by method of diffusion to agar.Results: the plating was positive even in 72.9% of healthy children who entered the hospital for the planned surgery. Most often we revealed Staphylococcus epidermidis (44.3%, Staphylococcus aureus (12.8%, Streptococcus faecalis (5.7% and Enterobacter (2.9%. In children with inflammatory diseases Staphylococcus epidermidis and Staphylococcus aureus (62.6% were found fre- quently. the analysis of data showed high level of resistance of all microflora to aminoglycosides (neomycin 37.8% and tobramycin 32.7% and chloramphenicol — 37.1%. the lowest resistance of all microflora was registered to levofloxacin (11.1% and ciprofloxacin (10.5%. In gram-negative microflora we revealed the maximal sensitivity to ciprofloxacin, in gram-positive — to levofloxacin.We detected the maximal resistance of microflora to ampicillin (66.1%, and minimal — to cephalosporines (4.5% among the antibiotics of systemic application.Conclusion: the findings allow us to recommend drops containing levofloxacin (Signicef for clinical practice in pediatric ophthalmology. 

  8. [Sensitivity and specificity of nested PCR pyrosequencing in hepatitis B virus drug resistance gene testing].

    Science.gov (United States)

    Sun, Shumei; Zhou, Hao; Zhou, Bin; Hu, Ziyou; Hou, Jinlin; Sun, Jian

    2012-05-01

    To evaluate the sensitivity and specificity of nested PCR combined with pyrosequencing in the detection of HBV drug-resistance gene. RtM204I (ATT) mutant and rtM204 (ATG) nonmutant plasmids mixed at different ratios were detected for mutations using nested-PCR combined with pyrosequencing, and the results were compared with those by conventional PCR pyrosequencing to analyze the linearity and consistency of the two methods. Clinical specimens with different viral loads were examined for drug-resistant mutations using nested PCR pyrosequencing and nested PCR combined with dideoxy sequencing (Sanger) for comparison of the detection sensitivity and specificity. The fitting curves demonstrated good linearity of both conventional PCR pyrosequencing and nested PCR pyrosequencing (R(2)>0.99, PNested PCR showed a better consistency with the predicted value than conventional PCR, and was superior to conventional PCR for detection of samples containing 90% mutant plasmid. In the detection of clinical specimens, Sanger sequencing had a significantly lower sensitivity than nested PCR pyrosequencing (92% vs 100%, Pnested PCR and Sanger sequencing method, nested PCR pyrosequencing has a higher sensitivity especially in clinical specimens with low viral copies, which can be important for early detection of HBV mutant strains and hence more effective clinical management.

  9. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    de Luca, G. M. R.; Desclos, E.; Breedijk, R. M. P.; Dolz-Edo, L.; Smits, G. J.; Bielefeld, P.; Picavet, L.; Fitzsimons, C. P.; Hoebe, R.; Manders, E. M. M.

    2017-01-01

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  10. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    De Luca, G.M.R.; Desclos, E.; Breedijk, R.M.P.; Dolz-Edo, L.; Smits, G.J.; Nahidiazar, L.; Bielefeld, P.; Picavet, L.; Fitzsimons, C.P.; Hoebe, R.; Manders, E.M.M.

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  11. Assessment of insulin sensitivity/resistance and their relations with leptin concentrations and anthropometric measures in a pregnant population with and without gestational diabetes mellitus.

    Science.gov (United States)

    Yilmaz, Ozgur; Kucuk, Mert; Ilgin, Aydin; Dagdelen, Muride

    2010-01-01

    Fifty-six pregnant women with gestational diabetes mellitus (GDM) and 42 normal glucose tolerant (NGT) pregnant women between 26 and 36 gestational weeks were included in the study prospectively. The body fat percentage (BFP) was calculated using the Siri formula from skinfold thickness (SFT) measurements. Both groups were comparable for gestational age, height, weight, and body mass index (P>.05). Insulin resistance assessed by homeostasis model assessment for insulin resistance (HOMA-IR) method was significantly higher in GDM patients compared to their NGT weight-matched control group. In contrast, the insulin sensitivity calculated from quantitative insulin sensitivity check index (QUICKI-IS) equation was significantly lower in GDM group. Calculated lean body mass was found to be similar in between both groups. Body fat percentage derived from SFT parameters was significantly higher in women with GDM. Women with GDM had significantly higher levels of serum insulin and leptin concentrations when compared with the NGT group. All SFT measurements were higher in GDM group when compared to those in NGT women. We did not find any correlation between leptin levels and insulin resistance; we found negative correlation between leptin levels and insulin sensitivity. Thus, we observed that leptin may contribute development of GDM by decreasing insulin sensitivity but not increasing insulin resistance. Also, we observed that the BFP estimated by the Siri formula from SFT measurements correlated significantly with HOMA-IR and QUICKI-IS and leptin concentrations in pregnant women. We suggest that by simply evaluating SFT, we may hold a view about BFP and leptin concentrations and insulin sensitivity in pregnant women.

  12. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  13. Electrochemically assisted deposition of sol-gel bio-composite with co-immobilized dehydrogenase and diaphorase

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijie [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Etienne, Mathieu, E-mail: mathieu.etienne@lcpme.cnrs-nancy.fr [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Kohring, Gert-Wieland [Mikrobiologie, Universitaet des Saarlandes, Campus, Geb. A1.5, D-66123 Saarbruecken (Germany); Bon-Saint-Come, Yemima; Kuhn, Alexander [Universite Bordeaux, ISM, ENSCPB, 16 avenue Pey Berland, 33607 Pessac (France); Walcarius, Alain [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France)

    2011-10-30

    We report here that the electrochemically assisted deposition (EAD) of silica thin films can be a good strategy to co-encapsulate D-sorbitol dehydrogenase (DSDH) and diaphorase in an active form. This is achieved via the electrolysis of a hydrolyzed sol containing the biomolecules to initiate the poly-condensation of silica precursors upon electrochemically induced pH increase at the electrode/solution interface. DSDH was found to be very sensitive to the silica gel environment and the addition of a positively-charged polyelectrolyte was necessary to ensure effective operational behavior of the biomolecules. The composition of the sol and the conditions for electrolysis have been optimized with respect to the intensity of the electrochemical response to D-sorbitol oxidation. The K{sub m} of DSDH in the electrodeposited film was in the range of 3 mM, slightly better than the value determined biochemically in solution (6.5 mM). The co-immobilization of DSDH and diaphorase in this way led on the one hand to the possible reduction of NAD{sup +} to NADH (simultaneously to D-sorbitol oxidation) and on the other hand to the safe re-oxidation of the co-factor using a mediator (ferrocenedimethanol) as electron relay. The bioelectrocatalytic response looks promising for electro-enzymatic applications. To support this idea, the EAD of sol-gel bio-composite has been extended to macroporous electrodes displaying a much bigger electroactive surface area.

  14. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil

    2007-01-01

    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  15. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1- and ALK-Rearranged Lung Cancers.

    Science.gov (United States)

    Facchinetti, Francesco; Loriot, Yohann; Kuo, Mei-Shiue; Mahjoubi, Linda; Lacroix, Ludovic; Planchard, David; Besse, Benjamin; Farace, Françoise; Auger, Nathalie; Remon, Jordi; Scoazec, Jean-Yves; André, Fabrice; Soria, Jean-Charles; Friboulet, Luc

    2016-12-15

    The identification of molecular mechanisms conferring resistance to tyrosine kinase inhibitor (TKI) is a key step to improve therapeutic results for patients with oncogene addiction. Several alterations leading to EGFR and anaplastic lymphoma kinase (ALK) resistance to TKI therapy have been described in non-small cell lung cancer (NSCLC). Only two mutations in the ROS1 kinase domain responsible for crizotinib resistance have been described in patients thus far. A patient suffering from a metastatic NSCLC harboring an ezrin (EZR)-ROS1 fusion gene developed acquired resistance to the ALK/ROS1 inhibitor crizotinib. Molecular analysis (whole-exome sequencing, CGH) and functional studies were undertaken to elucidate the mechanism of resistance. Based on this case, we took advantage of the structural homology of ROS1 and ALK to build a predictive model for drug sensitivity regarding future ROS1 mutations. Sequencing revealed a dual mutation, S1986Y and S1986F, in the ROS1 kinase domain. Functional in vitro studies demonstrated that ROS1 harboring either the S1986Y or the S1986F mutation, while conferring resistance to crizotinib and ceritinib, was inhibited by lorlatinib (PF-06463922). The patient's clinical response confirmed the potency of lorlatinib against S1986Y/F mutations. The ROS1 S1986Y/F and ALK C1156Y mutations are homologous and displayed similar sensitivity patterns to ALK/ROS1 TKIs. We extended this analogy to build a model predicting TKI efficacy against potential ROS1 mutations. Clinical evidence, in vitro validation, and homology-based prediction provide guidance for treatment decision making for patients with ROS1-rearranged NSCLC who progressed on crizotinib. Clin Cancer Res; 22(24); 5983-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Kernicterus by glucose-6-phosphate dehydrogenase deficiency: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Cossio de Gurrola Gladys

    2008-05-01

    Full Text Available Abstract Introduction Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. This deficiency is the most common human innate error of metabolism, affecting more than 400 million people worldwide. Case presentation Here, we present the first documented case of kernicterus in Panama, in a glucose-6-phosphate dehydrogenase-deficient newborn clothed in naphthalene-impregnated garments, resulting in reduced psychomotor development, neurosensory hypoacousia, absence of speech and poor reflex of the pupil to light. Conclusion Mutational analysis revealed the glucose-6-phosphate dehydrogenase Mediterranean polymorphic variant, which explained the development of kernicterus after exposition of naphthalene. As the use of naphthalene in stored clothes is a common practice, glucose-6-phosphate dehydrogenase testing in neonatal screening could prevent severe clinical consequences.

  17. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    Science.gov (United States)

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  18. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  19. A Complementary Resistive Switch-based Crossbar Array Adder

    OpenAIRE

    Siemon, A.; Menzel, S.; Waser, R.; Linn, E.

    2014-01-01

    Redox-based resistive switching devices (ReRAM) are an emerging class of non-volatile storage elements suited for nanoscale memory applications. In terms of logic operations, ReRAM devices were suggested to be used as programmable interconnects, large-scale look-up tables or for sequential logic operations. However, without additional selector devices these approaches are not suited for use in large scale nanocrossbar memory arrays, which is the preferred architecture for ReRAM devices due to...

  20. Proteomic Differences in Feline Fibrosarcomas Grown Using Doxorubicin-Sensitive and -Resistant Cell Lines in the Chick Embryo Model

    Directory of Open Access Journals (Sweden)

    Katarzyna Zabielska-Koczywąs

    2018-02-01

    Full Text Available Proteomic analyses are rapid and powerful tools that are used to increase the understanding of cancer pathogenesis, discover cancer biomarkers and predictive markers, and select and monitor novel targets for cancer therapy. Feline injection-site sarcomas (FISS are aggressive skin tumours with high recurrence rates, despite treatment with surgery, radiotherapy, and chemotherapy. Doxorubicin is a drug of choice for soft tissue sarcomas, including FISS. However, multidrug resistance is one of the major causes of chemotherapy failure. The main aim of the present study was to identify proteins that differentiate doxorubicin-resistant from doxorubicin-sensitive FISS using two-dimensional gel electrophoresis (2DE, followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS analysis. Using the three-dimensional (3D preclinical in ovo model, which resembles features of spontaneous fibrosarcomas, three significantly (p ≤ 0.05 differentially expressed proteins were identified in tumours grown from doxorubicin-resistant fibrosarcoma cell lines (FFS1 and FFS3 in comparison to the doxorubicin-sensitive one (FFS5: Annexin A5 (ANXA5, Annexin A3 (ANXA3, and meiosis-specific nuclear structural protein 1 (MNS1. Moreover, nine other proteins were significantly differentially expressed in tumours grown from the high doxorubicin-resistant cell line (FFS1 in comparison to sensitive one (FFS5. This study may be the first proteomic fingerprinting of FISS reported, identifying potential candidates for specific predictive biomarkers and research targets for doxorubicin-resistant FISS.

  1. Withanolide D Exhibits Similar Cytostatic Effect in Drug-Resistant and Drug-Sensitive Multiple Myeloma Cells

    Directory of Open Access Journals (Sweden)

    Mark E. Issa

    2017-09-01

    Full Text Available In spite of recent therapeutic advances, multiple myeloma (MM remains a malignancy with very low curability. This has been partly attributed to the existence of a drug-resistant subpopulation known as cancer stem cells (CSCs. MM-CSCs are equipped with the necessary tools that render them highly resistant to virtually all conventional therapies. In this study, the growth inhibitory effects of withanolide D (WND, a steroidal lactone isolated from Withania somnifera, on drug-sensitive tumoral plasma cells and drug-resistant MM cells have been investigated. In MTT/XTT assays, WND exhibited similar cytostatic effects between drug-resistant and drug-sensitive cell lines in the nM range. WND also induced cell death and apoptosis in MM-CSCs and RPMI 8226 cells, as examined by the calcein/ethidium homodimer and annexin V/propidium iodide stainings, respectively. To determine whether P-glycoprotein (P-gp efflux affected the cytostatic activity of WND, P-gp was inhibited with verapamil and results indicated that the WND cytostatic effect in MM-CSCs was independent of P-gp efflux. Furthermore, WND did not increase the accumulation of the fluorescent P-gp substrate rhodamine 123 in MM-CSCs, suggesting that WND may not inhibit P-gp at the tested relevant doses. Therefore, the WND-induced cytostatic effect may be independent of P-gp efflux. These findings warrant further investigation of WND in MM-CSC animal models.

  2. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  3. Structural characterization of a D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Holton, Simon J; Anandhakrishnan, Madhankumar; Geerlof, Arie; Wilmanns, Matthias

    2013-02-01

    Hydroxyacid dehydrogenases, responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids in lactic acid producing bacteria, have a range of biotechnology applications including antibiotic synthesis, flavor development in dairy products and the production of valuable synthons. The genome of Lactobacillus delbrueckii ssp. bulgaricus, a member of the heterogeneous group of lactic acid bacteria, encodes multiple hydroxyacid dehydrogenases whose structural and functional properties remain poorly characterized. Here, we report the apo and coenzyme NAD⁺ complexed crystal structures of the L. bulgaricusD-isomer specific 2-hydroxyacid dehydrogenase, D2-HDH. Comparison with closely related members of the NAD-dependent dehydrogenase family reveals that whilst the D2-HDH core fold is structurally conserved, the substrate-binding site has a number of non-canonical features that may influence substrate selection and thus dictate the physiological function of the enzyme. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Lactate dehydrogenase predicts combined progression-free survival after sequential therapy with abiraterone and enzalutamide for patients with castration-resistant prostate cancer.

    Science.gov (United States)

    Mori, Keiichiro; Kimura, Takahiro; Onuma, Hajime; Kimura, Shoji; Yamamoto, Toshihiro; Sasaki, Hiroshi; Miki, Jun; Miki, Kenta; Egawa, Shin

    2017-07-01

    An array of clinical issues remains to be resolved for castration-resistant prostate cancer (CRPC), including the sequence of drug use and drug cross-resistance. At present, no clear guidelines are available for the optimal sequence of use of novel agents like androgen-receptor axis-targeted (ARAT) agents, particularly enzalutamide, and abiraterone. This study retrospectively analyzed a total of 69 patients with CRPC treated with sequential therapy using enzalutamide followed by abiraterone or vice versa. The primary outcome measure was the comparative combined progression-free survival (PFS) comprising symptomatic and/or radiographic PFS. Patients were also compared for total prostate-specific antigen (PSA)-PFS, overall survival (OS), and PSA response. The predictors of combined PFS and OS were analyzed with a backward-stepwise multivariate Cox model. Of the 69 patients, 46 received enzalutamide first, followed by abiraterone (E-A group), and 23 received abiraterone, followed by enzalutamide (A-E group). The two groups were not significantly different with regard to basic data, except for hemoglobin values. In a comparison with the E-A group, the A-E group was shown to be associated with better combined PFS in Kaplan-Meier analysis (P = 0.043). Similar results were obtained for total PSA-PFS (P = 0.049), while OS did not differ between groups (P = 0.62). Multivariate analysis demonstrated that pretreatment lactate dehydrogenase (LDH) values and age were significant predictors of longer combined PFS (P < 0.05). Likewise, multivariate analysis demonstrated that pretreatment hemoglobin values and performance status were significant predictors of longer OS (P < 0.05). The results of this study suggested the A-E sequence had longer combined PSA and total PSA-PFS compared to the E-A sequence in patients with CRPC. LDH values in sequential therapy may serve as a predictor of longer combined PFS. © 2017 Wiley Periodicals, Inc.

  5. A UV-resistant mutant without an increased repair synthesis activity, established from a UV-sensitive human clonal cell line

    International Nuclear Information System (INIS)

    Suzuki, N.

    1984-01-01

    When cells of a human clonal cell line, RSa, with high sensitivity to UV lethality, were treated with the mutagen, ethyl methanesulfonate, a variant cell strain, UVr-1, was established as a mutant resistant to 254-nm far-ultraviolet radiation (UV). Cell proliferation studies showed that UVr-1 cells survived and actively proliferated at doses of UV-irradiation that greatly suppressed the proliferation of RSa cells. Colony-formation assays also confirmed the increased resistance of UVr-1 cells to UV. The recovery from a UV-induced inhibition in DNA synthesis, as [methyl- 3 H]thymidine uptake into cellular DNA, was more pronounced in UVr-1 cells than in RSa cells. Nevertheless, there was no significant difference in the activity of UV-induced DNA repair synthesis in either cell line, as estimated by the extent of unscheduled DNA synthesis and DNA repair replication. These characteristics of UVr-1 cells are discussed in the light of a previously reported UV-resistant variant, UVr-10, which had an increased DNA repair synthesis activity. (Auth.)

  6. The different expression of TRPM7 and MagT1 impacts on the proliferation of colon carcinoma cells sensitive or resistant to doxorubicin.

    Science.gov (United States)

    Cazzaniga, Alessandra; Moscheni, Claudia; Trapani, Valentina; Wolf, Federica I; Farruggia, Giovanna; Sargenti, Azzurra; Iotti, Stefano; Maier, Jeanette A M; Castiglioni, Sara

    2017-01-17

    The processes leading to anticancer drug resistance are not completely unraveled. To get insights into the underlying mechanisms, we compared colon carcinoma cells sensitive to doxorubicin with their resistant counterpart. We found that resistant cells are growth retarded, and show staminal and ultrastructural features profoundly different from sensitive cells. The resistant phenotype is accompanied by the upregulation of the magnesium transporter MagT1 and the downregulation of the ion channel kinase TRPM7. We demonstrate that the different amounts of TRPM7 and MagT1 account for the different proliferation rate of sensitive and resistant colon carcinoma cells. It remains to be verified whether they are also involved in the control of other "staminal" traits.

  7. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  8. Effect of AlN layer on the bipolar resistive switching behavior in TiN thin film based ReRAM device for non-volatile memory application

    Science.gov (United States)

    Prakash, Ravi; Kaur, Davinder

    2018-05-01

    The effect of an additional AlN layer in the Cu/TiN/AlN/Pt stack configuration deposited using sputtering has been investigated. The Cu/TiN/AlN/Pt device shows a tristate resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the filaments formed is confirmed by performing a resistance vs. temperature measurement. Ohmic behaviour and trap controlled space charge limited current (SCLC) conduction mechanisms are confirmed as dominant conduction mechanism at low resistance state (LRS) and high resistance state (HRS). High resistance ratio (102) corresponding to HRS and LRS, good write/erase endurance (105) and non-volatile long retention (105s) are also observed. Higher thermal conductivity of the AlN layer is the main reasons for the enhancement of resistive switching performance in Cu/TiN/AlN/Pt cell. The above result suggests the feasibility of Cu/TiN/AlN/Pt devices for multilevel nonvolatile ReRAM application.

  9. Characterization and antimicrobial susceptibility of one antibiotic-sensitive and one multidrug-resistant Corynebacterium kroppenstedtii strain isolated from patients with granulomatous mastitis

    Directory of Open Access Journals (Sweden)

    I. Fernández-Natal

    2016-11-01

    Full Text Available Human infections associated with Corynebacterium kroppenstedtii are rarely reported, and this organism is usually described as antibiotic sensitive. Almost all published cases of C. kroppenstedtii infections have been associated with breast pathology in women and have been described in New Zealand, France, Canada, India and Japan. Here we describe the microbiologic characteristics of two strains isolated from two women diagnosed of granulomatous mastitis in Spain. One C. kroppenstedtii isolate was antibiotic sensitive while the other was multidrug resistant. Biochemical identification was possible using a wide battery of methods including API Coryne V2.0, API Strep, API NH, API NE, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene amplification and sequencing. Antimicrobial susceptibility to 28 antibiotics as determined by Etest showed one isolate being sensitive to benzylpenicillin, ciprofloxacin, moxifloxacin, gentamicin, vancomycin, clindamycin, tetracycline, linezolid and rifampin. The second isolate showed resistance to ciprofloxacin, moxifloxacin, clindamycin, tetracycline and rifampin. The multidrug-resistant isolate contained the erm(X, tet(W, cmx, aphA1-IAB, strAB and sul1 resistance genes known from the R plasmid pJA144188 of Corynebacterium resistens. These genes were absent in the genome of the antibiotic-sensitive isolate. This report confirms the tropism of this microorganism for women's breasts and presents the first description of a multidrug-resistant C. kroppenstedtii strain.

  10. Distribution of Silicified Microstructures, Regulation of Cinnamyl Alcohol Dehydrogenase and Lodging Resistance in Silicon and Paclobutrazol Mediated Oryza sativa

    Directory of Open Access Journals (Sweden)

    Deivaseeno Dorairaj

    2017-07-01

    Full Text Available Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si, a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense. The aim of this study is to resolve effects of Si on formation of microstructure and regulation of cinnamyl alcohol dehydrogenase (CAD, a key gene responsible for lignin biosynthesis. Besides evaluating silicon, paclobutrazol (PBZ a plant growth retartdant that reduces internode elongation is also incorporated in this study. Hardness, brittleness and stiffness were improved in presence of silicon thus reducing lodging. Scanning electron micrographs with the aid of energy dispersive x-ray (EDX was used to map silicon distribution. Presence of trichomes, silica cells, and silica bodies were detected in silicon treated plants. Transcripts of CAD gene was also upregulated in these plants. Besides, phloroglucinol staining showed presence of lignified vascular bundles and sclerenchyma band. In conclusion, silicon treated rice plants showed an increase in lignin content, silicon content, and formation of silicified microstructures.

  11. Deciphering mechanisms of drug sensitivity and resistance to Selective Inhibitor of Nuclear Export (SINE) compounds

    International Nuclear Information System (INIS)

    Crochiere, Marsha; Kashyap, Trinayan; Kalid, Ori; Shechter, Sharon; Klebanov, Boris; Senapedis, William; Saint-Martin, Jean-Richard; Landesman, Yosef

    2015-01-01

    Exportin 1 (XPO1) is a well-characterized nuclear export protein whose expression is up-regulated in many types of cancers and functions to transport key tumor suppressor proteins (TSPs) from the nucleus. Karyopharm Therapeutics has developed a series of small-molecule Selective Inhibitor of Nuclear Export (SINE) compounds, which have been shown to block XPO1 function both in vitro and in vivo. The drug candidate, selinexor (KPT-330), is currently in Phase-II/IIb clinical trials for treatment of both hematologic and solid tumors. The present study sought to decipher the mechanisms that render cells either sensitive or resistant to treatment with SINE compounds, represented by KPT-185, an early analogue of KPT-330. Using the human fibrosarcoma HT1080 cell line, resistance to SINE was acquired over a period of 10 months of constant incubation with increasing concentration of KPT-185. Cell viability was assayed by MTT. Immunofluorescence was used to compare nuclear export of TSPs. Fluorescence activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), and immunoblots were used to measure effects on cell cycle, gene expression, and cell death. RNA from naïve and drug treated parental and resistant cells was analyzed by Affymetrix microarrays. Treatment of HT1080 cells with gradually increasing concentrations of SINE resulted in > 100 fold decrease in sensitivity to SINE cytotoxicity. Resistant cells displayed prolonged cell cycle, reduced nuclear accumulation of TSPs, and similar changes in protein expression compared to parental cells, however the magnitude of the protein expression changes were more significant in parental cells. Microarray analyses comparing parental to resistant cells indicate that a number of key signaling pathways were altered in resistant cells including expression changes in genes involved in adhesion, apoptosis, and inflammation. While the patterns of changes in transcription following drug treatment are similar in parental

  12. The different expression of TRPM7 and MagT1 impacts on the proliferation of colon carcinoma cells sensitive or resistant to doxorubicin

    OpenAIRE

    Cazzaniga, Alessandra; Moscheni, Claudia; Trapani, Valentina; Wolf, Federica I.; Farruggia, Giovanna; Sargenti, Azzurra; Iotti, Stefano; Maier, Jeanette A. M.; Castiglioni, Sara

    2017-01-01

    The processes leading to anticancer drug resistance are not completely unraveled. To get insights into the underlying mechanisms, we compared colon carcinoma cells sensitive to doxorubicin with their resistant counterpart. We found that resistant cells are growth retarded, and show staminal and ultrastructural features profoundly different from sensitive cells. The resistant phenotype is accompanied by the upregulation of the magnesium transporter MagT1 and the downregulation of the ion chann...

  13. In vitro determination of cytotoxic drug response in ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Csóka, K; Tholander, B; Gerdin, E; de la Torre, M; Larsson, R; Nygren, P

    1997-09-17

    The fluorometric microculture cytotoxicity assay (FMCA), a short-term in vitro assay based on the concept of total tumor cell kill, was used for testing the cytotoxic drug sensitivity of tumor cells from patients with ovarian carcinoma. A total of 125 fresh specimens was obtained, 98 (78%) of which were analyzed successfully. Data from 45 patients were available for clinical correlations. The FMCA appeared to yield clinically relevant cytotoxic drug sensitivity data for ovarian carcinoma as indicated by a comparison with tumor samples obtained from patients with non-Hodgkin's lymphoma or kidney carcinoma. Considering the most active single agent in vitro actually given in vivo, and using the median drug activity among all ovarian carcinoma samples as a cut-off, the sensitivity of the assay and its specificity were 75 and 52%, respectively. Cross-resistance in vitro was frequently observed between standard drugs but not between standard drugs and Taxol. Ten percent of the specimens showed an extreme resistance for at least 4 of 6 of the drugs investigated.

  14. Mammary sensitivity to protein restriction and re-alimentation.

    Science.gov (United States)

    Goodwill, M G; Jessop, N S; Oldham, J D

    1996-09-01

    The present study tested the influence of protein undernutrition and re-alimentation on mammary gland size and secretory cell activity in lactating rats. During gestation, female Sprague-Dawley rats were offered a high-protein diet (215 g crude protein (N x 6.25; CP)/kg DM; H); litters were standardized to twelve pups at parturition. During lactation, two diets were offered ad libitum, diet H and a low-protein diet (90 g CP/kg DM; L). Lactational dietary treatments were the supply ad libitum of either diet H (HHH) or diet L (LLL) for the first 12 d of lactation, or diet L transferring to diet H on either day 6 (LHH) or 9 (LLH) of lactation. On days 1, 6, 9 and 12 of lactation, rats from each group (n > or = 6) were used to estimate mammary dry mass, fat, protein, DNA and RNA; the activities of lactose synthetase (EC 2.4.1.22) enzyme and Na+,K(+)-ATPase (EC 3.6.1.37) were also measured. Rats offered a diet considered protein sufficient (H) from day 1 of lactation showed a decrease in mammary dry mass and fat but an increase in DNA, RNA and protein on day 6, after which there was no further change, except for mammary protein which continued to increase. However, rats offered diet L showed a steady loss in mammary mass and fat throughout the 12 d lactation period and no change in mammary DNA, RNA or protein. Rats previously protein restricted for either the first 6 or 9 d of lactation had their mammary dry mass and mammary fat loss halted and showed a rapid increase in mammary DNA, RNA and protein on re-alimentation. Lactose production in group HHH, as measured by lactose synthetase activity, was similar on days 1 and 6 of lactation, after which a significant increase was seen. Protein-restricted rats showed no change in lactose synthetase activity during the 12 d experimental period. Changing from diet L to diet H led to a significant increase in lactose synthetase activity to levels comparable with those offered diet H from day 1. These results show that rats

  15. Why sensitive bacteria are resistant to hospital infection control [version 2; referees: 2 approved

    NARCIS (Netherlands)

    Van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J.; Cooper, Ben S.

    2017-01-01

    Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been

  16. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin resistant phenotypes

    DEFF Research Database (Denmark)

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas

    2013-01-01

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance, however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilizati...

  17. Laminar flow resistance in short microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Phares, D.J. [Texas A and M University, College Station, TX (United States). Dept. of Mechanical Engineering; Smedley, G.T.; Zhou, J. [Glaukos Corp., Laguna Hills, CA (United States). Dept. of Research and Development

    2005-06-01

    We have measured the pressure drop for the flow of liquid through a series of short microtubes ranging from 80 to 150 {mu}m in diameter with aspect ratios between L/D = 2 and L/D = 5. These dimensions were selected to resemble lumens of implantable microstents that are under consideration for the treatment of glaucoma. For physiologically relevant pressure drops and flow rates, we have determined that a fully-developed laminar pipe flow may be assumed throughout the microtube when (L/D) > 0.20Re, where Re is the Reynolds number based on the diameter, D, and L is the length of the tube. We have examined flow rates between 0.1 and 10 {mu}L/s, corresponding to Reynolds numbers between 1 and 150. For smooth microtubes, no difference from macroscopic flow is observed for the tube sizes considered. However, flow resistance is found to be sensitive to the relative surface roughness of the tube walls. (author)

  18. Investigation of the transport properties and compositions of the Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} series (RE=Pr, Sm, Gd, Dy; Pn=Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Scott [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Yuan, Fang [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Kosuda, Kosuke; Kolodiazhnyi, Taras [Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2016-10-15

    The Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} phases (RE=Pr, Sm, Gd, Dy; Pn=Sb, Bi) were successfully prepared from high temperature reactions at 1225–1300 °C. These phases maintain the same structure types as the parent RE{sub 9}Pn{sub 5}O{sub 5} phases, except for a Ca/RE mixing. The study and preparation of these phases was motivated by the desire to shift the metallic type properties of the parent RE{sub 9}Pn{sub 5}O{sub 5} phases to a level more suitable for thermoelectric applications. Electrical resistivity measurements performed on pure, bulk samples indicated all phases to be narrow band gap semiconductors or semimetals, supporting the charge balanced electron count of the Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} composition. Unfortunately, all samples are too electrically resistive for any potential usage as thermoelectrics. Electronic band structure calculations performed on idealized RE{sub 9}Pn{sub 5}O{sub 5} structures revealed the presence of a pseudogap at the Fermi level, which is consistent with the observed electrical resistivity and Seebeck coefficient behavior. - Graphical abstract: Ca substitution in RE{sub 9}Pn{sub 5}O{sub 5} leads to charge-balanced Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} phases with semiconducting or semimetallic properties. - Highlights: • The RE{sub 9}Pn{sub 5}O{sub 5} structure may be stabilized with calcium substitution in the form of Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5}. • The Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} phases maintain the parent P 4/n structure, albeit with Ca/RE mixing. • The Ca{sub 2}RE{sub 7}Sb{sub 5}O{sub 5} phases behave as semiconductors while Ca{sub 2}RE{sub 7}Bi{sub 5}O{sub 5} are semimetals with electron-electron correlations. • Electronic structure calculations yield a semimetal-like density of states for both Ca{sub 2}RE{sub 7}Sb{sub 5}O{sub 5} and Ca{sub 2}RE{sub 7}Bi{sub 5}O{sub 5}.

  19. A simple reduction-sensitive micelles co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance

    Directory of Open Access Journals (Sweden)

    Li J

    2017-11-01

    Full Text Available Jun Li,1,* Ruitong Xu,2,* Xiao Lu,3 Jing He,1 Shidai Jin1 1Department of Medical Oncology, 2Department of General Practice, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 3Department of Medical Oncology, Changshu No 1 People’s Hospital, Changshu, People’s Republic of China *These authors contributed equally to this work Abstract: Multidrug resistance (MDR is one of the major obstacles in successful chemotherapy. The combination of chemotherapy drugs and multidrug-resistant reversing agents for treating MDR tumor is a good strategy to overcome MDR. In this work, we prepared the simple redox-responsive micelles based on mPEG-SS-C18 as a co-delivery system to load the paclitaxel (PTX and dasatinib (DAS for treatment of MCF-7/ADR cells. The co-loaded micelles had a good dispersity and a spherical shape with a uniform size distribution, and they could quickly disassemble and rapidly release drugs under the reduction environment. Compared with MCF-7 cells, the DAS and PTX co-loaded redox-sensitive micelle (SS-PDNPs showed stronger cytotoxicity and a more improving intracellular drug concentration than other drug formulations in MCF-7/ADR cells. In summary, the results suggested that the simple co-delivery micelles of PTX and DAS possessed significant potential to overcome drug resistance in cancer therapy. Keywords: redox responsive, overcoming multidrug resistant, co-delivery, paclitaxel, dasatinib 

  20. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time.

    Science.gov (United States)

    Hake, Anna; Pfeifer, Nico

    2017-10-01

    Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient's viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population.

  1. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  2. Impact of treatment and re-treatment with artemether-lumefantrine and artesunate-amodiaquine on selection of Plasmodium falciparum multidrug resistance gene-1 polymorphisms in the Democratic Republic of Congo and Uganda.

    Directory of Open Access Journals (Sweden)

    Vito Baraka

    Full Text Available The emergence of resistance against artemisinin combination treatment is a major concern for malaria control. ACTs are recommended as the rescue treatment, however, there is limited evidence as to whether treatment and re-treatment with ACTs select for drug-resistant P. falciparum parasites. Thus, the purpose of the present study is to investigate the impact of (re-treatment using artesunate-amodiaquine (ASAQ and artemether-lumefantrine (AL on the selection of P. falciparum multidrug resistance-1 (Pfmdr1 alleles in clinical settings.P. falciparum positive samples were collected from children aged 12-59 months in a clinical trial in DR Congo and Uganda. Pfmdr1 single nucleotide polymorphisms (SNPs analysis at codons N86Y, Y184F, and D1246Y were performed at baseline and post-treatment with either AL or ASAQ as a rescue treatment using nested PCR followed by restriction fragment length polymorphism (RFLP assays.The pre-treatment prevalence of Pfmdr1 N86 and D1246Y varied significantly between the sites, (p>0.001 and (p = 0.013, respectively. There was borderline significant directional selection for Pfmdr1 184F in recurrent malaria infections after treatment with AL in Uganda site (p = 0.05. Pfmdr1 NFD haplotype did not significantly change in post-treatment infections after re-treatment with either AL or ASAQ. Comparison between pre-treatment and post-treatment recurrences did not indicate directional selection of Pfmdr1 N86, D1246 alleles in the pre-RCT, RCT and post-RCT phases in both AL and ASAQ treatment arms. Pfmdr1 86Y was significantly associated with reduced risk of AL treatment failure (RR = 0.34, 95% CI:0.11-1.05, p = 0.04 while no evidence for D1246 allele (RR = 1.02; 95% CI: 0.42-2.47, p = 1.0. Survival estimates showed that the Pfmdr1 alleles had comparable mean-time to PCR-corrected recrudescence and new infections in both AL and ASAQ treatment arms.We found limited impact of (re-treatment with AL or ASAQ on selection for Pfmdr1

  3. Loss of peroxisomes causes oxygen insensitivity of the histochemical assay of glucose-6-phosphate dehydrogenase activity to detect cancer cells

    NARCIS (Netherlands)

    Frederiks, Wilma M.; Vreeling-Sindelárová, Heleen; van Noorden, Cornelis J. F.

    2007-01-01

    Oxygen insensitivity of carcinoma cells and oxygen sensitivity of non-cancer cells in the histochemical assay of glucose-6-phosphate dehydrogenase (G6PD) enables detection of carcinoma cells in unfixed cell smears or cryostat sections of biopsies. The metabolic background of oxygen insensitivity is

  4. Final technical report. A sodium-cycle based organism with improved membrane resistance aimed at increasing the efficiency of energy biotransformations

    International Nuclear Information System (INIS)

    Lewis, Kim

    2001-01-01

    The aim of the project was to express in E. coli components that would allow a formation of oxidative phosphorylation based on a sodium cycle. This would improve the resistance of cells to organic solvents, detergents and other toxins. The author cloned and expressed the nqr operon FR-om H. influenzae in E. coli. Experiments with membrane vesicles indicated the presence of the functional recombinant sodium pumping NADH dehydrogenase. A gene for a hybrid E. coli/P.modestum ATPase was constructed which will enable one to co-express a sodium ATPsynthase together with a sodium NADH dehydrogenase

  5. Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinlong, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Luo, Hongyun [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing 100191 (China)

    2016-12-01

    Highlights: • The pre-strain accelerated desensitization and sensitization for austenitic stainless steels. • Low temperature sensitization (carbide precipitation) induced α′-martensite. • The sensitization level could affect directly corrosion resistance of the oxide film. - Abstract: The effects of pre-deformation on sensitization of AISI 304 stainless steel were investigated by the double loop electrochemical potentiokinetic reactivation test. The effects of pre-deformation and sensitization on high temperature oxidized film formed in high temperature water were analyzed by a XRD and SEM. The electrochemical impedance spectroscopy at room temperature was used to study corrosion resistance of oxidized film. The point defect density of oxidized film was calculated by Mott–Schottky plots. The results showed that the value of the degree of sensitization first decreased and then slight increased with the increasing of engineering strain. Moreover, low temperature promoted to form sensitization induced “secondary” α′-martensite. The sample with 20% engineering strain had higher impedance value than other samples. The result was supported by further Mott–Schottky experiments. Considering increased α′-martensite with the increasing of strain, the results of the impedance were more consistent with values of the degree of sensitization.

  6. A comparison of osteoprotegerin with adiponectin and high-sensitivity C-reactive protein (hsCRP) as a marker for insulin resistance.

    LENUS (Irish Health Repository)

    O'Sullivan, Eoin P

    2013-01-01

    Insulin resistance (IR) is associated with low adiponectin and elevated high sensitivity C-reactive protein (hsCRP). Osteoprotegerin (OPG) has been shown to be elevated in type 2 diabetes, but whether it reflects underlying IR is unclear. We aimed to compare the ability of serum OPG with adiponectin and hsCRP to act as a marker for IR in individuals with normal and abnormal glucose tolerance.

  7. Myopathy in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Scholte, H R; Van Coster, R N; de Jonge, P C

    1999-01-01

    was deficient in muscle and fibroblasts, consistent with deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD). The gene of this enzyme had a homozygous deletion of three base pairs in exon 9, skipping lysine residue 238. Fibroblasts oxidised myristate, palmitate and oleate at a rate of 129, 62 and 38......A 30-year-old man suffered since the age of 13 years from exercise induced episodes of intense generalised muscle pain, weakness and myoglobinuria. Fasting ketogenesis was low, while blood glucose remained normal. Muscle mitochondria failed to oxidise palmitoylcarnitine. Palmitoyl-CoA dehydrogenase......% of controls. In contrast to patients with cardiac VLCAD deficiency, our patient had no lipid storage, a normal heart function, a higher rate of oleate oxidation in fibroblasts and normal free carnitine in plasma and fibroblasts. 31P-nuclear magnetic resonance spectroscopy of muscle showed a normal oxidative...

  8. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  9. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells.

    Science.gov (United States)

    Doherty, Ben; Lawlor, Denise; Gillet, Jean-Pierre; Gottesman, Michael; O'Leary, John J; Stordal, Britta

    2014-01-01

    KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer. A Taqman low-density array was used to characterize the expression of 380 genes previously associated with chemoresistance. Identified pathways were further analyzed using cytotoxicity assays, metabolomics and western blots. KB-8-5-11 cells were sensitive to CuSO4 and the glutathione inhibitor buthionine sulphoximine. Expression of ATPase, Cu(2+) transporting alpha (ATP7A) and ATP7B were decreased at the protein and gene levels respectively in KB-8-5-11. KB-8-5-11 had decreased gene expression of glutathione S-transferase pi 1 (GSTP1), GSTA4 and GSTK1. Cisplatin treatment significantly lowered total cellular glutathione in parental KB-3-1 cells. Glutathione also tended to be lower in KB-8-5-11 cells compared to KB-3-1 cells. KB-8-5-11 cells have alterations in their copper transporters and glutathione metabolism, contributing to their cisplatin-sensitive phenotype.

  10. New non-chemically amplified molecular resist design with switchable sensitivity for multi-lithography applications and nanopatterning

    Science.gov (United States)

    Thakur, Neha; Guruprasad Reddy, Pulikanti; Nandi, Santu; Yogesh, Midathala; Sharma, Satinder K.; Pradeep, Chullikkattil P.; Ghosh, Subrata; Gonsalves, Kenneth E.

    2017-12-01

    The development of new photoresist materials for multi-lithography applications is crucial but a challenging task for semiconductor industries. During the last few decades, given the need for new resists to meet the requirements of semiconductor industries, several research groups have developed different resist materials for specific lithography applications. In this context, we have successfully synthesized a new molecular non-chemically amplified resist (n-CAR) (C3) based on the functionalization of aromatic hydroxyl core (4,4‧-(9H-fluorene-9,9-diyl)diphenol) with radiation sensitive sulfonium triflates for various lithography applications. While, micron scale features have been developed using i-line (365 nm) and DUVL (254 nm) exposure tools, electron beam studies on C3 thin films enabled us to pattern 20 nm line features with L/3S (line/space) characteristics on the silicon substrate. The sensitivity and contrast were calculated from the contrast curve analysis as 280 µC cm-2 and 0.025 respectively. Being an important parameter for any newly developed resists, the line edge roughness (LER) of 30 nm (L/5S) features were calculated, using SUMMIT metrology package, to be 3.66  ±  0.3 nm and found to be within the acceptable range. AFM analysis further confirmed 20 nm line width with smooth pattern wall. No deformation of patterned features was observed during AFM analysis which indicated good adhesion property between patterned resists and silicon substrates.

  11. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis.

    Science.gov (United States)

    Garvey, E P; Hoekstra, W J; Schotzinger, R J; Sobel, J D; Lilly, E A; Fidel, P L

    2015-09-01

    Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Effect of 5-azacytidine and cortisol on the P1798 cortisol-sensitive and non-resistant lymphosarcoma

    International Nuclear Information System (INIS)

    Chi, C.

    1986-01-01

    The P1798 lymphosarcoma is a tumor with both cortisol-sensitive (CS) and cortisol-resistant (CR) lines. Although differences between the CS and CR cells have been reported, none can fully explain the detailed mechanism of glucocorticoid resistance in CR tumors. Recently, it was shown that 5-azacytidine treatment could generate CS cells from CR SAK lymphoma cells in vitro. The present study examined the effect of combination treatment with 5-azacytidine and cortisol on the growth of the P1798 lymphosarcoma. 5-Azacytidine rendered the P1798 CR tumors partially cortisol-sensitive, and enhanced the cortisol-induced regression of the P1798 CS tumors. Survival of mice bearing both CS and CR P1798 tumors was increased by combination treatment. Similar whole cell and nuclear binding of 3 H-TA were observed in both 5-azacytidine-treated and control P1798 tumors. However, CR nuclei retained 64% of the whole cell binding of 3 H-TA compared to 25-29% nuclear retention in CS tumors. DNA methylation in tumors from 5-azacytidine-treated mice decreased to 53% (CS) and 42% (CR) of control. Since 5-azacytidine did not result in any change in thymidine labeling index or cell cycle distribution in P1798 tumors, it would appear to be cytostatic rather than cytotoxic to P1798 tumors. Three cell lines have been isolated from the P1798 lymphosarcoma: two are cortisol-sensitive both in vivo and in vitro, while the other is cortisol-resistant. Results from this study suggest that glucocorticoid resistance is a reversible process, and that the effect of 5-azacytidine on the P1798 CR tumor is at the gene expression level

  13. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli.

    Science.gov (United States)

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; De Mey, Marjan; Ajikumar, Parayil Kumaran

    2016-03-22

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.

  14. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode.

    Science.gov (United States)

    Alpat, Senol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10(-5) M and 4 × 10(-4) M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10(-6) M. At the end of the 20(th) day, the biosensor still retained 50% of its initial activity.

  15. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    Directory of Open Access Journals (Sweden)

    Azmi Telefoncu

    2010-01-01

    Full Text Available In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH. Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA bonded to toluidine blue O (TBO. Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity.

  16. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  17. Quantitative cytochemical analysis of glucose-6-phosphate dehydrogenase activity in living isolated hepatocytes of European flounder for rapid analysis of xenobiotic effects

    NARCIS (Netherlands)

    Winzer, K.; van Noorden, C. J.; Köhler, A.

    2001-01-01

    There is a great need for rapid but reliable assays to determine quantitatively effects of xenobiotics on biological systems in environmental research. Hepatocytes of European flounder are sensitive to low-dose toxic stress. Glucose-6-phosphate dehydrogenase (G6PDH) is the major source of NADPH in

  18. Site-specific incorporation of 5-fluorotryptophan as a probe of the structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli: A 19F nuclear magnetic resonance study

    International Nuclear Information System (INIS)

    Peersen, O.B.; Pratt, E.A.; Truong, H.T. N.; Ho, C.; Rule, G.S.

    1990-01-01

    The structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli have been investigated by fluorine-19 nuclear magnetic resonance spectroscopy of 5-fluorotryptophan-labeled enzyme in conjunction with oligonucleotide-directed, site-specific mutagenesis. 5-Fluorotryptophan has been substituted for nine phenylalanine, tyrosine, and leucine residues in the enzyme molecule without loss of activity. The 19 F signals from these additional tryptophan residues have been used as markers for sensitivity to substrate, exposure to aqueous solvent, and proximity to a lipid-bound spin-label. The nuclear magnetic resonance data show that two mutational sites, at amino acid residues 340 and 361, are near the lipid environment used to stabilize the enzyme. There are a number of amino acid residues on the carboxyl side of this region that are strongly sensitive to the aqueous solvent. The environment of the wide-type tryptophan residue at position 469 changes as a result of two of the substitution mutations, suggesting some amino acid residue-residue interactions. Secondary structure prediction methods indicate a possible binding site for the flavin adenine dinucleotide cofactor in the carboxyl end of the enzyme molecule. These results suggest that the membrane-bound D-lactate dehydrogenase may have the two-domain structure of many cytoplasmic dehydrogenases but with the addition of a membrane-binding domain between the catalytic and cofactor-binding domains. This type of three-domain structure may be of general significance for understanding the structure of membrane-bound proteins which do not traverse the lipid bilayer of membranes

  19. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition.

    Directory of Open Access Journals (Sweden)

    Wenfu Xiao

    Full Text Available Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.

  20. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves.

    Science.gov (United States)

    Ahmad-Sohdi, Nor-Ain-Shahajar; Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura; Hassan, Maizom

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.

  1. [Properties of modified amperometric biosensors based on methanol dehydrogenase and Methylobacterium nodulans cells].

    Science.gov (United States)

    Kuznetsova, T A; Beschastnyĭ, A P; Alferov, S V; Trotsenko, Iu A

    2013-01-01

    The properties of amperometric biosensors based on methanol dehydrogenase (MDH), Methylobacterium nodulans cells, and the ferrocene-modified carbon paste electrode were investigated. It was shown that the addition ofhydroxyapatite (HA) to a carbon paste increased the sensitivity and operating stability of MDH biosensors. The linear range of the electrode was 0.0135-0.5 and 0.032-1.5 mM for methanol and formaldehyde, respectively. The detection limit of methanol and formaldehyde was 4.5 and 11.0 microM, respectively. The loss of activity of the electrode within 10 days of storage in the presence of 2.0 mM KCN did not exceed 12%. Cyanide (10 mM) completely inhibited the sensor responses to formaldehyde (1.0 mM), which allowed for the selective determination of methanol in the presence of formaldehyde. The biosensor based on cells exhibited lower stability and sensitivity toward methanol and formaldehyde; the sensitivity coefficients were 980 and 21 nA/mM, respectively.

  2. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  3. Irradiation induced precipitation in tungsten based, W-Re alloys

    Science.gov (United States)

    Williams, R. K.; Wiffen, F. W.; Bentley, J.; Stiegler, J. O.

    1983-03-01

    Tungsten-base alloys containing 5, 11, and 25 pct Re were irradiated in the EBR-II reactor. Irradiation temperatures ranged from 600 to 1500 °C. All compositions were irradiated to fluences in the range 4.3 to 6.1 X 1025 n/m2 (E > 0.1 MeV), and three 25 pct Re samples were also irradiated to 3.7 X 1026 n/m2 at temperatures 700 to 900 °C. Postirradiation examination included measurement of electrical resistivity at room temperature and lower temperatures, X-ray diffraction, optical metallography, microprobe analysis, and transmission electron microscopy. Irradiation induced resistivity decreases observed in most of the samples suggested second-phase precipitation. Complete results confirmed the precipitate formation in all samples, in disagreement with existing phase diagrams for the W-Re system. Electron diffraction showed the precipitates to be consistent with the cubic, Re-rich X-phase and inconsistent with the σ-phase. Large variations in precipitate morphology and distribution were observed between the different compositions and irradiation conditions. For the 5 and 11 pct Re-alloys, spherically symmetric strain fields surrounded the equiaxed precipitate particles, and were observed even where no particles were visible. These strain fields are believed to arise from local Re enrichment. Thermoelectric data show that the precipitation can lead to decalibration of W/Re thermocouples.

  4. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    Science.gov (United States)

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. The Effect of Physical Resistance Training on Baroreflex Sensitivity of Hypertensive Rats.

    Science.gov (United States)

    Gomes, Moisés Felipe Pereira; Borges, Mariana Eiras; Rossi, Vitor de Almeida; Moura, Elizabeth de Orleans C de; Medeiros, Alessandra

    2017-01-01

    Baroreceptors act as regulators of blood pressure (BP); however, its sensitivity is impaired in hypertensive patients. Among the recommendations for BP reduction, exercise training has become an important adjuvant therapy in this population. However, there are many doubts about the effects of resistance exercise training in this population. To evaluate the effect of resistance exercise training on BP and baroreceptor sensitivity in spontaneously hypertensive rats (SHR). Rats SHR (n = 16) and Wistar (n = 16) at 8 weeks of age, at the beginning of the experiment, were randomly divided into 4 groups: sedentary control (CS, n = 8); trained control (CT, n = 8); sedentary SHR (HS, n = 8) and trained SHR (HT, n = 8). Resistance exercise training was performed in a stairmaster-type equipment (1.1 × 0.18 m, 2 cm between the steps, 80° incline) with weights attached to their tails, (5 days/week, 8 weeks). Baroreceptor reflex control of heart rate (HR) was tested by loading/unloading of baroreceptors with phenylephrine and sodium nitroprusside. Resistance exercise training increased the soleus muscle mass in SHR when compared to HS (HS 0.027 ± 0.002 g/mm and HT 0.056 ± 0.003 g/mm). Resistance exercise training did not alter BP. On the other hand, in relation to baroreflex sensitivity, bradycardic response was improved in the TH group when compared to HS (HS -1.3 ± 0.1 bpm/mmHg and HT -2.6 ± 0.2 bpm/mmHg) although tachycardia response was not altered by resistance exercise (CS -3.3 ± 0.2 bpm/mmHg, CT -3.3 ± 0.1 bpm/mmHg, HS -1.47 ± 0.06 bpm/mmHg and HT -1.6 ± 0.1 bpm/mmHg). Resistance exercise training was able to promote improvements on baroreflex sensitivity of SHR rats, through the improvement of bradycardic response, despite not having reduced BP. Os barorreceptores atuam como reguladores da pressão arterial (PA); no entanto, sua sensibilidade encontra-se prejudicada em pacientes hipertensos. Dentre as recomendações para a redução da PA, o treinamento f

  6. Atomistic mechanisms of ReRAM cell operation and reliability

    Science.gov (United States)

    Pandey, Sumeet C.

    2018-01-01

    We present results from first-principles-based modeling that captures functionally important physical phenomena critical to cell materials selection, operation, and reliability for resistance-switching memory technologies. An atomic-scale description of retention, the low- and high-resistance states (RS), and the sources of intrinsic cell-level variability in ReRAM is discussed. Through the results obtained from density functional theory, non-equilibrium Green’s function, molecular dynamics, and kinetic Monte Carlo simulations; the role of variable-charge vacancy defects and metal impurities in determining the RS, the LRS-stability, and electron-conduction in such RS is reported. Although, the statistical electrical characteristics of the oxygen-vacancy (Ox-ReRAM) and conductive-bridging RAM (M-ReRAM) are notably different, the underlying similar electrochemical phenomena describing retention and formation/dissolution of RS are being discussed.

  7. [Development of a microbiology data warehouse (Akita-ReNICS) for networking hospitals in a medical region].

    Science.gov (United States)

    Ueki, Shigeharu; Kayaba, Hiroyuki; Tomita, Noriko; Kobayashi, Noriko; Takahashi, Tomoe; Obara, Toshikage; Takeda, Masahide; Moritoki, Yuki; Itoga, Masamichi; Ito, Wataru; Ohsaga, Atsushi; Kondoh, Katsuyuki; Chihara, Junichi

    2011-04-01

    The active involvement of hospital laboratory in surveillance is crucial to the success of nosocomial infection control. The recent dramatic increase of antimicrobial-resistant organisms and their spread into the community suggest that the infection control strategy of independent medical institutions is insufficient. To share the clinical data and surveillance in our local medical region, we developed a microbiology data warehouse for networking hospital laboratories in Akita prefecture. This system, named Akita-ReNICS, is an easy-to-use information management system designed to compare, track, and report the occurrence of antimicrobial-resistant organisms. Participating laboratories routinely transfer their coded and formatted microbiology data to ReNICS server located at Akita University Hospital from their health care system's clinical computer applications over the internet. We established the system to automate the statistical processes, so that the participants can access the server to monitor graphical data in the manner they prefer, using their own computer's browser. Furthermore, our system also provides the documents server, microbiology and antimicrobiotic database, and space for long-term storage of microbiological samples. Akita-ReNICS could be a next generation network for quality improvement of infection control.

  8. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  9. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil

    2007-01-01

    previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD. PMID: 17883863 [PubMed - in process]......ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...

  10. Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Luzhna, Lidia [Department of Biological Sciences, University of Lethbridge, AB, Canada T1K 3M4 (Canada); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, AB, Canada T1K 3M4 (Canada)

    2010-02-05

    Chemoresistant tumors often fail to respond to other cytotoxic treatments such as radiation therapy. The mechanisms of chemo- and radiotherapy cross resistance are not fully understood and are believed to be epigenetic in nature. We hypothesize that MCF-7 cells and their doxorubicin-resistant variant MCF-7/DOX cells may exhibit different responses to ionizing radiation due to their dissimilar epigenetic status. Similar to previous studies, we found that MCF-7/DOX cells harbor much lower levels of global DNA methylation than MCF-7 cells. Furthermore, we found that MCF-7/DOX cells had lower background apoptosis levels and were less responsive to radiation than MCF-7 cells. Decreased radiation responsiveness correlated to significant global DNA hypomethylation in MCF-7/DOX cells. Here, for the first time, we show that the radiation resistance of MCF-7/DOX cells can be reversed by an epigenetic treatment - the application of methyl-donor SAM. SAM-mediated reversal of DNA methylation led to elevated radiation sensitivity in MCF-7/DOX cells. Contrarily, application of SAM on the radiation sensitive and higher methylated MCF-7 cells resulted in a decrease in their radiation responsiveness. This data suggests that a fine balance of DNA methylation is needed to insure proper radiation and drug responsiveness.

  11. Sensitivity study with respect to direction of ADI method during re-flooding in AHWR

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.; Mukhopadhyay, D. [Bhabha Atomic Research Centre, Mumbai (India). Reactor Safety Div.; Ghosh, A.K. [Bhabha Atomic Research Centre, Mumbai (India). Raja Ramanna Fellow; Kumar, R. [Indian Institute of Technology, Roorkee (India)

    2015-05-15

    The Advanced Heavy water Reactor (AHWR) is a natural circulation vertical pressure tube type boiling light water cooled and heavy water moderated reactor. As the AHWR fuel bundle quenching under accident condition is designed primarily with radial jets at several axial locations, bottom re-flooding still remain open as another option. Radial direction injection of emergency core cooling leads to rewetting of AHWR fuel cluster in circumferential direction. A 3D fuel pin model has been developed by using Finite Difference Method (FDM) of transient heat conduction equation. Alternating Direction Implicit technique of Finite Difference Method (FDM) has been used for discretisation of numerical equation in different time step at different direction. Sensitivity numerical study with respect to direction of ADI method has been carried out to optimize the time step during the transient as well as steady state and is found that it is insensitivity with direction of solution. Further, to assess influence of circumferential rewetting vis-a-vis axial rewetting. Both the analyses are carried out with same fluid temperature and heat transfer coefficients as boundary conditions. It has been found from the analyses that for radial jet, the circumferential conduction is significant and overall the fuel temperature falls in the quench plane with the initiation of quenching event. The paper discusses the sensitivity study with respect to direction of ADI solution and comparison of numerical results for circumferential and axial rewetting for single pin.

  12. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    Science.gov (United States)

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  14. A Simple and Sensitive Plant-Based Western Corn Rootworm Bioassay Method for Resistance Determination and Event Selection.

    Science.gov (United States)

    Wen, Zhimou; Chen, Jeng Shong

    2018-05-26

    We report here a simple and sensitive plant-based western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), bioassay method that allows for examination of multiple parameters for both plants and insects in a single experimental setup within a short duration. For plants, injury to roots can be visually examined, fresh root weight can be measured, and expression of trait protein in plant roots can be analyzed. For insects, in addition to survival, larval growth and development can be evaluated in several aspects including body weight gain, body length, and head capsule width. We demonstrated using the method that eCry3.1Ab-expressing 5307 corn was very effective against western corn rootworm by eliciting high mortality and significantly inhibiting larval growth and development. We also validated that the method allowed determination of resistance in an eCry3.1Ab-resistant western corn rootworm strain. While data presented in this paper demonstrate the usefulness of the method for selection of events of protein traits and for determination of resistance in laboratory populations, we envision that the method can be applied in much broader applications.

  15. Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents

    International Nuclear Information System (INIS)

    Díaz-Montero, C Marcela; McIntyre, Bradley W

    2005-01-01

    Chemotherapy-induced cell death can involve the induction of apoptosis. Thus, aberrant function of the pathways involved might result in chemoresistance. Since cell adhesion to the extracellular matrix acts as a survival factor that homeostatically maintains normal tissue architecture, it was tested whether acquisition of resistance to deadhesion-induced apoptosis (anoikis) in human osteosarcoma would result in resistance to chemotherapy. Osteosarcoma cell lines (SAOS-2 and TE-85) obtained from ATCC and were maintained in complete Eagle's MEM medium. Suspension culture was established by placing cells in tissue culture wells coated with poly-HEMA. Cell cytotoxicity was determined using a live/dead cytotoxicity assay. Cell cycle/apoptosis analyses were performed using propidium iodide (PI) staining with subsequent FACS analysis. Apoptosis was also assayed by Annexin-FITC/PI staining. Etoposide, adriamycin, vinblastine, cisplatin and paclitaxel were able to induce apoptosis in human osteosarcoma cells SAOS-2 regardless of their anoikis resistance phenotype or the culture conditions (adhered vs. suspended). Moreover, suspended anoikis resistant TE-85 cells (TE-85ar) retained their sensitivity to chemotherapy as well. Acquisition of anoikis resistance in human osteosarcoma cells does not result in a generalized resistance to all apoptotic stimuli, including chemotherapy. Moreover, our results suggest that the pathways regulating anoikis resistance and chemotherapy resistance might involve the action of different mediators

  16. Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents

    Directory of Open Access Journals (Sweden)

    McIntyre Bradley W

    2005-04-01

    Full Text Available Abstract Background Chemotherapy-induced cell death can involve the induction of apoptosis. Thus, aberrant function of the pathways involved might result in chemoresistance. Since cell adhesion to the extracellular matrix acts as a survival factor that homeostatically maintains normal tissue architecture, it was tested whether acquisition of resistance to deadhesion-induced apoptosis (anoikis in human osteosarcoma would result in resistance to chemotherapy. Methods Osteosarcoma cell lines (SAOS-2 and TE-85 obtained from ATCC and were maintained in complete Eagle's MEM medium. Suspension culture was established by placing cells in tissue culture wells coated with poly-HEMA. Cell cytotoxicity was determined using a live/dead cytotoxicity assay. Cell cycle/apoptosis analyses were performed using propidium iodide (PI staining with subsequent FACS analysis. Apoptosis was also assayed by Annexin-FITC/PI staining. Results Etoposide, adriamycin, vinblastine, cisplatin and paclitaxel were able to induce apoptosis in human osteosarcoma cells SAOS-2 regardless of their anoikis resistance phenotype or the culture conditions (adhered vs. suspended. Moreover, suspended anoikis resistant TE-85 cells (TE-85ar retained their sensitivity to chemotherapy as well. Conclusion Acquisition of anoikis resistance in human osteosarcoma cells does not result in a generalized resistance to all apoptotic stimuli, including chemotherapy. Moreover, our results suggest that the pathways regulating anoikis resistance and chemotherapy resistance might involve the action of different mediators.

  17. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.

    Science.gov (United States)

    Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu

    2017-04-01

    The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer. © 2017 International Federation for Cell Biology.

  18. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria.

    Science.gov (United States)

    Parkinson, Elizabeth I; Bair, Joseph S; Nakamura, Bradley A; Lee, Hyang Y; Kuttab, Hani I; Southgate, Emma H; Lezmi, Stéphane; Lau, Gee W; Hergenrother, Paul J

    2015-04-24

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections.

  19. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  20. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Svendsen, P F; Madsbad, S; Nilas, L

    2009-01-01

    OBJECTIVE: To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate...... assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. RESULTS: Polycystic ovary syndrome (P... distribution (PPolycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol...

  1. Reagentless D-sorbitol biosensor based on D-sorbitol dehydrogenase immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite.

    Science.gov (United States)

    Wang, Zhijie; Etienne, Mathieu; Urbanova, Veronika; Kohring, Gert-Wieland; Walcarius, Alain

    2013-04-01

    A reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD(+) cofactor with DSDH in a sol-gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of D-sorbitol at 0.2 V with a sensitivity of 8.7 μA mmol(-1) L cm(-2) and a detection limit of 0.11 mmol L(-1). Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.

  2. Origin of the OFF state variability in ReRAM cells

    International Nuclear Information System (INIS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Prodromakis, Themistoklis; Berdan, Radu; Papavassiliou, Christos

    2014-01-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO 2 and In 2 O 3  : SnO 2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO 2 or ITO active cores over 5 × 5 µm 2 and 100 × 100 µm 2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO 2 -based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states. (paper)

  3. Tuberculosis, a re-emergent disease

    International Nuclear Information System (INIS)

    Valadas, Emilia; Antunes, Francisco

    2005-01-01

    Tuberculosis (TB) remains a major cause of morbidity and mortality worldwide. In Western Europe, regions with a high incidence of TB usually also have a high incidence of HIV infection; TB and HIV co-infection have increased over the past decade and among HIV infected patients, nearly half also develop TB. In settings where HIV is prevalent, TB drug resistance has also increased and several reports of TB and multi-drug resistant TB outbreaks, especially in health care settings, raise serious concerns about nosocomial transmission. Further research and new developments into more rapid diagnostic methods and sensitivity testing as well as the development of new anti-TB drugs are important to fight the disease. In addition, public health infrastructures have to be strengthened in order to increase adherence to TB treatment, where directly observed treatment strategy is the cornerstone for a successful outcome

  4. Re/position? "Tres Marías y una Rosa" three decades to address the resistance

    Directory of Open Access Journals (Sweden)

    Yael Zaliasnik

    2010-11-01

    Full Text Available The present work explores the conditions and repercussions of staging anew an emblematic play of the dictatorship era in Chile: "Tres Marías y una Rosa," three decades after that period, and without significant modifications. In the words of Raymond Williams, what's the residual, the dominant, the emergent? What is won/lost in this re-staging? How is it perceived ("read"? Are there still residual social images from the dictatorship? What did the play represent 30 years ago, and has that changed today? Inevitably, these questions lead us to the issue of the Chilean textile craft of the "arpilleras" and the women artisans who made these ("arpilleristas", to our understanding, central to the play, but avoided and forgotten as a resistance movement, as it is not treated in depth in its current staging.

  5. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati...

  6. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  7. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  8. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster.

    Science.gov (United States)

    Gellatly, Kyle J; Yoon, Kyong Sup; Doherty, Jeffery J; Sun, Weilin; Pittendrigh, Barry R; Clark, J Marshall

    2015-06-01

    4,4'-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will increase in terms of level and extent. Drosophila melanogaster is a model dipteran that has many available genetic tools, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold), however, there is no mechanistic scheme that accounts for this level of resistance. Recently, reduced penetration, increased detoxification, and direct excretion have been identified as resistance mechanisms in the 91-R strain. Their interactions, however, remain unclear. Use of UAS-RNAi transgenic lines of D. melanogaster allowed for the targeted knockdown of genes putatively involved in DDT resistance and has validated the role of several cuticular proteins (Cyp4g1 and Lcp1), cytochrome P450 monooxygenases (Cyp6g1 and Cyp12d1), and ATP binding cassette transporters (Mdr50, Mdr65, and Mrp1) involved in DDT resistance. Further, increased sensitivity to DDT in the 91-R strain after intra-abdominal dsRNA injection for Mdr50, Mdr65, and Mrp1 was determined by a DDT contact bioassay, directly implicating these genes in DDT efflux and resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.

    Science.gov (United States)

    Archer, Stephen L; Wu, Xi-Chen; Thébaud, Bernard; Nsair, Ali; Bonnet, Sebastien; Tyrrell, Ben; McMurtry, M Sean; Hashimoto, Kyoko; Harry, Gwyneth; Michelakis, Evangelos D

    2004-08-06

    Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (E(M)), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I(K)) and a more hyperpolarized E(M) and were uniquely O2- and correolide-sensitive. The O2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I(K) 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I(K) (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2- and correolide-sensitive I(K) like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.

  10. High rate of virological re-suppression among patients failing ...

    African Journals Online (AJOL)

    Results. Of 69 patients enrolled in the programme, 40 had at least one follow-up VL and no known drug resistance at enrolment; 27 (68%) of these re-suppressed while remaining on second-line ART following enhanced adherence support. The majority (18/27; 67%) achieved re-suppression within the first 3 months in the ...

  11. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    Science.gov (United States)

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  12. Factors influencing the drug sensitization of human tumor cells for in situ lipofection.

    Science.gov (United States)

    Son, K; Huang, L

    1996-07-01

    The cisplatin induced enhancement of in situ lipofection was optimized by considering the factors that can increase the degree of sensitization. Two other anticancer drugs, mechlorethamine (nitrogen mustard) and taxol, enhanced CAT gene expression but the degree of sensitization was not as great as cisplatin. Besides human 2008 ovarian cancer cells we also found that human lung (A549) and head and neck cancer cells (SCC 25) were transiently sensitized by cisplatin. The transfectability of the two commercially available cationic liposomes, Lipofectin and LipofectAmine, was either weak or not consistent among tumors tested. In vivo transfection efficiency of 2008 cells was the highest at 1 microgram DNA per nmol or microgram liposome with all three cationic liposomes. In vitro transfection efficiency of 2008 cells at 1:1 (microgram of DNA:nmole of DC-chol/DOPE liposome) increased in a dose-dependent manner while at 1:10, an optimal ratio for in vitro lipofection, rapidly decreased with an increase in dose. This result indicated that there was a correlation between in vivo and in vitro lipofection at 1:1 ratio for delivering liposomal DNA. Most of the DNA injected into the tumor was concentrated in the tumor and in the skin above the tumor whether cisplatin was preinjected or liposomes were used as carriers.

  13. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    Science.gov (United States)

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  14. Sampling strategies in antimicrobial resistance monitoring: evaluating how precision and sensitivity vary with the number of animals sampled per farm.

    Directory of Open Access Journals (Sweden)

    Takehisa Yamamoto

    Full Text Available Because antimicrobial resistance in food-producing animals is a major public health concern, many countries have implemented antimicrobial monitoring systems at a national level. When designing a sampling scheme for antimicrobial resistance monitoring, it is necessary to consider both cost effectiveness and statistical plausibility. In this study, we examined how sampling scheme precision and sensitivity can vary with the number of animals sampled from each farm, while keeping the overall sample size constant to avoid additional sampling costs. Five sampling strategies were investigated. These employed 1, 2, 3, 4 or 6 animal samples per farm, with a total of 12 animals sampled in each strategy. A total of 1,500 Escherichia coli isolates from 300 fattening pigs on 30 farms were tested for resistance against 12 antimicrobials. The performance of each sampling strategy was evaluated by bootstrap resampling from the observational data. In the bootstrapping procedure, farms, animals, and isolates were selected randomly with replacement, and a total of 10,000 replications were conducted. For each antimicrobial, we observed that the standard deviation and 2.5-97.5 percentile interval of resistance prevalence were smallest in the sampling strategy that employed 1 animal per farm. The proportion of bootstrap samples that included at least 1 isolate with resistance was also evaluated as an indicator of the sensitivity of the sampling strategy to previously unidentified antimicrobial resistance. The proportion was greatest with 1 sample per farm and decreased with larger samples per farm. We concluded that when the total number of samples is pre-specified, the most precise and sensitive sampling strategy involves collecting 1 sample per farm.

  15. Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Maldegem, B.T.; Wanders, R.J.A.; Wijburg, F.A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation. SCADD is biochemically characterized by increased C4-carnitine in plasma and ethylmalonic acid in urine. The diagnosis of SCADD is confirmed by DNA analysis showing

  16. Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys

    International Nuclear Information System (INIS)

    Nishihara, Y.; Yamaguchi, Y.; Kohara, T.; Tokumoto, M.

    1985-01-01

    The magnetic and superconducting properties of bcc Cr-Re alloys with up to 40 at. % Re were studied via measurements of the magnetic susceptibility, electrical resistivity, and nuclear magnetic resonance of the Re nuclei. Antiferromagnetic order coexists with superconductivity above 18 at. % Re. The results were analyzed with the coexistence model of spin-density waves and superconductivity. In the Re-concentration range greater than 18 at. %, about 10% of the Fermi surface satisfies the nesting condition and the rest of it contributes to form the superconducting gap. This model also explains the increase in the superconducting transition temperature and the decrease in the magnetic susceptibility by annealing as a competing effect between spin-density waves and superconductivity

  17. Identification of Variable Traits among the Methicillin Resistant and Sensitive Coagulase Negative Staphylococci in Milk Samples from Mastitic Cows in India

    Directory of Open Access Journals (Sweden)

    Sudipta Mahato

    2017-07-01

    Full Text Available Methicillin resistant Staphylococcus aureus causing bovine mastitis has been very well investigated worldwide. However, there are only limited reports on the characterization of methicillin resistant and sensitive coagulase negative staphylococci (CoNS across the globe. Hence, in the present study, we aim to determine the phenotypic traits based on antimicrobial susceptibility profile and genotypic characterization by verifying the presence of resistance determinants, virulence and toxin genes present in the CoNS causing clinical mastitis. We obtained 62 CoNS isolates from 167 mastitic milk samples collected from three different states of India. The 62 isolates comprises of 10 different CoNS species S. sciuri, S. haemolyticus, S. chromogenes, S. saprophyticus, S. xylosus, S. simulans, S. agnetis, S. epidermidis, S. gallinarum, and S. cohinii. Susceptibility screening against 11 antibiotics determined 45.16% isolates as multidrug resistant (resistant to more than two class of antibiotic, 46.74% resistant (one or two antibiotic class and 8.06% isolates were pan-sensitive (sensitive to all drugs. High resistance was observed against oxacillin and cefoxitin, whereas all isolates were susceptible toward vancomycin and linezolid. Fifty three isolates were methicillin resistant and 9 isolates were sensitive as determined by oxacillin susceptibility assay. The methicillin resistance gene, mecA was found in 95.16% isolates and staphylococcal cassette chromosome mec (SCCmec typing predominantly revealed Type III (n = 34 and Type V (n = 18. Interestingly, 11.9% of mecA positive isolates were oxacillin susceptible and referred as oxacillin susceptible mecA positive staphylococci (OS-MRS. Additionally, genes encoding for enterotoxin, (sea, seb, seh, see toxic shock syndrome (tsst, exfoliatin (eta, etb, etd and virulence (pvl, Y-hlg were also screened. Of all the genes examined, 67.74% of isolate were positive for the Y-hlg gene, followed by the sea gene in

  18. Roles of the C-terminal domains of human dihydrodiol dehydrogenase isoforms in the binding of substrates and modulators: probing with chimaeric enzymes.

    Science.gov (United States)

    Matsuura, K; Hara, A; Deyashiki, Y; Iwasa, H; Kume, T; Ishikura, S; Shiraishi, H; Katagiri, Y

    1998-01-01

    Human liver dihydrodiol dehydrogenase (DD; EC 1.3.1.20) exists in isoforms (DD1, DD2 and DD4) composed of 323 amino acids. DD1 and DD2 share 98% amino acid sequence identity, but show lower identities (approx. 83%) with DD4, in which a marked difference is seen in the C-terminal ten amino acids. DD4 exhibits unique catalytic properties, such as the ability to oxidize both (R)- and (S)-alicyclic alcohols equally, high dehydrogenase activity for bile acids, potent inhibition by steroidal anti-inflammatory drugs and activation by sulphobromophthalein and clofibric acid derivatives. In this study, we have prepared chimaeric enzymes, in which we exchanged the C-terminal 39 residues between the two enzymes. Compared with DD1, CDD1-4 (DD1 with the C-terminal sequence of DD4) had increased kcat/Km values for 3alpha-hydroxy-5beta-androstanes and bile acids of 3-9-fold and decreased values for the other substrates by 5-100-fold. It also became highly sensitive to DD4 inhibitors such as phenolphthalein and hexoestrol. Another chimaeric enzyme, CDD4-1 (DD4 with the C-terminal sequence of DD1), showed the same (S)-stereospecificity for the alicyclic alcohols as DD1, had decreased kcat/Km values for bile acids with 7beta- or 12alpha-hydroxy groups by more than 120-fold and was resistant to inhibition by betamethasone. In addition, the activation effects of sulphobromophthalein and bezafibrate decreased or disappeared for CDD4-1. The recombinant DD4 with the His314-->Pro (the corresponding residue of DD1) mutation showed intermediate changes in the properties between those of wild-type DD4 and CDD4-1. The results indicate that the binding of substrates, inhibitors and activators to the enzymes is controlled by residues in their C-terminal domains; multiple residues co-ordinately act as determinants for substrate specificity and inhibitor sensitivity. PMID:9820821

  19. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae).

    Science.gov (United States)

    Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-10-01

    Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.

  20. Synthesis of a dansyl-labeled inhibitor of 17β-hydroxysteroid dehydrogenase type 3 for optical imaging.

    Science.gov (United States)

    Kenmogne, Lucie Carolle; Maltais, René; Poirier, Donald

    2016-05-01

    The steroidogenic enzyme 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is a therapeutic target in the management of androgen-sensitive diseases such as prostate cancer and benign prostate hyperplasia. In this Letter, we designed and synthesized the first fluorescent inhibitor of this enzyme by combining a fluorogenic dansyl moiety to the chemical structure of a known inhibitor of 17β-HSD3. The synthesized compound 3 is a potent fluorogenic compound (λex=348 nm and λ em=498 nm). It crosses the cell membrane, keeps its fluorescent properties and is distributed inside the LNCaP cells overexpressing 17β-HSD3, where it inhibits the transformation of 4-androstene-3,17-dione into the androgen testosterone (IC50=262 nM). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Solubility and superconductivity in RE(Ba2-xREx)Cu3O7+δ (RE = Nd, Sm, Eu, Gd, Dy)

    International Nuclear Information System (INIS)

    Zhang, K.; Dabrowski, B.; Segre, C.U.; Hinks, D.G.; Schuller, I.K.; Jorgensen, J.D.; Slaski, M.

    1987-10-01

    Solid solutions of RE(Ba 2-x RE x )Cu 3 O 7- δ (RE=Nd,Sm,Eu,Gd,Dy) for x=0 to x=0.5 have been investigated. X-ray and resistivity measurements show that there exists a solid solution region, through which, the structure changes from orthorhombic to tetragonal and the superconducting properties are depressed. The solubility limits depend strongly on the size of the rare-earth ion, with the smallest (Dy) showing no appreciable solubility. The superconducting transition temperature versus x for all of the rare-earth ion substitutions falls on a universal curve, indicating that the Ba sites are extremely ionic and magnetically isolated. 20 refs., 4 figs

  2. Antibiotic sensitivity and resistance in children with urinary tract infection in Sanliurfa.

    Science.gov (United States)

    Abuhandan, Mahmut; Güzel, Bülent; Oymak, Yeşim; Çiftçi, Halil

    2013-06-01

    This study aimed to evaluate antibiotic resistance in the province of Şanliurfa and to observe any difference between antibiotic resistance rates. The study comprised 107 children who presented at the pediatric polyclinic with complaints of urinary tract infection with the diagnosis of urinary tract infection and whose urine cultures exhibited bacterial growth. The patients were analyzed with respect to the frequency of proliferating pathogens, sensitivity to the antibiotics used and the rates of developed resistance to the antibiotics. A total of 107 patients aged between 1 year and 15 years were included in the study, encompassing 14 (13.1%) males and 93 (86.9%) females. According to the urine culture results, proliferation of Escherichia coli (E. coli) was observed in 69 (64.5%), Klebsiella spp. in 13 (12.1%), Proteus mirabilis in 9 (8.4%), Staphylococcus aureus in 5 (4.7%), Pseudomonas aeruginosa in 5 (4.7%), Acinetobacter spp. in 3 (2.8%) and Enterococcus spp. in 3 (2.8%) patients. For proliferating E. coli, high resistance rates to ceftriaxone (39.5%), nitrofurantoin (19.7%), ampicillin-sulbactam (64.1%), co-trimoxazole (41.5%), amoxicillinclavulanate (51.7%) and cefuroxime (38.1%) were observed. All of isolated microorganisms were resistant to ampicillin-sulbactam, amoxicillin-clavulanate, co-trimoxazole, ceftriaxone, cefuroxime and cefoxitin in decreasing frequencies. The most effective antimicrobial agents were determined to be imipenem, sulpera-zone, quinolone and aminoglycosides. In our region, parenteral antibiotics that should be selected for the empirical treatment of UTIs in all age groups are the aminoglycosides and 3(rd) generation cephalosporines. In contrast to other studies, these results suggest that co-trimoxazole should be used for children aged 0-1, and 2(nd) generation cephalosporins should be used for the oral treatment of children aged 1-5 due to the low rate of resistance to nitrofurantoin in patients aged over 5 years.

  3. Application of a radioimmunoassay to the induction of the 20β hydroxy steroid dehydrogenases with streptomyces hydrogenans

    International Nuclear Information System (INIS)

    Lotz, B.

    1978-01-01

    An antiserum has been prepared against crystallized 20β-hydroxysteroid dehydrogenate of streptomyces hydrogenous and used for different immunodiffusion and immunoprecipitation tests. A de novo synthesis of the 20β-hydroxysteroid dehydrogenase with streptomyces hydrogenous after cultivation of the cells in the presence of diene diol was hence found. The halflife of the 20β-hydroxysteroid dehydrogenase synthetizing mRNA in induced cells and that of the total mRNA in non-induced cells were calculated to be 126 sec and 66 sec respectively. The 20β-hydroxysteroid dehydrogenase in vivo appears to consist of four identical subunits. The monomers with a molecular weight of 27 350 exhibited a strong tendency to form diners and tetrameric complexes in the absence of dissociation agents. The synthesis rates of the 20β-hydroxysteroid dehydrogenase under induction conditions was 8.33%, the percentage of the total protein after induction 1.6%. (orig.) [de

  4. A game theoretic framework for analyzing re-identification risk.

    Directory of Open Access Journals (Sweden)

    Zhiyu Wan

    Full Text Available Given the potential wealth of insights in personal data the big databases can provide, many organizations aim to share data while protecting privacy by sharing de-identified data, but are concerned because various demonstrations show such data can be re-identified. Yet these investigations focus on how attacks can be perpetrated, not the likelihood they will be realized. This paper introduces a game theoretic framework that enables a publisher to balance re-identification risk with the value of sharing data, leveraging a natural assumption that a recipient only attempts re-identification if its potential gains outweigh the costs. We apply the framework to a real case study, where the value of the data to the publisher is the actual grant funding dollar amounts from a national sponsor and the re-identification gain of the recipient is the fine paid to a regulator for violation of federal privacy rules. There are three notable findings: 1 it is possible to achieve zero risk, in that the recipient never gains from re-identification, while sharing almost as much data as the optimal solution that allows for a small amount of risk; 2 the zero-risk solution enables sharing much more data than a commonly invoked de-identification policy of the U.S. Health Insurance Portability and Accountability Act (HIPAA; and 3 a sensitivity analysis demonstrates these findings are robust to order-of-magnitude changes in player losses and gains. In combination, these findings provide support that such a framework can enable pragmatic policy decisions about de-identified data sharing.

  5. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium

    Directory of Open Access Journals (Sweden)

    Wu L

    2015-11-01

    Full Text Available Lin Wu, Wei Yang, Su-ning Zhang, Ji-bin Lu Department of Thoracic Surgery, Sheng Jing Hospital of China Medical University, Shenyang, People’s Republic of China Objective: Alpinetin is a novel flavonoid that has demonstrated potent antitumor activity in previous studies. However, the efficacy and mechanism of alpinetin in treating lung cancer have not been determined. Methods: We evaluated the impact of different doses and durations of alpinetin treatment on the cell proliferation, the apoptosis of lung cancer cells, as well as the drug-resistant lung cancer cells. Results: This study showed that the alpinetin inhibited the cell proliferation, enhanced the apoptosis, and inhibited the PI3K/Akt signaling in lung cancer cells. Moreover, alpinetin significantly increased the sensitivity of drug-resistant lung cancer cells to the chemotherapeutic effect of cis-diammined dichloridoplatium. Taken together, this study demonstrated that alpinetin significantly suppressed the development of human lung cancer possibly by influencing mitochondria and the PI3K/Akt signaling pathway and sensitized drug-resistant lung cancer cells. Conclusion: Alpinetin may be used as a potential compound for combinatorial therapy or as a complement to other chemotherapeutic agents when multiple lines of treatments have failed to reduce lung cancer. Keywords: alpinetin, cell proliferation and apoptosis, drug resistance reversal, PI3K/Akt, lung cancer

  6. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  7. Effects of sh-reagents on rat hepatic aldehyde dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Konoplitskaya, K.L.; Kuz' mina, G.I.; Grigor' yeva, M.V.; Poznyakova, T.N.

    The liver serves as the primary organ for the oxidation of ingested ethanol via a pathway involving alcohol- and aldehyde dehydrogenase. In view of the problem of alcoholism, three enzymes are of particular interest in understanding the biochemical mechanism that may be involved in alcohol addiction and in the formulation of therapeutic approaches. While alcohol dehydrogenase has been studied in considerable detail, current attention is centered on aldehyde dehydrogenase. A comparative analysis of the effects of a series of SH-active reagents - tetraethylthiuram disulfide (TETD), 5,5-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (PCMB), and N-ethylmaleimide (NEM) - were tested for their effects on the activity of aldehyde dehydrogenase of the hepatic mitochondrial (isozymes I and II) and microsomal (isozyme II) fractions of outbred albino rats. DTNB was found to be inhibited by 100 and 50% mitochondrial isozymes I and II, respectively, and by 20%, the microsomal enzyme under the conditions employed. DTNB and NEM inhibited by 30 and 50% isozymes I and II of the mitochondria, but had no effect on the microsomal isozyme. 24 references, 3 figures.

  8. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    DEFF Research Database (Denmark)

    Møller, I.M.

    2002-01-01

    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...

  9. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity.

    Directory of Open Access Journals (Sweden)

    Joshua Wollam

    Full Text Available Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.

  10. Resistance to changing practice from pro re nata prescriptions to patient group directions in acute mental health settings.

    Science.gov (United States)

    Price, O; Baker, J A

    2013-09-01

    Poor practice associated with pro re nata (PRN) prescriptions in mental health is known to be common and can increase the risk of serious and potentially fatal side effects. A contributing factor to poor practice is the lack of a clear chain of accountability between the decision to prescribe and administer PRN prescriptions. To address this problem, a patient group direction (PGD) for acute behavioural disturbance (lorazepam 0.5-2 mg) and staff training materials were developed. The intention was to replace PRN prescriptions with the PGD in two mental health trusts. One of the potential benefits of this would be the removal of the contribution of PRN to high and combined dose antipsychotic prescriptions. This proposal, however, was met with significant resistance in both trusts and did not replace PRN as a result. A series of interviews and focus groups were conducted with 16 RMNs working in the two trusts, to explore the reasons why the PGD was met with resistance. Senior nurses perceived resistance to be associated with anxieties over increased responsibility for decision making. Junior nurses reported concerns regarding the medicalization of the nursing role, the paperwork associated with the PGD and the training approach used. Future efforts to implement PGDs in mental health settings must carefully consider the methods for engaging effectively with participating organizations, in terms of managing change and completing the necessary groundwork for successful implementation. © 2012 John Wiley & Sons Ltd.

  11. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  12. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  13. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    International Nuclear Information System (INIS)

    Small, Juan E.; Gonzalez, Guido E.; Nagao, Karina E.; Walton, David S.; Caruso, Paul A.

    2009-01-01

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  14. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion...... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....

  15. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  16. Synthesis and study of effects of new 4-chloro – amodiaquine analogues against two resistant and sensitive forms to chloroquine Plasmodium Falciparum, in vitro

    Directory of Open Access Journals (Sweden)

    afra Khosravi

    2009-03-01

    Full Text Available Background: Resistance to chloroquine (CQ in Plasmodium falciparum malaria has become a major health concern of the developing countries.This resistance has prompted a re-examination of the pharmacology of alternative antimalarials that may be effective against resistant strains. Amodiaquine (AQ is a 4-aminoquinoline antimalarial which is effective against many chloroquine-resistant strains of P. falciparum. However, clinical use of AQ has been severely restricted because of associations with hepatotoxicity and agranulocytosis. The aim of this study was to examine the effects of replacing the 4’OH function of amodiaquine with either chlorine or fluorine. Materials and Methods: A successful four-step synthesis of a new series of 4-chloro analogues has been designed and applied to the synthesis of an array of 10 analogues. Malaria parasites were maintained in continuous culture using the method of Jensen and Trager. Cultures were grown in flasks containing human erythrocytes (2-5% with parasitemia in the range of 1% to 10% suspended in RPMI 1640 medium supplemented with 25 mM HEPES and 32 mM NaHCO3, and 10% human serum (complete medium. Cultures were gassed with a mixture of 3% O2, 6% CO2 and 91% N2 and were kept in a 30 degree temperature. Results: It is apparent that several analogues had very potent antimalarial activity against both strains of the parasite. In particular 5b, 5c and 5i were not only active in the single nanomolar range, but they also displayed little cross-resistance. Against the sensitive HB3 strain, these analogues were superior to chloroquine and slightly more potent than amodiaquine. Activity was reduced when the side-chain was large (eg. dibutyl analogue and pyridine analogues, 5g and 5j respectively. Discussion: In a four - step Process, 10 different chloro - amodiaquine were synthesized which showed (in vitro Promising effects against chloroquine resistant strains of Plasmodium falciparum. It is clear that the 4

  17. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity.

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-11-02

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  18. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  19. Mutations Found in embCAB, embR, and ubiA Genes of Ethambutol-Sensitive and -Resistant Mycobacterium tuberculosis Clinical Isolates from China

    Directory of Open Access Journals (Sweden)

    Yuhui Xu

    2015-01-01

    Full Text Available To better understand the molecular mechanisms of Ethambutol (EMB resistance, the mutant hot spot region of five genes (embB, embA, embC, embR, and ubiA was amplified and sequenced in 109 EMB-resistant and 153 EMB-susceptible clinical isolates from China. Twenty-seven EMB-susceptible isolates were found to have nonsynonym mutations, 23 of which were in embB. The mutations occurred most frequently in embB (85.3%, 93 and were seldom in embC (2.8%, 3, embA (3.7%, 4, embR (3.7%, 4, and ubiA (8.3%, 9 in EMB-resistant isolates. For the embB gene, 63 isolates showed mutations at embB306, 20 at embB406, nine at embB497, and five at embB354 in EMB-resistant isolates. In addition, the particular mutants at embB406 and embB497 indicated both high levels of EMB resistance (MICs>5 μg/mL and broad anti-TB drug resistance spectrums. Our data supported the facts that embB306 could be used as a marker for EMB resistance with a sensitivity of 57.8% and a specificity of 78.8%.

  20. Characterization of the L-lactate dehydrogenase from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Stacie A Brown

    Full Text Available Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a K(m of approximately 150 microM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans.

  1. Deformation behavior of Re alloyed Mo thin films on flexible substrates: In situ fragmentation analysis supported by first-principles calculations.

    Science.gov (United States)

    Jörg, Tanja; Music, Denis; Hauser, Filipe; Cordill, Megan J; Franz, Robert; Köstenbauer, Harald; Winkler, Jörg; Schneider, Jochen M; Mitterer, Christian

    2017-08-07

    A major obstacle in the utilization of Mo thin films in flexible electronics is their brittle fracture behavior. Within this study, alloying with Re is explored as a potential strategy to improve the resistance to fracture. The sputter-deposited Mo 1-x Re x films (with 0 ≤ x ≤ 0.31) were characterized in terms of structural and mechanical properties, residual stresses as well as electrical resistivity. Their deformation behavior was assessed by straining 50 nm thin films on polyimide substrates in uniaxial tension, while monitoring crack initiation and propagation in situ by optical microscopy and electrical resistance measurements. A significant toughness enhancement occurs with increasing Re content for all body-centered cubic solid solution films (x ≤ 0.23). However, at higher Re concentrations (x > 0.23) the positive effect of Re is inhibited due to the formation of dual-phase films with the additional close packed A15 Mo 3 Re phase. The mechanisms responsible for the observed toughness behavior are discussed based on experimental observations and electronic structure calculations. Re gives rise to both increased plasticity and bond strengthening in these Mo-Re solid solutions.

  2. Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal

    Full Text Available BACKGROUND: BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. METHODS: We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. RESULTS: Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48, all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. CONCLUSION: Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid

  3. Kinetic and biophysical investigation of the inhibitory effect of caffeine on human salivary aldehyde dehydrogenase: Implications in oral health and chemotherapy

    Science.gov (United States)

    Laskar, Amaj Ahmed; Alam, Md Fazle; Ahmad, Mohammad; Younus, Hina

    2018-04-01

    Human salivary aldehyde dehydrogenase (hsALDH) is primarily a class 3 ALDH (ALDH3A1), and is an important antioxidant enzyme present in the saliva which maintains healthy oral cavity. It detoxifies toxic aldehydes into non-toxic carboxylic acids in the oral cavity. Reduced level of hsALDH activity is a risk factor for oral cancer development. It is involved in the resistance of certain chemotherapeutic drugs. Coffee has been reported to affect the activity of salivary ALDH. In this study, the effect of caffeine on the activity (dehydrogenase and esterase) of hsALDH was investigated. The binding of caffeine to hsALDH was studied using different biophysical methods and molecular docking analysis. Caffeine was found to inhibit both crude and purified hsALDH. The Km increased and the Vmax decreased showing a mixed type of inhibition. Caffeine decreased the nucleophilicity of the catalytic cysteine residue. It binds to the active site of ALDH3A1 by forming a complex through non-covalent interactions with some highly conserved amino acid residues. It partially alters the secondary structure of the enzyme. Therefore, it is very likely that caffeine binds and inhibits the activity of hsALDH by decreasing substrate binding affinity and the catalytic efficiency of the enzyme. The study indicates that oral intake of caffeine may have a harmful effect on the oral health and may increase the risk of carcinogenesis through the inhibition of this important enzyme. Further, the inactivation of oxazaphosphorine based chemotherapeutic drugs by ALDH3A1 may be prevented by using caffeine as an adjuvant during medication which is expected to increase the sensitivity of these drugs through its inhibitory effect on the enzyme.

  4. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    OpenAIRE

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisia...

  5. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Komura, I; Izaki, K

    1971-01-01

    Three strains of Escherichia coli possessing the multiple drug resistance were found to be resistant also to HgCl/sub 2/, though they were sensitive to other heavy metal ions such as nickel, cobalt, cadmium and zinc ions. Like the resistance to drugs such as chloramphenicol and tetracycline, the HgCl/sub 2/ resistance could be transferred from a resistant strain of E. coli to sensitive strains of E. coli and Aerobacter aerogenes. The resistant strains could grow in the presence of 0.02 mM HgCl/sub 2/, whereas a sensitive strain failed to grow in the presence of 0.01 mM HgCl/sub 2/. During cultivation in the presence of HgCl/sub 2/, the cells of resistant strain vaporized a form of radioactive mercury when incubated with /sup 203/HgCl/sub 2/, glucose and NaCl in phosphate buffer while the cells of sensitive strain showed no such activity. This phenomenon seemed to explain the HgCl/sub 2/ resistance of the resistant strains.

  6. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Directory of Open Access Journals (Sweden)

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  7. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    International Nuclear Information System (INIS)

    Yeom, Seung-Won; Kim, Tan-Young; Ha, Hyeon Jun; Ju, Byeong-Kwon; Shin, Sang-Chul; Shim, Jae Won; Lee, Yun-Hi

    2016-01-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al 2 O 3 -based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400–800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al 2 O 3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole–Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al 2 O 3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices. (letter)

  8. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    Science.gov (United States)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  9. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant.

    Directory of Open Access Journals (Sweden)

    Ahmad-Faris Seman-Kamarulzaman

    Full Text Available Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate

  10. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  11. In vitro synergistic efficacy of conjugated linoleic acid, oleic acid, safflower oil and taxol cytotoxicity on PC3 cells.

    Science.gov (United States)

    Kızılşahin, Sadi; Nalbantsoy, Ayşe; Yavaşoğlu, N Ülkü Karabay

    2015-01-01

    The aim of this study was to determine in vitro synergistic efficacy of conjugated linoleic acid (CLA), oleic acid (OLA), safflower oil and taxol (Tax) cytotoxicity on human prostate cancer (PC3) cell line. To determine synergistic efficacy of oil combinations, PC3 treated with different doses of compounds alone and combined with 10 μg/mL Tax. The MTT results indicated that OLA-Tax combinations exhibited cytotoxicity against PC3 at doses of 30 nM+10 μg-Tax, 15 nM+5 μg-Tax and 7.5 nM+2.5 μg-Tax. The treatment of OLA or Tax did not show significant inhibition on PC3, while OLA-Tax combinations showed effective cytotoxicity at treated doses. CLA-Tax combinations demonstrated the same effect on PC3 as combined form with 45.72% versus the alone form as 74.51% viability. Cytotoxic synergy between Tax, OLA and CLA shows enhanced cytotoxicity on PC3 which might be used in the therapy of prostate cancer.

  12. Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib.

    Science.gov (United States)

    Liu, Yutao; Li, Yan; Ou, Qiuxiang; Wu, Xue; Wang, Xiaonan; Shao, Yang W; Ying, Jianming

    2018-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are promising targeted therapies for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. However, acquired resistance inevitably develops. Comprehensive and dynamic companion genomic diagnosis can gain insights into underlying resistance mechanisms, thereby help oncologists and patients to make informed decision on the potential benefit of the treatment. A 67-year-old male who was initially diagnosed of EGFR L858R-mediated NSCLC received multiple lines of chemotherapy and EGFR TKI therapies after surgery. The EGFR mutational status of individual metastatic lesion was determined by genetic testing of the tumor tissue biopsies using next generation sequencing (NGS) throughout the patient's clinical course. An acquired potentially drug-resistant EGFR mutation was functionally validated in vitro and its sensitivity to different EGFR TKIs was assessed simultaneously. We have identified distinct resistance mechanisms to EGFR blockade in different metastatic lung lesions. Acquired EGFR T790M was first detected that leads to the resistance to the gefitinib treatment. Consequently, osimertinib was administrated and the response lasted until disease progressed. We identified a newly acquired EGFR L718V mutation in one lesion in conjunction with L858R, but not T790M, which showed stable disease on the following erlotinib treatment, while EGFR C797S together with L858R/T790M was detected in the other lesion that continuously progressed. In vitro functional studies demonstrated that EGFR-L858R/L718V confers resistance to osimertinib, but retains sensitivity to the second generation TKI afatinib. We reported that distinct resistance mechanisms could arise in different metastases within the same patient in response to EGFR blockade. We also demonstrated in vitro that EGFR L718V mutation mediates resistance to osimertinib, but retains sensitivity to afatinib. We evidenced that dynamic companion genomic

  13. A Compact Microwave Microfluidic Sensor Using a Re-Entrant Cavity.

    Science.gov (United States)

    Hamzah, Hayder; Abduljabar, Ali; Lees, Jonathan; Porch, Adrian

    2018-03-19

    A miniaturized 2.4 GHz re-entrant cavity has been designed, manufactured and tested as a sensor for microfluidic compositional analysis. It has been fully evaluated experimentally with water and common solvents, namely methanol, ethanol, and chloroform, with excellent agreement with the expected behaviour predicted by the Debye model. The sensor's performance has also been assessed for analysis of segmented flow using water and oil. The samples' interaction with the electric field in the gap region has been maximized by aligning the sample tube parallel to the electric field in this region, and the small width of the gap (typically 1 mm) result in a highly localised complex permittivity measurement. The re-entrant cavity has simple mechanical geometry, small size, high quality factor, and due to the high concentration of electric field in the gap region, a very small mode volume. These factors combine to result in a highly sensitive, compact sensor for both pure liquids and liquid mixtures in capillary or microfluidic environments.

  14. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  15. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    Science.gov (United States)

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Directory of Open Access Journals (Sweden)

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  17. Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

    Science.gov (United States)

    Kim, Seung-Tae; Cho, Won-Ju

    2018-01-01

    We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.

  18. Amplification and Re-Generation of LNA-Modified Libraries

    DEFF Research Database (Denmark)

    Doessing, Holger; Hansen, Lykke H.; Veedu, Rakesh N.

    2012-01-01

    Locked nucleic acids (LNA) confer high thermal stability and nuclease resistance to oligonucleotides. The discovery of polymerases that accept LNA triphosphates has led us to propose a scheme for the amplification and re-generation of LNA-containing oligonucleotide libraries. Such libraries could...

  19. Use of ionizing radiation in the development of vaccines against Fasciola gigantica and Schistosoma bovis in Sudanese cattle, sheep and goats

    International Nuclear Information System (INIS)

    Haroun, E.M.; Yagi, A.I.; Younis, S.A.; El Sanhouri, A.A.; Gadir, H.A.; Gameel, A.A.; Bushara, H.O.

    1988-01-01

    A primary infection with Fasciola gigantica, which had been eliminated by anthelmintic treatment after eight weeks, stimulated partial resistance to homologous challenge in calves and goats. Similar sensitization with F. gigantica or Schistosoma bovis also stimulated significant resistance to heterologous challenge in calves. The level of resistance was indicated by reduced fluke recoveries from sensitized animals compared with controls, by lower values of the enzymes sorbitol dehydrogenase and glutamate dehydrogenase, indicating less hepatic damage, and by lower blood indices, indicating more severe anaemia. Infection of calves with metacercariae of F. gigantica irradiated at 30 Gy or 200 Gy resulted in mean fluke recoveries of 75 and 41 respectively, whereas 332 flukes were recovered from controls infected with non-irradiated metacercariae. The flukes recovered from animals infected with irradiated metacercariae were stunted and resided in the small bile ductules. Sensitization for eight weeks with metacercariae of F. gigantica irradiated at 30 Gy resulted in significant resistance in calves, sheep and goats to homologous challenge. Significant resistance was also stimulated in calves by sensitization for eight weeks with metacercariae of F. gigantica irradiated at 200 Gy. However, sensitization for four weeks with F. gigantica irradiated at 30 Gy failed to stimulate significant resistance in calves to homologous challenge, but similar sensitization, twice at an interval of four weeks, resulted in an average reduction of 62% in fluke recovery from calves with homologous challenge. This reduction was, however, statistically insignificant. Moreover, sensitization for eight weeks with cercariae of Schistosoma bovis irradiated at 30 Gy did not stimulate heterologous resistance in calves or goats to F. gigantica. A similar result was also obtained after sensitization of calves for 36 weeks with cercariae of S. bovis irradiated at 30 Gy before challenge with F

  20. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    Full Text Available Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1/ PYRL (PYR-Like/ RCAR (Regulatory Component of ABA Receptor (PYR/PYL/RCAR ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa (PtPYRLs function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  1. A multiple antibiotic and serum resistant oligotrophic strain, Klebsiella pneumoniae MB45 having novel dfrA30, is sensitive to ZnO QDs

    Directory of Open Access Journals (Sweden)

    Chakrabarti Pinak

    2011-05-01

    Full Text Available Abstract Background The aim of this study was to describe a novel trimethoprim resistance gene cassette, designated dfrA30, within a class 1 integron in a facultatively oligotrophic, multiple antibiotic and human serum resistant test strain, MB45, in a population of oligotrophic bacteria isolated from the river Mahananda; and to test the efficiency of surface bound acetate on zinc oxide quantum dots (ZnO QDs as bactericidal agent on MB45. Methods Diluted Luria broth/Agar (10-3 media was used to cultivate the oligotrophic bacteria from water sample. Multiple antibiotic resistant bacteria were selected by employing replica plate method. A rapid assay was performed to determine the sensitivity/resistance of the test strain to human serum. Variable region of class 1 integron was cloned, sequenced and the expression of gene coding for antibiotic resistance was done in Escherichia coli JM 109. Identity of culture was determined by biochemical phenotyping and 16S rRNA gene sequence analyses. A phylogenetic tree was constructed based on representative trimethoprim resistance-mediating DfrA proteins retrieved from GenBank. Growth kinetic studies for the strain MB45 were performed in presence of varied concentrations of ZnO QDs. Results and conclusions The facultatively oligotrophic strain, MB45, resistant to human serum and ten antibiotics trimethoprim, cotrimoxazole, ampicillin, gentamycin, netilmicin, tobramycin, chloramphenicol, cefotaxime, kanamycin and streptomycin, has been identified as a new strain of Klebsiella pneumoniae. A novel dfr gene, designated as dfrA30, found integrated in class 1 integron was responsible for resistance to trimethoprim in Klebsiella pneumoniae strain MB45. The growth of wild strain MB45 was 100% arrested at 500 mg/L concentration of ZnO QDs. To our knowledge this is the first report on application of ZnO quantum dots to kill multiple antibiotics and serum resistant K. pneumoniae strain.

  2. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani.

    Science.gov (United States)

    Saini, Shalini; Bharati, Kavita; Shaha, Chandrima; Mukhopadhyay, Chinmay K

    2017-09-05

    Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.

  3. Clinical variability in 3-hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Ensenauer, Regina; Niederhoff, Helmut; Ruiter, Jos P. N.; Wanders, Ronald J. A.; Schwab, K. Otfried; Brandis, Matthias; Lehnert, Willy

    2002-01-01

    We report the identification of two new 7-year-old patients with 3-hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency, a recently described inborn error of isoleucine metabolism. The defect is localized one step above 3-ketothiolase, resulting in a urinary metabolite pattern similar to that seen

  4. Acupuncture treatment for insulin sensitivity of women with polycystic ovary syndrome and insulin resistance: a study protocol for a randomized controlled trial.

    Science.gov (United States)

    Li, Juan; Ng, Ernest Hung Yu; Stener-Victorin, Elisabet; Hu, Zhenxing; Shao, Xiaoguang; Wang, Haiyan; Li, Meifang; Lai, Maohua; Xie, Changcai; Su, Nianjun; Yu, Chuyi; Liu, Jia; Wu, Taixiang; Ma, Hongxia

    2017-03-09

    Our prospective pilot study of acupuncture affecting insulin sensitivity on polycystic ovary syndrome (PCOS) combined with insulin resistance (IR) showed that acupuncture had a significant effect on improving the insulin sensitivity of PCOS. But there is still no randomized controlled trial to determine the effect of acupuncture on the insulin sensitivity in women with PCOS and IR. In this article, we present the protocol of a randomized controlled trial to compare the effect of true acupuncture on the insulin sensitivity of these patients compared with metformin and sham acupuncture. Acupuncture may be an effective therapeutic alternative that is superior to metformin and sham acupuncture in improving the insulin sensitivity of PCOS combined with IR. This study is a multi-center, controlled, double-blind, and randomized clinical trial aiming to evaluate the effect of acupuncture on the insulin sensitivity in PCOS combined with IR. In total 342 patients diagnosed with PCOS and IR will be enrolled. Participants will be randomized to one of the three groups: (1) true acupuncture + metformin placebo; (2) sham acupuncture + metformin, and (3) sham acupuncture + metformin placebo. Participants and assessors will be blinded. The acupuncture intervention will be given 3 days per week for a total of 48 treatment sessions during 4 months. Metformin (0.5 g per pill) or placebo will be given, three times per day, and for 4 months. Primary outcome measures are changes in homeostasis model assessment of insulin resistance (HOMA-IR) and improvement rate of HOMA-IR by oral glucose tolerance test (OGTT) and insulin releasing test (Ins). Secondary outcome measures are homeostasis model assessment-β (HOMA-β), area under the curve for glucose and insulin, frequency of regular menstrual cycles and ovulation, body composition, metabolic profile, hormonal profile, questionnaires, side effect profile, and expectation and credibility of treatment. Outcome measures are

  5. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  6. Physiological role of glucose-6-phosphate dehydrogenase in cold acclimation of strawberry (Fragaria × ananassa)

    Science.gov (United States)

    Zhang, Yong; Yu, Dingqun; Luo, Ya; Wang, Xiaorong; Chen, Qing; Sun, Bo; Wang, Yan; Liu, Zejing; Tang, Haoru

    2018-04-01

    In recent years, there has been an increasing interest in study of new resistance mechanism in fruit trees. All these regard the climate change and subsequent fruit production. Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes the first and rate-limiting step of the oxidative pentose phosphate pathway (OPPP), and the expression of this enzyme is related to different biotic and abiotic stresses. Under accumulation of low temperature stress, the significant increase in G6PDH activity was found to be closely correlated to the levels of antioxidant enzymes, malondialdehyde (MDA) contents, sugar contents as well as changes of superoxide (O2•-). It is suggested that the enhancement of cold resistance of strawberry, which induced by cold acclimation, related to the significant increase in G6PDH activity. On one hand, G6PDH activates NADPH oxidase to generate reactive oxygen species (ROS); on the other hand, it may be involved in the activation of antioxidant enzymes, and accelerates many other important NADPH-dependent enzymatic reactions. Then further result in the elevation of membrane stability and cold resistance of strawberry. Interestingly, even though the plants were placed again under a temperature of 25°C for 1 d, the higher cold resistance, enzyme activities and soluble sugar content acquired.

  7. Comparative analysis of methicillin-sensitive and resistant Staphylococcus aureus exposed to emodin based on proteomic profiling.

    Science.gov (United States)

    Ji, Xiaoyu; Liu, Xiaoqiang; Peng, Yuanxia; Zhan, Ruoting; Xu, Hui; Ge, Xijin

    2017-12-09

    Emodin has a strong antibacterial activity, including methicillin-resistant Staphylococcus aureus (MRSA). However, the mechanism by which emodin induces growth inhibition against MRSA remains unclear. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) proteomics approach was used to investigate the modes of action of emodin on a MRSA isolate and methicillin-sensitive S. aureus ATCC29213(MSSA). Proteomic analysis showed that expression levels of 145 and 122 proteins were changed significantly in MRSA and MSSA, respectively, after emodin treatment. Comparative analysis of the functions of differentially expressed proteins between the two strains was performed via bioinformatics tools blast2go and STRING database. Proteins related to pyruvate pathway imbalance induction, protein synthesis inhibition, and DNA synthesis suppression were found in both methicillin-sensitive and resistant strains. Moreover, Interference proteins related to membrane damage mechanism were also observed in MRSA. Our findings indicate that emodin is a potential antibacterial agent targeting MRSA via multiple mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  9. Adaptive prostate IGRT combining online re-optimization and re-positioning: a feasibility study

    International Nuclear Information System (INIS)

    Li Taoran; Zhu Xiaofeng; Lee, W Robert; Vujaskovic, Zeljko; Yin Fangfang; Wu, Q Jackie; Thongphiew, Danthai

    2011-01-01

    In prostate radiation therapy, inter-fractional organ motion/deformation has posed significant challenges on reliable daily dose delivery. To correct for this issue, off-line re-optimization and online re-positioning have been used clinically. In this paper, we propose an adaptive images guided radiation therapy (AIGRT) scheme that combines these two correction methods in an anatomy-driven fashion. The AIGRT process first tries to find a best plan for the daily target from a plan pool, which consists of the original CT plan and all previous re-optimized plans. If successful, the selected plan is used for daily treatment with translational shifts. Otherwise, the AIGRT invokes the re-optimization process of the CT plan for the anatomy of the day, which is afterward added to the plan pool as a candidate for future fractions. The AIGRT scheme is evaluated by comparisons with daily re-optimization and online re-positioning techniques based on daily target coverage, organs at risk (OAR) sparing and implementation efficiency. Simulated treatment courses for 18 patients with re-optimization alone, re-positioning alone and AIGRT shows that AIGRT offers reliable daily target coverage that is highly comparable to daily re-optimization and significantly improves from re-positioning. AIGRT is also seen to provide improved OAR sparing compared to re-positioning. Apart from dosimetric benefits, AIGRT in addition offers an efficient scheme to integrate re-optimization to current re-positioning-based IGRT workflow.

  10. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells.

    Science.gov (United States)

    Armstrong, Cameron M; Liu, Chengfei; Lou, Wei; Lombard, Alan P; Evans, Christopher P; Gao, Allen C

    2017-06-01

    Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response

  11. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  12. Impact of treatment and re-treatment with artemether-lumefantrine and artesunate-amodiaquine on selection of Plasmodium falciparum multidrug resistance gene-1 polymorphisms in the Democratic Republic of Congo and Uganda

    DEFF Research Database (Denmark)

    Baraka, Vito; Mavoko, Hypolite Muhindo; Nabasumba, Carolyn

    2018-01-01

    fragment length polymorphism (RFLP) assays. RESULTS: The pre-treatment prevalence of Pfmdr1 N86 and D1246Y varied significantly between the sites, (p>0.001) and (p = 0.013), respectively. There was borderline significant directional selection for Pfmdr1 184F in recurrent malaria infections after treatment...... with AL in Uganda site (p = 0.05). Pfmdr1 NFD haplotype did not significantly change in post-treatment infections after re-treatment with either AL or ASAQ. Comparison between pre-treatment and post-treatment recurrences did not indicate directional selection of Pfmdr1 N86, D1246 alleles in the pre......BACKGROUND: The emergence of resistance against artemisinin combination treatment is a major concern for malaria control. ACTs are recommended as the rescue treatment, however, there is limited evidence as to whether treatment and re-treatment with ACTs select for drug-resistant P. falciparum...

  13. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Spaan, András N.; Ijlst, Lodewijk; van Roermund, Carlo W. T.; Wijburg, Frits A.; Wanders, Ronald J. A.; Waterham, Hans R.

    2005-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have

  14. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Directory of Open Access Journals (Sweden)

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.

  15. Deranged Dimensionality of Vestibular Re-Weighting in Multiple Chemical Sensitivity

    Directory of Open Access Journals (Sweden)

    Alessandro Micarelli

    2016-11-01

    Full Text Available Background: Multiple chemical sensitivity (MCS is a chronic multisystem condition characterized by low levels of multiple chemical susceptibility inducing a spectrum of central nervous system symptoms, including dizziness. Thus, considering (i the overlapping psychogenic and organic burdens shared in MCS development and in vestibular disorders; (ii the number of previous studies describing central processing impairment related to inner ear inflow in this syndrome; and (iii the lack of literature with respect to clinical evidence of the presentation of MCS dizziness, the purpose of the present study was to highlight the possible hidden aspects of vestibular impairment by applying the recent contribution of implemented otoneurological testing, inferential statistic and principal component (PC analysis in 18 MCS and 20 healthy subjects (HC; Methods: Both groups filled in a dizziness and environment exposure inventory and underwent the Rod and Disc and Rod and Frame Test, video Head Impulse Test (vHIT and Static Posturography Test (SPT with fast Fourier Transform (FFT. Between-group analysis of variance and PC analysis implemented on otoneurological variables were performed; Results: Defective vestibular processing was identified in 18 MCS patients (11 female and 7 male; mean age 49.5 ± 9.3 years by finding a significant increase in SPT and FFT parameters and in Visual Dependency (VD behaviour and a decrease in vHIT scores. Component correlation analysis in MCS showed a positive correlation of FFT parameters in PC1 and SPT parameters in PC2 with a negative correlation of vHIT and VD values in PC2. HC subjects demonstrated a positive correlation of VD and SPT parameters in PC1 and FFT parameters in PC2. Conclusion: Inferential and PC analysis provided the opportunity to disclose such possible hidden phenomena to (i support that MCS physiopathological cascades could lead to a vestibular decay; and (ii suggest rearrangement of the dimension of the

  16. Patterns of dioxin-altered mRNA expression in livers of dioxin-sensitive versus dioxin-resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Franc, Monique A. [University of Toronto, Department of Pharmacology and Toxicology, Medical Sciences Building, Toronto, ON (Canada); Johnson and Johnson Pharmaceutical Research and Development, Department of Pharmacogenomics, 1000 Route 202 South, P.O. Box 300, Raritan, NJ (United States); Moffat, Ivy D.; Boutros, Paul C.; Okey, Allan B. [University of Toronto, Department of Pharmacology and Toxicology, Medical Sciences Building, Toronto, ON (Canada); Tuomisto, Jouni T.; Tuomisto, Jouko [National Public Health Institute, Department of Environmental Health, Centre for Environmental Health Risk Analysis, Kuopio (Finland); Pohjanvirta, Raimo [University of Helsinki, Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Helsinki (Finland)

    2008-11-15

    Dioxins exert their major toxicologic effects by binding to the aryl hydrocarbon receptor (AHR) and altering gene transcription. Numerous dioxin-responsive genes previously were identified both by conventional biochemical and molecular techniques and by recent mRNA expression microarray studies. However, of the large set of dioxin-responsive genes the specific genes whose dysregulation leads to death remain unknown. To identify specific genes that may be involved in dioxin lethality we compared changes in liver mRNA levels following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in three strains/lines of dioxin-sensitive rats with changes in three dioxin-resistant rat strains/lines. The three dioxin-resistant strains/lines all harbor a large deletion in the transactivation domain of the aryl hydrocarbon receptor (AHR). Despite this deletion, many genes exhibited a ''Type-I'' response - that is, their responses were similar in dioxin-sensitive and dioxin-resistant rats. Several genes that previously were well established as being dioxin-responsive or under AHR regulation emerged as Type-I responses (e.g. CYP1A1, CYP1A2, CYP1B1 and Gsta3). In contrast, a relatively small number of genes exhibited a Type-II response - defined as a difference in responsiveness between dioxin-sensitive and dioxin-resistant rat strains. Type-II genes include: malic enzyme 1, ubiquitin C, cathepsin L, S-adenosylhomocysteine hydrolase and ferritin light chain 1. In silico searches revealed that AH response elements are conserved in the 5'-flanking regions of several genes that respond to TCDD in both the Type-I and Type-II categories. The vast majority of changes in mRNA levels in response to 100 {mu}g/kg TCDD were strain-specific; over 75% of the dioxin-responsive clones were affected in only one of the six strains/lines. Selected genes were assessed by quantitative RT-PCR in dose-response and time-course experiments and responses of some genes were

  17. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    International Nuclear Information System (INIS)

    Sun Yunguang; Zheng Siyuan; Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J.; Carbone, David P.; Zhao Zhongming; Lu Bo

    2012-01-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non–small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  18. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yunguang [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zheng Siyuan [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J. [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Carbone, David P. [Department of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zhao Zhongming, E-mail: zhongming.zhao@vanderbilt.edu [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Lu Bo, E-mail: bo.lu@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  19. Numerical simulation of temperature's sensitivity of chamfer hole's resistance on hydraulic step cylinder

    International Nuclear Information System (INIS)

    Jinhua, Wang; Hanliang, Bo; Wenxiang, Zheng; Jinnong, Yang

    2003-01-01

    The control rod drive is a very important device for controlling nuclear reactor startup, operation, shut down, and power change. The ability of the control rod drive to move safely and reliably directly relates to reactor safety. The Hydraulic Control Rod Drive System (HCRDS) is a new type of control rod drive system developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University for Nuclear Heating Reactors. The HCRDS, designed using the hydrodynamic principle, has many advantages, including having the structure complete in the vessel, no possible ejection accident, short drive line, simple movable parts structure and safe shutdown during accidents. The hydraulic step cylinder is the key part for the HCRDS. In the process of reactor startup, the variation of temperature could make the water's density and viscosity change, and the force from the water flow would change accordingly. These factors could influence the performance of the hydraulic step cylinder. In this paper, the temperature sensitivity of the chamfer hole's resistance in the hydraulic step cylinder was studied with the Computational Fluid Dynamics (CFD) program CFX5.5. The results were satisfactory: the discipline of variation of the chamfer hole's resistance with the outer tube's position was the same at different temperatures, the discrepancy of the chamfer hole's resistance was small for the same position at different temperatures, the chamfer hole's resistance decreased gradually with the increase of temperature, and the decrease extent was relatively small

  20. A novel surrogate index for hepatic insulin resistance.

    LENUS (Irish Health Repository)

    Vangipurapu, J

    2011-03-01

    In epidemiological and genetic studies surrogate indices are needed to investigate insulin resistance in different insulin-sensitive tissues. Our objective was to develop a surrogate index for hepatic insulin resistance.