WorldWideScience

Sample records for dehydrogenase g6pd deficiency

  1. Molecular characterization of a German variant of glucose-6-phosphate dehydrogenase deficiency (G6PD Aachen).

    Science.gov (United States)

    Efferth, T; Osieka, R; Beutler, E

    2000-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-chromosome-linked hereditary disorder. Clinically, patients with G6PD deficiency often present with drug- or food-induced hemolytic crises or neonatal jaundice. G6PD is involved in the generation of NADPH and reduced glutathione. In contrast to American, Mediterranean, and African ancestries, only few variants are known from Middle and Northern Europe. We describe the molecular characterization of a distinct variant from the northwestern area of Germany, G6PD Aachen. The sequence of the G6PD gene from three afflicted males was found to be hemizygous at cDNA residue 1089 for a C-->G mutation with a predicted amino acid change of Asn363Lys. The 1089 C-->G point mutation is unique, but produces the identical amino acid change found in a Mexican variant of G6PD deficiency, G6PD Loma Linda. This G6PD-deficient variant is caused by a 1089 C-->A mutation. The 363-amino-acid replacement is located outside a known mutation cluster region between amino acid residues 380 and 450, but may disrupt or weaken dimer interactions of G6PD enzyme subunits. Copyright 2000 Academic Press.

  2. Glucose-6-phosphate dehydrogenase (G6PD) deficiency among tribal populations of India - Country scenario

    OpenAIRE

    Mukherjee, Malay B.; Colah, Roshan B; Martin, Snehal; Ghosh, Kanjaksha

    2015-01-01

    It is believed that the tribal people, who constitute 8.6 per cent of the total population (2011 census of India), are the original inhabitants of India. Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is an X-linked genetic defect, affecting around 400 million people worldwide and is characterized by considerable biochemical and molecular heterogeneity. Deficiency of this enzyme is highly polymorphic in those areas where malaria is/has been endemic. G6PD deficiency was reported from Indi...

  3. Telomerase prevents accelerated senescence in glucose-6-phosphate dehydrogenase (G6PD-deficient human fibroblasts

    Directory of Open Access Journals (Sweden)

    Wu Yi-Hsuan

    2009-02-01

    Full Text Available Abstract Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD-deficient patients display retarded growth and accelerated cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively. Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction.

  4. Glucose-6-phosphate dehydrogenase (G6PD-deficient epithelial cells are less tolerant to infection by Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Hsieh

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key enzyme in the pentose phosphate pathway and provides reducing energy to all cells by maintaining redox balance. The most common clinical manifestations in patients with G6PD deficiency are neonatal jaundice and acute hemolytic anemia. The effects of microbial infection in patients with G6PD deficiency primarily relate to the hemolytic anemia caused by Plasmodium or viral infections and the subsequent medication that is required. We are interested in studying the impact of bacterial infection in G6PD-deficient cells. G6PD knock down A549 lung carcinoma cells, together with the common pathogen Staphylococcus aureus, were employed in our cell infection model. Here, we demonstrate that a lower cell viability was observed among G6PD-deficient cells when compared to scramble controls upon bacterial infection using the MTT assay. A significant increase in the intracellular ROS was detected among S. aureus-infected G6PD-deficient cells by observing dichlorofluorescein (DCF intensity within cells under a fluorescence microscope and quantifying this signal using flow cytometry. The impairment of ROS removal is predicted to enhance apoptotic activity in G6PD-deficient cells, and this enhanced apoptosis was observed by annexin V/PI staining under a confocal fluorescence microscope and quantified by flow cytometry. A higher expression level of the intrinsic apoptotic initiator caspase-9, as well as the downstream effector caspase-3, was detected by Western blotting analysis of G6PD-deficient cells following bacterial infection. In conclusion, we propose that bacterial infection, perhaps the secreted S. aureus α-hemolysin in this case, promotes the accumulation of intracellular ROS in G6PD-deficient cells. This would trigger a stronger apoptotic activity through the intrinsic pathway thereby reducing cell viability when compared to wild type cells.

  5. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Abdoul Karim Ouattara; Cyrille Bisseye; Birama Diarra; Tegwind Rebeca Compaore; Florencia Djigma; Virginio Pietra; Remy Moret; Jacques Simpore

    2014-01-01

    Objective: To investigate 4 combinations of mutations responsible for glucose-6-phosphate dehydrogenase (G6PD) deficiency in a rural community of Burkina Faso, a malaria endemic country. Methods: Two hundred individuals in a rural community were genotyped for the mutations A376G, G202A, A542T, G680T and T968C using TaqMan single nucleotide polymorphism assays and polymerase chain reaction followed by restriction fragment length polymorphism. Results: The prevalence of the G6PD deficiency was 9.5% in the study population. It was significantly higher in men compared to women (14.3%vs 6.0%, P=0.049). The 202A/376G G6PD A-was the only deficient variant detected. Plasmodium falciparum asymptomatic parasitaemia was significantly higher among the G6PD-non-deficient persons compared to the G6PD-deficient (P Conclusions:This study showed that the G6PD A-variant associated with protection against asymptomatic malaria in Burkina Faso is probably the most common deficient variant.

  6. Chronic nonspherocytic hemolytic anemia due to glucose-6-phosphate dehydrogenase deficiency: report of two families with novel mutations causing G6PD Bangkok and G6PD Bangkok Noi.

    Science.gov (United States)

    Tanphaichitr, Voravarn S; Hirono, Akira; Pung-amritt, Parichat; Treesucon, Ajjima; Wanachiwanawin, Wanchai

    2011-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common hereditary enzymopathies worldwide. Mostly G6PD deficient cases are asymptomatic though they may have the risk of neonatal jaundice (NNJ) and acute intravascular hemolysis during oxidative stress. Chronic nonspherocytic hemolytic anemia (CNSHA) due to G6PD deficiency is rare. In Thailand, one case was reported 40 years ago and by biochemical study this G6PD was reported to be a new variant G6PD Bangkok. We, herein, report two families with CNSHA due to G6PD deficiency. In the first family, we have been following up the clinical course of the patient with G6PD Bangkok. In addition to chronic hemolysis, he had three acute hemolytic episodes requiring blood transfusions during childhood period. Multiple gallstones were detected at the age of 27. His two daughters who inherited G6PD Bangkok from him and G6PD Vanua Lava from his wife are asymptomatic. Both of them had NNJ and persistent evidences of compensated hemolysis. Molecular analysis revealed a novel missense mutation 825 G→C predicting 275 Lys→Asn causing G6PD Bangkok. In the second family, two male siblings are affected. They had NNJ and several hemolytic episodes which required blood transfusions. On follow-up they have been diagnosed with chronic hemolysis as evidenced by reticulocytosis and indirect hyperbilirubinemia. Molecular analysis revealed combined missense mutations in exons 12 and 13. The first mutation was 1376 G→T predicting 459 Arg→Leu (known as G6PD Canton) and the second one was 1502 T→G predicting 501 Phe→Cys. We designated the resulting novel G6PD variant, G6PD Bangkok Noi.

  7. Functional and Biochemical Analysis of Glucose-6-Phosphate Dehydrogenase (G6PD Variants: Elucidating the Molecular Basis of G6PD Deficiency

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2017-05-01

    Full Text Available G6PD deficiency is the most common enzymopathy, leading to alterations in the first step of the pentose phosphate pathway, which interferes with the protection of the erythrocyte against oxidative stress and causes a wide range of clinical symptoms of which hemolysis is one of the most severe. The G6PD deficiency causes several abnormalities that range from asymptomatic individuals to more severe manifestations that can lead to death. Nowadays, only 9.2% of all recognized variants have been related to clinical manifestations. It is important to understand the molecular basis of G6PD deficiency to understand how gene mutations can impact structure, stability, and enzymatic function. In this work, we reviewed and compared the functional and structural data generated through the characterization of 20 G6PD variants using different approaches. These studies showed that severe clinical manifestations of G6PD deficiency were related to mutations that affected the catalytic and structural nicotinamide adenine dinucleotide phosphate (NADPH binding sites, and suggests that the misfolding or instability of the 3D structure of the protein could compromise the half-life of the protein in the erythrocyte and its activity.

  8. A trade off between catalytic activity and protein stability determines the clinical manifestations of glucose-6-phosphate dehydrogenase (G6PD) deficiency.

    Science.gov (United States)

    Boonyuen, Usa; Chamchoy, Kamonwan; Swangsri, Thitiluck; Junkree, Thanyaphorn; Day, Nicholas P J; White, Nicholas J; Imwong, Mallika

    2017-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common polymorphism and enzymopathy in humans, affecting approximately 400 million people worldwide. It is responsible for various clinical manifestations, including favism, hemolytic anemia, chronic non-spherocytic hemolytic anemia, spontaneous abortion, and neonatal hyperbilirubinemia. Understanding the molecular mechanisms underlying the severity of G6PD deficiency is of great importance but that of many G6PD variants are still unknown. In this study, we report the construction, expression, purification, and biochemical characterization in terms of kinetic properties and stability of five clinical G6PD variants-G6PD Bangkok, G6PD Bangkok noi, G6PD Songklanagarind, G6PD Canton+Bangkok noi, and G6PD Union+Viangchan. G6PD Bangkok and G6PD Canton+Bangkok noi showed a complete loss of catalytic activity and moderate reduction in thermal stability when compared with the native G6PD. G6PD Bangkok noi and G6PD Union+Viangchan showed a significant reduction in catalytic efficiency, whereas G6PD Songklanagarind showed a catalytic activity comparable to the wild-type enzyme. The Union+Viangchan mutation showed a remarkable effect on the global stability of the enzyme. In addition, our results indicate that the location of mutations in G6PD variants affects their catalytic activity, stability, and structure. Hence, our results provide a molecular explanation for clinical manifestations observed in individuals with G6PD deficiency. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Ouest and Sud-Est departments of Haiti.

    Science.gov (United States)

    von Fricken, Michael E; Weppelmann, Thomas A; Eaton, Will T; Alam, Meer T; Carter, Tamar E; Schick, Laura; Masse, Roseline; Romain, Jean R; Okech, Bernard A

    2014-07-01

    Malaria remains a significant public health issue in Haiti, with chloroquine (CQ) used almost exclusively for the treatment of uncomplicated infections. Recently, single dose primaquine (PQ) was added to the Haitian national malaria treatment policy, despite a lack of information on the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency within the population. G6PD deficient individuals who take PQ are at risk of developing drug induced hemolysis (DIH). In this first study to examine G6PD deficiency rates in Haiti, 22.8% (range 14.9%-24.7%) of participants were found to be G6PD deficient (class I, II, or III) with 2.0% (16/800) of participants having severe deficiency (class I and II). Differences in deficiency were observed by gender, with males having a much higher prevalence of severe deficiency (4.3% vs. 0.4%) compared to females. Male participants were 1.6 times more likely to be classified as deficient and 10.6 times more likely to be classified as severely deficient compared to females, as expected. Finally, 10.6% (85/800) of the participants were considered to be at risk for DIH. Males also had much higher rates than females (19.3% vs. 4.6%) with 4.9 times greater likelihood (p value 0.000) of having an activity level that could lead to DIH. These findings provide useful information to policymakers and clinicians who are responsible for the implementation of PQ to control and manage malaria in Haiti. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Survey of the Prevalence of Glucose-6-Phosphate Dehydrogenase (G6PD Deficiency in Admitted Men for Premarriage Tests in Zahedan-Iran Reference Laboratory

    Directory of Open Access Journals (Sweden)

    Nakhaee Ali Reza

    2009-09-01

    Full Text Available Background: GLucose-6-phosphate dehydrogenase (G6PD deficiency is the most common known enzymopathy in human. G6PD deficiency is usually asymptomatic, however, deficient individuals are at increased risk of developing acute hemolytic anemia and hyperbilirubinemia following intake of oxidative agents and fava. The objective of present study was to detect prevalence of G6PD deficiency in admitted males for premarriage tests in Zahedan Reference Laboratory. Also, we compared blood indices of normal and G6PD deficient individuals.Materials and Methods: This descriptive study was carried out on 1340 admitted males in Zahedan Reference Laboratory from February 2008 to March 2009. G6PD activity was determined in EDTA containing blood samples by qualitative fluorescence spot test, then G6PD deficiency was confirmed by quantitative spectrophotometric method. Total leukocyte count and RBC indices of G6PD deficient samples and the same number of normal samples were compared. The differences between two groups were compared using Sigmaplot software and t-Student test. A P-value less than 0.05 was considered statistically significant.Results: G6PD deficiency was found in 84 individuals of total 1340 by fluorescence spot test and confirmed in 79 by quantitative method. Therefore, prevalence of G6PD deficiency in Zahedan was estimated to be 5.9%. Comparison of deficient and normal individuals did not show significant difference in WBC count, RBC count, hemoglobin concentration, hematocrit, mean corpuscular hemoglobin (MCH and RDW-SD. However, mean corpuscular volume (MCV was significantly high and mean corpuscular hemoglobin concentration (MCHC and RDW-CV were significantly low in G6PD deficient individuals compared to those with normal enzyme level.Discussion: Present study revealed that the prevalence of G6PD deficiency in Zahedan is 5.9%. Severity of G6PD deficiency in quantitative assay indicated that class I and II are probably dominant variants in

  11. STUDY OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE (G6PD DEFICIENCY IN JAUNDICED NEONATES OF A TERTIARY CARE CENTRE OF NORTH-EAST INDIA

    Directory of Open Access Journals (Sweden)

    Aukifa Khamim

    2016-05-01

    Full Text Available roteins from oxidative damage. Glucose-6-Phosphate Dehydrogenase (G6PD deficiency is the commonest red cell enzyme abnormality associated with haemolysis leading to Neonatal Jaundice (NNJ. It is a genetically inherited X-linked abnormality. AIMS To find out incidence of G6PD deficiency amongst jaundiced patients and relation between G6PD deficiency and sex, peak level of Total Serum Bilirubin (TSB, significant hyperbilirubinemia, duration of phototherapy and need for exchange transfusion. SETTINGS AND DESIGN Hospital based retrospective study. METHODS AND MATERIALS This retrospective study was carried out among 1224 jaundiced neonates needing phototherapy admitted in the Neonatology Unit of Dept. of Paediatrics (March 2015 to October 2015, Assam Medical College and Hospital (AMCH, Dibrugarh, Assam. STATISTICAL ANALYSIS USED Data were entered in SPSS (Software package for statistical analysis, version 16 and analysed using Chi-Square test and Mann Whitney U test. RESULTS A total of 2574 neonates were admitted during the 8 months period, of which 1224 had NNJ (47.5%. Of these 77 (5.07% babies were G6PD deficient. Male (n=53 to female (n=24 ratio was 2:1. The commonest age at presentation was 2nd to 4th days in both G6PD deficient and G6PD normal neonates. Mean peak-TSB level in G6PD deficient cases (20.03±5.30 mg/dL was significantly higher than G6PD normal cases (16.67±3.93 mg/dL; 45% of G6PD deficient neonates developed significant hyperbilirubinemia (Indirect bilirubin more than 20 mg% and required Double Volume Exchange Transfusion (DVET. Mean duration of phototherapy in G6PD deficient NNJ babies is 2.5±1.2 days, which is significantly higher (p<0.05 when compared to G6PD normal NNJ babies where it is 2±1.1 days. In babies with significant hyperbilirubinemia, it is seen that there is signif icant difference (p<0.001 between G6PD deficient and G6PD normal babies. There was significant difference in requirement of DVET between G6PD deficient

  12. DNA damage and apoptosis in mononuclear cells from glucose-6-phosphate dehydrogenase-deficient patients (G6PD Aachen variant) after UV irradiation.

    Science.gov (United States)

    Efferth, T; Fabry, U; Osieka, R

    2001-03-01

    Patients affected with X chromosome-linked, hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency suffer from life-threatening hemolytic crises after intake of certain drugs or foods. G6PD deficiency is associated with low levels of reduced glutathione. We analyzed mononuclear white blood cells (MNC) of three males suffering from the German G6PD Aachen variant, four heterozygote females of this family, one G6PD-deficient male from another family coming from Iran, and six healthy male volunteers with respect to their DNA damage in two different genes (G6PD and T-cell receptor-delta) and their propensity to enter apoptosis after UV illumination (0.08-5.28 J/cm2). As determined by PCR stop assays, there was more UV-induced DNA damage in MNC of G6PD-deficient male patients than in those of healthy subjects. MNC of G6PD-deficient patients showed a higher rate of apoptosis after UV irradiation than MNC of healthy donors. MNC of heterozygote females showed intermediate rates of DNA damage and apoptosis. It is concluded that increased DNA damage may be a result of deficient detoxification of reactive oxygen species by glutathione and may ultimately account for the higher rate of apoptosis in G6PD-deficient MNC.

  13. First evaluation of glucose-6-phosphate dehydrogenase (G6PD deficiency in vivax malaria endemic regions in the Republic of Korea.

    Directory of Open Access Journals (Sweden)

    Youn-Kyoung Goo

    Full Text Available BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzyme defect and affects more than 400 million people worldwide. This deficiency is believed to protect against malaria because its global distribution is similar. However, this genetic disorder may be associated with potential hemolytic anemia after treatment with anti-malarials, primaquine or other 8-aminoquinolines. Although primaquine is used for malaria prevention, no study has previously investigated the prevalence of G6PD variants and G6PD deficiency in the Republic of Korea (ROK. METHODS: Two commercialized test kits (Trinity G-6-PDH and CareStart G6PD test were used for G6PD deficiency screening. The seven common G6PD variants were investigated by DiaPlexC kit in blood samples obtained living in vivax malaria endemic regions in the ROK. RESULTS: Of 1,044 blood samples tested using the CareStart G6PD test, none were positive for G6PD deficiency. However, a slightly elevated level of G6PD activity was observed in 14 of 1,031 samples tested with the Trinity G-6-PDH test. Forty-nine of the 298 samples with non-specific amplification by DiaPlexC kit were confirmed by sequencing to be negative for the G6PD variants. CONCLUSIONS: No G6PD deficiency was observed using phenotypic- or genetic-based tests in individuals residing in vivax malaria endemic regions in the ROK. Because massive chemoprophylaxis using primaquine has been performed in the ROK military to kill hypnozoites responsible for relapse and latent stage vivax malaria, further regular monitoring is essential for the safe administration of primaquine.

  14. Glucose-6-phosphate dehydrogenase(G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Abdoul; Karim; Ouattara; Cyrille; Bisseye; Bapio; Valery; Jean; Télesphore; Elvira; Bazie; Birama; Diarra; Tegwindé; Rebeca; Compaore; Florencia; Djigma; Virginio; Pietra; Remy; Moret; Jacques; Simpore

    2014-01-01

    Objective:To investigate 4 combinations of mutations responsible for glucose-6—phosphate dehydrogenase(G6PD) deficiency in a rural community of Burkina Faso,a malaria endemic country.Methods:Two hundred individuals in a rural community were genotyped for the mutations A376 G.G202A,A542 T,G680T and T968 C using TaqMan single nucleotide polymorphism assays and polymerase chain reaction followed by restriction fragment length polymorphism.Results:The prevalence of the G6 PD deficiency was 9.5%,in the study population.It was significantly higher in men compared to women(14.23%vs 6.0%,P=0.049).The 202A/376 G G6PD Awas the only deficient variant detected.Plasmodium falciparum asymptomatic parasitemia was significantly higher among the C6PD-non—deficient persons compared to the G6PD-deficient(P<0.001).The asymptomatic parasitemia was also significantly higher among G(SPI) nondeficient compared to C6PD—heterozygous females(P<0.001).Conclusions:This study showed that the G6 PD A- variant associated with protection against asymptomatic malaria in Burkina Faso is probably the most common deficient variant.

  15. The use of primaquine in malaria infected patients with red cell glucose-6-phosphate dehydrogenase (G6PD) deficiency in Myanmar.

    Science.gov (United States)

    Myat-Phone-Kyaw; Myint-Oo; Aung-Naing; Aye-Lwin-Htwe

    1994-12-01

    32 subjects with Plasmodium falciparum gametocytes, and 31 cases with Plasmodium vivax infection from two military hospitals (Lashio, Mandalay) were treated with quinine 600 mg three times a day for 7 days followed by primaquine 45 mg single dose for gametocytes and 45 mg weekly x 8 weeks for vivax malaria. Although screening of red cell glucose-6-phosphate dehydrogenase (G6PD) was done prior to primaquine treatment, G6PD deficient subjects were not excluded from the trial. 20 patients hemizygous for mild G6PD deficiency (GdB- variant), 2 patients hemizygous for severe deficiency (Gd-Myanmar variant) completed the trial. No case of acute hemolysis was observed in all 22 patients with two genotypes of red cell G6PD deficiency status. Therefore, a single dose of primaquine 45 mg and/or weekly for 8 weeks is adequate for the treatment of patients with P. falciparum gametocytes and/or P. vivax malaria ignoring these red cell G6PD enzyme deficient variants in Myanmar.

  16. Investigation of Cosenza Mutation in Patients with Deficiency of Glucose-6-Phosphate Dehydrogenase (G6PD in North West of Iran

    Directory of Open Access Journals (Sweden)

    Omolbanin Javadi

    2015-03-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a greatly polymorphic enzyme encoded by human X-linked gene. G6PD deficit is the most public enzymopathy in human with about 400 million people affected globally. It is the main controlling enzyme in the hexose monophosphate shunt catalase the oxidation of glucose-6-phosphate  to 6-phosphogluconolacton and the creation of reducing equals in the form of NADPH to meet the cellular redox formal and its absence origin hemolytic anemia - favism and newborn jaundice. Mutation in this enzyme cause three major types of unusual phenotype, including Mediterranean, Chatham and Cosenza. In this study, by Rapid Genomic DNA Extraction (RGDE method, from 90 blood samples of unrelated male and female patients with genetic deficiency of G6PD, DNA was removed and next digestion by Eco81I enzymes, in order to research for Cosenza mutation, they were analyzed by means of PCR-RFLP. Sequencing methods were used. Of 90 patients, one patient had a Cosenza mutation frequency of 1.01%. Eighty-nine patients (98.99% were not affected by the Cosenza-type mutation. Accordingly, Cosenza mutation is not regarded as the most common mutation in Iranian North-west population.   

  17. Investigation of Cosenza Mutation in Patients with Deficiency of Glucose-6-Phosphate Dehydrogenase (G6PD in North West of Iran

    Directory of Open Access Journals (Sweden)

    Omolbanin Javadi Javadi

    2015-02-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a greatly polymorphic enzyme encoded by human X-linked gene. G6PD deficit is the most public enzymopathy in human with about 400 million people affected globally. It is the main controlling enzyme in the hexose monophosphate shunt catalase the oxidation of glucose-6-phosphate  to 6-phosphogluconolacton and the creation of reducing equals in the form of NADPH to meet the cellular redox formal and its absence origin hemolytic anemia - favism and newborn jaundice. Mutation in this enzyme cause three major types of unusual phenotype, including Mediterranean, Chatham and Cosenza. In this study, by Rapid Genomic DNA Extraction (RGDE method, from 90 blood samples of unrelated male and female patients with genetic deficiency of G6PD, DNA was removed and next digestion by Eco81I enzymes, in order to research for Cosenza mutation, they were analyzed by means of PCR-RFLP. Sequencing methods were used. Of 90 patients, one patient had a Cosenza mutation frequency of 1.01%. Eighty-nine patients (98.99% were not affected by the Cosenza-type mutation. Accordingly, Cosenza mutation is not regarded as the most common mutation in Iranian North-west population.   

  18. Dissimilar Deficiency of Glucose-6-Phosphate Dehydrogenase (G-6-PD) among the AFARS and the Somalis of Djibouti

    Science.gov (United States)

    1991-01-01

    directly related to the type ot variant Plus de 200 variantes de la moliculc G-6-PD present. ont it dicrites i ce jour, (1) Medical Research Assistant...Research Associate, International Health Program, School of Medicine, University of Maryland. Baltimore. MEDECINE TROPICALE - Volume 51 - IN’ 2 - Avni - Juin...hemolytiques severes qui semblent relativementfriquentes i Djibouti chez les malades awc himaties parasities accis palustres (MIARY, Uniti de Soins Intensifs

  19. Side Effects of Transfusion of G6PD Deficient Blood in Neonates and Children

    Directory of Open Access Journals (Sweden)

    S.H. Nabavizadeh

    2007-01-01

    Full Text Available Introduction & Objective: Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common metabolic disease of red blood cells. It affects about 35 millions people in the entire world. Its incidence in IRAN is estimated to be 10-14.9%. Transfusion of G6PD deficient blood produces many untoward side effects in recipients. Despite the high incidence of the disease and such risks, blood donors are not screened routinely for this enzyme deficiency. This study performed on effects of G6PD deficient blood in patients admitted in Pediatric & Neonatal ward of Yasouj Emam Sajjad Hospital for detection of proposed side effects. Materials & Methods: Blood samples were obtained from 261 bags of blood during transfusion and the samples were checked for G6PD. Also patients receiving G6PD deficient blood were checked for hemoglobin, serum bilirubin and hemoglobinuria. Factors that tend to hemolysis in G6PD deficient patient were mentioned.Results: 37 (14.7% of samples were G6PD deficient. 81% of donors had at least a risk factor that tend to hemolysis in G6PD deficient state. Side effects of transfusion of G6PD deficient blood included: non significant elevation of hemoglobin (55.9%, hemoglobinuria (35.3% and increase in serum bilirubin (8.8%. Conclusion: It is recommended that in areas where G6PD deficiency is endemic, donors’ blood must be screened before transfusion.

  20. Molecular Heterogeneity of Glucose-6-Phosphate Dehydrogenase Deficiency in Burkina Faso: G-6-PD Betica Selma and Santamaria in People with Symptomatic Malaria in Ouagadougou

    Science.gov (United States)

    Ouattara, Abdoul Karim; Yameogo, Pouiré; Diarra, Birama; Obiri-Yeboah, Dorcas; Yonli, Albert; Compaore, Tegwindé Rebeca; Soubeiga, Serge Théophile; Djigma, Florencia Wenkuuni; Simpore, Jacques

    2016-01-01

    The G-6-PD deficiency has an important polymorphism with genotypic variants such as 202A/376G, 376G/542T and 376G/968T known in West African populations. It would confer protection against severe forms of malaria although there are differences between the various associations in different studies. In this study we genotyped six (06) variants of the G-6-PD gene in people with symptomatic malaria in urban areas in Burkina Faso. One hundred and eighty-two (182) patients who tested positive using rapid detection test and microscopy were included in this study. A regular PCR with the GENESPARK G6PD African kit was run followed by electrophoresis, allowing initially to genotype six SNPs (G202A, A376G, A542T, G680T, C563T and T968C). Women carrying the mutations 202A and/or 376G were further typed by real-time PCR using TaqMan probes rs1050828 and rs1050829. In the study population the G-6-PD deficiency prevalence was 9.9%. In addition of G-6-PD A- (202A/376G) variant, 376G/542T and 376G/968T variants were also detected. Hemoglobin electrophoresis revealed that 22.5% (41/182) of the individuals had HbAC compared with2.2% with HbAS and one individual had double heterozygous HbSC. There was no correlation between the G-6-PD deficiency or haemoglobinopathies and symptomatic malaria infections in this study. Our study confirms that the G-6-PD deficiency does not confer protection against Plasmodium falciparum infections. As opposed to previous genotyping studies carried out in Burkina Faso, this study shows for the first time the presence of the variant A- (376G/968C) and warrants further investigation at the national level and in specific ethnic groups. PMID:27413522

  1. The Prevalence of Mediterranean Mutation of Glucose-6-Phosphate Dehydrogenase (G6PD in Zahedan

    Directory of Open Access Journals (Sweden)

    Alireza Nakhaee

    2012-03-01

    Full Text Available Background: glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common genetic defects in the world, so that more than 400 million people in worldwide are affected with it, but its prevalence varies from 1-65% in different populations. Clinical manifestation of this defect is acute hemolytic anemia, neonatal hyperbilirubinemia and chronic nonspherocytic haemolytic anaemia. So far, almost 140 mutations have been identified in the gene of G6PD enzyme. Mediterranean is the most common mutation. The purpose of this study is to determine the prevalence of G6PD Mediterranean mutation in the deficient people in the city of Zahedan.Materials and Methods: In this descriptive cross-sectional study, blood samples of 1440 male individuals, who were referred to Zahedan Reference Laboratory for premarital testing, were examined for G6PD deficiency using fluorescent spot test. Genomic DNA from blood of people with G6PD deficiency was extracted by DNA extraction kit. Mediterranean mutation was identified using PCR-RFLP method.Results: 101 out of 1440 subjects had G6PD deficiency. Therefore prevalence of G6PD deficiency in Zahedan city was estimated about 7%. Mediterranean mutation frequency in patients with defect of G6PD was estimated 84.2% (85 out of 101 patients and 15.8% (16 out of 101 patients did not have mutation Mediterranean. The frequency of G6PD deficiency was expressed as a percentage of total cases and Mediterranean mutation prevalence was expressed as a percentage of total impaired individuals.Conclusion: The result of this study showed that the frequency of G6PD deficiency in Zahedan city is lower than other cities of sistan and baluchestan province. Dominant mutation in present study was Mediterranean type and its frequency was very similar with prevalence of this mutation in other parts of Iran.

  2. Prevalence and hematological indicators of G6PD deficiency in malaria-infected patients

    Institute of Scientific and Technical Information of China (English)

    Manas Kotepui; Kwuntida Uthaisar; Bhukdee PhunPhuech; Nuoil Phiwklam

    2016-01-01

    Background:This study aimed to evaluate the prevalence and alteration of hematological parameters in malaria patients with a glucose-6-phosphate dehydrogenase (G6PD) deficiency,in the western region of Thailand,an endemic region for malaria.Methods:Data about patients with malaria hospitalized between 2013 and 2015 were collected.Clinical and sociodemographic characteristics such as age and gender,diagnosis on admission,and parasitological results were mined from medical records of the laboratory unit of the Phop Phra Hospital in Tak Province,Thailand.Venous blood samples were collected at the time of admission to hospital to determine G6PD deficiency by fluorescence spot test and detect malaria parasites by thick and thin film examination.Other data such as complete blood count and parasite density were also collected and analyzed.Results:Among the 245 malaria cases,28 (11.4 %) were diagnosed as Plasmodium falciparum infections and 217 cases (88.6 %) were diagnosed as P.vivax infections.Seventeen (6.9 %) patients had a G6PD deficiency and 228 (93.1%) patients did not have a G6PD deficiency.Prevalence of male patients with G6PD deficiency was higher than that of female patients (P < 0.05,OR =5.167).Among the patients with a G6PD deficiency,two (11.8 %) were infected with P.falciparum,while the remaining were infected with P.vivax.Malaria patients with a G6PD deficiency have higher monocyte counts (0.6 × 103/μL) than those without a G6PD deficiency (0.33 × 103/μL) (P< 0.05,OR=5.167).Univariate and multivariate analyses also confirmed that malaria patients with a G6PD deficiency have high monocyte counts.The association between G6PD status and monocyte counts was independent of age,gender,nationality,Plasmodium species,and parasite density (P < 0.005).Conclusion:This study showed a prevalence of G6PD deficiency in a malaria-endemic area.This study also supported the assertion that patients with G6PD-deficient red blood cells had no protection

  3. On the relation between malaria and G-6-PD deficiency

    Science.gov (United States)

    Bottini, E.; Gloria-Bottini, F.; Maggioni, G.

    1978-01-01

    On the basis of the hypothesis that in the regions where favism is present a high correlation exists between endemic malaria and the frequency of G-6-PD deficiency, Huheey and Martin (1975) in a recent paper suggest that the haemolytic event in a malarial environment is a favourable selective factor. Therefore, the fitness of the G-6-PD-deficient individual who shows haemolysis is higher than that of those who do not show haemolysis. Modiano (1976) also suggested that haemolysis may not be a negative component of the selective forces which act on the G-6-PD-deficient variants. In this paper, some facts which make these hypotheses unlikely are considered. Other, more promising, lines for the analysis of the complex relation between malaria and G-6-PD deficiency are suggested. In Sardinia and in the area of the Po Delta, even though favism is present, there is a very low correlation between the frequency of G-6-PD deficiency and past malarial morbidity. Therefore, the situation is similar to that observed in other parts of the world, in which malaria is highly endemic, but where favism is absent. The following facts seem to be in contrast with the possibility that haemolysis could `by itself' be a favourable event: (1) In the hemizygous male, haemolysis due to favism is generally severe and there is a high mortality rate; (2) In the heterozygous female, the erythrocytes with G-6-PD deficiency seem to show a low parasite rate compared to normal cells, and it is just these erythrocytes that are destroyed during the haemolytic crisis; (3) In malarial environments, enzymopenic variants associated with continuous haemolysis have not been selected. A positive selection of such variants would be expected if haemolysis was `by itself' a positive factor. Several observations suggest that the G-6-PD system interacts with various factors, both genetical (thalassaemia, erythrocyte acid phosphatase, adenosine deaminase) and environmental (Vicia Faba, altitude, viral and protozoal

  4. A Patient with G6PD Deficiency and Falciparum Malaria

    Directory of Open Access Journals (Sweden)

    Y Fagani

    2007-04-01

    Full Text Available A 20 year old male patient from Afghanistan with a history of G6PD deficiency and clinical manifestations of malaria referred to Bou-Ali Hospital in Tehran, capital of Iran. Giemsa stained thick blood films revealed an infection of Plasmodium falciparum with 33700 parasite/μL of blood. The patient was successfully treated according to malaria treatment guideline.

  5. Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia

    OpenAIRE

    Mueller, Ivo; MalariaGEN Consortium

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effect has proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study ...

  6. A novel point mutation in a class IV glucose-6-phosphate dehydrogenase variant (G6PD São Paulo and polymorphic G6PD variants in São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Raimundo Antonio G. Oliveira

    2009-01-01

    Full Text Available In this study, we used red cell glucose-6-phosphate dehydrogenase (G6PD activity to screen for G6PD-deficient individuals in 373 unrelated asymptomatic adult men who were working with insecticides (organophosphorus and carbamate in dengue prevention programs in 27 cities in São Paulo State, Brazil. Twenty-one unrelated male children suspected of having erythroenzymopathy who were attended at hospitals in São Paulo city were also studied. Fifteen of the 373 adults and 12 of the 21 children were G6PD deficient. G6PD gene mutations were investigated in these G6PD-deficient individuals by using PCR-RFLP, PCR-SSCP analysis and DNA sequencing. Twelve G6PD A-202A/376G and two G6PD Seattle844C, as well as a new variant identified as G6PD São Paulo, were detected among adults, and 11 G6PD A-202A/376G and one G6PD Seattle844C were found among children. The novel mutation c.660C > G caused the replacement of isoleucine by methionine (I220M in a region near the dimer interface of the molecule. The conservative nature of this mutation (substitution of a nonpolar aliphatic amino acid for another one could explain why there was no corresponding change in the loss of G6PD activity (64.5% of normal activity in both cases.

  7. THE ASSOCIATION BETWEEN G6PD DEFICIENCY AND TOTAL SERUM BILIRUBIN LEVEL IN ICTERIC NEONATES

    Directory of Open Access Journals (Sweden)

    S. Behjati-Ardakani

    2007-07-01

    Full Text Available "nGlucose-6-phosphate dehydrogenase (G6PD deficiency is the most important disease of the hexose monophosphate pathway. Deficiency of this enzym can lead to hemolysis of red blood cells. Our aim was to study the prevalence of G6PD deficiency in relation to neonatal jaundice. We studied 456 clinically icteric neonates Laboratory investigations included determination of direct and indirect serum bilirubin concentrations, blood group typing, direct coomb's test, hemoglobin, blood smear, reticulocyte count and G6PD level. We divided these neonates to 3 groups based on total serum bilirubin level (TSB: TSB< 20 mg%, TSB=20-25 mg%, and TSB>25 mg%. In only 35 (7.6% of cases G6PD deficiency was diagnosed. All of these babies were male. From 456 icteric neonates, 213 cases belong to group 1 (TSB<20 mg%, 158 cases belong to group 2 (TSB=20-25 mg% and 85 cases belong to group 3 (TSB>25 mg%. 16 neonates from 213 neonates of group 1, 6 neonates from 158 neonates of group 2 and 13 neonates from 85 neonates of group 3 had G6PD deficiency. There was statistically significant difference of prevalence of G6PD deficiency between group 2 and 3 ( 15.3% vs 3.8%( P = 0.001. Between groups 1 vs 2 and 1 vs 3 no statistically significant difference was found. Early detection of this enzymopathy regardless of sex and close surveillance of the affected newborns may be important in reducing the risk of severe hyperbilirubinemia. This emphasizes the necessity of neonatal screening on cord blood samples for G6PD deficiency.

  8. G6pd Deficiency Does Not Affect the Cytosolic Glutathione or Thioredoxin Antioxidant Defense in Mouse Cochlea.

    Science.gov (United States)

    White, Karessa; Kim, Mi-Jung; Ding, Dalian; Han, Chul; Park, Hyo-Jin; Meneses, Zaimary; Tanokura, Masaru; Linser, Paul; Salvi, Richard; Someya, Shinichi

    2017-06-07

    Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP(+) to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. We investigated the roles of G6PD in the cytosolic antioxidant defense in the cochlea of G6pd hypomorphic mice that were backcrossed onto normal-hearing CBA/CaJ mice. Young G6pd-deficient mice displayed a significant decrease in cytosolic G6PD protein levels and activities in the inner ears. However, G6pd deficiency did not affect the cytosolic NADPH redox state, or glutathione or thioredoxin antioxidant defense in the inner ears. No histological abnormalities or oxidative damage was observed in the cochlea of G6pd hemizygous males or homozygous females. Furthermore, G6pd deficiency did not affect auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young males or females. In contrast, G6pd deficiency resulted in increased activities and protein levels of cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate and NADP(+) to NADPH, in the inner ear. In a mouse inner ear cell line, knockdown of Idh1, but not G6pd, decreased cell growth rates, cytosolic NADPH levels, and thioredoxin reductase activities. Therefore, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in mouse cochlea. Under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.SIGNIFICANCE STATEMENT Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP(+) to NADPH and

  9. G6PD deficiency: global distribution, genetic variants and primaquine therapy.

    Science.gov (United States)

    Howes, Rosalind E; Battle, Katherine E; Satyagraha, Ari W; Baird, J Kevin; Hay, Simon I

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a potentially pathogenic inherited enzyme abnormality and, similar to other human red blood cell polymorphisms, is particularly prevalent in historically malaria endemic countries. The spatial extent of Plasmodium vivax malaria overlaps widely with that of G6PD deficiency; unfortunately the only drug licensed for the radical cure and relapse prevention of P. vivax, primaquine, can trigger severe haemolytic anaemia in G6PD deficient individuals. This chapter reviews the past and current data on this unique pharmacogenetic association, which is becoming increasingly important as several nations now consider strategies to eliminate malaria transmission rather than control its clinical burden. G6PD deficiency is a highly variable disorder, in terms of spatial heterogeneity in prevalence and molecular variants, as well as its interactions with P. vivax and primaquine. Consideration of factors including aspects of basic physiology, diagnosis, and clinical triggers of primaquine-induced haemolysis is required to assess the risks and benefits of applying primaquine in various geographic and demographic settings. Given that haemolytically toxic antirelapse drugs will likely be the only therapeutic options for the coming decade, it is clear that we need to understand in depth G6PD deficiency and primaquine-induced haemolysis to determine safe and effective therapeutic strategies to overcome this hurdle and achieve malaria elimination.

  10. Glucose-6-phosphate dehydrogenase (G6PD mutations and haemoglobinuria syndrome in the Vietnamese population

    Directory of Open Access Journals (Sweden)

    Day Nick

    2009-07-01

    Full Text Available Abstract Background In Vietnam the blackwater fever syndrome (BWF has been associated with malaria infection, quinine ingestion and G6PD deficiency. The G6PD variants within the Vietnamese Kinh contributing to the disease risk in this population, and more generally to haemoglobinuria, are currently unknown. Method Eighty-two haemoglobinuria patients and 524 healthy controls were screened for G6PD deficiency using either the methylene blue reduction test, the G-6-PDH kit or the micro-methaemoglobin reduction test. The G6PD gene variants were screened using SSCP combined with DNA sequencing in 82 patients with haemoglobinuria, and in 59 healthy controls found to be G6PD deficient. Results This study confirmed that G6PD deficiency is strongly associated with haemoglobinuria (OR = 15, 95% CI [7.7 to 28.9], P G6PD variants were identified in the Vietnamese population, of which two are novel (Vietnam1 [Glu3Lys] and Vietnam2 [Phe66Cys]. G6PD Viangchan [Val291Met], common throughout south-east Asia, accounted for 77% of the variants detected and was significantly associated with haemoglobinuria within G6PD-deficient ethnic Kinh Vietnamese (OR = 5.8 95% CI [114-55.4], P = 0.022. Conclusion The primary frequency of several G6PD mutations, including novel mutations, in the Vietnamese Kinh population are reported and the contribution of G6PD mutations to the development of haemoglobinuria are investigated.

  11. Perioperative challenges in a patient of severe G6PD deficiency undergoing open heart surgery

    Directory of Open Access Journals (Sweden)

    Vivek Chowdhry

    2012-01-01

    Full Text Available We describe a successful perioperative management of a case of 38-year-old male, presented with chronic jaundice with severe mitral stenosis and moderate tricuspid regurgitation; upon evaluation, he was found to have severe glucose-6-phosphate dehydrogenase (G6PD deficiency. Usually, patients deficient in G6PD exhibit increased hemolysis andtherefore increased need for blood transfusion after cardiac surgery as well as impaired oxygenation in the postoperative period leading to prolonged ventilation. On reperfusion after a period of ischemia, the antioxidant system recruits all of its components in an attempt to neutralize the overwhelming oxidative stress of free radicals, as the free radical scavenging system is deficient in these patients, the chances of free-radical-induced injury is more. Our patient underwent mitral valve replacement and tricuspid annuloplasty under cardiopulmonary bypass with necessary precautions to reduce the formation of free radicals. Treatment was targeted toward theprevention of free radical injuryin the G6PD-deficient patient. He had an uneventful intraoperative and postoperative course.

  12. Assessment of Point-of-Care Diagnostics for G6PD Deficiency in Malaria Endemic Rural Eastern Indonesia.

    Directory of Open Access Journals (Sweden)

    Ari W Satyagraha

    2016-02-01

    Full Text Available Patients infected by Plasmodium vivax or Plasmodium ovale suffer repeated clinical attacks without primaquine therapy against latent stages in liver. Primaquine causes seriously threatening acute hemolytic anemia in patients having inherited glucose-6-phosphate dehydrogenase (G6PD deficiency. Access to safe primaquine therapy hinges upon the ability to confirm G6PD normal status. CareStart G6PD, a qualitative G6PD rapid diagnostic test (G6PD RDT intended for use at point-of-care in impoverished rural settings where most malaria patients live, was evaluated.This device and the standard qualitative fluorescent spot test (FST were each compared against the quantitative spectrophotometric assay for G6PD activity as the diagnostic gold standard. The assessment occurred at meso-endemic Panenggo Ede in western Sumba Island in eastern Indonesia, where 610 residents provided venous blood. The G6PD RDT and FST qualitative assessments were performed in the field, whereas the quantitative assay was performed in a research laboratory at Jakarta. The median G6PD activity ≥ 5 U/gHb was 9.7 U/gHb and was considered 100% of normal activity. The prevalence of G6PD deficiency by quantitative assessment (<5 U/gHb was 7.2%. Applying 30% of normal G6PD activity as the cut-off for qualitative testing, the sensitivity, specificity, positive predictive value, and negative predictive value for G6PD RDT versus FST among males were as follows: 100%, 98.7%, 89%, and 100% versus 91.7%, 92%, 55%, and 99%; P = 0.49, 0.001, 0.004, and 0.24, respectively. These values among females were: 83%, 92.7%, 17%, and 99.7% versus 100%, 92%, 18%, and 100%; P = 1.0, 0.89, 1.0 and 1.0, respectively.The overall performance of G6PD RDT, especially 100% negative predictive value, demonstrates suitable safety for G6PD screening prior to administering hemolytic drugs like primaquine and many others. Relatively poor diagnostic performance among females due to mosaic G6PD phenotype is an

  13. G6PD deficiency alleles in a malaria-endemic region in the Western Brazilian Amazon.

    Science.gov (United States)

    Dombrowski, Jamille G; Souza, Rodrigo M; Curry, Jonathan; Hinton, Laura; Silva, Natercia R M; Grignard, Lynn; Gonçalves, Ligia A; Gomes, Ana Rita; Epiphanio, Sabrina; Drakeley, Chris; Huggett, Jim; Clark, Taane G; Campino, Susana; Marinho, Claudio R F

    2017-06-15

    Plasmodium vivax parasites are the predominant cause of malaria infections in the Brazilian Amazon. Infected individuals are treated with primaquine, which can induce haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals and may lead to severe and fatal complications. This X-linked disorder is distributed globally and is caused by allelic variants with a geographical distribution that closely reflects populations exposed historically to endemic malaria. In Brazil, few studies have reported the frequency of G6PD deficiency (G6PDd) present in malaria-endemic areas. This is particularly important, as G6PDd screening is not currently performed before primaquine treatment. The aim of this study was to determine the prevalence of G6PDd in the region of Alto do Juruá, in the Western Brazilian Amazon, an area characterized by a high prevalence of P. vivax infection. Five-hundred and sixteen male volunteers were screened for G6PDd using the fluorescence spot test (Beutler test) and CareStart™ G6PD Biosensor system. Demographic and clinical-epidemiological data were acquired through an individual interview. To assess the genetic basis of G6PDd, 24 SNPs were genotyped using the Kompetitive Allele Specific PCR assay. Twenty-three (4.5%) individuals were G6PDd. No association was found between G6PDd and the number of malaria cases. An increased risk of reported haemolysis symptoms and blood transfusions was evident among the G6PDd individuals. Twenty-two individuals had the G6PDd A(-) variant and one the G6PD A(+) variant. The Mediterranean variant was not present. Apart from one polymorphism, almost all SNPs were monomorphic or with low frequencies (0-0.04%). No differences were detected among ethnic groups. The data indicates that ~1/23 males from the Alto do Juruá could be G6PD deficient and at risk of haemolytic anaemia if treated with primaquine. G6PD A(-) is the most frequent deficiency allele in this population. These results concur

  14. Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia

    Science.gov (United States)

    Clarke, Geraldine M; Rockett, Kirk; Kivinen, Katja; Hubbart, Christina; Jeffreys, Anna E; Rowlands, Kate; Jallow, Muminatou; Conway, David J; Bojang, Kalifa A; Pinder, Margaret; Usen, Stanley; Sisay-Joof, Fatoumatta; Sirugo, Giorgio; Toure, Ousmane; Thera, Mahamadou A; Konate, Salimata; Sissoko, Sibiry; Niangaly, Amadou; Poudiougou, Belco; Mangano, Valentina D; Bougouma, Edith C; Sirima, Sodiomon B; Modiano, David; Amenga-Etego, Lucas N; Ghansah, Anita; Koram, Kwadwo A; Wilson, Michael D; Enimil, Anthony; Evans, Jennifer; Amodu, Olukemi K; Olaniyan, Subulade; Apinjoh, Tobias; Mugri, Regina; Ndi, Andre; Ndila, Carolyne M; Uyoga, Sophie; Macharia, Alexander; Peshu, Norbert; Williams, Thomas N; Manjurano, Alphaxard; Sepúlveda, Nuno; Clark, Taane G; Riley, Eleanor; Drakeley, Chris; Reyburn, Hugh; Nyirongo, Vysaul; Kachala, David; Molyneux, Malcolm; Dunstan, Sarah J; Phu, Nguyen Hoan; Quyen, Nguyen Ngoc; Thai, Cao Quang; Hien, Tran Tinh; Manning, Laurens; Laman, Moses; Siba, Peter; Karunajeewa, Harin; Allen, Steve; Allen, Angela; Davis, Timothy ME; Michon, Pascal; Mueller, Ivo; Molloy, Síle F; Campino, Susana; Kerasidou, Angeliki; Cornelius, Victoria J; Hart, Lee; Shah, Shivang S; Band, Gavin; Spencer, Chris CA; Agbenyega, Tsiri; Achidi, Eric; Doumbo, Ogobara K; Farrar, Jeremy; Marsh, Kevin; Taylor, Terrie; Kwiatkowski, Dominic P

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effect has proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study of severe malaria, using the WHO classification of G6PD mutations to estimate each individual’s level of enzyme activity from their genotype. Aggregated across all genotypes, we find that increasing levels of G6PD deficiency are associated with decreasing risk of cerebral malaria, but with increased risk of severe malarial anaemia. Models of balancing selection based on these findings indicate that an evolutionary trade-off between different clinical outcomes of P. falciparum infection could have been a major cause of the high levels of G6PD polymorphism seen in human populations. DOI: http://dx.doi.org/10.7554/eLife.15085.001 PMID:28067620

  15. Present status of understanding on the G6PD deficiency and natural selection

    Directory of Open Access Journals (Sweden)

    Tripathy V

    2007-01-01

    Full Text Available G6PD deficiency is a common hemolytic genetic disorder, particularly in the areas endemic to malaria. Individuals are generally asymptomatic and hemolytic anemia occurs when some anti-malarial drugs or other oxidizing chemicals are administered. It has been proposed that G6PD deficiency provides protection against malaria. Maintaining of G6PD deficient alleles at polymorphic proportions is complicated because of the X-linked nature of G6PD deficiency. A comprehensive review of the literature on the hypothesis of malarial protection and the nature of the selection is being presented. Most of the epidemiological, in vitro and in vivo studies report selection for G6PD deficiency. Analysis of the G6PD gene also reveals that G6PD-deficient alleles show some signatures of selection. However, the question of how this polymorphism is being maintained remains unresolved because the selection/fitness coefficients for the different genotypes in the two sexes have not been established. Prevalence of G6PD deficiency in Indian caste and tribal populations and the different variants reported has also been reviewed.

  16. Nine Different Glucose-6-phosphate Dehydrogenase (G6PD Variants in a Malaysian Population with Malay, Chinese, Indian and Orang Asli (Aboriginal Malaysian Backgrounds

    Directory of Open Access Journals (Sweden)

    Isa,Zaleha Mohamed

    2008-10-01

    Full Text Available The Malaysian people consist of several ethnic groups including the Malay, the Chinese, the Indian and the Orang Asli (aboriginal Malaysians. We collected blood samples from outpatients of 2 hospitals in the State of Selangor and identified 27 glucose-6-phosphate dehydrogenase (G6PD-deficient subjects among these ethnic groups. In the Malay, G6PD Viangchan (871G>A, 1311C>T, IVS11 nt93T>C and G6PD Mahidol (487G>A types, which are common in Cambodia and Myanmar, respectively, were detected. The Malay also had both subtypes of G6PD Mediterranean:the Mediterranean subtype (563C>T, 1311C>T, IVS11 nt93T>C and the Indo-Pakistan subtype (563C>T, 1311C, IVS11 nt93T. In Malaysians of Chinese background, G6PD Kaiping (1388G>A, G6PD Canton (1376G>T and G6PD Gaohe (95A>G, which are common in China, were detected. Indian Malaysians possessed G6PD Mediterranean (Indo-Pakistan subtype and G6PD Namoru (208T>C, a few cases of which had been reported in Vanuatu and many in India. Our findings indicate that G6PD Namoru occurs in India and flows to Malaysia up to Vanuatu. We also discovered 5 G6PD-deficient cases with 2 nucleotide substitutions of 1311C>T and IVS11 nt93T>C, but without amino-acid substitution in the G6PD molecule. These results indicate that the Malaysian people have incorporated many ancestors in terms of G6PD variants.

  17. Post-operative audit of G6PD-Deficient male children with ...

    African Journals Online (AJOL)

    The fear of possible untoward effects is often expressed by parents of G6PD ... male children between ages 1 to 7years who had adenotonsillectomy over a ... Results: The patients comprised of 22 G6PD deficient male children diagnosed shortly after birth ... Hence, the benefit derived from the surgeries outweighs the risk of ...

  18. Prevalence of G6PD deficiency in selected populations from two previously high malaria endemic areas of Sri Lanka

    Science.gov (United States)

    Kapilananda, G. M. G.; Samarakoon, Dilhani; Maddevithana, Sashika; Wijesundera, Sulochana; Goonaratne, Lallindra V.; Karunaweera, Nadira D.

    2017-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme deficiency is known to offer protection against malaria and an increased selection of mutant genes in malaria endemic regions is expected. However, anti-malarial drugs such as primaquine can cause haemolytic anaemia in persons with G6PD deficiency. We studied the extent of G6PD deficiency in selected persons attending Teaching Hospitals of Anuradhapura and Kurunegala, two previously high malaria endemic districts in Sri Lanka. A total of 2059 filter-paper blood spots collected between November 2013 and June 2014 were analysed for phenotypic G6PD deficiency using the modified WST-8/1-methoxy PMS method. Each assay was conducted with a set of controls and the colour development assessed visually as well as with a microplate reader at OD450-630nm. Overall, 142/1018 (13.95%) and 83/1041 (7.97%) were G6PD deficient in Anuradhapura and Kurunegala districts respectively. The G6PD prevalence was significantly greater in Anuradhapura when compared to Kurunegala (P0.05). Severe deficiency (<10% normal) was seen among 28/1018 (2.75%) in Anuradhapura (7 males; 21 females) and 17/1041 (1.63%) in Kurunegala (7 males; 10 females). Enzyme activity between 10–30% was observed among 114/1018 (11.20%; 28 males; 86 females) in Anuradhapura while it was 66/1041 (6.34%; 18 males; 48 females) in Kurunegala. Screening and educational programmes for G6PD deficiency are warranted in these high risk areas irrespective of gender for the prevention of disease states related to this condition. PMID:28152025

  19. Modeling Plasmodium vivax: relapses, treatment, seasonality, and G6PD deficiency.

    Science.gov (United States)

    Chamchod, Farida; Beier, John C

    2013-01-07

    Plasmodium vivax (P. vivax) is one of the most important human malaria species that is geographically widely endemic and causes social and economic burden globally. However, its consequences have long been neglected and underestimated as it has been mistakenly considered a benign and inconsequential malaria species as compared to Plasmodium falciparum. One of the important differences between P. falciparum and P. vivax is the formation of P. vivax latent-stage parasites (hypnozoites) that can cause relapses after a course of treatment. In this work, mathematical modeling is employed to investigate how patterns of incubation periods and relapses of P. vivax, variation in treatment, and seasonal abundance of mosquitoes influence the number of humans infected with P. vivax and the mean age at infection of humans in tropical and temperate regions. The model predicts that: (i) the number of humans infected with P. vivax may increase when an incubation period of parasites in humans and a latent period of hypnozoites decrease; (ii) without primaquine, the only licensed drug to prevent relapses, P. vivax may be highly prevalent; (iii) the mean age at infection of humans may increase when a latent period of hypnozoites increases; (iv) the number of infectious humans may peak at a few months before the middle of each dry season and the number of hypnozoite carriers may peak at nearly the middle of each dry season. In addition, glucose-6-phosphate-dehydrogenase (G6PD) deficiency, which is the most common enzyme defect in humans that may provide some protection against P. vivax infection and severity, is taken into account to study its impact on the number of humans infected with P. vivax. Modeling results indicate that the increased number of infected humans may result from a combination of a larger proportion of humans with G6PD deficiency in the population, a lesser protection of G6PD deficiency to P. vivax infection, and a shorter latent period of hypnozoites.

  20. High risk of severe anaemia after chlorproguanil-dapsone+artesunate antimalarial treatment in patients with G6PD (A- deficiency.

    Directory of Open Access Journals (Sweden)

    Caterina I Fanello

    Full Text Available BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common inherited human enzyme defect. This deficiency provides some protection from clinical malaria, but it can also cause haemolysis after administration of drugs with oxidant properties. METHODS: The safety of chlorproguanil-dapsone+artesunate (CD+A and amodiaquine+sulphadoxine-pyrimethamine (AQ+SP for the treatment of uncomplicated P. falciparum malaria was evaluated according to G6PD deficiency in a secondary analysis of an open-label, randomized clinical trial. 702 children, treated with CD+A or AQ+SP and followed for 28 days after treatment were genotyped for G6PD A- deficiency. FINDINGS: In the first 4 days following CD+A treatment, mean haematocrit declined on average 1.94% (95% CI 1.54 to 2.33 and 1.05% per day (95% CI 0.95 to 1.15 respectively in patients with G6PD deficiency and normal patients; a mean reduction of 1.3% per day was observed among patients who received AQ+SP regardless of G6PD status (95% CI 1.25 to 1.45. Patients with G6PD deficiency recipients of CD+A had significantly lower haematocrit than the other groups until day 7 (p = 0.04. In total, 10 patients had severe post-treatment haemolysis requiring blood transfusion. Patients with G6PD deficiency showed a higher risk of severe anaemia following treatment with CD+A (RR = 10.2; 95% CI 1.8 to 59.3 or AQ+SP (RR = 5.6; 95% CI 1.0 to 32.7. CONCLUSIONS: CD+A showed a poor safety profile in individuals with G6PD deficiency most likely as a result of dapsone induced haemolysis. Screening for G6PD deficiency before drug administration of potentially pro-oxidants drugs, like dapsone-containing combinations, although seldom available, is necessary.

  1. Precautionary Measures for Successful Open Heart Surgery in G6PD Deficient Patient- A Case Report

    Science.gov (United States)

    2016-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is among the most common enzymatic disorders of red blood cells. Cardiac surgeries on this group of individuals are associated with an additional risk in terms of impaired oxygenation, prolonged ventilation and increased risk of haemolysis. These patients have a very low threshold for haemolysis due to oxidative stress. Many commonly used drugs also predispose the individual for haemolysis when they are subjected to surgery. Here we present a known case of G6PD deficient patient with symptoms of breathlessness for the last nine years who was taken for surgery with pre-planned precautionary measures to avoid unnecessary haemolysis. The echocardiography report revealed severe mixed mitral lesion and moderate tricuspid regurgitation. On general examination she had mild pallor and icterus. We planned for a thorough investigation to prepare her for mitral valve replacement and tricuspid annuloplasty. These groups of patients are at high risk of haemolysis during perioperative period and need prolonged mechanical ventilation and hospital stay due to impaired oxygen carrying capacity and oxidative stress due to deficient free radical scavenging system. The patient underwent mechanical mitral valve replacement and tricuspid annuloplasty under cardiopulmonary bypass with precautionary measures to prevent the risk of haemolysis and associated complications. She had an uneventful recovery. PMID:28208930

  2. Possible association of 3' UTR +357 A>G, IVS11-nt 93 T>C, c.1311 C>T polymorphism with G6PD deficiency.

    Science.gov (United States)

    Sirdah, Mahmoud M; Shubair, Mohammad E; Al-Kahlout, Mustafa S; Al-Tayeb, Jamal M; Prchal, Josef T; Reading, N Scott

    2017-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked inherited enzymopathic disorder affecting more than 500 million people worldwide. It has so far been linked to 217 distinct genetic variants in the exons and exon-intron boundaries of the G6PD gene, giving rise to a wide range of biochemical heterogeneity and clinical manifestations. Reports from different settings suggested the association of intronic and other mutations outside the reading frame of the G6PD gene with reduced enzyme activity and presenting clinical symptoms. The present study aimed to investigate any association of other variations apart of the exonic or exonic intronic boundaries in the development of G6PD deficiency. Sixty-seven unrelated Palestinian children admitted to the pediatric hospital with hemolytic crises due to G6PD deficiency were studied. In our Palestinian cohort of 67 [59 males (M) and 8 females (F)] G6PD-deficient children, previously hospitalized for acute hemolytic anemia due to favism, molecular sequencing of the G6PD gene revealed four cases (3M and 1F) that did not have any of the variants known to cause G6PD deficiency, but the 3' UTR c.*+357A>G (rs1050757) polymorphism in association with IVS 11 (c.1365-13T>C; rs2071429), and c.1311C>T (rs2230037). We now provide an additional evidence form Palestinian G6PD-deficient subjects for a possible role of 3' UTR c.*+357 A>G, c.1365-13T>C, and/or c.1311C>T polymorphism for G6PD deficiency, suggesting that not only a single variation in the exonic or exonic intronic boundaries, but also a haplotype of G6PD should considered as a cause for G6PD deficiency.

  3. Field trial evaluation of the performances of point-of-care tests for screening G6PD deficiency in Cambodia.

    Directory of Open Access Journals (Sweden)

    Arantxa Roca-Feltrer

    Full Text Available User-friendly, accurate, point-of-care rapid tests to detect glucose-6-phosphate dehydrogenase deficiency (G6PDd are urgently needed at peripheral level to safely recommend primaquine for malaria elimination.The CareStart G6PD RDT (AccessBio, New Jersey, USA, a novel rapid diagnostic test and the most commonly used test, the fluorescent spot test (FST were assessed against the quantitatively measured G6PD enzyme activity for detecting G6PDd. Subjects were healthy males and non-pregnant females aged 18 years or older residing in six villages in Pailin Province, western Cambodia.Of the 938 subjects recruited, 74 (7.9% were severe and moderately severe G6PD deficient (enzyme activity <30%, mostly in male population; population median G6PD activity was 12.0 UI/g Hb. The performances of the CareStart G6PD RDT and the FST, according to different cut-off values used to define G6PDd were very similar. For the detection of severe and moderately severe G6PDd (enzyme activity < 30%, < 3.6 UI/g Hb in males and females, sensitivity and negative (normal status predictive value were 100% for both point-of-care tools. When the G6PDd cut-off value increased (from < 40% to < 60%, the sensitivity for both PoCs decreased: 93.3% to 71.7% (CareStart G6PD RDT, p = 10(-6 and 95.5% to 73.2% (FST, p = 10(-6 while the specificity for both PoCs remained similar: 97.4% to 98.3% (CareStart G6PD RDT, p = 0.23 and 98.7% to 99.6% (FST, p = 0.06. The cut-off values for classifying individuals as normal were 4.0 UI/g Hb and 4.3 UI/g Hb for the CareStart G6PD RDT and the FST, respectively.The CareStart G6PD RDT reliably detected moderate and severe G6PD deficient individuals (enzyme activity <30%, suggesting that this novel point-of-care is a promising tool for tailoring appropriate primaquine treatment for malaria elimination by excluding individuals with severe G6PDd for primaquine treatment.

  4. G6PD deficiency at Sumba in Eastern Indonesia is prevalent, diverse and severe: implications for primaquine therapy against relapsing Vivax malaria.

    Directory of Open Access Journals (Sweden)

    Ari Winasti Satyagraha

    2015-03-01

    Full Text Available Safe treatment of Plasmodium vivax requires diagnosis of both the infection and status of erythrocytic glucose-6-phosphate dehydrogenase (G6PD activity because hypnozoitocidal therapy against relapse requires primaquine, which causes a mild to severe acute hemolytic anemia in G6PD deficient patients. Many national malaria control programs recommend primaquine therapy without G6PD screening but with monitoring due to a broad lack of G6PD deficiency screening capacity. The degree of risk in doing so hinges upon the level of residual G6PD activity among the variants present in any given area. We conducted studies on Sumba Island in eastern Indonesia in order to assess the potential threat posed by primaquine therapy without G6PD screening. We sampled 2,033 residents of three separate districts in western Sumba for quantitative G6PD activity and 104 (5.1% were phenotypically deficient (<4.6U/gHb; median normal 10U/gHb. The villages were in two distinct ecosystems, coastal and inland. A positive correlation occurred between the prevalence of malaria and G6PD deficiency: 5.9% coastal versus inland 0.2% for malaria (P<0.001, and 6.7% and 3.1% for G6PD deficiency (P<0.001 at coastal and inland sites, respectively. The dominant genotypes of G6PD deficiency were Vanua Lava, Viangchan, and Chatham, accounting for 98.5% of the 70 samples genotyped. Subjects expressing the dominant genotypes all had less than 10% of normal enzyme activities and were thus considered severe variants. Blind administration of anti-relapse primaquine therapy at Sumba would likely impose risk of serious harm.

  5. G6PD deficiency in Latin America: systematic review on prevalence and variants

    Science.gov (United States)

    Monteiro, Wuelton M; Val, Fernando FA; Siqueira, André M; Franca, Gabriel P; Sampaio, Vanderson S; Melo, Gisely C; Almeida, Anne CG; Brito, Marcelo AM; Peixoto, Henry M; Fuller, Douglas; Bassat, Quique; Romero, Gustavo AS; Maria Regina F, Oliveira; Marcus Vinícius G, Lacerda

    2014-01-01

    Plasmodium vivax radical cure requires the use of primaquine (PQ), a drug that induces haemolysis in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals, which further hampers malaria control efforts. The aim of this work was to study the G6PDd prevalence and variants in Latin America (LA) and the Caribbean region. A systematic search of the published literature was undertaken in August 2013. Bibliographies of manuscripts were also searched and additional references were identified. Low prevalence rates of G6PDd were documented in Argentina, Bolivia, Mexico, Peru and Uruguay, but studies from Curaçao, Ecuador, Jamaica, Saint Lucia, Suriname and Trinidad, as well as some surveys carried out in areas of Brazil, Colombia and Cuba, have shown a high prevalence (> 10%) of G6PDd. The G6PD A-202A mutation was the variant most broadly distributed across LA and was identified in 81.1% of the deficient individuals surveyed. G6PDd is a frequent phenomenon in LA, although certain Amerindian populations may not be affected, suggesting that PQ could be safely used in these specific populations. Population-wide use of PQ as part of malaria elimination strategies in LA cannot be supported unless a rapid, accurate and field-deployable G6PDd diagnostic test is made available. PMID:25141282

  6. G6PD deficiency in Latin America: systematic review on prevalence and variants

    Directory of Open Access Journals (Sweden)

    Wuelton M Monteiro

    2014-08-01

    Full Text Available Plasmodium vivax radical cure requires the use of primaquine (PQ, a drug that induces haemolysis in glucose-6-phosphate dehydrogenase deficient (G6PDd individuals, which further hampers malaria control efforts. The aim of this work was to study the G6PDd prevalence and variants in Latin America (LA and the Caribbean region. A systematic search of the published literature was undertaken in August 2013. Bibliographies of manuscripts were also searched and additional references were identified. Low prevalence rates of G6PDd were documented in Argentina, Bolivia, Mexico, Peru and Uruguay, but studies from Curaçao, Ecuador, Jamaica, Saint Lucia, Suriname and Trinidad, as well as some surveys carried out in areas of Brazil, Colombia and Cuba, have shown a high prevalence (> 10% of G6PDd. The G6PD A-202A mutation was the variant most broadly distributed across LA and was identified in 81.1% of the deficient individuals surveyed. G6PDd is a frequent phenomenon in LA, although certain Amerindian populations may not be affected, suggesting that PQ could be safely used in these specific populations. Population-wide use of PQ as part of malaria elimination strategies in LA cannot be supported unless a rapid, accurate and field-deployable G6PDd diagnostic test is made available.

  7. Evaluation of the diagnostic accuracy of CareStart G6PD deficiency Rapid Diagnostic Test (RDT in a malaria endemic area in Ghana, Africa.

    Directory of Open Access Journals (Sweden)

    Dennis Adu-Gyasi

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most widespread enzyme defect that can result in red cell breakdown under oxidative stress when exposed to certain medicines including antimalarials. We evaluated the diagnostic accuracy of CareStart G6PD deficiency Rapid Diagnostic Test (RDT as a point-of-care tool for screening G6PD deficiency.A cross-sectional study was conducted among 206 randomly selected and consented participants from a group with known G6PD deficiency status between February 2013 and June 2013. A maximum of 1.6ml of capillary blood samples were used for G6PD deficiency screening using CareStart G6PD RDT and Trinity qualitative with Trinity quantitative methods as the "gold standard". Samples were also screened for the presence of malaria parasites. Data entry and analysis were done using Microsoft Access 2010 and Stata Software version 12. Kintampo Health Research Centre Institutional Ethics Committee granted ethical approval.The sensitivity (SE and specificity (SP of CareStart G6PD deficiency RDT was 100% and 72.1% compared to Trinity quantitative method respectively and was 98.9% and 96.2% compared to Trinity qualitative method. Malaria infection status had no significant (P=0.199 change on the performance of the G6PD RDT test kit compared to the "gold standard".The outcome of this study suggests that the diagnostic performance of the CareStart G6PD deficiency RDT kit was high and it is acceptable at determining the G6PD deficiency status in a high malaria endemic area in Ghana. The RDT kit presents as an attractive tool for point-of-care G6PD deficiency for rapid testing in areas with high temperatures and less expertise. The CareStart G6PD deficiency RDT kit could be used to screen malaria patients before administration of the fixed dose primaquine with artemisinin-based combination therapy.

  8. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study

    Science.gov (United States)

    Ley, Benedikt; Alam, Mohammad Shafiul; Thriemer, Kamala; Hossain, Mohammad Sharif; Kibria, Mohammad Golam; Auburn, Sarah; Poirot, Eugenie; Price, Ric N.; Khan, Wasif Ali

    2016-01-01

    Background The Bangladeshi national treatment guidelines for uncomplicated malaria follow WHO recommendations but without G6PD testing prior to primaquine administration. A prospective observational study was conducted to assess the efficacy of the current antimalarial policy. Methods Patients with uncomplicated malaria, confirmed by microscopy, attending a health care facility in the Chittagong Hill Tracts, Bangladesh, were treated with artemether-lumefantrine (days 0–2) plus single dose primaquine (0.75mg/kg on day2) for P. falciparum infections, or with chloroquine (days 0–2) plus 14 days primaquine (3.5mg/kg total over 14 days) for P. vivax infections. Hb was measured on days 0, 2 and 9 in all patients and also on days 16 and 30 in patients with P. vivax infection. Participants were followed for 30 days. The study was registered with the clinical trials website (NCT02389374). Results Between September 2014 and February 2015 a total of 181 patients were enrolled (64% P. falciparum, 30% P. vivax and 6% mixed infections). Median parasite clearance times were 22.0 (Interquartile Range, IQR: 15.2–27.3) hours for P. falciparum, 20.0 (IQR: 9.5–22.7) hours for P. vivax and 16.6 (IQR: 10.0–46.0) hours for mixed infections. All participants were afebrile within 48 hours, two patients with P. falciparum infection remained parasitemic at 48 hours. No patient had recurrent parasitaemia within 30 days. Adjusted male median G6PD activity was 7.82U/gHb. One male participant (1/174) had severe G6PD deficiency (<10% activity), five participants (5/174) had mild G6PD deficiency (10–60% activity). The Hb nadir occurred on day 2 prior to primaquine treatment in P. falciparum and P. vivax infected patients; mean fractional fall in Hb was -8.8% (95%CI -6.7% to -11.0%) and -7.4% (95%CI: -4.5 to -10.4%) respectively. Conclusion The current antimalarial policy remains effective. The prevalence of G6PD deficiency was low. Main contribution to haemolysis in G6PD normal

  9. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study.

    Directory of Open Access Journals (Sweden)

    Benedikt Ley

    Full Text Available The Bangladeshi national treatment guidelines for uncomplicated malaria follow WHO recommendations but without G6PD testing prior to primaquine administration. A prospective observational study was conducted to assess the efficacy of the current antimalarial policy.Patients with uncomplicated malaria, confirmed by microscopy, attending a health care facility in the Chittagong Hill Tracts, Bangladesh, were treated with artemether-lumefantrine (days 0-2 plus single dose primaquine (0.75mg/kg on day2 for P. falciparum infections, or with chloroquine (days 0-2 plus 14 days primaquine (3.5mg/kg total over 14 days for P. vivax infections. Hb was measured on days 0, 2 and 9 in all patients and also on days 16 and 30 in patients with P. vivax infection. Participants were followed for 30 days. The study was registered with the clinical trials website (NCT02389374.Between September 2014 and February 2015 a total of 181 patients were enrolled (64% P. falciparum, 30% P. vivax and 6% mixed infections. Median parasite clearance times were 22.0 (Interquartile Range, IQR: 15.2-27.3 hours for P. falciparum, 20.0 (IQR: 9.5-22.7 hours for P. vivax and 16.6 (IQR: 10.0-46.0 hours for mixed infections. All participants were afebrile within 48 hours, two patients with P. falciparum infection remained parasitemic at 48 hours. No patient had recurrent parasitaemia within 30 days. Adjusted male median G6PD activity was 7.82U/gHb. One male participant (1/174 had severe G6PD deficiency (<10% activity, five participants (5/174 had mild G6PD deficiency (10-60% activity. The Hb nadir occurred on day 2 prior to primaquine treatment in P. falciparum and P. vivax infected patients; mean fractional fall in Hb was -8.8% (95%CI -6.7% to -11.0% and -7.4% (95%CI: -4.5 to -10.4% respectively.The current antimalarial policy remains effective. The prevalence of G6PD deficiency was low. Main contribution to haemolysis in G6PD normal individuals was attributable to acute malaria rather

  10. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Han and Li nationalities in Hainan, China and identification of a new mutation in human G6PD gene%海南汉族、黎族人葡萄糖-6-磷酸脱氢酶缺乏症 的基因突变型分析及一种新的G6PD 基因突变型的鉴定

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    目的阐明海南汉族、黎族人群中葡萄糖-6-磷酸脱氢酶缺乏症的分子基础。方法用聚合酶链反应、限制性内切酶消化筛查了1388G→A、1360C→T、1024C→T、592C→T、517T→C、493A→G、487G→A、392G→T和95A→G突变;用单链构象多态性分析筛查其它突变;用核苷酸顺序分析鉴定具有SSCP异常区带样品的突变。结果在59例汉族G6PD缺乏症患者中,发现1388G→A 14例(23.7%)、871G→A 3例(5.1%)、835A→T 1例(1.7%)、517T→C 1例(1.7%)、392G→T 3例(5.1%)和95A→G 4例(6.8%);在32例黎族G6PD缺乏症患者中,发现1388G→A 6例(18.8%)、871G→A 3例(9.4%)和95A→G2例(6.3%);在1例汉族患者中发现了一种新的G6PD基因突变——835A→G突变,此突变导致第279位的苏氨酸被丙氨酸取代,将此突变型命名为G6PD-海口,其酶活性约是正常的10%,比835A→T突变的活性低,后者的酶活性约是正常的40%。分析人G6PD的三维结构模型表明,第279位苏氨酸残基的羟基是维持G6PD亚基相互作用的基团。结论海南汉族、黎族人群中具有共同的常见G6PD基因突变型;与中国其它地区人群的G6PD基因突变谱比较,结果表明某些G6PD基因突变广泛分布于中国南方不同地区人群中;G6PD第279位苏氨酸残基的羟基可能是维持G6PD亚基相互作用及酶活性的必需基团。%Objective  To elucidate the molecular basis of G6PD deficiency in the Han and Li nationalities in Hainan, China. Methods  Polymerase chain reaction and restriction enzyme digestion were used to screen the mutations 1388G→A, 1360C→T, 1024C→T, 592C→T,517T→C, 493A→G,487G→A,392G→T and 95A→G. Single strand conformation polymorphism analysis was used to screen the other mutations followed by DNA sequencing to characterize the mutations of the samples with abnormal SSCP bands. Results  Of the fifty-nine Han cases with G6PD deficiency, fourteen with 1388G→A(23

  11. Performance of the CareStart™ G6PD Deficiency Screening Test, a Point-of-Care Diagnostic for Primaquine Therapy Screening

    Science.gov (United States)

    Kim, Saorin; Nguon, Chea; Guillard, Bertrand; Duong, Socheat; Chy, Sophy; Sum, Sarorn; Nhem, Sina; Bouchier, Christiane; Tichit, Magali; Christophel, Eva; Taylor, Walter R. J.; Baird, John Kevin; Menard, Didier

    2011-01-01

    Development of reliable, easy-to-use, rapid diagnostic tests (RDTs) to detect glucose-6-phosphate dehydrogenase (G6PD) deficiency at point of care is essential to deploying primaquine therapies as part of malaria elimination strategies. We assessed a kit under research and development called CareStart™ G6PD deficiency screening test (Access Bio, New Jersey, USA) by comparing its performance to quantitative G6PD enzyme activity using a standardized spectrophotometric method (‘gold standard’). Blood samples (n = 903) were collected from Cambodian adults living in Pailin province, western Cambodia. G6PD enzyme activities ranged from 0 to 20.5 U/g Hb (median 12.0 U/g Hg). Based on a normal haemoglobin concentration and wild-type G6PD gene, the normal values of G6PD enzymatic activity for this population was 3.6 to 20.5 U/g Hg (95th percentiles from 5.5 to 17.2 U/g Hg). Ninety-seven subjects (10.7%) had <3.6 U/g Hg and were classified as G6PD deficient. Prevalence of deficiency was 15.0% (64/425) among men and 6.9% (33/478) among women. Genotype was analyzed in 66 G6PD-deficient subjects and 63 of these exhibited findings consistent with Viangchang genotype. The sensitivity and specificity of the CareStart™ G6PD deficiency screening test was 0.68 and 1.0, respectively. Its detection threshold was <2.7 U/g Hg, well within the range of moderate and severe enzyme deficiencies. Thirteen subjects (1.4%, 12 males and 1 female) with G6PD enzyme activities <2 U/g Hg were falsely classified as “normal” by RDT. This experimental RDT test here evaluated outside of the laboratory for the first time shows real promise, but safe application of it will require lower rates of falsely “normal” results. PMID:22164279

  12. Is GERD a Factor in Osteonecrosis of the Jaw? Evidence of Pathology Linked to G6PD Deficiency and Sulfomucins

    Science.gov (United States)

    Swanson, Nancy L.; Li, Chen

    2016-01-01

    Osteonecrosis of the jaw (ONJ), a rare side effect of bisphosphonate therapy, is a debilitating disorder with a poorly understood etiology. FDA's Adverse Event Reporting System (FAERS) provides the opportunity to investigate this disease. Our goals were to analyze FAERS data to discover possible relationships between ONJ and specific conditions and drugs and then to consult the scientific literature to deduce biological explanations. Our methodology revealed a very strong association between gastroesophageal reflux and bisphosphonate-induced ONJ, suggesting acidosis as a key factor. Overgrowth of acidophilic species, particularly Streptococcus mutans, in the oral microbiome in the context of insufficient acid buffering due to impaired salivary glands maintains the low pH that sustains damage to the mucosa. Significant associations between ONJ and adrenal insufficiency, vitamin C deficiency, and Sjögren's syndrome were found. Glucose 6 phosphate dehydrogenase (G6PD) deficiency can explain much of the pathology. An inability to maintain vitamin C and other antioxidants in the reduced form leads to vascular oxidative damage and impaired adrenal function. Thus, pathogen-induced acidosis, hypoxia, and insufficient antioxidant defenses together induce ONJ. G6PD deficiency and adrenal insufficiency are underlying factors. Impaired supply of adrenal-derived sulfated sterols such as DHEA sulfate may drive the disease process.

  13. Is GERD a Factor in Osteonecrosis of the Jaw? Evidence of Pathology Linked to G6PD Deficiency and Sulfomucins

    Directory of Open Access Journals (Sweden)

    Stephanie Seneff

    2016-01-01

    Full Text Available Osteonecrosis of the jaw (ONJ, a rare side effect of bisphosphonate therapy, is a debilitating disorder with a poorly understood etiology. FDA’s Adverse Event Reporting System (FAERS provides the opportunity to investigate this disease. Our goals were to analyze FAERS data to discover possible relationships between ONJ and specific conditions and drugs and then to consult the scientific literature to deduce biological explanations. Our methodology revealed a very strong association between gastroesophageal reflux and bisphosphonate-induced ONJ, suggesting acidosis as a key factor. Overgrowth of acidophilic species, particularly Streptococcus mutans, in the oral microbiome in the context of insufficient acid buffering due to impaired salivary glands maintains the low pH that sustains damage to the mucosa. Significant associations between ONJ and adrenal insufficiency, vitamin C deficiency, and Sjögren’s syndrome were found. Glucose 6 phosphate dehydrogenase (G6PD deficiency can explain much of the pathology. An inability to maintain vitamin C and other antioxidants in the reduced form leads to vascular oxidative damage and impaired adrenal function. Thus, pathogen-induced acidosis, hypoxia, and insufficient antioxidant defenses together induce ONJ. G6PD deficiency and adrenal insufficiency are underlying factors. Impaired supply of adrenal-derived sulfated sterols such as DHEA sulfate may drive the disease process.

  14. Interesting case of G6PD deficiency anemia with severe hemolysis

    Directory of Open Access Journals (Sweden)

    Anupam Chhabra

    2013-01-01

    Full Text Available Severe hemolysis was observed in a critically ill patient with G6Pd deficiency where the causative trigger could not be identified. We describe one young patient with severe hemolysis treated with two cycles of plasmapheresis which proved to be an effective tool in the treatment. The patient presented with diffuse pain abdomen, vomiting, yellowish discoloration of sclera and skin and acute breathlessness. Hemoglobin 5.4 mg/dl and total (T serum bilirubin 17.08 mg/dl: Direct (D 4.10 mg/dl and Indirect (I 12.98 mg/dl. Subsequently patient started passing black color urine. As the patient developed severe hemolysis and the trigger agent of hemolysis was unknown, two cycles of plasmapheresis were performed with the aim to remove unknown causative agent. Consequently no trace of hemolysis was found and patient stabilized. Plasmapheresis can be used to treat G6PD deficient patients with severe hemolysis due to unidentified trigger agent.

  15. The impact of phenotypic and genotypic G6PD deficiency on risk of plasmodium vivax infection: a case-control study amongst Afghan refugees in Pakistan.

    Directory of Open Access Journals (Sweden)

    Toby Leslie

    2010-05-01

    Full Text Available BACKGROUND: The most common form of malaria outside Africa, Plasmodium vivax, is more difficult to control than P. falciparum because of the latent liver hypnozoite stage, which causes multiple relapses and provides an infectious reservoir. The African (A- G6PD (glucose-6-phosphate dehydrogenase deficiency confers partial protection against severe P. falciparum. Recent evidence suggests that the deficiency also confers protection against P. vivax, which could explain its wide geographical distribution in human populations. The deficiency has a potentially serious interaction with antirelapse therapies (8-aminoquinolines such as primaquine. If the level of protection was sufficient, antirelapse therapy could become more widely available. We therefore tested the hypothesis that G6PD deficiency is protective against vivax malaria infection. METHODS AND FINDINGS: A case-control study design was used amongst Afghan refugees in Pakistan. The frequency of phenotypic and genotypic G6PD deficiency in individuals with vivax malaria was compared against controls who had not had malaria in the previous two years. Phenotypic G6PD deficiency was less common amongst cases than controls (cases: 4/372 [1.1%] versus controls 42/743 [5.7%]; adjusted odds ratio [AOR] 0.18 [95% confidence interval (CI 0.06-0.52], p = 0.001. Genetic analysis demonstrated that the G6PD deficiency allele identified (Mediterranean type was associated with protection in hemizygous deficient males (AOR = 0.12 [95% CI 0.02-0.92], p = 0.041. The deficiency was also protective in females carrying the deficiency gene as heterozygotes or homozygotes (pooled AOR = 0.37 [95% CI 0.15-0.94], p = 0.037. CONCLUSIONS: G6PD deficiency (Mediterranean type conferred significant protection against vivax malaria infection in this population whether measured by phenotype or genotype, indicating a possible evolutionary role for vivax malaria in the selective retention of the G6PD deficiency trait in human

  16. Glucose-6-phosphate dehydrogenase (G6PD. Response of the human erythrocyte and another cells to the decrease in their activity.

    Directory of Open Access Journals (Sweden)

    Javier Fernando Bonilla

    2009-11-01

    Full Text Available Glucose-6-phosphate dehydrogenase is the first enzyme in the pentose phosphate pathway and the main intracellular source of reduced nicotidamineadenine nucleotidephosphate (NADPH, involved in diverse physiological processes such as antioxidant defense, (for instance in the erythrocyte endothelial growth modulation, erithropoyesis, vascularization and phagocitosis. G6PDH deficiency is the most common X-chromosome-linked enzymopathy in human beings. Although it is present in any type cell, its absolute deficiency is incompatible with life. According to WHO, 400 million people are affected by G6PD deficiency in the world but in Colombia, the severe form prevalence is about 3% to 7%. There are no data related to slight and moderate alterations, that also have clinical effects. This paper reviews some G6PD biomolecular aspects, its classification according to activity and electrophoretic mobility, as well as some main clinical aspects related to its activity alteration.

  17. Heterogeneity of G6PD deficiency prevalence in Mozambique: a school-based cross-sectional survey in three different regions.

    Science.gov (United States)

    Galatas, Beatriz; Mabote, Lurdes; Simone, Wilson; Matambisso, Gloria; Nhamussua, Lidia; Mañú-Pereira, María Del Mar; Menéndez, Clara; Saute, Francisco; Macete, Eusebio; Bassat, Quique; Alonso, Pedro; Aide, Pedro

    2017-01-19

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary enzymatic abnormality that affects more than 400 million people worldwide. Most deficient individuals do not manifest any symptoms; however, several precipitant agents-such as fava intake, infections, or several drugs-may trigger acute haemolytic anaemia. Countries should be informed of the prevalence of this enzymatic anomaly within their borders, in order to make safe and appropriate national decisions regarding the use of potentially unsafe drugs for G6PD deficient individuals. A school-based cross-sectional survey was conducted in three districts in Mozambique, namely Manhiça, located in the south; Mocuba in the centre; and Pemba in the northern tip of the country. G6PD deficiency was evaluated using the CareStart™ diagnostic test, and enzyme activity levels were measured through fluorescence spectrophotometry in deficient individuals. Chi squared and ANOVA tests were used to assess prevalence and mean enzyme activity differences, and logistic regression was used to identify risk factors associated to the deficiency. G6PD deficiency prevalence estimates were lowest in the northern city of Pemba (8.3%) and among Emakhuwas and Shimakondes, and higher in the centre and southern regions of the country (16.8 and 14.6%, respectively), particularly among Elomwes and Xichanganas. G6PD deficiency was significantly more prevalent among male students than females (OR = 1.4, 95% CI 1.0-1.8, p = 0.02), although enzyme activity levels were not different among deficient individuals from either gender group. Finally, median deficiency levels were found to be more severe among the deficient students from the north (0.7 U/gHg [0.2-0.7] p < 0.001) and south (0.7 U/gHg [0.5-2.5]), compared to those from the centre (1.4 U/gHg [0.6-2.1]). These findings suggest that Mozambique, as a historically high malaria-endemic country has considerable levels of G6PD deficiency, that vary significantly

  18. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD-null): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress.

    NARCIS (Netherlands)

    P.P. Pandolfi; F. Sonati; R. Rivi; P. Mason; F.G. Grosveld (Frank); L. Luzzatto

    1995-01-01

    textabstractGlucose 6-phosphate dehydrogenase (G6PD) is a housekeeping enzyme encoded in mammals by an X-linked gene. It has important functions in intermediary metabolism because it catalyzes the first step in the pentose phosphate pathway and provides reductive potential in the form of NADPH. In h

  19. Aspectos laboratoriais do diagnóstico da deficiência de glicose-6-fosfato desidrogenase (G6PD)

    OpenAIRE

    Simone Martins Castro

    2006-01-01

    A G6PD é expressa em todos os tecidos, onde catalisa a primeira etapa da via das pentoses-fosfato. O NADPH produzido pela ação da G6PD serve como doador de elétrons na biossíntese redutora. Pelo fato de os glóbulos vermelhos não terem mitocôndria, a via das pentoses-fosfato é a única fonte de NADPH e essencial para sua proteção contra o stress oxidativo. A deficiência da G6PD é classificada como anemia hemolítica hereditária ligada ao cromossomo X, associada a manifestações clínicas heterogên...

  20. Molecular identification of Gd A- and Gd B- G6PD deficient variants by ARMS-PCR in a Tunisian population.

    Science.gov (United States)

    Haloui, Sabrine; Laouini, Naouel; Sahli, Chaima Abdelhafidh; Daboubi, Rim; Becher, Mariem; Jouini, Latifa; Kazdaghli, Kalthoum; Tinsa, Faten; Cherif, Semia; Khemiri, Monia; Fredj, Sondess Hadj; Othmani, Rim; Ouali, Faida; Siala, Hajer; Toumi, Nour El Houda; Barsaoui, Sihem; Bibi, Amina; Messaoud, Taieb

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy. More than 200 mutations in the G6PD gene have been described. In Tunisia, the A-African and the B-Mediterranean mutations predominate the mutational spectrum. The purpose of this study was to apply the amplification refractory mutation system (ARMS-PCR) to the identification of Gd A+, Gd A- and Gd B- variants in a cohort of deficient individuals and to establish a phenotype/genotype association. 90 subjects were screened for enzymatic deficiency by spectrophotometric assay. The molecular analyses were performed in a group of 50 unrelated patients. Of the 54 altered chromosomes examined, 60% had the Gd A- mutation, 18% showed the Gd B- mutation and in 20% of cases, no mutations have been identified. The ARMS-PCR showed complete concordance with the endonuclease cleavage reference method and agreed perfectly with previous Tunisian studies where Gd A- and Gd B- were the most encountered. Also, similarities in spectrum mutations with North African and Mediterranean countries suggest gene migration from Africa to Europe through Spain. In conclusion, ARMS has been introduced in this study for common G6PD alleles identification in Tunisia. It gives some advantages compared to the traditional endonuclease digestion method since it is more convenient and timesaving and also offers the possibility to be applied in mass screening surveys.

  1. MOLECULAR BASIS OF G6PD DEFICIENCY: CURRENT STATUS AND ITS PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    M. R. Noori-Daloii

    2008-06-01

    Full Text Available Glucose-6-phosphate dehydrogenase is an essential enzyme to cell growth. Its deficiency of enzyme plays an important role in senescence and death signaling. Also, it is actually the most common clinically important enzyme defect, not only in hematology, but also among all human known diseases. Clinical consequences of enzyme deficiency are: neonatal hyperbilirubinemia, acute hemolytic anemia, and chronic hemolytic anemia. The enzyme gene spans 18 kb on the X chromosome (xq28 and contains 13 exons. Its promoter is embedded in a CpG island that is conserved from mice to humans. The development of a number of PCR-based methods for the detection of known mutations in Glucose-6-phosphate dehydrogenase has made it possible to detect enzyme deficiency and identify the specific mutation responsible with relative ease. We will discuss the mentioned clinical manifestations of glucose-6-phosphate dehydrogenase deficiency, Genetics, biochemistry and pathophysiology of the enzyme in details using newer published data and present most of the studies in Iranian population.

  2. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  3. Diospyros lotus L. fruit extract protects G6PD-deficient erythrocytes from hemolytic injury in vitro and in vivo: prevention of favism disorder.

    Science.gov (United States)

    Azadbakht, M; Hosseinimehr, S J; Shokrzadeh, M; Habibi, E; Ahmadi, A

    2011-11-01

    The aim of this study was to evaluate the protective effect of Diospyros lotus L. fruit extract against the hemolytic damage induced by Vicia faba beans extract in both G6PD enzyme-deficient human and rat erythrocyte in vitro and in vivo. In the former model, venous blood samples were obtained from five subjects with known G6PD deficiency and erythrocyte hemolysis induced by Vicia faba L. bean extract was asessed spectrophotometrically in the presence and absence of Diospyros lotus L. fruits extract. In the in vivo model, G6PD-deficient rats (induced by intraperitoneal injection of dehydroepiandrosterone for 35 days) pre-treated with different doses of Diospyros lotus L. (500, 750, 1000, and 1500 mg/kg, p.o for 7 days) were challenged with Vicia faba beans extract and the protective effect of the fruit extract against hemolysis was evaluated as above. The results have shown that Diospyros lotus L. fruits extract has antioxidant activity that may protect against hemolytic damage induced by Vicia faba bean extract in both G6PD-deficient human and rat erythrocytes. The study gives a scientific basis for the efficacy of the fruit extract as used in Iran. The fact that this was shown in human erythrocytes in vitro is significant and provides a rationale for further testing in vivo in G6PD-deficient human populations.

  4. Impact of G6PD deficiency on plasmodium falciparum malaria%G6PD缺陷症对恶性疟疾感染风险的影响

    Institute of Scientific and Technical Information of China (English)

    陈江涛; 杨辉; 詹小芬; 杨惠钿; 林敏; 刘配芬; 钟德善; 谢东德; Santiago-m Monte-Nguba; Juan Carlos Salas Ehapo; Urbano Monsuy Eyi; 杨立业

    2014-01-01

    Objective To investigate the impact of Glucose-6-phosphate dehydrogenase (G6PD) deficiency on plasmodium falciparum malaria. Methods A cross-sectional study was performed on 2 690 patients in Malabo regional hospital on Bioko Island during rainy season (2012). The plasmodium falciparum was identified by real-time PCR and oil immersion microscopy. G6PD deficiency was identified by a fluorescent spot test (FST) and PCR-DNA sequencing. Logistic regression was conducted to estimate the association between G6PD deficiency and malaria. Results The prevalence of G6PD was 9.22% in the population , all of whose genotype G6PD deficiency was G6PD*A-(c.202 G > A/c.376 A > G). Confounding factors-adjusted OR showed that G6PD deficiency provided significant protection against malaria (P 0.05). Conclusions The results suggest that male hemizygotes could provide protection against malaria. Further studies are required to explore the molecular mechanism in malaria infection.%目的:观察葡萄糖-6-磷酸脱氢酶(G6PD)缺陷症不同表型对恶性疟原虫感染的影响。方法:采用横断面研究的方式,将2012年雨季到马拉博地区医院就诊的2690名比奥克岛当地居民纳入研究。用显微镜镜检、荧光定量 PCR 结合熔解曲线法检测疟原虫。用荧光斑点法及 PCR-DNA 测序鉴定 G6PD 缺陷症。采用 Logistic 回归进行关联性分析。结果:该人群的 G6PD 缺陷症的总发生率为9.22%,基因型均为G6PD*A-(c.202 G>A/c.376 A>G)。G6PD缺陷症体现出强烈的疟疾保护作用(P<0.05);不同性别和表型的 G6PD 缺陷者中,只有男性半合子对疟疾有保护作用(P<0.05),而女性杂合子组与女性纯合子组均无统计学差异(P>0.05)。结论:G6PD 缺陷症的男性半合子表型能够减低恶性疟疾感染的风险,但是其机制尚未明确,有待更深入的研究。

  5. Predicting the Kinetic Properties Associated with Redox Imbalance after Oxidative Crisis in G6PD-Deficient Erythrocytes: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Hanae Shimo

    2011-01-01

    Full Text Available It is well known that G6PD-deficient individuals are highly susceptible to oxidative stress. However, the differences in the degree of metabolic alterations among patients during an oxidative crisis have not been extensively studied. In this study, we applied mathematical modeling to assess the metabolic changes in erythrocytes of various G6PD-deficient patients during hydrogen peroxide- (H2O2- induced perturbation and predict the kinetic properties that elicit redox imbalance after exposure to an oxidative agent. Simulation results showed a discrepancy in the ability to restore regular metabolite levels and redox homeostasis among patients. Two trends were observed in the response of redox status (GSH/GSSG to oxidative stress, a mild decrease associated with slow recovery and a drastic decline associated with rapid recovery. The former was concluded to apply to patients with severe clinical symptoms. Low max and high mG6P of G6PD were shown to be kinetic properties that enhance consequent redox imbalance.

  6. Investigação genético-epidemiológica e molecular da deficiência de G-6-PD em uma comunidade brasileira

    Directory of Open Access Journals (Sweden)

    Mariane B. Compri

    2000-06-01

    Full Text Available Este trabalho teve por objetivo estudar a deficiência de G-6-PD em uma comunidade do interior do Estado de São Paulo (Bragança Paulista. Durante 36 meses foram selecionados 4.621 doadores de sangue do sexo masculino, detectando-se 80 deficientes em G-6-PD. A análise molecular foi realizada em 70 deficientes não consangüíneos mediante a amplificação de DNA por PCR seguida de digestão por enzimas de restrição e análise de polimorfismo de conformação em hélice simples (SSCP. Em 98,6% dos casos, foi identificada a mutação G-6-PD A- (202 G->A, por digestão do exon 4 com Nla III. Verificou-se a presença de mutação mais rara no exon 9, por SSCP. Não foi constatado caso da variante Mediterrânea. Tais resultados mostraram que a variante A- (202 G->A, quase que exclusiva, foi introduzida na comunidade não apenas por descendentes de africanos, como também pelos imigrantes italianos, espanhóis e portugueses. A contribuição italiana em termos da variante Mediterrânea de G-6-PD foi menor do que a sua participação em termos de talassemia beta, provavelmente devido à origem no Norte da Itália.

  7. Investigação genético-epidemiológica e molecular da deficiência de G-6-PD em uma comunidade brasileira

    Directory of Open Access Journals (Sweden)

    Compri Mariane B.

    2000-01-01

    Full Text Available Este trabalho teve por objetivo estudar a deficiência de G-6-PD em uma comunidade do interior do Estado de São Paulo (Bragança Paulista. Durante 36 meses foram selecionados 4.621 doadores de sangue do sexo masculino, detectando-se 80 deficientes em G-6-PD. A análise molecular foi realizada em 70 deficientes não consangüíneos mediante a amplificação de DNA por PCR seguida de digestão por enzimas de restrição e análise de polimorfismo de conformação em hélice simples (SSCP. Em 98,6% dos casos, foi identificada a mutação G-6-PD A- (202 G->A, por digestão do exon 4 com Nla III. Verificou-se a presença de mutação mais rara no exon 9, por SSCP. Não foi constatado caso da variante Mediterrânea. Tais resultados mostraram que a variante A- (202 G->A, quase que exclusiva, foi introduzida na comunidade não apenas por descendentes de africanos, como também pelos imigrantes italianos, espanhóis e portugueses. A contribuição italiana em termos da variante Mediterrânea de G-6-PD foi menor do que a sua participação em termos de talassemia beta, provavelmente devido à origem no Norte da Itália.

  8. Investigação genético-epidemiológica e molecular da deficiência de G-6-PD em uma comunidade brasileira G-6-PD deficiency in a Brazilian community: an investigation involving epidemiological genetics and molecular techniques

    Directory of Open Access Journals (Sweden)

    Mariane B. Compri

    2000-06-01

    Full Text Available Este trabalho teve por objetivo estudar a deficiência de G-6-PD em uma comunidade do interior do Estado de São Paulo (Bragança Paulista. Durante 36 meses foram selecionados 4.621 doadores de sangue do sexo masculino, detectando-se 80 deficientes em G-6-PD. A análise molecular foi realizada em 70 deficientes não consangüíneos mediante a amplificação de DNA por PCR seguida de digestão por enzimas de restrição e análise de polimorfismo de conformação em hélice simples (SSCP. Em 98,6% dos casos, foi identificada a mutação G-6-PD A- (202 G->A, por digestão do exon 4 com Nla III. Verificou-se a presença de mutação mais rara no exon 9, por SSCP. Não foi constatado caso da variante Mediterrânea. Tais resultados mostraram que a variante A- (202 G->A, quase que exclusiva, foi introduzida na comunidade não apenas por descendentes de africanos, como também pelos imigrantes italianos, espanhóis e portugueses. A contribuição italiana em termos da variante Mediterrânea de G-6-PD foi menor do que a sua participação em termos de talassemia beta, provavelmente devido à origem no Norte da Itália.This paper reports on a study of the G-6-PD deficiency in Bragança Paulista, São Paulo State, Brazil. A total of 4,621 male blood donors were investigated over a 36-month period. Of these, 80 had the G-6-PD deficiency. Molecular analysis was performed on 70 unrelated G-6-PD deficients through DNA amplification followed by digestion with restriction enzymes and single strand conformation polymorphism analysis (SSCP. In 98.6%, the G-6-PD A- (202 G->A mutation was observed through digestion of exon 4 with Nla III. The presence of an uncommon mutation in exon 9 was also observed through SSCP. No case of the Mediterranean variant was observed. These results indicate that the A- (202G->A variant, almost exclusive, was introduced into the community not only by individuals of African origin, but also by European immigrants, mainly Italian

  9. G6PD deficiency and absence of α-thalassemia increase the risk for cerebral vasculopathy in children with sickle cell anemia.

    Science.gov (United States)

    Joly, Philippe; Garnier, Nathalie; Kebaili, Kamila; Renoux, Céline; Dony, Arthur; Cheikh, Nathalie; Renard, Cécile; Ceraulo, Antony; Cuzzubbo, Daniela; Pondarré, Corinne; Martin, Cyril; Pialoux, Vincent; Francina, Alain; Bertrand, Yves; Connes, Philippe

    2016-04-01

    The aim of this study was to test the association between hematological/genetic factors and cerebral vasculopathy in children with sickle cell anemia (SCA). A group with cerebral vasculopathy (VASC) was composed of children who had stroke (n = 6), silent infarct (n = 11), or an abnormal transcranial Doppler (n = 5). Eighty-four patients had neither positive history of stroke or silent infarct, nor abnormal transcranial Doppler (NORM group). An intermediate group (COND; n = 15) was composed of SCA children with a conditional transcranial Doppler. Biological analyses were performed on samples obtained at steady state and before the beginning of any chronic treatment. The comparisons of the three groups demonstrated a protective effect of α-thalassemia against cerebral vasculopathy through its effects on hemoglobin and reticulocyte levels. Moreover, we observed higher frequency of G6PD deficiency in the VASC group compared with the other groups. Our study confirms the key role of α-thalassemia and G6PD status in the pathophysiology of cerebral vasculopathy in SCA children.

  10. Abrogation of red blood cell G6PD enzyme activity through Heat treatment: development of survey material for the UK NEQAS G6PD scheme.

    Science.gov (United States)

    Roper, D R; De la Salle, B; Soni, V; Fletcher, K; Green, J A

    2017-06-01

    Participation in external quality assessment (EQA) is central to the maintenance of high-quality laboratory results in patient diagnosis and clinical trials. Laboratories in the TAF112582 DETECTIVE study (ClinicalTrials.gov identifier: NCT01376167) are enrolled in the United Kingdom National Quality Assessment Scheme (UK NEQAS) for glucose-6-phosphate dehydrogenase (G6PD) quantitative assay, which utilizes ovine (sheep) blood as a readily available source of apparently G6PD-deficient survey material. A substitute for sheep blood was sought because some non-UK sites in the study encountered participation difficulties due to the strict regulations on the import of sheep blood into their countries. G6PD activity in normal human donor blood was abrogated by the action of heat under controlled conditions. Residual G6PD activity in the heated samples was measured by UK NEQAS using the Trinity Biotech 345 kit (Trinity Biotech) and a Jenway 6715 UV/Vis spectrophotometer with external temperature control to monitor enzyme kinetics and linearity over a set time. Heat-treated material was also assayed for G6PD activity and assessed for its acceptability as EQA survey material by selected UK laboratories. Blood heated at 45 °C for 15 h showed a reduction in G6PD activity of 76.3 ± 4.6% (n = 6) and was considered acceptable as EQA material in terms of appearance and behaviour by the majority of UK sites in the trial. We have developed a simple heat-treatment procedure to produce EQA survey material with low/intermediate G6PD activity, similar to that found in females heterozygous for G6PD deficiency. © 2017 The Authors. International Journal of Laboratory Hematology Published by John Wiley & Sons Ltd.

  11. Autoinflammatory Reaction in Dogs Treated for Cancer via G6PD Inhibition

    Directory of Open Access Journals (Sweden)

    Jonathan W. Nyce

    2017-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is an oncoprotein that is overexpressed in cancer cells to provide the NADPH required for their increased anabolism. NADPH, sourced from G6PD fuels nucleotide biosynthesis, maintains redox potential of thioredoxin and glutathione and drives the mevalonate pathway that powers many of the basic mechanisms by which cancer cells escape host control. G6PD is thus a target for cancer treatment being addressed by many groups around the world. We have discovered that systemic inhibition of G6PD by high dose dehydroepiandrosterone (DHEA causes a severe autoinflammatory response in dogs, which does not occur in mice or rats. Since dogs more closely model the human adrenal androgen system than do common laboratory animals, this finding is relevant to the design of G6PD-inhibiting drugs for humans. The autoinflammatory reaction observed closely resembles mevalonate kinase deficiency (MKD, a rare autosomal recessive disease in humans characterized by recurrent febrile attacks, arthralgia, skin rash, and aphthous ulcers of mucocutaneous tissues. In a manner comparable to animal models of MKD, the reconstitution of protein geranylgeranylation blocked the autoinflammatory reaction caused by systemic G6PD inhibition. This autoinflammatory response to systemic G6PD inhibition represents an unexpected result that must be taken into consideration when targeting this oncoprotein.

  12. Characterization of G6PD genotypes and phenotypes on the northwestern Thailand-Myanmar border.

    Directory of Open Access Journals (Sweden)

    Germana Bancone

    Full Text Available Mutations in the glucose-6-phosphate dehydrogenase (G6PD gene result in red blood cells with increased susceptibility to oxidative damage. Significant haemolysis can be caused by primaquine and other 8-aminoquinoline antimalarials used for the radical treatment of Plasmodium vivax malaria. The distribution and phenotypes of mutations causing G6PD deficiency in the male population of migrants and refugees in a malaria endemic region on the Thailand-Myanmar border were characterized. Blood samples for G6PD fluorescent spot test (FST, G6PD genotyping, and malaria testing were taken from 504 unrelated males of Karen and Burman ethnicities presenting to the outpatient clinics. The overall frequency of G6PD deficiency by the FST was 13.7%. Among the deficient subjects, almost 90% had the Mahidol variant (487G>A genotype. The remaining subjects had Chinese-4 (392G>T, Viangchan (871G>A, Açores (595A>G, Seattle (844G>C and Mediterranean (563C>T variants. Quantification of G6PD activity was performed using a modification of the standard spectrophotometric assay on a subset of 24 samples with Mahidol, Viangchan, Seattle and Chinese-4 mutations; all samples showed a residual enzymatic activity below 10% of normal and were diagnosed correctly by the FST. Further studies are needed to characterise the haemolytic risk of using 8-aminoquinolines in patients with these genotypes.

  13. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Pradeep Kumar

    2016-02-06

    Feb 6, 2016 ... for studies that investigated G6PD deficiency in Indian population. If any author studied .... analyses, (2) case reports, and (3) reviews and editorials. 2.3. ..... Beutler E, editors. Glucose-6-phosphate dehydrogenase. Orlando,.

  14. Neonatal Hyperbilirubinemia in infants with G6PD c.563C > TVariant

    Directory of Open Access Journals (Sweden)

    Moiz Bushra

    2012-08-01

    Full Text Available Abstract Background There is a strong correlation between glucose-6-phosphate dehydrogenase (G6PD deficiency and neonatal hyperbilirubinemia with a rare but potential threat of devastating acute bilirubin encephalopathy. G6PD deficiency was observed in 4–14% of hospitalized icteric neonates in Pakistan. G6PD c.563C > T is the most frequently reported variant in this population. The present study was aimed at evaluating the time to onset of hyperbilirubinemia and the postnatal bilirubin trajectory in infants having G6PD c.563C > T. Methods This was a case–control study conducted at The Aga Khan University, Pakistan during the year 2008. We studied 216 icteric male neonates who were re-admitted for phototherapy during the study period. No selection was exercised. Medical records showed that 32 were G6PD deficient while 184 were G6PD normal. Each infant was studied for birth weight, gestational age, age at the time of presentation, presence of cephalhematoma, sepsis and neurological signs, peak bilirubin level, age at peak bilirubin level, days of hospitalization, whether phototherapy or exchange blood transfusion was initiated, and the outcome. During hospital stay, each baby was tested for complete blood count, reticulocyte count, ABO and Rh blood type, direct antiglobulin test and quantitative G6PD estimation [by kinetic determination of G6PDH]. G6PDgenotype was analyzed in 32 deficient infants through PCR-RFLP analysis and gene sequencing. Results G6PD variants c.563C > T and c.131 C > G were observed in 21 (65% and three (9% of the 32 G6PD deficient infants, respectively. DNA of eight (25% newborns remained uncharacterized. In contrast to G6PD normal neonates, infants with c.563C > T variant had significantly lower enzyme activity (mean ± 1SD; 0.3 ± 0.2 U/gHb vs. 14.0 ± 4.5 U/gHb, p p = 0.008 which peaked earlier after birth (mean ± 1SD 2.9 ± 1.6 vs. 4.3 ± 2.3 days, p = 0.007. No statistically significant

  15. Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors in Sana’a City, Yemen

    Science.gov (United States)

    Al-Nood, Hafiz A.; Bazara, Fakiha A.; Al-Absi, Rashad; Habori, Molham AL

    2012-01-01

    Objectives To determine the prevalence of Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency among Yemeni people from different regions of the country living in the capital city, Sana’a, giving an indication of its overall prevalence in Yemen. Methods A cross-sectional study was conducted among Yemeni male blood donors attending the Department of Blood Bank at the National Centre of the Public Health Laboratories in the capital city, Sana’a, Yemen. Fluorescent spot method was used for screening, spectrophotometeric estimation of G-6-PD activity and separation by electrophoresis was done to determine the G-6-PD phenotype. Results Of the total 508 male blood donors recruited into the study, 36 were G-6-PD deficient, giving a likely G-6-PD deficiency prevalence of 7.1%. None of these deficient donors had history of anemia or jaundice. Thirty-five of these deficient cases (97.2%) showed severe G-6-PD deficiency class II (<10% of normal activity), and their phenotyping presumptively revealed a G-6-PD-Mediterranean variant. Conclusion The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiency type in these blood donors in Sana’a City, which could represent an important health problem through occurrence of hemolytic anemia under oxidative stress. A larger sample size is needed to determine the overall prevalence of G-6-PD deficiency, and should be extended to include DNA analysis to identify its variants in Yemen. PMID:22359725

  16. Rapid diagnostic test for G6PD deficiency in Plasmodium vivax-infected men: a budget impact analysis based in Brazilian Amazon.

    Science.gov (United States)

    Peixoto, Henry Maia; Brito, Marcelo Augusto Mota; Romero, Gustavo Adolfo Sierra; Monteiro, Wuelton Marcelo; de Lacerda, Marcus Vinícius Guimarães; de Oliveira, Maria Regina Fernandes

    2017-01-01

    The aim of this study was to estimate the incremental budget impact (IBI) of a rapid diagnostic test to detect G6PDd in male patients infected with Plasmodium vivax in the Brazilian Amazon, as compared with the routine protocol recommended in Brazil which does not include G6PDd testing. The budget impact analysis was performed from the perspective of the Brazilian health system, in the Brazilian Amazon for the years 2013, 2014 and 2015. The analysis used a decision model to compare two scenarios: the first consisting of the routine recommended in Brazil which does not include prior diagnosis of dG6PD, and the second based on the use of RDT CareStart™ G6PD (CS-G6PD) in all male subjects diagnosed with vivax malaria. The expected implementation of the diagnostic test was 30% in the first year, 70% the second year and 100% in the third year. The analysis identified negative IBIs which were progressively smaller in the 3 years evaluated. The sensitivity analysis showed that the uncertainties associated with the analytical model did not significantly affect the results. A strategy based on the use of CS-G6PD would result in better use of public resources in the Brazilian Amazon. © 2016 John Wiley & Sons Ltd.

  17. 黄酮类化合物对葡萄糖-6-磷酸脱氢酶缺乏者红细胞的体外氧化作用%The oxidative effects of flavonoids on G6PD-deficient erythrocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    张婧; 张志豪; 黎曙霞

    2011-01-01

    目的:探讨黄酮类化合物对葡萄糖-6-磷酸脱氢酶(G6PD)缺乏者红细胞氧化还原状态的影响.方法:将低、中、高浓度的槲皮素、黄芩素、芹菜素、漆黄素、木犀草素、柚皮素、桑黄素、山奈酚、葛根素和芦丁分别与G6PD缺乏者及正常者红细胞在40%红细胞悬液和全血中进行体外孵育,测定红细胞还原性谷胱甘肽(GSH)和高铁血红蛋白(MetHb)的水平.结果:槲皮素、黄芩素、芹菜素、漆黄素、木犀草素、柚皮素、桑黄素、山奈酚具有较强的氧化作用,能明显降低G6PD缺乏者红细胞GSH水平,升高MetHb水平.葛根素仅降低G6PD缺乏者红细胞GSH水平,具有较弱的氧化作用.芦丁对G6PD缺乏者红细胞GSH和MetHb均无影响.较高浓度的槲皮素、芹菜素、桑黄素亦能使G6PD正常者MetHb水平升高.黄酮类化合物的氧化作用呈一定浓度依赖性,在中、高浓度时表现明显.结论:部分黄酮类化合物对G6PD缺乏者红细胞具有氧化作用,建议G6PD缺乏者慎用富含氧化性黄酮类化合物的中草药及其制剂.%OBJECTIVE To investigate the effects of flavonoids on the oxidative and reductive status of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes. METHODS The G6PD-deficient and normal erythrocytes of 40% erythrocyte suspension and whole blood were respectively incubated with quercetin, baicalein, apigenin, fisetin, luteolin, naringenin, morin, kaempferol,puerarin and rutin at low, medium and high concentrations in vitro. The resulting levels of reduced glutathione (GSH) and methemoglobin (MetHb) of erythrocytes in each group were determined. RESULTS Quercetin,baicalein,apigenin, fisetin,luteolin,naringenin,morin,kaempferol with strong oxidative effects significantly reduced GSH and increased MetHb levels in G6PD-deficient erythrocytes. Puerarin which possessed weak oxidative effect just caused GSH reduced in G6PD-deficient erythrocytes. Rutin had no effects on both

  18. Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency in south-east Sicily.

    Science.gov (United States)

    Cittadella, R; Civitelli, D; Manna, I; Azzia, N; Di Cataldo, A; Schilirò, G; Brancati, C

    1997-05-01

    In order to explore the nature of glucose-6-phosphate dehydrogenase (G6PD) deficiency in south-east Sicily, we have analysed the G6PD gene in 25 unrelated males with abnormal G6PD activity and/or electrophoretic mobility, by using the analysis of the appropriate PCR-amplified fragment of DNA and subsequent digestion by appropriate restriction-enzymes, looking for the presence of certain known G6PD mutations. We amplified the entire G6PD coding sequence into eight fragments, followed by single-strand conformation polymorphism (SSCP) analysis and sequencing of those individual fragments that were found to be abnormal by SSCP. Through these methods we found a total of twelve G6PD Mediterranean variants with the association of a silent mutation 1311 (also known as polymorphic site Bcl I), one G6PD Mediterranean without this association, four G6PD A-Val 68 and two G6PD Santamaria and five G6PD Chatham. In a subject with normal activity a mutation was found in exon 5, designated as G6PD Sao Borja. This is the first report on the molecular analysis of G6PD mutations in Sicily and we have obtained evidence for four distinct classes of variants.

  19. The Effect of Progressive Aerobic Exercise On G6PD Activity Among Active and Sedentary Men

    Directory of Open Access Journals (Sweden)

    Amin Allah Dashtiyan

    2014-10-01

    Full Text Available Background: Erythrocyte glucose–6–phosphate dehydrogenase (G6PD activity is highly associated with free radical production. G6PD deficiency can increase the sensitivity of erythrocytes to oxidative stress resulting in hemolytic anemia. Aim: to study the main effect of progressive aerobic exercise on G6PD activity in active and sedentary men. Material and Methods: the study comprised 10 active men and 10 sedentary men. The protocol, started with running at approximately %75 of their maximal oxygen uptake for 30 min x times a week for y weeks. Venous blood samples (5ml were collected prior to, immediately after, 2 hours and 24 hours after exercise. G6PD activity was evaluated with auto-Analyzer Method. Result: G6PD was not significantly higher in the active men in comparison with the sedentary men at baseline (10.5 ± 1.2 (IU/gHb VS 9.5 ± 1.0 (IU/gHb, P ≤ 0.05. G6PD activity was increased significantly in both groups immediately after exercise but was not considerably different between the groups (11.6 ± 2.7 (IU/gHb VS 9.9 ± 1.1 (IU/gHb, for active and sedentary men, respectively; P ≤ 0.05. G6PD returned to the baseline levels 2 hours after exercise in active men but remained high in sedentary men (10.5 ± 1.4 (IU/gHb VS 10.1 ± 1.1 (IU/gHb, P ≤ 0.05. Also, G6PD levels showed a significant increase 24 hours after exercise in the active men in comparison with the sedentary men (11.8 ± 2.5 (IU/gHb VS 9.5 ± 1.5 (IU/gHb, P ≤ 0.05. Conclusion: In this regard, it can be concluded that, progressive aerobic exercise may be an effective factor affecting the levels of G6PD significantly, and as a home message it is useful for controlling the hemolytic anemia among sedentary population. Keywords: G6PD activity, progressive aerobic exercise, hemolytic anemia

  20. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico and description of a novel mutation

    Indian Academy of Sciences (India)

    N. García-Magallanes; F. Luque-Ortega; E. M. Aguilar-Medina; R. Ramos-Payán; C. Galaviz-Hernández; J. G. Romero-Quintana; L. Del Pozo-Yauner; H. Rangel-Villalobos; E. Arámbula-Meraz

    2014-08-01

    Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in the northern region of Mexico, which is important because of the genetic heterogeneity described in Mexican population. Therefore, samples from the northern Mexico were biochemically screened for G6PD deficiency, and PCR-RFLPs, and DNA sequencing used to identify mutations in positive samples. The frequency of G6PD deficiency in the population was 0.95% ($n = 1993$); the mutations in 86% of these samples were G6PD A-202A/376G, G6PD A-376G/968C and G6PD Santamaria376G/542T. Contrary to previous reports, we demonstrated that G6PD deficiency distribution is relatively homogenous throughout the country $(P = 0.48336)$, and the unique exception with high frequency of G6PD deficiency does not involve a coastal population (Chihuahua: 2.4%). Analysis of eight polymorphic sites showed only 10 haplotypes. In one individual we identified a new G6PD mutation named Mexico DF193A>G (rs199474830), which probably results in a damaging functional effect, according to PolyPhen analysis. Proteomic impact of the mutation is also described.

  1. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Directory of Open Access Journals (Sweden)

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  2. G6PD: The Test

    Science.gov (United States)

    ... RBC Count , Hemoglobin , Autohemolysis Test, Heinz Body Stain, Lactate Dehydrogenase , Haptoglobin All content on Lab Tests Online has ... count and haptoglobin levels , increased reticulocyte count and lactate dehydrogenase levels , presence of bite cells on a blood ...

  3. Evaluation of Glucose-6-Phosphate Dehydrogenase Deficiency without Hemolysis in Icteric Newborns

    Directory of Open Access Journals (Sweden)

    Farzaneh Eghbalian

    2007-04-01

    Full Text Available Objective: Glucose-6- phosphate dehydrogenase (G6PD deficiency is an inherited deficiency that may be the cause of neonatal jaundice. Our aim was to study the prevalence of G6PD deficiency without hemolysis in relation to neonatal jaundice. Material & Methods: This prospective descriptive study has been conducted on 272 icteric newborns admitted to the Ekbatan Hospital from October 2002 to September 2004. The dataset included: age, sex, total and direct bilirubin, hemoglobin, reticulocyte count, blood group and Rh of mother and newborn, direct Coombs, G6PD level and the type of treatment. All data was analyzed by using statistical method. Findings: From 272 neonates, 12 neonates (4.4% were found to have G6PD deficiency. The male to female ratio was 5 to 1 (10 male and 2 female neonates. From 12 neonates with G6PD deficiency, hemolysis was seen in 5 neonates (41.7% and the rate of G6PD deficiency without hemolysis was 2.6%. There was no difference in the mean bilirubin level, hemoglobin level and also reticulocyte count between patients with G6PD deficiency and those without G6PD deficiency (p>0.05. Out of 12 patients with G6PD deficiency, 2 patients (16.7% had blood exchange transfusion. Rh and ABO incompatibility were not seen in any of the12 patients with G6PD deficiency. Conclusion: In this study the prevalence of G6PD deficiency in icteric newborns was considerably high and most of them were non hemolytic, so we recommend G6PD test as a screening program for every newborn at the time of delivery.

  4. Prevalence and molecular characterization of Glucose-6-Phosphate dehydrogenase deficient variants among the Kurdish population of Northern Iraq

    Directory of Open Access Journals (Sweden)

    Jamal Shakir AR

    2010-07-01

    Full Text Available Abstract Background Glucose-6-Phosphate dehydrogenase (G6PD is a key enzyme of the pentose monophosphate pathway, and its deficiency is the most common inherited enzymopathy worldwide. G6PD deficiency is common among Iraqis, including those of the Kurdish ethnic group, however no study of significance has ever addressed the molecular basis of this disorder in this population. The aim of this study is to determine the prevalence of this enzymopathy and its molecular basis among Iraqi Kurds. Methods A total of 580 healthy male Kurdish Iraqis randomly selected from a main regional premarital screening center in Northern Iraq were screened for G6PD deficiency using methemoglobin reduction test. The results were confirmed by quantitative enzyme assay for the cases that showed G6PD deficiency. DNA analysis was performed on 115 G6PD deficient subjects, 50 from the premarital screening group and 65 unrelated Kurdish male patients with documented acute hemolytic episodes due to G6PD deficiency. Analysis was performed using polymerase chain reaction/restriction fragment length polymorphism for five deficient molecular variants, namely G6PD Mediterranean (563 C→T, G6PD Chatham (1003 G→A, G6PD A- (202 G→A, G6PD Aures (143 T→C and G6PD Cosenza (1376 G→C, as well as the silent 1311 (C→T mutation. Results Among 580 random Iraqi male Kurds, 63 (10.9% had documented G6PD deficiency. Molecular studies performed on a total of 115 G6PD deficient males revealed that 101 (87.8% had the G6PD Mediterranean variant and 10 (8.7% had the G6PD Chatham variant. No cases of G6PD A-, G6PD Aures or G6PD Cosenza were identified, leaving 4 cases (3.5% uncharacterized. Further molecular screening revealed that the silent mutation 1311 was present in 93/95 of the Mediterranean and 1/10 of the Chatham cases. Conclusions The current study revealed a high prevalence of G6PD deficiency among Iraqi Kurdish population of Northern Iraq with most cases being due to the G6PD

  5. Conjugated bilirubin in neonates with glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Kaplan, M; Rubaltelli, F F; Hammerman, C; Vilei, M T; Leiter, C; Abramov, A; Muraca, M

    1996-05-01

    We used a system capable of measuring conjugated bilirubin and its monoconjugated and diconjugated fractions in serum to assess bilirubin conjugation in 29 glucose-6-phosphate dehydrogenase (G6PD)-deficient, term, male newborn infants and 35 control subjects; all had serum bilirubin levels > or = 256 mumol/L (15 mg/dI). The median value for diconjugated bilirubin was lower in the G6PD-deficient neonates than in control subjects (0.06 (range 0.00 to 1.84) vs 0.21 (range 0.00 to 1.02) mumol/L, p = 0.006). Diglucuronide was undetectable in 11 (38.9%) of the G6PD-deficient infants versus 3 (8.6%) of the control subjects (p = 0.015). These findings imply a partial defect of bilirubin conjugation not previously demonstrated in G6PD-deficient newborn infants.

  6. The Study of G6PD in Erythrocyte and Lens in Senile and Presenile Cataract

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    The G6PD activity of erythrocytes in 113 male patients with senile and presenile cataract and 86 controls, and G6PD activity of lens in 30 patients with senile cataract and 42 controls were reported. The cataractous group had higher frequency of G6PD deficiency and lower average G6PD level in erythrocytes and lenses, but with out statistical significance. The frequency of G6PD deficiency of erythrocytes in presenile cataractous group was higher than that of senile cataractous group but with no statistic...

  7. Activity of divicine in Plasmodium vinckei-infected mice has implications for treatment of favism and epidemiology of G-6-PD deficiency.

    Science.gov (United States)

    Clark, I A; Cowden, W B; Hunt, N H; Maxwell, L E; Mackie, E J

    1984-07-01

    Intravenous injection of divicine into mice infected with Plasmodium vinckei rapidly killed the parasites and caused haemolysis. Degenerating parasites were observed frequently inside intact circulating erythrocytes, implying that parasite death was not a passive consequence of haemolysis. Both parasite death and haemolysis were prevented by the iron chelator desferrioxamine. In vitro, divicine caused the accumulation of malonyldialdehyde and the depletion of reduced glutathione in normal mouse erythrocytes. Desferrioxamine inhibited the former event, but not the latter. These observations support the hypothesis advanced by Huheey & Martin (Experientia, 31, 1145, 1975) to explain the patchy geographical distribution of glucose-6-phosphate dehydrogenase deficiency in historic malarial areas and also suggest that desferrioxamine, a drug already in clinical use, is a potential treatment for favism and other examples of oxidative haemolysis.

  8. Prevalence of glucose-6-phosphate dehydrogenase deficiency and diagnostic challenges in 1500 immigrants in Denmark examined for haemoglobinopathies

    DEFF Research Database (Denmark)

    Warny, Marie; Klausen, Tobias Wirenfeldt; Petersen, Jesper

    2015-01-01

    Similar to the thalassaemia syndromes, glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in areas historically exposed to malaria. In the present study, we used quantitative and molecular methods to determine the prevalence of G6PD deficiency in a population of 1508 immigran...

  9. G6PD haplotypes spanning Xq28 from F8C to red/green color vision

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Lania, G.; Martini, G. (Instituto Internazionale di Genetica e Biofisica, Naples (Italy)); Brancati, C.; Tagarelli, A. (Instituto per lo Studio delle Malattie Ereditarie e Carenziali, Cosenza (Italy)); Calabro, V. (Instituto per lo Studio delle Malattie Ereditarie e Carenziali, Cosenza (Italy) Hammersmith Hospital, London (United Kingdom)); Vulliamy, T.J.; Luzzatto, L. (Hammersmith Hospital, London (United Kingdom))

    1993-07-01

    The most telomeric region of the human X chromosome within band Xq28 consists of a gene-rich region of about 3 Mb which contains the genes for coagulation factor VIIIc, glucose-6-phosphate dehydrogenase (G6PD), and red/green color vision. The authors have studied five polymorphic sites from this region, in a sample of normal people from the Cosenza province of Southern Italy. These sites, which span a distance of some 350 kb, are in strong linkage disequilibrium. Of the 32 possible haplotypes only 10 were found, and 4 of these account for 80% of all X chromosomes analyzed. In addition, they found that all G6PD-deficient people with the G6PD Mediterranean mutation belong to only two haplotypes. One of these (Med 1) is found only within a small subregion of the area investigated, west of the Appennine mountain range. Most remarkably, all Med 1 G6PD-deficient individuals also had red/green color blindness. The more frequent haplotype (Med 2) is the same in Calabria and in Sardinia, where it accounts for about 90% of the G6PD Mediterranean mutations, despite the fact that gene flow between the populations of Sardinia and Southern Italy must have been limited. These data do not enable determination of whether the two types of G6PD Mediterranean have arisen through two separate identical mutational events or through a single mutational event followed by recombination. However, the data indicate relatively little recombination over an extended region of the X chromosome and they suggest that the G6PD Mediterranean mutation is recent by comparison to the other polymorphisms investigated. 44 refs., 4 figs., 5 tabs.

  10. Diversity in expression of glucose-6-phosphate dehydrogenase deficiency in females.

    Science.gov (United States)

    Abdulrazzaq, Y M; Micallef, R; Qureshi, M; Dawodu, A; Ahmed, I; Khidr, A; Bastaki, S M; Al-Khayat, A; Bayoumi, R A

    1999-01-01

    The aims of this study were to determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the United Arab Emirates (UAE), to describe the different mutations in the population, to determine its prevalence, and to study inheritance patterns in families of G6PD-deficient individuals. All infants born at Tawam Hospital, Al-Ain, UAE from January 1994 to September 1996 were screened at birth for their G6PD status. In addition, those attending well-baby clinics during the period were also screened for the disorder. Families of 40 known G6PD-deficient individuals, selected randomly from the records of three hospitals in the country, were assessed for G6PD deficiency. Where appropriate, this was followed by definition of G6PD mutations. Of 8198 infants, 746 (9.1%), comprising 15% of males and 5% of females tested, were found to be G6PD deficient. A total of 27 families were further assessed: of these, all but one family had the nt563 Mediterranean mutation. In one family, two individuals had the nt202 African mutation. The high manifestation of G6PD deficiency in women may be due to the preferential expression of the G6PD-deficient gene and X-inactivation of the normal gene, and/or to the presence of an 'enhancer' gene that makes the expression of the G6PD deficiency more likely. The high level of consanguinity which, theoretically, should result in a high proportion of homozygotes and consequently a higher proportion of females with the deficiency, was not found to be a significant factor.

  11. Malaria, favism and glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Huheey, J E; Martin, D L

    1975-10-15

    Although glucose-6-phosphate dehydrogenase deficient individuals may suffer (sometimes fatally) from favism, a high incidence of this trait occurs in many Mediterranean populations. This apparent paradox is explained on the basis of a synergistic interaction between favism and G-6-PD deficiency that provides increased protection against malaria compared to that of the G-6-PD deficiency alone. This relationship is analogous to that between various hemoglobins and malaria in that there is selection for a more severe trait if it provides more protection against malaria.

  12. The Stability of G6PD Is Affected by Mutations with Different Clinical Phenotypes

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2014-11-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common enzyme deficiency worldwide, causing a wide spectrum of conditions with severity classified from the mildest (Class IV to the most severe (Class I. To correlate mutation sites in the G6PD with the resulting phenotypes, we studied four naturally occurring G6PD variants: Yucatan, Nashville, Valladolid and Mexico City. For this purpose, we developed a successful over-expression method that constitutes an easier and more precise method for obtaining and characterizing these enzymes. The kcat (catalytic constant of all the studied variants was lower than in the wild-type. The structural rigidity might be the cause and the most evident consequence of the mutations is their impact on protein stability and folding, as can be observed from the protein yield, the T50 (temperature where 50% of its original activity is retained values, and differences on hydrophobic regions. The mutations corresponding to more severe phenotypes are related to the structural NADP+ region. This was clearly observed for the Classes III and II variants, which became more thermostable with increasing NADP+, whereas the Class I variants remained thermolabile. The mutations produce repulsive electric charges that, in the case of the Yucatan variant, promote increased disorder of the C-terminus and consequently affect the binding of NADP+, leading to enzyme instability.

  13. Genetic diversity of hemoglobinopathies, G6PD deficiency, and ABO and Rhesus blood groups in two isolates of a primitive Kharia Tribe in Sundargarh District of Northwestern Orissa, India.

    Science.gov (United States)

    Balgir, R S

    2010-09-01

    Tribal communities constitute about 8.2% of the total population of India. Their health needs are even larger than elsewhere in India; this study investigates the genetic diversity in relation to hemoglobinopathies, G6PD deficiency and, ABO and Rhesus (D) blood groups in two sects, i.e. Dudh (converted Christian) and Dhelki (Hinduised) Kharia, a primitive tribe in Sundargarh district of Orissa in Central-Eastern India. A randomized screening of 767 Kharia tribals (377 males and 390 females) belonging to all age groups and both sexes was done. Laboratory analysis was carried out following the standard methodology and techniques. Contrasting differences were observed in the frequency of hematological genetic disorders such as β-thalassemia, sickle cell, hemoglobin E, G6PD deficiency, ABO and Rhesus (D) blood groups between the two subgroups. Dudh Kharia had no hemoglobin variant allele other than the high prevalence of β-thalassemia trait (8.1%), whereas, their counterpart Dhelki Kharia had the high prevalence of sickle cell allele (12.4%), hemoglobin E allele (3.2%), and β-thalassemia allele (4.0%). Frequency distribution of hemoglobin variants between Dudh and Dhelki Kharia tribe was statistically highly significant (p blood group was 1.1% in Dudh Kharia and absent in Dhelki Kharia (p < 0.05). This study showed genetic isolation of the two sects of Kharia tribe. Antimalarial drugs administration needs to be done with caution. Hematological disorders pose a major health challenge having multifaceted implications in public health genetics.

  14. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency in the neonatal period.

    Science.gov (United States)

    Keihanian, F; Basirjafari, S; Darbandi, B; Saeidinia, A; Jafroodi, M; Sharafi, R; Shakiba, M

    2017-06-01

    Considering the high prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among newborns, different screening methods have been established in various countries. In this study, we aimed to assess the prevalence of G6PD deficiency among newborns in Rasht, Iran, and compare G6PD activity in cord blood samples, using quantitative and qualitative tests. This cross-sectional, prospective study was performed at five largest hospitals in Rasht, Guilan Province, Iran. The screening tests were performed for all the newborns, referred to these hospitals. Specimens were characterized in terms of G6PD activity under ultraviolet light, using the kinetic method and the qualitative fluorescent spot test (FST). We also determined the sensitivity, specificity, negative predictive value, and positive predictive value of the qualitative assay. Blood samples were collected from 1474 newborns. Overall, 757 (51.4%) subjects were male. As the findings revealed, 1376 (93.4%) newborns showed normal G6PD activity, while 98 (6.6%) had G6PD deficiency. There was a significant difference in the mean G6PD level between males and females (P = 0.0001). Also, a significant relationship was detected between FST results and the mean values obtained in the quantitative test (P < 0.0001). According to the present study, FST showed acceptable sensitivity and specificity for G6PD activity, although it appeared inefficient for diagnostic purposes in some cases. © 2017 John Wiley & Sons Ltd.

  15. Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates.

    Science.gov (United States)

    Kaplan, M; Vreman, H J; Hammerman, C; Leiter, C; Abramov, A; Stevenson, D K

    1996-06-01

    We determined the contribution of haemolysis to the development of hyperbilirubinaemia in glucose-6-phosphate dehydrogenase (G-6-PD) deficient neonates and G-6-PD normal controls. Blood carboxyhaemoglobin (COHb), sampled on the third day of life, was measured by gas chromatography, corrected for inhaled carbon monoxide (COHbC), and expressed as a percentage of total haemoglobin concentration (Hb). Serum bilirubin was tested as clinically necessary. 37 non-jaundiced (peak serum total bilirubin (PSTB) or = 257 mumol/l) G-6-PD-deficient neonates were compared to 31 non-jaundiced and 24 jaundiced controls with comparable PSTB values, respectively. COHbC values for the entire G-6-PD deficient group were higher than in the controls (0.75 +/- 0.17% v 0.62 +/- 0.19%, P 0.05) but did in the controls (r = 0.58, P < 0.001). COHbC values were increased to a similar extent in the G-6-PD-deficient, non-jaundiced (0.72 +/- 0.16%), the G-6-PD-deficient, jaundiced (0.80 +/- 0.19%) and the control, jaundiced (0.75 +/- 0.18%) subgroups, compared to the control, non-jaundiced subgroup (0.53 +/- 0.13%) (P < 0.05). Although present in G-6-PD deficient neonates, increased haemolysis was not directly related to the PSTB.

  16. A new paper-based analytical device for detection of Glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Kaewarsa, Phuritat; Laiwattanapaisal, Wanida; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic haemolytic disorder. Most persons with G6PD deficiency are asymptomatic, but exposure to oxidant drugs, such as the anti-malarial drug primaquine, may induce haemolysis, which is commonly found in Asian countries. A reliable test is necessary for diagnosing the deficiency to prevent an acute haemolytic crisis. This study proposes a novel quantitative method to detect G6PD deficiency using paper-based analytical devices (G6PDD-PAD). Wax printing was utilized for fabricating circular reaction zone patterns in paper. The colorimetric assay is based on the formation of formazan via a reduction of tetra-nitro blue tetrazolium (TNBT) by the G6PD enzyme on G6PDD-PAD. Detection was achieved by capturing the colour using a desktop scanner and the colour intensity was analysed with Adobe Photoshop C56. The results showed that the G6PD activity analysed by G6PDD-PAD was highly correlated with the standard biochemical assay (SBA) (r(2)=0.87, pPAD and the SBA (mean bias 1.4 IU/gHb). The detection limit was 0 IU/gHb of G6PD activity. This study demonstrates the feasibility of using G6PDD-PAD. This simple, low-cost test ($0.1/test) should be useful for diagnosing G6PD deficiency in resource-limited settings.

  17. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    Science.gov (United States)

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. © 2016 by the American Diabetes Association.

  18. A Comparison of Three Quantitative Methods to Estimate G6PD Activity in the Chittagong Hill Tracts, Bangladesh

    Science.gov (United States)

    Ley, Benedikt; Alam, Mohammad Shafiul; O’Donnell, James J.; Hossain, Mohammad Sharif; Kibria, Mohammad Golam; Jahan, Nusrat; Khan, Wasif A.; Thriemer, Kamala; Chatfield, Mark D.; Price, Ric N.; Richards, Jack S.

    2017-01-01

    Background Glucose-6-phosphate-dehydrogenase-deficiency (G6PDd) is a major risk factor for primaquine-induced haemolysis. There is a need for improved point-of-care and laboratory-based G6PD diagnostics to unsure safe use of primaquine. Methods G6PD activities of participants in a cross-sectional survey in Bangladesh were assessed using two novel quantitative assays, the modified WST-8 test and the CareStart™ G6PD Biosensor (Access Bio), The results were compared with a gold standard UV spectrophotometry assay (Randox). The handheld CareStart™ Hb instrument (Access Bio) is designed to be a companion instrument to the CareStart™ G6PD biosensor, and its performance was compared to the well-validated HemoCue™ method. All quantitative G6PD results were normalized with the HemoCue™ result. Results A total of 1002 individuals were enrolled. The adjusted male median (AMM) derived by spectrophotometry was 7.03 U/g Hb (interquartile range (IQR): 5.38–8.69), by WST-8 was 7.03 U/g Hb (IQR: 5.22–8.16) and by Biosensor was 8.61 U/g Hb (IQR: 6.71–10.08). The AMM between spectrophotometry and WST-8 did not differ (p = 1.0) but differed significantly between spectrophotometry and Biosensor (p0.05). Sensitivity and specificity for detecting G6PD activity <30% was 0.55 (95% confidence interval (95%CI): 0.44–0.66) and 0.98 (95%CI: 0.97–0.99) respectively for the WST-8 and 0.19 (95%CI: 0.12–0.29) and 0.99 (95%CI: 0.98–0.99) respectively for the Biosensor. Hb concentrations measured by HemoCue™ and CareStart™ Hb were strongly correlated (rs = 0.8, p<0.001, mean difference = 0.09 g Hb/dL, 95% LoA: -2.15 to 2.34). Conclusion WST-8 and the CareStart™ G6PD Biosensor represent advances in G6PD diagnostics in resource poor settings, but will require further development before clinical deployment. The CareStart™ Hb instrument produced a precise measure of haemoglobin concentration. PMID:28121993

  19. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation

    Science.gov (United States)

    Xu, Shuang-Nian; Wang, Tian-Shi; Li, Xi; Wang, Yi-Ping

    2016-01-01

    Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferation is dependent on the oxidative branch of PPP, in particular the first and rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Knockdown of G6PD reduces NADPH level in acute myeloid leukaemia (AML) cell lines. Exogenous lipid supplements partially restore the proliferation of G6PD-depleted cells. Deacetylase SIRT2 promotes NADPH production through deacetylating G6PD at lysine 403 (K403). Activation of G6PD by SIRT2 supports the proliferation and clonogenic activity of leukaemia cells. Chemical inhibitors against SIRT2 suppress G6PD activity, leading to reduced cell proliferation of leukaemia cells, but not normal hematopoietic stem and progenitor cells. Importantly, SIRT2 is overexpressed in clinical AML samples, while K403 acetylation is downregulated and G6PD catalytic activity is increased comparing to that of normal control. Together, our study reveals that acetylation regulation of G6PD is involved in the metabolic reprogramming of AML, and SIRT2 serves as a promising target for further therapeutic investigations. PMID:27586085

  20. Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method

    DEFF Research Database (Denmark)

    Enevold, Anders; Vestergaard, Lasse S; Lusingu, John

    2005-01-01

    BACKGROUND: Mutations in the haemoglobin beta-globin (HbB) and glucose-6-phosphate dehydrogenase (G6PD) genes cause widespread human genetic disorders such as sickle cell diseases and G6PD deficiency. In sub-Saharan Africa, a few predominant polymorphic variants of each gene account for a majority...

  1. Prevalence and Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency at the China-Myanmar Border.

    Directory of Open Access Journals (Sweden)

    Qing Li

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770, among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs in Southeast Asia (ten in exons and one in intron 11 using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198 of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198 cases and no mutation were found in 21.2% (42/198 cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87, followed by the Kaiping (8.0%; 7/87 and the Viangchan (2.2%; 2/87 variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (PT/IVS11nt93T>C SNPs

  2. Overexpression of G6PD Represents a Potential Prognostic Factor in Clear Cell Renal Cell Carcinoma

    Science.gov (United States)

    Zhang, Qiao; Yi, Xiaojia; Yang, Zhe; Han, Qiaoqiao; Di, Xuesong; Chen, Fufei; Wang, Yanling; Yi, Zihan; Kuang, Yingmin; Zhu, Yuechun

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) participates in glucose metabolism and it acts as the rate-limiting enzyme of the pentose phosphate pathway (PPP). Recently, G6PD dysregulation has been found in a variety of human cancers. Through analyzing published data in The Cancer Genome Atlas (TCGA), our pilot study indicated that G6PD mRNA expression was significantly higher in advanced Fuhrman grade in clear cell renal cell carcinoma (ccRCC). These clues promoted us to further evaluate the expression profile of G6PD and its prognostic impact in patients with ccRCC. In this study, G6PD expression levels were analyzed in 149 human ccRCC and normal tissues using immunohistochemistry. The results showed that compared with that in the normal renal samples, G6PD was found highly expressed in 51.0% of ccRCC (p<0.05). High expression of G6PD was significantly correlated to tumor extent, lymph node metastasis, Fuhrman grade, and TNM stage of ccRCC (all p<0.05). Moreover, positive G6PD expression was associated with poorer overall survival in ccRCC (p<0.001). In Cox regression analyses, high expression of G6PD also could be an independent prognostic factor for overall survival in ccRCC (p=0.007). This study suggests that overexpression of G6PD is associated with advanced disease status and therefore may become an important prognosticator for poor outcomes in ccRCC, as well as a potential therapeutic target for developing effective treatment modalities. PMID:28367246

  3. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    Directory of Open Access Journals (Sweden)

    Aldo Franco De Rose

    2016-10-01

    Full Text Available Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  4. Glucose-6-Phosphate Dehydrogenase Deficiency and Neonatal Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Ezzat Khodashenas

    2015-09-01

    Conclusion: Based on the findings, establishment of an early G6PD screening program, which can prevent further complications in neonates, seems essential, particularly in countries such as Iran where G6PD deficiency is highly prevalent.

  5. Hemolysis Induced by Glucose-6-Phosphate Dehydrogenase Deficiency and Its Association with Sex in Children

    Directory of Open Access Journals (Sweden)

    Esmaeel Sadeghi

    2010-03-01

    Full Text Available Background: Glucose-6-phosphate dehydrogenase (G6PDdeficiency is the most common enzyme disorder in human.The aim of this study was to determine the prevalence ofG6PD deficiency among children and evaluate its associationwith ABO/Rh blood groups.Method: Blood samples of 3401 asymptomatic children wereanalyzed and compared with 317 children who were admitted tohospital because of hemolysis resulted fromG6PD deficiency.Results: Among asymptomatic children 375 (11% were G6PDdeficient. Male to female ratio for this group was 4.2:1 and forthe hemolytic group was 2.5:1 (P=0.004. Two hundred andsixty-seven (84.2% of the patients with hemolysis wereyounger than 2 years, with the peak age of hemolysis between 2and 3 years (27.7%. The overall rate of hemolysis caused byG6PD deficiency was 12.3% during the 3 consecutive monthsof fresh Fava bean consumption. Blood groups O+, A+, and B+together constituted 87.1%, 87.7%, and 84% of the bloodgroups among normal children, asymptomatic G6PD deficientsubjects, and those with G6PD deficiency related hemolysisrespectively (P=0.367. Seven percent of the normal childrenand asymptomatic G6PD deficient subjects were Rh- vs 9.7 %of G6PD deficient children with hemolysis (P=0.16.Conclusion: The prevalence of G6PD deficiency among thechildren was 11%. Male to female ratio was greater in nonhemolyticvs hemolytic group so that the female share was higherin hemolytic group than in the other two groups (P=0.004.The distribution of ABO blood groups was similar amongasymptomatic non-G6PD deficient, asymptomatic G6PDdeficient,and G6PD-deficient children with hemolysis. Thedistribution of Rh- types among the G6PD-deficient childrenwith hemolysis and the other two groups was similar (9.7% vs7%, P=0.16.

  6. Glucose-6-phosphate-dehydrogenase deficiency and its correlation with other risk factors in jaundiced newborns in Southern Brazil

    Institute of Scientific and Technical Information of China (English)

    Clarissa Gutirrez Carvalho; Simone Martins Castro; Ana Paula Santin; Carina Zaleski; Felipe Gutirrez Carvalho; Roberto Giugliani

    2011-01-01

    Objective:To evaluate the correlation between glucose-6-phosphate-dehydrogenase (G6PD) deficiency and neonatal jaundice.Methods: Prospective, observational case-control study was conducted on490 newborns admitted to Hospital de Clínicas de Porto Alegre for phototherapy, who all experienced35 or more weeks of gestation, from March to December2007. Enzymatic screening ofG6PD activity was performed, followed byPCR.Results:There was prevalence of4.6% and a boy-girl ratio of3:1 in jaundiced newborns. No jaundiced neonate withABO incompatibility presented G6PD deficiency, and no Mediterranean mutation was found. A higher proportion of deficiency was observed in Afro-descendants. There was no association withUGT1A1 variants. Conclusions:G6PD deficiency is not related to severe hyperbilirubinemia and considering the high miscegenation in this area of Brazil, other gene interactions should be investigated.

  7. Five novel glucose-6-phosphate dehydrogenase deficiency haplotypes correlating with disease severity

    Directory of Open Access Journals (Sweden)

    Dallol Ashraf

    2012-09-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 deficiency is caused by one or more mutations in the G6PD gene on chromosome X. An association between enzyme levels and gene haplotypes remains to be established. Methods In this study, we determined G6PD enzyme levels and sequenced the coding region, including the intron-exon boundaries, in a group of individuals (163 males and 86 females who were referred to the clinic with suspected G6PD deficiency. The sequence data were analysed by physical linkage analysis and PHASE haplotype reconstruction. Results All previously reported G6PD missense changes, including the AURES, MEDITERRANEAN, A-, SIBARI, VIANGCHAN and ANANT, were identified in our cohort. The AURES mutation (p.Ile48Thr was the most common variant in the cohort (30% in males patients followed by the Mediterranean variant (p.Ser188Phe detectable in 17.79% in male patients. Variant forms of the A- mutation (p.Val68Met, p.Asn126Asp or a combination of both were detectable in 15.33% of the male patients. However, unique to this study, several of such mutations co-existed in the same patient as shown by physical linkage in males or PHASE haplotype reconstruction in females. Based on 6 non-synonymous variants of G6PD, 13 different haplotypes (13 in males, 8 in females were identified. Five of these were previously unreported (Jeddah A, B, C, D and E and were defined by previously unreported combinations of extant mutations where patients harbouring these haplotypes exhibited severe G6PD deficiency. Conclusions Our findings will help design a focused population screening approach and provide better management for G6PD deficiency patients.

  8. Evaluation of the blue formazan spot test for screening glucose 6 phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Pujades, A; Lewis, M; Salvati, A M; Miwa, S; Fujii, H; Zarza, R; Alvarez, R; Rull, E; Corrons, J L

    1999-06-01

    Several screening tests for glucose 6 phosphate dehydrogenase (G6PD) deficiency have been reported thus far, and a standardized method of testing was proposed by the International Council for Standardization in Hematology (ICSH). The screening test used in any particular laboratory depends upon a number of factors such as cost, time required, temperature, humidity, and availability of reagents. In this study, a direct comparison between three different G6PD screening methods has been undertaken. In 71 cases (50 hematologically normal volunteers, 9 hemizygous G6PD-deficient males, and 12 heterozygous deficient females), the blue formazan spot test (BFST) was compared with the conventional methemoglobin reduction test (HiRT) and the ICSH-recommended fluorescent spot test (FST-ICSH). In all cases, the results obtained with the three screening tests were correlated with the enzyme activity assayed spectrophotometrically. In hemizygous G6PD-deficient males, all cases were equally detected with the three methods: BFST (4.7-6.64, controls: 11.1-13.4), BMRT (score +3 in all 9 cases), and FST (no fluorescence in 9 cases). In heterozygous G6PD-deficient females, two methods detected 7 out of 12 cases (BFST: 8.71-11.75, controls: 11.1-13.4; and BMRT: score +3 in 7 cases), whereas the FST-ICSH missed all 12 cases that presented a variable degree of fluorescence. Although the sensitivity for G6PD-deficient carrier detection is the same for the BMRT and the BFST, the latter has the advantage of being semiquantitative and not merely qualitative. Unfortunately, none of the three screening tests compared here allowed the detection of the 100% heterozygote carrier state of G6PD deficiency.

  9. Glucose-6-phosphate dehydrogenase mutations and haplotypes in Mexican Mestizos.

    Science.gov (United States)

    Arámbula, E; Aguilar L, J C; Vaca, G

    2000-08-01

    In a screening for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in 1985 unrelated male subjects from the general population (Groups A and B) belonging to four states of the Pacific coast, 21 G-6-PD-deficient subjects were detected. Screening for mutations at the G-6-PD gene by PCR-restriction enzyme in these 21 G-6-PD-deficient subjects as well as in 14 G-6-PD-deficient patients with hemolytic anemia belonging to several states of Mexico showed two common G-6-PD variants: G-6-PD A-(202A/376G) (19 cases) and G-6-PD A-(376G/968C) (9 cases). In 7 individuals the mutations responsible for the enzyme deficiency remain to be determined. Furthermore, four silent polymorphic sites at the G-6-PD gene (PvuII, PstI, 1311, and NlaIII) were investigated in the 28 individuals with G-6-PD A- variants and in 137 G-6-PD normal subjects. As expected, only 10 different haplotypes were observed. To date, in our project aiming to determine the molecular basis of G-6-PD deficiency in Mexico, 60 unrelated G-6-PD-deficient Mexican males-25 in previous studies and 35 in the present work-have been studied. More than 75% of these individuals are from states of the Pacific coast (Sinaloa, Nayarit, Jalisco, Michoacán, Guerrero, Oaxaca, and Chiapas). The results show that although G-6-PD deficiency is heterogeneous at the DNA level in Mexico, only three polymorphic variants have been observed: G-6-PD A-(202A/376G) (36 cases), G-6-PD A-(376G/968C) (13 cases), and G-6-PD Seattle(844C) (2 cases). G-6-PD A- variants are relatively distributed homogeneously and both variants explain 82% of the overall prevalence of G-6-PD deficiency. The variant G-6-PD A-(202A/376G) represents 73% of the G-6-PD A- alleles. Our data also show that the variant G-6-PD A-(376G/968C)-which has been observed in Mexico in the context of two different haplotypes-is more common than previously supposed. The three polymorphic variants that we observed in Mexico are on the same haplotypes as found in subjects from

  10. Incidence and molecular characterization of Glucose-6-Phosphate Dehydrogenase deficiency among neonates for newborn screening in Chaozhou, China.

    Science.gov (United States)

    Yang, H; Wang, Q; Zheng, L; Zhan, X-F; Lin, M; Lin, F; Tong, X; Luo, Z-Y; Huang, Y; Yang, L-Y

    2015-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in southern China. The aim of this study is to assess the extent of this disease in Chinese neonates and determine its molecular characteristics using a novel molecular screening method. A total of 2500 neonates were routinely screened for G6PD deficiency using a modified fluorescent spot test (FST). PCR-high-resolution melting (HRM) analysis was then used for the molecular assay. The overall incidence of G6PD deficiency was 2.68% in our study cohort. Frequency in male population was 3.22% (44 neonates of 1365 male neonates), and in female population was 2.03% (23 neonates of 1135 female neonates). Of the 67 newborns suspected to be G6PD deficient based on FST (44 males, 23 females), 58 of 67 (87%) were detected with gene alterations. Seven kinds of mutations [c.95A>G, c.392G>T, c.493A>G, c.871G>A, c.1360C>T, c.1376G>T, and c.1388G>A] were identified by HRM analysis. Routine newborn screening in Chaozhou, China with a relatively high prevalence of G6PD deficiency is justified and meets the World Health Organization recommendation. The usage of molecular diagnosis can favor the detection of heterozygotes which can be a supplement to regular newborn screening and useful for premarital and prenatal diagnosis for G6PD deficiency. © 2014 John Wiley & Sons Ltd.

  11. Clinical analysis of 5 cases of sickle cell disease combinded G6PD deficiency.%镰状细胞病合并G6PD缺陷症五例临床分析

    Institute of Scientific and Technical Information of China (English)

    谢庆芳; 李菊香; 苏运钦; 尹更生; 谭润平

    2010-01-01

    目的 总结5例血红蛋白S病(HbS)各类实验数据,为临床提供实验诊断,预防新生儿的严重并发症.方法 血常规检测,全自动血红蛋白电泳,G6PD/6PGD直接比值法,G6PD/6PGD全自动生化仪日立7600检测G6PD缺陷症.结果 检测5例HbS患者,发现合并a地贫1例,4例合并G6PD缺陷症.结论 Hb电泳区带定量是诊断HbS的重要方法.镰变试验是鉴别HbS与HbD的确诊试验.G6PD缺陷症在非洲裔HbS患者中有较高的发生率,如果同时合并2种遗传病会加重贫血症状.

  12. Glucose-6-Phosphate Dehydrogenase Deficiency and Adrenal Hemorrhage in a Filipino Neonate with Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Akira Ohishi

    2013-05-01

    Full Text Available We report on a Filipino neonate with early onset and prolonged hyperbilirubinemia who was delivered by a vacuum extraction due to a prolonged labor. Subsequent studies revealed adrenal hemorrhage and glucose-6-phosphate dehydrogenase (G6PD deficiency. It is likely that asphyxia and resultant hypoxia underlie the occurrence of adrenal hemorrhage and the clinical manifestation of G6PD deficiency and that the presence of the two events explains the early onset and prolonged hyperbilirubinemia of this neonate. Our results represent the importance of examining possible underlying factors for the development of severe, early onset, or prolonged hyperbilirubinemia.

  13. Glucose-6 phosphate dehydrogenase deficiency and psychotic illness

    Directory of Open Access Journals (Sweden)

    Vijender Singh

    2012-01-01

    Full Text Available Mr. T, a 28-year-old unmarried male, a diagnosed case of Glucose-6 Phosphate Dehydrogenase (G6PD deficiency since childhood, presented with 13 years of psychotic illness and disturbed biological functions. He showed poor response to antipsychotics and mood stabilizers and had three prior admissions to Psychiatry. There was a family history of psychotic illness. The General Physical Examination and Systemic Examination were unremarkable. Mental Status Examination revealed increased psychomotor activity, pressure of speech, euphoric affect, prolixity, delusion of persecution, delusion of grandiosity, delusion of control, thought withdrawal and thought insertion, and second and third person auditory hallucinations, with impaired judgment and insight. A diagnosis of schizophrenia paranoid type, with a differential diagnosis of schizoaffective disorder manic subtype, was made. This case is being reported for its rarity and atypicality of clinical presentation, as well as a course of psychotic illness in the G6PD Deficiency state,with its implications on management.

  14. Haemolysis in G6PD Heterozygous Females Treated with Primaquine for Plasmodium vivax Malaria: A Nested Cohort in a Trial of Radical Curative Regimens

    Science.gov (United States)

    Win, Htun Htun; Thitipanawan, Niramon; Po, Christina; Chowwiwat, Nongnud; Raksapraidee, Rattanaporn; Wilairisak, Pornpimon; Keereecharoen, Lily; Proux, Stéphane

    2017-01-01

    Background Radical cure of Plasmodium vivax malaria with 8-aminoquinolines (primaquine or tafenoquine) is complicated by haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. G6PD heterozygous females, because of individual variation in the pattern of X-chromosome inactivation (Lyonisation) in erythroid cells, may have low G6PD activity in the majority of their erythrocytes, yet are usually reported as G6PD “normal” by current phenotypic screening tests. Their haemolytic risk when treated with 8-aminoquinolines has not been well characterized. Methods and Findings In a cohort study nested within a randomised clinical trial that compared different treatment regimens for P. vivax malaria, patients with a normal standard NADPH fluorescent spot test result (≳30%–40% of normal G6PD activity) were randomised to receive 3 d of chloroquine or dihydroartemisinin-piperaquine in combination with primaquine, either the standard high dose of 0.5 mg base/kg/day for 14 d or a higher dose of 1 mg base/kg/d for 7 d. Patterns of haemolysis were compared between G6PD wild-type and G6PD heterozygous female participants. Between 21 February 2012 and 04 July 2014, 241 female participants were enrolled, of whom 34 were heterozygous for the G6PD Mahidol variant. Haemolysis was substantially greater and a larger proportion of participants reached the threshold of clinically significant haemolysis (fractional haematocrit reduction >25%) in G6PD heterozygotes taking the higher (7 d) primaquine dose (9/17 [53%]) compared with G6PD heterozygotes taking the standard high (14 d) dose (2/16 [13%]; p = 0.022). In heterozygotes, the mean fractional haematocrit reductions were correspondingly greater with the higher primaquine dose (7-d regimen): −20.4% (95% CI −26.0% to −14.8%) (nadir on day 5) compared with the standard high (14 d) dose: −13.1% (95% CI −17.6% to −8.6%) (nadir day 6). Two heterozygotes taking the higher (7 d) primaquine dose

  15. 赤道几内亚比奥科岛G6PD缺乏症分子流行病学研究%Molecular epidemiological investigation of the G6PD deficiency on Bioko Island, Equatorial Guinea

    Institute of Scientific and Technical Information of China (English)

    詹小芬; 陈江涛; 谢东德; 杨辉; 杨惠钿; 杨立业; 陆志为; Santiago-m Monte-Nguba; Juan Carlos Salas Ehapo

    2014-01-01

    目的 探讨非州西部赤道几内亚比奥科岛(Bioko Island)人群的葡萄糖-6-磷酸脱氢酶(G6PD)缺乏症的发生率及基因型. 方法 在2012年1月至5月期间,用荧光斑点法对2 187名比奥科岛当地居民进行G6PD缺乏症筛查.采用高分辨熔解曲线(High-resolution melting,HRM)分析G6PD缺乏的标本的c.202 G>A与c.376 A>G.对HRM筛选不出突变的G6PD酶学缺乏的样本,针对非洲的其他突变类型:c.542 A>T(rs5030872)、c.680 G>A(rs137852328)、c.968 T>C(rs76723693)进行PCR-DNA测序. 结果 赤道几内亚比奥科岛人群的G6PD缺乏症总发生率为8.64% (189/2 187),其中男性84例(9.04%,84/929),女性105例(8.34%,105/1 258),男女检出率比为1.08:1.在189例G6PD缺乏标本中共检出两种基因类型,其中包括G6PD A变异体(c.376 A>G/c.202 G>A)186例(98.41%,186/189G6PD Betica(c.376 A>G/c.968T> C)3例(1.59%3/189). 结论 赤道几内亚比奥科岛是G6PD缺乏症高发区,基因型比较单一.HRM技术可用于非洲地区G6PD缺乏症的临床诊断和流行病学研究.

  16. Using G6PD tests to enable the safe treatment of Plasmodium vivax infections with primaquine on the Thailand-Myanmar border: A cost-effectiveness analysis.

    Directory of Open Access Journals (Sweden)

    Angela Devine

    2017-05-01

    Full Text Available Primaquine is the only licensed antimalarial for the radical cure of Plasmodium vivax infections. Many countries, however, do not administer primaquine due to fear of hemolysis in those with glucose-6-phosphate dehydrogenase (G6PD deficiency. In other settings, primaquine is given without G6PD testing, putting patients at risk of hemolysis. New rapid diagnostic tests (RDTs offer the opportunity to screen for G6PD deficiency prior to treatment with primaquine. Here we assessed the cost-effectiveness of using G6PD RDTs on the Thailand-Myanmar border and provide the model as an online tool for use in other settings.Decision tree models for the management of P. vivax malaria evaluated the costs and disability-adjusted life-years (DALYs associated with recurrences and primaquine-induced hemolysis from a health care provider perspective. Screening with G6PD RDTs before primaquine use was compared to (1 giving chloroquine alone and (2 giving primaquine without screening. Data were taken from a recent study on the impact of primaquine on P. vivax recurrences and a literature review. Compared to the use of chloroquine alone, the screening strategy had similar costs while averting 0.026 and 0.024 DALYs per primary infection in males and females respectively. Compared to primaquine administered without screening, the screening strategy provided modest cost savings while averting 0.011 and 0.004 DALYs in males and females respectively. The probabilistic sensitivity analyses resulted in a greater than 75% certainty that the screening strategy was cost-effective at a willingness to pay threshold of US$500, which is well below the common benchmark of per capita gross domestic product for Myanmar.In this setting G6PD RDTs could avert DALYs by reducing recurrences and reducing hemolytic risk in G6PD deficient patients at low costs or cost savings. The model results are limited by the paucity of data available in the literature for some parameter values

  17. Using G6PD tests to enable the safe treatment of Plasmodium vivax infections with primaquine on the Thailand-Myanmar border: A cost-effectiveness analysis.

    Science.gov (United States)

    Devine, Angela; Parmiter, Minnie; Chu, Cindy S; Bancone, Germana; Nosten, François; Price, Ric N; Lubell, Yoel; Yeung, Shunmay

    2017-05-01

    Primaquine is the only licensed antimalarial for the radical cure of Plasmodium vivax infections. Many countries, however, do not administer primaquine due to fear of hemolysis in those with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In other settings, primaquine is given without G6PD testing, putting patients at risk of hemolysis. New rapid diagnostic tests (RDTs) offer the opportunity to screen for G6PD deficiency prior to treatment with primaquine. Here we assessed the cost-effectiveness of using G6PD RDTs on the Thailand-Myanmar border and provide the model as an online tool for use in other settings. Decision tree models for the management of P. vivax malaria evaluated the costs and disability-adjusted life-years (DALYs) associated with recurrences and primaquine-induced hemolysis from a health care provider perspective. Screening with G6PD RDTs before primaquine use was compared to (1) giving chloroquine alone and (2) giving primaquine without screening. Data were taken from a recent study on the impact of primaquine on P. vivax recurrences and a literature review. Compared to the use of chloroquine alone, the screening strategy had similar costs while averting 0.026 and 0.024 DALYs per primary infection in males and females respectively. Compared to primaquine administered without screening, the screening strategy provided modest cost savings while averting 0.011 and 0.004 DALYs in males and females respectively. The probabilistic sensitivity analyses resulted in a greater than 75% certainty that the screening strategy was cost-effective at a willingness to pay threshold of US$500, which is well below the common benchmark of per capita gross domestic product for Myanmar. In this setting G6PD RDTs could avert DALYs by reducing recurrences and reducing hemolytic risk in G6PD deficient patients at low costs or cost savings. The model results are limited by the paucity of data available in the literature for some parameter values, including the

  18. The present situation of thalassemia and G - 6PD deficiency in pregnant women in Shenzhen Baoan area.%深圳宝安地区孕妇地中海贫血和G-6PD缺乏现状调查研究分析

    Institute of Scientific and Technical Information of China (English)

    刘爱胜; 陈荣贵; 文艳

    2011-01-01

    目的 调查研究深圳宝安地区孕妇地中海贫血和葡萄糖-6-磷酸脱氢酶(G-6PD)缺乏发生率现状,探讨产前筛查地中海贫血和G-6PD的临床价值.方法 应用地中海贫血一管筛查法和G-6PD比值法检测孕14~20周孕妇5 976例,筛查其地中海贫血及G-6PD缺乏症发生率.同时,对筛查地中海贫血阳性者进行血红蛋白电泳分型.结果在5 976例受检者孕妇中,地中海贫血者为372例,G-6PD缺乏者为286例,检出率分别为6.2%(372/5976)和4.8%(286/5976).检出α地中海贫血163例,占43.8%(163/372),β-地中海贫血189例,占50.8%(189/372),其它类型异常血红蛋白5.4%(20/372).结论 在地中海贫血高发区进行产前地中海贫血和G-6PD缺乏的筛查,是避免重型地中海贫血患儿的出生及新生儿溶血黄疸的有效措施.%Objective To investigate the incidence of thalassemia and G - 6PD deficiency in pregnant woman in Baoan, Shenzhen, and discuss the clinical value of pre - natal screening of thalassemia and G - 6PD. Methods Thalassemia and G - 6PD deficiency were screened with the examinations of osmotic fragility and relative value of G - 6PD respectively in 5976 14 ~ 20 weeks pregnant women. Hemoglobin electrophoresis was further performed for pregnant women with positive thalassemia screening results. Results Of 5976 pregnant women, thalassemia and G - 6PD deficiency were found in 372 ( 6.2% ) and 286 ( 4.8% ) respectively. The classification of the 372 thalassemia patients included α - thalassemia in 163 ( 43.8%, 163/372 ), β - thalassemfia in 189 ( 50.8%, 189/372 ) and other type abnormal hemoglobin in 20 ( 5.4%, 20/372 ). Conclusion Pre - natal screening of thalassemia and G - 6PD deficiency is effective in the prevention of thalassemia and hemolytic jaundice of the newborn.

  19. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    LaRue, Nicole; Kahn, Maria; Murray, Marjorie; Leader, Brandon T; Bansil, Pooja; McGray, Sarah; Kalnoky, Michael; Zhang, Hao; Huang, Huiqiang; Jiang, Hui; Domingo, Gonzalo J

    2014-10-01

    A barrier to eliminating Plasmodium vivax malaria is inadequate treatment of infected patients. 8-Aminoquinoline-based drugs clear the parasite; however, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk for hemolysis from these drugs. Understanding the performance of G6PD deficiency tests is critical for patient safety. Two quantitative assays and two qualitative tests were evaluated. The comparison of quantitative assays gave a Pearson correlation coefficient of 0.7585 with significant difference in mean G6PD activity, highlighting the need to adhere to a single reference assay. Both qualitative tests had high sensitivity and negative predictive value at a cutoff G6PD value of 40% of normal activity if interpreted conservatively and performed under laboratory conditions. The performance of both tests dropped at a cutoff level of 45%. Cytochemical staining of specimens confirmed that heterozygous females with > 50% G6PD-deficient cells can seem normal by phenotypic tests. © The American Society of Tropical Medicine and Hygiene.

  20. Validation of the rapid test Carestart(tm G6PD among malaria vivax-infected subjects in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Marcelo Augusto Mota Brito

    Full Text Available Abstract: INTRODUCTION: In the Brazilian Amazon, malaria infections are primarily caused by Plasmodium vivax. The only drug that kills the hypnozoite form of P. vivax is primaquine, thereby preventing relapse. However, treating glucose-6-phosphate dehydrogenase (G6PD-deficient individuals with primaquine can lead to severe hemolysis. G6PD deficiency (G6PDd affects approximately 400 million people worldwide, most of whom live in malaria-endemic areas. Therefore, clinicians need tools that can easily and reliably identify individuals with G6PDd. This study estimated the accuracy of the Carestart(tm G6PD rapid test (Access Bio in the diagnosis of G6PDd in male participants with and without P. vivax acute malaria. METHODS: Male participants were recruited in Manaus. Malaria diagnosis was determined by thick blood smear. G6PD quantitative analysis was performed spectro photometrically at a wave length of 340nm. The Carestart(tm G6PD test was performed using venous blood. Genotyping was performed for individuals whose samples had an enzyme activity less than 70% of the normal value. RESULTS: Six hundred and seventy-four male participants were included in this study, of whom 320 had a diagnosis of P. vivax malaria. In individuals with enzyme activity lower than 30% (n=13, the sensitivity, specificity, positive predictive value, and negative predictive value of the Carestart(tm G6PD test were as follows: 61.5% (95%CI: 35.5%-82.3%, 98.3% (95%CI: 97.0%-99.1%, 42.1% (95%CI: 23.1%-63.7%, and 99.2% (95%CI: 98.2%-82.3%, 98.3% (95%CI: 97.0%-99.1%, 42.1% (95%CI: 23.1%-63.7%, and 99.2% (95%CI: 98.2%-99.7%, respectively. Increases in sensitivity were observed when increasing the cut-off value. CONCLUSIONS: Despite low sensitivity, Carestart(tm G6PD remains a good alternative for rapid diagnosis of G6PDd in malaria-endemic regions.

  1. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  2. Prevalence of glucose-6-phosphate dehydrogenase deficiency and sickle cell trait among blood donors in Riyadh

    Directory of Open Access Journals (Sweden)

    Alabdulaali Mohammed

    2010-01-01

    Full Text Available Background and Aims: Blood donation from glucose-6-phosphate dehydrogenase (G6PD-deficient and sickle cell trait (SCT donors might alter the quality of the donated blood during processing, storage or in the recipient′s circulatory system. The aim of this study was to determine the prevalence of G6PD deficiency and SCT among blood donors coming to King Khalid University Hospital (KKUH in Riyadh. It was also reviewed the benefits and risks of transfusing blood from these blood donors. Materials and Methods: This cross-sectional study was conducted on 1150 blood samples obtained from blood donors that presented to KKUH blood bank during the period April 2006 to May 2006. All samples were tested for Hb-S by solubility test, alkaline gel electrophoresis; and for G6PD deficiency, by fluorescent spot test. Results: Out of the 1150 donors, 23 (2% were diagnosed for SCT, 9 (0.78% for G6PD deficiency and 4 (0.35% for both conditions. Our prevalence of SCT and G6PD deficiency is higher than that of the general population of Riyadh. Conclusion: We recommend to screen all units for G6PD deficiency and sickle cell trait and to defer donations from donors with either of these conditions, unless if needed for special blood group compatibility, platelet apheresis or if these are likely to affect the blood bank inventory. If such blood is to be used, special precautions need to be undertaken to avoid complications in high-risk recipients.

  3. False-Positive Newborn Screen Using the Beutler Spot Assay for Galactosemia in Glucose-6-Phosphate Dehydrogenase Deficiency.

    Science.gov (United States)

    Stuhrman, Grace; Perez Juanazo, Stefanie J; Crivelly, Kea; Smith, Jennifer; Andersson, Hans; Morava, Eva

    2017-01-12

    Classical galactosemia is detected through newborn screening by measuring galactose-1-phosphate uridylyltransferase (GALT) in the USA primarily via the Beutler spot assay. We report on an 18-month-old patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency that was originally diagnosed with classical galactosemia. The patient presented with elevated liver function enzymes and bilirubinemia and was immediately treated with soy-based formula. Confirmatory tests revealed deficiency of the GALT enzyme, however, full-sequencing of GALT was normal, suggestive of a different ideology. The Beutler spot assay uses three other enzymatic steps in addition to GALT. A deficiency in either of these enzymes can result in suspected decreased GALT activity when using the Beutler assay. Congenital Disorders of Glycosylation screening for phosphoglucomutase-1 deficiency was negative. Quantitative analysis of G6PD enzyme in red blood cells showed a severe deficiency and a deletion in G6PD. Soy-formula, the standard treatment for galactosemia, has been reported to trigger hemolysis in G6PD deficient patients. G6PD and phosphoglucomutase-1 deficiencies should be considered when confirmatory tests are negative for pathogenic variants in GALT and galactose-1-phosphate level is normal.

  4. Analysis of thalassemia and G6PD activity in people of childbearing age%广州市育龄人群地中海贫血和G6PD活性检测结果分析

    Institute of Scientific and Technical Information of China (English)

    刘丽红; 屈艳霞; 余建群; 陈桂兰

    2015-01-01

    目的:了解广州市育龄人群地中海贫血(地贫)和葡萄糖-6-磷酸脱氢酶(G6PD)缺乏症的检出率、地贫患者的G6PD活性、地贫与G6PD活性检测的相互影响。方法抽取21628例受检者的静脉血,采用平均红细胞体积(MCV)、平均红细胞血红蛋白量(MCH)进行地贫初筛,对初筛阳性者进行基因检测;采用酶速率法检测G6PD活性。结果①地贫的检出率为9.94%(2149/21628);② G6PD缺乏症的检出率为7.96%(1721/21628),男、女性别比例为1.96:1;③地贫组(除α-地贫2组)与非地贫组比较,G6PD活性均有不同程度的升高;各种类型地贫组之间G6PD活性增高水平比较,差异有统计学意义(P<0.05);④地贫基因携带合并G6PD缺乏者的MCV、M CH高于地贫基因携带G6PD正常者,差异有统计学意义(P<0.05)。结论本地区是地贫和G6PD缺乏症的高发区;G6PD活性增高的程度不同可作为不同类型地贫的辅助诊断参考指标;G6PD缺乏可影响MCV、MCH筛查地贫的敏感性。%Objective To explore the incidence of thalassemia and glucose-6-phosphate dehydrogenase (G6PD) deficiency, the G6PD activity of patients with thalassemia, and the interaction between thalassemia and G6PD activity. Methods A total of 21 628 people were screened for thalassemia by mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH). The people with positive results then underwent thalassemia gene test. The G6PD activities were detected by enzyme kinetic method. Results The incidence of thalassemia was 9.94%(2 149/21 628), and the incidence of G6PD deficiency was 7.96%(1 721/21 628), with male to female ratio of 1.96:1. Compared with non-thalassemia group, the G6PD activities of thalassemia groups all increased significantly, except theα-thalassemia group 2. The increase in G6PD activity showed statistically significant differences between the thal-assemia groups (P<0.05). The people of thalassemia gene complicated with

  5. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth.

    Science.gov (United States)

    Rao, Xiongjian; Duan, Xiaotao; Mao, Weimin; Li, Xuexia; Li, Zhonghua; Li, Qian; Zheng, Zhiguo; Xu, Haimiao; Chen, Min; Wang, Peng G; Wang, Yingjie; Shen, Binghui; Yi, Wen

    2015-09-24

    The pentose phosphate pathway (PPP) plays a critical role in macromolecule biosynthesis and maintaining cellular redox homoeostasis in rapidly proliferating cells. Upregulation of the PPP has been shown in several types of cancer. However, how the PPP is regulated to confer a selective growth advantage on cancer cells is not well understood. Here we show that glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, is dynamically modified with an O-linked β-N-acetylglucosamine sugar in response to hypoxia. Glycosylation activates G6PD activity and increases glucose flux through the PPP, thereby providing precursors for nucleotide and lipid biosynthesis, and reducing equivalents for antioxidant defense. Blocking glycosylation of G6PD reduces cancer cell proliferation in vitro and impairs tumor growth in vivo. Importantly, G6PD glycosylation is increased in human lung cancers. Our findings reveal a mechanistic understanding of how O-glycosylation directly regulates the PPP to confer a selective growth advantage to tumours.

  6. Phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes.

    Science.gov (United States)

    Saha, N; Patgunarajah, N

    1981-08-01

    The phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes was investigated in three populations in the Sudan and one population in Nilgiris, India. No significant consistent association of red cell acid phosphatase phenotypes was observed with these polymorphisms. However, there was a lack of acid phosphatase AB in G6PD deficient subjects from Nilgiris. The relative quantitative expression of red cell acid phosphatase genes PA, PB, and PC was 1.0, 1.2, and 1.3, respectively. The red cell acid phosphatase activity was higher (15%) in the presence of raised haemoglobin A2 and in sickle cell anaemia (21%). Those with Hp2 had 18% higher level of acid phosphatase than those with Hp1. G6PD deficient subjects had a lower level of acid phosphatase activity (20%) than those with normal G6PD activity.

  7. A novel c.197T ® A variant among Brazilian neonates with glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    José Pereira de Moura Neto

    2008-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 deficiency is the most common enzyme deficiency worldwide, causing a spectrum of diseases including neonatal hyperbilirubinemia and acute or chronic hemolysis. We used the methemoglobin reduction test and G6PD electrophoresis to screen 655 neonates (354 females and 301 males for common G6PD mutations in the city of Salvador in the Northeastern Brazilian state Bahia and found that 66 (10.1% were G6PD-deficient (41 females and 25 males. The 66 (10.1% G6PD-deficient neonates were assessed for the c.376 A -> G (exon 5 and c.202 G -> A (exon 4 mutations using the polymerase chain reaction and restriction enzyme fragment length polymorphism (PCR-RFLP analysis and the results validated by DNA sequencing. Of the 66 G6PD-deficient neonates investigated we found that 54 (81.8% presented the c.376 A -> G (p.Asn126Asp and c.202 G -> A (p.Val68Met mutations, two (3% had the c.376 A -> G mutation only, two (3% had the c.202 G -> A mutation only, five (7.6% exhibited a previously unrecorded 197T -> A (p.Phe66Thr substitution in exon 4 and three showed no mutations at any of these sites. Of the five neonates exhibiting the new 197T -> A (p.Phe66Thr substitution, four (6.1% also presented the c.202 G -> A and c.376 A -> G mutations and one (1.5% had the c.[197T -> A / 202 G -> A] combination. We propose to name the new variant G6PD Bahia.

  8. 云南10个民族7岁以下儿童血红蛋白病与G6PD缺乏症的调查%Investigation on hemoglobinopathy and G6PD deficiency among the Children under 7 years of ten ethnic groups in Yunnan

    Institute of Scientific and Technical Information of China (English)

    姚莉琴; 王兴田; 邹团标; 陈谦; 杨发斌; 忽丽莎; 范丽梅; 全星; 赵钟鸣; 刘锦桃

    2011-01-01

    目的:了解云南三边境州10个特有少数民族的7岁以下儿童血红蛋白病和G6PD缺乏症的现状.方法:血红蛋白病检测:对调查者应用日本SysmexKX - 21N和迈瑞- 2000血细胞分析仪进行血细胞分析,醋酸纤维薄膜电泳检测血红蛋白,DNA序列分析及ARMS基因检测;G6PD缺乏症检测采用改良葡萄糖6-磷酸脱氢酶(G6PD)比值法.结果:地贫检出率以德宏州最高(46.2%),怒江州最低(30.6%),版纳州居中.β-地贫以阿昌族居首位40.6% (39/96),独龙族最低为2.5%(5/204).α--地贫以版纳傣族最高为22.1%(266/1204),其次为独龙族19.1% (39/204).G6PD缺乏症检出率德宏州为6.7%(146/2190),版纳州为2.2% (60/2780),怒江州为1.0% (14/1407).G6PD缺乏症以德昂族最高为8.6% (30/349),其次为阿昌族7.3% (19/261).异常血红蛋白检出率为2.4%.结论:血红蛋白病和G6PD缺乏症在云南省三边境州10个特有少数民族7岁以下儿童属高发,血红蛋白病和G6PD缺乏症的人群地理分布与历史上疟疾流行的地理分布存在着一定的相关性.%Objective: To understand the current situations of hemoglobinopathy and G6PD deficiency among the children under 7 years of ten ethnic groups in border of Yunnan. Methods: Detection of hemoglobin; the children received blood cell analysis by Japanese SysmexKX - 21N blood cell analyzer and Mindray - 2000 blood cell analyzer, cellulose acetate membrane electrophoresis was used to detect hemoglobin, DNA sequence analysis and ARMS gene detection were conducted. Detection of G6PD deficiency: modified G6PD ratio method was used. Results: The incidence of thalassaemia in Dehong prefecture was the highest (46. 2% ) , the incidence of thalassaemia in Nujiang prefecture was the lowest ( 30. 6% ) , the incidence of thalassaemia in Banna prefecture was moderate. The incidence of β - thalassaemia in children of Achang nationality was the highest (40. 6% , 39/96) , the incidence of p

  9. Characterization of glucose-6-phosphate dehydrogenase deficiency and identification of a novel haplotype 487G>A/IVS5-612(G>C) in the Achang population of southwestern China

    Institute of Scientific and Technical Information of China (English)

    YANG YinFeng; ZHU YueChun; LI DanYi; LI ZhiGang; L(U) HuiRu; WU Jing; TANG Jing; TONG ShuFen

    2007-01-01

    The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency and its gene mutations were studied in the Achang population from Lianghe County in Southwestern China. We found that 7.31%(19 of 260) males and 4.35% (10 of 230) females had G6PD deficiency. The molecular analysis of G6PD gene exons 2-13 was performed by a PCR-DHPLC-Sequencing or PCR-Sequencing. Sixteen independent subjects with G6PD Mahidol (487G>A) and the new polymorphism IVS5-612 (G>C), which combined into a novel haplotype, were identified accounting for 84.2% (16/19). And 100% Achang G6PD Mahidol were linked to the IVS5-612 C. The percentage of G6PD Mahidol in the Achang group is close to that in the Myanmar population (91.3% 73/80), which implies that there are some gene flows between Achang and Myanmar populations. Interestingly, G6PD Canton (1376G>T) and G6PD Kaiping(1388G>A), which were the most common G6PD variants from other ethnic groups in China, were not found in this Achang group, suggesting that there are different G6PD mutation profiles in the Achang group and other ethnic groups in China. Our findings appear to be the first documented report on the G6PD genetics of the AChang people, which will provide important clues to the Achang ethnic group origin and will help prevention and treatment of malaria in this area.

  10. Characterization of glucose-6-phosphate dehydrogenase deficiency and identification of a novel haplotype 487G>A/IVS5-612(G>C) in the Achang population of southwestern China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency and its gene mutations were studied in the Achang population from Lianghe County in Southwestern China. We found that 7.31% (19 of 260) males and 4.35% (10 of 230) females had G6PD deficiency. The molecular analysis of G6PD gene exons 2―13 was performed by a PCR-DHPLC-Sequencing or PCR-Sequencing. Sixteen inde-pendent subjects with G6PD Mahidol (487G>A) and the new polymorphism IVS5-612 (G>C), which combined into a novel haplotype, were identified accounting for 84.2% (16/19). And 100% Achang G6PD Mahidol were linked to the IVS5-612 C. The percentage of G6PD Mahidol in the Achang group is close to that in the Myanmar population (91.3% 73/80), which implies that there are some gene flows between Achang and Myanmar populations. Interestingly, G6PD Canton (1376G>T) and G6PD Kaiping (1388G>A), which were the most common G6PD variants from other ethnic groups in China, were not found in this Achang group, suggesting that there are different G6PD mutation profiles in the Achang group and other ethnic groups in China. Our findings appear to be the first documented report on the G6PD genetics of the AChang people, which will provide important clues to the Achang ethnic group origin and will help prevention and treatment of malaria in this area.

  11. DETECTION OF POINT MUTATIONS IN EXON 2 OF THE G6PD GENE IN CHINESE G6PD VARIANTS

    Institute of Scientific and Technical Information of China (English)

    许卫明; 王菁; 华小云; 杜传书

    1994-01-01

    In the past few years,a total of 6 different mutations of the G6PD gene have been reported in china.One of these,the C6 mutation(A95→G),accounted for about 15.4% of the Chinese G6PD variants.In ordet to develop a strategy for rapid detection of mutation-containing exons of the G6PD gene,we applied the single-strand confor-mation polymorphism(SSCP)technique to the detection of mutations in exon 2 of this gene.We observed four pa-tients with abnormal migration patterns of the exon 2 band among 20 cases of G6PD variants.Direct PCR se-quencing confirmed a Tto C substitution in exon 2 that has previously been reported.This procedure is therefore of particular importance for the rapid detection of mutation-containing exons in the G6PD gene.

  12. Prevalência da deficiência da glicose-6-fosfato desidrogenase em doadores de sangue de Mossoró, Rio Grande do Norte Prevalence of glucose-6-phosphate dehydrogenase deficiency in blood donors of Mossoró, Rio Grande do Norte

    Directory of Open Access Journals (Sweden)

    Ulysses Madureira Maia

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy. It affects as many as 330 million individuals worldwide. This deficiency may determine neonatal jaundice, chronic nonspherocytic hemolytic anemia and acute hemolytic anemia induced by drugs, infections and broad bean ingestion. The efficacy of blood transfusion is decreased when the donor is G6PD deficient. In this study, we aimed at determining the prevalence of G6PD deficiency in blood donors of Mossoro, Brazil. Samples of 714 blood donors (576 men and 138 women; 343 white and 371 non-white with ages ranging from 18 to 62 years and that accepted to participate in the study were analyzed. All participants answered a standard questionnaire. G6PD activity was analyzed by the methemoglobin reduction test with deficiency being confirmed by the semiquantitative test. The overall prevalence of G6PD deficiency in blood donors was 3.8%, similar to the rate described for others regions of Brazil. There was no significant statistical difference in the frequency of G6PD deficiency between men and women, nor between white and non-white blood donors. This relatively high frequency of G6PD deficiency highlights a need to screen blood donors for this condition.

  13. 新生儿脐血地贫筛查和葡萄糖-6-磷酸脱氢酶缺乏的分析%Prenatal screening of thalassemia in 7210 samples of neonatal cord blood and G6PD deficiency

    Institute of Scientific and Technical Information of China (English)

    余小燕; 余相; 张丽科

    2010-01-01

    目的 探讨经过规律产检和遗传咨询新生儿血红蛋白病和红细胞酶疾病的发病率的控制情况.方法 应用血红蛋白电泳和葡萄糖-6-磷酸脱氢酶(G6PD)比值法检查7210例新生儿的脐血血红蛋白电泳区带和G-6-PD结果.结果 筛查7210例新生儿脐血中,检出G6PD缺乏患儿150例,静止型α-地贫85例,标准型α-地贫205例,检出率各为4.48%、2.54%、6.13%.09年检出G6PD缺乏患儿166例,静止型α-地贫95例,标准型α-地贫220例,检出率各为4.30%、2.46%、5.69%.同比下降分别为0.18%、0.08%、0.44%.结论 经过正规的产检和遗传咨询后确认为低风险的新生儿出生后发病的概率比预测的概率减低,且产检和遗传咨询对预防重度地贫患儿的出生有重大的作用.%Objective To explore the incidence of newborn hemoglobinopathy and erythrocyte enzyme disorders after regular prenatal visits and genetic consulting. Methods The band on hemoglobin electrophoresis and the G6PD level were detected in 7210 samples of umbilical cord blood by hemoglobin electrophoresis and G6PD ratio method. Results Of 7210 samples,the detection rate of G6PD deficiency was 4.38%. The detected rates of α -thalassemia with a/a mutation and standard α-thalassemia were 2.50%and 5.89%. The incidence of the three disorders in 2009 was decreased by 0.18%,0.08%,and 0.44%,as compared with 2008. Conclusions The probability of the incidence of the disorders reduces in the confirmed low-risk neonates after regular prenatal visits and consulting,as compared with the predictive probability. Prenatal visits and genetic consulting play an important role in preventing the birth rate of neonates with severe thalassemia.

  14. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    Science.gov (United States)

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H2O2. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H2O2, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H2O2. After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H2O2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H2O2, and viability decreased in both groups in 40, 60, 80, and 120 µM H2O2. However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2, and the reducing equivalents necessary for protection against H2O2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  15. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study

    Science.gov (United States)

    Uyoga, Sophie; Ndila, Carolyne M; Macharia, Alex W; Nyutu, Gideon; Shah, Shivang; Peshu, Norbert; Clarke, Geraldine M; Kwiatkowski, Dominic P; Rockett, Kirk A; Williams, Thomas N

    2015-01-01

    Summary Background The global prevalence of X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is thought to be a result of selection by malaria, but epidemiological studies have yielded confusing results. We investigated the relationships between G6PD deficiency and both malaria and non-malarial illnesses among children in Kenya. Methods We did this study in Kilifi County, Kenya, where the G6PD c.202T allele is the only significant cause of G6PD deficiency. We tested the associations between G6PD deficiency and severe and complicated Plasmodium falciparum malaria through a case-control study of 2220 case and 3940 control children. Cases were children aged younger than 14 years, who visited the high dependency ward of Kilifi County Hospital with severe malaria between March 1, 1998, and Feb 28, 2010. Controls were children aged between 3–12 months who were born within the same study area between August 2006, and September 2010. We assessed the association between G6PD deficiency and both uncomplicated malaria and other common diseases of childhood in a cohort study of 752 children aged younger than 10 years. Participants of this study were recruited from a representative sample of households within the Ngerenya and Chonyi areas of Kilifi County between Aug 1, 1998, and July 31, 2001. The primary outcome measure for the case-control study was the odds ratio for hospital admission with severe malaria (computed by logistic regression) while for the cohort study it was the incidence rate ratio for uncomplicated malaria and non-malaria illnesses (computed by Poisson regression), by G6PD deficiency category. Findings 2863 (73%) children in the control group versus 1643 (74%) in the case group had the G6PD normal genotype, 639 (16%) versus 306 (14%) were girls heterozygous for G6PD c.202T, and 438 (11%) versus 271 (12%) children were either homozygous girls or hemizygous boys. Compared with boys and girls without G6PD deficiency, we found significant

  16. Risks of hemolysis in glucose-6-phosphate dehydrogenase deficient infants exposed to chlorproguanil-dapsone, mefloquine and sulfadoxine-pyrimethamine as part of intermittent presumptive treatment of malaria in infants

    DEFF Research Database (Denmark)

    Poirot, Eugenie; Vittinghoff, Eric; Ishengoma, Deus;

    2015-01-01

    BACKGROUND: Chlorproguanil-dapsone (CD) has been linked to hemolysis in symptomatic glucose-6-phosphate dehydrogenase deficient (G6PDd) children. Few studies have explored the effects of G6PD status on hemolysis in children treated with Intermittent Preventive Treatment in infants (IPTi) antimala......BACKGROUND: Chlorproguanil-dapsone (CD) has been linked to hemolysis in symptomatic glucose-6-phosphate dehydrogenase deficient (G6PDd) children. Few studies have explored the effects of G6PD status on hemolysis in children treated with Intermittent Preventive Treatment in infants (IPTi...

  17. Prevalence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase deficiency among hill-tribe school children in Omkoi District, Chiang Mai Province, Thailand.

    Science.gov (United States)

    Yanola, Jintana; Kongpan, Chatpat; Pornprasert, Sakorn

    2014-07-01

    The prevalaence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency were examined among 265 hill-tribe school children, 8-14 years of age, from Omkoi District, Chiang Mai Province, Thailand. Anemia was observed in 20 school children, of whom 3 had iron deficiency anemia. The prevalence of G-6-PD deficiency and β-thalassemia trait [codon 17 (A>T), IVSI-nt1 (G>T) and codons 71/72 (+A) mutations] was 4% and 8%, respectively. There was one Hb E trait, and no α-thalassemia-1 SEA or Thai type deletion. Furthermore, anemia was found to be associated with β-thalassemia trait in 11 children. These data can be useful for providing appropriate prevention and control of anemia in this region of Thailand.

  18. Immune Thrombocytopenia Resolved by Eltrombopag in a Carrier of Glucose-6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Laura Scaramucci

    2016-03-01

    Full Text Available Eltrombopag, a thrombopoietin mimetic peptide, may provide excellent clinical efficacy in steroid-refractory patients with immune thrombocytopenic purpura (ITP [1,2]. Eltrombopag is generally well tolerated. However, its use in the particular setting of glucose-6-phosphate dehydrogenase (G6PD and history of acute hemolytic anemia (AHA has not been reported so far. A 51-year-old female was diagnosed as having ITP in September 2014. She was not taking any medication and her past history was negative, apart from having been diagnosed a carrier (heterozygous of G6PD deficiency (Mediterranean variant after a familial screening by molecular and biochemical methods. She presented with only slightly reduced (about 50% enzyme level, belonging to World Health Organization-defined class 3 [3,4]. In the following years, the patient experienced some episodes of AHA, which were managed at outside institutions; in particular, a severe episode of AHA, probably triggered by urinary infection and antibiotics [5], had complicated her second and last delivery. The hemolytic episodes were selflimiting and resolved without sequelae. No other causes of hemolysis were documented. When the case came to our attention, a diagnosis of ITP was made; hemolytic parameters were normal, although the G6PD enzyme concentration was not measured. Oral prednisone (1 mg/kg was given with only a transient benefit. The patient was then a candidate for elective splenectomy. However, given her extremely low platelet count, she was started in October 2014 on eltrombopag at 50 mg/day as a bridge to splenectomy. Given that, to the best of our knowledge, the use of this drug has never been reported in the particular setting of G6PD deficiency, the patient was constantly monitored. A prompt platelet increase (178x109/L was observed 1 week after the start of treatment. After she achieved the target platelet count, the dose of eltrombopag was tapered to the lowest effective dose. The patient

  19. Population screening for glucose-6-phosphate dehydrogenase deficiencies in Isabel Province, Solomon Islands, using a modified enzyme assay on filter paper dried bloodspots

    Directory of Open Access Journals (Sweden)

    Landry Losi

    2010-08-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase deficiency poses a significant impediment to primaquine use for the elimination of liver stage infection with Plasmodium vivax and for gametocyte clearance, because of the risk of life-threatening haemolytic anaemia that can occur in G6PD deficient patients. Although a range of methods for screening G6PD deficiency have been described, almost all require skilled personnel, expensive laboratory equipment, freshly collected blood, and are time consuming; factors that render them unsuitable for mass-screening purposes. Methods A published WST8/1-methoxy PMS method was adapted to assay G6PD activity in a 96-well format using dried blood spots, and used it to undertake population screening within a malaria survey undertaken in Isabel Province, Solomon Islands. The assay results were compared to a biochemical test and a recently marketed rapid diagnostic test. Results Comparative testing with biochemical and rapid diagnostic test indicated that results obtained by filter paper assay were accurate providing that blood spots were assayed within 5 days when stored at ambient temperature and 10 days when stored at 4 degrees. Screening of 8541 people from 41 villages in Isabel Province, Solomon Islands revealed the prevalence of G6PD deficiency as defined by enzyme activity Conclusions The assay enabled simple and quick semi-quantitative population screening in a malaria-endemic region. The study indicated a high prevalence of G6PD deficiency in Isabel Province and highlights the critical need to consider G6PD deficiency in the context of P. vivax malaria elimination strategies in Solomon Islands, particularly in light of the potential role of primaquine mass drug administration.

  20. A novel R198H mutation in the glucose-6-phosphate dehydrogenase gene in the tribal groups of the Nilgiris in Southern India.

    Science.gov (United States)

    Chalvam, R; Kedar, P S; Colah, R B; Ghosh, K; Mukherjee, M B

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common red cell enzymopathy among humans. In India, G6PD Mediterranean, G6PD Orissa, and G6PD Kerala-Kalyan are the three common mutations which account almost 90% of G6PD deficiency. Here we describe G6PD Coimbra, an unreported variant from India, and a novel 593 G --> A mutation in exon 6 with an amino acid change of Arg 198 His, among the tribal groups of the Nilgiris in Southern India. Further, this novel mutation was structurally characterized and it was found that the mutation is located at the end of the coenzyme domain, which may cause enzyme instability.

  1. Influence of dehydroepiandrosterone on G-6-PD activity and /sup 3/H-thymidine uptake of human lymphocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ennas, M.G.; Laconi, S.; Dessi, S.; Milia, G.; Murru, M.R.; Manconi, P.E.

    1987-01-01

    Dehydroepiandrosterone (DHEA) was found to inhibit experimental cancer development in mouse and rat lung, colon and mammary gland. Since DHEA is a potent inhibitor of mammalian G-6-PD, the hypothesis that the compound could inhibit cell proliferation through an inhibition of the pentose phosphate pathway has been formulated. We studied the effects of DHEA on the proliferation in vitro of human lymphocytes induced by several mitogens (PHA, ConA and PWM), measuring /sup 3/H-thymidine uptake. DHEA inhibited /sup 3/H-thymidine uptake of mitogen-stimulated cells from both G-6-PD+ and G-6-PD- (mediterranean type deficiency) individuals in a dose-dependent and reversible fashion. The inhibitory effect was found even if DHEA was added to cells in the last hours of culture, simultaneously with the addition of /sup 3/H-thymidine. These data suggest that the inhibition of thymidine uptake induced by DHEA on human lymphocytes probably does not depend on the inhibition of G-6-PD.

  2. G6PD (AC)n and (CTT)n microsatellites in Mexican Mestizos with common G6PD African variants.

    Science.gov (United States)

    Vaca, Gerardo

    2007-01-01

    Genotyping for the G6PD (AC)n and (CTT)n microsatellites in a sample of 58 Mexican Mestizos with common G6PD African variants was carried out. The second mutation that defines to the variants G6PD A(-202A/376G), G6PD Santamaria(376G/542T) and G6PD A(-376G/968C) very probably occurred on G6PD A(376G) chromosomes with the compound haplotypes, intragenic silent polymorphisms and microsatellites, Pvu-II/Pst-I/Bcl-I/Nla-III/(AC)n/(CTT)n: +/+/-/+/166 bp/195 bp, -/+/-/+/166 bp/201 bp, and -/+/-/+/166 bp/204 bp respectively. The structure of the repeat sequences for the AC-166 bp allele in the 3 variants was (TA)5(AA)1(TA)9(CA)10 whereas the repeat sequences for the CTT-195 bp, CTT-201 bp and CTT-204 bp alleles were (CTT)11(ATT)6, (CTT)7(ATT)12 and (CTT)7(ATT)13 in the first, second and third variants respectively. Genotyping for the G6PD microsatellites can be a useful tool with several applications.

  3. 珠蛋白生成障碍性贫血患者中葡萄糖-6-磷酸脱氢酶活性的调查%Investigation of G6PD activity in patients with thalassemia

    Institute of Scientific and Technical Information of China (English)

    陈炎添; 苏雪棠

    2012-01-01

    Objective To investigate the activity of glucose 6 phosphate dehydrogenase(G6PD) in patients with different types of thalassemia. Methods G6PD activity,blood cell counts and serum ferritin were detected for preliminary screening,and full auto matic agar gel analyzer was used to confirm the type of α or β thalassemia. G6PD activity of all subjects were statistically analyzed. Results There were statistical difference of G6PD activity between healthy subjects and patients with iron deficiency anemia (IDA) ,IDA combined thalassemia,α thalassemia minor,β thalassemia minor,β thalassemia major,hemoglobin H(HbH) disease and αcombine β thalassemia (P<0. 05). Conclusion The G6PD activity in patients with various types of thalassemia might be increased for different degree. It might be with certain value for auxiliary diagnosis of thalassemia.%目的 研究不同类型珠蛋白生成障碍性贫血(简称地贫)患者中葡萄糖-6-磷酸脱氢酶(G6PD)的活性.方法 采用G6PD活性定量测定,血常规和血清铁蛋白检测对人群进行初筛,同时采用全自动琼脂糖凝胶电泳检测初筛人群的α-地贫以及β-地贫类型,并对其G6PD活性值进行相关统计学分析.结果 健康人群、单纯缺铁性贫血、缺铁性贫血合并地贫、轻型α-地贫、轻型β-地贫、重型β-地贫、血红蛋白H(HbH)病以及α-地贫合并β-地贫各组间G6PD活性差异有统计学意义(P<0.05).结论 各类型地贫患者的G6PD活性有不同程度的升高,对地贫的辅助诊断有一定的价值.

  4. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions lactate dehydrogenase deficiency lactate dehydrogenase deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Lactate dehydrogenase deficiency is a condition that affects how the ...

  5. Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern indonesian populations

    Directory of Open Access Journals (Sweden)

    Tantular,Indah S.

    2010-12-01

    Full Text Available We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.

  6. Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern Indonesian populations.

    Science.gov (United States)

    Tantular, Indah S; Matsuoka, Hiroyuki; Kasahara, Yuichi; Pusarawati, Suhintam; Kanbe, Toshio; Tuda, Josef S B; Kido, Yasutoshi; Dachlan, Yoes P; Kawamoto, Fumihiko

    2010-12-01

    We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD) deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue) on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese) on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C) of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.

  7. INCIDENCE OF ERYTHROCYTE GLUCOSE-6-PHOSPHATE- DEHYDROGENASE DEFICIENCY

    Directory of Open Access Journals (Sweden)

    Sh. Rahbar

    1974-06-01

    The fluorescent spot technique was used for screening and qualitative determination of G-6-PD in erythrocytes. This technique was compared with other methods of G-6-PD enzyme assay and proved to be very reliable. Qualitative enzyme estimation was carried out with spectrophotometer methods. A total of 738 specimens tested and some degree of enzyme deficiencies were detected. In 20 specimens there was a complete enzyme deficiency and in 5 cases the enzyme activity was between 15 to 50 percent of normal subject. The data suggests, the blood bank should be warned of transfusion of enzyme deficient bloods to the patients with fauvism.

  8.  Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors inSana’a City, Yemen

    Directory of Open Access Journals (Sweden)

    Molham AL-Habori

    2012-01-01

    Full Text Available  Objectives: To determine the prevalence of Glucose-6-phosphatedehydrogenase (G-6-PD deficiency among Yemeni people fromdifferent regions of the country living in the capital city, Sana’a,giving an indication of its overall prevalence in Yemen.Methods: A cross-sectional study was conducted among Yemenimale blood donors attending the Department of Blood Bank atthe National Centre of the Public Health Laboratories in thecapital city, Sana’a, Yemen. Fluorescent spot method was used forscreening, spectrophotometeric estimation of G-6-PD activityand separation by electrophoresis was done to determine the G-6-PD phenotype.Results: Of the total 508 male blood donors recruited into thestudy, 36 were G-6-PD deficient, giving a likely G-6-PD deficiencyprevalence of 7.1�20None of these deficient donors had history ofanemia or jaundice. Thirty-five of these deficient cases (97.2�howed severe G-6-PD deficiency class II (<10�0of normalactivity, and their phenotyping presumptively revealed a G-6-PDMediterraneanvariant.Conclusion: The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiencytype in these blood donors in Sana’a City, which could representan important health problem through occurrence of hemolyticanemia under oxidative stress. A larger sample size is needed todetermine the overall prevalence of G-6-PD deficiency, and shouldbe extended to include DNA analysis to identify its variants in Yemen.

  9. Alleviation of PEGylated Puerarin on Erythrocyte Hemolysis Induced by Puerarin in Glucose-6-phosphate Dehydrogenase-deficient Rats

    Institute of Scientific and Technical Information of China (English)

    LIU; Xin-yi; LI; Jian-rong; WANG; Nai-jie; ZHANG; Guang-ping; DU; Feng; YE; Zu-guang; XIANG; Da-xiong

    2013-01-01

    Objective To explore and analyze the reducing hemolytic effects of PEGylated puerarin (PEG-PUE) on erythrocytes induced by PUE in glucose-6-phosphate dehydrogenase (G6PD)-deficient rats. Methods The rat model with G6PD-deficiency was established via sc injecting 1% acetylphenyl-hydrazine. Then the G6PD-deficient erythrocyte suspension obtained from this rat model was used to evaluate the hemolytic effects of PUE and the reducing hemolytic effects of PEG-PUE via hemolytic activity and erythrocyte osmotic fragility assay. Results It was found that PUE could cause a serious hemolysis to the erythrocyte suspension with the increase of drug concentration and the prolongation of drug incubation time, the hemolytic rate of PUE was up to 40%, while the addition of PEG-PUE to the erythrocyte suspension revealed no significant hemolysis. Additionally, the result of erythrocyte osmotic fragility indicated that PEG-PUE exerted a slight effect on the erythrocyte membranes, and the NaCl concentration that induced 50% hemolysis (32 mmol/L) was about one-third PUE. Conclusion These results demonstrate that PEG-PUE could play a significant role in reducing the side effect of hemolysis induced by PUE. The low hemolytic activity of PEG-PUE makes it a favorable candidate for in vivo tests and PEG-PUE could also provide the useful insight for the further formulation development as an innovative drug.

  10. Alleviation of PEGylated Puerarin on Erythrocyte Hemolysis Induced by Puerarin in Glucose-6-phosphate Dehydrogenase-deficient Rats

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-yi; LI Jian-rong; WANG Nai-jie; ZHANG Guang-ping; DU Feng; YE Zu-guang; XIANG Da-xiong

    2013-01-01

    Objective To explore and analyze the reducing hemolytic effects of PEGylated puerarin (PEG-PUE) on erythrocytes induced by PUE in glucose-6-phosphate dehydrogenase (G6PD)-deficient rats.Methods The rat model with G6PD-deficiency was established via sc injecting 1% acetylphenyl-hydrazine.Then the G6PD-deficient erythrocyte suspension obtained from this rat model was used to evaluate the hemolytic effects of PUE and the reducing hemolytic effects of PEG-PUE via hemolytic activity and erythrocyte osmotic fragility assay.Results It was found that PUE could cause a serious hemolysis to the erythrocyte suspension with the increase of drug concentration and the prolongation of drug incubation time,the hemolytic rate of PUE was up to 40%,while the addition of PEG-PUE to the erythrocyte suspension revealed no significant hemolysis.Additionally,the result of erythrocyte osmotic fragility indicated that PEG-PUE exerted a slight effect on the erythrocyte membranes,and the NaCl concentration that induced 50% hemolysis (32 mmol/L) was about one-third PUE.Conclusion These results demonstrate that PEG-PUE could play a significant role in reducing the side effect of hemolysis induced by PUE.The low hemolytic activity of PEG-PUE makes it a favorable candidate for in vivo tests and PEG-PUE could also provide the useful insight for the further formulation development as an innovative drug.

  11. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2016-05-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I, Vanua-Lava (Class II and Viangchan (Class II. For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT. Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.

  12. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  13. Identification of point mutations in Glucose-6-Phosphate Dehydrogenase gene in Timor Island people : A preliminary report

    Directory of Open Access Journals (Sweden)

    Widanto Hardjowasito

    2001-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD deficiency is common in malaria endemic region, however no molecular study has been performed on G6PD deficiency in Timor Island, Indonesia a malarial hyperendemic area which Proto Malay is the majority of the people in that island. To observe the frequency and molecular type of mutations in G6PD deficient Proto Malay people, 118 native people were screened using formazan ring test. Mutation in the G6PD gene were determined by MPTP (Multiple PCR using Multiple Tandem Forward Primers and a common Reserve Pimer method and confirmed by automatic sequencer. This study shows that three males have lower G6PD activity. Using MPTP method, a point mutation could be indicated in the two cases. Sequencing of the amplified products in 2 G6PD patients disclosed mutations of T383C in exon 5 and C 592 T in exon 6 in respective case. Our result documents point mutations in exon 5 and exon 6 in the G6PD gene of two Proto Malay people in Timor. These mutations are common in Asia region. (Med J Indones 2001; 10: 210-3Keywords: mutations, G6PD, Proto Malay.

  14. Erythrocyte glucose-6-phosphate dehydrogenase deficiency in male newborn babies and its relationship with neonatal jaundice Deficiência de glicose-6-fosfato desidrogenase eritrocitária em recém-nascidos do sexo masculino e sua relação com a icterícia neonatal

    Directory of Open Access Journals (Sweden)

    Marli Auxiliadora C. Iglessias

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency, the commonest red cell enzymopathy in humans, has an X-linked inheritance. The major clinical manifestations are drug induced hemolytic anemia, neonatal jaundice and chronic nonspherocytic hemolytic anemia. The incidence of neonatal hyperbilirubinemia is much greater in G6PD-deficient neonates than babies without this deficiency. The aim of this study was to ascertain the presence of neonatal jaundice in erythrocyte G6PD-deficient male newborns. Samples of umbilical cord blood from a total of 204 male newborns of the Januário Cicco School Maternity located in Natal, Rio Grande do Norte, Brazil were analyzed. The G6PD deficiency was identified by the methemoglobin reduction test (Brewer's test. The deficiency was confirmed by quantitative spectrophotometric assay for enzyme activity and cellulose acetate electrophoresis was used to identify the G6PD variant. Eight newborns were found to be G6PD deficient with four of them exhibiting jaundice during the first 48 hours after birth with bilirubin levels higher than 10 mg/dL. All deficient individuals presented the G6PD A- variant at electrophoresis. Our findings confirmed the association between G6PD deficiency and neonatal jaundice. Hence, early diagnosis of the deficiency at birth is essential to control the appearance of jaundice and to prevent the exposure of these newborns to known hemolytic agents.A deficiência de glicose-6-fosfato desidrogenase (G6PD é a anormalidade enzimática hereditária mais frequente. É transmitida como caráter recessivo ligado ao cromossomo X e as principais manifestações clínicas são hemólise induzida por fármacos, icterícia neonatal e anemia hemolítica não esferocítica. O objetivo do estudo foi determinar a presença de icterícia neonatal em recém-nascidos do sexo masculino deficientes de glicose-6-fosfato desidrogenase. Foram analisadas 204 amostras de sangue umbilical de recém-nascidos do sexo

  15. DETECTION OF OCCULT GLOMERULAR DYSFUNCTION IN GLUCOSE SIX PHOSPHATE DEHYDROGENASE DEFICIENCY ANEMIA

    Directory of Open Access Journals (Sweden)

    Gehan Abdel Hakeem

    2016-08-01

    G6PD deficiency anemia is associated with a variable degree of glomerular dysfunction during acute hemolytic episodes. This glomerular dysfunction can result in chronic subclinical or occult chronic kidney injury.

  16. Deficiencia de glucosa 6-fostato deshidrogenasa en hombres sanos y en pacientes maláricos; Turbo (Antioquia, Colombia Deficiency of glucose-6-phosphate dehydrogenase in healthy men and malaria patients; Turbo (Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Carmona-Fonseca

    2008-06-01

    Full Text Available INTRODUCCIÓN: En América Latina la deficiencia de glucosa 6-fosfato deshidrogenasa (d-G6PD ha sido poco estudiada y en Colombia solo conocemos tres publicaciones antiguas. Urge conocer más la prevalencia de d-G6PD, sobre todo ahora que el tratamiento de la malaria vivax plantea aumentar la dosis diaria o total de primaquina. OBJETIVO: Medir la prevalencia de d-G6PD en poblaciones masculina sana y de enfermos con malaria por Plasmodium vivax, en Turbo (Urabá, departamento de Antioquia, Colombia. METODOLOGÍA: Encuestas de prevalencia, para evaluar la G6PD en dos poblaciones de Turbo (Antioquia: hombres sanos; hombres y mujeres con malaria vivax. Se trabajó con muestras diseñadas con criterios estadístico-epidemiológicos. La actividad enzimática se midió con el método normalizado de Beutler para valorar la G6PD en hemolizados. RESULTADOS: Entre los hombres sanos (n = 508, el intervalo de confianza 95% para el promedio (IC95% estuvo entre 4,15 y 4,51 UI/g hemoglobina y 14,8% presentaron valores por debajo del "límite normal" de INTRODUCTION: Glucose-6-phosphate dehydrogenase (G6PD deficiency in Latin America has not been fully studied and in Colombia only three outdated publications are known. Recent information on the prevalence of G6PD deficiency is required now, because the recommended treatment of vivax malaria requires higher daily or total doses of primaquine. OBJECTIVE: To measure the prevalence of G6PD in a healthy male population and in a Plasmodium vivax infected population in Turbo (Urabá, Antioquia Department, Colombia. METHOD: Prevalence survey to evaluate G6PD in two populations of Turbo (Antioquia: healthy male; male and female with vivax malaria. The work was carried out on population samples selected using statistical and epidemiological criteria. Enzyme activity was measured using Beutler's normalized method to evaluate G6PD after hemolysis. RESULTS: For the healthy male group (n = 508, and with a 95% confidence

  17. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors

    Directory of Open Access Journals (Sweden)

    Vassilis L. Tzounakas

    2016-09-01

    Full Text Available This article contains data on the variation in several physiological parameters of red blood cells (RBCs donated by eligible glucose-6-phosphate dehydrogenase (G6PD deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD+ cells. Intracellular reactive oxygen species (ROS generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in “Glucose 6-phosphate dehydrogenase deficient subjects may be better “storers” than donors of red blood cells” [1].

  18. Hereditary sideroblastic anemia and glucose-6-phosphate dehydrogenase deficiency in a Negro family.

    Science.gov (United States)

    Prasad, A S; Tranchida, L; Konno, E T; Berman, L; Albert, S; Sing, C F; Brewer, G J

    1968-06-01

    Detailed clinical and genetic studies have been performed in a Negro family, which segregated for sex-linked sideroblastic anemia and glucose-6-phosphate dehydrogenase (G-6-DP) deficiency. This is the first such pedigree reported. Males affected with sideroblastic anemia had growth retardation, hypochromic microcytic anemia, elevated serum iron, decreased unsaturated iron-binding capacity, increased (59)Fe clearance, low (59)Fe incorporation into erythrocytes, normal erythrocyte survival ((51)Cr), normal hemoglobin electrophoretic pattern, erythroblastic hyperplasia of marrow with increased iron, and marked increase in marrow sideroblasts, particularly ringed sideroblasts. Perinuclear deposition of ferric aggregates was demonstrated to be intramitochondrial by electron microscopy. Female carriers of the sideroblastic gene were normal but exhibited a dimorphic population of erythrocytes including normocytic and microcytic cells. The bone marrow studies in the female (mother) showed ringed marrow sideroblasts. Studies of G-6-PD involved the methemoglobin elution test for G-6-PD activity of individual erythrocytes, quantitative G-6-PD assay, and electrophoresis. In the pedigree, linkage information was obtained from a doubly heterozygous woman, four of her sons, and five of her daughters. Three sons were doubly affected, and one was normal. One daughter appeared to be a recombinant. The genes appeared to be linked in the coupling phase in the mother. The maximum likelihood estimate of the recombination value was 0.14. By means of Price-Jones curves, the microcytic red cells in peripheral blood were quantitated in female carriers. The sideroblast count in the bone marrow in the mother corresponded closely to the percentage of microcytic cells in peripheral blood. This is the second example in which the cellular expression of a sex-linked trait has been documented in the human red cells, the first one being G-6-PD deficiency. The coexistence of the two genes in doubly

  19. Anestesia em paciente portador de deficiência de glicose-6-fosfato-desidrogenase: relato de caso Anestesia en paciente portador de deficiencia de glicosa-6-fosfato-desidrogenasa: relato de caso Anesthesia in glucose 6-phosphate dehydrogenase-deficient patient: case report

    Directory of Open Access Journals (Sweden)

    Múcio Paranhos de Abreu

    2002-11-01

    caso relatado, la anestesia subaracnóidea con bupivacaína asociada a anestesia venosa total con propofol, mostró que es una técnica segura en pacientes portadores de deficiencia de G6PD.BACKGROUND AND OBJECTIVES: Glucose 6-phosphate dehydrogenase (G6PD deficiency is a relatively common enzymopathy, but there are few publications relating such condition to anesthesia. This report aimed at presenting a case of a G6PD-deficient patient, submitted to Achilles tendon tenotomy under intravenous anesthesia associated to spinal block. CASE REPORT: Male patient, 9 years old, 48 kg, with G6PD deficiency and peripheral polineuropathy, submitted to Achilles tendon tenotomy under general intravenous anesthesia with midazolam, propofol and fentanyl, associated to spinal block with 0.5% hyperbaric bupivacaine. At surgery completion patient awakened relaxed, without pain or other complaints, had a good evolution and was discharged without intercurrences. CONCLUSIONS: According to the evolution of this case, spinal anesthesia with bupivacaine associated to total intravenous anesthesia with propofol has shown to be a safe technique for G6PD-deficient patients.

  20. [Frequency of color blindness and glucose-6-phosphate dehydrogenase enzyme deficiency in non-industrialized populations in the state of Nuevo León, México].

    Science.gov (United States)

    Ceda-Flores, R M; Arriaga-Ríos, G; Muñoz-Campos, J; Bautista-Peña, V A; Angeles Rojas-Alvarado, M; González-Quiróga, G; Leal-Garza, C H; Garza-Chapa, R

    1990-01-01

    In order to know if there would be genetic structural differences among non industrial and industrial populations, two genetic markers were studied: color-blindness (CPC) and glucose-6-phosphate dehydrogenase deficiency (G6PD), in students, males and females that were resident in five non industrial populations in the State of Nuevo Leon. The results were compared with the information for industrial zone from the Monterrey Metropolitan area (AMM). It was found that the frequencies of CPC and G6PD in non industrial populations (2.57 and 0.00 per cent), were lower than the ones in the industrial AMM (4.0 and 0.66 per cent), probably as a result that in the first populations, with minor urbanization, the main factors that influence are: natural selection, interacial mixed or genetic drift and the second population is the immigration, since 1940 to present time, of Mexican populations with greater influence from the Indians and Africans.

  1. Splenic artery pseudoaneurysm due to seatbelt injury in a glucose-6-phosphate dehydrogenase-deficient adult.

    Science.gov (United States)

    Lau, Yu Zhen; Lau, Yuk Fai; Lai, Kang Yiu; Lau, Chu Pak

    2013-11-01

    A 23-year-old man presented with abdominal pain after suffering blunt trauma caused by a seatbelt injury. His low platelet count of 137 × 10(9)/L was initially attributed to trauma and his underlying hypersplenism due to glucose-6-phosphate dehydrogenase (G6PD) deficiency. Despite conservative management, his platelet count remained persistently reduced even after his haemoglobin and clotting abnormalities were stabilised. After a week, follow-up imaging revealed an incidental finding of a pseudoaneurysm (measuring 9 mm × 8 mm × 10 mm) adjacent to a splenic laceration. The pseudoaneurysm was successfully closed via transcatheter glue embolisation; 20% of the spleen was also embolised. A week later, the platelet count normalised, and the patient was subsequently discharged. This case highlights the pitfalls in the detection of a delayed occurrence of splenic artery pseudoaneurysm after blunt injury via routine delayed phase computed tomography. While splenomegaly in G6PD may be a predisposing factor for injury, a low platelet count should arouse suspicion of internal haemorrhage rather than hypersplenism.

  2. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  3. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2016-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC. Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.

  4. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association.

    Science.gov (United States)

    Laouini, N; Bibi, A; Ammar, H; Kazdaghli, K; Ouali, F; Othmani, R; Amdouni, S; Haloui, S; Sahli, C A; Jouini, L; Hadj Fredj, S; Siala, H; Ben Romdhane, N; Toumi, N E; Fattoum, S; Messsaoud, T

    2013-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. In this study, we aimed to perform a molecular investigation of G6PD deficiency in Tunisia and to associate clinical manifestations and the degree of deficiency with the genotype. A total of 161 Tunisian subjects of both sexes were screened by spectrophotometric assay for enzyme activity. Out of these, 54 unrelated subjects were selected for screening of the most frequent mutations in Tunisia by PCR/RFLP, followed by size-based separation of double-stranded fragments under non-denaturing conditions on a denaturing high performance liquid chromatography system. Of the 56 altered chromosomes examined, 75 % had the GdA(-) mutation, 14.28 % showed the GdB(-) mutation and no mutations were identified in 10.72 % of cases. Hemizygous males with GdA(-) mutation were mostly of class III, while those with GdB(-) mutation were mainly of class II. The principal clinical manifestation encountered was favism. Acute hemolytic crises induced by drugs or infections and neonatal jaundice were also noted. Less severe clinical features such as low back pain were present in heterozygous females and in one homozygous female. Asymptomatic individuals were in majority heterozygote females and strangely one hemizygous male. The spectrum of mutations seems to be homogeneous and similar to that of Mediterranean countries; nevertheless 10.72 % of cases remain with undetermined mutation thus suggesting a potential heterogeneity of the deficiency at the molecular level. On the other hand, we note a better association of the molecular defects with the severity of the deficiency than with clinical manifestations.

  5. Prevalence of thalassaemia, iron-deficiency anaemia and glucose-6-phosphate dehydrogenase deficiency among Arab migrating nomad children, southern Islamic Republic of Iran.

    Science.gov (United States)

    Pasalar, M; Mehrabani, D; Afrasiabi, A; Mehravar, Z; Reyhani, I; Hamidi, R; Karimi, M

    2014-12-17

    This study investigated the prevalence of iron-deficiency anaemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency and β-thalassaemia trait among Arab migrating nomad children in southern Islamic Republic of Iran. Blood samples were analysed from 134 schoolchildren aged < 18 years (51 males, 83 females). Low serum ferritin (< 12 ng/dL) was present in 17.9% of children (21.7% in females and 11.8% in males). Low haemoglobin (Hb) correlated significantly with a low serum ferritin. Only 1 child had G6PD deficiency. A total of 9.7% of children had HbA2 ≥ 3.5 g/dL, indicating β-thalassaemia trait (10.8% in females and 7.8% in males). Mean serum iron, serum ferritin and total iron binding capacity were similar in males and females. Serum ferritin index was as accurate as Hb index in the diagnosis of iron-deficiency anaemia. A high prevalence of β-thalassaemia trait was the major potential risk factor in this population.

  6. A novel mis-sense mutation (G1381A) in the G6PD gene identified in a Chinese man

    Institute of Scientific and Technical Information of China (English)

    任晓琴; 杜传书; 蒋玮莹; 陈路明; 林群娣; 何永蜀

    2001-01-01

    目的对中国云南省29例G6PD缺乏症患者检查新的基因突变型。 方法用NBT法作G6PD缺乏症筛查、SSCP、ACRS和DNA测序鉴定突变。结果29例中发现G1388A18例、C1004A1例、G1381A1例,另外9例未定型。其中1381突变为新的错义 突变。这一突变导致G6PD丙氨酸被苏氨酸置换(A461T),并导致一天然StuI酶切位点的消失,此特点可 用于该突变的鉴定。 结论我们发现一新的错义突变。此突变导致丙氨酸被苏氨酸置换(A461T),且此突变对酶活性降低是 重要的。%Objective To detect new mutations among 29 glucose-6-phosphatedehydrogenase (G6PD) deficient individuals from Yunnan province. Methods The nitroblue tetrazolium (NBT) method was used to screen G6PD deficient individuals. Mutation was identified by single strand conformation polymorphism (SSCP), amplification created restriction site (ACRS), amplification refractory mutation system (ARMS) and DNA sequencing. Results Among 29 cases, 18 cases of G1388A, 1 case of C1004A, and 1 case of G1381A were identified. Nine cases remained to be defined. The G1381A mutation is a novel mis-sense mutation, with a substitution of threonine for alanine (A461T). The resultant G6PD had reduced enzymatic activity. In addition, G1381A caused a restriction site of Stu I to disappear, providing a rapid method for the detection of this mutation. Conclusion A novel mis-sense mutation G1381A was found. This mutation results in a substitution of threonine for alanine, producing enzyme with reduced activity. The loss of the Stu I restriction site offers a rapid method for the detection of this mutation.

  7. [Frequency of glucose-6-phosphate dehydrogenase deficiency (A-376/202) in three Malian ethnic groups].

    Science.gov (United States)

    Dolo, A; Maiga, B; Guindo, A; Diakité, S A S; Diakite, M; Tapily, A; Traoré, M; Sangaré, B; Arama, C; Daou, M; Doumbo, O

    2014-08-01

    Erythrocyte G6PD deficiency is the most common worldwide enzymopathy. The aim of this study was to determine erythrocyte G6PD deficiency in 3 ethnic groups of Mali and to investigate whether erythrocyte G6PD deficiency was associated to the observed protection against malaria seen in Fulani ethnic group. The study was conducted in two different areas of Mali: in the Sahel region of Mopti where Fulani and Dogon live as sympatric ethnic groups and in the Sudanese savannah area where lives mostly the Malinke ethnic group. The study was conducted in 2007 in Koro and in 2008 in Naguilabougou. It included a total 90 Dogon, 42 Fulani and 80 Malinke ethnic groups. Malaria was diagnosed using microscopic examination after Giemsa-staining of thick and thin blood smear. G6PD deficiency (A-(376/202)) samples were identified using RFLP (Restriction Fragment Length Polymorphism) assay and analysis of PCR-amplified DNA amplicon. G6PD deficiency (A-(376/202)) rate was 11.1%, 2.4%, and 13.3% in Dogon, Fulani, and Malinke ethnic group respectively. Heterozygous state for G6PD (A-(376/202)) was found in 7.8% in Dogon; 2.4% in Fulani and 9.3% in Malinke ethnic groups while hemizygous state was found at the frequency of 2.2% in Dogon and 4% in Malinke. No homozygous state was found in our study population.We conclude that G6PD deficiency is not differing significantly between the three ethnic groups, Fulani, Dogon and Malinke.

  8. Effects of variant UDP-glucuronosyltransferase 1A1 gene, glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis

    Science.gov (United States)

    Huang, Yang-Yang; Huang, Ching-Shui; Yang, Sien-Sing; Lin, Min-Shung; Huang, May-Jen; Huang, Ching-Shan

    2005-01-01

    AIM: To test the hypothesis that the variant UDP-glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis. METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups, respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency. RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6 TAA/A(TA)7TAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, χ2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0 ± 6.5 and 12.7 ± 2.9 μmol/L, respectively; Pcholelithiasis in Taiwan Chinese. PMID:16237771

  9. Effects of variant UDP-glucuronosyltransferase 1A1 gene,glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis

    Institute of Scientific and Technical Information of China (English)

    Yang-Yang Huang; Ching-Shui Huang; Sien-Sing Yang; Min-Shung Lin; May-Jen Huang; Ching-Shan Huang

    2005-01-01

    AIM: To test the hypothesis that the variant UDPglucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis.METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups,respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency.RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6TAA/A(TA)7TAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, χ2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0±6.5 and 12.7±2.9 μmol/L, respectively; P<0.001, Student's ttest).CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese.

  10. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385

  11. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency, and the G6PD Santa Maria and A+ (less severe deficiency (Class I, II and III, respectively affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.

  12. Zoledronic acid inhibits the pentose phosphate pathway through attenuating the Ras-TAp73-G6PD axis in bladder cancer cells.

    Science.gov (United States)

    Wang, Xiaolin; Wu, Guang; Cao, Guangxin; Yang, Lei; Xu, Haifei; Huang, Jian; Hou, Jianquan

    2015-09-01

    Zoledronic acid (ZA) is the current standard of care for the therapy of patients with bone metastasis or osteoporosis. ZA inhibits the prenylation of small guanosine‑5'-triphosphate (GTP)‑binding proteins, such as Ras, and thus inhibit Ras signaling. The present study demonstrated that ZA inhibited cell proliferation and the pentose phosphate pathway (PPP) in bladder cancer cells. In addition, the expression of glucose‑6‑phosphate dehydrogenase (G6PD, the rate‑limiting enzyme of the PPP) was found to be inhibited by ZA. Furthermore, the stability of TAp73, which activates the expression G6PD was decreased in zoledronic acid treated cells. Decreased levels of Ras‑GTP and phosphorylated‑extracellular signal-regulated kinase 1/2 were also observed following treatment with ZA. This may be due to the fact that activated Ras was reported to stabilize TAp73 inducing its accumulation. The inhibition of Ras activity by PT inhibitor II also significantly reduced the levels of TAp73 and G6PD and the PPP flux. Moreover, knockdown of TAp73, attenuated the PPP flux and eliminated the affection of ZA on the PPP flux. In conclusion, it was proposed that ZA can inhibit stability of TAp73 and attenuate the PPP via blocking Ras signaling in bladder cancer cells.

  13. Frequency of Thalassemia, Iron and Glucose-6Phosphate Dehydrogenase Deficiency Among Turkish Migrating Nomad Children in Southern Iran

    Directory of Open Access Journals (Sweden)

    Mehrabani D

    2009-04-01

    Full Text Available Ferropenia and consequent iron deficiency anemia (IDA, β-thalassemia, and glucose 6-phosphate dehydrogenase (G6PD deficiency are three main common hematological problems in Iran. This study was conducted to investigate the prevalence of these problems in Turkish migrating nomads in southern Iran. From June to October 2006, the blood sample of 152 Turkish migrating nomadic children including 79 (52% males and 73 (48% females were evaluated for iron indices and G6PD deficiency in southern Iran. The family history of thalassemia, favism, and signs and symptoms related to anemia of participants were determined. RBC count, different types of Hb, Hct, MCV, MCH, MCHC, RDW, SI, TIBC and SF were measured immediately after blood sampling. Twenty-seven (17.7% children had serum ferritin (SF level <12 ng/dL, while this low serum ferritin level was similar in both genders. The low hemoglobin (Hb level had a statistical correlation with the low serum ferritin level. Among all participants, the prevalence of G6PD deficiency was 7.2% which was more frequent in males compared to females (8.9% vs. 5.5%. Seven (4.6% children had Hb  3.5 g/dL; and the prevalence of β-thalassemia trait was higher in female children compared with males (5.5% vs. 3.8%. The prevalence of IDA was 17.7%. Although this figure is less than the prevalence found in other developing countries (25-35%; but it shows that Turkish ethnic nomads in southern Iran are still behind the health statues in the industrialized countries (5-8%. The relatively high prevalence of β-thalassemia trait also is a major potential risk; and careful performance of Iranian thalassaemia program is highly suggested. It seems that G6PD deficiency is a prevalent disease in migrating Turkish nomads, and again establishment of educational programs, and investigation of dietary habits of Turkish migrating nomads on how and by whom the fava beans are consumed; seems to be a good way to prevent favism.

  14. 宝鸡地区192469例新生儿G6PD筛查结果分析%Analysis of 192 469 Cases of Neonatal G6PD Screening Results

    Institute of Scientific and Technical Information of China (English)

    张娟玲; 唐凯; 刘郁明; 成艳; 屈萍; 王文娟; 杜小云; 权秋宁

    2016-01-01

    目的 探讨本地区新生儿葡萄糖-6-磷酸脱氢酶(G6PD)缺乏症的发病情况以采取措施预防因G6PD缺乏而引起的一系列疾病的发生,保护新生儿的健康成长.方法 采取新生儿出生后72h滤纸干血样应用时间分辨(DELFIA)荧光法检测G6PD含量.结果 192469例新生儿中G6PD缺乏症筛查试验阳性者48例,全市新生儿G6PD缺乏症发病率为2.49/万.其中陕西省籍贯为18例(检出率37.5%),外省籍贯为30例(检出率为62.5%),x2=6.00,0.01<P<0.05.其中患儿母亲为广西籍贯者15例(占50%);贵州籍贯3例(占10%);广东籍贯6例(占20%);甘肃、河南、浙江、福建、海南、四川籍贯各1例(各占3.33%).结论 本地区新生儿G6PD缺乏症发病率低于南方地区,但G6PD缺乏症高发区人口流入可增加本地区的发生率,因此应对G6PD高发区流入人群给予充分关注,对患儿进行早期干预并对家长进行健康教育,避免因核黄疸而引起患儿死亡和智能发育障碍.%Objective:To prevent the occurrence of a series of diseases induced by G6PD deficiency and to guarantee healthy growth of newborn,the incidence of local neonatal glucose-6-phosphate dehydrogenase (G6PD) deficiency was discussed in this paper.Methods:Time-resolved (DELFIA) fluorescence was applied to detect the concentration of G6PD in filter paper dried blood samples of 72h after birth.Results:48 cases of G6PD deficiency positive infants were detected during 192 469 cases of newborn,and the morbidity of G6PD deficiency in the whole city was 2.49/10000.There were 18 cases in the province of Shaanxi (detectable rate was 37.5%),and 30 cases were in other provinces (detectable rate was 62.5%),x2=6.00,0.01<P<0.05.15 cases of the infants'mothers came from Guangxi province (accounted for 50%),3 cases from Guizhou province (accounted for 10%),6 cases from Guangdong Province (accounted for 20%),and 1 case respectively from Gansu,Henan,Zhejiang,Fujian,Hainan and

  15. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  16. Glucose-6-phosphate dehydrogenase deficiency and reduced haemoglobin levels in African children with severe malaria

    National Research Council Canada - National Science Library

    Nguetse, Christian N; Meyer, Christian G; Adegnika, Ayola Akim; Agbenyega, Tsiri; Ogutu, Bernhards R; Kremsner, Peter G; Velavan, Thirumalaisamy P

    2016-01-01

    .... A total of 301 Gabonese, Ghanaian, and Kenyan children aged 6-120 months with severe malaria recruited in a multicentre trial on artesunate were included in this sub-study. G6PD normal (type B), heterozygous (type A(+)) and deficient (type...

  17. Glucose-6-phosphate dehydrogenase polymorphisms and susceptibility to mild malaria in Dogon and Fulani, Mali.

    Science.gov (United States)

    Maiga, Bakary; Dolo, Amagana; Campino, Susana; Sepulveda, Nuno; Corran, Patrick; Rockett, Kirk A; Troye-Blomberg, Marita; Doumbo, Ogobara K; Clark, Taane G

    2014-07-11

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with protection from severe malaria, and potentially uncomplicated malaria phenotypes. It has been documented that G6PD deficiency in sub-Saharan Africa is due to the 202A/376G G6PD A-allele, and association studies have used genotyping as a convenient technique for epidemiological studies. However, recent studies have shown discrepancies in G6PD202/376 associations with severe malaria. There is evidence to suggest that other G6PD deficiency alleles may be common in some regions of West Africa, and that allelic heterogeneity could explain these discrepancies. A cross-sectional epidemiological study of malaria susceptibility was conducted during 2006 and 2007 in the Sahel meso-endemic malaria zone of Mali. The study included Dogon (n = 375) and Fulani (n = 337) sympatric ethnic groups, where the latter group is characterized by lower susceptibility to Plasmodium falciparum malaria. Fifty-three G6PD polymorphisms, including 202/376, were genotyped across the 712 samples. Evidence of association of these G6PD polymorphisms and mild malaria was assessed in both ethnic groups using genotypic and haplotypic statistical tests. It was confirmed that the Fulani are less susceptible to malaria, and the 202A mutation is rare in this group (Dogon 7.9%). The Betica-Selma 968C/376G (~11% enzymatic activity) was more common in Fulani (6.1% vs Dogon 0.0%). There are differences in haplotype frequencies between Dogon and Fulani, and association analysis did not reveal strong evidence of protective G6PD genetic effects against uncomplicated malaria in both ethnic groups and gender. However, there was some evidence of increased risk of mild malaria in Dogon with the 202A mutation, attaining borderline statistical significance in females. The rs915942 polymorphism was found to be associated with asymptomatic malaria in Dogon females, and the rs61042368 polymorphism was associated with clinical malaria in Fulani males

  18. Glucose 6-phosphate dehydrogenase on indian piaroas in malaria-endemic area.

    Directory of Open Access Journals (Sweden)

    Gilberto Antonio Bastidas-Pacheco

    2017-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD remains intact sulfhydryl groups and assist in the detoxification of free radicals and peroxides, therefore deficit irreversible oxidative damage and destruction of the erythrocyte when these are subjected to oxidative substances and stress. Plasmodium spp. infection causes anemia as a result of the rupture of the erythrocyte by this parasite, it can be aggravated in people infected with G6PD deficiency when exposed to drugs. Descriptive field study in which the enzymatic activity of G6PD in an indigenous community of Piaroa municipality of Atures Amazonas state was determined by biochemical tests. The sample consisted of 186 individuals, 100 women and 86 men. The average concentration of hemoglobin was 10.6 g/dL, 88, 6% of the subjects were moderately anemic and none had G6PD deficiency. It is concluded that anemia is common in indigenous Piaroas, moderate and deficiency type; no biochemical test that G6PD deficiency is detected; and that this study provides useful information to state agencies responsible for administering health care in Venezuela information.

  19. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  20. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  1. Prevalence of glucose-6-phosphate dehydrogenase deficiency and haemoglobin S in high and moderate malaria transmission areas of Muheza, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Segeja, M D; Mmbando, Bruno Paul; Kamugisha, M L;

    2008-01-01

    by the disease. In November-December 2003, we conducted a cross-sectional survey to determine the prevalence of G6PD deficiency and HbS in the population and relate these to malaria infection and haemoglobin levels in lowland and highland areas of differing malaria transmission patterns of Muheza, Tanzania...... prevalence of G6PD deficiency and HbS than highlands (G6PD deficiency = 11.32% (24/212) versus 4.43% (9/203), P = 0.01, and HbS = 16.04% (98/611) versus 6.32% (36/570), P = 0.0001). Logistic regression model showed an association between G6PD deficiency and altitude [lowlands] (Odds ratio [OR] 3.4, 95% CI...

  2. Glucose-6-Phosphate Dehydrogenase Deficiency and Haemoglobin Drop after Sulphadoxine-Pyrimethamine Use for Intermittent Preventive Treatment of Malaria during Pregnancy in Ghana - A Cohort Study.

    Directory of Open Access Journals (Sweden)

    Ruth Owusu

    Full Text Available Sulphadoxine-Pyrimethamine (SP is still the only recommended antimalarial for use in intermittent preventive treatment of malaria during pregnancy (IPTp in some malaria endemic countries including Ghana. SP has the potential to cause acute haemolysis in G6PD deficient people resulting in significant haemoglobin (Hb drop but there is limited data on post SP-IPTp Hb drop. This study determined the difference, if any in proportions of women with significant acute haemoglobin drop between G6PD normal, partial deficient and full deficient women after SP-IPTp.Prospectively, 1518 pregnant women who received SP for IPTp as part of their normal antenatal care were enrolled. Their G6PD status were determined at enrollment followed by assessments on days 3, 7,14 and 28 to document any adverse effects and changes in post-IPTp haemoglobin (Hb levels. The three groups were comparable at baseline except for their mean Hb (10.3 g/dL for G6PD normal, 10.8 g/dL for G6PD partial deficient and 10.8 g/dL for G6PD full defect women.The prevalence of G6PD full defect was 2.3% and 17.0% for G6PD partial defect. There was no difference in the proportions with fractional Hb drop ≥ 20% as compared to their baseline value post SP-IPTp among the 3 groups on days 3, 7, 14. The G6PD full defect group had the highest median fractional drop at day 7. There was a weak negative correlation between G6PD activity and fractional Hb drop. There was no statistical difference between the three groups in the proportions of those who started the study with Hb ≥ 8g/dl whose Hb level subsequently fell below 8g/dl post-SP IPTp. No study participant required transfusion or hospitalization for severe anaemia.There was no significant difference between G6PD normal and deficient women in proportions with significant acute haemoglobin drop post SP-IPTp and lower G6PD enzyme activity was not strongly associated with significant acute drug-induced haemoglobin drop post SP-IPTp but a larger

  3. Glucose-6-phosphate dehydrogenase deficiency A- variant in febrile patients in Haiti.

    Science.gov (United States)

    Carter, Tamar E; Maloy, Halley; von Fricken, Michael; St Victor, Yves; Romain, Jean R; Okech, Bernard A; Mulligan, Connie J

    2014-08-01

    Haiti is one of two remaining malaria-endemic countries in the Caribbean. To decrease malaria transmission in Haiti, primaquine was recently added to the malaria treatment public health policy. One limitation of primaquine is that, at certain doses, primaquine can cause hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd). In this study, we genotyped two mutations (A376G and G202A), which confer the most common G6PDd variant in West African populations, G6PDd A-. We estimated the frequency of G6PDd A- in a sample of febrile patients enrolled in an on-going malaria study who represent a potential target population for a primaquine mass drug administration. We found that 33 of 168 individuals carried the G6PDd A- allele (includes A- hemizygous males, A- homozygous or heterozygous females) and could experience toxicity if treated with primaquine. These data inform discussions on safe and effective primaquine dosing and future malaria elimination strategies for Haiti.

  4. Hereditary characteristics of enzyme deficiency and dermatoglyphics in congenital color blindness.

    Science.gov (United States)

    Wu, L Z; Zeng, L H; Ma, Q Y; Xie, Y J; Chen, Y Z; Wu, D Z

    1988-01-01

    The hereditary characteristics of enzyme deficiency and dermatoglyphics in congenital color blindness (CCB) were studied. We propose that there is a linkage between the two loci on the X-chromosome determining CCB and glucose-6-phosphate dehydrogenase (G6PD), based on our study of a high incidence of G6PD deficiency in 156 male cases with CCB. The CCB gene is closely linked with that of G6PD deficiency from our pedigree investigations. The rise in the frequency of eight or more whorls, the low value of atd angle and the presenting rate of real palmar patterns of the thenar, hypothenar and I, areas presented the hereditary traits of congenital color blindness.

  5. Determinação da acurácia do método qualitativo da medida da atividade da glicose-6-fosfato desidrogenase Determination of the accuracy of the measurement method for dehydrogenase activity

    Directory of Open Access Journals (Sweden)

    Letícia L. Giovelli

    2007-12-01

    Full Text Available A deficiência de glicose-6-fosfato desidrogenase (G6PD é um problema de saúde pública que afeta aproximadamente 400 milhões de pessoas no mundo. No mercado, existem vários métodos que medem a atividade da G6PD. Os objetivos deste estudo foram determinar a acurácia do método de Brewer frente a um padrão de referência e estimar a prevalência de deficiência de G6PD na amostra. Foi realizado um estudo transversal de grupo de pacientes internados no HCPA com icterícia a esclarecer, no período de junho de 2004 a maio de 2005. Amostras foram processadas pelo método de Brewer e pelo método de Normalização da Hemoglobina, o qual foi usado como padrão ouro. Foi analisado para atividade da G6PD um total de 173 pacientes. A idade variou de 1 dia a 82 anos, sendo que 66% da amostra possuía até 15 dias de vida. A atividade média e o desvio padrão da G6PD na amostra analisada foi de 17.67± 5,66 U/gHb. A freqüência estimada, pelo padrão ouro, da deficiência de G6PD, foi de 13 (7,7% pacientes com deficiência parcial ou total, e pelo método de Brewer foi de 14 (8,67%. A sensibilidade do método de Brewer comparada com o método quantitativo da Normalização da Hemoglobina foi de 92,8% e a especificidade foi de 98,7%. A deficiência de G6PD é prevalente em nosso meio. Testes de baixo custo, tais como o teste de Brewer, podem ser utilizados como testes de triagem desta deficiência, principalmente no monitoramento de recém-nascidos que estão sob o risco de desenvolver icterícia neonatal.Glucose-6-phosphate dehydrogenase deficiency (G6PD is a public health problem which affects about 400 millions of people all over the world. Some methods that measure the activity of G6PD have already been developed. Thus, the aim of this study was to evaluate the accuracy of the Brewer's method compared with a standard reference and estimate the prevalence of G6PD deficiency in the sample. A cross-sectional study of a group of patients in HCPA

  6. Acquired hemoglobin variants and exposure to glucose-6-phosphate dehydrogenase deficient red blood cell units during exchange transfusion for sickle cell disease in a patient requiring antigen-matched blood.

    Science.gov (United States)

    Raciti, Patricia M; Francis, Richard O; Spitalnik, Patrice F; Schwartz, Joseph; Jhang, Jeffrey S

    2013-08-01

    Red blood cell exchange (RBCEx) is frequently used in the management of patients with sickle cell disease (SCD) and acute chest syndrome or stroke, or to maintain target hemoglobin S (HbS) levels. In these settings, RBCEx is a category I or II recommendation according to guidelines on the use of therapeutic apheresis published by the American Society for Apheresis. Matching donor red blood cells (RBCs) to recipient phenotypes (e.g., C, E, K-antigen negative) can decrease the risk of alloimmunization in patients with multi-transfused SCD. However, this may select for donors with a higher prevalence of RBC disorders for which screening is not performed. This report describes a patient with SCD treated with RBCEx using five units negative for C, E, K, Fya, Fyb (prospectively matched), four of which were from donors with hemoglobin variants and/or glucose-6-phosphate dehydrogenase (G6PD) deficiency. Pre-RBCEx HbS quantification by high performance liquid chromatography (HPLC) demonstrated 49.3% HbS and 2.8% hemoglobin C, presumably from transfusion of a hemoglobin C-containing RBC unit during a previous RBCEx. Post-RBCEx HPLC showed the appearance of hemoglobin G-Philadelphia. Two units were G6PD-deficient. The patient did well, but the consequences of transfusing RBC units that are G6PD-deficient and contain hemoglobin variants are unknown. Additional studies are needed to investigate effects on storage, in-vivo RBC recovery and survival, and physiological effects following transfusion of these units. Post-RBCEx HPLC can monitor RBCEx efficiency and detect the presence of abnormal transfused units.

  7. Glusoce-6-phosphate dehydrogenase- History and diagnosis

    Directory of Open Access Journals (Sweden)

    K Gautam

    2016-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase deficiency is the most common enzymatic defect of red blood cells, which increases the vulnerability of erythrocytes to oxidative stress leading to hemolytic anemia. Since its identification more than 60 years ago, much has been done with respect to its clinical diagnosis, laboratory diagnosis and treatment. Association of G6PD is not just limited to anti malarial drugs, but a vast number of other diseases. In this article, we aimed to review the history of Glucose-6-phosphate dehydrogenase, the diagnostic methods available along with its association with other noncommunicable diseases. 

  8. Hemoglobin E and Glucose-6-Phosphate Dehydrogenase Deficiency and Plasmodium falciparum Malaria in the Chittagong Hill Districts of Bangladesh

    Science.gov (United States)

    Shannon, Kerry L.; Ahmed, Sabeena; Rahman, Hafizur; Prue, Chai S.; Khyang, Jacob; Ram, Malathi; Zahirul Haq, M.; Chowdhury, Ashish; Akter, Jasmin; Glass, Gregory E.; Shields, Timothy; Nyunt, Myaing M.; Khan, Wasif A.; Sack, David A.; Sullivan, David J.

    2015-01-01

    Hemoglobin E is largely confined to south and southeast Asia. The association between hemoglobin E (HbE) and malaria is less clear than that of hemoglobin S and C. As part of a malaria study in the Chittagong Hill Districts of Bangladesh, an initial random sample of 202 individuals showed that 39% and 49% of Marma and Khyang ethnic groups, respectively, were positive for either heterozygous or homozygous hemoglobin E. In this group, 6.4% were also found to be severely deficient and 35% mildly deficient for glucose-6-phosphate dehydrogenase (G6PD). In a separate Plasmodium falciparum malaria case–uninfected control study, the odds of having homozygous hemoglobin E (HbEE) compared with normal hemoglobin (HbAA) were higher among malaria cases detected by passive surveillance than age and location matched uninfected controls (odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.07–46.93). The odds of heterozygous hemoglobin E (HbAE) compared with HbAA were similar between malaria cases and uninfected controls (OR = 0.71, 95% CI = 0.42–1.19). No association by hemoglobin type was found in the initial parasite density or the proportion parasite negative after 2 days of artemether/lumefantrine treatment. HbEE, but not HbAE status was associated with increased passive case detection of malaria. PMID:26101273

  9. Advances in the Molecular Biological Research of Human Glucose-6-phosphate Dehydrogenase%人类葡萄糖-6-磷酸脱氢酶的分子生物学研究进展

    Institute of Scientific and Technical Information of China (English)

    刘晗; 蒋玮莹

    2009-01-01

    葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G6PD)缺乏症作为一种全球范围内最常见的酶缺乏症之一,受到研究者们的广泛关注.G6PD催化磷酸戊糖途径的第一步,由此酶催化生成的NADPH+H+对于对抗氧化性损伤是极其重要的.本文将从G6PD的结构与功能,SNP的研究与单体型的建立,抗疟疾选择优势与新的G6PD基因突变检测方法这几方面的研究进展综述如下.%Glucose-6-phosphate dehydrogenase(G6PD)deficiency is one of the most common enzymopathies attracting many researchers.G6PD catalyses the first committed step in the pentose phosphate pathway,and the generation of NADPH by this enzyme is essential for protection against oxidative stress.The progress in research of the structures and functions of G6PD gene'S,SNP and haplotype,new detective techniques of new mutation and recent positive selection of anti-malaria are reviewed.

  10. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α and GTPase myxovirus resistance 1 (MX1—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E and enterovirus 71 (EV71 infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.

  11. Clinical analysis of ABO hemolytic disease in newborn with giucose-6-phosphate dehydrogenase deficiency.%新生儿ABO溶血病并红细胞葡萄糖-6-磷酸脱氢酶缺乏症临床对比分析

    Institute of Scientific and Technical Information of China (English)

    黄世荣; 段捷华

    2010-01-01

    目的 探讨新生儿ABO溶血病、红细胞葡萄糖-6-磷酸脱氢酶(G-6-PD)缺乏症及两者合并患儿的临床特点.方法 对160例新生儿ABO溶血病(ABO组)、219例G-6-PD缺乏症(G6PD组)、52例新生儿ABO溶血病并G-6-PD缺乏症(ABO+G617D组)3组临床相关指标进行对比分析.结果 G6PD组血红蛋白[(159.7±24.9)g/L]高于ABO组[(150.2±23.0)g/L]和ABO+G6PD组[(149.2±22.8)g/L],差异均有统计学意义(P均<0.01);血清总胆红紊高于ABO组[(419.0±152.9)μmol/L与(355.4±113.2)μmol/L],差异有统计学意义(P<0.01);黄疸消退时间较ABO组长[(9.4±2.3)d与(8.1±2.2)d],差异有统计学意义(P<0.01).ABO+G6PD组黄疸消退时间[(12.0±2.7)d]、光疗时间[(43.2±16.0)h]、光疗次数[(3.5±1.2)次]均长或多于ABO组[(8.1.4-2.2)d、(36.1 4-15.9)h、(2.6±1.2)次]及其G6PD组[(9.4±2.3)d、(37.6±17.3)h、(2.8 4-1.3)次],差异均有统计学意义(P均<0.05).G6PD组胆红素脑病(16.O%)、低钙血症发生率(32.9%)高于ABO组(6.9%、20.0%),差异有统计学意义(P<0.05);而其贫血发生率(23.3%)则低于ABO组(40.0%)及其ABO+G6PD组(51.9%),差异有统计学意义(P<0.01).结论 新生儿ABO溶血病并G-6-PD缺乏症时,黄疸出现时间、黄疸程度、胆红素脑病发生率与新生儿ABO溶血病、G-6-PD缺乏症差异无显著性,但黄疸消退时间更长,黄疸更易反复.G-6-PD缺乏症与新生儿ABO溶血痛相比,黄疸程度更重,退黄时间更长,更易发生胆红素脑病,但贫血发生率更低.%Objective To explore the clinical features of ABO hemolytic disease in newboms,red blood cell glucose-6-phosphate dehydrogenase(G-6-PD) deficiency and the combined. Methods In the study, 160 cases of ABO hemolytic disease in newborn (ABO group) ,219 cases of G-6-PD deficiency(G6PD group) ,52 cases of the combined(ABO + G6PD group). The three groups were analyzed. Results The hemoglobin in the G6PD group ( (159. 7 ± 24.9) g/L) was significantly higher than in the ABO group ((150. 2

  12. Severe G6PD Deficiency Due to a New Missense Mutation in an Infant of Northern European Descent

    DEFF Research Database (Denmark)

    Warny, Marie; Lausen, Birgitte; Birgens, Henrik

    2015-01-01

    We report a term male infant born to parents of Danish descent, who on the second day of life developed jaundice peaking at 67 hours and decreasing on applied double-sided phototherapy. In the weeks following, the infant showed signs of ongoing hemolysis. Laboratory tests showed very low glucose-...

  13. 遗传性球形红细胞增多症合并G6PD缺乏1例报告%Hereditary spherocytosis accompanied with G6PD deifciency:a case report and literature review

    Institute of Scientific and Technical Information of China (English)

    马诗玥; 林发全

    2016-01-01

    Objective To discuss the clinical features, pathogenesis and diagnostic experience of hereditary spherocytosis (HS) accompanied with glucose-6-phosphate dehydrgenase deficiency (G6PD) deficiency.Methods Clinical features and diagnose of a 5-year-old case with HS accompanied with G6PD deifciency were analyzed, and realated literatures reviewed. Results The case was a 5-year-old boy referred to a hospital because of pallor and jaundice. Laboratory test results were as follows: red blood cell count 2.65×1012/ L, hemoglobin 70.50 g/L, mean corpuscular volume 78.61 fl, and mean sphered corpuscular volume 66.26 lf, reticulocyte ratio 18%; G6PD activity was 1.38 NBT. The peripheral red blood cells were of different sizes and mature, and spherocytes were observed. SDS-polyacrylamide gel electrophoresis and western blot shows the band 3 was partially deletion. Molecular analysis revealed the band 3 deifciency was caused by two mutations: one was a missensemutation c.113A> C, and the other was a intron mutation c.349+27C> T. A diagnosis of HS accompanied with G6PD deifciency was therefore arrived.Conclusions HS accompanied with G6PD deifciency is a relatively uncommon phenomenon and might lead to misdiagnosis. Blood smear staining, thalassemia screening, mean sphered corpuscular volume and other laboratory detections could improve the accuracy of diagnosis.%目的:探讨遗传性球形红细胞增多症(HS)合并葡萄糖-6-磷酸脱氢酶(G 6 PD)缺乏症的临床表现、发病机制和诊断经验。方法回顾分析1例5岁HS合并G 6 PD缺乏症患儿的临床表现、实验室检查,并复习国内外相关文献。结果患儿,男,5岁。因面色苍白伴黄疸,疑似地中海贫血就诊。红细胞计数2.65×1012/L,血红蛋白70.50 g/L,平均红细胞体积78.61 lf,平均球形红细胞体积66.26 lf,网织红细胞18%;镜检红细胞大小不等,以小细胞为主,球形红细胞约占15%;G6PD活性1.38 NBT;SDS-PAGE

  14. Red Algal Bromophenols as Glucose 6-Phosphate Dehydrogenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Koretaro Takahashi

    2013-10-01

    Full Text Available Five bromophenols isolated from three Rhodomelaceae algae (Laurencia nipponica, Polysiphonia morrowii, Odonthalia corymbifera showed inhibitory effects against glucose 6-phosphate dehydrogenase (G6PD. Among them, the symmetric bromophenol dimer (5 showed the highest inhibitory activity against G6PD.

  15. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  16. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  17. Correlation of G6PD activity and thalassemia%G6PD活性与地中海贫血的相关性研究

    Institute of Scientific and Technical Information of China (English)

    黄佐荣; 苏国生

    2014-01-01

    Objective To investigate the G6PD activity correlated with thalassemia. Methods automatic biochemical analyzer patients with G6PD activity on quantitative analysis, thalassemia screening using automated hemoglobin electrophoresis analysis system, and abnormal results of patient samples for genotyping confirmed.Results 3626 cases studied, there are 652 cases of G6PD activity increased, and G6PD activity in patients with elevated hemoglobin electrophoresis test results significantly improve the chances of abnormalities, confirmed by genotyping, mild positive rate of α-thalassemia to 25.92%, light β thalassemia positive rate was 34.97%, heavy β thalassemia positive rate was 1.53%, thalassemia positive rate was 62.42% of the total, with normal G6PD activity thalassemia total positive rate comparison, χ2= 817.42, P=0.0008, a statistical y significant difference. Conclusion G6PD activity is higher, the greater the risk the chance of thalassemia, G6PD activity in patients considered for screening, clinical diagnosis can help thalassemia.%目的:探讨G6PD活性与地中海贫血的相关性。方法采用全自动生化仪对患者进行G6PD活性定量分析,用全自动血红蛋白分析系统进行地中海贫血筛查,并对异常结果患者标本进行基因分型确诊。结果在3626例研究对象中,有652例G6P D活性升高,而G6P D活性升高的患者血红蛋白电泳检测结果异常的几率明显提高,经基因分型确证,轻度α地中海贫血阳性检出率为25.92%,轻型β地中海贫血阳性检出率为34.97%,重型β地中海贫血阳性检出率为1.53%,地中海贫血总阳性检出率为62.42%,与G6PD活性正常组地中海贫血总阳性检出率比较,χ2=817.42,P=0.0008,差异具有统计学意义。结论 G6PD活性越高,患地中海贫血的几率越大,认为对患者进行G6PD活性筛查,可有助于地中海贫血的临床诊断。

  18. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity.

    Science.gov (United States)

    Park, Jiyoung; Rho, Ho Kyung; Kim, Kang Ho; Choe, Sung Sik; Lee, Yun Sok; Kim, Jae Bum

    2005-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) produces cellular NADPH, which is required for the biosynthesis of fatty acids and cholesterol. Although G6PD is required for lipogenesis, it is poorly understood whether G6PD in adipocytes is involved in energy homeostasis, such as lipid and glucose metabolism. We report here that G6PD plays a role in adipogenesis and that its increase is tightly associated with the dysregulation of lipid metabolism and insulin resistance in obesity. We observed that the enzymatic activity and expression levels of G6PD were significantly elevated in white adipose tissues of obese models, including db/db, ob/ob, and diet-induced obesity mice. In 3T3-L1 cells, G6PD overexpression stimulated the expression of most adipocyte marker genes and elevated the levels of cellular free fatty acids, triglyceride, and FFA release. Consistently, G6PD knockdown via small interfering RNA attenuated adipocyte differentiation with less lipid droplet accumulation. Surprisingly, the expression of certain adipocytokines such as tumor necrosis factor alpha and resistin was increased, whereas that of adiponectin was decreased in G6PD overexpressed adipocytes. In accordance with these results, overexpression of G6PD impaired insulin signaling and suppressed insulin-dependent glucose uptake in adipocytes. Taken together, these data strongly suggest that aberrant increase of G6PD in obese and/or diabetic subjects would alter lipid metabolism and adipocytokine expression, thereby resulting in failure of lipid homeostasis and insulin resistance in adipocytes.

  19. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  20. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    Science.gov (United States)

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  1. Actin-binding protein (ABP-280) filamin gene (FLN) maps telomeric to the color vision locus (R/GCP) and centromeric to G6PD in Xq28

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, J.B. (Brigham and Women' s Hospital, Boston, MA (United States) Dana-Farber Cancer Institute, Boston, MA (United States)); Henske, E.; Hartwig, J.H.; Kwiatkowski, D.J. (Brigham and Women' s Hospital, Boston, MA (United States)); Warren, S.T.; Kunst, C.B. (Emory Univ. School of Medicine, Atlanta, GA (United States)); D' Urso, M.; Palmieri, G. (International Institute of Genetics and Biophysics, Naples, (Italy)); Bruns, G. (Children' s Hospital, Boston, MA (United States))

    1993-08-01

    Actin-binding protein-280 (ABP-280) is a dimeric actin filament-crosslinking protein that promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The authors have mapped the ABP-280 filamin gene (FLN) to Xq28 by Southern blot analysis of somatic cell hybrid lines, by fluorescence in situ hybridization, and through identification of portions of the FLN gene within cosmids and YACs mapped to Xq28. The FLN gene is found within a 200-kb region centromeric to the G6PD locus and telomeric to DSX52 and the color vision locus. 23 refs., 2 figs.

  2. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions MCAD deficiency medium-chain acyl-CoA dehydrogenase deficiency Printable PDF Open ... Javascript to view the expand/collapse boxes. Description Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a ...

  3. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  4. Modulation of nuclear T3 binding by T3 in a human hepatocyte cell-line (Chang-liver) - T3 stimulation of cell growth but not of malic enzyme, glucose-6-phosphatdehydrogenase or 6-phosphogluconate-dehydrogenase

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The T3 modulation of nuclear T3 binding (NBT3), the T3 effect on cell growth, and the T3 and insulin effects on malic enzyme (ME), glucose-6-phosphat-dehydrogenase (G6PD) and 6-phosphogluconat-dehydrogenase (G6PD) were studied in a human hepatocyte cell-line (Chang-liver). T3 was bound to a high...

  5. Glucose-6-phosphate dehydrogenase Guadalajara--a case of chronic non-spherocytic haemolytic anaemia responding to splenectomy and the role of splenectomy in this disorder.

    Science.gov (United States)

    Hamilton, J W; Jones, F G C; McMullin, Mary Frances

    2004-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme of the pentose phosphate shunt pathway a major function of which is to prevent cellular oxidative damage. Deficiency in red blood cells is associated with a number of varied clinical manifestations. Chronic non-spherocytic haemolytic anaemia is uncommon but is usually characterized by chronic haemolysis, often with severe anaemia. In the past splenectomy in this condition has been thought to be of questionable benefit. We report a case of G6PD Guadalajara where splenectomy produced transfusion independence and have reviewed the literature. Those cases with exon 10 mutations often have a severe clinical phenotype, which responds to splenectomy. This procedure should be considered in this condition.

  6. An optimised system for refolding of human glucose 6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Engel Paul C

    2009-03-01

    Full Text Available Abstract Background Human glucose 6-phosphate dehydrogenase (G6PD, active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP, providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins. Results The effects of different chemical and physical variables on the refolding of human recombinant G6PD have been extensively investigated. L-Arg, NADP+ and DTT are all major positive influences on refolding, and temperature, protein concentration, salt types and other additives also have significant impacts. With the method described here, ~70% enzyme activity could be regained, with good reproducibility, after denaturation with Gdn-HCl, by rapid dilution of the protein, and the refolded enzyme displays kinetic and CD properties indistinguishable from those of the native protein. Refolding under these conditions is relatively slow, taking about 7 days to complete at room temperature even in the presence of cyclophilin A, a peptidylprolyl isomerase reported to increase refolding rates. The refolded protein intermediates shift from dominant monomer to dimer during this process, the gradual emergence of dimer correlating well with the regain of enzyme activity. Conclusion L-Arg is the key player in the refolding of human G6PD, preventing the aggregation of folding intermediate, and NADP+ is essential for the folding intermediate to adopt native structure. The refolding protocol can be applied to produce high recovery yield of folded protein with

  7. Deficiência da glicose-6-fosfato desidrogenase com infecções de repetição: relato de caso Glucose-6-phosphate dehydrogenase deficiency with recurrent infections: case report

    Directory of Open Access Journals (Sweden)

    Abertina Rosa-Borges

    2001-08-01

    Full Text Available OBJETIVO: relatar a ocorrência de uma deficiência funcional de neutrófilos rara, com quadro clínico e laboratorial semelhante ao da doença granulomatosa crônica. MÉTODOS: relato de caso de paciente com deficiência acentuada da glicose-6-fosfato desidrogenase e infecções de repetição. Realizada pesquisa bibliográfica utilizando as bases de dados Medline e Lilacs, abrangendo o período de 1972 a 2000. RESULTADOS: paciente com nível da glicose-6-fosfato desidrogenase extremamente reduzido e quadro de infeções graves com melhora clínica após uso de cotrimoxazol contínuo. Os leucócitos do paciente apresentam defeito no metabolismo oxidativo, similar ao da doença granulomatosa crônica. CONCLUSÕES: o diagnóstico da deficiência da glicose-6-fosfato desidrogenase em neutrófilos deve ser considerado em qualquer paciente com anemia hemolítica não esferocítica congênita no qual o nível da glicose-6-fosfato desidrogenase esteja anormalmente baixo ou apresente infeções de repetição. É diagnóstico diferencial da doença granulomatosa crônica.OBJECTIVE: To report a case of rare neutrophil functional disorder with clinical and laboratory findings similar to those of chronic granulomatous disease. METHODS: Patient with extremely reduced level of glucose-6-phosphate dehydrogenase and recurrent infections that improved after continuous use of cotrimoxazole. The patient presented leukocytes with defective respiratory burst, similar to what occurs in chronic granulomatous disease. COMMENTS: The diagnosis of glucose-6-phosphate dehydrogenase deficiency in neutrophils should be considered in any patient with hemolytic anemia whose level of G6PD is extremely low or in any patient that presents recurrent infections as differential diagnosis of chronic granulomatous disease.

  8. A comparative transcriptional map of a region of 250 kb on the human and mouse X chromosome between the G6PD and the FLN1 genes.

    Science.gov (United States)

    Rivella, S; Tamanini, F; Bione, S; Mancini, M; Herman, G; Chatterjee, A; Maestrini, E; Toniolo, D

    1995-08-10

    The transcriptional organization of the region of the mouse X chromosome between the G6pd and the Fln1 genes was studied in detail, and it was compared with the syntenic region of the human chromosome. A cosmid contig of 250 kb was constructed by screening mouse cosmid libraries with probes for human genes and with whole cosmids. Overlapping cosmids were aligned by comparing EcoRI and rare-cutter restriction enzyme digestions. The gene order and the orientation of transcription were determined by hybridization with fragments from the 5' and 3' moieties of each cDNA. Our work demonstrates that all of the new genes identified in human are present in the mouse. The size of the region, 250 kb, is also very similar, as are gene order and gene organization: the transcriptional organization in "domains" described in human is found to be identical in the mouse. The major difference detected is the much lower content in rare-cutter restriction sites, which is related to the lower G+C and CpG content of mouse DNA. The very high conservation that we have described suggests that a potent selective pressure has contributed to such conservation of gene organization.

  9. A comparative transcriptional map of a region of 250 kb on the human and mouse X chromosome between the G6PD and the FLN1 genes

    Energy Technology Data Exchange (ETDEWEB)

    Rivella, S.; Tamanini, F.; Bione, S.; Mancini, M. [Istituto de Genetica Biochinica ed Evoluzionistica, Pavia (Italy)] [and others

    1995-08-10

    The transcriptional organization of the region of the mouse X chromosome between the G6pd and the Fln1 genes was studied in detail, and it was compared with the syntenic region of the human chromosome. A cosmid contig of 250 kb was constructed by screening mouse cosmid libraries with probes for human genes and with whole cosmids. Overlapping cosmids were aligned by comparing EcoRI and rare-cutter restriction enzyme digestions. The gene order and the orientation of transcription were determined by hybridization with fragments from the 5{prime} and 3{prime} moieties of each cDNA. Our work demonstrates that all of the new genes identified in human are present in the mouse. The size of the region, 250 kb, is also very similar, as are gene order and gene organizations: the transcriptional organization in {open_quotes}domains{close_quotes} described in human is found to be identical in the mouse. The major difference detected is the much lower content in rare-cutter restriction sites, which is related to the lower G+C and CpG content of mouse DNA. The very high conservation that we have described suggests that a potent selective pressure has contributed to such conservation of gene organization. 17 refs., 4 figs.

  10. Glucosa-6-fosfato deshidrogenasa (G6PD). Respuesta de los hematíes y otras células humanas a la disminución en su actividad

    OpenAIRE

    Javier Fernando Bonilla; Magda Carolina Sánchez; Lilian Chuaire

    2007-01-01

    La glucosa-6-fosfato deshidrogenasa (G6PD) es la primera enzima de la vía pentosa fosfato y la principal fuente intracelular de nicotidamina adenina dinucleótido fosfato reducido (NADPH), compuesto comprometido en diversos procesos fisiológicos, por ejemplo defensa antioxidante (sobre todo células como los eritrocitos), modulación del crecimiento endotelial, eritropoyesis, vascularización y fagocitosis. La deficiencia de G6PD es la enzimopatía ligada al cromosoma X más común en el ser human...

  11. GLUCOSE -6- PHOSPHATE DEHYDROGENASE DEFICIENCY AND HAEMOGLOBINOPHATIES IN RESIDENT OF ARSO PIR, IRIAN JAYA

    Directory of Open Access Journals (Sweden)

    Trevor R. Jones

    2012-09-01

    Full Text Available Telah dilakukan penelitian tentang defisiensi glukose —6- fosfatase dehidrogenase G-6-PD dan haemoglobinopati dengan populasi 223 penduduk yang terdiri atas 102 suku Jawa dan 121 suku Irian Jaya. Enam orang dari Suku Irian Jaya, ditemukan dengan defisiensi tingkat G-6-PD. Tingkat G-6-PD pada orang-orang ini berkisar antara 4 sampai 50% dari nilai nominal minimum. Ditemukan pula 5 kasus haemoglobinopati. Pada satu orang dari suku Irian Jaya ditemukan haemoglobinopati yang konsisten dengan hemoblobin Lepore-Hollandia. Tiga orang dari suku Jawa menunjukkan suatu varian hemoglobin E dan seorang dari suku Jawa lainnya menunjukkan satu varian yang konsisten dengan hemoglobin fetal. Sementara penemuan ini menunjukkan adanya varian hematologi dalam populasi penelitian yang mungkin berperan dalam kerentanan terhadap malaria, tetapi persentase subyek dengan varian tidak cukup besar untuk mempengaruhi secara berarti angka transmisi malaria di dalam populasi.

  12. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte

    Directory of Open Access Journals (Sweden)

    Shane C. Quinonez

    2014-01-01

    Full Text Available Dihydrolipoamide dehydrogenase deficiency, also known as maple syrup urine disease (MSUD type III, is caused by the deficiency of the E3 subunit of branched chain alpha-ketoacid dehydrogenase (BCKDH, α-ketoglutarate dehydrogenase (αKGDH, and pyruvate dehydrogenase (PDH. DLD deficiency variably presents with either a severe neonatal encephalopathic phenotype or a primarily hepatic phenotype. As a variant form of MSUD, it is considered a core condition recommended for newborn screening. The detection of variant MSUD forms has proven difficult in the past with no asymptomatic DLD deficiency patients identified by current newborn screening strategies. Citrulline has recently been identified as an elevated dried blood spot (DBS metabolite in symptomatic patients affected with DLD deficiency. Here we report the retrospective DBS analysis and second-tier allo-isoleucine testing of 2 DLD deficiency patients. We show that an elevated citrulline and an elevated allo-isoleucine on second-tier testing can be used to successfully detect DLD deficiency. We additionally recommend that DLD deficiency be included in the “citrullinemia/elevated citrulline” ACMG Act Sheet and Algorithm.

  13. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... enzyme is involved in the normal processing of carbohydrates. It also protects red blood cells from the ... of glucose-6-phosphate dehydrogenase or alter its structure, this enzyme can no longer play its protective ...

  14. 一种新的G6PD基因突变型的鉴定%IDENTIFICATION OF A NOVEL MUTATION IN HUMAN G6PD GENE

    Institute of Scientific and Technical Information of China (English)

    蔡望伟; 周代锋; 蔡兰洁; 邝宇; 周玉英; FilosaStefania; MartiniGiuseppe

    2003-01-01

    目的:鉴定1例葡萄糖-6-磷酸脱氢酶缺乏症患者的基因突变.方法:用聚合酶链反应、限制性内切酶筛查葡萄糖-6-磷酸酶基因1 388G→A、1 376G→T、1 360C→T、1 024C→T、592C→T、517T→C、493A→G,487G→A、392G→T、95A→G突变,用单链构象多态性筛查葡萄糖-6-磷酸脱氢酶基因的所有外显子,用核苷酸序列测定确定基因突变.结果:该患者未存在1 388G→A、1 376G→T、1 360C→T、1 024C→T、592C→T、517T→C、493A→G、487G→A、392G→T、95A→G突变,但在外显子8发现了一种新的G6PD基因突变--835A→G突变,此突变导致第279位的苏氨酸被丙氨酸取代,将其命名为G6PD-海口,其酶活性约是正常的10%,比835A→T突变型的活性低,后者的酶活性约是正常的40%;分析人G6PD的三维结构模型表明,第279位苏氨酸残基的羟基对于维持G6PD亚基的相互作用具有非常重要的作用.结论:835A→G突变是一种新的G6PD基因突变型,G6PD的第279位苏氨酸残基的羟基是维持G6PD亚基相互作用及酶活性的必需基团.

  15. Features and outcomes of malaria infection in glucose-6-phosphatedehydrogenase normal and deficient Nigerian children

    Directory of Open Access Journals (Sweden)

    Adebola Emmanuel Orimadegun

    2014-01-01

    Full Text Available Background & objectives: Malaria and G6PD deficiency-related haemolyses are known causes of hospital admissions in Nigeria and pose great danger to child survival but data on interactions of these two pathologies are scarce. This study was carried out to determine the association between features of Plasmodium falciparum infection and G6PD status. Methods: G6PD and haemoglobin were typed by fluorescent spot test and electrophoresis respectively, in 1120 children with microscopically-proven falciparum malaria. Clinical features of malaria were compared between G6PD normal and deficient children. Results: There were 558 males and 562 females with median age of 35 months (range, 6 months-12 yr. In males, prevalence of G6PD-deficiency in patients with uncomplicated malaria (UM, severe malarial anaemia (SMA and cerebral malaria (CM was 23.4, 7 and 16.7%, respectively compared with 11.1, 7.3 and 4.4%, respectively among females. In both males and females, convulsion and rectal temperature above 38°C were less likely presentations among G6PD-deficient compared with G6PD-normal children (p <0.05. The proportions of children with pallor, convulsion and impaired consciousness were significantly lower among G6PD-deficient than normal males (p <0.05 but these features were not different between deficient and normal females (p >0.05. Interpretation & conclusion: Convulsions, pallor and elevated temperature were more frequent features of malaria in G6PD normal than deficient children. G6PD-deficient male children are protected against impaired consciousness. These differences may offer useful hints in malaria treatment and researches in endemic regions.

  16. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Directory of Open Access Journals (Sweden)

    Alparslan Merdin

    2014-03-01

    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  17. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.

    Science.gov (United States)

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Alfonso, Lloyd F; Marimuthu, Srinivasan; Bhat, G Jayarama

    2016-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT‑29 colorectal cancer cells, in order to compare aspirin‑mediated acetylation of G6PD and its activity between HCT 116 and HT‑29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT‑29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin‑acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH.

  18. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W;

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...

  19. Long-chain L-3-hydroxyacyl-coenzyme a dehydrogenase deficiency: a molecular and biochemical review.

    Science.gov (United States)

    Rakheja, Dinesh; Bennett, Michael J; Rogers, Beverly B

    2002-07-01

    Since the first report of long-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency a little more than a decade ago, its phenotypic and genotypic heterogeneity in individuals homozygous for the enzyme defect has become more and more evident. Even more interesting is its association with pregnancy-specific disorders, including preeclampsia, HELLP syndrome (hemolysis, elevated liver enzymes, low platelets), hyperemesis gravidarum, acute fatty liver of pregnancy, and maternal floor infarct of the placenta. In this review we discuss the biochemical and molecular basis, clinical features, diagnosis, and management of long-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency.

  20. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil

    2007-01-01

    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  1. 5FU and oxaliplatin-containing chemotherapy in two dihydropyrimidine dehydrogenase-deficient patients.

    Science.gov (United States)

    Reerink, O; Mulder, N H; Szabo, B G; Hospers, G A P

    2004-01-01

    Patients with a germline mutation leading to a deficiency of the dihydropyrimidine dehydrogenase (DPD) enzyme are at risk from developing severe toxicity on the administration of 5FU-containing chemotherapy. We report on the implications of this inborn genetic error in two patients who received 5FU and oxaliplatin. A possible co-medication effect of oxaliplatin is considered, as are the consequences of screening for DPD deficiency.

  2. Relevance of expanded neonatal screening of medium-chain acyl co-a dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Couce, M L; Castiñeiras, D E; Moure, J D;

    2011-01-01

    Neonatal screening of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is of major importance due to the significant morbidity and mortality in undiagnosed patients. MCADD screening has been performed routinely in Galicia since July 2000, and until now 199,943 newborns have been screened. W...

  3. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    1991-01-01

    A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct...

  4. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency

    DEFF Research Database (Denmark)

    ØRngreen, Mette C; Nørgaard, Mette; Sacchetti, Massimo

    2004-01-01

    Fuel utilization in two adult patients with the myopathic form of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and five healthy subjects was investigated with stable isotopes during exercise at 50% of VO2max. The findings indicate that residual VLCAD activity in the patients...

  5. 5FU and oxaliplatin-containing chemotherapy in two dihydropyrimidine dehydrogenase-deficient patients

    NARCIS (Netherlands)

    Reerink, O; Mulder, NH; Szabo, BG; Hospers, GAP

    2004-01-01

    Patients with a germline mutation leading to a deficiency of the dihydropyrimidine dehydrogenase (DPD) enzyme are at risk from developing severe toxicity on the administration of 5FU-containing chemotherapy. We report on the implications of this inborn genetic error in two patients who received 5FU

  6. Prevalence of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency in Estonia

    DEFF Research Database (Denmark)

    Joost, K; Ounap, K; Zordania, R;

    2012-01-01

    The aim of our study was to evaluate the prevalence of long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) in the general Estonian population and among patients with symptoms suggestive of fatty acid oxidation (FAO) defects. We collected DNA from a cohort of 1,040 anonymous newborn blo...... prevalence of LCHADD in Estonia would be 1: 91,700....

  7. Medium-Chain Acyl-CoA Dehydrogenase Deficiency in Gene-Targeted Mice.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Medium-chain acyl-CoA dehydrogenase (MCAD deficiency is the most common inherited disorder of mitochondrial fatty acid beta-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD by gene targeting in embryonic stem (ES cells. The MCAD mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 degrees C with prior fasting. The sporadic cardiac lesions seen in MCAD mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.

  8. Fatal Chromobacterium violaceum septicaemia in northern Laos, a modified oxidase test and post-mortem forensic family G6PD analysis

    Directory of Open Access Journals (Sweden)

    Mayxay Mayfong

    2009-07-01

    Full Text Available Abstract Background Chromobacterium violaceum is a Gram negative facultative anaerobic bacillus, found in soil and stagnant water, that usually has a violet pigmented appearance on agar culture. It is rarely described as a human pathogen, mostly from tropical and subtropical areas. Case presentation A 53 year-old farmer died with Chromobacterium violaceum septicemia in Laos. A modified oxidase method was used to demonstrate that this violacious organism was oxidase positive. Forensic analysis of the glucose-6-phosphate dehydrogenase genotypes of his family suggest that the deceased patient did not have this possible predisposing condition. Conclusion C. violaceum infection should be included in the differential diagnosis in patients presenting with community-acquired septicaemia in tropical and subtropical areas. The apparently neglected but simple modified oxidase test may be useful in the oxidase assessment of other violet-pigmented organisms or of those growing on violet coloured agar.

  9. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil

    2007-01-01

    ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...... and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet. RESULTS: We found homozygosity for A > G...... changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. CONCLUSION: This mutation was also found in two...

  10. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  11. Glucosa-6-fosfato deshidrogenasa (G6PD. Respuesta de los hematíes y otras células humanas a la disminución en su actividad

    Directory of Open Access Journals (Sweden)

    Javier Fernando Bonilla

    2007-03-01

    Full Text Available La glucosa-6-fosfato deshidrogenasa (G6PD es la primera enzima de la vía pentosa fosfato y la principal fuente intracelular de nicotidamina adenina dinucleótido fosfato reducido (NADPH, compuesto comprometido en diversos procesos fisiológicos, por ejemplo defensa antioxidante (sobre todo células como los eritrocitos, modulación del crecimiento endotelial, eritropoyesis, vascularización y fagocitosis. La deficiencia de G6PD es la enzimopatía ligada al cromosoma X más común en el ser humano. Si bien se puede presentar en cualquier tipo de célula, su carencia absoluta es incompatible con la vida. Según la OMS, en el mundo hay más de 400 millones de personas afectadas por la deficiencia de la enzima, y para Colombia calculan una prevalencia de la deficiencia severa entre 3% y 7%, pero no se conocen los datos relativos a las alteraciones leves y moderadas, que también tienen efectos clínicos. El presente artículo revisa los aspectos biomoleculares más importantes de la enzima, su clasificación de acuerdo con la actividad y la movilidad electroforética, y también se mencionan algunos aspectos clínicos relacionados con la alteración de su actividad.

  12. Evidence of redox imbalance in a patient with succinic semialdehyde dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Anna-Kaisa Niemi

    2014-01-01

    Full Text Available The pathophysiology of succinic semialdehyde dehydrogenase (SSADH deficiency is not completely understood. Oxidative stress, mitochondrial pathology, and low reduced glutathione levels have been demonstrated in mice, but no studies have been reported in humans. We report on a patient with SSADH deficiency in whom we found low levels of blood reduced glutathione (GSH, and elevations of dicarboxylic acids in urine, suggestive of possible redox imbalance and/or mitochondrial dysfunction. Thus, targeting the oxidative stress axis may be a potential therapeutic approach if our findings are confirmed in other patients.

  13. Definitive localization of intracellular proteins: Novel approach using CRISPR-Cas9 genome editing, with glucose 6-phosphate dehydrogenase as a model.

    Science.gov (United States)

    Spencer, Netanya Y; Yan, Ziying; Cong, Le; Zhang, Yulong; Engelhardt, John F; Stanton, Robert C

    2016-02-01

    Studies to determine subcellular localization and translocation of proteins are important because subcellular localization of proteins affects every aspect of cellular function. Such studies frequently utilize mutagenesis to alter amino acid sequences hypothesized to constitute subcellular localization signals. These studies often utilize fluorescent protein tags to facilitate live cell imaging. These methods are excellent for studies of monomeric proteins, but for multimeric proteins, they are unable to rule out artifacts from native protein subunits already present in the cells. That is, native monomers might direct the localization of fluorescent proteins with their localization signals obliterated. We have developed a method for ruling out such artifacts, and we use glucose 6-phosphate dehydrogenase (G6PD) as a model to demonstrate the method's utility. Because G6PD is capable of homodimerization, we employed a novel approach to remove interference from native G6PD. We produced a G6PD knockout somatic (hepatic) cell line using CRISPR-Cas9 mediated genome engineering. Transfection of G6PD knockout cells with G6PD fluorescent mutant proteins demonstrated that the major subcellular localization sequences of G6PD are within the N-terminal portion of the protein. This approach sets a new gold standard for similar studies of subcellular localization signals in all homodimerization-capable proteins.

  14. Review of succinate dehydrogenase-deficient renal cell carcinoma with focus on clinical and pathobiological aspects

    Directory of Open Access Journals (Sweden)

    Naoto Kuroda

    2016-05-01

    Full Text Available Succinate dehydrogenase (SDH-deficient renal cell carcinoma (RCC was first identified in 2004 and has been integrated into the 2016 WHO classification of RCC. Succinate dehydrogenase (SDH is an enzyme complex composed of four protein subunits (SDHA, SDHB, SDHC and SDHD. The tumor which presents this enzyme mutation accounts for 0.05 to 0.2% of all renal carcinomas. Multiple tumors may occur in approximately 30% of affected patients. SDHB-deficient RCC is the most frequent, and the tumor histologically consists of cuboidal cells with eosinophilic cytoplasm, vacuolization, flocculent intracytoplasmic inclusion and indistinct cell borders. Ultrastructurally, the tumor contains abundant mitochondria. Immunohistochemically, tumor cells are positive for SDHA, but negative for SDHB in SDHB-, SDHC- and SDHD-deficient RCCs. However, SDHA-deficient RCC shows negativity for both SDHA and SDHB. In molecular genetic analyses, a germline mutation in the SDHB , SDHC or SDHD gene (in keeping with most patients having germline mutations in an SDH gene has been identified in patients with or without a family history of renal tumors, paraganglioma/pheochromocytoma or gastrointestinal stromal tumor. While most tumors are low grade, some tumors may behave in an aggressive fashion, particularly if they are high nuclear grade, and have coagulative necrosis or sarcomatoid differentiation.

  15. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer's disease: Partners in crime? The hypothesis.

    Science.gov (United States)

    Ulusu, N Nuray

    2015-08-01

    Alzheimer's disease is a multifaceted brain disorder which involves various coupled irreversible, progressive biochemical reactions that significantly reduce quality of life as well as the actual life expectancy. Aging, genetic predispositions, head trauma, diabetes, cardiovascular disease, deficiencies in insulin signaling, dysfunction of mitochondria-associated membranes, cerebrovascular changes, high cholesterol level, increased oxidative stress and free radical formation, DNA damage, disturbed energy metabolism, and synaptic dysfunction, high blood pressure, obesity, dietary habits, exercise, social engagement, and mental stress are noted among the risk factors of this disease. In this hypothesis review I would like to draw the attention on glucose-6-phosphate dehydrogenase deficiency and its relationship with Alzheimer's disease. This enzymopathy is the most common human congenital defect of metabolism and defined by decrease in NADPH+H(+) and reduced form of glutathione concentration and that might in turn, amplify oxidative stress due to essentiality of the enzyme. This most common enzymopathy may manifest itself in severe forms, however most of the individuals with this deficiency are not essentially symptomatic. To understand the sporadic Alzheimer's disease, the writer of this paper thinks that, looking into a crystal ball might not yield much of a benefit but glucose-6-phosphate dehydrogenase deficiency could effortlessly give some clues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  17. An incidental case of dihydropyrimidine dehydrogenase deficiency: One case, multiple challenges

    Directory of Open Access Journals (Sweden)

    Hamoud H Al Khallaf

    2013-01-01

    Full Text Available Dihydropyrimidine dehydrogenase (DPD deficiency is an autosomal recessive disorder that shows large phenotypical variability, ranging from no symptoms to intellectual disability, motor retardation, and convulsions. In addition, homozygous and heterozygous mutation carriers can develop severe 5-fluorouracil (5-FU toxicity. The lack of genotype-phenotype correlation and the possibility of other factors playing a role in the manifestation of the neurological abnormalities, make the management and education of asymptomatic DPD individuals more challenging. We describe a 3-month-old baby who was incidentally found by urine organic acid testing (done as part of positive newborn screen to have very high level of thymine and uracil, consistent with DPD deficiency. Since the prevalence of asymptomatic DPD deficiency in the general population is fairly significant (1 in 10,000, we emphasize in this case study the importance of developing a guideline in genetic counseling and patient education for this condition as well as other incidental laboratory findings.

  18. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L...

  19. The Pathogenesis of Alcohol-Induced Airflow Limitation in Acetaldehyde Dehydrogenase 2-Deficient Mice.

    Science.gov (United States)

    Shimoda, Terufumi; Obase, Yasushi; Matsuse, Hiroto; Asai, Sadahiro; Iwanaga, Tomoaki

    2016-01-01

    In Japanese patients, alcohol-induced asthma is attributed to elevated plasma concentrations of acetaldehyde following alcohol consumption because of an acetaldehyde dehydrogenase 2 gene (ALDH2) polymorphism. The resulting increase in plasma histamine concentrations seems to trigger the onset of asthma symptoms. However, the specific pathogenic mechanism underlying this response remains unclear. ALDH2-deficient mice were therefore generated to investigate the pathogenesis of alcohol-induced asthma. ALDH2-deficient mice were generated using embryonic stem cells that were derived from C57BL/6 mice. The resulting mice were backcrossed into the BALB/c mice background. Exon 1 of ALDH2 was replaced with the Neo cassette. Pure ethanol was orally administered to ALDH2-deficient and wild-type mice, and the plasma concentrations of ethanol, acetaldehyde, and histamine, in addition to enhanced pause (Penh) values, were determined and compared between the 2 groups. We established an ALDH2-deficient mouse line to compare responses between wild-type and ALDH2-deficient mice receiving orally administered ethanol. The results showed that the plasma concentrations of acetaldehyde (p alcohol-induced asthma using ALDH2-deficient mice. The results demonstrated that alcohol intake resulted in an increase in acetaldehyde levels, and a subsequent increase in histamine levels, which induced airway constriction. Alcohol consumption is known to be an important factor that exacerbates bronchial asthma, and studies investigating this factor are useful for the treatment of patients with alcohol-induced asthma. © 2017 S. Karger AG, Basel.

  20. Mechanism of Hyperinsulinism in Short-chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency Involves Activation of Glutamate Dehydrogenase*

    Science.gov (United States)

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K.; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M.; Jones, Patricia M.; Collins, Heather W.; Cohen, Noam A.; Cohen, Akiva S.; Nissim, Itzhak; Smith, Thomas J.; Strauss, Arnold W.; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.

    2010-01-01

    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh−/−). The hadh−/− mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh−/− mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh−/− mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh−/− islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh−/− islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh−/− islets also have increased [U-14C]glutamine oxidation. In contrast, hadh−/− mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh−/− islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh−/− islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD. PMID:20670938

  1. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M; Jones, Patricia M; Collins, Heather W; Cohen, Noam A; Cohen, Akiva S; Nissim, Itzhak; Smith, Thomas J; Strauss, Arnold W; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A

    2010-10-01

    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.

  2. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands : Clinical presentation and outcome

    NARCIS (Netherlands)

    Derks, Terry G J; Reijngoud, Dirk-Jan; Waterham, Hans R; Gerver, Willem-Jan M; van den Berg, Maarten P; Sauer, Pieter J J; Smit, G Peter A

    2006-01-01

    OBJECTIVES: To describe the clinical presentation and long-term follow-up of a large cohort of patients with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. STUDY DESIGN: A nationwide, retrospective analysis of clinical presentation and follow-up in 155 Dutch patients with MCAD deficiency. RE

  3. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    Science.gov (United States)

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  4. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    Touma, E; Rashed, M; Vianey-Saban, C; Sakr, A; Divry, P; Gregersen, N; Andresen, B

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased long chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence.

 PMID:11124787

  5. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    OpenAIRE

    FitzGerald, R.J.; Adams, B. O.; Sandham, H. J.; Abhyankar, S

    1989-01-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation ...

  6. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  7. Molecular diagnosis and characterization of medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common defect in mitochondrial beta-oxidation in humans. It is an autosomal recessive disorder which usually presents in infancy. The disease manifests itself in periods of metabolic stress to the beta-oxidation system and may...... of correct enzyme structure, and does not directly affect the catalytically active regions of the enzyme. We find that our diagnostic set up, consisting of an initial testing by the G985 assay, followed by semi-automated sequencing of DNA from those patients who were indicated to be compound heterozygous...

  8. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    Directory of Open Access Journals (Sweden)

    Kanavin Oivind J

    2007-09-01

    Full Text Available Abstract Background 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD is caused by a defect in the degradation pathway of the amino acid L-isoleucine. Methods We report a four-year-old mentally retarded Somali boy with autism and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet. Results We found homozygosity for A > G changing the +3 position of intron 3 (c.303+3A > G in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. Conclusion This mutation was also found in two previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD.

  9. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation.

    Science.gov (United States)

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F; Gibson, Gary E; Beal, M Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-06-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20-48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ~30% higher ADP-ATP exchange rates compared to those obtained from DLST(+/-) or DLD(+/-) littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on "in-house" mitochondrial ATP reserves.

  10. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  11. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Soares-Fernandes, Joao P.; Ribeiro, Manuel; Magalhaes, Zita; Rocha, Jaime F. [Hospital de S. Marcos, Department of Neuroradiology, Braga (Portugal); Teixeira-Gomes, Roseli [Hospital Pedro Hispano, Division of Neuropediatrics, Matosinhos (Portugal); Cruz, Romeu [Hospital Geral de Sto. Antonio, Department of Neuroradiology, Porto (Portugal); Leijser, Lara M. [Leiden University Medical Center, Department of Paediatrics, Division of Neonatology, Leiden (Netherlands)

    2008-05-15

    Pyruvate dehydrogenase (PDH) deficiency is one of the most common causes of congenital lactic acidosis. Correlations between the genetic defect and neuroimaging findings are lacking. We present conventional and diffusion-weighted MRI findings in a 7-day-old male neonate with PDH deficiency due to a mosaicism for the R302H mutation in the PDHA1 gene. Corpus callosum dysgenesis, widespread increased diffusion in the white matter, and bilateral subependymal cysts were the main features. Although confirmation of PDH deficiency depends on specialized biochemical analyses, neonatal MRI plays a role in evaluating the pattern and extent of brain damage, and potentially in early diagnosis and clinical decision making. (orig.)

  12. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  13. Neurotransmitter alterations in embryonic succinate semialdehyde dehydrogenase (SSADH deficiency suggest a heightened excitatory state during development

    Directory of Open Access Journals (Sweden)

    Snead O Carter

    2008-11-01

    Full Text Available Abstract Background SSADH (aldehyde dehydrogenase 5a1 (Aldh5a1; γ-hydroxybutyric (GHB aciduria deficiency is a defect of GABA degradation in which the neuromodulators GABA and GHB accumulate. The human phenotype is that of nonprogressive encephalopathy with prominent bilateral discoloration of the globi pallidi and variable seizures, the latter displayed prominently in Aldh5a1-/- mice with lethal convulsions. Metabolic studies in murine neural tissue have revealed elevated GABA [and its derivatives succinate semialdehyde (SSA, homocarnosine (HC, 4,5-dihydroxyhexanoic acid (DHHA and guanidinobutyrate (GB] and GHB [and its analogue D-2-hydroxyglutarate (D-2-HG] at birth. Because of early onset seizures and the neurostructural anomalies observed in patients, we examined metabolite features during Aldh5a1-/- embryo development. Methods Embryos were obtained from pregnant dams sacrificed at E (embryo day of life 10–13, 14–15, 16–17, 18–19 and newborn mice. Intact embryos were extracted and metabolites quantified by isotope dilution mass spectrometry (n = 5–15 subjects, Aldh5a1+/+ and Aldh5a1-/- for each gestational age group. Data was evaluated using the t test and one-way ANOVA with Tukey post hoc analysis. Significance was set at the 95th centile. Results GABA and DHHA were significantly elevated at all gestational ages in Aldh5a1-/- mice, while GB was increased only late in gestation; SSA was not elevated at any time point. GHB and D-2-HG increased in an approximately linear fashion with gestational age. Correlative studies in human amniotic fluid from SSADH-deficient pregnancies (n = 5 also revealed significantly increased GABA. Conclusion Our findings indicate early GABAergic alterations in Aldh5a1-/- mice, possibly exacerbated by other metabolites, which likely induce a heightened excitatory state that may predispose neural networks to epilepsy in these animals.

  14. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol.

    Science.gov (United States)

    Kaphalia, Bhupendra S; Bhopale, Kamlesh K; Kondraganti, Shakuntala; Wu, Hai; Boor, Paul J; Ansari, G A Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH(-)) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH(-) and hepatic ADH-normal (ADH(+)) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼1.5-fold greater in ADH(-) vs. ADH(+) deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH(-) deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Retrospective study of the medium-chain acyl-CoA dehydrogenase deficiency in Portugal.

    Science.gov (United States)

    Ventura, F V; Leandro, P; Luz, A; Rivera, I A; Silva, M F B; Ramos, R; Rocha, H; Lopes, A; Fonseca, H; Gaspar, A; Diogo, L; Martins, E; Leão-Teles, E; Vilarinho, L; Tavares de Almeida, I

    2014-06-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid β-oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions-c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)-were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.

  16. 广西地区不同地中海贫血类型G6PD酶活性水平初步研究%Study of the levels of G6PD activity in different types of thalassemia in Guangxi

    Institute of Scientific and Technical Information of China (English)

    赵林; 温乃健; 宁乐平; 梁亮; 韦金花; 李友琼

    2015-01-01

    Objective To analyse the levels of G6PD activity in different types of thalassemia in Guangxi and to study their association with thalassemia.Me thods One hundred and thirteen negative thalassemia samples and 248 different types of thalassemia samples were analyzed by gene analysis and were detected for G6PD activity.Re-sults The levels of G6PD activity was (6.76 ±2.28)U/gHb in the negative thalassemia group, (9.00 ±3.67 )U/gHb inαthalassemia group, (10.98 ±6.25) U/gHb in βthalassemia group, and (9.09 ±2.96) U/gHb in αβcomplex thalassemia group, with significantly differences compared with the negative thalassemia group ( P <0.05 ) .The G6PD activity levels ofαthalassemia in silent, trait and Hb H groups were (6.67 ±1.65)U/gHb,(8.89 ±2.12)U/gHb, (12.7 ±5.44)U/gHb respectively;of βthalassemia in trait and intermedia groups were (9.68 ±3.71)U/gHb and (18.43 ±10.71)U/gHb.There were significant differences in the levels of G6PD between the different types of αthalassemia andβthalassemia inαthalassemia and βthalassemia groups(P<0.05).Conclusion Different levels of G6PD activity go with different types of thalassemia, the more severe anemia the higher G6PD activity.%目的了解广西地区不同地中海贫血类型患者的葡萄糖-6-磷酸脱氢酶(G6PD)酶活性水平,探讨其与地中海贫血的关联性。方法对经过地中海贫血基因分析确诊阴性的113名健康人群和248例不同地中海贫血类型的患者进行G6PD 酶活性检测,并对结果进行统计学分析。结果健康人群组的G6PD 酶活性水平为(6.76±2.28)U/gHb,α地中海贫血为(9.00±3.67)U/gHb,β地中海贫血为(10.98±6.25)U/gHb,αβ复合型地中海贫血为(9.09±2.96)U/gHb,与健康人群组比较差异均有统计学意义(P <0.05)。α地中海贫血中静止型、轻型和中间型的G6PD 酶活性水平分别为(6.67±1.65)、(8.89±2.12)和(12.7±5.44

  17. 琥珀酸半醛脱氢酶缺陷病%Succinic semialdehyde dehydrogenase deficiency

    Institute of Scientific and Technical Information of China (English)

    邓小鹿; 尹飞; 向秋莲; 刘沉涛; 彭镜

    2011-01-01

    琥珀酸半醛脱氢酶(SSADH)缺陷病是一种少见的常染色休隐性遗传病.本研究总结3例SSADH缺陷病患儿的临床资料并复习相关文献.3例患儿均为婴幼儿,主要表现为智力运动、语言发育落后,抽搐和肌张力低下.3例患儿脑电图均表现异常;2例脑MRI检查异常,表现为大脑脚对称性长T2高信号和基底节损害;3例尿液的气相色谱-质谱(GC-MS)分析均显示4-羟基丁酸增高,根据临床表现及尿液GC-MS分析确诊为SSADH缺陷病.对不明原因发育迟缓、智力运动障碍和癫病的患儿应早期进行尿液有机酸分析,对明确诊断具有重要意义.%Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal recessive disorder. This paper reports three cases of SSADH deficiency in infants. Hie infants developed the symptoms including developmental delay, intellectual disability, hypotonia, hyporeflexia and seizures. The electroencephalogram (EEC) showed background slowing and focal spike discharges in all of 3 patients. Head magnetic resonance imaging ( MRI) demonstrated abnormalities in 2 patients, including basal ganglia damage and increased T2-weighted signal in bilateral cerebral peduncles. Urinary organic acid analysis with gas chromatography-mass spectrometry (GC-MS) revealed increased levels of 4-hydroxybutyrate (CHB) in 3 patients. SSADH deficiency was definitely diagnosed based on the clinical manifestations and the results of urinary organic acid analysis in the 3 children. It was concluded that early urine organic acid analysis is essential for children presenting with mental retardation, neuropsychiatric disturbance or epilepsy of unknown etiology.

  18. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway.

    Directory of Open Access Journals (Sweden)

    Nicholas A Stover

    Full Text Available Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD and 6-phosphogluconolactonase (6PGL, have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms.

  19. Purification and Characterization of Glucose-6-Phosphate Dehydrogenase from Camel Liver

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Ibrahim

    2014-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase from camel liver was purified to homogeneity by ammonium sulfate precipitation and a combination of DEAE-cellulose, Sephacryl S-300 gel filtration, and 2′, 5′ ADP Sepharose 4B affinity chromatography columns. The specific activity of camel liver G6PD is increased to 1.80438 units/mg proteins with 63-fold purification. It turned out to be homogenous on both native PAGE and 12% SDS PAGE, with a molecular weight of 64 kDa. The molecular weight of the native form of camel liver G6PD was determined to be 194 kDa by gel filtration indicating a trimeric protein. The Km value was found to be 0.081 mM of NADP+. Camel liver G6PD displayed its optimum activity at pH 7.8 with an isoelectric point (pI of pH 6.6–6.8. The divalent cations MgCl2, MnCl2, and CoCl2 act as activators; on the other hand, CaCl2 and NiCl2 act as moderate inhibitors, while FeCl2, CuCl2, and ZnCl2 are potent inhibitors of camel liver G6PD activity. NADPH inhibited camel liver G6PD competitively with Ki value of 0.035 mM. One binding site was deduced for NADPH on the enzyme molecule. This study presents a simple and reproducible purification procedure of G6PD from the camel liver.

  20. Comparative analysis of glucose-6-phosphate dehydrogenase levels in pre-term and term babies delivered at University of Ilorin Teaching Hospital, Nigeria

    Directory of Open Access Journals (Sweden)

    Temitope Olorunsola Obasa

    2012-03-01

    Full Text Available Glucose-6-phosphate (G6P is an enzyme in the hexose monophosphate shunt required for the production of reducing equivalents needed to mop up free radicals. thereby keeping hemoglobin in its free state. Deficiency of the enzyme can cause severe neonatal jaundice. The aim of this study was to compare G6PD levels in pre-term and term babies, and evaluate the extent to which G6PD deficiency determines the severity of jaundice in various gestational age groups. Samples of cord blood collected from consecutively delivered babies in the University of Ilorin Teaching Hospital, Nigeria, were assayed for G6PD levels, and the babies were observed for jaundice during the first week of life. Those who developed jaundice had serial serum bilirubin measured. Nine hundred and thirty-three babies had G6PD assayed, with 348 being G6PD deficient, giving a hospital based prevalence of 37.3%. Of the 644 who were followed up, 143 (22.2% were pre-term and 501(77.8% were term babies. Babies with gestational age (GA 27-29 weeks had the highest G6PD levels. However, there was no significant variation among the different gestational age groups (F=0.64, P=0.64. Jaundice occurred more in pre-term compared to term babies with a relative risk of 2.41 (χ2=60.95, P=0.00001. Occurrence of jaundice in pre-term babies was irrespective of G6PD status (χ2=0.2, P=0.66, RR=1.09, CI=0.83

  1. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency.

    Science.gov (United States)

    Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A

    2017-04-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    Science.gov (United States)

    Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S

    1989-03-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci.

  3. Red cell pyruvate kinase deficiency in Southern Sardinia.

    Science.gov (United States)

    Perseu, L; Giagu, N; Satta, S; Sollaino, M C; Congiu, R; Galanello, R

    2010-12-15

    Pyruvate kinase (PK) deficiency is the most frequent red cell enzymatic defect responsible for hereditary non-spherocytic hemolytic anemia. The clinical picture is quite variable and the reasons of this variability have been only partially clarified. We report the clinical description and the extended molecular analysis in 3 PK deficient patients with clinical phenotype of variable severity. We studied the clinical and hematological aspects of 3 patients and analyzed the following genes: pyruvate kinase-R, glucose-6-phosphate-dehydrogenase, α-globin, uridindiphosphoglucuronil transferase and HFE. One patient (A) with a severe clinical picture resulted homozygote for exon 8 nt994A substitution, the other 2 (brothers) were compound heterozygotes for exon 8 nt994A and exon 11 nt1456T mutation. One of the two brothers with a more severe phenotype coinherited also had G6PD deficiency, while both had microcytosis due to the homozygosity for the non-deletional form of α-thalassemia ATG→ACG substitution at the initiation codon of the alpha2 globin gene. Our results suggest that extended molecular analysis is useful for studying how several interacting gene mutations contribute to the clinical variability of pyruvate kinase deficiency.

  4. Glycerol-3-phosphate dehydrogenase 1 deficiency induces compensatory amino acid metabolism during fasting in mice.

    Science.gov (United States)

    Sato, Tomoki; Yoshida, Yuma; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2016-11-01

    Glucose is used as an energy source in many organs and obtained from dietary carbohydrates. However, when the external energy supply is interrupted, e.g., during fasting, carbohydrates preserved in the liver and glycogenic precursors derived from other organs are used to maintain blood glucose levels. Glycerol and glycogenic amino acids derived from adipocytes and skeletal muscles are utilized as glycogenic precursors. Glycerol-3-phosphate dehydrogenase 1 (GPD1), an NAD(+)/NADH-dependent enzyme present in the cytosol, catalyzes the reversible conversion of glycerol-3-phosphate (G3P) to dihydroxyacetone phosphate (DHAP). Since G3P is one of the substrates utilized for gluconeogenesis in the liver, the conversion of G3P to DHAP by GPD1 is essential for maintaining blood glucose levels during fasting. We focused on GPD1 and examined its roles in gluconeogenesis during fasting. Using GPD1 null model BALB/cHeA mice (HeA mice), we measured gluconeogenesis from glycerol and the change of blood glucose levels under fasting conditions. We also measured gene expression related to gluconeogenesis in the liver and protein metabolism in skeletal muscle. BALB/cBy mice (By mice) were used as a control. The blood glucose levels in the HeA mice were lower than that in the By mice after glycerol administration. Although lack of GPD1 inhibited gluconeogenesis from glycerol, blood glucose levels in the HeA mice after 1-4h of fasting were significantly higher than that in the By mice. Muscle protein synthesis in HeA mice was significantly lower than that in the By mice. Moreover, blood alanine levels and usage of alanine for gluconeogenesis in the liver were significantly higher in the HeA mice than that in the By mice. Although these data indicate that a lack of GPD1 inhibits gluconeogenesis from glycerol, chronic GPD1 deficiency may induce an adaptation that enhances gluconeogenesis from glycogenic amino acids. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Delayed diagnosis of congenital adrenal hyperplasia with salt wasting due to type II 3beta-hydroxysteroid dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Johannsen, Trine H; Mallet, Delphine; Dige-Petersen, Harriet

    2005-01-01

    Classical 3beta-hydroxysteroid dehydrogenase (3beta-HSD) deficiency is a rare cause of congenital adrenal hyperplasia. We report two sisters presenting with delayed diagnoses of classical 3beta-HSD, despite salt wasting (SW) episodes in infancy. Sibling 1 was referred for premature pubarche, slight....... There is no previous report of the combination of SW and premature pubarche due to mutations in the type II 3beta-HSD gene. Because neonatal diagnosis could have prevented life-threatening crises in these girls, this report further supports the benefits for neonatal screening for congenital adrenal hyperplasia...

  6. Somatic mosaicism for a novel PDHA1 mutation in a male with severe pyruvate dehydrogenase complex deficiency

    Directory of Open Access Journals (Sweden)

    Kristin K. Deeb

    2014-01-01

    Full Text Available Pyruvate dehydrogenase complex (PDC deficiencies are mostly due to mutations in the X-linked PDHA1 gene. Males with hemizygous PDHA1 mutations are clinically more severely affected, while those with mosaic PDHA1 mutations may manifest milder phenotypes. We report a patient harboring a novel, mosaic missense PDHA1 mutation, c.523G > A (p.A175T, with a severe clinical presentation of congenital microcephaly, significant brain abnormalities, persistent seizures, profound developmental delay, and failure to thrive. We review published cases of PDHA1 mosaicism.

  7. Long-term outcome of isobutyryl-CoA dehydrogenase deficiency diagnosed following an episode of ketotic hypoglycaemia

    DEFF Research Database (Denmark)

    Santra, S; Macdonald, A; Preece, M A

    2017-01-01

    Isobutyryl-CoA Dehydrogenase Deficiency (IBDD) is an inherited disorder of valine metabolism caused by mutations in ACAD8. Most reported patients have been diagnosed through newborn screening programmes due to elevated C4-carnitine levels and appear clinically asymptomatic. One reported non...... ketotic response (free fatty acids 2594 μmol/l, 3-hydroxybutyrate 3415 μmol/l), mildly elevated plasma lactate (3.4 mmol/l), increased C4-carnitine on blood spot and plasma acylcarnitine analysis and other metabolic abnormalities secondary to ketosis. After recovery, C4-carnitine remained increased...

  8. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glucose 6-phosphate dehydrogenase activity.

    Science.gov (United States)

    Sahin, Ali; Senturk, Murat; Ciftci, Mehmet; Varoglu, Erhan; Kufrevioglu, Omer Irfan

    2010-04-01

    The inhibitory effects of thallium-201 ((201)Tl) solution on human erythrocyte glucose 6-phosphate dehydrogenase (G6PD) activity were investigated. For this purpose, erythrocyte G6PD was initially purified 835-fold at a yield of 41.7% using 2',5'-Adenosine diphosphate sepharose 4B affinity gel chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the (201)Tl solution including Tl(+), Fe(+3) and Cu(+2) metals and the in vitro effects of the radiation effect of the (201)Tl solution and non-radioactive Tl(+), Fe(+3) and Cu(+2) metals on human erythrocyte G6PD enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at +4 degrees C. (201)Tl solution and radiation exposure had inhibitory effects on the enzyme activity. IC(50) value of (201)Tl solution was 36.86 microl ([Tl(+)]: 0.0036 microM, [Cu(+2)]: 0.0116 microM, [Fe(+3)]: 0.0132 microM), of human erythrocytes G6PD. Seven human patients were also used for in vivo studies of (201)Tl solution. Furthermore, non-radioactive Tl(+), Fe(+3) and Cu(+2) were found not to have influenced the enzyme in vitro. Human erythrocyte G6PD activity was inhibited by exposure for up to 10 minutes to 0.057 mCi/kg (201)Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte G6PD enzyme is inhibited due to the radiation effect of (201)Tl solution. Copyright 2010 Elsevier Inc. All rights reserved.

  9. [Succinic semialdehyde dehydrogenase deficiency: decrease in 4-OH-butyric acid levels with low doses of vigabatrin].

    Science.gov (United States)

    Escalera, G Iglesias; Ferrer, I; Marina, Ll Carrasco; Sala, P Ruiz; Salomons, G S; Jakobs, C; Pérez-Cerdá, C

    2010-02-01

    Succinic semialdehyde dehydrogenase deficiency (gamma-hydroxybutyric aciduria) is a rare neurometabolic disease caused by a deficiency in gamma-aminobutyric degradation, resulting in an increase in gamma-hydroxybutyric acid in biological fluids. The clinical spectrum is heterogeneous, including a variety of neurological manifestations and psychiatric symptoms. The treatment usually used is vigabatrin, but its clinical efficacy is under discussion. We present two affected siblings. The older brother was examined when he was 2.5 years old due to psychomotor and developmental delay, disturbances in motor coordination, axial hypotonia and language disability. His younger brother had mild axial hypotonia when 5 months old. Metabolic studies demonstrated a high plasma and urine concentration of gamma-hydroxybutyric acid. Mutation analysis of the gene ALDH5A1 confirmed the disease. After 1 year of treatment with low-doses of vigabatrin of the older patient, a decrease in gamma-hydroxybutyric acid plasma levels and a slow clinical improvement were observed.

  10. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  11. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Andresen, B S; Olpin, S; Poorthuis, B J; Scholte, H R; Vianey-Saban, C; Wanders, R; Ijlst, L; Morris, A; Pourfarzam, M; Bartlett, K; Baumgartner, E R; deKlerk, J B; Schroeder, L D; Corydon, T J; Lund, H; Winter, V; Bross, P; Bolund, L; Gregersen, N

    1999-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting. To examine whether these different phenotypes are due to differences in the VLCAD genotype, we investigated 58 different mutations in 55 unrelated patients representing all known clinical phenotypes and correlated the mutation type with the clinical phenotype. Our results show a clear relationship between the nature of the mutation and the severity of disease. Patients with the severe childhood phenotype have mutations that result in no residual enzyme activity, whereas patients with the milder childhood and adult phenotypes have mutations that may result in residual enzyme activity. This clear genotype-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established. PMID:9973285

  12. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2008-11-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants.

  13. Characterization of Arabidopsis Lines Deficient in GAPC-1, a Cytosolic NAD-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase1[C

    Science.gov (United States)

    Rius, Sebastián P.; Casati, Paula; Iglesias, Alberto A.; Gomez-Casati, Diego F.

    2008-01-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants. PMID:18820081

  14. Myopathy in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Scholte, H R; Van Coster, R N; de Jonge, P C;

    1999-01-01

    A 30-year-old man suffered since the age of 13 years from exercise induced episodes of intense generalised muscle pain, weakness and myoglobinuria. Fasting ketogenesis was low, while blood glucose remained normal. Muscle mitochondria failed to oxidise palmitoylcarnitine. Palmitoyl-CoA dehydrogenase...

  15. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation

    DEFF Research Database (Denmark)

    Madsen, K L; Preisler, N; Orngreen, M C

    2013-01-01

    It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified.......It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified....

  16. Increased and early lipolysis in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency during fast.

    Science.gov (United States)

    Haglind, C Bieneck; Nordenström, A; Ask, S; von Döbeln, U; Gustafsson, J; Stenlid, M Halldin

    2015-03-01

    Children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) have a defect in the degradation of long-chain fatty acids and are at risk of hypoketotic hypoglycemia and insufficient energy production as well as accumulation of toxic fatty acid intermediates. Knowledge on substrate metabolism in children with LCHAD deficiency during fasting is limited. Treatment guidelines differ between centers, both as far as length of fasting periods and need for night feeds are concerned. To increase the understanding of fasting intolerance and improve treatment recommendations, children with LCHAD deficiency were investigated with stable isotope technique, microdialysis, and indirect calometry, in order to assess lipolysis and glucose production during 6 h of fasting. We found an early and increased lipolysis and accumulation of long chain acylcarnitines after 4 h of fasting, albeit no patients developed hypoglycemia. The rate of glycerol production, reflecting lipolysis, averaged 7.7 ± 1.6 µmol/kg/min, which is higher compared to that of peers. The rate of glucose production was normal for age; 19.6 ± 3.4 µmol/kg/min (3.5 ± 0.6 mg/kg/min). Resting energy expenditure was also normal, even though the respiratory quotient was increased indicating mainly glucose oxidation. The results show that lipolysis and accumulation of long chain acylcarnitines occurs before hypoglycemia in fasting children with LCHAD, which may indicate more limited fasting tolerance than previously suggested.

  17. Decline of acute encephalopathic crises in children with glutaryl-CoA dehydrogenase deficiency identified by newborn screening in Germany.

    Science.gov (United States)

    Kölker, Stefan; Garbade, Sven F; Boy, Nikolas; Maier, Esther M; Meissner, Thomas; Mühlhausen, Chris; Hennermann, Julia B; Lücke, Thomas; Häberle, Johannes; Baumkötter, Jochen; Haller, Wolfram; Muller, Edith; Zschocke, Johannes; Burgard, Peter; Hoffmann, Georg F

    2007-09-01

    Glutaryl-CoA dehydrogenase (GCDH) deficiency is a rare neurometabolic disorder that is considered treatable if patients are identified before the onset of acute encephalopathic crises. To allow early identification of affected individuals, tandem mass spectrometry-based newborn screening for GCDH deficiency has been started in Germany in 1999. We prospectively followed neonatally screened patients (n=38) and compared the neurologic outcome with patients from a historical cohort (n=62). In the majority of neonatally screened children, the onset of encephalopathic crises has been prevented (89%), whereas acute encephalopathic crises or progressive neurologic impairment was common in the historical cohort. Neonatal screening in combination with intensive management is effective--even assuming ascertainment bias in the historical cohort. Similar proportions of commonest mutations and biochemical phenotypes (high and low excretors) were found in neonatally screened and historical patients. However, potential predictor variables for mild clinical phenotypes are not yet known and thus a selection of these patients by newborn screening is not excluded. No patient was known to be missed by newborn screening from 1999 to 2005. In conclusion, this study confirms that newborn screening for GCDH deficiency in combination with intensive management is beneficial.

  18. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  19. Improved localization of glucose-6-phosphate dehydrogenase activity in cells with 5-cyano-2,3-ditolyl-tetrazolium chloride as fluorescent redox dye reveals its cell cycle-dependent regulation.

    Science.gov (United States)

    Frederiks, Wilma M; van Marle, Jan; van Oven, Carel; Comin-Anduix, Begonya; Cascante, Marta

    2006-01-01

    Since the introduction of cyano-ditolyl-tetrazolium chloride (CTC), a tetrazolium salt that gives rise to a fluorescent formazan after reduction, it has been applied to quantify activity of dehydrogenases in individual cells using flow cytometry. Confocal laser scanning microscopy (CLSM) showed that the fluorescent formazan was exclusively localized at the surface of individual cells and not at intracellular sites of enzyme activity. In the present study, the technique has been optimized to localize activity of glucose-6-phosphate dehydrogenase (G6PD) intracellularly in individual cells. Activity was demonstrated in cultured fibrosarcoma cells in different stages of the cell cycle. Cells were incubated for the detection of G6PD activity using a medium containing 6% (w/v) polyvinyl alcohol, 5 mM CTC, magnesium chloride, sodium azide, the electron carrier methoxyphenazine methosulphate, NADP, and glucose-6-phosphate. Before incubation, cells were permeabilized with 0.025% glutaraldehyde. Fluorescent formazan was localized exclusively in the cytoplasm of fibrosarcoma cells. The amount of fluorescent formazan in cells increased linearly with incubation time when measured with flow cytometry and CLSM. When combining the Hoechst staining for DNA with the CTC method for the demonstration of G6PD activity, flow cytometry showed that G6PD activity of cells in S phase and G2/M phase is 27 +/- 4% and 43 +/- 4% higher, respectively, than that of cells in G1 phase. CLSM revealed that cells in all phases of mitosis as well as during apoptosis contained considerably lower G6PD activity than cells in interphase. It is concluded that posttranslational regulation of G6PD is responsible for this cell cycle-dependent activity.

  20. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme

    DEFF Research Database (Denmark)

    Bross, P; Jespersen, C; Jensen, T G

    1995-01-01

    We have used expression of human medium chain acyl-CoA dehydrogenase (MCAD) in Escherichia coli as a model system for dissecting the molecular effects of two mutations detected in patients with MCAD deficiency. We demonstrate that the R28C mutation predominantly affects polypeptide folding...

  1. LIPID ABNORMALITIES IN SUCCINATE SEMIALDEHYDE DEHYDROGENASE (Aldh5a1−/−) DEFICIENT MOUSE BRAIN PROVIDE ADDITIONAL EVIDENCE FOR MYELIN ALTERATIONS

    OpenAIRE

    Barcelo-Coblijn, G.; Murphy, E.J.; Mills, K.; Winchester, B; Jakobs, C.; Snead, O.C.; Gibson, K. M.

    2007-01-01

    Lipid abnormalities in succinate semialdehyde dehydrogenase (aldh5a1-/-) deficient mouse brain provide additional evidence for myelin alterations correspondence: Corresponding author. Tel.: +1 412 692 7608; fax: +1 412 692 7816. (Gibson, K.M.) (Gibson, K.M.) Department of Pharmacology - Physiology--> , and Therapeutics--> , School of Medicine and Health Sciences--> , University of North Dakota--...

  2. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice

    NARCIS (Netherlands)

    Herrema, H.J.; Derks, T.G.; Dijk, van T.H.; Bloks, V.W.; Gerding, A.; Havinga, R.; Tietge, U.J.; Müller, M.R.; Smit, G.P.; Kuipers, F.; Reijngoud, D.J.

    2008-01-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency

  3. Experimental evidence for protein oxidative damage and altered antioxidant defense in patients with medium-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Derks, Terry G J; Touw, Catharina M L; Ribas, Graziela S; Biancini, Giovana B; Vanzin, Camila S; Negretto, Giovanna; Mescka, Caroline P; Reijngoud, Dirk Jan; Smit, G Peter A; Wajner, Moacir; Vargas, Carmen R

    2014-01-01

    The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and prote

  4. Genetic Basis for Correction of Very‐Long‐Chain Acyl-Coenzyme A Dehydrogenase Deficiency by Bezafibrate in Patient Fibroblasts: Toward a Genotype‐Based Therapy

    DEFF Research Database (Denmark)

    Gobin‐Limballe, S.; Djouadi, F.; Aubey, F.

    2007-01-01

    Very‐long‐chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an inborn mitochondrial fatty‐acid β‐oxidation (FAO) defect associated with a broad mutational spectrum, with phenotypes ranging from fatal cardiopathy in infancy to adolescent‐onset myopathy, and for which there is no establishe...

  5. A new anaplerotic respiratory pathway involving lysine biosynthesis in isocitrate dehydrogenase-deficient Arabidopsis mutants.

    Science.gov (United States)

    Boex-Fontvieille, Edouard R A; Gauthier, Paul P G; Gilard, Françoise; Hodges, Michael; Tcherkez, Guillaume G B

    2013-08-01

    The cornerstone of carbon (C) and nitrogen (N) metabolic interactions - respiration - is presently not well understood in plant cells: the source of the key intermediate 2-oxoglutarate (2OG), to which reduced N is combined to yield glutamate and glutamine, remains somewhat unclear. We took advantage of combined mutations of NAD- and NADP-dependent isocitrate dehydrogenase activity and investigated the associated metabolic effects in Arabidopsis leaves (the major site of N assimilation in this genus), using metabolomics and (13)C-labelling techniques. We show that a substantial reduction in leaf isocitrate dehydrogenase activity did not lead to changes in the respiration efflux rate but respiratory metabolism was reorchestrated: 2OG production was supplemented by a metabolic bypass involving both lysine synthesis and degradation. Although the recycling of lysine has long been considered important in sustaining respiration, we show here that lysine neosynthesis itself participates in an alternative respiratory pathway. Lys metabolism thus contributes to explaining the metabolic flexibility of plant leaves and the effect (or the lack thereof) of respiratory mutations.

  6. Genetics Home Reference: long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... LCHAD deficiency typically appear during infancy or early childhood and can include feeding difficulties, lack of energy (lethargy), low blood sugar (hypoglycemia), weak muscle tone (hypotonia), liver problems, and abnormalities in the ... Later in childhood, people with this condition may experience muscle pain, ...

  7. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.

    Science.gov (United States)

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-09-01

    L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.

  8. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis.

    Science.gov (United States)

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  9. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H;

    2015-01-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100......-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  10. Mass-array芯片技术在葡萄糖-6-磷酸脱氢酶基因突变位点检测中的应用%Application of Mass-array gene chip to detect glucose-6-phosphate dehydrogenase gene mutations

    Institute of Scientific and Technical Information of China (English)

    陈瑶; 苏跃青; 周进福; 王旌; 赵红; 曾颖琳; 林庆颖; 林枫; 张洪华

    2015-01-01

    目的 探讨应用Mass-array基因芯片技术检测葡萄糖-6-磷酸脱氢酶(G6PD)基因突变位点的价值,并对其进行质量评价.方法 收集2006至2013年在福建省妇幼保健院新生儿疾病筛查中心进行G6PD筛查的婴儿,根据化学筛查结果分成2组:G6PD缺乏症患儿和正常儿童,随机抽取患儿和正常对照儿童各300例.采用基因分析工具(Genotyping Tools)与Mass-array Design软件,利用中国人群已报道的G6PD基因33个突变位点芯片,应用Mass-array基因技术检测G6PD基因突变位点,并通过DNASanger测序法验证基因芯片检测结果的准确性.结果 在300例G6PD患儿中,共检出单纯型单点突变9种:1376G>T、1388G>A、95A>G、1024C>T、392G>T、1360C>T、487G>A、517T>C、1365-13T>C;复合突变型7种:871G> A/1365-13T> C/1311C>T、1004C> A/1311C> T/1365-13T>C、1376G >T/1365-13T>C/1311C>T、1365-13T >C/1311C >T、1376G> T/1365-13T>C、95A> G/1365-13T> C/1311C>T、1388G> A/1365-13T>C;300名正常对照儿童中未检测到G6PD基因突变.进一步所有样本的Sanger DNA测序结果与基因芯片检测结果完全一致.结论 采用Massarray基因芯片技术检测G6PD基因突变方法是一种准确、高效的G6PD基因突变筛查方法.%Objective To develop the Mass-array gene chip to detect glucose-6-phosphate dehydrogenase (G6PD) gene mutations,and to evaluate its quality.Methods Randomly choosing the children who perform neonatal screening in Neonatal Screening Center of Fujian Maternity and Children Health Hospital from 2006 to 2013.Children were divided into control group and G6PD patient group.Using Genotyping Tools from Sequenom company and the software of Mass-array Assay Design to design the PCR amplification primer of 33 G6PD gene mutations which were well-known in Chinese.Then depending on Mass-array gene chip technology to detect glucose-6-phosphate dehydrogenase gene mutations.DNA Sanger sequencing was

  11. Icterícia neonatal e deficiência de glicose-6-fosfato desidrogenase Neonatal jaundice and glucose-6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Amauri Antiquera Leite

    2010-01-01

    Full Text Available A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.Glucose-6-phosphate dehydrogenase in newborn babies may be responsible for neonatal jaundice. There is a concern of many authors from other countries in respect to complications in neonates with hyperbilirubinemia; some authors even propose screening for glucose-6-phosphate dehydrogenase deficiency in newborn babies. A scientific report on this subject is published in this issue.

  12. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency.

    Science.gov (United States)

    Richter, Susan; Peitzsch, Mirko; Rapizzi, Elena; Lenders, Jacques W; Qin, Nan; de Cubas, Aguirre A; Schiavi, Francesca; Rao, Jyotsna U; Beuschlein, Felix; Quinkler, Marcus; Timmers, Henri J; Opocher, Giuseppe; Mannelli, Massimo; Pacak, Karel; Robledo, Mercedes; Eisenhofer, Graeme

    2014-10-01

    Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. We assessed whether altered succinate dehydrogenase product-precursor relationships, manifested by differences in tumor ratios of succinate to fumarate or other metabolites, might aid in identifying and stratifying patients with SDHx mutations. PPGL tumor specimens from 233 patients, including 45 with SDHx mutations, were provided from eight tertiary referral centers for mass spectrometric analyses of Krebs cycle metabolites. Diagnostic performance of the succinate:fumarate ratio for identification of pathogenic SDHx mutations. SDH-deficient PPGLs were characterized by 25-fold higher succinate and 80% lower fumarate, cis-aconitate, and isocitrate tissue levels than PPGLs without SDHx mutations. Receiver-operating characteristic curves for use of ratios of succinate to fumarate or to cis-aconitate and isocitrate to identify SDHx mutations indicated areas under curves of 0.94 to 0.96; an optimal cut-off of 97.7 for the succinate:fumarate ratio provided a diagnostic sensitivity of 93% at a specificity of 97% to identify SDHX-mutated PPGLs. Succinate:fumarate ratios were higher in both SDHB-mutated and metastatic tumors than in those due to SDHD/C mutations or without metastases. Mass spectrometric-based measurements of ratios of succinate:fumarate and other metabolites in PPGLs offer a useful method to identify patients for testing of SDHx mutations, with additional utility to quantitatively assess functionality of mutations and metabolic factors responsible for malignant risk.

  13. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction.

    Science.gov (United States)

    Goetzman, Eric S; Alcorn, John F; Bharathi, Sivakama S; Uppala, Radha; McHugh, Kevin J; Kosmider, Beata; Chen, Rimei; Zuo, Yi Y; Beck, Megan E; McKinney, Richard W; Skilling, Helen; Suhrie, Kristen R; Karunanidhi, Anuradha; Yeasted, Renita; Otsubo, Chikara; Ellis, Bryon; Tyurina, Yulia Y; Kagan, Valerian E; Mallampalli, Rama K; Vockley, Jerry

    2014-04-11

    Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.

  14. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase

  15. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase product

  16. Glucose-6-Phosphate Dehydrogenase Deficiency and Haemoglobinophaties in Resident of Arso PIR, Irian Jaya

    Science.gov (United States)

    1990-01-01

    and drug treatment . Another factor is play a part in innate resistance. 0-6-PD the ’internal environment’ of the host and deficiency can also complicate...response to and treatment of glucose-6-phosphate. The amount of of malaria, epidemiologic and immuno- NADPH produced is detected spectropho- logic...Ohio inherited along with a B- thalassemia gene 9-66. producing Hb-E thalassemia . Although 2. Kellermeyer, R.W., A.R. Tarlov, G.J. this condition can

  17. Clinical features and mutations in seven Chinese patients with very long chain acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Zhang, Rui-Nan; Li, Yi-Fan; Qiu, Wen-Juan; Ye, Jun; Han, Lian-Shu; Zhang, Hui-Wen; Lin, Na; Gu, Xue-Fan

    2014-05-01

    Very long chain acyl-CoA dehydrogenase deficiency (VLCADD) is an inherited metabolic disease caused by deleterious mutations in the ACADVL gene that encodes very long chain acyl-CoA dehydrogenase (VLCAD), and which can present as cardiomyopathy in neonates, as hypoketotic hypoglycemia in infancy, and as myopathy in late-onset patients. Although many ACADVL mutations have been described, no prevalent mutations in the ACADVL gene have been associated with VLCADD. Herein, we report the clinical course of the disease and explore the genetic mutation spectrum in seven Chinese patients with VLCADD. Seven Chinese patients, from newborn to 17 years old, were included in this study. Tandem mass spectrometry was performed to screen for VLCAD deficiency. All exons and flanking introns of the ACADVL gene were analyzed using polymerase chain reaction and direct sequencing. Online analysis tools were used to predict the impact of novel mutations. All cases had elevated serum levels of tetradecanoylcarnitine (C14:1) which is the characteristic biomarker for VLCADD. The phenotype of VLCADD is heterogeneous. Two patients were hospitalized for hypoactivity and hypoglycemia shortly after birth. Three patients showed hepatomegaly and hypoglycemia in infancy. The other two adolescent patients showed initial manifestations of exercise intolerance or rhabdomyolysis. Three of the patients died at the age of 6-8 months. Eleven different mutations in the ACADVL gene in the 7 patients were identified, including seven reported mutations (p.S22X, p.W427X, p.A213T, p.G222R, p.R450H, c.296-297delCA, c.1605+1G>T) and four novel mutations (p.S72F, p.Q100X, p.M437T, p.D466Y). The p.R450H and p.D466Y (14.28%, 2/14 alleles) mutations were identified in two alleles respectively. The clinical manifestations were heterog-eneous and ACADVL gene mutations were heterozygous in the seven VLCADD Chinese patients. R450H may be a relatively common mutation in Asian populations. The genotype and phenotype had a

  18. Glutathione metabolism and glucose 6-phosphate dehydrogenase activity in experimental liver injury.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1983-12-01

    Full Text Available Increased activities of liver glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 and 6-phosphogluconate dehydrogenase (6PGD, EC 1.1.1.44 in the pentose phosphate cycle were accompanied with a depletion of reduced glutathione (GSH following an intragastric administration of carbon tetrachloride (CCl4 to rats. Oxidized glutathione (GSSG also decreased remarkably, keeping the GSSG: GSH ratio constant. No significant alteration of glutathione reductase (EC 1.6.4.2., glutathione peroxidase (EC 1.11.1.9 and malic enzyme (EC 1.1.1.40 activities in the supernatant and gamma-glutamyl transpeptidase (gamma-GTP, EC 2.3.2.2 activity in the homogenate of the injured liver were observed. Furthermore, no marked difference in the GSH-synthesizing activity was found between control and CCl4-intoxicated liver. An intraperitoneal injection of GSH produced a significant increase in liver GSH content in control rats but not in CCl4-treated rats; G6PD activity was not affected. Intraperitoneal injections of diethylmaleate resulted in continuously diminished levels of liver GSH without any alteration of liver G6PD activity. In vitro disappearance of GSH added to the liver homogenate from CCl4-treated rats occurred enzymatically and could not be prevented by the addition of a NADPH-generating system. The results suggest that increased G6PD activity in CCl4-injured liver does not play an important role in the maintenance of glutathione in the reduced form and that the decreased GSH content in the injured liver might be caused by enhanced GSH catabolism not due to gamma-GTP.

  19. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency

    DEFF Research Database (Denmark)

    Pedersen, Christina Bak; Bross, P.; Winter, V.S.;

    2003-01-01

    Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding...... and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate...... with mitochondrial hsp60 chaperonins; however, the variant SCAD proteins remained associated with hsp60 for prolonged periods of time. Biogenesis experiments at two temperatures revealed that some of the variant proteins (R22W, G68C, W153R, and R359C) caused severe misfolding, whereas others (R147W, G185S, and Q341H...

  20. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency.

    Directory of Open Access Journals (Sweden)

    E F Diekman

    Full Text Available Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr and inorganic phosphate (Pi concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD.

  1. Modulation effect of blu-ray irradiation combined with comprehensive therapy on serum indexes of neonatal erythrocyte glucose-6-phosphate dehydrogenase deficiency-induced hyperbilirubinemia

    Institute of Scientific and Technical Information of China (English)

    Xuan Yang

    2016-01-01

    Objective:To study the modulation effect of blu-ray irradiation combined with comprehensive therapy on serum indexes of neonatal erythrocyte glucose-6-phosphate dehydrogenase deficiency-induced hyperbilirubinemia.Methods:A total of42 cases of neonates with erythrocyte glucose-6-phosphate dehydrogenase deficiency-induced hyperbilirubinemia were chosen for study and randomly divided into observation group (n=21) and control group (n=21). Observation group received blu-ray irradiation combined with comprehensive treatment and control group only received routine treatment. Then bilirubin levels, bilirubin encephalopathy condition, anemia condition and oxidative stress degree of two groups were compared. Results:12 h, 24 h and 48 h after treatment, serum TBIL, DBIL, IBIL, Hb, GSH and CAT contents of both groups showed decreasing trend and MDA contents showed increasing trend; serum TBIL, DBIL, IBIL, Hb, GSH and CAT contents of observation group were lower than those of control group and MDA contents were higher than those of control group. 6 d, 7 d and 8 d after treatment, serum S100β and NSE contents of both groups showed decreasing trend and serum S100β and NSE contents of observation group were lower than those of control group.Conclusion:Blu-ray irradiation combined with comprehensive therapy helps to reduce bilirubin levels of neonatal erythrocyte glucose-6-phosphate dehydrogenase deficiency-induced hyperbilirubinemia and protect nerve function, but it will aggravate anemia condition and oxidative stress degree, and needs attention and intervention in clinical practice.

  2. Clinical features and mutations in seven Chinese patients with very long chain acyl-CoA dehydrogenase deficiency

    Institute of Scientific and Technical Information of China (English)

    Rui-Nan Zhang; Yi-Fan Li; Wen-Juan Qiu; Jun Ye; Lian-Shu Han; Hui-Wen Zhang; Na Lin; Xue-Fan Gu

    2014-01-01

    Background: Very long chain acyl-CoA dehydrogenase deficiency (VLCADD) is an inherited metabolic disease caused by deleterious mutations in the ACADVL gene that encodes very long chain acyl-CoA dehydrogenase (VLCAD), and which can present as cardiomyopathy in neonates, as hypoketotic hypoglycemia in infancy, and as myopathy in late-onset patients. Although many ACADVL mutations have been described, no prevalent mutations in the ACADVL gene have been associated with VLCADD. Herein, we report the clinical course of the disease and explore the genetic mutation spectrum in seven Chinese patients with VLCADD. Methods: Seven Chinese patients, from newborn to 17 years old, were included in this study. Tandem mass spectrometry was performed to screen for VLCAD defi ciency. All exons and fl anking introns of the ACADVL gene were analyzed using polymerase chain reaction and direct sequencing. Online analysis tools were used to predict the impact of novel mutations. Results: All cases had elevated serum levels of tetradecanoylcarnitine (C14:1) which is the characteristic biomarker for VLCADD. The phenotype of VLCADD is heterogeneous. Two patients were hospitalized for hypoactivity and hypoglycemia shortly after birth. Three patients showed hepatomegaly and hypoglycemia in infancy. The other two adolescent patients showed initial manifestations of exercise intolerance or rhabdomyolysis. Three of the patients died at the age of 6-8 months. Eleven different mutations in the ACADVL gene in the 7 patients were identified, including seven reported mutations (p.S22X, p.W427X, p.A213T, p.G222R, p.R450H, c.296- 297delCA, c.1605+1G>T) and four novel mutations (p.S72F, p.Q100X, p.M437T, p.D466Y). The p.R450H and p.D466Y (14.28%, 2/14 alleles) mutations were identifi ed in two alleles respectively. Conclusions: The clinical manifestations were heterogeneous and ACADVL gene mutations were heterozygous in the seven VLCADD Chinese patients. R450H may be a relatively common mutation in Asian

  3. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  4. Can affinity interactions influence the partitioning of glucose-6-phosphate dehydrogenase in two-phase aqueous micellar systems?

    Directory of Open Access Journals (Sweden)

    André M. Lopes

    2008-01-01

    Full Text Available In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.

  5. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Jensen, P K;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal inherited disease with a carrier frequency of approximately 1:100 in most Caucasian populations. The disease is implicated in sudden unexpected death in childhood. A prevalent disease-causing point mutation (A985G......) in the MCAD gene has been characterized, thus rendering diagnosis easy in the majority of cases. Since the clinical spectrum of MCAD deficiency ranges from death in the first days of life to an asymptomatic life, there are probably other genetic factors--in addition to MCAD mutations......--involved in the expression of the disease. Thus, families who have experienced the death of a child from MCAD deficiency might have an increased risk of a seriously affected subsequent child. In such a family we have therefore performed a prenatal diagnosis on a chorionic villus sample by a highly specific and sensitive...

  6. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD by newborn screening ontario

    Directory of Open Access Journals (Sweden)

    Fisher Lawrence

    2010-11-01

    Full Text Available Abstract Background Medium chain acyl-CoA dehydrogenase deficiency (MCADD is a disorder of mitochondrial fatty acid oxidation and is one of the most common inborn errors of metabolism. Identification of MCADD via newborn screening permits the introduction of interventions that can significantly reduce associated morbidity and mortality. This study reports on the first three years of newborn screening for MCADD in Ontario, Canada. Methods Newborn Screening Ontario began screening for MCADD in April 2006, by quantification of acylcarnitines (primarily octanoylcarnitine, C8 in dried blood spots using tandem mass spectrometry. Babies with positive screening results were referred to physicians at one of five regional Newborn Screening Treatment Centres, who were responsible for diagnostic evaluation and follow-up care. Results From April 2006 through March 2009, approximately 439 000 infants were screened for MCADD in Ontario. Seventy-four infants screened positive, with a median C8 level of 0.68 uM (range 0.33-30.41 uM. Thirty-one of the screen positive infants have been confirmed to have MCADD, while 36 have been confirmed to be unaffected. Screening C8 levels were higher among infants with MCADD (median 8.93 uM compared to those with false positive results (median 0.47 uM. Molecular testing was available for 29 confirmed cases of MCADD, 15 of whom were homozygous for the common c.985A > G mutation. Infants homozygous for the common mutation tended to have higher C8 levels (median 12.13 uM relative to compound heterozygotes for c.985A > G and a second detectable mutation (median 2.01 uM. Eight confirmed mutation carriers were identified among infants in the false positive group. The positive predictive value of a screen positive for MCADD was 46%. The estimated birth prevalence of MCADD in Ontario is approximately 1 in 14 000. Conclusions The birth prevalence of MCADD and positive predictive value of the screening test were similar to those

  7. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/- mouse to compensate a defective fatty acid β-oxidation.

    Directory of Open Access Journals (Sweden)

    Sara Tucci

    Full Text Available Very long-chain acyl-CoA dehydrogenase (VLCAD-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD(-/- remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD(-/- mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD and medium-chain acyl-CoA dehydrogenase (MCAD was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD(-/- mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD(-/- mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD(-/- mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term.

  8. Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden unexpected death in childhood

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V; Jensen, P K;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal inherited disease with a carrier frequency of approximately 1:100 in most Caucasian populations. The disease is implicated in sudden unexpected death in childhood. A prevalent disease-causing point mutation (A985G......--involved in the expression of the disease. Thus, families who have experienced the death of a child from MCAD deficiency might have an increased risk of a seriously affected subsequent child. In such a family we have therefore performed a prenatal diagnosis on a chorionic villus sample by a highly specific and sensitive...... polymerase chain reaction (PCR) assay for the G985 mutation. The analysis was positive and resulted in abortion. We verified the diagnosis by direct analysis on blood spots and other tissue material from the aborted fetus and from family members....

  9. Successful Treatment of Cardiomyopathy due to Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: First Case Report from Oman with Literature Review

    Directory of Open Access Journals (Sweden)

    Sharef Waadallah Sharef

    2013-09-01

    Full Text Available Very long-chain acyl-CoA dehydrogenase deficiency (MIM 201475 is a severe defect of mitochondrial energy production from oxidation of very long-chain fatty acids. This inherited metabolic disorder often presents in early neonatal period with episodes of symptomatic hypoglycemia usually responding well to intravenous glucose infusion. These babies are often discharged without establishment of diagnosis but return by 2-5 months of age with severe and progressive cardiac failure due to hypertrophic cardiomyopathy with or without hepatic failure and steatosis. An early diagnosis and treatment with high concentration medium chain triglycerides based feeding formula can be life saving in such patients. Here, we report the first diagnosed and treated case of Very long-chain acyl-CoA dehydrogenase deficiency in Oman. This infant developed heart failure with left ventricular dilation, hypertrophy and pericardial effusion at the age of 7 weeks. Prompt diagnosis and subsequent intervention with medium chain triglycerides-based formula resulted in a reversal of severe clinical symptoms with significant improvement of cardiac status. This treatment also ensured normal growth and neurodevelopment. It is stressed that the disease must be recognized by the pediatricians and cardiologists since the disease can be identified by Tandem Mass Spectrometry; therefore, it should be considered to be included in expanded newborn screening program, allowing early diagnosis and intervention in order to ensure better outcome and prevent complications.

  10. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  11. Metoclopramide

    Science.gov (United States)

    ... pressure; depression; breast cancer; asthma;glucose-6-phosphate dehydrogenase (G-6PD) deficiency (an inherited blood disorder); NADH ... ask your doctor about the safe use of alcohol while you are taking this medication. Alcohol can ...

  12. Nitrofurantoin

    Science.gov (United States)

    ... lung disease, nerve damage, or glucose-6-phosphate dehydrogenase (G-6-PD) deficiency (an inherited blood disease). ... ask your doctor about the safe use of alcohol while you are taking this medication. Alcohol can ...

  13. Flutamide

    Science.gov (United States)

    ... inherited blood diseases such as glucose-6-phosphate dehydrogenase (G-6-PD) deficiency or hemoglobin M disease. ... flutamide. Flutamide may cause facial flushing, and drinking alcohol can make it worse.

  14. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-01

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.

  15. Familial very long chain acyl-CoA dehydrogenase deficiency as a cause of neonatal sudden infant death: improved survival by prompt diagnosis.

    Science.gov (United States)

    Scalais, Emmanuel; Bottu, Jean; Wanders, Ronald J A; Ferdinandusse, Sacha; Waterham, Hans R; De Meirleir, Linda

    2015-01-01

    In neonates, very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is often characterized by cardiomyopathy, hepatic encephalopathy, or severe hypoketotic hypoglycemia, or a combination thereof. The purpose of this study was to further elucidate a familial VLCAD deficiency in three patients, two of whom died in the neonatal period. We report on a family with VLCAD deficiency. Acyl-carnitine profiles were obtained from dried blood spot and/or from oxidation of (13) C-palmitate by cultured skin fibroblasts. In the index patient, VLCAD deficiency was ascertained by enzyme activity measurement in fibroblasts and by molecular analysis of ACADVL. At 30 hr of life, the proband was diagnosed with hypoglycemia (1.77 mmol/L), rhabdomyolysis (CK: 12966 IU/L) and hyperlactacidemia (10.6 mmol/L). Acylcarnitine profile performed at 31 hr of life was consistent with VLCAD deficiency and confirmed by cultured skin fibroblast enzyme activity measurement. Molecular analysis of ACADVL revealed a homozygous splice-site mutation (1077 + 2T>C). The acyl-carnitine profile obtained from the sibling's original newborn screening cards demonstrated a similar, but less pronounced abnormal profile. In the proband, the initial metabolic crisis was controlled with 10% dextrose solution and oral riboflavin followed by specific diet (Basic-F and medium chain triglyceride (MCT). This clinical report demonstrates a familial history of repeated neonatal deaths explained by VLCAD deficiency, and the clinical evolution of the latest affected, surviving sibling. It shows that very early metabolic screening is an effective approach to avoid sudden unexpected death.

  16. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf;

    2007-01-01

    individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  17. Sudden unexpected infant death (SUDI in a newborn due to medium chain acyl CoA dehydrogenase (MCAD deficiency with an unusual severe genotype

    Directory of Open Access Journals (Sweden)

    Lovera Cristina

    2012-10-01

    Full Text Available Abstract Medium chain acyl CoA dehydrogenase deficiency (MCAD is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23 mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.

  18. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding.

    Science.gov (United States)

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S; Calhoun, William J

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to alcoholic lung disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Pyridoxine-dependent seizures caused by alpha amino adipic semialdehyde dehydrogenase deficiency: the first polish case with confirmed biochemical and molecular pathology.

    Science.gov (United States)

    Kaczorowska, Magdalena; Kmiec, Tomasz; Jakobs, Cornelis; Kacinski, Marek; Kroczka, Slawomir; Salomons, Gajja S; Struys, Eduard A; Jozwiak, Sergiusz

    2008-12-01

    Pyridoxine-dependent seizures are a rare condition recognized when numerous seizures respond to pyridoxine treatment and recur on pyridoxine withdrawal. For decades the diagnosis was confirmed only with pyridoxine treatment withdrawal trial. Recently described biochemical and molecular pathology improved the diagnostic process for those cases in which seizures are caused by alpha amino adipic semialdehyde dehydrogenase deficiency. This article presents a girl with recurrent status epilepticus episodes resistant to phenobarbital and phenytoin and partly responding to midazolam. Eventually the seizures were completely controlled with pyridoxine; however, due to the severe condition of this child when seizing, no trial of withdrawal has been performed. The diagnosis of pyridoxine-dependent seizures was confirmed with biochemical and molecular testing revealing elevated alpha-AASA excretion and the presence of 2 different mutations in the antiquitin ( ALDH7A1) gene. Due to the availability of reliable laboratory testing, confirmation of the diagnosis was made without the life-threatening trial of pyridoxine withdrawal.

  20. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.

    Science.gov (United States)

    De Boeck, Reinout; Sarmiento-Rubiano, Luz Adriana; Nadal, Inmaculada; Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-02-01

    Sorbitol is a sugar alcohol largely used in the food industry as a low-calorie sweetener. We have previously described a sorbitol-producing Lactobacillus casei (strain BL232) in which the gutF gene, encoding a sorbitol-6-phosphate dehydrogenase, was expressed from the lactose operon. Here, a complete deletion of the ldh1 gene, encoding the main L-lactate dehydrogenase, was performed in strain BL232. In a resting cell system with glucose, the new strain, named BL251, accumulated sorbitol in the medium that was rapidly metabolized after glucose exhaustion. Reutilization of produced sorbitol was prevented by deleting the gutB gene of the phosphoenolpyruvate: sorbitol phosphotransferase system (PTS(Gut)) in BL251. These results showed that the PTS(Gut) did not mediate sorbitol excretion from the cells, but it was responsible for uptake and reutilization of the synthesized sorbitol. A further improvement in sorbitol production was achieved by inactivation of the mtlD gene, encoding a mannitol-1-phosphate dehydrogenase. The new strain BL300 (lac::gutF Deltaldh1 DeltagutB mtlD) showed an increase in sorbitol production whereas no mannitol synthesis was detected, avoiding thus a polyol mixture. This strain was able to convert lactose, the main sugar from milk, into sorbitol, either using a resting cell system or in growing cells under pH control. A conversion rate of 9.4% of lactose into sorbitol was obtained using an optimized fed-batch system and whey permeate, a waste product of the dairy industry, as substrate.

  1. Glutaric acid and its metabolites cause apoptosis in immature oligodendrocytes: a novel mechanism of white matter degeneration in glutaryl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Gerstner, Bettina; Gratopp, Alexander; Marcinkowski, Monika; Sifringer, Marco; Obladen, Michael; Bührer, Christoph

    2005-06-01

    Glutaryl-CoA dehydrogenase deficiency is an inherited metabolic disease characterized by elevated concentrations of glutaric acid (GA) and its metabolites glutaconic acid (GC) and 3-hydroxy-glutaric acid (3-OH-GA). Its hallmarks are striatal and cortical degeneration, which have been linked to excitotoxic neuronal cell death. However, magnetic resonance imaging studies have also revealed widespread white matter disease. Correspondingly, we decided to investigate the effects of GA, GC, and 3-OH-GA on the rat immature oligodendroglia cell line, OLN-93. For comparison, we also exposed the neuroblastoma line SH-SY5Y and the microglia line BV-2 to GA, GC, and 3-OH-GA. Cell viability was measured by metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium. Flow cytometry was used to assess apoptosis via annexin-V, anti-active caspase-3 antibody, and propidium iodide staining. GA, GC, and 3-OH-GA reduced OLN-93 oligodendroglia cell viability in a dose-dependent manner. Toxicity of GA, GC, and 3-OH-GA was abrogated by preincubation with the pan-caspase inhibitor z-VAD-fmk. Apoptosis but not necrosis was detected at various stages (early: annexin-V; effector: caspase-3) after 24-48 h of incubation with GA, GC, or 3-OH-GA in OLN-93 but not in neuroblastoma or microglia cells. OLN-93 lacked expression of N-methyl-d-aspartate receptors, making classical glutamatergic excitotoxicity an unlikely explanation for the selective toxicity of GA, GC, and 3-OH-GA for OLN-93 cells. GA, GC, and 3-OH-GA directly initiate the apoptotic cascade in oligodendroglia cells. This mechanism may contribute to the white matter damage observed in glutaryl-CoA dehydrogenase deficiency.

  2. Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants.

    Directory of Open Access Journals (Sweden)

    Zarazuela Zolkipli

    Full Text Available OBJECTIVE: To elucidate the pathophysiology of SCAD deficient patients who have a unique neurological phenotype, among fatty acid oxidation disorders, with early developmental delay, CNS malformations, intractable seizures, myopathy and clinical signs suggesting oxidative stress. METHODS: We studied skin fibroblast cultures from patients homozygous for ACADS common variant c.625G>A (n = 10, compound heterozygous for c.625G>A/c.319C>T (n = 3 or homozygous for pathogenic c.319C>T (n = 2 and c.1138C>T (n = 2 mutations compared to fibroblasts from patients with carnitine palmitoyltransferase 2 (CPT2 (n = 5, mitochondrial trifunctional protein (MTP/long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD (n = 7, and medium-chain acyl-CoA dehydrogenase (MCAD deficiencies (n = 4 and normal controls (n = 9. All were exposed to 50 µM menadione at 37°C. Additional conditions included exposure to 39°C and/or hypoglycemia. Time to 100% cell death was confirmed with trypan blue dye exclusion. Experiments were repeated with antioxidants (Vitamins C and E or N-acetylcysteine, Bezafibrate or glucose and temperature rescue. RESULTS: The most significant risk factor for vulnerability to menadione-induced oxidative stress was the presence of a FAO defect. SCADD fibroblasts were the most vulnerable compared to other FAO disorders and controls, and were similarly affected, independent of genotype. Cell death was exacerbated by hyperthermia and/or hypoglycemia. Hyperthermia was a more significant independent risk factor than hypoglycemia. Rescue significantly prolonged survival. Incubation with antioxidants and Bezafibrate significantly increased viability of SCADD fibroblasts. INTERPRETATION: Vulnerability to oxidative stress likely contributes to neurotoxicity of SCADD regardless of ACADS genotype and is significantly exacerbated by hyperthermia. We recommend rigorous temperature control in SCADD patients during acute illness

  3. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    Science.gov (United States)

    Okano, Kenji; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-08-01

    Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.

  4. Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  5. Defects in the HSD11 gene encoding 11[beta]-hydroxysteriod dehydrogenase are not found in patients with apparent mineralocorticoid excess or 11-oxoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nikkila, H.; White, P.C. (Cornell Univ. Medical College, New York, NY (United States)); Tannin, G.M. (Rainbow Babies and Children' s Hospital, Cleveland, OH (United States)); New, M.I.; Taylor, N.F. (King' s College School of Medicine and Dentistry, London (United Kingdom)); Kalaitzoglou, G.; Monder, C. (Population Council, New York, NY (United States))

    1993-09-01

    The syndrome of apparent mineralocorticoid excess (AME) is a form of low renin hypertension that is thought to be caused by congenital deficiency of 11[beta]-hydroxysteroid dehydrogenase (11HSD) activity. This enzyme converts cortisol to cortisone and apparently prevents cortisol from acting as a ligand for the mineralocorticoid (type I) receptor. It also catalyzes the reverse oxoreductase (cortisone to cortisol) reaction. Four patients with AME and the parents of the first patient described (now deceased) were analyzed for mutations in the cloned HSD11 gene encoding an 11HSD enzyme. A patient with suspected cortisone reductase deficiency was also studied. No gross deletions or rearrangements in the HSD11 gene were apparent on hybridizations of blot of genomic DNA. Direct sequencing of polymerase chain reaction-amplified fragments corresponding to the coding sequences, intronexon junctions, and proximal untranslated regions of this gene revealed no mutations. AME may involve mutations in a gene for another enzyme with 11HSD activity or perhaps another cortisol metabolizing enzyme. 48 refs., 2 figs., 2 tabs.

  6. Growth hormone (GH) substitution in GH-deficient patients inhibits 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression in adipose tissue.

    Science.gov (United States)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Fisker, Sanne; Christiansen, Jens Sandahl; Flyvbjerg, Allan; Richelsen, Bjørn

    2006-03-01

    Local tissue activity of glucocorticoids is in part determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) and 11beta-HSD2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a central role in the features of GH deficiency and the metabolic syndrome. We investigated the effects of GH treatment on adipose tissue 11beta-HSD mRNA. A randomized placebo-controlled double-blind study design was used. Twenty-three GH-deficient patients (16 males and seven females) were randomized to 4 months of GH treatment (2 IU/m2) (n = 11) or placebo treatment (n = 12). Adipose tissue biopsies and blood samples were obtained before and after treatment. Biopsies were obtained from the abdominal sc depot at the level of the umbilicus and do not necessarily reflect the metabolically more important visceral adipose tissue. Gene expressions were determined by real-time RT-PCR. GH treatment decreased 11beta-HSD1 mRNA 66% [95% confidence interval (CI), 23-107%; P adipose tissue. Serum IGF-I and IGF-I mRNA increased in the GH-treated group by 187% (95% CI, 122-250%; P cortisol in adipose tissue.

  7. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

    Science.gov (United States)

    Herrema, Hilde; Derks, Terry G J; van Dijk, Theo H; Bloks, Vincent W; Gerding, Albert; Havinga, Rick; Tietge, Uwe J F; Müller, Michael; Smit, G Peter A; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2008-06-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the

  8. Human 3β-hydroxysteroid dehydrogenase deficiency seems to affect fertility but may not harbor a tumor risk

    DEFF Research Database (Denmark)

    Burckhardt, Marie-Anne; Udhane, Sameer S; Marti, Nesa

    2015-01-01

    . RESULTS: A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene...... enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS: The testis with HSD3B2...... deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis....

  9. Preventive effects of Chlorella on skeletal muscle atrophy in muscle-specific mitochondrial aldehyde dehydrogenase 2 activity-deficient mice.

    Science.gov (United States)

    Nakashima, Yuya; Ohsawa, Ikuroh; Nishimaki, Kiyomi; Kumamoto, Shoichiro; Maruyama, Isao; Suzuki, Yoshihiko; Ohta, Shigeo

    2014-10-11

    Oxidative stress is involved in age-related muscle atrophy, such as sarcopenia. Since Chlorella, a unicellular green alga, contains various antioxidant substances, we used a mouse model of enhanced oxidative stress to investigate whether Chlorella could prevent muscle atrophy. Aldehyde dehydrogenase 2 (ALDH2) is an anti-oxidative enzyme that detoxifies reactive aldehydes derived from lipid peroxides such as 4-hydroxy-2-nonenal (4-HNE). We therefore used transgenic mice expressing a dominant-negative form of ALDH2 (ALDH2*2 Tg mice) to selectively decrease ALDH2 activity in the muscles. To evaluate the effect of Chlorella, the mice were fed a Chlorella-supplemented diet (CSD) for 6 months. ALDH2*2 Tg mice exhibited small body size, muscle atrophy, decreased fat content, osteopenia, and kyphosis, accompanied by increased muscular 4-HNE levels. The CSD helped in recovery of body weight, enhanced oxidative stress, and increased levels of a muscle impairment marker, creatine phosphokinase (CPK) induced by ALDH2*2. Furthermore, histological and histochemical analyses revealed that the consumption of the CSD improved skeletal muscle atrophy and the activity of the mitochondrial cytochrome c oxidase. This study suggests that long-term consumption of Chlorella has the potential to prevent age-related muscle atrophy.

  10. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  11. The molecular basis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in compound heterozygous patients

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Udvari, S

    1997-01-01

    /phenotype correlation in MCAD deficiency is not straightforward. Different mutations may contribute with different susceptibilities for disease precipitation, when the patient is subjected to metabolic stress, but other genetic and environmental factors may play an equally important role....... of the missense mutations affect the folding and/or stability of the protein, and that the residual enzyme activity of some of them could be modulated to a different extent depending on the amounts of available chaperonins. Thus, some of the missense mutations may result in relatively high levels of residual...

  12. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency.

    Science.gov (United States)

    Olsen, Rikke K J; Koňaříková, Eliška; Giancaspero, Teresa A; Mosegaard, Signe; Boczonadi, Veronika; Mataković, Lavinija; Veauville-Merllié, Alice; Terrile, Caterina; Schwarzmayr, Thomas; Haack, Tobias B; Auranen, Mari; Leone, Piero; Galluccio, Michele; Imbard, Apolline; Gutierrez-Rios, Purificacion; Palmfeldt, Johan; Graf, Elisabeth; Vianey-Saban, Christine; Oppenheim, Marcus; Schiff, Manuel; Pichard, Samia; Rigal, Odile; Pyle, Angela; Chinnery, Patrick F; Konstantopoulou, Vassiliki; Möslinger, Dorothea; Feichtinger, René G; Talim, Beril; Topaloglu, Haluk; Coskun, Turgay; Gucer, Safak; Botta, Annalisa; Pegoraro, Elena; Malena, Adriana; Vergani, Lodovica; Mazzà, Daniela; Zollino, Marcella; Ghezzi, Daniele; Acquaviva, Cecile; Tyni, Tiina; Boneh, Avihu; Meitinger, Thomas; Strom, Tim M; Gregersen, Niels; Mayr, Johannes A; Horvath, Rita; Barile, Maria; Prokisch, Holger

    2016-06-02

    Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.

  13. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    Science.gov (United States)

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  14. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton.

    Science.gov (United States)

    Wang, Zhi-An; Li, Qing; Ge, Xiao-Yang; Yang, Chun-Lin; Luo, Xiao-Li; Zhang, An-Hong; Xiao, Juan-Li; Tian, Ying-Chuan; Xia, Gui-Xian; Chen, Xiao-Ying; Li, Fu-Guang; Wu, Jia-He

    2015-07-16

    Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition.

  15. Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain.

    Science.gov (United States)

    Schuck, Patrícia Fernanda; Ferreira, Gustavo da Costa; Tonin, Anelise Miotti; Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Zanatta, Angela; Klamt, Fábio; Wajner, Moacir

    2009-11-03

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disorder of fatty acid oxidation in which the affected patients predominantly present high levels of octanoic (OA) and decanoic (DA) acids and their glycine and carnitine by-products in tissues and body fluids. It is clinically characterized by episodic encephalopathic crises with coma and seizures, as well as by progressive neurological involvement, whose pathophysiology is poorly known. In the present work, we investigated the in vitro effects of OA and DA on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. We found that OA and DA markedly increased state 4 respiration and diminished state 3 respiration as well as the respiratory control ratio, the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, DA-elicited increase in oxygen consumption in state 4 respiration was partially prevented by atractyloside, indicating the involvement of the adenine nucleotide translocator. OA and DA also reduced ADP/O ratio, CCCP-stimulated respiration and the activities of respiratory chain complexes. The data indicate that the major accumulating fatty acids in MCADD act as uncouplers of oxidative phosphorylation and as metabolic inhibitors. Furthermore, DA, but not OA, provoked a marked mitochondrial swelling and cytochrome c release from mitochondria, reflecting a permeabilization of the inner mitochondrial membrane. Taken together, these data suggest that OA and DA impair brain mitochondrial energy homeostasis that could underlie at least in part the neuropathology of MCADD.

  16. The role of reduced glutathione during the course of acute haemolysis in glucose-6-phosphate dehydrogenase deficient patients: clinical and pharmacodynamic aspects.

    Science.gov (United States)

    Corbucci, G G

    1990-01-01

    Tissue hypoperfusion leads to cellular oxidative and peroxidative damage due to biochemical disorders in the oxygen and substrate metabolism. The metabolic turnover of glutathione (GSH) represents one the main cytoprotective systems against the peroxide attack and the depletion or defect in resynthesis of this compound is accompanied by pathological consequences. In the present study the clinical effects of glutathione depletion were investigated in conditions of acute tissue hypoxia due to marked haemolysis in glucose-6-phosphate dehydrogenase deficient patients (favism syndrome). In these subjects a significant marker of the tissue oxidative damage was represented by the uric acid blood levels, presumably linked to xanthine-hypoxanthine altered metabolism. To antagonize the effects of oxyradical pathology, reduced glutathione was administered to a group of patients and the results confirmed the cytoprotective role played by the GSH supplementation. The GSH action was evident on the tissue metabolism and this supports the opinion that reduced glutathione could represent a new and interesting therapeutic approach in marked and acute hypoxic conditions.

  17. NADH:ubiquinone reductase and succinate dehydrogenase activity in the liver of rats with acetaminophen-induced toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2015-02-01

    Full Text Available The ratio between the redox forms of the nicotinamide coenzymes and key enzymatic activity of the I and II respiratory chain complexes in the liver cells mitochondria of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. It was estimated, that under the conditions of acute acetaminophen-induced hepatitis of rats kept on a low-protein diet during 4 weeks a significant decrease of the NADH:ubiquinone reductase and succinate dehydrogenase activity with simultaneous increase of the ratio between redox forms of the nicotinamide coenzymes (NAD+/NADН is observed compared to the same indices in the liver cells of animals with experimental hepatitis kept on the ration balanced by all nutrients. Results of research may become basic ones for the biochemical rationale for the approaches directed to the correction and elimination of the consequences­ of energy exchange in the toxic hepatitis, induced on the background of protein deficiency.

  18. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene

    DEFF Research Database (Denmark)

    Kølvraa, S; Gregersen, N; Blakemore, A I;

    1991-01-01

    RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII. PstI and TaqI and with an MCAD cDNA-clone as a probe....... Of 32 disease-causing alleles studied, 31 possessed the previously published A----G point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present....... In contrast, the same haplotype was present in only 23% of normal alleles (P less than or equal to 3.4 x 10(-18)). These findings are consistent with the existence of a pronounced founder effect, possibly combined with biological and/or sampling selection....

  19. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-06-01

    Full Text Available Multiple Acyl-CoA Dehydrogenase Deficiency (MADD is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463 that has an inactivating mutation in the etfa gene. dxa(vu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1 with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  20. A comprehensive HADHA c.1528G>C frequency study reveals high prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Poland

    DEFF Research Database (Denmark)

    Piekutowska-Abramczuk, Dorota; Olsen, Rikke K J; Wierzba, Jolanta;

    2010-01-01

    Isolated long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is associated with c.1528G>C substitution in the HADHA gene, since most patients have the prevalent mutation on at least one allele. As it is known that the disease is relatively frequent in Europe, especially around the Balt...... Sea, and that the majority of Polish LCHADD patients originate from the coastal Pomeranian province, partly inhabited by an ancient ethnic group, the Kashubians, we aimed to determine the carrier frequency of the prevalent HADHA mutation in various districts of Poland with special focus....... Our data reveal a geographically skewed distribution of the c.1528C allele in the Polish population; in the northern Pomeranian province the carrier frequency is 1:73, which is the highest frequency ever reported, whereas in the remaining regions it is 1:217. Hence, the incidence of LCHADD in Poland...... is predicted to be 1:118,336 versus 1:16,900 in the Pomeranian district. Despite the relative rarity of the disease, screening for LCHADD in neonates born in the northern part of Poland, especially those of Kashubian origin, is justified. Our data allow us to suggest a probable Kashubian origin...

  1. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    Science.gov (United States)

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-12-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose.

  2. A calcium-deficient diet in rat dams during gestation and nursing affects hepatic 11β-hydroxysteroid dehydrogenase-1 expression in the offspring.

    Directory of Open Access Journals (Sweden)

    Junji Takaya

    Full Text Available BACKGROUND: Prenatal malnutrition can affect the phenotype of offspring by changing epigenetic regulation of specific genes. Several lines of evidence demonstrate that calcium (Ca plays an important role in the pathogenesis of insulin resistance syndrome. We hypothesized that pregnant female rats fed a Ca-deficient diet would have offspring with altered hepatic glucocorticoid-related gene expression and that lactation would modify these alterations. METHODOLOGY: We determined the effects of Ca deficiency during pregnancy and/or lactation on hepatic 11β-hydroxysteroid dehydrogenase-1 (Hsd11b1 expression in offspring. Female Wistar rats consumed either a Ca-deficient (D: 0.008% Ca or control (C: 0.90% Ca diet ad libitum from 3 weeks preconception to 21 days postparturition. On postnatal day 1, pups were cross-fostered to the same or opposite dams and divided into the following four groups: CC, DD, CD, and DC (first letter: original mother's diet; second letter: nursing mother's diet. All offspring were fed a control diet beginning at weaning (day 21 and were killed on day 200 ± 7. Serum insulin and adipokines in offspring were measured using ELISA kits. PRINCIPAL FINDINGS: In males, mean levels of insulin, glucose, and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR were higher in the DD and DC groups than in the CC group. We found no difference in HOMA-IR between the CC and CD groups in either males or females. Expression of Hsd11b1 was lower in male DD rats than in CC rats. Hsd11b1 expression in male offspring nursed by cross-fostered dams was higher than that in those nursed by dams fed the same diet; CC vs. CD and DD vs. DC. In females, Hsd11b1 expression in DC rats was higher than that in CC rats. CONCLUSIONS: These findings indicated that maternal Ca restriction during pregnancy and/or lactation alters postnatal growth, Hsd11b1 expression, and insulin resistance in a sex-specific manner.

  3. Inactivation of Bakers' yeast glucose-6-phosphate dehydrogenase by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungwoo; Joshi, J.G. (Univ. of Tennessee, Knoxville (USA))

    1989-04-18

    Preincubation of yeast glucose-6-phosphate dehydrogenase (G6PD) with Al(III) produced an inactive enzyme containing 1 mol of Al(III)/mol of enzyme subunit. None of the enzyme-bound Al(III) was dissociated by dialysis against 10 mM Tris-HCl, pH 7.0, containing 0.2 mM EDTA at 4{degree}C for 24 h. Citrate, NADP{sup +}, EDTA, or NaF protected the enzyme against the Al(III) inactivation. The Al(III)-inactivated enzyme, however, was completely reactivated only by citrate and NaF. The dissociation constant for the enzyme-aluminum complex was calculated to be 4 {times} 10{sup {minus}6} M with NaF, a known reversible chelator for aluminum. Modification of histidine and lysine residues of the enzyme with diethyl pyrocarbonate and acetylsalicylic acid, respectively, inactivated the enzyme. However, the modified enzyme still bound 1 mol of Al(III)/mol of enzyme subunit. Circular dichroism studies showed that the binding of Al(III) to the enzyme induced a decrease in {alpha}-helix and {beta}-sheet and an increase in random coil. Therefore, it is suggested that inactivation of G6PD by Al(III) is due to the conformational change induced by Al(III) binding.

  4. 46,XY DSD with Female or Ambiguous External Genitalia at Birth due to Androgen Insensitivity Syndrome, 5-Reductase-2 Deficiency, or 17-Hydroxysteroid Dehydrogenase Deficiency: A Review of Quality of Life Outcomes

    Directory of Open Access Journals (Sweden)

    Mazur Tom

    2009-08-01

    Full Text Available Disorders of sex development refer to a collection of congenital conditions in which atypical development of chromosomal, gonadal, or anatomic sex occurs. Studies of 46,XY DSD have focused largely on gender identity, gender role, and sexual orientation. Few studies have focused on other domains, such as physical and mental health, that may contribute to a person's quality of life. The current review focuses on information published since 1955 pertaining to psychological well-being, cognition, general health, fertility, and sexual function in people affected by androgen insensitivity syndromes, 5- reductase-2 deficiency, or 17-hydroxysteroid dehydrogenase-3 deficiency—reared male or female. The complete form of androgen insensitivity syndrome has been the focus of the largest number of investigations in domains other than gender. Despite this, all of the conditions included in the current review are under-studied. Realms identified for further study include psychological well-being, cognitive abilities, general health, fertility, and sexual function. Such investigations would not only improve the quality of life for those affected by DSD but may also provide information for improving physical and mental health in the general population.

  5. Prevalence and mutation analysis of short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) detected on newborn screening in Wisconsin.

    Science.gov (United States)

    Van Calcar, Sandra C; Baker, Mei W; Williams, Phillip; Jones, Susan A; Xiong, Blia; Thao, Mai Choua; Lee, Sheng; Yang, Mai Khou; Rice, Greg M; Rhead, William; Vockley, Jerry; Hoffman, Gary; Durkin, Maureen S

    2013-01-01

    Short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD), also called 2-methylbutyryl CoA dehydrogenase deficiency (2-MBCDD), is a disorder of l-isoleucine metabolism of uncertain clinical significance. SBCADD is inadvertently detected on expanded newborn screening by elevated 2-methylbutyrylcarnitine (C5), which has the same mass to charge (m/s) on tandem mass spectrometry (MS/MS) as isovalerylcarnitine (C5), an analyte that is elevated in isovaleric acidemia (IVA), a disorder in leucine metabolism. SBCADD cases identified in the Hmong-American population have been found in association with the c.1165 A>G mutation in the ACADSB gene. The purposes of this study were to: (a) estimate the prevalence of SBCADD and carrier frequency of the c.1165 A>G mutation in the Hmong ethnic group; (b) determine whether the c.1165 A>G mutation is common to all Hmong newborns screening positive for SBCADD; and (c) evaluate C5 acylcarnitine cut-off values to detect and distinguish between SBCADD and IVA diagnoses. During the first 10years of expanded newborn screening using MS/MS in Wisconsin (2001-2011), 97 infants had elevated C5 values (≥0.44μmol/L), of whom five were Caucasian infants confirmed to have IVA. Of the remaining 92 confirmed SBCADD cases, 90 were of Hmong descent. Mutation analysis was completed on an anonymous, random sample of newborn screening cards (n=1139) from Hmong infants. Fifteen infants, including nine who had screened positive for SBCADD based on a C5 acylcarnitine concentration ≥0.44μmol/L, were homozygous for the c.1165 A>G mutation. This corresponds to a prevalence in this ethnic group of being homozygous for the mutation of 1.3% (95% confidence interval 0.8-2.2%) and of being heterozygous for the mutation of 21.8% (95% confidence interval 19.4-24.3%), which is consistent with the Hardy-Weinberg equilibrium. Detection of homozygous individuals who were not identified on newborn screening suggests that the C5 screening cut-off would need to

  6. High-resolution melting analysis of the common c.1905+1G>A mutation causing dihydropyrimidine dehydrogenase deficiency and lethal 5-fluorouracil toxicity

    Directory of Open Access Journals (Sweden)

    Emma eBorràs

    2013-01-01

    Full Text Available Dihydropyrimidine dehydrogenase (DPD deficiency is a pharmacogenetic syndrome associated with life-threatening toxicity following exposure to the fluoropyrimidine drugs 5-fluorouracil (5-FU and capecitabine (CAP, widely used for the treatment of colorectal cancer and other solid tumors. The most prominent loss-of-function allele of the DPYD gene is the splice-site mutation c.1905+1G>A. In this study we report the case of a 73-year old woman with metastatic colorectal cancer who died from drug-induced toxicity after the first cycle of 5-FU-containing chemotherapy. Her symptoms included severe neutropenia, thrombocytopenia, mucositis and diarrhea; and she died 16 days later despite intensive care measures. Post-mortem genetic analysis revealed that the patient was homozygous for the c.1905+1G>A deleterious allele and several family members consented to being screened for this mutation. This is the first report in Spain of a case of 5-FU-induced lethal toxicity associated with a genetic defect that results in the complete loss of the DPD enzyme. Although the frequency of c.1905+1G>A carriers in the white population ranges between 1-2%, the few data available for the Spanish population and the severity of this case prompted us to design a genotyping procedure to prevent future toxic effects of 5-FU/CAP. Since our group had previously developed a high-resolution melting (HRM assay for the simultaneous detection of KRAS, BRAF and/or EGFR somatic mutations in colorectal and lung cancer patients considered for EGFR-targeted therapies, we included the DPYD c.1905+1G>A mutation in the screening test that we describe herein. HRM provides a rapid, sensitive and inexpensive method that can be easily implemented in diagnostic settings for the routine pre-therapeutic testing of a gene mutation panel with implications in the pharmacologic treatment.

  7. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.

    Science.gov (United States)

    Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.

  8. General (medium-chain) acyl-CoA dehydrogenase deficiency (non-ketotic dicarboxylic aciduria): quantitative urinary excretion pattern of 23 biologically significant organic acids in three cases.

    Science.gov (United States)

    Gregersen, N; Kølvraa, S; Rasmussen, K; Mortensen, P B; Divry, P; David, M; Hobolth, N

    1983-08-15

    Urinary analysis of the pattern of 23 organic acid metabolites derived from fatty acids in three patients with general (medium-chain) acyl-CoA dehydrogenase deficiency was performed. Although there exist quantitative differences in the excreted amounts of the different metabolites in the three patients the qualitative picture was the same. The excretion of adipic, suberic and sebacic acids was substantial, whereas that of dodecanedioic acid was within or just above control limit. The monounsaturated C6-C10-dicarboxylic acid excretion was only marginally or not increased. 5-OH-hexanoic acid and hexanoylglycine were excreted in excessive amounts, whereas 7-OH-octanoic acid, 9-OH-decanoic acid, octanoylglycine and decanoylglycine were excreted in limited amounts. The excreted amounts of 6-OH-hexanoic, 8-OH-octanoic and 10-OH-decanoic acids were not or only marginally elevated compared to controls. In one of the patients the excretion of ethylmalonic and methylsuccinic acids was enhanced, whereas the excretion of these two acids in the two other patients was comparable to that in controls. The urinary excretion of hexanoic, octanoic, decanoic and dodecanoic acids was just a little above the control limit, whereas the esterified hexanoic and octanoic acids were excreted in appreciable amounts. It is argued that the microsomal omega- and omega-1-oxidation systems are involved in the dicarboxylic and omega-1-OH-monocarboxylic acids formation at C10 and C12 level and that the C8-C6-dicarboxylic and omega-1-OH-monocarboxylic acids are formed from higher chained acids by beta-oxidation in both mitochondria and peroxisomes.

  9. A Historical Cohort Study on the Efficacy of Glucocorticoids and Riboflavin Among Patients with Late-onset Multiple Acyl-CoA Dehydrogenase Deficiency

    Institute of Scientific and Technical Information of China (English)

    Xin-Yi Liu; Zhi-Qiang Wang; Dan-Ni Wang; Min-Ting Lin; Ning Wang

    2016-01-01

    Background:Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common type of lipid storage myopathies in China.Most patients with late-onset MADD are well responsive to riboflavin.Up to now,these patients are often treated with glucocorticoids as the first-line drug because they are misdiagnosed as polymyositis without muscle biopsy or gene analysis.Although glucocorticoids seem to improve the fatty acid metabolism of late-onset MADD,the objective evaluation of their rationalization on this disorder and comparison with riboflavin treatment are unknown.Methods:We performed a historical cohort study on the efficacy of the two drugs among 45 patients with late-onset MADD,who were divided into glucocorticoids group and riboflavin group.Detailed clinical information of baseline and 1-month follow-up were collected.Results:After 1-month treatment,a dramatic improvement of muscle strength was found in riboflavin group (P < 0.05).There was no significant difference in muscle enzymes between the two groups.Significantly,the number of patients with full recovery in glucocorticoids group was less than the number in riboflavin group (P < 0.05).On the other hand,almost half of the patients in riboflavin group still presented high-level muscle enzymes and weak muscle strength after 1-month riboflavin treatment,meaning that 1-month treatment duration maybe insufficient and patients should keep on riboflavin supplement for a longer time.Conclusions:Our results provide credible evidences that the overall efficacy of riboflavin is superior to glucocorticoids,and a longer duration of riboflavin treatment is necessary for patients with late-onset MADD.

  10. assessment of the activity of glucose-6-phosphate dehydrogenase ...

    African Journals Online (AJOL)

    Uwaifoh

    2012-10-31

    Oct 31, 2012 ... activity of G-6-PD was determined in type 2 diabetes mellitus patients and control subjects ... that reason, monitoring of G-6-PD activity may be an important tool in preventing diabetic injury due to ... ingestion of certain drugs or food (eg fava beans) or .... Festus OO., supervised this study with the assistance.

  11. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  12. The dilemma of the gender assignment in a Portuguese adolescent with disorder of sex development due to 17β-hydroxysteroid-dehydrogenase type 3 enzyme deficiency.

    Science.gov (United States)

    Costa, Carla; Castro-Correia, Cíntia; Mira-Coelho, Alda; Monteiro, Bessa; Monteiro, Joaquim; Hughes, Ieuan; Fontoura, Manuel

    2014-01-01

    The development of male internal and external genitalia in an XY fetus requires a complex interplay of many critical genes, enzymes, and cofactors. The enzyme 17β-hydroxysteroid-dehydrogenase type 3 (17βHSD3) is present almost exclusively in the testicles and converts Delta 4-androstenodione (Δ4) to testosterone. A deficiency in this enzyme is rare and is a frequently misdiagnosed autosomal recessive cause of 46,XY, disorder of sex development. The case report is of a 15-year-old adolescent, who was raised according to female gender. At puberty, the adolescent had a severe virilization and primary amenorrhea. The physical examination showed a male phenotype with micropenis and blind vagina. The Tanner stage was A3B1P4, nonpalpable gonads. The karyotype revealed 46,XY. The endocrinology study revealed: testosterone=2.38 ng/ml, Δ4>10.00 ng/ml, and low testosterone/Δ4 ratio=0.23. Magnetic resonance imaging of the abdominal-pelvic showed the presence of testicles in inguinal canal, seminal vesicle, prostate, micropenis, and absence of uterus and vagina. The genetic study confirmed the mutation p.Glu215Asp on HSD17B3 gene in homozygosity. The dilemma of sex reassignment was seriously considered when the diagnosis was made. During all procedures the patient was accompanied by a child psychiatrist/psychologist. The teenager desired to continue being a female, so gonadectomy was performed. Estrogen therapy and surgical procedure to change external genitalia was carried out. In this case, there was a severe virilization at puberty. It is speculated to be due to a partial activity of 17βHSD3 in the testicles and/or extratesticular ability to convert Δ4 to testosterone by 17βHSD5. Prenatal exposure of the brain to androgens has increasingly been put forward as a critical factor in gender identity development, but in this case the social factor was more important for the gender assignment. In this case, we highlight the late diagnosis, probably because the patient

  13. An unexpected emergency request for glucose-6-phosphate dehydrogenase testing in a 9-year-old African American boy.

    Science.gov (United States)

    Platteborze, Peter; Matos, Renee; Gidvany-Diaz, Vinod; Wilhelms, Kelly

    2015-01-01

    9-year-old African American male. Recently diagnosed with acute lymphoblastic leukemia (ALL) after investigation into a large anterior mediastinal mass causing airway compression. The day before the unexpected urgent glucose-6-phosphate dehydrogenase (G6PD) request, the patient was diagnosed with an aggressive form of leukemia and a significant tumor mass causing airway compression. A computed tomography (CT) scan indicated potential renal involvement. Based on this information and the size of the mass, the patient was referred for immediate chemotherapy. However, there was a concern that he could develop tumor lysis syndrome (TLS) during treatment. To avoid this condition, the pediatric intensive care unit (ICU) sought to pretreat the child with rasburicase, which led to the emergency G6PD request. Unknown. Largely unknown, but no apparent chronic diseases. Three weeks of progressively worsening lymphadenopathy, coughing, night sweats, mild hepatosplenomegaly, and breathing difficulty when supine. The patient arrived at the medical center for airway management and had a temperature of 36.1°C; blood pressure, 120/87 mmHg; pulse, 115 bpm; respiratory rate, 22 breaths per minute, with labored breathing but normal O(2) saturation while upright and awake, in room air. Table 1. Copyright© by the American Society for Clinical Pathology (ASCP).

  14. Characterization of wild-type human medium-chain acyl-CoA dehydrogenase (MCAD) and mutant enzymes present in MCAD-deficient patients by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Bross, P; Jensen, T G; Andresen, B S;

    1994-01-01

    Two-dimensional gel electrophoresis was used to study and compare wild-type medium-chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3) and mis-sense mutant enzyme found in patients with MCAD deficiency. By comparing the patterns for wild-type and mutant MCAD expressed in Escherichia coli or in eukar......Two-dimensional gel electrophoresis was used to study and compare wild-type medium-chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3) and mis-sense mutant enzyme found in patients with MCAD deficiency. By comparing the patterns for wild-type and mutant MCAD expressed in Escherichia coli...... of one aspartic acid residue per monomer. Comparison of pulse labeling and steady-state amounts of MCAD protein in overexpressing COS-7 cells confirms that K304E MCAD is synthesized and transported into mitochondria in amounts similar to the wild-type protein, but is degraded much more readily. For wild...

  15. Blue cures blue but be cautious

    Directory of Open Access Journals (Sweden)

    Pranav Sikka

    2011-01-01

    Full Text Available Methemoglobinemia is a disorder characterized by the presence of >1% methemoglobin (metHb in the blood. Spontaneous formation of methemoglobin is normally counteracted by protective enzyme systems, for example, nicotinamide adenine dinucleotide phosphate (NADPH methemoglobin reductase. Methemoglobinemia is treated with supplemental oxygen and methylene blue (1-2 mg/kg administered slow intravenously, which acts by providing an artificial electron acceptor for NADPH methemoglobin reductase. But known or suspected glucose-6-phosphate dehydrogenase (G6PD deficiency is a relative contraindication to the use of methylene blue because G6PD is the key enzyme in the formation of NADPH through pentose phosphate pathway and G6PD-deficient individuals generate insufficient NADPH to efficiently reduce methylene blue to leukomethylene blue, which is necessary for the activation of the NADPH-dependent methemoglobin reductase system. So, we should be careful using methylene blue in methemoglobinemia patient before G6PD levels.

  16. VLCAD deficiency

    DEFF Research Database (Denmark)

    Boneh, A; Andresen, B S; Gregersen, N

    2006-01-01

    We diagnosed six newborn babies with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) through newborn screening in three years in Victoria (prevalence rate: 1:31,500). We identified seven known and two new mutations in our patients (2/6 homozygotes; 4/6 compound heterozygotes). Blood...

  17. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang [Univ. of Illinois, Chicago, IL (United States)

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  18. A quantitative cytochemical study of glucose-6-phosphate dehydrogenase and delta 5-3 beta-hydroxysteroid dehydrogenase activity in the membrana granulosa of the ovulable type of follicle of the rat.

    Science.gov (United States)

    Zoller, L C; Weisz, J

    1979-08-01

    During the last four days of follicular development prior to ovulation, the activities of delta 5-3 beta-hydroxysteroid dehydrogenase (3 beta OHD) and glucose-6-phosphate dehydrogenase (G-6-PD) were quantified in cryostat sections of the rat ovary. The product of the enzyme reactions were measured using a scanning and integrating microdensitometer. The enzyme activity was measured in the peripheral region, the antral region and the cumulus of the membrana granulosa (MG) of these follicles on the morning of each of the four days of the estrous cycle. G-6-PD activity was measured in the presence and absence of an intermediate hydrogen acceptor, phenazine methosulphate, to provide a measure of the quantity of Type I and Type II Hydrogen (H) generated: Type I H is considered to be related to hydroxylating reactions such as those of steroids and Type II H to other general biosynthetic activities of cells. In all three regions of the MG of follicles of the ovulable type, 3 beta OHD activity was lowest in estrus and diestrus-1, increased on diestrus-2 and peaked in proestrus. In estrus and diestrus-1, the level of 3 beta OHD activity in the three regions was comparable. However, by diestrus-2, and even more conspicuously in proestrus, enzyme activity was significantly greater in the peripheral region than in the antral region or in the cumulus. During the same period, the level of enzyme activity remained comparable in the last two regions. Throughout the estrous cycle, both Type I and Type II H generation from G-6-PD was greatest in the peripheral region, less in the antral region and least in the cumulus. In the eripheral region, Type I H generation increased progressively after diestrus-1, to reach a maximum in prestrus. In the antral region, Type I H generation increased between diestrus-1 and diestrus-2 and then remained unchanged through proestrus. In the cumulus, Type I H generation remained at levels seen in estrus throughout the remainder of the cycle. Generation

  19. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency

    Directory of Open Access Journals (Sweden)

    Lioudmila Pliss

    2016-06-01

    Conclusion: The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  20. Development and implementation of a novel assay for L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) in cell lysates: L-2-HGDH deficiency in 15 patients with L-2-hydroxyglutaric aciduria.

    Science.gov (United States)

    Kranendijk, M; Salomons, G S; Gibson, K M; Aktuglu-Zeybek, C; Bekri, S; Christensen, E; Clarke, J; Hahn, A; Korman, S H; Mejaski-Bosnjak, V; Superti-Furga, A; Vianey-Saban, C; van der Knaap, M S; Jakobs, C; Struys, E A

    2009-12-01

    L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by mutations in the gene encoding L-2-hydroxyglutarate dehydrogenase. An assay to evaluate L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) activity in fibroblast, lymphoblast and/or lymphocyte lysates has hitherto been unavailable. We developed an L-2-HGDH enzyme assay in cell lysates based on the conversion of stable-isotope-labelled L-2-hydroxyglutarate to 2-ketoglutarate, which is converted into L-glutamate in situ. The formation of stable isotope labelled L-glutamate is therefore a direct measure of L-2-HGDH activity, and this product is detected by liquid chromatography-tandem mass spectrometry. A deficiency of L-2-HGDH activity was detected in cell lysates from 15 out of 15 L-2-HGA patients. Therefore, this specific assay confirmed the diagnosis unambiguously affirming the relationship between molecular and biochemical observations. Residual activity was detected in cells derived from one L-2-HGA patient. The L-2-HGDH assay will be valuable for examining in vitro riboflavin/FAD therapy to rescue L-2-HGDH activity.

  1. Detection and functional characterization of the novel missense mutation Y254D in type II 3{beta}-hydroxysteroid dehydrogenase (3{beta}HSD) gene of a female patient with nonsalt-losing 3{beta}HSD deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Rheaume, E.; Laflamme, N.; Labrie, F.; Simard, J. [Laval Univ., Quebec (Canada); Rosenfield, R.L. [Univ. of Chicago, IL (United States)

    1994-03-01

    Three {beta}-hydroxysteroid dehydrogenase/{Delta}{sup 5}-{Delta}{sup 4}-isomerase (3{beta}HSD) deficiency is a form of congenital adrenal hyperplasia characterized by severe impairment of steroid biosynthesis in the adrenals and gonads. To better understand the molecular basis of the phenotypic heterogeneity found in 3{beta}HSD deficiency, the authors analyzed the structure of type I and II 3{beta}HSD genes in a female patient with nonsalt-losing 3{beta}HSD deficiency diagnosed at puberty. They directly sequenced DNA fragments generated by polymerase chain reaction amplification of the four exons, the exon-intron boundaries, and the 5{prime}-flanking regions of each gene. No mutation was detected in the type I 3{beta}HSD gene, which is the predominant species expressed in the placenta and peripheral tissues. They detected a novel missense mutation, Y254D, in one allele of the patient`s type II 3{beta}HSD gene, which is the almost exclusive type expressed in the adrenals and gonads. The influence of the Y254D mutation on enzymatic activity was assessed by analyzing the recombinant mutant enzyme generated by site-directed mutagenesis after its transient expression in COS-1 monkey kidney cells. Recombinant mutant type II 3{beta}HSD enzyme carrying the Y254D substitution exhibits no detectable activity with C{sub 21} {Delta}{sup 5}-steroid pregnenolone or C{sub 19} {Delta}{sup 5}-steroid hydroepiandrosterone used as substrate. The absence of restriction fragment length polymorphism by Southern blot analysis and the finding that all of the amplified DNA fragments possess the expected length suggest the absence of deletions, duplications, or rearrangements in the other allele. A putative second mutation could be located farther than 1427 basepairs upstream of the initiation codon, thus potentially affecting the normal expression of this gene or within intronic regions, generating an alternative aberrant splicing site. 43 refs., 5 figs., 1 tab.

  2. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities.

    Science.gov (United States)

    Kuzu, Muslum; Aslan, Abdulselam; Ahmed, Ishtiaq; Comakli, Veysel; Demirdag, Ramazan; Uzun, Naim

    2016-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K(M) and V(max) values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K(i) value was calculated by using Cheng-Prusoff equation.

  3. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice.

    Science.gov (United States)

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-08-01

    To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1-3, respectively, and 18% in week 4-7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.

  4. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  5. Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition

    Directory of Open Access Journals (Sweden)

    Kinoshita Ayako

    2005-05-01

    Full Text Available Abstract Background Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed. This prototype model consists of three major metabolic pathways, namely, the glycolytic pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Like the previous model by Joshi and Palsson, it also models physical effects such as osmotic balance. This model was used here to reconstruct the pathology arising from hereditary glucose-6-phosphate dehydrogenase (G6PD deficiency, which is the most common deficiency in human RBC. Results Since the prototype model could not reproduce the state of G6PD deficiency, the model was modified to include a pathway for de novo glutathione synthesis and a glutathione disulfide (GSSG export system. The de novo glutathione (GSH synthesis pathway was found to compensate partially for the lowered GSH concentrations resulting from G6PD deficiency, with the result that GSSG could be maintained at a very low concentration due to the active export system. Conclusion The results of the simulation were consistent with the estimated situation of real G6PD-deficient cells. These results suggest that the de novo glutathione synthesis pathway and the GSSG export system play an important role in alleviating the consequences of G6PD deficiency.

  6. Fibroblast Fatty-Acid Oxidation Flux Assays Stratify Risk in Newborns with Presumptive-Positive Results on Screening for Very-Long Chain Acyl-CoA Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Simon E. Olpin

    2017-02-01

    Full Text Available Very-long chain acyl-CoA dehydrogenase deficiency (VLCADD is a clinically heterogeneous disorder with three major phenotypes: severe neonatal/infantile, milder childhood and late onset myopathic. VLCADD is genetically heterogeneous with numerous pathogenic mutations and variants of uncertain significance. VLCADD is included in many newborn screening programs but these suffer from high false positive rates, primarily due to positive screens in heterozygotes. Separating these and newborns with two low-risk “mild” variants from clinically at risk patients can be problematic, as clinical and biochemical markers are often unreliable, particularly in stable neonates. We have measured fibroblast fatty acid oxidation flux using [9,10-H3]myristic acid and [9,10-H3]oleic acid from 69 clinically presenting VLCADD patients including myopathic and infantile phenotypes and 13 positive newborn screened patients. We also measured fibroblast VLCADD enzyme activity by UV-HPLC detection of product in a sub-set of patients and compared these results to oleate FAO-flux. Fibroblast enzyme assay by UV-HPLC detection failed to clearly discriminate between some clinically presenting VLCADD patient cell lines and cell lines from some simple heterozygotes. FAO-flux clearly discriminated between clinically presenting VLCADD patients and the false positive screened patients. FAO-flux at 37 °C provides information as to the likely clinical phenotype but FAO-flux at 41 °C is the best discriminator for identifying clinically at risk patients.

  7. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    Science.gov (United States)

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.

  8. Aphrodisiac drug-induced hemolysis.

    Science.gov (United States)

    Stalnikowicz, Ruth; Amitai, Yona; Bentur, Yedidia

    2004-01-01

    Volatile alkyl nitrites have been used during the past decades for "recreational purposes," and for intensifying sexual experience. Their use has been associated with methemoglobinemia and hemolysis. We report three patients who presented over the past year with acute hemolysis after inhalation of butyl nitrite, two of them had glucose-6-phosphate dehydrogenase (G6PD) deficiency.

  9. Drug Resistance in Malaria. Investigation of Mechanisms and Patterns of Drug Resistance and Cross Resistance in Malaria.

    Science.gov (United States)

    1985-01-31

    deficiency (Brewer, Tarlov , and Kellermeyer, 1961) who are not in hemolytic crisis. Similarly, as there is evidence of a decrease in G6PD activity with...Invest. 59, 633. Armbrecht, H. J., Birnbaum, L. S., Zenser, T. V., and Davis, B. B. (1982). Changes in hepatic microsomal membrane fluidity with age...for pyruvate kinase deficiency, glucose 6-phosphate dehydrogenase deficiency, and glutathione reductase deficiency. Blood 28, 553. Brewer, G. J., Tarlov

  10. Normal rates of whole-body fat oxidation and gluconeogenesis after overnight fasting and moderate-intensity exercise in patients with medium-chain acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Huidekoper, Hidde H; Ackermans, Mariëtte T; Koopman, René; van Loon, Luc J C; Sauerwein, Hans P; Wijburg, Frits A

    2013-09-01

    Impairments in gluconeogenesis have been implicated in the pathophysiology of fasting hypoglycemia in medium-chain acyl-CoA dehydrogenase deficiency. However, whole body glucose and fat metabolism have never been studied in vivo. Stable isotope methodology was applied to compare fat and glucose metabolism between four adult patients with MCADD and four matched controls both at rest and during 1.5 h of moderate-intensity exercise. Additionally, intramyocellular lipid and glycogen content and intramyocellular acylcarnitines were assessed in muscle biopsies collected prior to and immediately after cessation of exercise. At rest, plasma FFA turnover was significantly higher in patients with MCADD, whereas the plasma FFA concentrations did not differ between patients and controls. Blood glucose kinetics did not differ between groups both at rest and during exercise. Palmitate and FFA turnover, total fat and carbohydrate oxidation rates, the use of muscle glycogen and muscle derived triglycerides during exercise did not differ between patients and controls. Plasma FFA oxidation rates were significantly lower in patients at the latter stages of exercise. Free carnitine levels in muscle were lower in patients, whereas no differences were detected in muscle acetylcarnitine levels. Whole-body or skeletal muscle glucose and fat metabolism were not impaired in adult patients with MCADD. This implies that MCADD is not rate limiting for energy production under the conditions studied. In addition, patients with MCADD have a higher FFA turnover rate after overnight fasting, which may stimulate ectopic lipid deposition and, as such, make them more susceptible for developing insulin resistance.

  11. Comparative analysis on detection of glucose-6-phosphatase deficiency by two different methods.%不同方法检测葡萄糖-6-磷酸酶缺乏的结果分析

    Institute of Scientific and Technical Information of China (English)

    孟宪玲; 范美珍; 杨明山

    2012-01-01

    Objective To compare and evaluate the results of applying two different methods in glu-cose-6-phosphatase (G6PD) deficiency detection. Methods 3 052 blood samples were detected by Spectrophotom-eter assay and Automatic Chemistry analyzer, respectively. Results Of the 3 052 blood samples, 226 cases (7.4%) were detected with G6PD deficiency by Spectrophotometer assay, including 152 males (7.9%) and 71 females (6.3%). By Automatic Chemistry Analyzer, 287 cases (9.4%) were detected with G6PD deficiency, including 182 males (9.5%) and 105 females (9.3%). Conclusion Automatic Chemistry Analyzer and Spectrophotometer assay can both detect G6PD deficiency well, but the former is found with a higher detection rate and easy operation, which is easier to be standardized.%目的 对G6PD缺乏的不同检测方法进行比较和评价.方法 以分光光度计比色法、全自动生化分析仪速率法分别对3 052例来我院婚检和产检人群进行G6PD检测.结果 3 052例受检者中,经分光光度计比色法共检出G6PD缺乏者226例,检出率为7.4%;其中男性152例,检出率为7.9%,女性71例,检出率为6.3%.全自动生化分析仪速率法检出287例,检出率为9.4%;其中男性182例,检出率为9.5%,女性105例,检出率为9.3%.结论 全自动生化分析仪速率法测定G6PD与分光光度计比色法均能很好地检测G6PD缺乏患者,前者的检出率更高,操作便捷快速,更易标准化.

  12. Development and implementation of a novel assay for L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) in cell lysates: L-2-HGDH deficiency in 15 patients with L-2-hydroxyglutaric aciduria

    DEFF Research Database (Denmark)

    Kranendijk, M; Salomons, G S; Gibson, K M

    2009-01-01

    L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by mutations in the gene encoding L-2-hydroxyglutarate dehydrogenase. An assay to evaluate L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) activity in fibroblast, lymphoblast and/or lymphoc...

  13. Lactate dehydrogenase test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  14. Genetics Home Reference: pyruvate dehydrogenase deficiency

    Science.gov (United States)

    ... brain structures , such as underdevelopment of the tissue connecting the left and right halves of the brain ( ... Criteria for Links Data Files & API Site Map Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...

  15. Genetics Home Reference: phosphoglycerate dehydrogenase deficiency

    Science.gov (United States)

    ... by an unusually small head size (microcephaly); impaired development of physical reactions, movements, and speech (psychomotor retardation); and recurrent seizures (epilepsy). Different types of ...

  16. Newborn screening for MCAD deficiency

    DEFF Research Database (Denmark)

    Horvath, Gabriella A; Davidson, A G F; Stockler-Ipsiroglu, Sylvia G

    2008-01-01

    BACKGROUND: Medium Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency is an autosomal recessive disorder of fatty acid oxidation, with potential fatal outcome. MCAD deficiency is diagnosed by acylcarnitine analysis on newborn screening blood spot cards by tandem mass spectrometry. Early diagnosis of ...

  17. MCAD deficiency in Denmark

    DEFF Research Database (Denmark)

    Andresen, Brage Storstein; Lund, Allan Meldgaard; Hougaard, David Michael

    2012-01-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of fatty acid oxidation. Many countries have introduced newborn screening for MCADD, because characteristic acylcarnitines can easily be identified in filter paper blood spot samples by tandem mass spectrometry (MS...

  18. Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells.

    Science.gov (United States)

    Sun, Y; Gu, X; Zhang, E; Park, M-A; Pereira, A M; Wang, S; Morrison, T; Li, C; Blenis, J; Gerbaudo, V H; Henske, E P; Yu, J J

    2014-05-15

    Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease that can lead to respiratory failure. LAM cells typically have inactivating TSC2 mutations, leading to mTORC1 activation. The gender specificity of LAM suggests that estradiol contributes to disease development, yet the underlying pathogenic mechanisms are not completely understood. Using metabolomic profiling, we identified an estradiol-enhanced pentose phosphate pathway signature in Tsc2-deficient cells. Estradiol increased levels of cellular NADPH, decreased levels of reactive oxygen species, and enhanced cell survival under oxidative stress. Mechanistically, estradiol reactivated Akt in TSC2-deficient cells in vitro and in vivo, induced membrane translocation of glucose transporters (GLUT1 or GLUT4), and increased glucose uptake in an Akt-dependent manner. (18)F-FDG-PET imaging demonstrated enhanced glucose uptake in xenograft tumors of Tsc2-deficient cells from estradiol-treated mice. Expression array study identified estradiol-enhanced transcript levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. Consistent with this, G6PD was abundant in xenograft tumors and lung metastatic lesions of Tsc2-deficient cells from estradiol-treated mice. Molecular depletion of G6PD attenuated estradiol-enhanced survival in vitro, and treatment with 6-aminonicotinamide, a competitive inhibitor of G6PD, reduced lung colonization of Tsc2-deficient cells. Collectively, these data indicate that estradiol promotes glucose metabolism in mTORC1 hyperactive cells through the pentose phosphate pathway via Akt reactivation and G6PD upregulation, thereby enhancing cell survival under oxidative stress. Interestingly, a strong correlation between estrogen exposure and G6PD was also found in breast cancer cells. Targeting the pentose phosphate pathway may have therapeutic benefit for LAM and possibly other hormonally dependent neoplasms.

  19. Electron transfer flavoprotein deficiency: Functional and molecular aspects

    DEFF Research Database (Denmark)

    Schiff, M; Froissart, R; Olsen, Rikke Katrine Jentoft

    2006-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a recessively inherited metabolic disorder that can be due to a deficiency of electron transfer flavoprotein (ETF) or its dehydrogenase (ETF-ubiquinone oxidoreductase). ETF is a mitochondrial matrix protein consisting of alpha- (30kDa) and beta...

  20. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity.

    Science.gov (United States)

    Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely; Nandakumar, Renu; Huang, Yuting; Madayiputhiya, Nandakumar; Stanton, Robert C; Dodds, Eric D; Powers, Robert; Franco, Rodrigo

    2014-09-19

    Parkinson's disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations in

  1. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.

    Science.gov (United States)

    Cecatto, Cristiane; Hickmann, Fernanda H; Rodrigues, Marília D N; Amaral, Alexandre U; Wajner, Moacir

    2015-12-01

    Mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies are fatty acid oxidation disorders biochemically characterized by tissue accumulation of long-chain fatty acids and derivatives, including the monocarboxylic long-chain 3-hydroxy fatty acids (LCHFAs) 3-hydroxytetradecanoic acid (3HTA) and 3-hydroxypalmitic acid (3HPA). Patients commonly present severe cardiomyopathy for which the pathogenesis is still poorly established. We investigated the effects of 3HTA and 3HPA, the major metabolites accumulating in these disorders, on important parameters of mitochondrial homeostasis in Ca(2+) -loaded heart mitochondria. 3HTA and 3HPA significantly decreased mitochondrial membrane potential, the matrix NAD(P)H pool and Ca(2+) retention capacity, and also induced mitochondrial swelling. These fatty acids also provoked a marked decrease of ATP production reflecting severe energy dysfunction. Furthermore, 3HTA-induced mitochondrial alterations were completely prevented by the classical mitochondrial permeability transition (mPT) inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca(2+) uptake blocker, indicating that LCHFAs induced Ca(2+)-dependent mPT pore opening. Milder effects only achieved at higher doses of LCHFAs were observed in brain mitochondria, implying a higher vulnerability of heart to these fatty acids. By contrast, 3HTA and docosanoic acids did not change mitochondrial homeostasis, indicating selective effects for monocarboxylic LCHFAs. The present data indicate that the major LCHFAs accumulating in mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies induce mPT pore opening, compromising Ca(2+) homeostasis and oxidative phosphorylation more intensely in the heart. It is proposed that these pathomechanisms may contribute at least in part to the severe cardiac alterations characteristic of patients affected by these diseases.

  2. Henna: a potential cause of oxidative hemolysis and neonatal hyperbilirubinemia.

    Science.gov (United States)

    Zinkham, W H; Oski, F A

    1996-05-01

    To evaluate the in vitro oxidation potential of lawsone (2-hydroxy-1,4 naphthoquinone). Lawsone is a chemical present in henna, the crushed leaves of which are used worldwide as a cosmetic agent to stain the hair, skin, and nails. Venous blood from glucose-6-phosphate dehydrogenase (G6PD)-normal and G6PD A- subjects were incubated with various amounts of lawsone for 2 hours at 37 degrees C. Reduced glutathione and methemoglobin (MHb) levels were measured before and after incubation. Final molar concentrations of lawsone in normal blood of 1.4, 2.8, 5.7, and 8.6 x 10-3 mol/L increased MHb percentages from 0.5% to 2.2%, 8.3%, 9.5% and 12.5%, respectively. In a C6PD A- blood, MHb percentages were 19.8%, 32.2%, 44.9%, and 53.9%. At a lawsone concentration of 2.8 x 10-3 mol/L, blood from 15 healthy adults formed MHb percentages of 7.4% +/- 3.3% (+/- 1 SD); in blood from 4 G6PD A- adults, percentages were 44.5%, 40.6%, 41.3%, and 42.8%. Simultaneous measurements of reduced glutathione revealed preincubation values of greater than 40 mg/100 mL of red cells in blood of healthy and G6PD A- subjects. Postincubation values were greater than 40 in blood of healthy subjects and less than 40 in blood of G6PD A- subjects. These in vitro observations indicate that lawsone is an agent capable of causing oxidative hemolysis. In regions of the world where there is a high incidence of G6PD deficiency and unexplained hyperbilirubinemia, oxidative hemolysis secondary to the cutaneous application of henna could be the initiating event.

  3. Studies on lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a firm basis was laid to start site directed

  4. Treatment with amino acids in serine deficiency disorders.

    Science.gov (United States)

    de Koning, T J

    2006-01-01

    Serine deficiency disorders are rare defects in the biosynthesis of the amino acid L-serine. At present two disorders have been reported: 3-phosphoglycerate dehydrogenase deficiency and 3-phosphoserine phosphatase deficiency. These enzyme defects lead to severe neurological symptoms such as congenital microcephaly and severe psychomotor retardation and in addition in patients with 3-phosphoglycerate dehydrogenase deficiency to intractable seizures. These symptoms respond to a variable degree to treatment with L-serine, sometimes combined with glycine. In this paper the current practice of amino acid treatment with L-serine and glycine in serine deficiency is reviewed.

  5. Avoiding Buffer Interference in ITC Experiments: A Case Study from the Analysis of Entropy-Driven Reactions of Glucose-6-Phosphate Dehydrogenase.

    Science.gov (United States)

    Bianconi, M Lucia

    2016-01-01

    Isothermal titration calorimetry (ITC) is a label-free technique that allows the direct determination of the heat absorbed or released in a reaction. Frequently used to determining binding parameters in biomolecular interactions, it is very useful to address enzyme-catalyzed reactions as both kinetic and thermodynamic parameters can be obtained. Since calorimetry measures the total heat effects of a reaction, it is important to consider the contribution of the heat of protonation/deprotonation that is possibly taking place. Here, we show a case study of the reaction catalyzed by the glucose-6-phosphate dehydrogenase (G6PD) from Leuconostoc mesenteroides. This enzyme is able to use either NAD(+) or NADP(+) as a cofactor. The reactions were done in five buffers of different enthalpy of protonation. Depending on the buffer used, the observed calorimetric enthalpy (ΔH(cal)) of the reaction varied from -22.93 kJ/mol (Tris) to 19.37 kJ/mol (phosphate) for the NADP(+)-linked reaction, and -11.67 kJ/mol (Tris) to 7.32 kcal/mol or 30.63 kJ/mol (phosphate) for the NAD(+) reaction. We will use this system as an example of how to extract proton-independent reaction enthalpies from kinetic data to ensure that the reported accurately represent the intrinsic heat of reaction.

  6. Neonatal lactic acidosis, complex I/IV deficiency, and fetal cerebral disruption

    NARCIS (Netherlands)

    van Straaten, HLM; van Tintelen, JP; Trijbels, JMF; van den Heuvel, LP; Troost, D; Rozemuller, JM; Duran, M; de Vries, LS; Schuelke, M; Barth, PG

    2005-01-01

    Cerebral developmental abnormalities occur in various inborn errors of metabolism including peroxisomal deficiencies, pyruvate dehydrogenase complex deficiency and others. Associations with abnormalities of the respiratory chain are rare. Here we report male and female siblings with microcephaly, a

  7. Roles of glucose-6-phosphate dehydrogenase in obesity induced by high fat diet%葡萄糖-6-磷酸脱氢酶在高脂饲料诱导肥胖中的作用

    Institute of Scientific and Technical Information of China (English)

    吴春艳; 王芳; 芦建慧; 赵艳

    2013-01-01

    Objective To explore the roles of glucose-6-phosphate dehydrogenase (G6PD) and its downstream NADPH oxidase (NOX) in obesity induced by high fat diet.Methods 40 male Wistar rats were randomly divided into a high fat diet group (30 rats)and a control group (10 rats) fed with rat chow.After six weeks,rats fed with high fat diet were screened out obesity-prone group and obesity-resistant group based on the gain of body weight.obesity-prone group and obesity-resistant group rats continued to be fed with high fat diet.Basic diet group served as normal control.All rats were killed after 13 weeks.Biochemical markers and G6PD activity were determined in adipose tissues.The expression of G6PD and the NOX subunit of P22 gene were detected using RT-PCR.Results Blood glucose levels were higher in obesity-prone group rats than those in control rats (P < 0.05).Triglyceride levels and body fat contents were significantly higher in OP rats than that in obesity-resistant group rats(P < 0.05).Insulin,insulin resistant index,body weight were significantly higher in obesity-prone group rats than that in control and obesity-resistant group rats (P < 0.05).There was no significant difference between the control and obesity-resistant group rats.The activity and expression of G6PD in the obesity-prone group rats were lower than those in the control and obesity-resistant group rats(P < 0.05).The expression of P22 subunit in the obesity-prone group rats was significantly higher than that in the control and obesity-resistant group rats (P < 0.05),but there was no significant difference between the control and OR rats.Conclusion G6PD and its downsream NAPDH oxidase may play an important role in the pathogenesis and development of obesity.%目的 探讨葡萄糖-6-磷酸脱氢酶(G6PD)及其下游NADPH氧化酶在高脂饲料诱导肥胖中的作用.方法 40只雄性Wistar大鼠随机分为高脂饲料组(30只)和基础饲料组(10只),6周后,高脂饲料组依据体

  8. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance l

  9. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance

  10. New insight into the molecular basis of 3beta-hydroxysteroid dehydrogenase deficiency: identification of eight mutations in the HSD3B2 gene eleven patients from seven new families and comparison of the functional properties of twenty-five mutant enzymes.

    Science.gov (United States)

    Moisan, A M; Ricketts, M L; Tardy, V; Desrochers, M; Mébarki, F; Chaussain, J L; Cabrol, S; Raux-Demay, M C; Forest, M G; Sippell, W G; Peter, M; Morel, Y; Simard, J

    1999-12-01

    Classical 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3betaHSD) deficiency is a form of congenital adrenal hyperplasia that impairs steroidogenesis in both the adrenals and gonads resulting from mutations in the HSD3B2 gene and causing various degrees of salt-wasting in both sexes and incomplete masculinization of the external genitalia in genetic males. To identify the molecular lesion(s) in the HSD3B2 gene in the 11 patients from the seven new families suffering from classical 3betaHSD deficiency, the complete nucleotide sequence of the whole coding region and exon-intron splicing boundaries of this gene was determined by direct sequencing. Five of these families were referred to Morel's molecular diagnostics laboratory in France, whereas the two other families were investigated by Peter's group in Germany. Functional characterization studies were performed by Simard's group in Canada. Following transient expression in 293 cells of each of the mutant recombinant proteins generated by site-directed mutagenesis, the effect of the 25 mutations on enzyme activity was assessed by incubating intact cells in culture with 10 nM [14C]-DHEA as substrate. The stability of the mutant proteins has been investigated using a combination of Northern and Western blot analyses, as well as an in vitro transcription/translation assay using rabbit reticulocyte lysates. The present report describes the identification of 8 mutations, in seven new families with individuals suffering from classical 3betaHSD deficiency, thus increasing the number of known HSD3B2 mutations involved in this autosomal recessive disorder to 31 (1 splicing, 1 in-frame deletion, 3 nonsense, 4 frameshift and 22 missense mutations). In addition to the mutations reported here in these new families, we have also investigated for the first time the functional significance of previously reported missense mutations and or sequence variants namely, A82T, A167V, L173R, L205P, S213G and K216E, P222H, T259

  11. 15 Hypoxyprostaglandin dehydrogenase. A review

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1976-01-01

    A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references.......A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references....

  12. Study on the Activity of Succinate Dehydrogenase in Hepatic Cells of Rat Models of Excess Heat Syndrome and Deficiency Heat Syndrome%实热证、虚热证模型大鼠肝细胞琥珀酸脱氢酶活性研究

    Institute of Scientific and Technical Information of China (English)

    陈群; 刘亚梅; 徐志伟; 王斌

    2000-01-01

    观察实热证、虚热证大鼠模型组与治疗组肝细胞线粒体琥珀酸脱氢酶(SDH)活性的变化。用紫外分光光度计测定肝细胞线粒体琥珀酸脱氢酶活性。结果表明:热证时(实热、虚热)SDH活性升高,经清热解毒、滋阴清热中药治疗后,SDH活性有所降低。说明:实热证、虚热证与机体能量代谢呈正相关,中药治疗有利于肝细胞线粒体呼吸亢进的恢复。%Rats were divided into control group, excess heat syndrome (EHS) group, and deficiency heat syndrome(DHS) group, and ultra-violet spectrophotometer was used to determine the activity of succinate dehydrogenase (SDH) in the hepatic cell mitochondria in the rots of these groups. The results showed that SDH increased in both EHS group and DHS group, but it decreased in the two groups after traditional Chinese drugs (for clearing away heat and dispelling toxic substances, and for nourishing yin and clearing away heat) were given. The results imply that there is a positive correlation between these two syndromes (EHS and DHS) and the energy metabolism in the body; and the treatment with traditional Chinese drugs benefits the restoration of mitochondrial hyperactive respiration of hepatic cells to the normal level.

  13. Safety of a single low-dose of primaquine in addition to standard artemether-lumefantrine regimen for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania.

    Science.gov (United States)

    Mwaiswelo, Richard; Ngasala, Billy E; Jovel, Irina; Gosling, Roland; Premji, Zul; Poirot, Eugenie; Mmbando, Bruno P; Björkman, Anders; Mårtensson, Andreas

    2016-06-10

    This study assessed the safety of the new World Health Organization (WHO) recommendation of adding a single low-dose of primaquine (PQ) to standard artemisinin-based combination therapy (ACT), regardless of individual glucose-6-phosphate dehydrogenase (G6PD) status, for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania. Men and non-pregnant, non-lactating women aged ≥1 year with uncomplicated P. falciparum malaria were enrolled and randomized to either standard artemether-lumefantrine (AL) regimen alone or with a 0.25 mg/kg single-dose of PQ. PQ was administered concomitantly with the first AL dose. All drug doses were supervised. Safety was evaluated between days 0 and 28. G6PD status was assessed using rapid test (CareStart™) and molecular genotyping. The primary endpoint was mean percentage relative reduction in haemoglobin (Hb) concentration (g/dL) between days 0 and 7 by genotypic G6PD status and treatment arm. Overall, 220 patients, 110 per treatment arm, were enrolled, of whom 33/217 (15.2 %) were phenotypically G6PD deficient, whereas 15/110 (13.6 %) were genotypically hemizygous males, 5/110 (4.5 %) homozygous females and 22/110 (20 %) heterozygous females. Compared to genotypically G6PD wild-type/normal [6.8, 95 % confidence interval (CI) 4.67-8.96], only heterozygous patients in AL arm had significant reduction in day-7 mean relative Hb concentration (14.3, 95 % CI 7.02-21.55, p=0.045), however, none fulfilled the pre-defined haemolytic threshold value of ≥25 % Hb reduction. After adjustment for baseline parasitaemia, Hb, age and sex the mean relative Hb reduction was not statistically significant in both heterozygous and hemizygous/homozygous patients in both arms. A majority of the adverse events (AEs) were mild and unrelated to the study drugs. However, six (4.4 %) episodes, three per treatment arm, of acute haemolytic anaemia occurred between days 0 and 7. Three occurred in phenotypically G6PD deficient

  14. Lactate dehydrogenase-elevating virus

    Science.gov (United States)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  15. Iodine Deficiency

    Science.gov (United States)

    ... 2017 By ATA | Featured , Iodine Deficiency , News Releases , Potassium Iodide (KI) | No Comments IDD NEWSLETTER – February 2017 VOLUME ... 2016 By ATA | Featured , Iodine Deficiency , News Releases , Potassium Iodide (KI) | No Comments IDD NEWSLETTER – November 2015 (PDF ...

  16. Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Exil, VJ; Gardner, CD; Rottman, JN; Sims, H; Bartelds, B; Khuchua, Z; Sindhal, R; Ni, GM; Strauss, AW

    2006-01-01

    Mitochondrial very-long-chain acyl-CoA dehydrogenase ( VLCAD) deficiency is associated with severe hypoglycemia, cardiac dysfunction, and sudden death in neonates and children. Sudden death is common, but the underlying mechanisms are not fully understood. We report on a mouse model of VLCAD deficie

  17. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... be recovering from viral infections such as chicken pox or flu. Most cases of Reye syndrome are ... unknown; it has been reported in only a small number of people worldwide. Related Information What information ...

  18. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

    Science.gov (United States)

    Starkov, Anatoly A; Fiskum, Gary; Chinopoulos, Christos; Lorenzo, Beverly J; Browne, Susan E; Patel, Mulchand S; Beal, M Flint

    2004-09-08

    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.

  19. Treatment of Nonclassic 11-Hydroxylase Deficiency with Ashwagandha Root

    Directory of Open Access Journals (Sweden)

    Daniel Powell

    2017-01-01

    Full Text Available An elderly woman presented with acne and male pattern alopecia, which upon diagnostic evaluation was found to be due to nonclassic 11-hydroxylase deficiency. We previously reported that Ashwagandha root ameliorates nonclassic 3-β-ol dehydrogenase and aldosterone synthase deficiencies. This is the first report of its use being associated with amelioration of nonclassic 11-hydroxylase deficiency, where its apparent effects appear to be dose-related.

  20. Safe and unsafe duration of fasting for children with MCAD deficiency

    NARCIS (Netherlands)

    Derks, Terry G J; van Spronsen, Francjan J; Rake, Jan Peter; van der Hilst, Christian S; Span, Mark M; Smit, G Peter A

    2007-01-01

    OBJECTIVE: To study the safe and unsafe duration of fasting in children with medium chain acyl-Coenzyme A dehydrogenase (MCAD) deficiency, the literature and the database on Dutch MCAD-deficient patients were searched for data on fasting studies in patients with MCAD deficiency. MATERIALS AND METHOD

  1. Safe and unsafe duration of fasting for children with MCAD deficiency

    NARCIS (Netherlands)

    Derks, Terry G J; van Spronsen, Francjan J; Rake, Jan Peter; van der Hilst, Christian S; Span, Mark M; Smit, G Peter A

    OBJECTIVE: To study the safe and unsafe duration of fasting in children with medium chain acyl-Coenzyme A dehydrogenase (MCAD) deficiency, the literature and the database on Dutch MCAD-deficient patients were searched for data on fasting studies in patients with MCAD deficiency. MATERIALS AND

  2. Aldehyde dehydrogenase polymorphism in North American, South American, and Mexican Indian populations.

    Science.gov (United States)

    Goedde, H W; Agarwal, D P; Harada, S; Rothhammer, F; Whittaker, J O; Lisker, R

    1986-01-01

    While about 40% of the South American Indian populations (Atacameños, Mapuche, Shuara) were found to be deficient in aldehyde dehydrogenase isozyme I (ALDH2 or E2), preliminary investigations showed very low incidence of isozyme deficiency among North American natives (Sioux, Navajo) and Mexican Indians (mestizo). Possible implications of such trait differences on cross-cultural behavioral response to alcohol drinking are discussed. PMID:3953578

  3. Bandagem ajustável do tronco pulmonar: IX: atividade da G6PD do miocárdio de cabras adultas submetido ao treinamento ventricular

    Directory of Open Access Journals (Sweden)

    Renato Samy Assad

    2013-12-01

    Full Text Available OBJETIVO: O aumento da atividade miocárdica da Glicose 6-Fosfato Desidrogenase tem sido demonstrado na insuficiência cardíaca. Este estudo avalia a atividade miocárdica da Glicose 6-Fosfato Desidrogenase no treinamento do ventrículo subpulmonar de cabras adultas. MÉTODOS: Foram utilizadas 18 cabras adultas, divididas em três grupos: convencional (bandagem fixa, sham e intermitente (bandagem ajustável; 12 horas diárias de sobrecarga. A sobrecarga sistólica (70% da pressão sistêmica foi mantida durante quatro semanas. As avaliações hemodinâmica e ecocardiográfica foram realizadas durante todo o estudo. Depois de cumprido o protocolo, os animais foram mortos para avaliação morfológica e da atividade da Glicose 6-Fosfato Desidrogenase dos ventrículos. RESULTADOS: Apesar de haver sobrecarga sistólica proporcionalmente menor no ventrículo subpulmonar do grupo intermitente (P=0,001, ambos os grupos de estudo apresentaram aumento da massa muscular de magnitude similar. Os grupos intermitente e convencional apresentaram aumento da massa de 55,7% e 36,7% (P<0,05, respectivamente, em comparação ao grupo sham. O conteúdo de água do miocárdio não variou entre os grupos estudados (P=0,27. O ecocardiograma demonstrou maior aumento (37,2% na espessura do ventrículo subpulmonar do grupo intermitente, em relação aos grupos sham e convencional (P<0,05. Foi observada maior atividade da Glicose 6-Fosfato Desidrogenase na hipertrofia miocárdica do ventrículo subpulmonar do grupo convencional, comparada aos grupos sham e intermitente (P=0,05. CONCLUSÃO: Ambos os grupos de treinamento ventricular desenvolveram hipertrofia ventricular, a despeito do menor tempo de sobrecarga sistólica no grupo intermitente. A maior atividade de Glicose 6-Fosfato Desidrogenase observada no grupo convencional pode refletir um desequilíbrio redox, com maior produção de fosfato de dinucleotídeo de nicotinamida e adenina e glutationa reduzida, um mecanismo importante da fisiopatologia da insuficiência cardíaca.

  4. Disaccharidase deficiency.

    Science.gov (United States)

    Bayless, T M; Christopher, N L

    1969-02-01

    This review of the literature and current knowledge concerning a nutritional disorder of disaccharidase deficiency discusses the following topics: 1) a description of disorders of disaccharide digestion; 2) some historical perspective on the laboratory and bedside advances in the past 10 years that have helped define a group of these digestive disorders; 3) a classification of conditions causing disaccharide intolerance; and 4) a discussion of some of the specific clinical syndromes emphasizing nutritional consequences of these syndromes. The syndromes described include congenital lactase deficiency, acquired lactase deficiency in teenagers and adults, acquired generalized disaccharidase deficiency secondary to diffuse mucosal damage, acquired lactose intolerance secondary to alterations in the intestinal transit, sucrase-isomaltase deficiencies, and other disease associations connected with lactase deficiency such as colitis.

  5. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a

  6. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a s

  7. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene

    DEFF Research Database (Denmark)

    Tanaka, K; Yokota, I; Coates, P M

    1992-01-01

    Medium chain acyl-CoA dehydrogenase (MCAD) catalyzes the first reaction of the beta-oxidation cycle for 4-10-carbon fatty acids. MCAD deficiency is one of the most frequent inborn metabolic disorders in populations of northwestern European origin. In the compilation of data from a worldwide study...

  8. Prolidase deficiency

    Directory of Open Access Journals (Sweden)

    Masood Qazi

    2007-01-01

    Full Text Available Prolidase deficiency is a rare inborn disorder of collagen metabolism characterized by chronic recurrent skin ulceration. A seven-year-old girl and her younger sibling with clinical features and laboratory criteria fulfilling the diagnosis of prolidase deficiency are presented in view of rarity of the condition.

  9. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected. Howeve

  10. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected. Howeve

  11. The burden and consequences of inherited blood disorders among young children in western Kenya.

    Science.gov (United States)

    Suchdev, Parminder S; Ruth, Laird J; Earley, Marie; Macharia, Alex; Williams, Thomas N

    2014-01-01

    Although inherited blood disorders are common among children in many parts of Africa, limited data are available about their prevalence or contribution to childhood anaemia. We conducted a cross-sectional survey of 858 children aged 6-35 months who were randomly selected from 60 villages in western Kenya. Haemoglobin (Hb), ferritin, malaria, C-reactive protein (CRP) and retinol binding protein (RBP) were measured from capillary blood. Using polymerase chain reaction (PCR), Hb type, -3.7 kb alpha-globin chain deletion, glucose-6-phosphate dehydrogenase (G6PD) genotype and haptoglobin (Hp) genotype were determined. More than 2 out of 3 children had at least one measured blood disorder. Sickle cell trait (HbAS) and disease (HbSS) were found in 17.1% and 1.6% of children, respectively; 38.5% were heterozygotes and 9.6% were homozygotes for α(+) -thalassaemia. The Hp 2-2 genotype was found in 20.4% of children, whereas 8.2% of males and 6.8% of children overall had G6PD deficiency. There were no significant differences in the distribution of malaria by the measured blood disorders, except among males with G6PD deficiency who had a lower prevalence of clinical malaria than males of normal G6PD genotype (P = 0.005). After excluding children with malaria parasitaemia, inflammation (CRP > 5 mg L(-1) ), iron deficiency (ferritin children who were either heterozygotes (53.5%) or homozygotes (67.7%, P = 0.03). Inherited blood disorders are common among pre-school children in western Kenya and are important contributors to anaemia. © 2012 JohnWiley & Sons Ltd.

  12. Iodine Deficiency

    Science.gov (United States)

    ... 0 Iodine Daily Serving now recommended in Multivitamin/Mineral Supplements for Pregnant and Lactating Women By ATA | 2015 News Releases , Iodine Deficiency , News Releases , Thyroid Disease and Pregnancy | No Comments Falls Church, February 10, 2015 —The ...

  13. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  14. Deficiencia de glucosa-6-fosfato deshidrogenasa en un paciente con síndrome de Down

    Directory of Open Access Journals (Sweden)

    Francisco R. Cammarata Scalisi

    2012-07-01

    Full Text Available El síndrome de Down, es una alteración genética que ocurre cuando un individuo exhibe todo o una parte específica adicional del cromosoma 21 y es la entidad más frecuentemente asociada a retardo mental. La deficiencia de glucosa-6-fosfato deshidrogenasa, es el defecto enzimático más común en humanos y presenta patrón de herencia ligado al cromosoma X recesivo. Se debe a la mutación del gen G6PD, el cual causa diversos fenotipos bioquímicos y clínicos. Reportamos un caso de lactante menor masculino, evaluado en la Unidad de Genética Médica de la Universidad de Los Andes, con el diagnóstico de deficiencia de glucosa-6-fosfato deshidrogenasa con doble mutación A376G y G202A y síndrome de Down con estudio citogenético 47, XY, +21. Palabras clave:Síndrome de Down; deficiencia de glucosa-6-fosfato deshidrogenasa; G6PD; A37G6; G202A. Glucose-6-phosphate dehydrogenase deficiency in a patient with Down syndrome Abstract Down syndrome, is a genetic disorder that occurring when an individual exhibits all or part of an extra copy of chromosome 21 and the most common entity associated mental retardation. Glucose-6-phosphate dehydrogenase deficiency, is the most common human enzyme defect and has a X-linked recessive inheritance. Due to mutations in the G6PD gene, which cause many biochemical and clinical phenotypes. We reported a case of child male, evaluated in the Unit of Medical Genetics of the University of The Andes, with diagnosis of glucose-6-phosphate dehydrogenase deficiency with double mutation A376G and G202A and Down syndrome with cytogenetic study 47, XY, + 21.

  15. [Dihydropirymidine dehydrogenase (DPD)--a toxicity marker for 5-fluorouracil?].

    Science.gov (United States)

    Jedrzychowska, Adriana; Dołegowska, Barbara

    2013-01-01

    In proceedings relating to patients suffering from cancer, an important step is predicting response and toxicity to treatment. Depending on the type of cancer, physicians use the generally accepted schema of treatment, for example pharmacotherapy. 5-fluorouracil (5-FU) is the most widely used anticancer drug in chemotherapy for colon, breast, and head and neck cancer. Patients with dihydropyrimidine dehydrogenase (DPD) deficiency, which is responsible for the metabolism of 5-FU, may experience severe side effects during treatment, and even death. In many publications the need for determining the activity of DPD is discussed, which would protect the patient from the numerous side effects of treatment. However, in practice these assays are not done routinely, despite the high demand. In most cases, a genetic test is used to detect changes in the gene encoding DPD (such as in the USA), but because of the large number of mutations the genetic test cannot be used as a screening test. Dihydropyrimidine dehydrogenase activity has been shown to have high variability among the general population, with an estimated proportion of at least 3-5% of individuals showing low or deficient DPD activity. In this publication we presents data about average dihydropirymidine dehydrogenase activity in various populations of the world (e.g. Japan, Ghana, Great Britain) including gender differences and collected information about the possibility of determination of DPD activity in different countries. Detection of reduced DPD activity in patients with planned chemotherapy will allow a lower dosage of 5-FU or alternative treatment without exposing them to adverse reactions.

  16. TAp73 enhances the pentose phosphate pathway and supports cell proliferation.

    Science.gov (United States)

    Du, Wenjing; Jiang, Peng; Mancuso, Anthony; Stonestrom, Aaron; Brewer, Michael D; Minn, Andy J; Mak, Tak W; Wu, Mian; Yang, Xiaolu

    2013-08-01

    TAp73 is a structural homologue of the pre-eminent tumour suppressor p53. However, unlike p53, TAp73 is rarely mutated, and instead is frequently overexpressed in human tumours. It remains unclear whether TAp73 affords an advantage to tumour cells and if so, what the underlying mechanism is. Here we show that TAp73 supports the proliferation of human and mouse tumour cells. TAp73 activates the expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). By stimulating G6PD, TAp73 increases PPP flux and directs glucose to the production of NADPH and ribose, for the synthesis of macromolecules and detoxification of reactive oxygen species (ROS). The growth defect of TAp73-deficient cells can be rescued by either enforced G6PD expression or the presence of nucleosides plus an ROS scavenger. These findings establish a critical role for TAp73 in regulating metabolism, and connect TAp73 and the PPP to oncogenic cell growth.

  17. Cobalamin deficiency.

    Science.gov (United States)

    Herrmann, Wolfgang; Obeid, Rima

    2012-01-01

    Cobalamin (Cbl, vitamin B12) consists of a corrinoid structure with cobalt in the centre of the molecule. Neither humans nor animals are able to synthesize this vitamin. Foods of animal source are the only natural source of cobalamin in human diet. There are only two enzymatic reactions in mammalian cells that require cobalamin as cofactor. Methylcobolamin is a cofactor for methionine synthase. The enzyme methylmalonyl-CoA-mutase requires adenosylcobalamin as a cofactor. Therefore, serum concentrations of homocysteine (tHcy) and methylmalonic acid (MMA) will increase in cobalamin deficiency. The cobalamin absorption from diet is a complex process that involves different proteins: haptocorrin, intrinsic factor and transcobalamin (TC). Cobalamin that is bound to TC is called holotranscobalamin (holoTC) which is the metabolically active vitamin B12 fraction. HoloTC consists 6 and 20% of total cobalamin whereas 80% of total serum cobalamin is bound to another binding protein, haptocorrin. Cobalamin deficiency is common worldwide. Cobalamin malabsorption is common in elderly subjects which might explain low vitamin status. Subjects who ingest low amount of cobalamin like vegetarians develop vitamin deficiency. No single parameter can be used to diagnose cobalamin deficiency. Total serum cobalamin is neither sensitive nor it is specific for cobalamin deficiency. This might explain why many deficient subjects would be overlooked by utilizing total cobalamin as status marker. Concentration of holotranscobalamin (holoTC) in serum is an earlier marker that becomes decreased before total serum cobalamin. Concentrations of MMA and tHcy increase in blood of cobalamin deficient subjects. Despite limitations of these markers in patients with renal dysfunction, concentrations of MMA and tHcy are useful functional markers of cobalamin status. The combined use of holoTC and MMA assays may better indicate cobalamin status than either of them. Because Cbl deficiency is a risk factor

  18. Direct Enzymatic Assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in Colonies of Hansenula polymorpha

    OpenAIRE

    Eggeling, L; Sahm, H

    1980-01-01

    A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.

  19. Measurement of short-chain acyl-CoA dehydrogenase (SCAD) in cultured skin fibroblasts with hexanoyl-CoA as a competitive inhibitor to eliminate the contribution of medium-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Niezen-Koning, K E; Wanders, R J; Nagel, G T; Sewell, A C; Heijmans, Hugo

    1994-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) deficiency has so far been reported in only very few patients. This is due, in part, to the problems involved in measuring the activity of SCAD unequivocally. The main reason for this difficulty is that butyryl-CoA, the substrate preferably used for SCAD act

  20. Transient multiple acyl-CoA dehydrogenation deficiency in a newborn female caused by maternal riboflavin deficiency

    DEFF Research Database (Denmark)

    Chiong, M A; Sim, K G; Carpenter, K

    2007-01-01

    A newborn female presented on the first day of life with clinical and biochemical findings consistent with multiple acyl-CoA dehydrogenase deficiency (MADD). Riboflavin supplementation corrected the biochemical abnormalities 24 h after commencing the vitamin. In vitro acylcarnitine profiling...

  1. DOWNREGULATION OF CINNAMYL-ALCOHOL DEHYDROGENASE IN SWITCHGRASS BY RNA SILENCING RESULTS IN ENHANCED GLUCOSE RELEASE AFTER CELLULASE TREATMENT

    Science.gov (United States)

    Cinnamyl alcohol dehydrogenase (CAD), catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switch...

  2. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  3. New insight into the molecular basis of 3beta-hydroxysteroid dehydrogenase deficiency: identification of eight mutations in the HSD3B2 gene eleven patients from seven new families and comparison of the functional properties of twenty-five mutant enzymes

    National Research Council Canada - National Science Library

    Moisan, A M; Ricketts, M L; Tardy, V; Desrochers, M; Mébarki, F; Chaussain, J L; Cabrol, S; Raux-Demay, M C; Forest, M G; Sippell, W G; Peter, M; Morel, Y; Simard, J

    1999-01-01

    .... To identify the molecular lesion(s) in the HSD3B2 gene in the 11 patients from the seven new families suffering from classical 3betaHSD deficiency, the complete nucleotide sequence of the whole coding region and exon-intron splicing...

  4. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  5. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase...

  6. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  7. Isocitrate dehydrogenase mutations in gliomas.

    Science.gov (United States)

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy.

  8. Quantitative proteomics suggests metabolic reprogramming during ETHE1 deficiency

    DEFF Research Database (Denmark)

    Sahebekhtiari, Navid; Thomsen, Michelle M.; Sloth, Jens Jørgen

    2016-01-01

    Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences...... of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency...... and redox active proteins, as reflected by down-regulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through up...

  9. The difference between observed and expected prevalence of MCAD deficiency in The Netherlands : a genetic epidemiological study

    NARCIS (Netherlands)

    Derks, Terry G J; Duran, Marinus; Waterham, Hans R; Reijngoud, Dirk-Jan; Ten Kate, Leo P; Smit, G Peter A

    2005-01-01

    Medium chain acyl coenzyme A dehydrogenase ( MCAD) deficiency is assumed to be the most common inherited disorder of mitochondrial fatty acid oxidation. Few reports mention the difference between the expected and observed prevalence of MCAD deficiency on the basis of the carrier frequency in the pop

  10. The difference between observed and expected prevalence of MCAD deficiency in The Netherlands: a genetic epidemiological study

    NARCIS (Netherlands)

    Derks, T.G.J.; Duran, M.; Waterham, H.R.; Reijngoud, D.J.; Kate, L.P. ten; Smit, G.P.A.

    2005-01-01

    Medium chain acyl coenzyme A dehydrogenase (MCAD) deficiency is assumed to be the most common inherited disorder of mitochondrial fatty acid oxidation. Few reports mention the difference between the expected and observed prevalence of MCAD deficiency on the basis of the carrier frequency in the popu

  11. Vitamin Deficiency Anemia

    Science.gov (United States)

    ... are unique to specific vitamin deficiencies. Folate-deficiency anemia risk factors include: Undergoing hemodialysis for kidney failure. ... the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... at highest risk for iron-deficiency anemia. Outlook Doctors usually can successfully treat iron-deficiency anemia. Treatment ... poor skin tone, dizziness, and depression. After her doctor diagnosed her with iron-deficiency anemia, Susan got ...

  13. A novel homozygous mutation p.E25X in the HSD3B2 gene causing salt wasting 3β-hydroxysteroid dehydrogenases deficiency in a Chinese pubertal girl: a delayed diagnosis until recurrent ovary cysts%HSD3B2基因p.E25X新纯合突变致失盐型3β-羟类固醇脱氢酶缺乏症一例及文献复习

    Institute of Scientific and Technical Information of China (English)

    黄永兰; 郑纪鹏; 谢婷; 肖青; 卢少媚; 李秀珍; 程静; 陈励和; 刘丽

    2014-01-01

    Objective 3 β-hydroxysteroid dehydrogenase deficiency (3βHSD),a rare form of congenital adrenal hyperplasia (CAH) resulted from mutations in the HSD3B2 gene that impair steroidogenesis in both adrenals and gonads.We report clinical features and the results of HSD3B2 gene analysis of a Chinese pubertal girl with salt wasting 3βHSD deficiency.Method We retrospectively reviewed clinical presentations and steroid profiles of the patient diagnosed in Guangzhou Women and Children's Medical Center in 2013.PCR and direct sequencing were used to identify any mutation in the HSD3B2 gene.Result A 13-year-old girl was diagnosed as CAH after birth because of salt-wasting with mild clitorimegaly and then was treated with glucocorticoid replacement.Breast and pubic hair development were normal,and menarche occurred at 12 yr,followed by menstrual bleeding about every 45 days.In the last one year laparoscopic operation and ovariocentesis were performed one after another for recurrent ovary cysts.Under corticoid acetate therapy,ACTH 17.10 pmol/L (normal 0-10.12),testosterone 1.31 nmol/L (normal < 0.7),dehydroepiandrosterone sulfate 13.30 μmol/L (normal 0.95-11.67),cortisol 720 nmol/L (normal 130-772.8),androstenedione,17-hydroxyprogesterone and progesterone were normal.Estradiol 461 pmol/L,follicle-stimulating hormone 3.04 IU/L,luteinizing hormone 8.52 IU/L in follicular phase.A pelvic ultrasound showed lateral ovaries cysts (58 mm × 50 mm × 35 mm) and a midcycle-type endometrium.A novel nonsense mutation c.73G > T (p.E25X) was identified in HSD3B2 gene.The girl was homozygous and her mother was heterozygous,while her father was not identified with this mutation.Conclusion A classic 3βHSD deficiency is characterized by salt wasting and mild virilization in female.Ovary cysts may be the one of features of gonad phenotype indicating ovary 3βHSD deficiency.A novel homozygous mutation c.73G > T(p.E25X) was related to the classical phenotype.%目的 总结一例失盐型3

  14. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice

    Directory of Open Access Journals (Sweden)

    Melariri P

    2015-02-01

    Full Text Available Paula Melariri,1 Lonji Kalombo,2 Patric Nkuna,2 Admire Dube,2,3 Rose Hayeshi,2 Benhards Ogutu,4,5 Liezl Gibhard,6 Carmen deKock,6 Peter Smith,6 Lubbe Wiesner,6 Hulda Swai2 1Polymers and Composites, Material Science and Manufacturing, Council for Scientific and Industrial Research, Port Elizabeth, South Africa; 2Polymer and Composites, Material Science and Manufacturing, Council for Scientific and Industrial Research, Pretoria, South Africa; 3School of Pharmacy, University of the Western Cape, Bellville, South Africa; 4Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya; 5Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya; 6Division of Pharmacology, University of Cape Town Medical School, Groote Schuur Hospital, Cape Town, South Africa Abstract: Tafenoquine (TQ, a new synthetic analog of primaquine, has relatively poor bioavailability and associated toxicity in glucose-6-phosphate dehydrogenase (G6PD-deficient individuals. A microemulsion formulation of TQ (MTQ with sizes <20 nm improved the solubility of TQ and enhanced the oral bioavailability from 55% to 99% in healthy mice (area under the curve 0 to infinity: 11,368±1,232 and 23,842±872 min·µmol/L for reference TQ and MTQ, respectively. Average parasitemia in Plasmodium berghei-infected mice was four- to tenfold lower in the MTQ-treated group. In vitro antiplasmodial activities against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum indicated no change in half maximal inhibitory concentration, suggesting that the microemulsion did not affect the inherent activity of TQ. In a humanized mouse model of G6PD deficiency, we observed reduction in toxicity of TQ as delivered by MTQ at low but efficacious concentrations of TQ. We hereby report an enhancement in the solubility, bioavailibility, and efficacy of TQ against blood stages of Plasmodium parasites without a corresponding increase in toxicity

  15. Mean reticulocyte volume: a specific parameter to screen for hereditary spherocytosis.

    Science.gov (United States)

    Xu, Yuchan; Yang, Wang; Liao, Lin; Deng, Zengfu; Qiu, Yuling; Chen, Wenqiang; Lin, Faquan

    2016-02-01

    This study assessed the value of mean reticulocyte volume (MRV) for differential diagnosis of hereditary spherocytosis (HS) so as to develop conventional and new specific screen indexes. Subjects in this study were divided into three groups: 53 cases in HS group, 217 cases in hemolytic anemia control group (109 cases of thalassemia (THAL), 56 cases of glucose-6-phosphate dehydrogenase G6PD deficiency anemia, and 52 cases of autoimmune hemolytic anemia (AIHA)), and 100 cases in healthy control group. We analyzed erythrocyte and reticulocyte parameters including MRV, mean sphered corpuscular volume, mean corpuscular hemoglobin concentration, and immature reticulocyte fraction. Results demonstrated that MRV was significantly lower in the HS group but significantly higher in the AIHA and G6PD deficiency anemia groups than that in the healthy control group (P = 0.000). MRV was not significantly different between the AIHA and G6PD deficiency anemia groups (P = 0.977) and between the healthy control and THAL groups (P = 0.168). The area under the ROC curve of MRV for diagnosis of HS was 0.942, with a standard error of 0.019, 95% confidence interval of 0.905-0.979, and optimal critical diagnosis point of 95.77 fL. When the MRV was ≤95.77 fL, the sensitivity and specificity for diagnosis of HS were 86.80% and 91.20%, respectively. Therefore, MRV is a general and specific new index for screening HS and important for differential diagnosis of different types of hemolytic anemia.

  16. Scalable Preparation and Differential Pharmacologic and Toxicologic Profiles of Primaquine Enantiomers

    Science.gov (United States)

    Tekwani, Babu L.; Herath, H. M. T. Bandara; Sahu, Rajnish; Gettayacamin, Montip; Tungtaeng, Anchalee; van Gessel, Yvonne; Baresel, Paul; Wickham, Kristina S.; Bartlett, Marilyn S.; Fronczek, Frank R.; Melendez, Victor; Ohrt, Colin; Reichard, Gregory A.; McChesney, James D.; Rochford, Rosemary; Walker, Larry A.

    2014-01-01

    Hematotoxicity in individuals genetically deficient in glucose-6-phosphate dehydrogenase (G6PD) activity is the major limitation of primaquine (PQ), the only antimalarial drug in clinical use for treatment of relapsing Plasmodium vivax malaria. PQ is currently clinically used in its racemic form. A scalable procedure was developed to resolve racemic PQ, thus providing pure enantiomers for the first time for detailed preclinical evaluation and potentially for clinical use. These enantiomers were compared for antiparasitic activity using several mouse models and also for general and hematological toxicities in mice and dogs. (+)-(S)-PQ showed better suppressive and causal prophylactic activity than (−)-(R)-PQ in mice infected with Plasmodium berghei. Similarly, (+)-(S)-PQ was a more potent suppressive agent than (−)-(R)-PQ in a mouse model of Pneumocystis carinii pneumonia. However, at higher doses, (+)-(S)-PQ also showed more systemic toxicity for mice. In beagle dogs, (+)-(S)-PQ caused more methemoglobinemia and was toxic at 5 mg/kg of body weight/day given orally for 3 days, while (−)-(R)-PQ was well tolerated. In a novel mouse model of hemolytic anemia associated with human G6PD deficiency, it was also demonstrated that (−)-(R)-PQ was less hemolytic than (+)-(S)-PQ for the G6PD-deficient human red cells engrafted in the NOD-SCID mice. All these data suggest that while (+)-(S)-PQ shows greater potency in terms of antiparasitic efficacy in rodents, it is also more hematotoxic than (−)-(R)-PQ in mice and dogs. Activity and toxicity differences of PQ enantiomers in different species can be attributed to their different pharmacokinetic and metabolic profiles. Taken together, these studies suggest that (−)-(R)-PQ may have a better safety margin than the racemate in human. PMID:24913163

  17. Scalable preparation and differential pharmacologic and toxicologic profiles of primaquine enantiomers.

    Science.gov (United States)

    Nanayakkara, N P Dhammika; Tekwani, Babu L; Herath, H M T Bandara; Sahu, Rajnish; Gettayacamin, Montip; Tungtaeng, Anchalee; van Gessel, Yvonne; Baresel, Paul; Wickham, Kristina S; Bartlett, Marilyn S; Fronczek, Frank R; Melendez, Victor; Ohrt, Colin; Reichard, Gregory A; McChesney, James D; Rochford, Rosemary; Walker, Larry A

    2014-08-01

    Hematotoxicity in individuals genetically deficient in glucose-6-phosphate dehydrogenase (G6PD) activity is the major limitation of primaquine (PQ), the only antimalarial drug in clinical use for treatment of relapsing Plasmodium vivax malaria. PQ is currently clinically used in its racemic form. A scalable procedure was developed to resolve racemic PQ, thus providing pure enantiomers for the first time for detailed preclinical evaluation and potentially for clinical use. These enantiomers were compared for antiparasitic activity using several mouse models and also for general and hematological toxicities in mice and dogs. (+)-(S)-PQ showed better suppressive and causal prophylactic activity than (-)-(R)-PQ in mice infected with Plasmodium berghei. Similarly, (+)-(S)-PQ was a more potent suppressive agent than (-)-(R)-PQ in a mouse model of Pneumocystis carinii pneumonia. However, at higher doses, (+)-(S)-PQ also showed more systemic toxicity for mice. In beagle dogs, (+)-(S)-PQ caused more methemoglobinemia and was toxic at 5 mg/kg of body weight/day given orally for 3 days, while (-)-(R)-PQ was well tolerated. In a novel mouse model of hemolytic anemia associated with human G6PD deficiency, it was also demonstrated that (-)-(R)-PQ was less hemolytic than (+)-(S)-PQ for the G6PD-deficient human red cells engrafted in the NOD-SCID mice. All these data suggest that while (+)-(S)-PQ shows greater potency in terms of antiparasitic efficacy in rodents, it is also more hematotoxic than (-)-(R)-PQ in mice and dogs. Activity and toxicity differences of PQ enantiomers in different species can be attributed to their different pharmacokinetic and metabolic profiles. Taken together, these studies suggest that (-)-(R)-PQ may have a better safety margin than the racemate in human.

  18. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji

    2002-08-27

    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  19. Population genetic study among the Orange Asli (Semai Senoi) of Malaysia: Malayan aborigines.

    Science.gov (United States)

    Saha, N; Mak, J W; Tay, J S; Liu, Y; Tan, J A; Low, P S; Singh, M

    1995-02-01

    A population genetic study was undertaken to provide gene frequency data on the additional blood genetic markers in the Semai and to estimate the genetic relations between the Semai and their neighboring and linguistically related populations by genetic distance and principal components analyses. Altogether 10 polymorphic and 7 monomorphic blood genetic markers (plasma proteins and red cell enzymes) were studied in a group of 349 Senoi Semai from 11 aboriginal settlements (villages) in the Pahang State of western Malaysia. Both the red cell glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (PGD) loci reveal the presence of polymorphic frequencies of a nondeficient slow allele at the G6PD locus and a fast allele at the PGD locus. The Semai are characterized by high prevalences of ahaptoglobinemia and G6PD deficiency, high frequencies of HP*1, HB*E, RH*R1, ACP*C, GLO1*1, PGM1*2+, and GC*1F and corresponding low frequencies of ABO*A, HbCoSp, HB*B0, TF*D, CHI, and GC*2. Genetic distance analyses by both cluster and principal components models were performed between the Semai and 14 other populations (Malay; Javanese; Khmer; Veddah; Tamils of Malaysia, Sri Lanka, and India; Sinhalese; Oraon; Toda and Irula of India; Chinese; Japanese; Koreans) on the basis of 30 alleles at 7 polymorphic loci. A more detailed analysis using 53 alleles at 13 polymorphic loci with 10 populations was carried out. Both analyses give genetic evidence of a close relationship between the Semai and the Khmer of Cambodia. Furthermore, the Semai are more closely related to the Javanese than to their close neighbors--the Malay, Chinese, and Tamil Indians. There is no evidence f