WorldWideScience

Sample records for dehydrogenase complex subunit

  1. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  2. Inhibiting Sperm Pyruvate Dehydrogenase Complex and Its E3 Subunit, Dihydrolipoamide Dehydrogenase Affects Fertilization in Syrian Hamsters

    Science.gov (United States)

    Sailasree, Purnima; Singh, Durgesh K.; Kameshwari, Duvurri B.; Shivaji, Sisinthy

    2014-01-01

    Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the

  3. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.

    Science.gov (United States)

    Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2016-12-01

    Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor.

  4. Properties and subunit structure of pig heart pyruvate dehydrogenase.

    Science.gov (United States)

    Hamada, M; Hiraoka, T; Koike, K; Ogasahara, K; Kanzaki, T

    1976-06-01

    Pyruvate dehydrogenase [EC 1.2.4.1] was separated from the pyruvate dehydrogenase complex and its molecular weight was estimated to be about 150,000 by sedimentation equilibrium methods. The enzyme was dissociated into two subunits (alpha and beta), with estimated molecular weights of 41,000 (alpha) and 36,000 (beta), respectively, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The subunits were separated by phosphocellulose column chromatography and their chemical properties were examined. The subunit structure of the pyruvate dehydrogenase was assigned as alpha2beta2. The content of right-handed alpha-helix in the enzyme molecule was estimated to be about 29 and 28% by optical rotatory dispersion and by circular dichroism, respectively. The enzyme contained no thiamine-PP, and its dehydrogenase activity was completely dependent on added thiamine-PP and partially dependent on added Mg2+ and Ca2+. The Km value of pyruvate dehydrogenase for thiamine diphosphate was estimated to be 6.5 X 10(-5) M in the presence of Mg2+ or Ca2+. The enzyme showed highly specific activity for thiamine-PP dependent oxidation of both pyruvate and alpha-ketobutyrate, but it also showed some activity with alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketoisovalerate. The pyruvate dehydrogenase activity was strongly inhibited by bivalent heavy metal ions and by sulfhydryl inhibitors; and the enzyme molecule contained 27 moles of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive sulfhydryl groups and a total of 36 moles of sulfhydryl groups. The inhibitory effect of p-chloromercuribenzoate was prevented by preincubating the enzyme with thiamine-PP plus pyruvate. The structure of pyruvate dehydrogenase necessary for formation of the complex is also reported.

  5. Functional Characterization of the Subunits N, H, J, and O of the NAD(P)H Dehydrogenase Complexes in Synechocystis sp. Strain PCC 6803.

    Science.gov (United States)

    He, Zhihui; Mi, Hualing

    2016-06-01

    The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around PSI. Recently, substantial progress has been made in identifying the composition of subunits of NDH-1 complexes. However, the localization and the physiological roles of several subunits in cyanobacteria are not fully understood. Here, by constructing fully segregated ndhN, ndhO, ndhH, and ndhJ null mutants in Synechocystis sp. strain PCC 6803, we found that deletion of ndhN, ndhH, or ndhJ but not ndhO severely impaired the accumulation of the hydrophilic subunits of the NDH-1 in the thylakoid membrane, resulting in disassembly of NDH-1MS, NDH-1MS', as well as NDH-1L, finally causing the severe growth suppression phenotype. In contrast, deletion of NdhO affected the growth at pH 6.5 in air. In the cytoplasm, either NdhH or NdhJ deleted mutant, but neither NdhN nor NdhO deleted mutant, failed to accumulate the NDH-1 assembly intermediate consisting of NdhH, NdhJ, NdhK, and NdhM. Based on these results, we suggest that NdhN, NdhH, and NdhJ are essential for the stability and the activities of NDH-1 complexes, while NdhO for NDH-1 functions under the condition of inorganic carbon limitation in Synechocystis sp. strain PCC 6803. We discuss the roles of these subunits and propose a new NDH-1 model. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Zhang, Jingsong; Gao, Fudan; Zhao, Jiaohong; Ogawa, Teruo; Wang, Quanxi; Ma, Weimin

    2014-07-04

    Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1 and NdhF1, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, cyclic electron transport around photosystem I, and CO2 acquisition. Two mutants sensitive to high light for growth and impaired in NDH-1-mediated cyclic electron transfer were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in sml0013 encoding NdhP, a single transmembrane small subunit of the NDH-1 complex. During prolonged incubation of the wild type thylakoid membrane with n-dodecyl β-d-maltoside (DM), about half of the NDH-1L was disassembled to NDH-1M and the rest decomposed completely without forming NDH-1M. In the ndhP deletion mutant (ΔndhP), disassembling of NDH-1L to NDH-1M occurred even on ice, and decomposition to a small piece occurred at room temperature much faster than in the wild type. Deletion of the C-terminal tail of NdhP gave the same result. The C terminus of NdhP was tagged by YFP-His6. Blue native gel electrophoresis of the DM-treated thylakoid membrane of this strain and Western analysis using the antibody against GFP revealed that NdhP-YFP-His6 was exclusively confined to NDH-1L. During prolonged incubation of the thylakoid membrane of the tagged strain with DM at room temperature, NDH-1L was partially disassembled to NDH-1M and the 160-kDa band containing NdhP-YFP-His6 and possibly NdhD1 and NdhF1. We therefore conclude that NdhP, especially its C-terminal tail, is essential to assemble NdhD1 and NdhF1 and stabilize the NDH-1L complex. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Zhao, Jiaohong; Gao, Fudan; Zhang, Jingsong; Ogawa, Teruo; Ma, Weimin

    2014-09-26

    Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Identification of novel immunogenic proteins from Mycoplasma bovis and establishment of an indirect ELISA based on recombinant E1 beta subunit of the pyruvate dehydrogenase complex.

    Directory of Open Access Journals (Sweden)

    Zhenhong Sun

    Full Text Available The pathogen Mycoplasma bovis (M. bovis is a major cause of respiratory disease, mastitis, and arthritis in cattle. Screening the key immunogenic proteins and updating rapid diagnostic techniques are necessary to the prevention and control of M. bovis infection. In this study, 19 highly immunogenic proteins from M. bovis strain PD were identified using 2-dimensional gel electrophoresis, immunoblotting and MALDI-TOF/TOF MS. Of these 19 proteins, pyruvate dehydrogenase E1 component beta subunit (PDHB showed excellent immune reactivity and repeatability. PDHB was found to be conserved in different M. bovis isolates, as indicated by Western blot analysis. On the basis of these results, a rPDHB-based indirect ELISA (iELISA was established for the detection of serum antibodies using prokaryotically expressed recombinant PDHB protein as the coating antigen. The specificity analysis result showed that rPDHB-based iELISA did not react with other pathogens assessed in our study except M. agalactiae (which infects sheep and goats. Moreover, 358 serum samples from several disease-affected cattle feedlots were tested using this iELISA system and a commercial kit, which gave positive rates of 50.8% and 39.9%, respectively. The estimated Kappa agreement coefficient between the two methods was 0.783. Notably, 39 positive serum samples that had been missed by the commercial kit were all found to be positive by Western blot analysis. The detection rate of rPDHB-based iELISA was significantly higher than that of the commercial kit at a serum dilution ratio of 1∶5120 to 1∶10,240 (P<0.05. Taken together, these results provide important information regarding the novel immunogenic proteins of M. bovis. The established rPDHB-based iELISA may be suitable for use as a new method of antibody detection in M. bovis.

  9. Identity of the subunits and the stoicheiometry of prosthetic groups in trimethylamine dehydrogenase and dimethylamine dehydrogenase.

    Science.gov (United States)

    Kasprzak, A A; Papas, E J; Steenkamp, D J

    1983-01-01

    Trimethylamine dehydrogenases from bacterium W3A1 and Hyphomicrobium X and the dimethylamine dehydrogenase from Hyphomicrobium X were found to contain only one kind of subunit. The millimolar absorption coefficient of a single [4Fe-4S] cluster in trimethylamine dehydrogenase from bacterium W3A1 was estimated to be 14.8 mM-1 . cm-1 at 443 nm. From this value a 1:1 stoicheiometry of the prosthetic groups, 6-S-cysteinyl-FMN and the [4Fe-4S] cluster, was established. Millimolar absorption coefficients of the three enzymes were in the range 49.4-58.7 mM-1 . cm-1 at approx. 440 nm. This range of values is consistent with the presence of two [4Fe-4S] clusters and two flavin residues, for which the millimolar absorption coefficient had earlier been found to be 12.3 mM-1 . cm-1 at 437 nm. The N-terminal amino acid was alanine in each of the three enzymes. Sequence analysis of the first 15 residues from the N-terminus of dimethylamine dehydrogenase indicated a single unique sequence. Two identical subunits, each containing covalently bound 6-S-cysteinyl-FMN and a [4Fe-4S] cluster, in each of the enzymes are therefore indicated. Images Fig. 1. PMID:6882357

  10. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma-pheochromocytoma syndrome.

    Science.gov (United States)

    Prasad, Chaithra; Oakley, Gerard J; Yip, Linwah; Coyne, Christopher; Rangaswamy, Balasubramanya; Dixit, Sanjay B

    2014-01-01

    Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma-pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  11. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Directory of Open Access Journals (Sweden)

    Chaithra Prasad

    2014-10-01

    Full Text Available Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  12. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Science.gov (United States)

    Oakley, Gerard J; Yip, Linwah; Coyne, Christopher; Rangaswamy, Balasubramanya; Dixit, Sanjay B

    2014-01-01

    Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes. PMID:27489656

  13. NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda).

    Science.gov (United States)

    Gasser, R B; Zhu, X; McManus, D P

    1999-12-01

    Nine members of the genus Taenia (Taenia taeniaeformis, Taenia hydatigena, Taenia pisiformis, Taenia ovis, Taenia multiceps, Taenia serialis, Taenia saginata, Taenia solium and the Asian Taenia) were characterised by their mitochondrial NADH dehydrogenase subunit 1 gene sequences and their genetic relationships were compared with those derived from the cytochrome c oxidase subunit 1 sequence data. The extent of inter-taxon sequence difference in NADH dehydrogenase subunit 1 (approximately 5.9-30.8%) was usually greater than in cytochrome c oxidase subunit 1 (approximately 2.5-18%). Although topology of the phenograms derived from NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit 1 sequence data differed, there was concordance in that T. multiceps, T. serialis (of canids), T. saginata and the Asian Taenia (of humans) were genetically most similar, and those four members were genetically more similar to T. ovis and T. solium than they were to T. hydatigena and T. pisiformis (of canids) or T. taeniaeformis (of cats). The NADH dehydrogenase subunit 1 sequence data may prove useful in studies of the systematics and population genetic structure of the Taeniidae.

  14. Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2

    Directory of Open Access Journals (Sweden)

    Burger Gertraud

    2008-10-01

    Full Text Available Abstract Background In a previous study, we conducted a large-scale similarity-free function prediction of mitochondrion-encoded hypothetical proteins, by which the hypothetical gene murf1 (maxicircle unidentified reading frame 1 was assigned as nad2, encoding subunit 2 of NADH dehydrogenase (Complex I of the respiratory chain. This hypothetical gene occurs in the mitochondrial genome of kinetoplastids, a group of unicellular eukaryotes including the causative agents of African sleeping sickness and leishmaniasis. In the present study, we test this assignment by using bioinformatics methods that are highly sensitive in identifying remote homologs and confront the prediction with available biological knowledge. Results Comparison of MURF1 profile Hidden Markov Model (HMM against function-known profile HMMs in Pfam, Panther and TIGR shows that MURF1 is a Complex I protein, but without specifying the exact subunit. Therefore, we constructed profile HMMs for each individual subunit, using all available sequences clustered at various identity thresholds. HMM-HMM comparison of these individual NADH subunits against MURF1 clearly identifies this hypothetical protein as NAD2. Further, we collected the relevant experimental information about kinetoplastids, which provides additional evidence in support of this prediction. Conclusion Our in silico analyses provide convincing evidence for MURF1 being a highly divergent member of NAD2.

  15. Organ-specific expression of glutamate dehydrogenase (GDH) subunits in yellow lupine.

    Science.gov (United States)

    Lehmann, Teresa; Dabert, Mirosława; Nowak, Witold

    2011-07-01

    Glutamate dehydrogenase (GDH, EC 1.4.2-4) is present in yellow lupine (Lupinus luteus cv. Juno) in many isoforms. The number and banding pattern of isoenzymes varies with respect to plant organ and developmental stage. To better understand the complex nature of GDH regulation in plants, the levels of GDH transcripts, enzyme activity and isoenzyme patterns in germinating seeds and roots of yellow lupine were examined. The analysis of GDH cDNA sequences in lupine revealed three mRNA types, of which two encoded the β-GDH subunit and one encoded the α-GDH subunit (corresponding to the GDH1(GDH3) and GDH2 genes, respectively). The relative expression of GDH1 and GDH2 genes was analyzed in various lupine organs by using quantitative real-time PCR. Our results indicate that different mRNA types were differently regulated depending on organ type. Although both genes appeared to be ubiquitously expressed in all lupine tissues, the GDH1 transcripts evidently predominated over those of GDH2. Immunochemical analyses confirmed that, during embryo development, varied expression of two GDH subunits takes place. The α-GDH subunit (43kDa) predominated in the early stages of germinating seeds, while the β-GDH subunit (44kDa) was the only GDH polypeptide present in lupine roots. These results firmly support the hypothesis that isoenzyme variability of GDH in yellow lupine is associated with the varied expression of α and β subunits into the complexes of hexameric GDH forms. The presence of several isogenes of GDH in yellow lupine may explain the high number (over 20) of its molecular forms in germinating lupine. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Localization of the nucleic acid channel regulatory subunit, cytosolic malate dehydrogenase.

    Science.gov (United States)

    Hanss, Basil; Leal-Pinto, Edgar; Teixeira, Avelino; Tran, Baohuong; Lee, Chun-Hui; Henderson, Scott C; Klotman, Paul E

    2008-01-01

    NACh is a nucleic acid-conducting channel found in apical membrane of rat kidney proximal tubules. It is a heteromultimeric complex consisting of at least two proteins: a 45-kDa pore-forming subunit and a 36-kDa regulatory subunit. The regulatory subunit confers ion selectivity and influences gating kinetics. The regulatory subunit has been identified as cytosolic malate dehydrogenase (cMDH). cMDH is described in the literature as a soluble protein that is not associated with plasma membrane. Yet a role for cMDH as the regulatory subunit of NACh requires that it be present at the plasma membrane. To resolve this conflict, studies were initiated to determine whether cMDH could be found at the plasma membrane. Before performing localization studies, a suitable model system that expressed NACh was identified. A channel was identified in LLC-PK(1) cells, a line derived from pig proximal tubule, that is selective for nucleic acid and has a conductance of approximately 10 pS. It exhibits dose-dependent blockade by heparan sulfate or L-malate. These characteristics are similar to what has been reported for NACh from rat kidney and indicate that NACh is present in LLC-PK(1) cells. LLC-PK(1) cells were therefore used as a model system for immunolocalization of cMDH. Both immunofluorescence and immunoelectron microscopy demonstrated cMDH at the plasma membrane of LLC-PK(1) cells. This finding supports prior functional data that describe a role for cMDH as the regulatory subunit of NACh.

  17. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    Science.gov (United States)

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  18. Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen.

    Directory of Open Access Journals (Sweden)

    Anne Gründel

    Full Text Available The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interaction between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D among the cytosolic and membrane-associated proteins of M. pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All recombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclonal antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M. pneumoniae infections by interaction with human plasminogen.

  19. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.A.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results

  20. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    Science.gov (United States)

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile.

  1. Mitochondrial genome from the facultative anaerobe and petite-positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes.

    Science.gov (United States)

    Procházka, Emanuel; Poláková, Silvia; Piskur, Jure; Sulo, Pavol

    2010-08-01

    The progenitor of the Dekkera/Brettanomyces clade separated from the Saccharomyces/Kluyveromyces clade over 200 million years ago. However, within both clades, several lineages developed similar physiological traits. Both Saccharomyces cerevisiae and Dekkera bruxellensis are facultative anaerobes; in the presence of excess oxygen and sugars, they accumulate ethanol (Crabtree effect) and they both spontaneously generate respiratory-deficient mutants (petites). In order to understand the role of respiratory metabolism, the mitochondrial DNA (mtDNA) molecules of two Dekkera/Brettanomyces species were analysed. Dekkera bruxellensis mtDNA shares several properties with S. cerevisiae, such as the large genome size (76 453 bp), and the organization of the intergenic sequences consisting of spacious AT-rich regions containing a number of hairpin GC-rich cluster-like elements. In addition to a basic set of the mitochondrial genes coding for the components of cytochrome oxidase, cytochrome b, subunits of ATPase, two rRNA subunits and 25 tRNAs, D. bruxellensis also carries genes for the NADH dehydrogenase complex. Apparently, in yeast, the loss of this complex is not a precondition to develop a petite-positive, Crabtree-positive and anaerobic nature. On the other hand, mtDNA from a petite-negative Brettanomyces custersianus is much smaller (30 058 bp); it contains a similar gene set and has only short intergenic sequences.

  2. Frequent germ-line succinate dehydrogenase subunit D gene mutations in patients with apparently sporadic parasympathetic paraganglioma

    NARCIS (Netherlands)

    H. Dannenberg (Hilde); W.N.M. Dinjens (Winand); M. Abbou; H. van Urk (Hero); B.K. Pauw; D. Mouwen; W.J. Mooi (Wolter); R.R. de Krijger (Ronald)

    2002-01-01

    textabstractPURPOSE: Recently, familial paraganglioma (PGL) was shown to be caused bymutations in the gene encoding succinate dehydrogenase subunit D (SDHD). However, the prevalence of SDHD mutations in apparently sporadic PGL is unknown. We studied the frequency and spectrum of ge

  3. Succinate Dehydrogenase B Subunit Immunohistochemical Expression Predicts Aggressiveness in Well Differentiated Neuroendocrine Tumors of the Ileum

    Energy Technology Data Exchange (ETDEWEB)

    Milione, Massimo [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Pusceddu, Sara [Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Gasparini, Patrizia [Molecular Cytogenetics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Melotti, Flavia [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Maisonneuve, Patrick [Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan 20141 (Italy); Mazzaferro, Vincenzo [Division of Gastrointestinal Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Braud, Filippo G. de [Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Pelosi, Giuseppe, E-mail: giuseppe.pelosi@unimi.it [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Department of Medicine, Surgery and Dentistry, Università degli Studi, Facoltà di Medicina, Milan 20122 (Italy)

    2012-08-16

    Immunohistochemical loss of the succinate dehydrogenase subunit B (SDHB) has recently been reported as a surrogate biomarker of malignancy in sporadic and familial pheocromocytomas and paragangliomas through the activation of hypoxia pathways. However, data on the prevalence and the clinical implications of SDHB immunoreactivity in ileal neuroendocrine tumors are still lacking. Thirty-one consecutive, advanced primary midgut neuroendocrine tumors and related lymph node or liver metastases from 24 males and seven females were immunohistochemically assessed for SDHB. All patients were G1 tumors (Ki-67 labeling index ≤2%). SDHB immunohistochemistry results were expressed as immunostaining intensity and scored as low or strong according to the internal control represented by normal intestinal cells. Strong positivity for SDHB, with granular cytoplasmatic reactivity, was found in 77% of primary tumors (T), whilst low SDHB expression was detected in 90% of metastases (M). The combined analysis (T+M) confirmed the loss of SDHB expression in 82% of metastases compared to 18% of primary tumors. SDHB expression was inversely correlated with Ki-67 labeling index, which accounted for 1.54% in metastastic sites and 0.7% in primary tumors. A correlation between SDHB expression loss, increased Ki-67 labeling index and biological aggressiveness was shown in advanced midgut neuroendocrine tumors, suggesting a role of tumor suppressor gene.

  4. Characterization of Autoantibodies against the E1 Subunit of Branched-Chain 2-Oxoacid Dehydrogenase in Patients with Primary Biliary Cirrhosis

    Directory of Open Access Journals (Sweden)

    Tsutomu Mori

    2012-01-01

    Full Text Available Primary biliary cirrhosis (PBC is characterized by antimitochondrial antibodies (AMAs that react with the lipoyl-containing E2 subunits of 2-oxoacid dehydrogenase complexes such as BCOADC and PDC. The lipoyl domains of E2 contain the major epitopes essential for immunopathology. However, the non-lipoyl-containing E1 subunits are also frequently targeted. Since anti-E1 antibodies always appear in combination with anti-E2 antibodies, the mechanisms underlying the autoimmunity against E1 may be linked to, but distinct from, those against E2. Here, we demonstrate that intermolecular and intramolecular determinant spreading underlies the autoimmunity against E1. We performed characterizations and epitope mapping for anti-BCOADC-E1 antibodies from both the intermolecular and intramolecular points of view. The antibody reactivities form a cluster against the BCOADC complex that is distinct from that against the PDC complex, and the anti-BCOADC-E1 antibodies arise as part of the cluster against the BCOADC complex. Multiple epitopes are present on the surface of the BCOADC-E1 molecule, and the major epitope overlaps with the active center. Sera with anti-BCOADC-E1 antibodies strongly inhibited the enzyme activity. These findings suggest that the E1 subunit as part of the native BCOADC complex is an immunogen, and that determinant spreading is involved in the pathogenesis of AMA production.

  5. Successful chemotherapy of hepatic metastases in a case of succinate dehydrogenase subunit B-related paraganglioma.

    Science.gov (United States)

    He, J; Makey, D; Fojo, T; Adams, K T; Havekes, B; Eisenhofer, G; Sullivan, P; Lai, E W; Pacak, K

    2009-10-01

    Compared to other familial pheochromocytoma/paragangliomas (PHEO/PGLs), the succinate dehydrogenase subunit B (SDHB)-related PHEO/PGLs often present with aggressive and rapidly growing metastatic lesions. Currently, there is no proven effective treatment for malignant PHEO/PGLs. Here, we present a 35-year-old white man with primary malignant abdominal extra-adrenal 11 cm paraganglioma underwent surgical successful resection. But 6 months later, he developed extensive bone, liver, and lymph nodes metastasis, which were demonstrated by computed tomography scan and the (18)F-fluorodeoxyglucose positron emission tomography. However, his (123)I-metaiodobenzylguanidine scintigraphy was negative; therefore, the cyclophosphamide, vincristine, and dacarbazine (CVD) combination chemotherapy was initiated. The combination chemotherapy was very effective showing 80% overall reduction in the liver lesions and 75% overall reduction in the retroperitoneal mass and adenopathy, and normalization of plasma catecholamine and metanephrine levels. However, plasma levels of dopamine (DA) and methoxytyramine (MTY) were only partially affected and remained consistently elevated throughout the remaining period of follow-up evaluation. Genetic testing revealed an SDHB gene mutation. Here, we present an SDHB-related PHEO/PGL patient with extensive tumor burden, numerous organ lesions, and rapidly growing tumors, which responded extremely well to CVD therapy. We conclude patients with SDHB-related PHEO/PGLs can be particularly sensitive to CVD chemotherapy and may have an excellent outcome if this therapy is used and continued on periodic basis. The data in this patient also illustrate the importance of measuring plasma levels of DA and MTY to provide a more complete and accurate assessment of the biochemical response to therapy than provided by measurements restricted to other catecholamines and O-methylated metabolites.

  6. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

    Science.gov (United States)

    Starkov, Anatoly A; Fiskum, Gary; Chinopoulos, Christos; Lorenzo, Beverly J; Browne, Susan E; Patel, Mulchand S; Beal, M Flint

    2004-09-08

    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.

  7. The structure of apo human glutamate dehydrogenase details subunit communication and allostery.

    Science.gov (United States)

    Smith, Thomas J; Schmidt, Timothy; Fang, Jie; Wu, Jane; Siuzdak, Gary; Stanley, Charles A

    2002-05-01

    The structure of human glutamate dehydrogenase (GDH) has been determined in the absence of active site and regulatory ligands. Compared to the structures of bovine GDH that were complexed with coenzyme and substrate, the NAD binding domain is rotated away from the glutamate-binding domain. The electron density of this domain is more disordered the further it is from the pivot helix. Mass spectrometry results suggest that this is likely due to the apo form being more dynamic than the closed form. The antenna undergoes significant conformational changes as the catalytic cleft opens. The ascending helix in the antenna moves in a clockwise manner and the helix in the descending strand contracts in a manner akin to the relaxation of an extended spring. A number of spontaneous mutations in this antenna region cause the hyperinsulinism/hyperammonemia syndrome by decreasing GDH sensitivity to the inhibitor, GTP. Since these residues do not directly contact the bound GTP, the conformational changes in the antenna are apparently crucial to GTP inhibition. In the open conformation, the GTP binding site is distorted such that it can no longer bind GTP. In contrast, ADP binding benefits by the opening of the catalytic cleft since R463 on the pivot helix is pushed into contact distance with the beta-phosphate of ADP. These results support the previous proposal that purines regulate GDH activity by altering the dynamics of the NAD binding domain. Finally, a possible structural mechanism for negative cooperativity is presented.

  8. Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes.

    Science.gov (United States)

    Reeks, Judith; Graham, Shirley; Anderson, Linzi; Liu, Huanting; White, Malcolm F; Naismith, James H

    2013-05-01

    The Cascade complex for CRISPR-mediated antiviral immunity uses CRISPR RNA (crRNA) to target invading DNA species from mobile elements such as viruses, leading to their destruction. The core of the Cascade effector complex consists of the Cas5 and Cas7 subunits, which are widely conserved in prokaryotes. Cas7 binds crRNA and forms the helical backbone of Cascade. Many archaea encode a version of the Cascade complex (denoted Type I-A) that includes a Csa5 (or small) subunit, which interacts weakly with the core proteins. Here, we report the crystal structure of the Csa5 protein from Sulfolobus solfataricus. Csa5 comprises a conserved α-helical domain with a small insertion consisting of a weakly conserved β-strand domain. In the crystal, the Csa5 monomers have multimerized into infinite helical threads. At each interface is a strictly conserved intersubunit salt bridge, deletion of which disrupts multimerization. Structural analysis indicates a shared evolutionary history among the small subunits of the CRISPR effector complexes. The same α-helical domain is found in the C-terminal domain of Cse2 (from Type I-E Cascade), while the N-terminal domain of Cse2 is found in Cmr5 of the CMR (Type III-B) effector complex. As Cmr5 shares no match with Csa5, two possibilities present themselves: selective domain loss from an ancestral Cse2 to create two new subfamilies or domain fusion of two separate families to create a new Cse2 family. A definitive answer awaits structural studies of further small subunits from other CRISPR effector complexes.

  9. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun-Hee [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States); Patel, Mulchand S., E-mail: mspatel@buffalo.edu [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States)

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  10. Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits*

    Science.gov (United States)

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2011-01-01

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150

  11. The phosphorylation pattern of bovine heart complex I subunits

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Sardanelli, Anna Maria; Signorile, Anna;

    2007-01-01

    The phosphoproteome of bovine heart complex I of the respiratory chain has been analysed with a procedure based on nondenaturing gel electrophoretic separation of complex I from small quantities of mitochondria samples, in-gel digestion, in combination with phosphopeptide enrichment by titanium...... dioxide and MS. The results, complemented by analyses of purified samples of complex I, showed phosphorylation of five subunits of the complex, 42 kDa (human gene NDUFA10), ESSS, B14.5a (human gene NDUFA7), B14.5b (human gene NDUFC2) and B16.6 (GRIM-19). MS also revealed the presence of phosphorylated...

  12. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alexa Thibodeau

    2016-01-01

    Full Text Available Pyruvate dehydrogenase (PDH complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.

  13. Mutations in Succinate Dehydrogenase Subunit C Increase Radiosensitivity and Bystander Responses

    Science.gov (United States)

    Zhou, Hongning; Hei, Tom K.

    Although radiation-induced bystander effect is well studied in the past decade, the precise mech-anisms are still unclear. It is likely that a combination of pathways involving both primary and secondary signaling processes is involved in producing a bystander effect. There is recent evidence that mitochondria play a critical role in bystander responses. Recently studies found that a mutation in succinate dehydrogenese subunit C (SDHC), an integral membrane protein in complex II of the electron transport chain, resulted in increased superoxide, oxidative stress, apoptosis, tumorigenesis, and genomic instability, indicating that SDHC play a critical role in maintaining mitochondrial function. In the present study, using Chinese hamster fibroblasts (B1 cells) and the mutants (B9 cells) containing a single base substitution that produced a premature stop codon resulting in a 33-amino acid COOH-terminal truncation of the SDHC protein, we found that B9 cells had an increase in intracellular superoxide content, nitric oxide species, and mitochondrial membrane potential when compared with wild type cells. After irradiated with a grade of doses of gamma rays, B9 cells show an increased radiosensitivity, especially at high doses. The HPRT- mutant yield after gamma-ray irradiation in B9 cells was significantly higher than that of B1 cells. A single, 3Gy dose of gamma-rays increased the background mutant level by more than 4 fold. In contrast, the mutant induction was less than 2 fold in B1 cells. In addition, B9 cells produced a higher bystander mutagenesis after alpha particle irradiation than the B1 cells. Furthermore, pretreated with carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), a nitric oxide scavenger, significantly decreased the bystander effect. Our findings demonstrate that a mutation in SDHC increases radiosensitivity in both directly irradiated cells and in neighboring bystander cells, and mito-chondrial function play an essential role in

  14. Purification of the Pyruvate Dehydrogenase Multienzyme Complex of Zymomonas mobilis and Identification and Sequence Analysis of the Corresponding Genes

    Science.gov (United States)

    Neveling, Ute; Klasen, Ralf; Bringer-Meyer, Stephanie; Sahm, Hermann

    1998-01-01

    The pyruvate dehydrogenase (PDH) complex of the gram-negative bacterium Zymomonas mobilis was purified to homogeneity. From 250 g of cells, we isolated 1 mg of PDH complex with a specific activity of 12.6 U/mg of protein. Analysis of subunit composition revealed a PDH (E1) consisting of the two subunits E1α (38 kDa) and E1β (56 kDa), a dihydrolipoamide acetyltransferase (E2) of 48 kDa, and a lipoamide dehydrogenase (E3) of 50 kDa. The E2 core of the complex is arranged to form a pentagonal dodecahedron, as shown by electron microscopic images, resembling the quaternary structures of PDH complexes from gram-positive bacteria and eukaryotes. The PDH complex-encoding genes were identified by hybridization experiments and sequence analysis in two separate gene regions in the genome of Z. mobilis. The genes pdhAα (1,065 bp) and pdhAβ (1,389 bp), encoding the E1α and E1β subunits of the E1 component, were located downstream of the gene encoding enolase. The pdhB (1,323 bp) and lpd (1,401 bp) genes, encoding the E2 and E3 components, were identified in an unrelated gene region together with a 450-bp open reading frame (ORF) of unknown function in the order pdhB-ORF2-lpd. Highest similarities of the gene products of the pdhAα, pdhAβ, and pdhB genes were found with the corresponding enzymes of Saccharomyces cerevisiae and other eukaryotes. Like the dihydrolipoamide acetyltransferases of S. cerevisiae and numerous other organisms, the product of the pdhB gene contains a single lipoyl domain. The E1β subunit PDH was found to contain an amino-terminal lipoyl domain, a property which is unique among PDHs. PMID:9515924

  15. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation.

    Science.gov (United States)

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F; Gibson, Gary E; Beal, M Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-06-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20-48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ~30% higher ADP-ATP exchange rates compared to those obtained from DLST(+/-) or DLD(+/-) littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on "in-house" mitochondrial ATP reserves.

  16. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.; (Danforth)

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  17. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Kozupa, A.; Eisenhofer, G.; Raygada, M.; Adams, K.T.; Solis, D.; Lenders, J.W.M.; Pacak, K.

    2007-01-01

    CONTEXT: Mutations of the gene encoding succinate dehydrogenase subunit B (SDHB) predispose to malignant paraganglioma (PGL). Recognition of the SDHB phenotype in apparently sporadic PGL directs appropriate treatment and family screening. OBJECTIVE: The objective of the study was to assess mutation-

  18. CLONING, SEQUENCING AND EXPRESSION STUDIES OF THE GENES ENCODING AMICYANIN AND THE BETA-SUBUNIT OF METHYLAMINE DEHYDROGENASE FROM THIOBACILLUS-VERSUTUS

    NARCIS (Netherlands)

    UBBINK, M; VANKLEEF, MAG; KLEINJAN, DJ; HOITINK, CWG; HUITEMA, F; BEINTEMA, JJ; DUINE, JA; CANTERS, GW

    1991-01-01

    The genes encoding amicyanin and the beta-subunit of methylamine dehydrogenase (MADH) from Thiobacillus versutus have been cloned and sequenced. The organization of these genes makes it likely that they are coordinately expressed and it supports earlier findings that the blue copper protein amicyani

  19. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  20. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  1. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  2. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test

    Directory of Open Access Journals (Sweden)

    Sharma Pushpa

    2009-01-01

    Full Text Available Objectives: The present study was designed to investigate the role of a mitochondrial enzyme pyruvate dehydrogenase (PDH on the severity of brain injury, and the effects of pyruvate treatment in rats with traumatic brain injury (TBI. Materials and Methods: We examined rats subjected to closed head injury using a fluid percussion device, and treated with sodium pyruvate (antioxidant and substrate for PDH enzyme. At 72 h post injury, blood was analyzed for blood gases, acid-base status, total PDH enzyme using a dipstick test and malondialdehyde (MDA levels as a marker of oxidative stress. Brain homogenates from right hippocampus (injured area were analyzed for PDH content, and immunostained hippocampus sections were used to determine the severity of gliosis and PDH E1-∞ subunit. Results: Our data demonstrate that TBI causes a significant reduction in PDH enzyme, disrupt-acid-base balance and increase oxidative stress in blood. Also, lower PDH enzyme in blood is related to the increased gliosis and loss of its PDH E1-∞ subunit PDH in brain tissue, and these effects of TBI were prevented by pyruvate treatment. Conclusion: Lower PDH enzyme levels in blood are related to the global oxidative stress, increased gliosis in brain, and severity of brain injury following TBI. These effects can be prevented by pyruvate through the protection of PDH enzyme and its subunit E-1.

  3. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli

    OpenAIRE

    2009-01-01

    The protein complex of bifunctional isocitrate dehydrogenase kinase/phosphatase with its substrate, isocitrate dehydrogenase, has been crystallized for structural analysis. A complete data set was collected from the complex crystal and processed to 2.9 Å resolution.

  4. The role of NAD(+)-dependent isocitrate dehydrogenase 3 subunit α in AFB1 induced liver lesion.

    Science.gov (United States)

    Yang, Chi; Fan, Jue; Zhuang, Zhenhong; Fang, Yi; Zhang, Yanfeng; Wang, Shihua

    2014-01-30

    Aflatoxin B1 (AFB1) is a potent hepatocarcinogen that causes carcinogenesis in many animal species. In previous study, we found that isocitrate dehydrogenasesubunit (IDH3α) was upregulated in AFB1-induced carcinogenesis process. In this study, the sequences of IDH3α from various species were compared and the protein expression levels in different organs were examined, and the results showed that IDH3α was a widely distributed protein and shared highly conserved sequence in various species. In the same time, IDH3α was demonstrated to accumulate in a dose-dependent manner induced by AFB1 in cells, and was also up-regulated in the process of AFB1-induced liver lesion. Similar results were observed when H2O2 was used to replace AFB1. Over-expression of IDH3α increased the phosphorylation level of Akt (Protein kinase B) and neutralized the cellular toxicity induced by AFB1 or H2O2 and apoptosis induced by AFB1, while the reduced expression of IDH3α by siRNA decreased the phosphorylation, indicating that IDH3α played important roles in oxidative stress-induced PI3K/Akt pathway. Overall, the results suggested that AFB1 treatment could increase the expression of IDH3α, and the activated PI3K/Akt pathway by IDH3α eventually neutralized the apoptosis induced by AFB1.

  5. A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2009-02-01

    Full Text Available Abstract Background Analyses based on phylogenetic and ultrastructural data have suggested that euglenids (such as Euglena gracilis, trypanosomatids and diplonemids are members of a monophyletic lineage termed Euglenozoa. However, many uncertainties are associated with phylogenetic reconstructions for ancient and rapidly evolving groups; thus, rare genomic characters become increasingly important in reinforcing inferred phylogenetic relationships. Findings We discovered that the iron-sulfur subunit (SdhB of mitochondrial succinate dehydrogenase is encoded by a split and rearranged nuclear gene in Euglena gracilis and trypanosomatids, an example of a rare genomic character. The two subgenic modules are transcribed independently and the resulting mRNAs appear to be independently translated, with the two protein products imported into mitochondria, based on the presence of predicted mitochondrial targeting peptides. Although the inferred protein sequences are in general very divergent from those of other organisms, all of the required iron-sulfur cluster-coordinating residues are present. Moreover, the discontinuity in the euglenozoan SdhB sequence occurs between the two domains of a typical, covalently continuous SdhB, consistent with the inference that the euglenozoan 'half' proteins are functional. Conclusion The discovery of this unique molecular marker provides evidence for the monophyly of Euglenozoa that is independent of evolutionary models. Our results pose questions about the origin and timing of this novel gene arrangement and the structure and function of euglenozoan SdhB.

  6. Genetic diversity of Echinococcus granulosus in southwest China determined by the mitochondrial NADH dehydrogenase subunit 2 gene.

    Science.gov (United States)

    Wang, Jiahai; Wang, Ning; Hu, Dandan; Zhong, Xiuqin; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    We evaluated genetic diversity and structure of Echinococcus granulosus by analyzing the complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene in 51 isolates of E. granulosus sensu stricto metacestodes collected at three locations in this region. We detected 19 haplotypes, which formed a distinct clade with the standard sheep strain (G1). Hence, all 51 isolates were identified as E. granulosus sensu stricto (G1-G3). Genetic relationships among haplotypes were not associated with geographical divisions, and fixation indices (Fst) among sampling localities were low. Hence, regional populations of E. granulosus in the southwest China are not differentiated, as gene flow among them remains high. This information is important for formulating unified region-wide prevention and control measures. We found large negative Fu's Fs and Tajima's D values and a unimodal mismatch distribution, indicating that the population has undergone a demographic expansion. We observed high genetic diversity among the E. granulosus s. s. isolates, indicating that the parasite population in this important bioregion is genetically robust and likely to survive and spread. The data from this study will prove valuable for future studies focusing on improving diagnosis and prevention methods and developing robust control strategies.

  7. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  8. Accessory subunits are integral for assembly and function of human mitochondrial complex I.

    Science.gov (United States)

    Stroud, David A; Surgenor, Elliot E; Formosa, Luke E; Reljic, Boris; Frazier, Ann E; Dibley, Marris G; Osellame, Laura D; Stait, Tegan; Beilharz, Traude H; Thorburn, David R; Salim, Agus; Ryan, Michael T

    2016-10-06

    Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial respiratory chain and is composed of 45 subunits in humans, making it one of the largest known multi-subunit membrane protein complexes. Complex I exists in supercomplex forms with respiratory chain complexes III and IV, which are together required for the generation of a transmembrane proton gradient used for the synthesis of ATP. Complex I is also a major source of damaging reactive oxygen species and its dysfunction is associated with mitochondrial disease, Parkinson's disease and ageing. Bacterial and human complex I share 14 core subunits that are essential for enzymatic function; however, the role and necessity of the remaining 31 human accessory subunits is unclear. The incorporation of accessory subunits into the complex increases the cellular energetic cost and has necessitated the involvement of numerous assembly factors for complex I biogenesis. Here we use gene editing to generate human knockout cell lines for each accessory subunit. We show that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability. Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the stability of other subunits residing in the same structural module. Analysis of proteomic changes after the loss of specific modules revealed that ATP5SL and DMAC1 are required for assembly of the distal portion of the complex I membrane arm. Our results demonstrate the broad importance of accessory subunits in the structure and function of human complex I. Coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level.

  9. Ovarian expression of inhibin-subunits, 3β-hydroxysteroid dehydrogenase, and cytochrome P450 aromatase during the estrous cycle and pregnancy of shiba goats (Capra hircus).

    Science.gov (United States)

    Kandiel, Mohamed M M; Watanabe, Gen; Taya, Kazuyoshi

    2010-01-01

    The cellular localization of the inhibin subunits (α, β(A), and β (B)), steroidogenic enzymes (3β-hydroxysteroid dehydrogenase (3βHSD) and cytochrome P450 aromatase (P450arom) were evaluated in the ovaries of cyclic (n=6) and pregnant (n=2) Shiba goats (Capra Hircus). The immunointensity of inhibin α and β(A) subunits showed an increase in the granulosa cells (GC) of developing follicles. Inhibin β(B) subunit and P450arom showed high expression in GC of antral follicles. 3βHSD immunoreactivity was uniform in preantral and antral follicles. In follicular phase and late pregnancy, there was a strong expression of inhibin α subunit in GC of antral follicles. Although in mid pregnancy, antral follicles GC showed moderate immunostaining of inhibin β subunits, the immunoreactivity of inhibin β(A) and β(B) subunits was high during the follicular and luteal stages, respectively. While, immunoreactivity of GC to P450arom was moderate during all studied stages, and 3βHSD immunoreactivity was plentiful in antral follicles during the luteal phase. The immunoreactivity to inhibin α subunit and P450arom was abundant during mid pregnancy in the luteal tissues. Immunoreaction to inhibin β subunits was faint-to-moderate in cyclic and pregnancy corpora lutea. Immunoexpression of 3βHSD was maximal in late pregnancy corpora lutea. The present results suggest that, in goats, the GC of antral follicles are the main source of dimeric inhibins and that corpora lutea may partially participate in the secretion of inhibin. Changes in ovarian hormonal levels might depend on the synthesizing capacity of hormones in the follicles and corpora lutea to regulate the goat's reproductive stages.

  10. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex.

    Science.gov (United States)

    Goncalves, Renata L S; Bunik, Victoria I; Brand, Martin D

    2016-02-01

    In humans, mutations in dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) are associated with neurological abnormalities and accumulation of 2-oxoadipate, 2-aminoadipate, and reactive oxygen species. The protein encoded by DHTKD1 has sequence and structural similarities to 2-oxoglutarate dehydrogenase, and the 2-oxoglutarate dehydrogenase complex can produce superoxide/H2O2 at high rates. The DHTKD1 enzyme is hypothesized to catalyze the oxidative decarboxylation of 2-oxoadipate, a shared intermediate of the degradative pathways for tryptophan, lysine and hydroxylysine. Here, we show that rat skeletal muscle mitochondria can produce superoxide/H2O2 at high rates when given 2-oxoadipate. We identify the putative mitochondrial 2-oxoadipate dehydrogenase complex as one of the sources and characterize the conditions that favor its superoxide/H2O2 production. Rates increased at higher NAD(P)H/NAD(P)(+) ratios and were higher at each NAD(P)H/NAD(P)(+) ratio when 2-oxoadipate was present, showing that superoxide/H2O2 was produced during the forward reaction from 2-oxoadipate, but not in the reverse reaction from NADH in the absence of 2-oxoadipate. The maximum capacity of the 2-oxoadipate dehydrogenase complex for production of superoxide/H2O2 is comparable to that of site IF of complex I, and seven, four and almost two-fold lower than the capacities of the 2-oxoglutarate, pyruvate and branched-chain 2-oxoacid dehydrogenase complexes, respectively. Regulation by ADP and ATP of H2O2 production driven by 2-oxoadipate was very different from that driven by 2-oxoglutarate, suggesting that site AF of the 2-oxoadipate dehydrogenase complex is a new source of superoxide/H2O2 associated with the NADH isopotential pool in mitochondria.

  11. Proteomic investigations of complex I composition: How to define a subunit?

    Directory of Open Access Journals (Sweden)

    Etienne H Meyer

    2012-05-01

    Full Text Available Complex I is present in almost all aerobic species. Being the largest complex of the respiratory chain, it has a central role in energizing biological membranes and is essential for many organisms. Bacterial complex I is composed of 14 subunits that are sufficient to achieve the respiratory functions. Eukaryotic enzymes contain orthologs of the 14 bacterial subunits and around 30 additional subunits. This complexity suggests either that complex I requires more stabilizing subunits in mitochondria or that it fulfills additional functions. In many organisms recent work on complex I concentrated on the determination of its exact composition. This review summarizes the work done to elucidate complex I composition in the model plant Arabidopsis and proposes a model for the organization of its 44 confirmed subunits. The comparison of the different studies investigating the composition of complex I across species identifies sample preparation for the proteomic analysis as critical to differentiate between true subunits, assembly factors or proteins associated with complex I. Coupling comparative proteomics with biochemical or genetic studies is thus required to define a subunit and its function within the complex.

  12. The β and γ subunits play distinct functional roles in the α2βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase

    Science.gov (United States)

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Liu, Yabing; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase existing as the α2βγ heterotetramer, catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the Krebs cycle, and is allosterically regulated by citrate, ADP and ATP. To explore the functional roles of the regulatory β and γ subunits, we systematically characterized the enzymatic properties of the holoenzyme and the composing αβ and αγ heterodimers in the absence and presence of regulators. The biochemical and mutagenesis data show that αβ and αγ alone have considerable basal activity but the full activity of α2βγ requires the assembly and cooperative function of both heterodimers. α2βγ and αγ can be activated by citrate or/and ADP, whereas αβ cannot. The binding of citrate or/and ADP decreases the S0.5,isocitrate and thus enhances the catalytic efficiencies of the enzymes, and the two activators can act independently or synergistically. Moreover, ATP can activate α2βγ and αγ at low concentration and inhibit the enzymes at high concentration, but has only inhibitory effect on αβ. Furthermore, the allosteric activation of α2βγ is through the γ subunit not the β subunit. These results demonstrate that the γ subunit plays regulatory role to activate the holoenzyme, and the β subunit the structural role to facilitate the assembly of the holoenzyme.

  13. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    Science.gov (United States)

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies.

  14. Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Raha, Sandeep; Myint, A Tomoko; Johnstone, Leslie; Robinson, Brian H

    2002-03-01

    Human NADH CoQ oxidoreductase is composed of a total of 43 subunits and has been demonstrated to be a major site for the production of superoxide by mitochondria. Incubation of rat heart mitochondria with ATP resulted in the phosphorylation of two mitochondrial membrane proteins, one with a M(r) of 6 kDa consistent with the NDUFA1 (MWFE), and one at 18kDa consistent with either NDUFS4 (AQDQ) or NDUFB7 (B18). Phosphorylation of both subunits was enhanced by cAMP derivatives and protein kinase A (PKA) and was inhibited by PKA inhibitors (PKAi). When mitochondrial membranes were incubated with pyruvate dehydrogenase kinase, phosphorylation of an 18kDa protein but not a 6kDa protein was observed. NADH cytochrome c reductase activity was decreased and superoxide production rates with NADH as substrate were increased. On the other hand, with protein kinase A-driven phosphorylation, NADH cytochrome c reductase was increased and superoxide production decreased. Overall there was a 4-fold variation in electron transport rates observable at the extremes of these phosphorylation events. This suggests that electron flow through complex I and the production of oxygen free radicals can be regulated by phosphorylation events. In light of these observations we discuss a potential model for the dual regulation of complex I and the production of oxygen free radicals by both PKA and PDH kinase.

  15. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

    Science.gov (United States)

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-05-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.

  16. Probing the proton channels in subunit N of Complex I from Escherichia coli through intra-subunit cross-linking.

    Science.gov (United States)

    Tursun, Ablat; Zhu, Shaotong; Vik, Steven B

    2016-12-01

    Respiratory Complex I appears to have 4 sites for proton translocation, which are coupled to the oxidation of NADH and reduction of coenzyme Q. The proton pathways are thought to be made of offset half-channels that connect to the membrane surfaces, and are connected by a horizontal path through the center of the membrane. In this study of the enzyme from Escherichia coli, subunit N, containing one of the sites, was targeted. Pairs of cysteine residues were introduced into neighboring α-helices along the proposed proton pathways. In an effort to constrain conformational changes that might occur during proton translocation, we attempted to form disulfide bonds or methanethiosulfonate bridges between two engineered cysteine residues. Cysteine modification was inferred by the inability of PEG-maleimide to shift the electrophoretic mobility of subunit N, which will occur upon reaction with free sulfhydryl groups. After the cross-linking treatment, NADH oxidase and NADH-driven proton translocation were measured. Ten different pairs of cysteine residues showed evidence of cross-linking. The most significant loss of enzyme activity was seen for residues near the essential Lys 395. This residue is positioned between the proposed proton half-channel to the periplasm and the horizontal connection through subunit N, and is also near the essential Glu 144 of subunit M. The results suggest important conformational changes in this region for the delivery of protons to the periplasm, or for coupling the actions of subunit N to subunit M. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. CRYSTAL-STRUCTURE OF AN ELECTRON-TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE AND AMICYANIN

    NARCIS (Netherlands)

    CHEN, LY; DURLEY, R; POLIKS, BJ; HAMADA, K; CHEN, ZW; MATHEWS, FS; DAVIDSON, VL; SATOW, Y; HUIZINGA, E; VELLIEUX, FMD; HOL, WGJ

    1992-01-01

    The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-angstrom resolution using molecular replacement. The search model was MADH from Thiobacillus ver

  18. CRYSTAL-STRUCTURE OF AN ELECTRON-TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE AND AMICYANIN

    NARCIS (Netherlands)

    CHEN, LY; DURLEY, R; POLIKS, BJ; HAMADA, K; CHEN, ZW; MATHEWS, FS; DAVIDSON, VL; SATOW, Y; HUIZINGA, E; VELLIEUX, FMD; HOL, WGJ

    1992-01-01

    The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-angstrom resolution using molecular replacement. The search model was MADH from Thiobacillus

  19. Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex

    Science.gov (United States)

    Strumilo, Slawomir

    2005-01-01

    Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…

  20. CRYSTAL-STRUCTURE OF AN ELECTRON-TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE AND AMICYANIN

    NARCIS (Netherlands)

    CHEN, LY; DURLEY, R; POLIKS, BJ; HAMADA, K; CHEN, ZW; MATHEWS, FS; DAVIDSON, VL; SATOW, Y; HUIZINGA, E; VELLIEUX, FMD; HOL, WGJ

    1992-01-01

    The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-angstrom resolution using molecular replacement. The search model was MADH from Thiobacillus ver

  1. Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex

    Science.gov (United States)

    Strumilo, Slawomir

    2005-01-01

    Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…

  2. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites.

    Science.gov (United States)

    Bartholomae, Maike; Meyer, Frederik M; Commichau, Fabian M; Burkovski, Andreas; Hillen, Wolfgang; Seidel, Gerald

    2014-02-01

    In Bacillus subtilis, recent in vivo studies revealed that particular enzymes of the tricarboxylic acid cycle form complexes that allow an efficient transfer of metabolites. Remarkably, a complex of the malate dehydrogenase (Mdh) (EC 1.1.1.37) with isocitrate dehydrogenase (Icd) (EC 1.1.1.42) was identified, although both enzymes do not catalyze subsequent reactions. In the present study, the interactions between these enzymes were characterized in vitro by surface plasmon resonance in the absence and presence of their substrates and cofactors. These analyses revealed a weak but specific interaction between Mdh and Icd, which was specifically stimulated by a mixture of substrates and cofactors of Icd: isocitrate, NADP(+) and Mg(2+). Wild-type Icd converted these substrates too fast, preventing any valid quantitative analysis of the interaction with Mdh. Therefore, binding of the IcdS104P mutant to Mdh was quantified because the mutation reduced the enzymatic activity by 174-fold but did not affect the stimulatory effect of substrates and cofactors on Icd-Mdh complex formation. The analysis of the unstimulated Mdh-IcdS104P interaction revealed kinetic constants of k(a) = 2.0 ± 0.2 × 10(2) m(-1) ·s(-1) and k(d) = 1.0 ± 0.1 × 10(-3) ·s(-1) and a K(D) value of 5.0 ± 0.1 μm. Addition of isocitrate, NADP(+) and Mg(2+) stimulated the affinity of IcdS104P to Mdh by 33-fold (K(D) = 0.15 ± 0.01 μm, k(a) = 1.7 ± 0.7 × 10(3) m(-1) ·s(-1), k(d) = 2.6 ± 0.6 × 10(-4) ·s(-1)). Analyses of the enzymatic activities of wild-type Icd and Mdh showed that Icd activity doubles in the presence of Mdh, whereas Mdh activity was slightly reduced by Icd. In summary, these data indicate substrate control of complex formation in the tricarboxylic acid cycle metabolon assembly and maintenance of the α-ketoglutarate supply for amino acid anabolism in vivo.

  3. Identification of a new human mtDNA polymorphism (A14290G in the NADH dehydrogenase subunit 6 gene

    Directory of Open Access Journals (Sweden)

    M. Houshmand

    2006-06-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity. The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid. We looked for base conservation using DNA star software (MEGALIGN program as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%. This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.

  4. Detection of the gene encoding the small subunit of the CO dehydrogenase enzyme in the H{sub 2}-evolving bacterium Rubrivivax gelatinosus CBS

    Energy Technology Data Exchange (ETDEWEB)

    Kish, A.; Levin, D. [Victoria Univ., BC (Canada)]|[Victoria Univ., BC (Canada)

    2001-06-01

    A purple non-sulfur bacterium, Rubrivivax gelatinosus CBS presents great opportunities, on a commercial scale, for the biological hydrogen production. A water-gas shift reaction is catalyzed when the bacterium is cultured in the presence of carbon oxide in the dark. The result is carbon monoxide (and water) being shifted into hydrogen (H{sub 2}) and carbon dioxide in near stoichiometric quantities. The production of hydrogen as a clean alternative fuel could be accomplished by using carbon monoxide generated from gasified waste biomass, using the bacterial water-gas shift reaction for that purpose. The characterization of three key enzymes and the genes encoding them was performed in a closely related purple non-sulfur bacterium called Rhodospirillum rubrum. They were: (1) a carbon monoxide dehydrogenase (CODH), (2) the ferredoxin-like electron-carrier small subunit of the CODH enzyme, and (3) an hydrogen-evolving hydrogenase. A transcriptional unit separate from the genes encoding the CODH and its ferredoxin-like small subunit encode the genes for the hydrogenase. A fragment of the Rhodospirillum rubrum ferredoxin-like subunit gene was amplified through the use of a polymerase chain reaction. Southern blots of restriction endonuclease digested genomic deoxyribonucleic acid (DNA) extracted from Rubrivivax gelatinosus CBS was probed with the fragment of the Rhodospirillum rubrum previously amplified using the polymerase chain reaction. Confirmation of the identification is being confirmed, while the gene is sequenced. 25 refs., 2 figs.

  5. Interaction of thiamin diphosphate with phosphorylated and dephosphorylated mammalian pyruvate dehydrogenase complex.

    Science.gov (United States)

    Liu, Xiaoqing; Bisswanger, Hans

    2005-01-01

    Kinetic and binding studies were carried out on substrate and cofactor interaction with the pyruvate dehydrogenase complex from bovine heart. Fluoropyruvate and pyruvamide, previously described as irreversible and allosteric inhibitors, respectively, are strong competitive inhibitors with respect to pyruvate. Binding of thiamin diphosphate was used to study differences between the active dephosphorylated and inactive phosphorylated enzyme states by spectroscopic methods. The change in both the intrinsic tryptophan fluorescence and the fluorescence of the 6-bromoacetyl-2-dimethylaminonaphthalene-labelled enzyme complex produced on addition of the cofactor showed similar binding behaviour for both enzyme forms, with slightly higher affinity for the phosphorylated form. Changes in the CD spectrum, especially the negative Cotton effect at 330 nm as a function of cofactor concentration, both in the absence and presence of pyruvate, also revealed no drastic differences between the two enzyme forms. Thus, inactivation of the enzyme activity of the pyruvate dehydrogenase complex is not caused by impeding the binding of substrate or cofactor.

  6. Chaperonin Structure - The Large Multi-Subunit Protein Complex

    Directory of Open Access Journals (Sweden)

    Irena Roterman

    2009-03-01

    Full Text Available The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each and the GroES (single ring of seven units - 97 aa each polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.

  7. Novel O-palmitolylated beta-E1 subunit of pyruvate dehydrogenase is phosphorylated during ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Barr Amy J

    2010-07-01

    Full Text Available Abstract Background During and following myocardial ischemia, glucose oxidation rates are low and fatty acids dominate as a source of oxidative metabolism. This metabolic phenotype is associated with contractile dysfunction during reperfusion. To determine the mechanism of this reliance on fatty acid oxidation as a source of ATP generation, a functional proteomics approach was utilized. Results 2-D gel electrophoresis of mitochondria from working rat hearts subjected to 25 minutes of global no flow ischemia followed by 40 minutes of aerobic reperfusion identified 32 changes in protein abundance compared to aerobic controls. Of the five proteins with the greatest change in abundance, two were increased (long chain acyl-coenzyme A dehydrogenase (48 ± 1 versus 39 ± 3 arbitrary units, n = 3, P In silico analysis identified the putative kinases as the insulin receptor kinase for the more basic form and protein kinase Cζ or protein kinase A for the more acidic form. These modifications of pyruvate dehydrogenase are associated with a 35% decrease in glucose oxidation during reperfusion. Conclusions Cardiac ischemia/reperfusion induces significant changes to a number of metabolic proteins of the mitochondrial proteome. In particular, ischemia/reperfusion induced the post-translational modification of pyruvate dehydrogenase, the rate-limiting step of glucose oxidation, which is associated with a 35% decrease in glucose oxidation during reperfusion. Therefore these post-translational modifications may have important implications in the regulation of myocardial energy metabolism.

  8. Activity of the mitochondrial pyruvate dehydrogenase complex in plants is stimulated in the presence of malate.

    Science.gov (United States)

    Igamberdiev, Abir U; Lernmark, Ulrikа; Gardeström, Per

    2014-11-01

    The effect of malate on the steady-state activity of the pea (Pisum sativum L.) and barley (Hordeum vulgare L.) leaf pyruvate dehydrogenase complex (PDC) has been studied in isolated mitochondria. The addition of malate was found to be stimulatory for the mitochondrial PDC, however there was no stimulation of chloroplast PDC. The stimulation was saturated below 1mM malate and was apparently related to а partially activated complex, which activity increased in the presence of malate by about twofold. Malate also reversed the reduction of PDC activity in the presence of glycine. Based on the obtained kinetic data, we suggest that the effect of malate is rather not a direct activation of PDC but involves the establishment of NAD-malate dehydrogenase equilibrium, decreasing concentration of NADH and relieving its inhibitory effect of PDC.

  9. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex

    NARCIS (Netherlands)

    G.E. Chalkley (Gillian); Y.M. Moshkin (Yuri); K. Langenberg (Karin); K. Bezstarosti (Karel); A. Blastyak (Andras); H. Gyurkovics (Henrik); J.A.A. Demmers (Jeroen); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractSWI/SNF ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in eukaryotic gene expression control. BAP and PBAP are the fly representatives of the two evolutionarily conserved major subclasses of SWI/SNF remodelers. Both complexes share seven core subunit

  10. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits.

    Science.gov (United States)

    Ott, Christine; Dorsch, Eva; Fraunholz, Martin; Straub, Sebastian; Kozjak-Pavlovic, Vera

    2015-01-01

    Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components.

  11. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    OpenAIRE

    2015-01-01

    Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to...

  12. Enzyme inhibition assay for pyruvate dehydrogenase complex: Clinical utility for the diagnosis of primary biliary cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Katsuhisa Omagri; Hiroaki Hazama; Shigeru Kohno

    2005-01-01

    Primary biliary cirrhosis (PBC) is usually diagnosed by the presence of characteristic histopathological features of the liver and/or antimitochondrial antibodies (AMA) in the serum traditionally detected by immunofluorescence.Recently, new and more accurate serological assays for the detection of AMA, such as enzyme-linked immunosorbent assay (ELISA), immunoblotting, and enzyme inhibition assay, have been developed. Of these,the enzyme inhibition assay for the detection of antipyruvate dehydrogenase complex (PDC) antibodies offers certain advantages such as objectivity, rapidity,simplicity, and low cost. Since this assay has almost 100% specificity, it may have particular applicability in screening the at-risk segment of the population in developing countries. Moreover, this assay could be also used for monitoring the disease course in PBC. Almost all sera of PBC-suspected patients can be confirmed for PBC or non-PBC by the combination results of immunoblotting and enzyme inhibition assay without histopathological examination. For the development of a "complete" or "gold standard" diagnostic assay for PBC, similar assays of the enzyme inhibition for anti2-oxoglutarate dehydrogenase complex (OGDC) and anti-branched chain oxo-acid dehydrogenase complex (BCOADC) antibodies will be needed in future.

  13. Role of positron emission tomography and bone scintigraphy in the evaluation of bone involvement in metastatic pheochromocytoma and paraganglioma: specific implications for succinate dehydrogenase enzyme subunit B gene mutations.

    NARCIS (Netherlands)

    Zelinka, T.; Timmers, H.J.L.M.; Kozupa, A.; Chen, C.C.; Carrasquillo, J.A.; Reynolds, J.C.; Ling, A.; Eisenhofer, G.; Lazurova, I.; Adams, K.T.; Whatley, M.A.; Widimsky, J.Jr.; Pacak, K.

    2008-01-01

    We performed a retrospective analysis of 71 subjects with metastatic pheochromocytoma and paraganglioma (30 subjects with mutation of succinate dehydrogenase enzyme subunit B (SDHB) gene and 41 subjects without SDHB mutation). Sixty-nine percent presented with bone metastases (SDHB +/-: 77% vs 63%),

  14. Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran

    Science.gov (United States)

    Reaghi, Saber; Haghighi, Ali; Harandi, Majid Fasihi; Spotin, Adel; Arzamani, Kourosh; Rouhani, Soheila

    2016-01-01

    Aim: Fascioliasis is one of the most zoonotic diseases with global extension. As the epidemiological distribution of Fasciola may lead to various genetic patterns of the parasite, the aim of this study is to identify Fasciola hepatica based on spermatogenesis, and phylogenetic analysis using mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I [ND1] and cytochrome oxidase subunit I) gene marker. Materials and Methods: In this study, 90 F. hepatica collected from 30 cattle at slaughterhouse located in three different geographical locations in the North-East of Iran were evaluated based on spermatogenetic ability and internal transcribed spacer 1 gene restriction fragment length polymorphism pattern. Genetic diversity and phylogenetic relationship using mtDNA gene marker for the isolates from the North-East of Iran, and other countries were then analyzed. Results: Partial sequences of mtDNA showed eight haplotypes in both genes. The phylogenic analysis using neighbor joining as well as maximum likelihood methods showed similar topologies of trees. Pairwise fixation index between different F. hepatica populations calculated from the nucleotide data set of ND1 gene are statistically significant and show the genetic difference. Conclusion: F. hepatica found in this region of Iran has different genetic structures through the other Fasciola populations in the world. PMID:27733809

  15. The TSC1-TSC2 complex consists of multiple TSC1 and TSC2 subunits

    Directory of Open Access Journals (Sweden)

    Hoogeveen-Westerveld Marianne

    2012-09-01

    Full Text Available Abstract Background Mutations to the TSC1 and TSC2 genes cause the disease tuberous sclerosis complex. The TSC1 and TSC2 gene products form a protein complex that integrates multiple metabolic signals to regulate the activity of the target of rapamycin (TOR complex 1 (TORC1 and thereby control cell growth. Here we investigate the quaternary structure of the TSC1-TSC2 complex by gel filtration and coimmunoprecipitation. Results TSC1 and TSC2 co-eluted in high molecular weight fractions by gel filtration. Coimmunoprecipitation of distinct tagged TSC1 and TSC2 isoforms demonstrated that TSC1-TSC2 complexes contain multiple TSC1 and TSC2 subunits. Conclusions TSC1 and TSC2 interact to form large complexes containing multiple TSC1 and TSC2 subunits.

  16. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila.

    OpenAIRE

    Abbanat, D R; Ferry, J G

    1990-01-01

    The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs...

  17. Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement.

    Science.gov (United States)

    Setiaputra, Dheva T; Cheng, Derrick Th; Lu, Shan; Hansen, Jesse M; Dalwadi, Udit; Lam, Cindy Hy; To, Jeffrey L; Dong, Meng-Qiu; Yip, Calvin K

    2017-02-01

    Elongator is a ~850 kDa protein complex involved in multiple processes from transcription to tRNA modification. Conserved from yeast to humans, Elongator is assembled from two copies of six unique subunits (Elp1 to Elp6). Despite the wealth of structural data on the individual subunits, the overall architecture and subunit organization of the full Elongator and the molecular mechanisms of how it exerts its multiple activities remain unclear. Using single-particle electron microscopy (EM), we revealed that yeast Elongator adopts a bilobal architecture and an unexpected asymmetric subunit arrangement resulting from the hexameric Elp456 subassembly anchored to one of the two Elp123 lobes that form the structural scaffold. By integrating the EM data with available subunit crystal structures and restraints generated from cross-linking coupled to mass spectrometry, we constructed a multiscale molecular model that showed the two Elp3, the main catalytic subunit, are located in two distinct environments. This work provides the first structural insights into Elongator and a framework to understand the molecular basis of its multifunctionality.

  18. Significant prognostic values of nuclear genes encoding mitochondrial complex I subunits in tumor patients.

    Science.gov (United States)

    Li, L D; Sun, H F; Bai, Y; Gao, S P; Jiang, H L; Jin, W

    2016-01-01

    In cancer biology, it remains still open question concerning the oncogenic versus oncosuppressor behavior of metabolic genes, which includes those encoding mitochondrial complex I (CI) subunits. The prognostic value of nuclear genome mRNAs expression of CI subunits is to be evaluated in the tumor patients. We used the Kaplan Meier plotter database, the cBio Cancer Genomics Portal, and the Oncomine in which gene expression data and survival information were from thousands of tumor patients to assess the relevance of nuclear genome mRNAs level of CI subunits to patients' survival, as well as their alterations in gene and expression level in tumors. We presented that the relative expression level of overwhelming majority of the nuclear genes of CI subunits with survival significance (overall survival, relapse free survival, progression free survival, distant metastasis free survival, post progression survival, and first progression), had consistent effects for patients in each type of four tumors separately, including breast cancer, ovarian cancer, lung cancer, and gastric cancer. However, in gene level, frequent cumulative or individual alteration of these genes could not significantly affect patients' survival and the overexpression of the individual gene was not ubiquitous in tumors versus normal tissues. Given that reprogrammed energy metabolism was viewed as an emerging hallmark of tumor, thus tumor patients' survival might potentially to be evaluated by certain threshold for overall expression of CI subunits. Comprehensive understanding of the nuclear genome encoded CI subunits may have guiding significance for the diagnosis and prognosis in tumor patients.

  19. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex.

    Science.gov (United States)

    Chalkley, Gillian E; Moshkin, Yuri M; Langenberg, Karin; Bezstarosti, Karel; Blastyak, Andras; Gyurkovics, Henrik; Demmers, Jeroen A A; Verrijzer, C Peter

    2008-05-01

    SWI/SNF ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in eukaryotic gene expression control. BAP and PBAP are the fly representatives of the two evolutionarily conserved major subclasses of SWI/SNF remodelers. Both complexes share seven core subunits, including the Brahma ATPase, but differ in a few signature subunits; POLYBROMO and BAP170 specify PBAP, whereas OSA defines BAP. Here, we show that the transcriptional coactivator and PHD finger protein SAYP is a novel PBAP subunit. Biochemical analysis established that SAYP is tightly associated with PBAP but absent from BAP. SAYP, POLYBROMO, and BAP170 display an intimately overlapping distribution on larval salivary gland polytene chromosomes. Genome-wide expression analysis revealed that SAYP is critical for PBAP-dependent transcription. SAYP is required for normal development and interacts genetically with core- and PBAP-selective subunits. Genetic analysis suggested that, like BAP, PBAP also counteracts Polycomb silencing. SAYP appears to be a key architectural component required for the integrity and association of the PBAP-specific module. We conclude that SAYP is a signature subunit that plays a major role in the functional specificity of the PBAP holoenzyme.

  20. Structures of the m(6)A Methyltransferase Complex: Two Subunits with Distinct but Coordinated Roles.

    Science.gov (United States)

    Zhou, Katherine I; Pan, Tao

    2016-07-21

    In this issue of Molecular Cell, Wang et al. (2016a) report crystal structures of the core of the METTL3/METTL14 m(6)A methyltransferase complex and propose how the two subunits interact and cooperate to bind and methylate RNA.

  1. Tracing human mitochondrial complex I assembly by use of GFP-tagged subunits

    NARCIS (Netherlands)

    Dieteren, C.E.J.; Koopman, W.J.H.; Nijtmans, L.G.J.

    2009-01-01

    Disturbances in the assembly of mitochondrial complex I (CI) are a frequent cause of mitochondrial disorders. Several lines of evidence hint at a semi-sequential assembly pathway, in which the 45 individual subunits that form the holoenzyme are pieced together by means of smaller intermediates. To u

  2. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex.

    Science.gov (United States)

    O'Brien, Marisa; Chalker, Julia; Slade, Liam; Gardiner, Danielle; Mailloux, Ryan J

    2017-05-01

    Pyruvate dehydrogenase (Pdh) is a vital source of reactive oxygen species (ROS) in several different tissues. Pdh has also been suggested to serve as a mitochondrial redox sensor. Here, we report that O2(•-)/ H2O2 emission from pyruvate dehydrogenase (Pdh) is altered by S-glutathionylation. Glutathione disulfide (GSSG) amplified O2(•-)/ H2O2 production by purified Pdh during reverse electron transfer (RET) from NADH. Thiol oxidoreductase glutaredoxin-2 (Grx2) reversed these effects confirming that Pdh is a target for S-glutathionylation. S-glutathionylation had the opposite effect during forward electron transfer (FET) from pyruvate to NAD(+) lowering O2(•-)/ H2O2 production. Immunoblotting for protein glutathione mixed disulfides (PSSG) following diamide treatment confirmed that purified Pdh can be S-glutathionylated. Similar observations were made with mouse liver mitochondria. S-glutathionylation catalysts diamide and disulfiram significantly reduced pyruvate or 2-oxoglutarate driven O2(•-)/ H2O2 production in liver mitochondria, results that were confirmed using various Pdh, 2-oxoglutarate dehydrogenase (Ogdh), and respiratory chain inhibitors. Immunoprecipitation of Pdh and Ogdh confirmed that either protein can be S-glutathionylated by diamide and disulfiram. Collectively, our results demonstrate that the S -glutathionylation of Pdh alters the amount of ROS formed by the enzyme complex. We also confirmed that Ogdh is controlled in a similar manner. Taken together, our results indicate that the redox sensing and ROS forming properties of Pdh and Ogdh are linked to S-glutathionylation.

  3. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae.

    Science.gov (United States)

    Matus-Ortega, M G; Cárdenas-Monroy, C A; Flores-Herrera, O; Mendoza-Hernández, G; Miranda, M; González-Pedrajo, B; Vázquez-Meza, H; Pardo, J P

    2015-10-01

    Mitochondria of Saccharomyces cerevisiae lack the respiratory complex I, but contain three rotenone-insensitive NADH dehydrogenases distributed on both the external (Nde1 and Nde2) and internal (Ndi1) surfaces of the inner mitochondrial membrane. These enzymes catalyse the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. Due to the high resolution of the Blue Native PAGE (BN-PAGE) technique combined with digitonin solubilization, several bands with NADH dehydrogenase activity were observed on the gel. The use of specific S. cerevisiae single and double mutants of the external alternative elements (ΔNDE1, ΔNDE2, ΔNDE1/ΔNDE2) showed that the high and low molecular weight complexes contained the Ndi1. Some of the Ndi1 associations took place with complexes III and IV, suggesting the formation of respirasome-like structures. Complex II interacted with other proteins to form a high molecular weight supercomplex with a molecular mass around 600 kDa. We also found that the majority of the Ndi1 was in a dimeric form, which is in agreement with the recently reported three-dimensional structure of the protein.

  4. Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3.

    Science.gov (United States)

    Guerrero-Castillo, Sergio; Cabrera-Orefice, Alfredo; Huynen, Martijn A; Arnold, Susanne

    2017-03-01

    Mitochondrial complex I is the largest respiratory chain complex. Despite the enormous progress made studying its structure and function in recent years, potential regulatory roles of its accessory subunits remained largely unresolved. Complex I gene NDUFV3, which occurs in metazoa, contains an extra exon that is only present in vertebrates and thereby evolutionary even younger than the rest of the gene. Alternative splicing of this extra exon gives rise to a short NDUFV3-S and a long NDUFV3-L protein isoform. Complexome profiling revealed that the two NDUFV3 isoforms are constituents of the multi-subunit complex I. Further mass spectrometric analyses of complex I from different murine and bovine tissues showed a tissue-specific expression pattern of NDUFV3-S and NDUFV3-L. Hence, NDUFV3-S was identified as the only isoform in heart and skeletal muscle, whereas in liver, brain, and lung NDUFV3-L was expressed as the dominant isoform, together with NDUFV3-S present in all tissues analyzed. Thus, we identified NDUFV3 as the first out of 30 accessory subunits of complex I present in vertebrate- and tissue-specific isoforms. Interestingly, the tissue-specific expression pattern of NDUFV3-S and NDUFV3-L isoforms was paralleled by changes in kinetic parameters, especially the substrate affinity of complex I. This may indicate a regulatory role of the NDUFV3 isoforms in different vertebrate tissues.

  5. Structural Characterization of Tip20p and Dsl1p, Subunits of the Dsl1p Vesicle Tethering Complex

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, A.; Ren, Y; Jeffrey, P; Hughson, F

    2009-01-01

    Multisubunit tethering complexes are essential for intracellular trafficking and have been proposed to mediate the initial interaction between vesicles and the membranes with which they fuse. Here we report initial structural characterization of the Dsl1p complex, whose three subunits are essential for trafficking from the Golgi apparatus to the endoplasmic reticulum (ER). Crystal structures reveal that two of the three subunits, Tip20p and Dsl1p, resemble known subunits of the exocyst complex, establishing a structural connection among several multisubunit tethering complexes and implying that many of their subunits are derived from a common progenitor. We show, moreover, that Tip20p and Dsl1p interact directly via N-terminal alpha-helices. Finally, we establish that different Dsl1p complex subunits bind independently to different ER SNARE proteins. Our results map out two alternative protein-interaction networks capable of tethering COPI-coated vesicles, via the Dsl1p complex, to ER membranes.

  6. L-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis.

    Science.gov (United States)

    Schimmeyer, Joram; Bock, Ralph; Meyer, Etienne H

    2016-01-01

    L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyses the last enzymatic step of the ascorbate biosynthetic pathway in plants. GLDH is localised to mitochondria and several reports have shown that GLDH is associated with complex I of the respiratory chain. In a gldh knock-out mutant, complex I is not detectable, suggesting that GLDH is essential for complex I assembly or stability. GLDH has not been identified as a genuine complex I subunit, instead, it is present in a smaller, lowly abundant version of complex I called complex I*. In addition, GLDH activity has also been detected in smaller protein complexes within mitochondria membranes. Here, we investigated the role of GLDH during complex I assembly. We identified GLDH in complexes co-localising with some complex I assembly intermediates. Using a mutant that accumulates complex I assembly intermediates, we confirmed that GLDH is associated with the complex I assembly intermediates of 400 and 450 kDa. In addition, we detected accumulation of the 200 kDa complex I assembly intermediate in the gldh mutant. Taken together, our data suggest that GLDH is an assembly factor of the membrane arm of complex I. This function appears to be independent of the role of GLDH in ascorbate synthesis, as evidenced by the ascorbate-deficient mutant vtc2-1 accumulating wild-type levels of complex I. Therefore, we propose that GLDH is a dual-function protein that has a second, non-enzymatic function in complex I assembly as a plant-specific assembly factor. We propose an updated model for complex I assembly that includes complex I* as an assembly intermediate.

  7. Distinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes.

    Science.gov (United States)

    Dawe, G Brent; Musgaard, Maria; Aurousseau, Mark R P; Nayeem, Naushaba; Green, Tim; Biggin, Philip C; Bowie, Derek

    2016-03-16

    Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two structural motifs that determine the time course of AMPAR channel activation. A network of electrostatic interactions at the apex of the AMPAR ligand-binding domain (LBD) is essential for gating by pore-forming subunits, whereas a conserved motif on the lower, D2 lobe of the LBD prolongs channel activity when auxiliary subunits are present. Accordingly, channel activity is almost entirely abolished by elimination of the electrostatic network but restored via auxiliary protein interactions at the D2 lobe. In summary, we propose that activation of native AMPAR complexes is coordinated by distinct structural pathways, favored by the association/dissociation of auxiliary subunits.

  8. Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry

    Directory of Open Access Journals (Sweden)

    Bertrand Fabre

    2014-09-01

    Full Text Available Protein complexes are the main molecular machines that support all major cellular pathways and their in-depth characterization are essential to understand their functions. Determining the stoichiometry of the different subunits of a protein complex still remains challenging. Recently, many label-free quantitative proteomic approaches have been developed to study the composition of protein complexes. It is therefore of great interest to evaluate these different methods in a stoichiometry oriented objective. Here we compare the ability of four absolute quantitative label-free methods currently used in proteomic studies to determine the stoichiometry of a well-characterized protein complex, the 26S proteasome.

  9. Nicotine Dehydrogenase Complexed with 6-Hydroxypseudooxynicotine Oxidase Involved in the Hybrid Nicotine-Degrading Pathway in Agrobacterium tumefaciens S33.

    Science.gov (United States)

    Li, Huili; Xie, Kebo; Yu, Wenjun; Hu, Liejie; Huang, Haiyan; Xie, Huijun; Wang, Shuning

    2016-01-04

    Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33.

  10. Expression, purification and crystallization of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with orotate

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Daniel Ken; Takashima, Eizo; Osanai, Arihiro; Shimizu, Hironari [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nara, Takeshi; Aoki, Takashi [Department of Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Harada, Shigeharu [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Kita, Kiyoshi, E-mail: kitak@m.u-tokyo.ac.jp [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2005-10-01

    The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Å resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall R{sub merge} of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (V{sub M}) of 2.2 Å{sup 3} Da{sup −1} and a solvent content of 44%.

  11. Subunit NDUFV3 is present in two distinct isoforms in mammalian complex I.

    Science.gov (United States)

    Bridges, Hannah R; Mohammed, Khairunnisa; Harbour, Michael E; Hirst, Judy

    2017-03-01

    Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the electron transport chain in mammalian mitochondria. Extensive proteomic and structural analyses of complex I from Bos taurus heart mitochondria have shown it comprises 45 subunits encoded on both the nuclear and mitochondrial genomes; 44 of them are different and one is present in two copies. The bovine heart enzyme has provided a model for studying the composition of complex I in other mammalian species, including humans, but the possibility of additional subunits or isoforms in other species or tissues has not been explored. Here, we describe characterization of the complexes I purified from five rat tissues and from a rat hepatoma cell line. We identify a~50kDa isoform of subunit NDUFV3, for which the canonical isoform is only ~10kDa in size. We combine LC-MS and MALDI-TOF mass spectrometry data from two different purification methods (chromatography and immuno-purification) with information from blue native PAGE analyses to show the long isoform is present in the mature complex, but at substoichiometric levels. It is also present in complex I in cultured human cells. We describe evidence that the long isoform is more abundant in both the mitochondria and purified complexes from brain (relative to in heart, liver, kidney and skeletal muscle) and more abundant still in complex I in cultured cells. We propose that the long 50kDa isoform competes with its canonical 10kDa counterpart for a common binding site on the flavoprotein domain of complex I.

  12. [Interaction of pyruvate dehydrogenase complex from the heart muscle with thiamine diphosphate and its derivatives].

    Science.gov (United States)

    Strumilo, S A; Kiselevskiĭ, Iu V; Taranda, N I; Zabrodskaia, S V; Oparin, D A

    1989-01-01

    Inhibitory effects of 23 thiamin derivatives on the bovine heart pyruvate dehydrogenase complex (PDC) were studied. Oxythiamin diphosphate and tetrahydroxythiamin diphosphate exhibited the most pronounced effect on the PDC activity, affecting the complex by a competitive type of inhibition for thiamin diphosphate (TDP). The apparent affinity of TDP and the anticoenzyme derivatives for apo PDC depended on presence of phosphate and divalent metal ions. Phosphate considerably increased the Km values for TDP (up to 0.17 microM) and the Ki values for oxythiamin diphosphate (0.40 microM) as well as for tetrahydroxythiamin diphosphate (0.23 microM). In presence of Mn2+, Km value for TDP was 3.5-fold lower as compared with Mg2+ containing medium.

  13. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, L. M. R.; Sanishvili, R.; Davidson, V. L.; Wilmot, C. M.; Biosciences Division; Univ. of Minnesota; Univ. of Mississippi

    2010-03-12

    MauG is a diheme enzyme responsible for the posttranslational modification of two tryptophan residues to form the tryptophan tryptophylquinone (TTQ) cofactor of methylamine dehydrogenase (MADH). MauG converts preMADH, containing monohydroxylated {beta}Trp{sup 57}, to fully functional MADH by catalyzing the insertion of a second oxygen atom into the indole ring and covalently linking {beta}Trp{sup 57} to {beta}Trp{sup 108}. We have solved the x-ray crystal structure of MauG complexed with preMADH to 2.1 angstroms. The c-type heme irons and the nascent TTQ site are separated by long distances over which electron transfer must occur to achieve catalysis. In addition, one of the hemes has an atypical His-Tyr axial ligation. The crystalline protein complex is catalytically competent; upon addition of hydrogen peroxide, MauG-dependent TTQ synthesis occurs.

  14. NADH dehydrogenase subunit-2 237 Leu/Met polymorphism modifies effects of cigarette smoking on risk of elevated levels of serum liver enzyme in male Japanese health check-up examinees: a cross-sectional study

    OpenAIRE

    Kokaze, Akatsuki; Yoshida, Masao; Ishikawa, Mamoru; Matsunaga, Naomi; Karita, Kanae; Ohtsu, Tadahiro; Ochiai, Hirotaka; Shirasawa, Takako; Nanri, Hinako; Baba, Yuta; HOSHINO, Hiromi; Takashima, Yutaka

    2014-01-01

    Background NADH dehydrogenase subunit-2 237 leucine/methionine (ND2-237 Leu/Met) polymorphism reportedly influences the effects of cigarette smoking on respiratory function, risk of dyslipidemia, serum non-high-density lipoprotein cholesterol levels, hematological parameters and intraocular pressure. The objective of this study was to investigate whether ND2-237 Leu/Met polymorphism modifies the effects of cigarette smoking on serum liver enzyme levels in male Japanese health check-up examine...

  15. Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits.

    Science.gov (United States)

    Carroll, Joe; Shannon, Richard J; Fearnley, Ian M; Walker, John E; Hirst, Judy

    2002-12-27

    Mitochondrial NADH:ubiquinone oxidoreductase (complex I) from bovine heart is a complicated multisubunit, membrane-bound assembly. Seven subunits are encoded by mitochondrial DNA, and the sequences of 36 nuclear encoded subunits have been described. The subunits of complex I and two subcomplexes (Ialpha and Ibeta) were resolved on one- and two-dimensional gels and by reverse-phase high performance liquid chromatography. Mass spectrometric analysis revealed two previously unknown subunits in complex I, named B14.7 and ESSS, one in each subcomplex. Coding sequences for each protein were identified in data bases and were confirmed by cDNA cloning and sequencing. Subunit B14.7 has an acetylated N terminus, no presequence, and contains four potential transmembrane helices. It is homologous to subunit 21.3b from complex I in Neurospora crassa and is related to Tim17, Tim22, and Tim23, which are involved in protein translocation across the inner membrane. Subunit ESSS has a cleaved mitochondrial import sequence and one potential transmembrane helix. A total of 45 different subunits of bovine complex I have now been characterized.

  16. Peculiarities of the inhibition of the pyruvate dehydrogenase complex by thiamine thiazolone diphosphate in vitro and in intact mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, G.M.; Strumilo, S.A.; Gorenshtein, B.I.; Ostrovskii, Yu.M.

    1986-07-10

    Thiamine thiazolone diphosphate (TTPP) possesses the ability to penetrate through the mitochondrial membrane and inhibit the pyruvate dehydrogenase complex in intact mitochondria, TTPP inhibits the activity of the complex of animal origin according to a mixed type (K/sub i/ 5 x 10/sup -8/ M) and yeast pyruvate decarboxylase according to a competitive type (K/sub i/ 5 x 10/sup -6/ M) with respect to thiamine diphosphate (TPP). Decarboxylation of pyruvate in intact and lysed rat liver and brain mitochondria is inhibited in the presence of TTPP significantly more weakly than the total activity of the pyruvate dehydrogenase complex, determined according to the formation of acetyl-CoA. It is suggested that TTPP, as an analog of the transition state, acts only in dehydrogenase reactions but not at the stage of simple decarboxylation of pyruvate.

  17. Elg1, the major subunit of an alternative RFC complex, interacts with SUMO-processing proteins.

    Science.gov (United States)

    Parnas, Oren; Amishay, Rona; Liefshitz, Batia; Zipin-Roitman, Adi; Kupiec, Martin

    2011-09-01

    PCNA is a homotrimeric ring with important roles in DNA replication and repair. PCNA is loaded and unloaded by the RFC complex, which is composed of five subunits (Rfc1-5). Three additional complexes that share with RFC the small subunits (Rfc2-5) and contain alternative large subunits were found in yeast and other eukaryotes. We have recently reported that one of these, the Elg1-RFC complex, interacts with SUMOylated PCNA and may play a role in its unloading during DNA repair. Here we report that a yeast-two-hybrid screen with the N terminus of Elg1(which interacts with SUMOylated PCNA) uncovered interactions with proteins that belong to the SUMO pathway, including Slx5 and Slx8, which form an E3 ubiquitin ligase that ubiquitinates SUMOylated proteins. Mutations in SLX5 result in a genomic instability phenotype similar to that of elg1 mutants. The physical interaction between the N terminus of Elg1 and Slx5 is mediated by poly-SUMO chains but not by PCNA modifications, and requires Siz2, but not Siz1, activity. Thus our results highlight the many important roles played by Elg1, some of which are PCNA-dependent and some PCNA-independent.

  18. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel

    2010-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  19. Structure of D-lactate dehydrogenase from Aquifex aeolicus complexed with NAD(+) and lactic acid (or pyruvate).

    Science.gov (United States)

    Antonyuk, Svetlana V; Strange, Richard W; Ellis, Mark J; Bessho, Yoshitaka; Kuramitsu, Seiki; Inoue, Yumiko; Yokoyama, Shigeyuki; Hasnain, S Samar

    2009-12-01

    The crystal structure of D-lactate dehydrogenase from Aquifex aeolicus (aq_727) was determined to 2.12 A resolution in space group P2(1)2(1)2(1), with unit-cell parameters a = 90.94, b = 94.43, c = 188.85 A. The structure was solved by molecular replacement using the coenzyme-binding domain of Lactobacillus helveticus D-lactate dehydrogenase and contained two homodimers in the asymmetric unit. Each subunit of the homodimer was found to be in a ;closed' conformation with the NADH cofactor bound to the coenzyme-binding domain and with a lactate (or pyruvate) molecule bound at the interdomain active-site cleft.

  20. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    Science.gov (United States)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  1. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasish

    2009-02-01

    Full Text Available Abstract Background The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. Results We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2Å resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in

  2. Atomic-Resolution Structures of Horse Liver Alcohol Dehydrogenase with NAD[superscript +] and Fluoroalcohols Define Strained Michaelis Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Plapp, Bryce V.; Ramaswamy, S. (inSTEM); (Iowa)

    2013-01-16

    Structures of horse liver alcohol dehydrogenase complexed with NAD{sup +} and unreactive substrate analogues, 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol, were determined at 100 K at 1.12 or 1.14 {angstrom} resolution, providing estimates of atomic positions with overall errors of 0.02 {angstrom}, the geometry of ligand binding, descriptions of alternative conformations of amino acid residues and waters, and evidence of a strained nicotinamide ring. The four independent subunits from the two homodimeric structures differ only slightly in the peptide backbone conformation. Alternative conformations for amino acid side chains were identified for 50 of the 748 residues in each complex, and Leu-57 and Leu-116 adopt different conformations to accommodate the different alcohols at the active site. Each fluoroalcohol occupies one position, and the fluorines of the alcohols are well-resolved. These structures closely resemble the expected Michaelis complexes with the pro-R hydrogens of the methylene carbons of the alcohols directed toward the re face of C4N of the nicotinamide rings with a C-C distance of 3.40 {angstrom}. The oxygens of the alcohols are ligated to the catalytic zinc at a distance expected for a zinc alkoxide (1.96 {angstrom}) and participate in a low-barrier hydrogen bond (2.52 {angstrom}) with the hydroxyl group of Ser-48 in a proton relay system. As determined by X-ray refinement with no restraints on bond distances and planarity, the nicotinamide rings in the two complexes are slightly puckered (quasi-boat conformation, with torsion angles of 5.9{sup o} for C4N and 4.8{sup o} for N1N relative to the plane of the other atoms) and have bond distances that are somewhat different compared to those found for NAD(P){sup +}. It appears that the nicotinamide ring is strained toward the transition state on the path to alcohol oxidation.

  3. Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex

    Directory of Open Access Journals (Sweden)

    Yoo Eunice

    2007-02-01

    Full Text Available Abstract Background Ypt/Rab GTPases and their GEF activators regulate intra-cellular trafficking in all eukaryotic cells. In S. cerivisiae, the modular TRAPP complex acts as a GEF for the Golgi gatekeepers: Ypt1 and the functional pair Ypt31/32. While TRAPPI, which acts in early Golgi, is conserved from fungi to animals, not much is known about TRAPPII, which acts in late Golgi and consists of TRAPPI plus three additional subunits. Results Here, we show a phylogenetic analysis of the three TRAPPII-specific subunits. One copy of each of the two essential subunits, Trs120 and Trs130, is present in almost every fully sequenced eukaryotic genome. Moreover, the primary, as well as the predicted secondary, structure of the Trs120- and Trs130-related sequences are conserved from fungi to animals. The mammalian orthologs of Trs120 and Trs130, NIBP and TMEM1, respectively, are candidates for human disorders. Currently, NIBP is implicated in signaling, and TMEM1 is suggested to have trans-membrane domains (TMDs and to function as a membrane channel. However, we show here that the yeast Trs130 does not function as a trans-membrane protein, and the human TMEM1 does not contain putative TMDs. The non-essential subunit, Trs65, is conserved only among many fungi and some unicellular eukaryotes. Multiple alignment analysis of each TRAPPII-specific subunit revealed conserved domains that include highly conserved amino acids. Conclusion We suggest that the function of both NIBP and TMEM1 in the regulation of intra-cellular trafficking is conserved from yeast to man. The conserved domains and amino acids discovered here can be used for functional analysis that should help to resolve the differences in the assigned functions of these proteins in fungi and animals.

  4. Succinate Dehydrogenase Subunit B (SDHB Is Expressed in Neurofibromatosis 1-Associated Gastrointestinal Stromal Tumors (Gists: Implications for the SDHB Expression Based Classification of Gists

    Directory of Open Access Journals (Sweden)

    Jeanny H. Wang, Jerzy Lasota, Markku Miettinen

    2011-01-01

    Full Text Available Gastrointestinal Stromal Tumor (GIST is the most common mesenchymal tumor of the digestive tract. GISTs develop with relatively high incidence in patients with Neurofibromatosis-1 syndrome (NF1. Mutational activation of KIT or PDGFRA is believed to be a driving force in the pathogenesis of familial and sporadic GISTs. Unlike those tumors, NF1-associated GISTs do not have KIT or PGDFRA mutations. Similarly, no mutational activation of KIT or PDGFRA has been identified in pediatric GISTs and in GISTs associated with Carney Triad and Carney-Stratakis Syndrome. KIT and PDGFRA-wild type tumors are expected to have lesser response to imatinib treatment. Recently, Carney Triad and Carney-Stratakis Syndrome -associated GISTs and pediatric GISTs have been shown to have a loss of expression of succinate dehydrogenase subunit B (SDHB, a Krebs cycle/electron transport chain interface protein. It was proposed that GISTs can be divided into SDHB- positive (type 1, and SDHB-negative (type 2 tumors because of similarities in clinical features and response to imatinib treatment. In this study, SDHB expression was examined immunohistochemically in 22 well-characterized NF1-associated GISTs. All analyzed tumors expressed SDHB. Based on SDHB-expression status, NF1-associated GISTs belong to type 1 category; however, similarly to SDHB type 2 tumors, they do not respond well to imatinib treatment. Therefore, a simple categorization of GISTs into SDHB-positive and-negative seems to be incomplete. A classification based on both SDHB expression status and KIT and PDGFRA mutation status characterize GISTs more accurately and allow subdivision of SDHB-positive tumors into different clinico-genetic categories.

  5. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming; Hale, Caryn R.; Terns, Rebecca M.; Terns, Michael P.; Li, Hong (FSU); (Georgia)

    2012-08-10

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases and bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.

  6. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    Science.gov (United States)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  7. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats.

    Science.gov (United States)

    Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V

    2009-08-01

    Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (pKrebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.

  8. Accessory subunit NUYM (NDUFS4) is required for stability of the electron input module and activity of mitochondrial complex I.

    Science.gov (United States)

    Kahlhöfer, Flora; Kmita, Katarzyna; Wittig, Ilka; Zwicker, Klaus; Zickermann, Volker

    2017-02-01

    Mitochondrial complex I is an intricate 1MDa membrane protein complex with a central role in aerobic energy metabolism. The minimal form of complex I consists of fourteen central subunits that are conserved from bacteria to man. In addition, eukaryotic complex I comprises some 30 accessory subunits of largely unknown function. The gene for the accessory NDUFS4 subunit of human complex I is a hot spot for fatal pathogenic mutations in humans. We have deleted the gene for the orthologous NUYM subunit in the aerobic yeast Yarrowia lipolytica, an established model system to study eukaryotic complex I and complex I linked diseases. We observed assembly of complex I which lacked only subunit NUYM and retained weak interaction with assembly factor N7BML (human NDUFAF2). Absence of NUYM caused distortion of iron sulfur clusters of the electron input domain leading to decreased complex I activity and increased release of reactive oxygen species. We conclude that NUYM has an important stabilizing function for the electron input module of complex I and is essential for proper complex I function.

  9. Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I

    Science.gov (United States)

    Kmita, Katarzyna; Wirth, Christophe; Warnau, Judith; Guerrero-Castillo, Sergio; Hunte, Carola; Hummer, Gerhard; Kaila, Ville R. I.; Zwicker, Klaus; Brandt, Ulrich; Zickermann, Volker

    2015-01-01

    Mitochondrial proton-pumping NADH:ubiquinone oxidoreductase (respiratory complex I) comprises more than 40 polypeptides and contains eight canonical FeS clusters. The integration of subunits and insertion of cofactors into the nascent complex is a complicated multistep process that is aided by assembly factors. We show that the accessory NUMM subunit of complex I (human NDUFS6) harbors a Zn-binding site and resolve its position by X-ray crystallography. Chromosomal deletion of the NUMM gene or mutation of Zn-binding residues blocked a late step of complex I assembly. An accumulating assembly intermediate lacked accessory subunit N7BM (NDUFA12), whereas a paralog of this subunit, the assembly factor N7BML (NDUFAF2), was found firmly bound instead. EPR spectroscopic analysis and metal content determination after chromatographic purification of the assembly intermediate showed that NUMM is required for insertion or stabilization of FeS cluster N4. PMID:25902503

  10. Mutation in mitochondrial complex IV subunit COX5A causes pulmonary arterial hypertension, lactic acidemia, and failure to thrive.

    Science.gov (United States)

    Baertling, Fabian; Al-Murshedi, Fathiya; Sánchez-Caballero, Laura; Al-Senaidi, Khalfan; Joshi, Niranjan P; Venselaar, Hanka; van den Brand, Mariël Am; Nijtmans, Leo Gj; Rodenburg, Richard Jt

    2017-03-01

    COX5A is a nuclear-encoded subunit of mitochondrial respiratory chain complex IV (cytochrome c oxidase). We present patients with a homozygous pathogenic variant in the COX5A gene. Clinical details of two affected siblings suffering from early-onset pulmonary arterial hypertension, lactic acidemia, failure to thrive, and isolated complex IV deficiency are presented. We show that the variant lies within the evolutionarily conserved COX5A/COX4 interface domain, suggesting that it alters the interaction between these two subunits during complex IV biogenesis. In patient skin fibroblasts, the enzymatic activity and protein levels of complex IV and several of its subunits are reduced. Lentiviral complementation rescues complex IV deficiency. The monomeric COX1 assembly intermediate accumulates demonstrating a function of COX5A in complex IV biogenesis. A potential therapeutic lead is demonstrated by showing that copper supplementation leads to partial rescue of complex IV deficiency in patient fibroblasts.

  11. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  12. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse

    Science.gov (United States)

    Almedom, Ruta B; Liewald, Jana F; Hernando, Guillermina; Schultheis, Christian; Rayes, Diego; Pan, Jie; Schedletzky, Thorsten; Hutter, Harald; Bouzat, Cecilia; Gottschalk, Alexander

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are homo- or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in single-channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the ‘levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER. PMID:19609303

  13. The acid-labile subunit of the ternary insulin-like growth factor complex in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Juul, A; Becker, U;

    2000-01-01

    In the circulation, insulin-like growth factor-I (IGF-I) is bound in a trimeric complex of 150 kDa with IGF binding protein-3 (IGFBP-3) and the acid-labile subunit (ALS). Whereas circulating IGF-I and IGFBP-3 are reported to be low in patients with chronic liver failure, the level of ALS has...... not been described in relation to hepatic dysfunction. The aim of the present study was therefore to measure circulating and hepatic venous concentrations of ALS in relation to hepatic function and the IGF axis....

  14. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    Science.gov (United States)

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.

  15. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport.

    Science.gov (United States)

    Makiuchi, Takashi; Mi-ichi, Fumika; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2013-01-01

    Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment.

  16. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  17. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit.

    Science.gov (United States)

    Fisher-Wellman, Kelsey H; Lin, Chien-Te; Ryan, Terence E; Reese, Lauren R; Gilliam, Laura A A; Cathey, Brook L; Lark, Daniel S; Smith, Cody D; Muoio, Deborah M; Neufer, P Darrell

    2015-04-15

    Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+/NADH) and anabolic (NADP+/NADPH) processes integrate during metabolism to maintain cellular redox homoeostasis, however, is unknown. The present work identifies a continuously cycling mitochondrial membrane potential (ΔΨm)-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced, however, is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyses the regeneration of NADPH from NADH at the expense of ΔΨm. The net effect is an automatic fine-tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy-expenditure rates, consistent with their well-known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homoeostasis is maintained and body weight is defended during periods of positive and negative energy balance.

  18. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    Science.gov (United States)

    Fisher-Wellman, Kelsey H.; Lin, Chien-Te; Ryan, Terence E.; Reese, Lauren R.; Gilliam, Laura A. A.; Cathey, Brook L.; Lark, Daniel S.; Smith, Cody D.; Muoio, Deborah M.; Neufer, P. Darrell

    2015-01-01

    SUMMARY Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced however is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyzes the regeneration of NADPH from NADH at the expense of the mitochondrial membrane potential. The net effect is an automatic fine tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy expenditure rates, consistent with their well known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703

  19. Roles of subunit NuoL in the proton pumping coupling mechanism of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli.

    Science.gov (United States)

    Narayanan, Madhavan; Sakyiama, Joseph A; Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko

    2016-10-01

    Respiratory complex I has an L-shaped structure formed by the hydrophilic arm responsible for electron transfer and the membrane arm that contains protons pumping machinery. Here, to gain mechanistic insights into the role of subunit NuoL, we investigated the effects of Mg(2+), Zn(2+) and the Na(+)/H(+) antiporter inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on proton pumping activities of various isolated NuoL mutant complex I after reconstitution into Escherichia coli double knockout (DKO) membrane vesicles lacking complex I and the NADH dehydrogenase type 2. We found that Mg(2+) was critical for proton pumping activity of complex I. At 2 µM Zn(2+), proton pumping of the wild-type was selectively inhibited without affecting electron transfer; no inhibition in proton pumping of D178N and D400A was observed, suggesting the involvement of these residues in Zn(2+) binding. Fifteen micromolar of EIPA caused up to ∼40% decrease in the proton pumping activity of the wild-type, D303A and D400A/E, whereas no significant change was detected in D178N, indicating its possible involvement in the EIPA binding. Furthermore, when menaquinone-rich DKO membranes were used, the proton pumping efficiency in the wild-type was decreased significantly (∼50%) compared with NuoL mutants strongly suggesting that NuoL is involved in the high efficiency pumping mechanism in complex I.

  20. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function.The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabitis elegans with notable improvements in reproduction, whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression.We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals and without affecting their respiration rate and ATP content.We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g. NDUFV1, NDUFS1, NDUFS6, NDUFS8 or GRIM-19 human orthologs in wild type animals is significantly reduced in the Ndi1p expressing worm.All together these results open up the perspective to identify new genes involved in complex I function, assembly or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

  1. Shared Subunits of Tetrahymena Telomerase Holoenzyme and Replication Protein A Have Different Functions in Different Cellular Complexes.

    Science.gov (United States)

    Upton, Heather E; Chan, Henry; Feigon, Juli; Collins, Kathleen

    2017-01-06

    In most eukaryotes, telomere maintenance relies on telomeric repeat synthesis by a reverse transcriptase named telomerase. To synthesize telomeric repeats, the catalytic subunit telomerase reverse transcriptase (TERT) uses the RNA subunit (TER) as a template. In the ciliate Tetrahymena thermophila, the telomerase holoenzyme consists of TER, TERT, and eight additional proteins, including the telomeric repeat single-stranded DNA-binding protein Teb1 and its heterotrimer partners Teb2 and Teb3. Teb1 is paralogous to the large subunit of the general single-stranded DNA binding heterotrimer replication protein A (RPA). Little is known about the function of Teb2 and Teb3, which are structurally homologous to the RPA middle and small subunits, respectively. Here, epitope-tagging Teb2 and Teb3 expressed at their endogenous gene loci enabled affinity purifications that revealed that, unlike other Tetrahymena telomerase holoenzyme subunits, Teb2 and Teb3 are not telomerase-specific. Teb2 and Teb3 assembled into other heterotrimer complexes, which when recombinantly expressed had the general single-stranded DNA binding activity of RPA complexes, unlike the telomere-specific DNA binding of Teb1 or the TEB heterotrimer of Teb1, Teb2, and Teb3. TEB had no more DNA binding affinity than Teb1 alone. In contrast, heterotrimers reconstituted with Teb2 and Teb3 and two other Tetrahymena RPA large subunit paralogs had higher DNA binding affinity than their large subunit alone. Teb1 and TEB, but not RPA, increased telomerase processivity. We conclude that in the telomerase holoenzyme, instead of binding DNA, Teb2 and Teb3 are Teb1 assembly factors. These findings demonstrate that Tetrahymena telomerase holoenzyme and RPA complexes share subunits and that RPA subunits have distinct functions in different heterotrimer assemblies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A formalism for scattering of complex composite structures. I. Applications to branched structures of asymmetric sub-units.

    Science.gov (United States)

    Svaneborg, Carsten; Pedersen, Jan Skov

    2012-03-14

    We present a formalism for the scattering of an arbitrary linear or acyclic branched structure build by joining mutually non-interacting arbitrary functional sub-units. The formalism consists of three equations expressing the structural scattering in terms of three equations expressing the sub-unit scattering. The structural scattering expressions allow composite structures to be used as sub-units within the formalism itself. This allows the scattering expressions for complex hierarchical structures to be derived with great ease. The formalism is generic in the sense that the scattering due to structural connectivity is completely decoupled from internal structure of the sub-units. This allows sub-units to be replaced by more complex structures. We illustrate the physical interpretation of the formalism diagrammatically. By applying a self-consistency requirement, we derive the pair distributions of an ideal flexible polymer sub-unit. We illustrate the formalism by deriving generic scattering expressions for branched structures such as stars, pom-poms, bottle-brushes, and dendrimers build out of asymmetric two-functional sub-units.

  3. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity.

    Science.gov (United States)

    de Graaff, Marieke A; Cleton-Jansen, Anne-Marie; Szuhai, Károly; Bovée, Judith V M G

    2013-08-01

    Recently, heterozygous mutations in exon 2 of the mediator complex subunit 12 gene have been described in 50% to 70% of uterine leiomyomas; the recurrent nature of these mutations suggests an important role in their pathogenesis. Mediator complex subunit 12 is involved in regulation of transcription and Wnt signaling. So far, little is known about the pathogenesis of the different subtypes of extrauterine leiomyomas and leiomyosarcomas. We performed mutation analysis of mediator complex subunit 12 and immunohistochemistry for β-catenin, using 69 tumors of 64 patients including 19 uterine leiomyomas, 6 abdominal leiomyomas, 9 angioleiomyomas, 5 piloleiomyomas, and 7 uterine and 23 soft tissue leiomyosarcomas. In line with previous observations, 58% of uterine leiomyomas carried a mediator complex subunit 12 mutation. However, all other extrauterine leiomyomas were negative with the exception of 1 abdominal leiomyoma with a likely primary uterine origin. Of the 30 leiomyosarcomas, only 1 uterine tumor harbored a mutation. A new observation is the identification of 3 tumors with a homozygous mutation; a monosomy X or interstitial deletion was excluded. β-Catenin immunohistochemistry showed nuclear positivity in only 55% of the mediator complex subunit 12-mutated uterine leiomyomas, suggesting the involvement of pathways other than canonical Wnt signaling in tumorigenesis. Interestingly, 80% of mediator complex subunit 12 wild-type sporadic piloleiomyomas displayed nuclear β-catenin positivity, indicating its involvement in this leiomyoma subtype. The lack of mediator complex subunit 12 mutations in extrauterine leiomyomas and leiomyosarcomas indicates that these tumors arise through a different pathway, emphasizing the genetic heterogeneity of smooth muscle tumors.

  4. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Gerrit Jan Schut

    2016-01-01

    Full Text Available Carbon monoxide (CO is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a carbon monoxide dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally-relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.

  5. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus

    Science.gov (United States)

    Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; Kelly, Robert M.; Adams, Michael W. W.

    2016-01-01

    Carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms. PMID:26858706

  6. Cloning and sequence analysis of the gene encoding 19-kD subunit of Complex I from Dunaliella salina.

    Science.gov (United States)

    Liu, Yi; Qiao, Dai Rong; Zheng, Hong Bo; Dai, Xu Lan; Bai, Lin Han; Zeng, Jing; Cao, Yi

    2008-09-01

    NADH:ubiquinone oxidoreductase (complex I ) of the mitochondrial respiratory chain catalyzes the transfer of electrons from NADH to ubiquinone coupled to proton translocation across the membrane. The cDNA sequence of Dunaliella salina mitochondrial NADH: ubiquinone oxidoreductase 19-kD subunit contains a 682-bp ORF encoding a protein with an apparent molecular mass of 19 kD. The sequence has been submitted to the GenBank database under Accession No. EF566890 (cDNA sequences) and EF566891 (genomic sequence). The deduced amino-acid sequence is 74% identical to Chlamydomonas reinhardtii mitochondrial NADH:ubiquinone oxidoreductase 18-kD subunit. The 19-kD subunit mRNA expression was observed in oxygen deficiency, salt treatment, and rotenone treatment with lower levels. It demonstrate that the 19-kD subunit of Complex I from Dunaliella salina is regulated by these stresses.

  7. Regulation of Muscle Pyruvate Dehydrogenase Complex in Insulin Resistance: Effects of Exercise and Dichloroacetate

    Directory of Open Access Journals (Sweden)

    Dumitru Constantin-Teodosiu

    2013-10-01

    Full Text Available Since the mitochondrial pyruvate dehydrogenase complex (PDC controls the rate of carbohydrate oxidation, impairment of PDC activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic syndrome, and the onset of type 2 diabetes (T2D. There are also situations where muscle insulin resistance can occur independently from high-fat dietary intake such as sepsis, inflammation, or drug administration though they all may share the same underlying mechanism, i.e., via activation of forkhead box family of transcription factors, and to a lower extent via peroxisome proliferator-activated receptors. The main feature of T2D is a chronic elevation in blood glucose levels. Chronic systemic hyperglycaemia is toxic and can lead to cellular dysfunction that may become irreversible over time due to deterioration of the pericyte cell's ability to provide vascular stability and control to endothelial proliferation. Therefore, it may not be surprising that T2D's complications are mainly macrovascular and microvascular related, i.e., neuropathy, retinopathy, nephropathy, coronary artery, and peripheral vascular diseases. However, life style intervention such as exercise, which is the most potent physiological activator of muscle PDC, along with pharmacological intervention such as administration of dichloroacetate or L-carnitine can prove to be viable strategies for treating muscle insulin resistance in obesity and T2D as they can potentially restore whole body glucose disposal.

  8. Potential dysregulation of the pyruvate dehydrogenase complex by bacterial toxins and insulin.

    Science.gov (United States)

    Thomas, Gregory W; Mains, Charles W; Slone, Denetta Sue; Craun, Michael L; Bar-Or, David

    2009-09-01

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl CoA, effectively controlling the entrance of glycolysis products into aerobic metabolism. Because hyperlactatemia is one of the hallmarks of sepsis, we hyphothesized that gram-positive and negative bacterial toxin treatment will interfere with mRNA levels of regulatory enzymes of the PDC and overall enzyme activity in hepatocytes. HEP G2 hepatocarcinoma cells were incubated for 24 hours in the presence of lipopolysaccaride (LPS) or lipoteichoic acid. Total RNA was then isolated and message RNA levels for both pyruvate dehydrogense kinase 4 and phosphatase 2 were determined by RTPCR. Amplified DNA fragments were visualized by ethidium bromide in agarose gels and densitometry of the bands was performed. Data were then normalized to the housekeeping gene, GAPDH. Enzyme activity was then determined by capturing intact PDC on nitrocellulose membranes then determining PDC-dependent production of NADH. LPS treatment led to a time dependent increase in PDK4 message while decreasing PDP2 levels. Enzyme activity, in these cells, also significantly decreased 24 hours after exposure to LPS. Cells cultured in the presence of lipoteichoic acid and insulin exhibited differing message ratios and activity levels when evaluated at 4 hours, but at 24 hours shifted to mimic those observed in LPS treated cells. This data may indicate that exposure to bacterial cell wall components and insulin could create cellular environments that result in a build-up of lactate.

  9. The crystal structure of the complex of Zea mays alpha subunit with a fragment of human beta subunit provides the clue to the architecture of protein kinase CK2 holoenzyme

    DEFF Research Database (Denmark)

    Battistutta, R; Sarno, S; De Moliner, E

    2000-01-01

    The crystal structure of a complex between the catalytic alpha subunit of Zea mays CK2 and a 23-mer peptide corresponding the C-terminal sequence 181-203 of the human CK2 regulatory beta subunit has been determined at 3.16-A resolution. The complex, composed of two alpha chains and two peptides...

  10. Differential association of protein subunits with the human RNase MRP and RNase P complexes.

    Science.gov (United States)

    Welting, Tim J M; Kikkert, Bastiaan J; van Venrooij, Walther J; Pruijn, Ger J M

    2006-07-01

    RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.

  11. Complex control of GABA(A receptor subunit mRNA expression: variation, covariation, and genetic regulation.

    Directory of Open Access Journals (Sweden)

    Megan K Mulligan

    Full Text Available GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents--C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel--Gabra1, Gabrb2, and Gabrg2--and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3' UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal, even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer

  12. Molecular characterization and mutational analysis of the human B17 subunit of the mitochondrial respiratory chain complex I.

    Science.gov (United States)

    Smeitink, J; Loeffen, J; Smeets, R; Triepels, R; Ruitenbeek, W; Trijbels, F; van den Heuvel, L

    1998-08-01

    Bovine NADH:ubiquinone oxidoreductase (complex 1) of the mitochondrial respiratory chain consists of about 36 nuclear-encoded subunits. We review the current knowledge of the 15 human complex I subunits cloned so far, and report the 598-bp cDNA sequence, the chromosomal localization and the tissue expression of an additional subunit, the B17 subunit. The cDNA open reading frame of B17 comprises 387 bp and encodes a protein of 128 amino acids (calculated Mr 15.5 kDa). There is 82.7% and 78.1% homology, respectively, at the cDNA and amino acid level with the bovine counterpart. The gene of the B17 subunit has been mapped to chromosome 2. Multiple-tissue dot-blots showed ubiquitous expression of the mRNA with relatively higher expression in tissues known for their high energy demand. Of these, kidney showed the highest expression. Mutational analysis of the subunit revealed no mutations or polymorphisms in 20 patients with isolated enzymatic complex I deficiency in cultured skin fibroblasts.

  13. Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Debora Lika, E-mail: dmakino@biochem.mpg.de; Conti, Elena [Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)

    2013-11-01

    The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryotic exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented.

  14. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II.

    Science.gov (United States)

    Maklashina, Elena; Rajagukguk, Sany; Starbird, Chrystal A; McDonald, W Hayes; Koganitsky, Anna; Eisenbach, Michael; Iverson, Tina M; Cecchini, Gary

    2016-02-05

    Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.

  15. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  16. Crystal structure of truncated human coatomer protein complex subunit ζ1 (Copζ1).

    Science.gov (United States)

    Lunev, Sergey; Semmelink, Marije F W; Xian, Jia Ling; Ma, Kai Yu; Leenders, Anna J A; Dömling, Alexander S S; Shtutman, Michael; Groves, Matthew R

    2017-01-01

    The majority of modern anticancer approaches target DNA/protein targets involved in tumour-cell proliferation. Such approaches have a major drawback, as nonproliferating cancer cells remain unaffected and may cause relapse or remission. Human coatomer protein complex I (COPI) subunit ζ (Copζ), a component of the coat protein involved in cell apoptosis and intracellular trafficking, has recently been proposed as a potential anticancer drug target. Previous studies have shown that two different isoforms of the Copζ subunit exist in mammalian cells. While normal cells express both Copζ1 and Copζ2 isoforms, various types of tumour cells display a loss of Copζ2 expression and rely solely on Copζ1 for growth and survival. Subsequent knockdown of Copζ1 results in specific inhibition of both proliferating and dormant tumour-cell populations, with no adverse growth effects on normal cells. Therefore, a Copζ1-targeting therapy was proposed to bypass the problem of dormant cancer cells that are resistant to conventional antiproliferative drugs, which is the major cause of tumour relapse. In order to aid in structure-based inhibitor design, a crystal structure is required. In this article, the recombinant expression, purification, crystallization and crystal structure of Copζ1, as well as the expression and purification of Copζ2, are reported.

  17. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa.

    Science.gov (United States)

    Klinger, Christen M; Klute, Mary J; Dacks, Joel B

    2013-01-01

    Apicomplexa are obligate intracellular parasites that cause tremendous disease burden world-wide. They utilize a set of specialized secretory organelles in their invasive process that require delivery of components for their biogenesis and function, yet the precise mechanisms underpinning such processes remain unclear. One set of potentially important components is the multi-subunit tethering complexes (MTCs), factors increasingly implicated in all aspects of vesicle-target interactions. Prompted by the results of previous studies indicating a loss of membrane trafficking factors in Apicomplexa, we undertook a bioinformatic analysis of MTC conservation. Building on knowledge of the ancient presence of most MTC proteins, we demonstrate the near complete retention of MTCs in the newly available genomes for Guillardiatheta and Bigelowiellanatans. The latter is a key taxonomic sampling point as a basal sister taxa to the group including Apicomplexa. We also demonstrate an ancient origin of the CORVET complex subunits Vps8 and Vps3, as well as the TRAPPII subunit Tca17. Having established that the lineage leading to Apicomplexa did at one point possess the complete eukaryotic complement of MTC components, we undertook a deeper taxonomic investigation in twelve apicomplexan genomes. We observed excellent conservation of the VpsC core of the HOPS and CORVET complexes, as well as the core TRAPP subunits, but sparse conservation of TRAPPII, COG, Dsl1, and HOPS/CORVET-specific subunits. However, those subunits that we did identify appear to be expressed with similar patterns to the fully conserved MTC proteins, suggesting that they may function as minimal complexes or with analogous partners. Strikingly, we failed to identify any subunits of the exocyst complex in all twelve apicomplexan genomes, as well as the dinoflagellate Perkinsus marinus. Overall, we demonstrate reduction of MTCs in Apicomplexa and their ancestors, consistent with modification during, and possibly pre

  18. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa.

    Directory of Open Access Journals (Sweden)

    Christen M Klinger

    Full Text Available Apicomplexa are obligate intracellular parasites that cause tremendous disease burden world-wide. They utilize a set of specialized secretory organelles in their invasive process that require delivery of components for their biogenesis and function, yet the precise mechanisms underpinning such processes remain unclear. One set of potentially important components is the multi-subunit tethering complexes (MTCs, factors increasingly implicated in all aspects of vesicle-target interactions. Prompted by the results of previous studies indicating a loss of membrane trafficking factors in Apicomplexa, we undertook a bioinformatic analysis of MTC conservation. Building on knowledge of the ancient presence of most MTC proteins, we demonstrate the near complete retention of MTCs in the newly available genomes for Guillardiatheta and Bigelowiellanatans. The latter is a key taxonomic sampling point as a basal sister taxa to the group including Apicomplexa. We also demonstrate an ancient origin of the CORVET complex subunits Vps8 and Vps3, as well as the TRAPPII subunit Tca17. Having established that the lineage leading to Apicomplexa did at one point possess the complete eukaryotic complement of MTC components, we undertook a deeper taxonomic investigation in twelve apicomplexan genomes. We observed excellent conservation of the VpsC core of the HOPS and CORVET complexes, as well as the core TRAPP subunits, but sparse conservation of TRAPPII, COG, Dsl1, and HOPS/CORVET-specific subunits. However, those subunits that we did identify appear to be expressed with similar patterns to the fully conserved MTC proteins, suggesting that they may function as minimal complexes or with analogous partners. Strikingly, we failed to identify any subunits of the exocyst complex in all twelve apicomplexan genomes, as well as the dinoflagellate Perkinsus marinus. Overall, we demonstrate reduction of MTCs in Apicomplexa and their ancestors, consistent with modification during

  19. Shared protein complex subunits contribute to explaining disrupted co-occurrence.

    Directory of Open Access Journals (Sweden)

    Adrian Schneider

    Full Text Available The gene composition of present-day genomes has been shaped by a complicated evolutionary history, resulting in diverse distributions of genes across genomes. The pattern of presence and absence of a gene in different genomes is called its phylogenetic profile. It has been shown that proteins whose encoding genes have highly similar profiles tend to be functionally related: As these genes were gained and lost together, their encoded proteins can probably only perform their full function if both are present. However, a large proportion of genes encoding interacting proteins do not have matching profiles. In this study, we analysed one possible reason for this, namely that phylogenetic profiles can be affected by multi-functional proteins such as shared subunits of two or more protein complexes. We found that by considering triplets of proteins, of which one protein is multi-functional, a large fraction of disturbed co-occurrence patterns can be explained.

  20. Reduced mitochondrial Ca(2+) transients stimulate autophagy in human fibroblasts carrying the 13514A>G mutation of the ND5 subunit of NADH dehydrogenase.

    Science.gov (United States)

    Granatiero, V; Giorgio, V; Calì, T; Patron, M; Brini, M; Bernardi, P; Tiranti, V; Zeviani, M; Pallafacchina, G; De Stefani, D; Rizzuto, R

    2016-02-01

    Mitochondrial disorders are a group of pathologies characterized by impairment of mitochondrial function mainly due to defects of the respiratory chain and consequent organellar energetics. This affects organs and tissues that require an efficient energy supply, such as brain and skeletal muscle. They are caused by mutations in both nuclear- and mitochondrial DNA (mtDNA)-encoded genes and their clinical manifestations show a great heterogeneity in terms of age of onset and severity, suggesting that patient-specific features are key determinants of the pathogenic process. In order to correlate the genetic defect to the clinical phenotype, we used a cell culture model consisting of fibroblasts derived from patients with different mutations in the mtDNA-encoded ND5 complex I subunit and with different severities of the illness. Interestingly, we found that cells from patients with the 13514A>G mutation, who manifested a relatively late onset and slower progression of the disease, display an increased autophagic flux when compared with fibroblasts from other patients or healthy donors. We characterized their mitochondrial phenotype by investigating organelle turnover, morphology, membrane potential and Ca(2+) homeostasis, demonstrating that mitochondrial quality control through mitophagy is upregulated in 13514A>G cells. This is due to a specific downregulation of mitochondrial Ca(2+) uptake that causes the stimulation of the autophagic machinery through the AMPK signaling axis. Genetic and pharmacological manipulation of mitochondrial Ca(2+) homeostasis can revert this phenotype, but concurrently decreases cell viability. This indicates that the higher mitochondrial turnover in complex I deficient cells with this specific mutation is a pro-survival compensatory mechanism that could contribute to the mild clinical phenotype of this patient.

  1. Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    Directory of Open Access Journals (Sweden)

    Cristescu Melania E

    2011-07-01

    Full Text Available Abstract Background Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh. Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S for Glutamic acid (F at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive.

  2. Exposing the subunit diversity and modularity of protein complexes by structural mass spectrometry approaches.

    Science.gov (United States)

    Chorev, Dror S; Ben-Nissan, Gili; Sharon, Michal

    2015-08-01

    Although the number of protein-encoding genes in the human genome is only about 20 000 not far from the amount found in the nematode worm genome, the number of proteins that are translated from these sequences is larger by several orders of magnitude. A number of mechanisms have evolved to enable this diversity. For example, genes can be alternatively spliced to create multiple transcripts; they may also be translated from different alternative initiation sites. After translation, hundreds of chemical modifications can be introduced in proteins, altering their chemical properties, folding, stability, and activity. The complexity is then further enhanced by the various combinations that are generated from the assembly of different subunit variants into protein complexes. This, in turn, confers structural and functional flexibility, and endows the cell with the ability to adapt to various environmental conditions. Therefore, exposing the variability of protein complexes is an important step toward understanding their biological functions. Revealing this enormous diversity, however, is not a simple task. In this review, we will focus on the array of MS-based strategies that are capable of performing this mission. We will also discuss the challenges that lie ahead, and the future directions toward which the field might be heading.

  3. The Use of Small-Angle Scattering for the Characterization of Multi Subunit Complexes.

    Science.gov (United States)

    Round, Adam

    2016-01-01

    As the continuing trend in structural biology is to probe ever more complex systems, new methodologies are being developed plus existing techniques are being expanded and adapted, to keep up with the demands of the research community. To investigate multi subunit complexes (protein-DNA, protein-RNA or protein-protein complexes) no one technique holds a monopoly, as each technique yields independent information inaccessible to the other methods, but can be used together in a complementary way. Additionally as large conformational changes are not unlikely, investigation of the dynamics of these systems under physiological conditions is needed to fully understand their function. Investigations under physiological conditions in solution are becoming more standardized and with more dedicated, automated beamlines available these experiments are easy to access by the general research community. As such the need for explanations of how to plan and undertake these experiments is needed. In this chapter we will cover the requirements of these experiments as well and how to plan undertake and analyze the results of such experiments.

  4. Fifteen novel mutations in the mitochondrial NADH dehydrogenase subunit 1, 2, 3, 4, 4L, 5 and 6 genes from Iranian patients with Leber's hereditary optic neuropathy (LHON).

    Science.gov (United States)

    Rezvani, Zahra; Didari, Elmira; Arastehkani, Ahoura; Ghodsinejad, Vadieh; Aryani, Omid; Kamalidehghan, Behnam; Houshmand, Massoud

    2013-12-01

    Leber's hereditary optic neuropathy (LHON) is an optic nerve dysfunction resulting from mutations in mitochondrial DNA (mtDNA), which is transmitted in a maternal pattern of inheritance. It is caused by three primary point mutations: G11778A, G3460A and T14484C; in the mitochondrial genome. These mutations are sufficient to induce the disease, accounting for the majority of LHON cases, and affect genes that encode for the different subunits of mitochondrial complexes I and III of the mitochondrial respiratory chain. Other mutations are secondary mutations associated with the primary mutations. The purpose of this study was to determine MT-ND variations in Iranian patients with LHON. In order to determine the prevalence and distribution of mitochondrial mutations in the LHON patients, their DNA was studied using PCR and DNA sequencing analysis. Sequencing of MT-ND genes from 35 LHON patients revealed a total of 44 nucleotide variations, in which fifteen novel variations-A14020G, A13663G, C10399T, C4932A, C3893G, C10557A, C12012A, C13934T, G4596A, T12851A, T4539A, T4941A, T13255A, T14353C and del A 4513-were observed in 27 LHON patients. However, eight patients showed no variation in the ND genes. These mutations contribute to the current database of mtDNA polymorphisms in LHON patients and may facilitate the definition of disease-related mutations in human mtDNA. This research may help to understand the disease mechanism and open up new diagnostic opportunities for LHON.

  5. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects?

    Science.gov (United States)

    Xekouki, Paraskevi; Stratakis, Constantine A

    2012-12-01

    Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney-Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD's loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects.

  6. Crystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic Subunit.

    Science.gov (United States)

    Suwa, Yoshiaki; Gu, Jianyou; Baranovskiy, Andrey G; Babayeva, Nigar D; Pavlov, Youri I; Tahirov, Tahir H

    2015-06-05

    In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å(2). Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes.

  7. Elementary steps in the reaction of the pyruvate dehydrogenase complex from pig heart. Kinetics of thiamine diphosphate binding to the complex.

    Science.gov (United States)

    Sümegi, B; Alkonyi, I

    1983-11-02

    In the progress curve of the reaction of the pyruvate dehydrogenase complex, a lag phase was observed when the concentration of thiamin diphosphate was lower than usual (about 0.2-1 mM) in the enzyme assay. The length of the lag phase was dependent on thiamin diphosphate concentration, ranging from 0.2 min to 2 min as the thiamin diphosphate concentration varied from 800 nM to 22 nM. The lag phase was also observed in the elementary steps catalyzed by the pyruvate dehydrogenase component. A Km value of 107 nM was found for thiamin diphosphate with respect to the steady-state reaction rate following the lag phase. The pre-steady-state kinetic data indicate that the resulting lag phase was the consequence of a slow holoenzyme formation from apoenzyme and thiamin diphosphate. The thiamin diphosphate can bind to the pyruvate dehydrogenase complex in the absence of pyruvate, but the presence of 2 mM pyruvate increases the rate constant of binding from 1.4 X 10(4) M-1 S-1 to 1.3 X 10(5) M-1 S-1 and decreases the rate constant of dissociation from 2.3 X 10(-2) S-1 to 4.1 X 10(-3) S-1. On the other hand, the effect of pyruvate on the thiamin diphosphate binding revealed the existence of a thiamin-diphosphate-independent pyruvate-binding site in the pyruvate dehydrogenase complex. Direct evidence was also obtained with fluorescence techniques for the existence of this binding site and the dissociation constant of pyruvate was found to be 0.38 mM. On the basis of these data we have proposed a random mechanism for the binding of pyruvate and thiamin diphosphate to the complex. Binding of substrates to the enzyme complex caused an increase in the fluorescence of the dansylaziridine-labelled pyruvate dehydrogenase complex, showing that binding of substrates to the complex is accompanied by structural changes.

  8. Structural Basis for Inactivation of the Human Pyruvate Dehydrogenase Complex by Phosphorylation: Role of Disordered Phosphorylation Loops

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato; Wynn, R. Max; Chuang, Jacinta L.; Tso, Shih-Chia; Machius, Mischa; Li, Jun; Chuang, David T. (UTSMC)

    2009-09-11

    We report the crystal structures of the phosporylated pyruvate dehydrogenase (E1p) component of the human pyruvate dehydrogenase complex (PDC). The complete phosphorylation at Ser264-{alpha} (site 1) of a variant E1p protein was achieved using robust pyruvate dehydrogenase kinase 4 free of the PDC core. We show that unlike its unmodified counterpart, the presence of a phosphoryl group at Ser264-{alpha} prevents the cofactor thiamine diphosphate-induced ordering of the two loops carrying the three phosphorylation sites. The disordering of these phosphorylation loops is caused by a previously unrecognized steric clash between the phosphoryl group at site 1 and a nearby Ser266-{alpha}, which nullifies a hydrogen-bonding network essential for maintaining the loop conformations. The disordered phosphorylation loops impede the binding of lipoyl domains of the PDC core to E1p, negating the reductive acetylation step. This results in the disruption of the substrate channeling in the PDC, leading to the inactivation of this catalytic machine.

  9. PetG and PetN, but not PetL, are essential subunits of the cytochrome b6f complex from Synechocystis PCC 6803.

    Science.gov (United States)

    Schneider, Dirk; Volkmer, Thomas; Rögner, Matthias

    2007-01-01

    The cytochrome b(6)f complex consists of four large core subunits and an additional four low molecular weight subunits, the function of which is elusive thus far. Here we sought to determine whether small subunits PetG, PetL, and PetN are essential for a cyanobacterial cytochrome b(6)f complex. We found that only PetL is dispensable, whereas PetG and PetN appear to be essential. Possible roles of the small cytochrome b(6)f complex subunits are discussed, and observations from our study are compared with previous findings.

  10. N-acetylation and phosphorylation of Sec complex subunits in the ER membrane

    Directory of Open Access Journals (Sweden)

    Soromani Christina

    2012-12-01

    Full Text Available Abstract Background Covalent modifications of proteins provide a mechanism to control protein function. Here, we have investigated modifications of the heptameric Sec complex which is responsible for post-translational protein import into the endoplasmic reticulum (ER. It consists of the Sec61 complex (Sec61p, Sbh1p, Sss1p which on its own mediates cotranslational protein import into the ER and the Sec63 complex (Sec63p, Sec62p, Sec71p, Sec72p. Little is known about the biogenesis and regulation of individual Sec complex subunits. Results We show that Sbh1p when it is part of the Sec61 complex is phosphorylated on T5 which is flanked by proline residues. The phosphorylation site is conserved in mammalian Sec61ß, but only partially in birds, and not in other vertebrates or unicellular eukaryotes, suggesting convergent evolution. Mutation of T5 to A did not affect the ability of mutant Sbh1p to complement the growth defect in a Δsbh1Δsbh2 strain, and did not result in a hypophosphorylated protein which shows that alternate sites can be used by the T5 kinase. A survey of yeast phosphoproteome data shows that Sbh1p can be phosphorylated on multiple sites which are organized in two patches, one at the N-terminus of its cytosolic domain, the other proximal to the transmembrane domain. Surprisingly, although N-acetylation has been shown to interfere with ER targeting, we found that both Sbh1p and Sec62p are cotranslationally N-acetylated by NatA, and N-acetyl-proteome data indicate that Sec61p is modified by the same enzyme. Mutation of the N-acetylation site, however, did not affect Sec62p function in posttranslational protein import into the ER. Disabling NatA resulted in growth retardation, but not in co- or posttranslational translocation defects or instability of Sec62p or Sbh1p. Conclusions We conclude that N-acetylation of transmembrane and tail-anchored proteins does not interfere with their ER-targeting, and that Sbh1p phosphorylation on T5

  11. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine : A covalent cofactor-inhibitor complex

    NARCIS (Netherlands)

    Oubrie, Arthur; Rozeboom, Henriëtte J.; Dijkstra, Bauke W.

    1999-01-01

    Soluble glucose dehydrogenase (s-GDH) from the bacterium Acinetobacter calcoaceticus is a classical quinoprotein. It requires the cofactor pyrroloquinoline quinone (PQQ) to catalyze the oxidation of glucose to gluconolactone, The precise catalytic role of PQQ in s-GDH and several other PQQ-dependent

  12. The F(0F(1-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Alena Zíková

    2009-05-01

    Full Text Available The mitochondrial F(0F(1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F(0F(1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F(1 subunits, three to F(0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F(1 alpha subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage cells and are important for the structural integrity of the F(0F(1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought.

  13. The integrator complex subunit 6 (Ints6 confines the dorsal organizer in vertebrate embryogenesis.

    Directory of Open Access Journals (Sweden)

    Lee D Kapp

    2013-10-01

    Full Text Available Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6. Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.

  14. The Integrator Complex Subunit 6 (Ints6) Confines the Dorsal Organizer in Vertebrate Embryogenesis

    Science.gov (United States)

    Kapp, Lee D.; Abrams, Elliott W.; Marlow, Florence L.; Mullins, Mary C.

    2013-01-01

    Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning. PMID:24204286

  15. Insights into subunit interactions in the Sulfolobus acidocaldarius archaellum cytoplasmic complex.

    Science.gov (United States)

    Banerjee, Ankan; Neiner, Tomasz; Tripp, Patrick; Albers, Sonja-Verena

    2013-12-01

    Archaella are the archaeal motility structure that is the functional pendant of the bacterial flagellum but is assembled by a mechanism similar to that for type IV pili. Recently, it was shown by Banerjee et al. that FlaX, a crenarchaeal archaellum subunit from Sulfolobus acidocaldarius, forms a ring-like oligomer, and it was proposed that this ring may act as a static platform for torque generation in archaellum rotation [Banerjee A et al. (2012) J Biol Chem 287, 43322-43330]. Moreover, the hexameric crystal structure of FlaI was solved, and its dual function in the assembly and the rotation of the archaellum was demonstrated [Reindl S et al. (2013) Mol Cell 49, 1069-1082]. In this study, we show by biochemical and biophysical techniques that FlaX from S. acidocaldarius acts as a cytoplasmic scaffold in archaellum assembly, as it interacts with FlaI as well as with the recA family protein FlaH, the only cytoplasmic components of the archaellum. Interaction studies using various truncated versions of FlaI demonstrated that its N- and C-termini interact with FlaX. Moreover, using microscale thermophoresis, we show that FlaI, FlaX and FlaH interact with high affinities in the nanomolar range. Therefore, we propose that these three proteins form the cytoplasmic motor complex of the archaellum.

  16. Somatic mosaicism for a novel PDHA1 mutation in a male with severe pyruvate dehydrogenase complex deficiency

    Directory of Open Access Journals (Sweden)

    Kristin K. Deeb

    2014-01-01

    Full Text Available Pyruvate dehydrogenase complex (PDC deficiencies are mostly due to mutations in the X-linked PDHA1 gene. Males with hemizygous PDHA1 mutations are clinically more severely affected, while those with mosaic PDHA1 mutations may manifest milder phenotypes. We report a patient harboring a novel, mosaic missense PDHA1 mutation, c.523G > A (p.A175T, with a severe clinical presentation of congenital microcephaly, significant brain abnormalities, persistent seizures, profound developmental delay, and failure to thrive. We review published cases of PDHA1 mosaicism.

  17. Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex.

    Science.gov (United States)

    Chinopoulos, Christos

    2013-08-01

    The citric acid cycle forms a major metabolic hub and as such it is involved in many disease states involving energetic imbalance. In spite of the fact that it is being branded as a "cycle", during hypoxia, when the electron transport chain does not oxidize reducing equivalents, segments of this metabolic pathway remain operational but exhibit opposing directionalities. This serves the purpose of harnessing high-energy phosphates through matrix substrate-level phosphorylation in the absence of oxidative phosphorylation. In this Mini-Review, these segments are appraised, pointing to the critical importance of the α-ketoglutarate dehydrogenase complex dictating their directionalities. Copyright © 2013 Wiley Periodicals, Inc.

  18. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways.

    Science.gov (United States)

    Narayan, Srinivas B; Master, Stephen R; Sireci, Anthony N; Bierl, Charlene; Stanley, Paige E; Li, Changhong; Stanley, Charles A; Bennett, Michael J

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.

  19. Short-Chain 3-Hydroxyacyl-Coenzyme A Dehydrogenase Associates with a Protein Super-Complex Integrating Multiple Metabolic Pathways

    Science.gov (United States)

    Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890

  20. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Srinivas B Narayan

    Full Text Available Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD and glutamate dehydrogenase (GDH explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1 from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.

  1. Purification and characterization of photosystem I complex from Synechocystis sp. PCC 6803 by expressing histidine-tagged subunits.

    Science.gov (United States)

    Kubota, Hisako; Sakurai, Isamu; Katayama, Kenta; Mizusawa, Naoki; Ohashi, Shunsuke; Kobayashi, Masami; Zhang, Pengpeng; Aro, Eva-Mari; Wada, Hajime

    2010-01-01

    We generated Synechocystis sp. PCC 6803 strains, designated F-His and J-His, which express histidine-tagged PsaF and PsaJ subunits, respectively, for simple purification of the photosystem I (PSI) complex. Six histidine residues were genetically added to the C-terminus of the PsaF subunit in F-His cells and the N-terminus of the PsaJ subunit in J-His cells. The histidine residues introduced had no apparent effect on photoautotrophic growth of the cells or the activity of PSI and PSII in thylakoid membranes. PSI complexes could be simply purified from the F-His and J-His cells by Ni2+-affinity column chromatography. When thylakoid membranes corresponding to 20 mg chlorophyll were used, PSI complexes corresponding to about 7 mg chlorophyll could be purified in both strains. The purified PSI complexes could be separated into monomers and trimers by ultracentrifugation in glycerol density gradient and high activity was recorded for trimers isolated from the F-His and J-His strains. Blue-Native PAGE and SDS-PAGE analysis of monomers and trimers indicated the existence of two distinct monomers with different subunit compositions and no contamination of PSI with other complexes, such as PSII and Cyt b(6)f. Further analysis of proteins and lipids in the purified PSI indicated the presence of novel proteins in the monomers and about six lipid molecules per monomer unit in the trimers. These results demonstrate that active PSI complexes can be simply purified from the constructed strains and the strains are very useful tools for analysis of PSI.

  2. Cdc73 subunit of the Paf1 complex contains a C-terminal Ras-like domain that promotes association of Paf1 complex with chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Amrich C. G.; Heroux A.; Davis, C. P.; Rogal, W. P.; Shirra, M. K.; Gardner, R. G.; Arndt, K. M.; VanDemark, A. P.

    2012-03-30

    The conserved Paf1 complex localizes to the coding regions of genes and facilitates multiple processes during transcription elongation, including the regulation of histone modifications. However, the mechanisms that govern Paf1 complex recruitment to active genes are undefined. Here we describe a previously unrecognized domain within the Cdc73 subunit of the Paf1 complex, the Cdc73 C-domain, and demonstrate its importance for Paf1 complex occupancy on transcribed chromatin. Deletion of the C-domain causes phenotypes associated with elongation defects without an apparent loss of complex integrity. Simultaneous mutation of the C-domain and another subunit of the Paf1 complex, Rtf1, causes enhanced mutant phenotypes and loss of histone H3 lysine 36 trimethylation. The crystal structure of the C-domain reveals unexpected similarity to the Ras family of small GTPases. Instead of a deep nucleotide-binding pocket, the C-domain contains a large but comparatively flat surface of highly conserved residues, devoid of ligand. Deletion of the C-domain results in reduced chromatin association for multiple Paf1 complex subunits. We conclude that the Cdc73 C-domain probably constitutes a protein interaction surface that functions with Rtf1 in coupling the Paf1 complex to the RNA polymerase II elongation machinery.

  3. Structurally related TPR subunits contribute differently to the function of the anaphase-promoting complex in Drosophila melanogaster.

    Science.gov (United States)

    Pál, Margit; Nagy, Olga; Ménesi, Dalma; Udvardy, Andor; Deák, Péter

    2007-09-15

    The anaphase-promoting complex/cyclosome or APC/C is a key regulator of chromosome segregation and mitotic exit in eukaryotes. It contains at least 11 subunits, most of which are evolutionarily conserved. The most abundant constituents of the vertebrate APC/C are the four structurally related tetratrico-peptide repeat (TPR) subunits, the functions of which are not yet precisely understood. Orthologues of three of the TPR subunits have been identified in Drosophila. We have shown previously that one of the TPR subunits of the Drosophila APC/C, Apc3 (also known as Cdc27 or Mákos), is essential for development, and perturbation of its function results in mitotic cyclin accumulation and metaphase-like arrest. In this study we demonstrate that the Drosophila APC/C associates with a new TPR protein, a genuine orthologue of the vertebrate Apc7 subunit that is not found in yeasts. In addition to this, transgenic flies knocked down for three of the TPR genes Apc6 (Cdc16), Apc7 and Apc8 (Cdc23), by RNA interference were established to investigate their function. Whole-body expression of subunit-specific dsRNA efficiently silences these genes resulting in only residual mRNA concentrations. Apc6/Cdc16 and Apc8/Cdc23 silencing induces developmental delay and causes different pupal lethality. Cytological examination showed that these animals had an elevated level of apoptosis, high mitotic index and delayed or blocked mitosis in a prometaphase-metaphase-like state with overcondensed chromosomes. The arrested neuroblasts contained elevated levels of cyclin B but, surprisingly, cyclin A appeared to be degraded normally. Contrary to the situation for the Apc6/Cdc16 and Apc8/Cdc23 genes, the apparent loss of Apc7 function does not lead to the above abnormalities. Instead, the Apc7 knocked down animals and null mutants are viable and fertile, although they display mild chromosome segregation defects and anaphase delay. Nevertheless, the Apc7 subunit shows synergistic genetic

  4. Cooperation of divalent ions and thiamin diphosphate in regulation of the function of pig heart pyruvate dehydrogenase complex.

    Science.gov (United States)

    Czerniecki, J; Czygier, M

    2001-12-01

    The role of Mg2+, Ca2+, and Mn2+ in regulation of purified pig heart pyruvate dehydrogenase complex (PDC) containing endogenous thiamin diphosphate (TDP) was studied. It was found that the effects of the cations depended on the presence of exogenous TDP. In the absence of added TDP, the divalent cations led to a shortening of a lag phase of the PDC reaction and a strong reduction of the Km value for pyruvate. The relative efficiency of the three types of ions are presented as follows: Mn2+>Ca2+>Mg2+. The other sources claim that in the presence of exogenous TDP, which alone strongly increased the affinity of PDC for pyruvate, any significant additional effects of the cations were not observed. However, Mg2+, Ca2+, and Mn2+ decreased the Km value for CoA in both cases, the absence and presence of exogenous TDP, in approximately a similar extent (about twofold). The affinity of PDC for NAD+ seems to be not sensitive to the presence of the divalent cations. The data obtained suggest that Mg2+, Ca2+, and Mn2+ can cooperate with TDP as positive regulatory effectors of pig heart PDC on the level of pyruvate dehydrogenase and lipoamide acetyltransferase components of the complex.

  5. Vitamin K epoxide reductase complex subunit 1 (Vkorc1 haplotype diversity in mouse priority strains

    Directory of Open Access Journals (Sweden)

    Kohn Michael H

    2008-12-01

    Full Text Available Abstract Background Polymorphisms in the vitamin K-epoxide reductase complex subunit 1 gene, Vkorc1, could affect blood coagulation and other vitamin K-dependent proteins, such as osteocalcin (bone Gla protein, BGP. Here we sequenced the Vkorc1 gene in 40 mouse priority strains. We analyzed Vkorc1 haplotypes with respect to prothrombin time (PT and bone mineral density and composition (BMD and BMC; phenotypes expected to be vitamin K-dependent and represented by data in the Mouse Phenome Database (MPD. Findings In the commonly used laboratory strains of Mus musculus domesticus we identified only four haplotypes differing in the intron or 5' region sequence of the Vkorc1. Six haplotypes differing by coding and non-coding polymorphisms were identified in the other subspecies of Mus. We detected no significant association of Vkorc1 haplotypes with PT, BMD and BMC within each subspecies of Mus. Vkorc1 haplotype sequences divergence between subspecies was associated with PT, BMD and BMC. Conclusion Phenotypic variation in PT, BMD and BMC within subspecies of Mus, while substantial, appears to be dominated by genetic variation in genes other than the Vkorc1. This was particularly evident for M. m. domesticus, where a single haplotype was observed in conjunction with virtually the entire range of PT, BMD and BMC values of all 5 subspecies of Mus included in this study. Differences in these phenotypes between subspecies also should not be attributed to Vkorc1 variants, but should be viewed as a result of genome wide genetic divergence.

  6. CO2 Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor.

    Science.gov (United States)

    Noji, Tomoyasu; Jin, Tetsuro; Nango, Mamoru; Kamiya, Nobuo; Amao, Yutaka

    2017-02-01

    In this study, we demonstrated the conversion of CO2 to formic acid under ambient conditions in a photoreduction nanoporous reactor using a photosensitizer, methyl viologen (MV(2+)), and formate dehydrogenase (FDH). The overall efficiency of this reactor was 14 times higher than that of the equivalent solution. The accumulation rate of formic acid in the nanopores of 50 nm is 83 times faster than that in the equivalent solution. Thus, this CO2 photoreduction nanoporous glass reactor will be useful as an artificial photosynthesis system that converts CO2 to fuel.

  7. Mitochondrial proteome analysis reveals depression of the Ndufs3 subunit and activity of complex I in diabetic rat brain.

    Science.gov (United States)

    Taurino, Federica; Stanca, Eleonora; Siculella, Luisa; Trentadue, Raffaella; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2012-04-18

    Type-1 diabetes resulting from defective insulin secretion and consequent hyperglycemia, is associated with "diabetic encephalopathy." This is characterized by brain neurophysiological and structural changes resulting in impairment of cognitive function. The present proteomic analysis of brain mitochondrial proteins from streptozotocin-induced type-1 diabetic rats, shows a large decrement of the Ndufs3 protein subunit of complex I, decreased level of the mRNA and impaired catalytic activity of the complex in the diabetic rats as compared to controls. The severe depression of the expression and enzymatic activity of complex I can represent a critical contributing factor to the onset of the diabetic encephalopathy in type-1 diabetes.

  8. The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function

    DEFF Research Database (Denmark)

    Rowland, Paul; Bjørnberg, Olof; Nielsen, Finn S.

    1998-01-01

    Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of (S)-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. A description is given of the crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A (DHODA......) complexed with the product of the enzyme reaction orotate. The structure of the complex to 2.0 A resolution has been compared with the structure of the native enzyme. The active site of DHODA is known to contain a water filled cavity buried beneath a highly conserved and flexible loop. In the complex...

  9. The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function

    DEFF Research Database (Denmark)

    Rowland, Paul; Bjørnberg, Olof; Nielsen, Finn S.

    1998-01-01

    Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of (S)-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. A description is given of the crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A (DHODA......) complexed with the product of the enzyme reaction orotate. The structure of the complex to 2.0 A resolution has been compared with the structure of the native enzyme. The active site of DHODA is known to contain a water filled cavity buried beneath a highly conserved and flexible loop. In the complex...

  10. Expression and purification of the recombinant subunits of toluene/o-xylene monooxygenase and reconstitution of the active complex.

    Science.gov (United States)

    Cafaro, Valeria; Scognamiglio, Roberta; Viggiani, Ambra; Izzo, Viviana; Passaro, Irene; Notomista, Eugenio; Piaz, Fabrizio Dal; Amoresano, Angela; Casbarra, Annarita; Pucci, Piero; Di Donato, Alberto

    2002-11-01

    This paper describes the cloning of the genes coding for each component of the complex of toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1, their expression, purification and characterization. Moreover, the reconstitution of the active complex from the recombinant subunits has been obtained, and the functional role of each component in the electron transfer from the electron donor to molecular oxygen has been determined. The coexpression of subunits B, E and A leads to the formation of a subcomplex, named H, with a quaternary structure (BEA)2, endowed with hydroxylase activity. Tomo F component is an NADH oxidoreductase. The purified enzyme contains about 1 mol of FAD, 2 mol of iron, and 2 mol of acid labile sulfide per mol of protein, as expected for the presence of one [2Fe-2S] cluster, and exhibits a typical flavodoxin absorption spectrum. Interestingly, the sequence of the protein does not correspond to that previously predicted on the basis of DNA sequence. We have shown that this depends on minor errors in the gene sequence that we have corrected. C component is a Rieske-type ferredoxin, whose iron and acid labile sulfide content is in agreement with the presence of one [2Fe-2S] cluster. The cluster is very sensitive to oxygen damage. Mixtures of the subcomplex H and of the subunits F, C and D are able to oxidize p-cresol into 4-methylcathecol, thus demonstrating the full functionality of the recombinant subunits as purified. Finally, experimental evidence is reported which strongly support a model for the electron transfer. Subunit F is the first member of an electron transport chain which transfers electrons from NADH to C, which tunnels them to H subcomplex, and eventually to molecular oxygen.

  11. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit

    OpenAIRE

    Zhang, Ke; Li, Zhihong; Jaiswal, Manish; Bayat, Vafa; Xiong, Bo; Sandoval, Hector; Charng, Wu-Lin; David, Gabriela; Haueter, Claire; Yamamoto, Shinya; Graham, Brett H.; Hugo J Bellen

    2013-01-01

    Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sici...

  12. The crystal structure of the complex of Zea mays alpha subunit with a fragment of human beta subunit provides the clue to the architecture of protein kinase CK2 holoenzyme

    DEFF Research Database (Denmark)

    Battistutta, R; Sarno, S; De Moliner, E

    2000-01-01

    The crystal structure of a complex between the catalytic alpha subunit of Zea mays CK2 and a 23-mer peptide corresponding the C-terminal sequence 181-203 of the human CK2 regulatory beta subunit has been determined at 3.16-A resolution. The complex, composed of two alpha chains and two peptides......, presents a molecular twofold axis, with each peptide interacting with both alpha chains. In the derived model of the holoenzyme, the regulatory subunits are positioned on the opposite side with respect to the opening of the catalytic sites, that remain accessible to substrates and cosubstrates. The beta...... subunit can influence the catalytic activity both directly and by promoting the formation of the alpha2 dimer, in which each alpha chain interacts with the active site of the other. Furthermore, the two active sites are so close in space that they can simultaneously bind and phosphorylate two...

  13. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase.

    Science.gov (United States)

    Singh, Dhirendra; Sielaff, Hendrik; Sundararaman, Lavanya; Bhushan, Shashi; Grüber, Gerhard

    2016-02-01

    A1AO ATP synthases couple ion-transport of the AO sector and ATP synthesis/hydrolysis of the A3B3-headpiece via their stalk subunits D and F. Here, we produced and purified stable A3B3D- and A3B3DF-complexes of the Methanosarcina mazei Gö1 A-ATP synthase as confirmed by electron microscopy. Enzymatic studies with these complexes showed that the M. mazei Gö1 A-ATP synthase subunit F is an ATPase activating subunit. The maximum ATP hydrolysis rates (Vmax) of A3B3D and A3B3DF were determined by substrate-dependent ATP hydrolysis experiments resulting in a Vmax of 7.9 s(-1) and 30.4 s(-1), respectively, while the KM is the same for both. Deletions of the N- or C-termini of subunit F abolished the effect of ATP hydrolysis activation. We generated subunit F mutant proteins with single amino acid substitutions and demonstrated that the subunit F residues S84 and R88 are important in stimulating ATP hydrolysis. Hybrid formation of the A3B3D-complex with subunit F of the related eukaryotic V-ATPase of Saccharomyces cerevisiae or subunit ε of the F-ATP synthase from Mycobacterium tuberculosis showed that subunit F of the archaea and eukaryotic enzymes are important in ATP hydrolysis.

  14. Cellular senescence regulated by SWI/SNF complex subunits through p53/p21 and p16/pRB pathway.

    Science.gov (United States)

    He, Ling; Chen, Ying; Feng, Jianguo; Sun, Weichao; Li, Shun; Ou, Mengting; Tang, Liling

    2017-09-01

    SWI/SNF complex is an evolutionarily well-conserved chromatin-remodeling complex, which is implicated in the nucleosomes removing or sliding, impacting on the DNA repair, replication and genes expression regulation. The SWI/SNF complex consists up to 12 protein subunits. The catalytic subunits are BRG1 or BRM, which are exclusive ATPase subunits. BRG1 has been reported to play an important role in cellular senescence. However, The function of non-catalytic subunits involved in cellular senescence is rarely investigated. Therefore, we focused on the senescence regulation roles of SWI/SNF non-catalytic subunits in cellular senescent model induced by H2O2. H2O2 treatment was used to induce cellular senescence models in vitro. Screening the candidate subunits involved in this process by comparing the expression levels of SWI/SNF subunits with/without H2O2 treatment. Over-expression and knockdown the candidate subunits were utilized to investigate the functions and mechanism of the subunits involved in senescence regulation. The expressions of BAF57, BAF60a and SNF5 were changed significantly after H2O2 treatment. Overexpression of the three subunits separately induced cell growth arrest in both HaCaT and GLL19 cells, while knockdown of the subunits separately eased the senescence induced by H2O2 treatment. Results further showed that BAF57, BAF60a and SNF5 regulated cellular senescence via both p53/p21 and p16/pRB pathways, and the three subunits all had a directly interaction with p53. These results indicated that BAF57, BAF60a and SNF5 might act as novel pro-senescence factors in both normal and tumor human skin cells. Therefore, inhibiting expression of the three factors might delay the cellular senescence process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes.

    Science.gov (United States)

    Carranza, Julio César; Kowaltowski, Alicia J; Mendonça, Marco Aurélio G; de Oliveira, Thays C; Gadelha, Fernanda R; Zingales, Bianca

    2009-06-01

    In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

  16. Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex

    Directory of Open Access Journals (Sweden)

    Kluge Christoph

    2004-08-01

    Full Text Available Abstract Background Vacuolar H+-ATPases are large protein complexes of more than 700 kDa that acidify endomembrane compartments and are part of the secretory system of eukaryotic cells. They are built from 14 different (VHA-subunits. The paper addresses the question of sub-cellular localisation and subunit composition of plant V-ATPase in vivo and in vitro mainly by using colocalization and fluorescence resonance energy transfer techniques (FRET. Focus is placed on the examination and function of the 95 kDa membrane spanning subunit VHA-a. Showing similarities to the already described Vph1 and Stv1 vacuolar ATPase subunits from yeast, VHA-a revealed a bipartite structure with (i a less conserved cytoplasmically orientated N-terminus and (ii a membrane-spanning C-terminus with a higher extent of conservation including all amino acids shown to be essential for proton translocation in the yeast. On the basis of sequence data VHA-a appears to be an essential structural and functional element of V-ATPase, although previously a sole function in assembly has been proposed. Results To elucidate the presence and function of VHA-a in the plant complex, three approaches were undertaken: (i co-immunoprecipitation with antibodies directed to epitopes in the N- and C-terminal part of VHA-a, respectively, (ii immunocytochemistry approach including co-localisation studies with known plant endomembrane markers, and (iii in vivo-FRET between subunits fused to variants of green fluorescence protein (CFP, YFP in transfected cells. Conclusions All three sets of results show that V-ATPase contains VHA-a protein that interacts in a specific manner with other subunits. The genomes of plants encode three genes of the 95 kDa subunit (VHA-a of the vacuolar type H+-ATPase. Immuno-localisation of VHA-a shows that the recognized subunit is exclusively located on the endoplasmic reticulum. This result is in agreement with the hypothesis that the different isoforms of VHA

  17. Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit

    Science.gov (United States)

    Tatebe, Hisashi; Murayama, Shinichi; Yonekura, Toshiya; Hatano, Tomoyuki; Richter, David; Furuya, Tomomi; Kataoka, Saori; Furuita, Kyoko; Kojima, Chojiro; Shiozaki, Kazuhiro

    2017-01-01

    The target of rapamycin (TOR) protein kinase forms multi-subunit TOR complex 1 (TORC1) and TOR complex 2 (TORC2), which exhibit distinct substrate specificities. Sin1 is one of the TORC2-specific subunit essential for phosphorylation and activation of certain AGC-family kinases. Here, we show that Sin1 is dispensable for the catalytic activity of TORC2, but its conserved region in the middle (Sin1CRIM) forms a discrete domain that specifically binds the TORC2 substrate kinases. Sin1CRIM fused to a different TORC2 subunit can recruit the TORC2 substrate Gad8 for phosphorylation even in the sin1 null mutant of fission yeast. The solution structure of Sin1CRIM shows a ubiquitin-like fold with a characteristic acidic loop, which is essential for interaction with the TORC2 substrates. The specific substrate-recognition function is conserved in human Sin1CRIM, which may represent a potential target for novel anticancer drugs that prevent activation of the mTORC2 substrates such as AKT. DOI: http://dx.doi.org/10.7554/eLife.19594.001 PMID:28264193

  18. Basic domains target protein subunits of the RNase MRP complex to the nucleolus independently of complex association.

    NARCIS (Netherlands)

    Eenennaam, H. van; Heijden, A.G. van der; Janssen, R.J.T.; Venrooij, W.J.W. van; Pruijn, G.J.M.

    2001-01-01

    The RNase MRP and RNase P ribonucleoprotein particles both function as endoribonucleases, have a similar RNA component, and share several protein subunits. RNase MRP has been implicated in pre-rRNA processing and mitochondrial DNA replication, whereas RNase P functions in pre-tRNA processing. Both R

  19. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex.

    Science.gov (United States)

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Willliams, Carole; Miller, Christopher

    2016-04-21

    Mitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca(2+) landscape.

  20. Characterization of mutations in the iron-sulphur subunit of succinate dehydrogenase correlating with Boscalid resistance in Alternaria alternata from California pistachio.

    Science.gov (United States)

    Avenot, H F; Sellam, A; Karaoglanidis, G; Michailides, T J

    2008-06-01

    Thirty-eight isolates of Alternaria alternata from pistachio orchards with a history of Pristine (pyraclostrobin + boscalid) applications and displaying high levels of resistance to boscalid fungicide (mean EC(50) values >500 microg/ml) were identified following mycelial growth tests. A cross-resistance study revealed that the same isolates were also resistant to carboxin, a known inhibitor of succinate dehydrogenase (Sdh). To determine the genetic basis of boscalid resistance in A. alternata the entire iron sulphur gene (AaSdhB) was isolated from a fungicide-sensitive isolate. The deduced amino-acid sequence showed high similarity with iron sulphur proteins (Ip) from other organisms. Comparison of AaSdhB full sequences from sensitive and resistant isolates revealed that a highly conserved histidine residue (codon CAC in sensitive isolates) was converted to either tyrosine (codon TAC, type I mutants) or arginine (codon CGC, type II mutants) at position 277. In other fungal species this residue is involved in carboxamide resistance. In this study, 10 and 5 mutants were of type I and type II respectively, while 23 other resistant isolates (type III mutants) had no mutation in the histidine codon. The point mutation detected in type I mutants was used to design a pair of allele-specific polymerase chain reaction (PCR) primers to facilitate rapid detection. A PCR-restriction fragment length polymorphism (RFLP) assay in which amplified gene fragments were digested with AciI was successfully employed for the diagnosis of type II mutants. The relevance of these modifications in A. alternata AaSdhB sequence in conferring boscalid resistance is discussed.

  1. Genetic interaction of an origin recognition complex subunit and the Polycomb group gene MEDEA during seed development.

    Science.gov (United States)

    Collinge, Margaret A; Spillane, Charles; Köhler, Claudia; Gheyselinck, Jacqueline; Grossniklaus, Ueli

    2004-04-01

    The eukaryotic origin recognition complex (ORC) is made up of six subunits and functions in nuclear DNA replication, chromatin structure, and gene silencing in both fungi and metazoans. We demonstrate that disruption of a plant ORC subunit homolog, AtORC2 of Arabidopsis (Arabidopsis thaliana), causes a zygotic lethal mutant phenotype (orc2). Seeds of orc2 abort early, typically producing embryos with up to eight cells. Nuclear division in the endosperm is arrested at an earlier developmental stage: only approximately four nuclei are detected in orc2 endosperm. The endosperm nuclei in orc2 are dramatically enlarged, a phenotype that is most similar to class B titan mutants, which include mutants in structural maintenance of chromosomes (SMC) cohesins. The highest levels of ORC2 gene expression were found in preglobular embryos, coinciding with the stage at which homozygous orc2 mutant seeds arrest. The homologs of the other five Arabidopsis ORC subunits are also expressed at this developmental stage. The orc2 mutant phenotype is partly suppressed by a mutation in the Polycomb group gene MEDEA. In double mutants between orc2 and medea (mea), orc2 homozygotes arrest later with a phenotype intermediate between those of mea and orc2 single mutants. Either alterations in chromatin structure or the release of cell cycle checkpoints by the mea mutation may allow more cell and nuclear divisions to occur in orc2 homozygous seeds.

  2. Component co-expression and purification of recombinant human pyruvate dehydrogenase complex from baculovirus infected SF9 cells.

    Science.gov (United States)

    Jiang, Yong; Wang, Juan; Zhang, Guofeng; Oza, Khyati; Myers, Linda; Holbert, Marc A; Sweitzer, Sharon

    2014-05-01

    The mammalian pyruvate dehydrogenase complex (PDC) is a multi-component mitochondrial enzyme that plays a key role in the conversion of pyruvate to acetyl-CoA connecting glycolysis to the citric acid cycle. Recent studies indicate that targeting the regulation of PDC enzymatic activity might offer therapeutic opportunities by inhibiting cancer cell metabolism. To facilitate drug discovery in this area, a well defined PDC sample is needed. Here, we report a new method of producing functional, recombinant, high quality human PDC complex. All five components were co-expressed in the cytoplasm of baculovirus-infected SF9 cells by deletion of the mitochondrial localization signal sequences of all the components and E1a was FLAG-tagged to facilitate purification. The protein FLAG tagged E1a complex was purified using FLAG-M2 affinity resin, followed by Superdex 200 sizing chromatography. The E2 and E3BP components were then Lipoylated using an enzyme based in vitro process. The resulting PDC is over 90% pure and homogenous. This non-phosphorylated, lipoylated human PDC was demonstrated to produce a robust detection window when used to develop an enzyme coupled assay of PDHK.

  3. Functional characterization of the trans-membrane domain interactions of the Sec61 protein translocation complex beta-subunit

    Directory of Open Access Journals (Sweden)

    Zhao Xueqiang

    2009-10-01

    Full Text Available Abstract Background In eukaryotic cells co- and post-translational protein translocation is mediated by the trimeric Sec61 complex. Currently, the role of the Sec61 complex β-subunit in protein translocation is poorly understood. We have shown previously that in Saccharomyces cerevisiae the trans-membrane domain alone is sufficient for the function of the β-subunit Sbh1p in co-translational protein translocation. In addition, Sbh1p co-purifies not only with the protein translocation channel subunits Sec61p and Sss1p, but also with the reticulon family protein Rtn1p. Results We used random mutagenesis to generate novel Sbh1p mutants in order to functionally map the Sbh1p trans-membrane domain. These mutants were analyzed for their interactions with Sec61p and how they support co-translational protein translocation. The distribution of mutations identifies one side of the Sbh1p trans-membrane domain α-helix that is involved in interactions with Sec61p and that is important for Sbh1p function in protein translocation. At the same time, these mutations do not affect Sbh1p interaction with Rtn1p. Furthermore we show that Sbh1p is found in protein complexes containing not only Rtn1p, but also the two other reticulon-like proteins Rtn2p and Yop1p. Conclusion Our results identify functionally important amino acids in the Sbh1p trans-membrane domain. In addition, our results provide additional support for the involvement of Sec61β in processes unlinked to protein translocation.

  4. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    Energy Technology Data Exchange (ETDEWEB)

    Pampa, K.J., E-mail: sagarikakj@gmail.com [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Lokanath, N.K. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Girish, T.U. [Department of General Surgery, JSS Medical College and Hospital, JSS University, Mysore 570 015 (India); Kunishima, N. [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Rai, V.R. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India)

    2014-10-24

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.

  5. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: Impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish

    Energy Technology Data Exchange (ETDEWEB)

    Biery, B.J.; Stein, D.E.; Goodman, S.I. [Univ. of Colorado School of Medicine, Denver, CO (United States)] [and others

    1996-11-01

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span {approximately}7 kb. Fibroblast DNA from 64 unrelated glutaric academia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in the general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits. 13 refs., 5 figs., 3 tabs.

  6. Longevity-associated NADH Dehydrogenase Subunit-2 237 Leu/Met Polymorphism Modulates the Effects of Daily Alcohol Drinking on Yearly Changes in Serum Total and LDL Cholesterol in Japanese Men

    Directory of Open Access Journals (Sweden)

    Takashima,Yutaka

    2009-12-01

    Full Text Available Reduced nicotinamide adenine dinucleotide (NADH dehydrogenase subunit 2 237 leucine/methionine (ND2-237 Leu/Met polymorphism, is reportedly associated with longevity in the Japanese population. The ND2-237Met genotype may exert resistance to atherogenic diseases, such as myocardial infarction or cerebrovascular disorders. To investigate whether ND2-237 Leu/Met polymorphism is associated with yearly changes in serum lipid levels, we conducted a longitudinal study of 107 healthy Japanese male subjects. Analysis of covariance revealed that the interaction between the ND2-237 Leu/Met genotypes and habitual drinking was significantly associated with yearly changes in serum total cholesterol (TC and low-density lipoprotein cholesterol (LDLC levels (p0.036 and p0.006, respectively. In multiple regression analysis, daily drinking was significantly and positively associated with yearly changes in serum LDLC levels in men with ND2-237Met (p0.026. After adjusting for covariates, yearly changes in serum LDLC levels were significantly lower in non-daily drinkers with ND2-237Met than in those with ND2-237Leu (p0.047. These results suggest that ND2-237Met has a beneficial impact on yearly changes in serum LDLC in non-daily drinkers but not in daily drinkers.

  7. Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls.

    Science.gov (United States)

    Atanassov, Ivan I; Pittman, Jon K; Turner, Simon R

    2009-02-06

    Cellulose is the most abundant biopolymer in nature; however, questions relating to the biochemistry of its synthesis including the structure of the cellulose synthase complex (CSC) can only be answered by the purification of a fully functional complex. Despite its importance, this goal remains elusive. The work described here utilizes epitope tagging of cellulose synthase A (CESA) proteins that are known components of the CSC. To avoid problems associated with preferential purification of CESA monomers, we developed a strategy based on dual epitope tagging of the CESA7 protein to select for CESA multimers. With this approach, we used a two-step purification that preferentially selected for larger CESA oligomers. These preparations consisted solely of the three known secondary cell wall CESA proteins CESA4, CESA7, and CESA8. No additional CESA isoforms or other proteins were identified. The data are consistent with a model in which CESA protein homodimerization occurs prior to formation of larger CESA oligomers. This suggests that the three different CESA proteins undergo dimerization independently, but the presence of all three subunits is required for higher order oligomerization. Analysis of purified CESA complex and crude extracts suggests that disulfide bonds and noncovalent interactions contribute to the stability of the CESA subunit interactions. These results demonstrate that this approach will provide an excellent framework for future detailed analysis of the CSC.

  8. The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate.

    Science.gov (United States)

    Nemeria, Natalia S; Gerfen, Gary; Guevara, Elena; Nareddy, Pradeep Reddy; Szostak, Michal; Jordan, Frank

    2017-07-01

    Recently, we reported that the human 2-oxoglutarate dehydrogenase (hE1o) component of the 2-oxoglutarate dehydrogenase complex (OGDHc) could produce the reactive oxygen species superoxide and hydrogen peroxide (detected by chemical means) from its substrate 2-oxoglutarate (OG), most likely concurrently with one-electron oxidation by dioxygen of the thiamin diphosphate (ThDP)-derived enamine intermediate to a C2α-centered radical (detected by Electron Paramagnetic Resonance) [Nemeria et al., 2014 [17]; Ambrus et al. 2015 [18

  9. Mitochondrial hepato-encephalopathy due to deficiency of QIL1/MIC13 (C19orf70), a MICOS complex subunit.

    Science.gov (United States)

    Zeharia, Avraham; Friedman, Jonathan R; Tobar, Ana; Saada, Ann; Konen, Osnat; Fellig, Yacov; Shaag, Avraham; Nunnari, Jodi; Elpeleg, Orly

    2016-12-01

    The mitochondrial inner membrane possesses distinct subdomains including cristae, which are lamellar structures invaginated into the mitochondrial matrix and contain the respiratory complexes. Generation of inner membrane domains requires the complex interplay between the respiratory complexes, mitochondrial lipids and the recently identified mitochondrial contact site and cristae organizing system (MICOS) complex. Proper organization of the mitochondrial inner membrane has recently been shown to be important for respiratory function in yeast. Here we aimed at a molecular diagnosis in a brother and sister from a consanguineous family who presented with a neurodegenerative disorder accompanied by hyperlactatemia, 3-methylglutaconic aciduria, disturbed hepatocellular function with abnormal cristae morphology in liver and cerebellar and vermis atrophy, which suggest mitochondrial dysfunction. Using homozygosity mapping and exome sequencing the patients were found to be homozygous for the p.(Gly15Glufs*75) variant in the QIL1/MIC13 (C19orf70) gene. QIL1/MIC13 is a constituent of MICOS, a six subunit complex that helps to form and/or stabilize cristae junctions and determine the placement, distribution and number of cristae within mitochondria. In patient fibroblasts both MICOS subunits QIL1/MIC13 and MIC10 were absent whereas MIC60 was present in a comparable abundance to that of the control. We conclude that QIL1/MIC13 deficiency in human, is associated with disassembly of the MICOS complex, with the associated aberration of cristae morphology and mitochondrial respiratory dysfunction. 3-Methylglutaconic aciduria is associated with variants in genes encoding mitochondrial inner membrane organizing determinants, including TAZ, DNAJC19, SERAC1 and QIL1/MIC13.

  10. Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells

    Directory of Open Access Journals (Sweden)

    Salloum Nicole

    2004-07-01

    Full Text Available Abstract Background Hypoxia-tolerant human glioma cells reduce oxygen consumption rate in response to oxygen deficit, a defense mechanism that contributes to survival under moderately hypoxic conditions. In contrast, hypoxia-sensitive cells lack this ability. As it has been previously shown that hypoxia-tolerant (M006x, M006xLo, M059K and -sensitive (M010b glioma cells express differences in mitochondrial function, we investigated whether mitochondrial DNA-encoded mutations are associated with differences in the initial response to oxygen deficit. Results The mitochondrial genome was sequenced and 23 mtDNA alterations were identified, one of which was an unreported mutation (T-C transition in base pair 14634 in the hypoxia-sensitive cell line, M010b, that resulted in a single amino acid change in the gene encoding the ND6 subunit of NADH:ubiquinone oxidoreductase (Complex I. The T14634C mutation did not abrogate ND6 protein expression, however, M010b cells were more resistant to rotenone, an agent used to screen for Complex I mutations, and adriamycin, an agent activated by redox cycling. The specific function of mtDNA-encoded, membrane-embedded Complex I ND subunits is not known at present. Current models suggest that the transmembrane arm of Complex I may serve as a conformationally driven proton channel. As cellular respiration is regulated, in part, by proton flux, we used homology-based modeling and computational molecular biology to predict the 3D structure of the wild type and mutated ND6 proteins. These models predict that the T14634C mutation alters the structure and orientation of the trans-membrane helices of the ND6 protein. Conclusion Complex I ND subunits are mutational hot spots in tumor mtDNA. Genetic changes that alter Complex I structure and function may alter a cell's ability to respond to oxygen deficit and consolidate hypoxia rescue mechanisms, and may contribute to resistance to chemotherapeutic agents that require redox

  11. Essential Structural and Functional Roles of the Cmr4 Subunit in RNA Cleavage by the Cmr CRISPR-Cas Complex

    Directory of Open Access Journals (Sweden)

    Nancy F. Ramia

    2014-12-01

    Full Text Available The Cmr complex is the multisubunit effector complex of the type III-B clustered regularly interspaced short palindromic repeats (CRISPR-Cas immune system. The Cmr complex recognizes a target RNA through base pairing with the integral CRISPR RNA (crRNA and cleaves the target at multiple regularly spaced locations within the complementary region. To understand the molecular basis of the function of this complex, we have assembled information from electron microscopic and X-ray crystallographic structural studies and mutagenesis of a complete Pyrococcus furiosus Cmr complex. Our findings reveal that four helically packed Cmr4 subunits, which make up the backbone of the Cmr complex, act as a platform to support crRNA binding and target RNA cleavage. Interestingly, we found a hook-like structural feature associated with Cmr4 that is likely the site of target RNA binding and cleavage. Our results also elucidate analogies in the mechanisms of crRNA and target molecule binding by the distinct Cmr type III-A and Cascade type I-E complexes.

  12. The Human Arp2/3 Complex Is Composed of Evolutionarily Conserved Subunits and Is Localized to Cellular Regions of Dynamic Actin Filament Assembly

    OpenAIRE

    Welch, Matthew D.; Angela H. DePace; Verma, Suzie; Iwamatsu, Akihiro; Mitchison, Timothy J.

    1997-01-01

    The Arp2/3 protein complex has been implicated in the control of actin polymerization in cells. The human complex consists of seven subunits which include the actin related proteins Arp2 and Arp3, and five others referred to as p41-Arc, p34-Arc, p21-Arc, p20-Arc, and p16-Arc (Arp complex). We have determined the predicted amino acid sequence of all seven subunits. Each has homologues in diverse eukaryotes, implying that the structure and function of the complex has been conserved through evol...

  13. Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation.

    Science.gov (United States)

    Wan, Fengyi; Anderson, D Eric; Barnitz, Robert A; Snow, Andrew; Bidere, Nicolas; Zheng, Lixin; Hegde, Vijay; Lam, Lloyd T; Staudt, Louis M; Levens, David; Deutsch, Walter A; Lenardo, Michael J

    2007-11-30

    NF-kappaB is a DNA-binding protein complex that transduces a variety of activating signals from the cytoplasm to specific sets of target genes. To understand the preferential recruitment of NF-kappaB to specific gene regulatory sites, we used NF-kappaB p65 in a tandem affinity purification and mass spectrometry proteomic screen. We identified ribosomal protein S3 (RPS3), a KH domain protein, as a non-Rel subunit of p65 homodimer and p65-p50 heterodimer DNA-binding complexes that synergistically enhances DNA binding. RPS3 knockdown impaired NF-kappaB-mediated transcription of selected p65 target genes but not nuclear shuttling or global protein translation. Rather, lymphocyte-activating stimuli caused nuclear translocation of RPS3, parallel to p65, to form part of NF-kappaB bound to specific regulatory sites in chromatin. Thus, RPS3 is an essential but previously unknown subunit of NF-kappaB involved in the regulation of key genes in rapid cellular activation responses. Our observations provide insight into how NF-kappaB selectively controls gene expression.

  14. Structural and biochemical characterization of human PR70 in isolation and in complex with the scaffolding subunit of protein phosphatase 2A.

    Directory of Open Access Journals (Sweden)

    Rebecca Dovega

    Full Text Available Protein Phosphatase 2A (PP2A is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A subunit, a catalytic (C subunit and various regulatory (B subunits. Here we report a 2.0 Å crystal structure of the free B''/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B''/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B''/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B'' containing holoenzymes.

  15. Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of Golgi-associated retrograde protein (GARP) complex to a family of tethering complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vasan, Neil; Hutagalung, Alex; Novick, Peter; Reinisch, Karin M. (Yale); (UCLJ)

    2010-08-13

    The Golgi-associated retrograde protein (GARP) complex is a membrane-tethering complex that functions in traffic from endosomes to the trans-Golgi network. Here we present the structure of a C-terminal fragment of the Vps53 subunit, important for binding endosome-derived vesicles, at a resolution of 2.9 {angstrom}. We show that the C terminus consists of two {alpha}-helical bundles arranged in tandem, and we identify a highly conserved surface patch, which may play a role in vesicle recognition. Mutations of the surface result in defects in membrane traffic. The fold of the Vps53 C terminus is strongly reminiscent of proteins that belong to three other tethering complexes - Dsl1, conserved oligomeric Golgi, and the exocyst - thought to share a common evolutionary origin. Thus, the structure of the Vps53 C terminus suggests that GARP belongs to this family of complexes.

  16. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  17. The developmental and pathogenic roles of BAF57, a special subunit of the BAF chromatin-remodeling complex.

    Science.gov (United States)

    Lomelí, Hilda; Castillo-Robles, Jorge

    2016-06-01

    Mammalian SWI/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes. BAF57 is a subunit of the BAF complexes; it is encoded only in higher eukaryotes and is present in all mammalian assemblies. Its main structural feature is a high-mobility group domain, the DNA-binding properties of which suggest that BAF57 may play topological roles as the BAF complex enters or exits the nucleosome. BAF57 displays specific interactions with a number of proteins outside the BAF complex. Through these interactions, it can accomplish specific functions. In the embryo, BAF57 is responsible for the silencing of the CD4 gene during T-cell differentiation, and during the repression of neuronal genes in non-neuronal cells, BAF57 interacts with the transcriptional corepressor, Co-REST, and facilitates repression. Extensive work has demonstrated a specific role of BAF57 in regulating the interactions between BAF and nuclear hormone receptors. Despite its involvement in oncogenic pathways, new generation sequencing studies do not support a prominent role for BAF57 in the initiation of cancer. On the other hand, evidence has emerged to support a role for BAF57 as a metastasis factor, a prognosis marker and a therapeutic target. In humans, BAF57 is associated with disease, as mutations in this gene predispose to important congenital disorders, including menigioma disease or the Coffin-Siris syndrome. In this article, we present an exhaustive analysis of the BAF57 molecular and biochemical properties, cellular functions, loss-of-function phenotypes in living organisms and pathological manifestations in cases of human mutations.

  18. Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I.

    Science.gov (United States)

    Sarkar, Sourav; Shenoy, Rajesh T; Dalgaard, Jacob Z; Newnham, Louise; Hoffmann, Eva; Millar, Jonathan B A; Arumugam, Prakash

    2013-01-01

    Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore.

  19. Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors.

    Science.gov (United States)

    Celestino, Ricardo; Lima, Jorge; Faustino, Alexandra; Vinagre, João; Máximo, Valdemar; Gouveia, António; Soares, Paula; Lopes, José Manuel

    2013-05-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, disclosing somatic KIT, PDGFRA and BRAF mutations. Loss of function of succinate dehydrogenase (SDH) complex is an alternative molecular mechanism in GISTs, namely in carriers of germline mutations of the SDH complex that develop Carney-Stratakis dyad characterized by multifocal GISTs and multicentric paragangliomas (PGLs). We studied a series of 25 apparently sporadic primary wild-type (WT) KIT/PDGFRA/BRAF GISTs occurring in patients without personal or familial history of PGLs, re-evaluated clinicopathological features and analyzed molecular alterations and immunohistochemistry expression of SDH complex. As control, we used a series of well characterized 49 KIT/PDGFRA/BRAF-mutated GISTs. SDHB expression was absent in 20% and SDHB germline mutations were detected in 12% of WT GISTs. Germline SDHB mutations were significantly associated to younger age at diagnosis. A significant reduction in SDHB expression in WT GISTs was found when compared with KIT/PDGFRA/BRAF-mutated GISTs. No significant differences were found when comparing DOG-1 and c-KIT expression in WT, SDHB-mutated and KIT/PDGFRA/BRAF-mutated GISTs. Our results confirm the occurrence of germline SDH genes mutations in isolated, apparently sporadic WT GISTs. WT KIT/PDGFRA/BRAF GISTs without SDHB or SDHA/SDHB expression may correspond to Carney-Stratakis dyad or Carney triad. Most importantly, the possibility of PGLs (Carney-Stratakis dyad) and/or pulmonary chondroma (Carney triad) should be addressed in these patients and their kindred.

  20. Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid.

    Science.gov (United States)

    Bunik, Victoria I; Raddatz, Günter; Wanders, Ronald J A; Reiser, Georg

    2006-06-12

    Pyruvate and 2-oxoglutarate dehydrogenase complexes are strongly inhibited by phytanoyl-CoA (IC(50) approximately 10(-6)-10(-7) M). Palmitoyl-CoA is 10-fold less potent. Phytanic or palmitic acids have no inhibitory effect up to 0.3 mM. At the substrate saturation, the acyl-CoA's affect the first and second enzymatic components of the 2-oxoglutarate dehydrogenase complex, while the third component is inhibited only at a low saturation with its substrate dihydrolipoamide. Thus, key regulatory branch points of mitochondrial metabolism are targets of a cellular derivative of phytanic acid. Decreased activity of the complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease.

  1. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

    Science.gov (United States)

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J; Blombach, Bastian

    2013-09-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.

  2. Blockade of NMDA receptors 2A subunit in the dorsal striatum impairs the learning of a complex motor skill.

    Science.gov (United States)

    Lemay-Clermont, Julie; Robitaille, Christine; Auberson, Yves P; Bureau, Geneviève; Cyr, Michel

    2011-10-01

    Accumulating evidence proposes that the striatum, known to control voluntary movement, may also play a role in learning and memory. Striatum learning is thought to require long-lasting reorganization of striatal circuits and changes in the strength of synaptic connections during the memorization of a complex motor task. Whether the ionotropic glutamate receptor N-methyl-D-aspartate (NMDAR) contributes to the molecular mechanisms of these memory processes is still unclear. The aim of the present study was to investigate the role of striatal NMDAR and its subunit composition during the learning of the accelerating rotarod task in mice. To this end, we injected directly into the dorsal striatum of mice, via chronically implanted cannula, the NMDAR channel blocker MK-801 as well as the NR2A and NR2B subunit-selective antagonists NVP-AAM077 and Ro 25-6981, respectively, before rotarod training. There was no effect in the motor performances of mice treated with 1.0 μg/side of MK-801, 0.1 μg/side of NVP-AAM077, or 5 and 10 μg/side of Ro 25-6981. In contrast, injections of 2.5 and 5 μg/side of MK-801 or 0.5 and 1 μg/side of NVP-AAM077 impaired motor learning at Day 3 and 8. Interestingly, treatments with MK-801 and NVP-AAM077 did not alter the general motor capacities of mice as revealed by the stepping, wire suspension, and pole tests. Our study demonstrates that the NMDAR of the dorsal striatum contributes to motor learning, especially during the slow acquisition phase, and that NR2A subunits play a critical role in this process.

  3. NMR analysis of G-protein betagamma subunit complexes reveals a dynamic G(alpha)-Gbetagamma subunit interface and multiple protein recognition modes.

    Science.gov (United States)

    Smrcka, Alan V; Kichik, Nessim; Tarragó, Teresa; Burroughs, Michael; Park, Min-Sun; Itoga, Nathan K; Stern, Harry A; Willardson, Barry M; Giralt, Ernest

    2010-01-12

    G-protein betagamma (Gbetagamma) subunits interact with a wide range of molecular partners including: G(alpha) subunits, effectors, peptides, and small molecule inhibitors. The molecular mechanisms underlying the ability to accommodate this wide range of structurally distinct binding partners are not well understood. To uncover the role of protein flexibility and alterations in protein conformation in molecular recognition by Gbetagamma, a method for site-specific (15)N-labeling of Gbeta-Trp residue backbone and indole amines in insect cells was developed. Transverse Relaxation Optimized Spectroscopy-Heteronuclear Single-Quantum Coherence Nuclear Magnetic Resonance (TROSY-HSQC NMR) analysis of (15)N-Trp Gbetagamma identified well-dispersed signals for the individual Trp residue side chain and amide positions. Surprisingly, a wide range of signal intensities was observed in the spectrum, likely representing a range of backbone and side chain mobilities. The signal for GbetaW99 indole was very intense, suggesting a high level of mobility on the protein surface and molecular dynamics simulations indicate that GbetaW99 is highly mobile on the nanosecond timescale in comparison with other Gbeta tryptophans. Binding of peptides and phosducin dramatically altered the mobility of GbetaW99 and GbetaW332 in the binding site and the chemical shifts at sites distant from the direct binding surface in distinct ways. In contrast, binding of G(alpha)(i1)-GDP to Gbetagamma had relatively little effect on the spectrum and, most surprisingly, did not significantly alter Trp mobility at the subunit interface. This suggests the inactive heterotrimer in solution adopts a conformation with an open subunit interface a large percentage of the time. Overall, these data show that Gbetagamma subunits explore a range of conformations that can be exploited during molecular recognition by diverse binding partners.

  4. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Lowe, Edward D; Gao, Guang-Yao; Johnson, Louise N; Keung, Wing Ming

    2008-08-14

    The ALDH2*2 gene encoding the inactive variant form of mitochondrial aldehyde dehydrogenase (ALDH2) protects nearly all carriers of this gene from alcoholism. Inhibition of ALDH2 has hence become a possible strategy to treat alcoholism. The natural product 7-O-glucosyl-4'-hydroxyisoflavone (daidzin), isolated from the kudzu vine ( Peruraria lobata), is a specific inhibitor of ALDH2 and suppresses ethanol consumption. Daidzin is the active principle in a herbal remedy for "alcohol addiction" and provides a lead for the design of improved ALDH2. The structure of daidzin/ALDH2 in complex at 2.4 A resolution shows the isoflavone moiety of daidzin binding close to the aldehyde substrate-binding site in a hydrophobic cleft and the glucosyl function binding to a hydrophobic patch immediately outside the isoflavone-binding pocket. These observations provide an explanation for both the specificity and affinity of daidzin (IC50 =80 nM) and the affinity of analogues with different substituents at the glucosyl position.

  5. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.

    Science.gov (United States)

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-09-01

    L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.

  6. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    OpenAIRE

    Moreadith, R W; Cleeter, M. W.; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-01-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the pati...

  7. Subunit Composition and Substrate Specificity of a MOF-containing Histone Acetyltransferase Distinct from the Male-specific Lethal (MSL) Complex*

    Science.gov (United States)

    Cai, Yong; Jin, Jingji; Swanson, Selene K.; Cole, Michael D.; Choi, Seung Hyuk; Florens, Laurence; Washburn, Michael P.; Conaway, Joan W.; Conaway, Ronald C.

    2010-01-01

    Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811–823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8. PMID:20018852

  8. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex

    NARCIS (Netherlands)

    Albert, TK; Hanzawa, H; Legtenberg, YIA; de Ruwe, MJ; van den Heuvel, FAJ; Collart, MA; Boelens, R; Timmers, HTM

    2002-01-01

    The RING finger protein CNOT4 is a component of the CCR4-NOT complex. This complex is implicated in repression of RNA polymerase II transcription. Here we demonstrate that CNOT4 functions as a ubiquitin-protein ligase (E3). We show that the unique C4C4 RING domain of CNOT4 interacts with a subset of

  9. Role of positron emission tomography and bone scintigraphy in the evaluation of bone involvement in metastatic pheochromocytoma and paraganglioma: specific implications for succinate dehydrogenase enzyme subunit B gene mutations.

    Science.gov (United States)

    Zelinka, Tomás; Timmers, Henri J L M; Kozupa, Anna; Chen, Clara C; Carrasquillo, Jorge A; Reynolds, James C; Ling, Alexander; Eisenhofer, Graeme; Lazúrová, Ivica; Adams, Karen T; Whatley, Millie A; Widimsky, Jirí; Pacak, Karel

    2008-03-01

    We performed a retrospective analysis of 71 subjects with metastatic pheochromocytoma and paraganglioma (30 subjects with mutation of succinate dehydrogenase enzyme subunit B (SDHB) gene and 41 subjects without SDHB mutation). Sixty-nine percent presented with bone metastases (SDHB +/-: 77% vs 63%), 39% with liver metastases (SDHB +/-: 27% vs 47%), and 32% with lung metastases (SDHB +/-: 37% vs 29%). The most common sites of bone involvement were thoracic spine (80%; SDHB+/-: 83% vs 77%), lumbar spine (78%; SDHB +/-: 78% vs 75%), and pelvic and sacral bones (78%; SDHB +/-: 91% vs 65%, P=0.04). Subjects with SDHB mutation also showed significantly higher involvement of long bones (SDHB +/-: 78% vs 30%, P=0.007) than those without the mutation. The best overall sensitivity in detecting bone metastases demonstrated positron emission tomography (PET) with 6-[(18)F]-fluorodopamine ([(18)F]-FDA; 90%), followed by bone scintigraphy (82%), computed tomography or magnetic resonance imaging (CT/MRI; 78%), 2-[(18)F]-fluoro-2-deoxy-d-glucose ([(18)F]-FDG) PET (76%), and scintigraphy with [(123/131)I]-metaiodobenzylguanidine (71%). In subjects with SDHB mutation, imaging modalities with best sensitivities for detecting bone metastases were CT/MRI (96%), bone scintigraphy (95%), and [(18)F]-FDG PET (92%). In subjects without SDHB mutations, the modality with the best sensitivity for bone metastases was [(18)F]-FDA PET (100%). In conclusion, bone scintigraphy should be used in the staging of patients with malignant pheochromocytoma and paraganglioma, particularly in patients with SDHB mutations. As for PET imaging, [(18)F]-FDG PET is highly recommended in SDHB mutation patients, whereas [(18)F]-FDA PET is recommended in patients without the mutation.

  10. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    Science.gov (United States)

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  11. Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7.

    Science.gov (United States)

    Gorbea, C; Taillandier, D; Rechsteiner, M

    2000-01-14

    The 19 S regulatory complex (RC) of the 26 S proteasome is composed of at least 18 different subunits, including six ATPases that form specific pairs S4-S7, S6-S8, and S6'-S10b in vitro. One of the largest regulatory complex subunits, S2, was translated in reticulocyte lysate containing [(35)S]methionine and used to probe membranes containing SDS-polyacrylamide gel electrophoresis separated RC subunits. S2 bound to two ATPases, S4 and S7. Association of S2 with regulatory complex subunits was also assayed by co-translation and sedimentation. S2 formed an immunoprecipitable heterotrimer upon co-translation with S4 and S7. The non-ATPase S5b also formed a ternary complex with S4 and S7 and the three proteins assembled into a tetramer with S2. Neither S2 nor S5b formed complexes with S6'-S10b dimers or with S6-S8 oligomers. The use of chimeric ATPases demonstrated that S2 binds the NH(2)-terminal region of S4 and the COOH-terminal two-thirds of S7. Conversely, S5b binds the COOH-terminal two-thirds of S4 and to S7's NH(2)-terminal region. The demonstrated association of S2 with ATPases in the mammalian 19 S regulatory complex is consistent with and extends the recent finding that the yeast RC is composed of two subcomplexes, the lid and the base (Glickman, M. H., Rubin, D. M., Coux, O., Wefes, I., Pfeifer, G., Cejka, Z., Baumeister, W., Fried, V. A., and Finley, D. (1998) Cell 94, 615-623).

  12. The complex structures of isocitrate dehydrogenase from Clostridium thermocellum and Desulfotalea psychrophila suggest a new active site locking mechanism.

    Science.gov (United States)

    Leiros, Hanna-Kirsti S; Fedøy, Anita-Elin; Leiros, Ingar; Steen, Ida Helene

    2012-01-01

    Isocitrate dehydrogenase (IDH) catalyzes the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate into α-ketoglutarate and CO2 and is present in organisms spanning the biological range of temperature. We have solved two crystal structures of the thermophilic Clostridium thermocellum IDH (CtIDH), a native open apo CtIDH to 2.35 Å and a quaternary complex of CtIDH with NADP(+), isocitrate and Mg(2+) to 2.5 Å. To compare to these a quaternary complex structure of the psychrophilic Desulfotalea psychrophila IDH (DpIDH) was also resolved to 1.93 Å. CtIDH and DpIDH showed similar global thermal stabilities with melting temperatures of 67.9 and 66.9 °C, respectively. CtIDH represents a typical thermophilic enzyme, with a large number of ionic interactions and hydrogen bonds per residue combined with stabilization of the N and C termini. CtIDH had a higher activity temperature optimum, and showed greater affinity for the substrates with an active site that was less thermolabile compared to DpIDH. The uncompensated negative surface charge and the enlarged methionine cluster in the hinge region both of which are important for cold activity in DpIDH, were absent in CtIDH. These structural comparisons revealed that prokaryotic IDHs in subfamily II have a unique locking mechanism involving Arg310, Asp251' and Arg255 (CtIDH). These interactions lock the large domain to the small domain and direct NADP(+) into the correct orientation, which together are important for NADP(+) selectivity.

  13. HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A

    Energy Technology Data Exchange (ETDEWEB)

    Van Rechem, Capucine; Boulay, Gaylor [CNRS UMR 8161, Institut de Biologie de LILLE, Universite de Lille Nord de FRANCE, Institut PASTEUR de LILLE, IFR 142, 1 Rue Calmette, 59017 LILLE Cedex (France); Leprince, Dominique, E-mail: dominique.leprince@ibl.fr [CNRS UMR 8161, Institut de Biologie de LILLE, Universite de Lille Nord de FRANCE, Institut PASTEUR de LILLE, IFR 142, 1 Rue Calmette, 59017 LILLE Cedex (France)

    2009-08-07

    HIC1, a tumor suppressor gene epigenetically silenced in many human cancers encodes a transcriptional repressor involved in regulatory loops modulating p53-dependent and E2F1-dependent cell survival and stress responses. HIC1 is also implicated in growth control since it recruits BRG1, one of the two alternative ATPases (BRM or BRG1) of SWI/SNF chromatin-remodeling complexes to repress transcription of E2F1 in quiescent fibroblasts. Here, through yeast two-hybrid screening, we identify ARID1A/BAF250A, as a new HIC1 partner. ARID1A/BAF250A is one of the two mutually exclusive ARID1-containing subunits of SWI/SNF complexes which define subsets of complexes endowed with anti-proliferative properties. Co-immunoprecipitation assays in WI38 fibroblasts and in BRG1-/- SW13 cells showed that endogenous HIC1 and ARID1A proteins interact in a BRG1-dependent manner. Furthermore, we demonstrate that HIC1 does not interact with BRM. Finally, sequential chromatin immunoprecipitation (ChIP-reChIP) experiments demonstrated that HIC1 represses E2F1 through the recruitment of anti-proliferative SWI/SNF complexes containing ARID1A.

  14. The p25 Subunit of the Dynactin Complex is Required for Dynein-Early Endosome Interaction

    Science.gov (United States)

    2011-01-01

    dynein–early endosome interaction in the filamen- tous fungus Aspergillus nidulans. In filamentous fungi , dynein and its regulators are important for...backbone of the dynactin complex, and its loss leads to a disruption of the whole complex. In Drosoph- ila and in filamentous fungi such as N. crassa...how the motor is targeted to these cargoes is still a topic under investigation. In filamentous fungi and higher eukaryotic cells such as neurons

  15. The acid-labile subunit of the ternary insulin-like growth factor complex in cirrhosis: relation to liver dysfunction

    DEFF Research Database (Denmark)

    Møller, S; Juul, A; Becker, U;

    2000-01-01

    BACKGROUND/AIMS: In the circulation, insulin-like growth factor-I (IGF-I) is bound in a trimeric complex of 150 kDa with IGF binding protein-3 (IGFBP-3) and the acid-labile subunit (ALS). Whereas circulating IGF-I and IGFBP-3 are reported to be low in patients with chronic liver failure, the level...... of ALS has not been described in relation to hepatic dysfunction. The aim of the present study was therefore to measure circulating and hepatic venous concentrations of ALS in relation to hepatic function and the IGF axis. METHODS: Twenty-five patients with cirrhosis (Child class A/B/C:5/10/10) and 30...... controls with normal liver function were studied. During a haemodynamic investigation, blood samples were collected from the hepatic vein and femoral artery, and the plasma concentrations of ALS, IGF-I and IGFBP-3 were determined. RESULTS: Hepatic venous and arterial concentrations of ALS were...

  16. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution

    DEFF Research Database (Denmark)

    Greber, Basil J; Boehringer, Daniel; Godinic-Mikulcic, Vlatka

    2012-01-01

    Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several...... additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter...... thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared...

  17. Characterization and alternative splicing of the complex I 19-kD subunit in Dunaliella salina: expression and mutual correlation of splice variants under diverse stresses.

    Science.gov (United States)

    Cao, Yu; Jin, Nan; Xu, Hui; Liu, Yi; Zhu, Wei Hua; Li, Xin Ran; Qiao, Dai Rong; Cao, Yi

    2010-01-01

    Complex I is the first enzyme in the mitochondrial respiratory chain. It extracts energy from NADH, which is produced by the oxidation of sugars and fats, and traps the energy by virtue of a potential difference or voltage across the mitochondrial inner membrane. Herein, the genomic sequence and four splice variants encoding the complex I 19-kD subunit were isolated from Dunaliella salina. There were four transcripts coding for the complex I 19-kD subunit due to alternative splicing in algae, and the four transcripts were translated to two protein isoforms with varying C-terminals. We report the splicing pattern in the 3'-region of the D. salina 19-kD subunit, in which three of the exons (5, 6, and 7) could be alternatively spliced. Moreover, we found that four alternatively spliced variants were subject to coordinated transcription in response to different stresses by real-time quantitative PCR.

  18. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  19. A novel mtDNA mutation in the ND5 subunit of complex I in two MELAS patients.

    Science.gov (United States)

    Corona, P; Antozzi, C; Carrara, F; D'Incerti, L; Lamantea, E; Tiranti, V; Zeviani, M

    2001-01-01

    We identified a novel heteroplasmic mutation in the mitochodrial DNA gene encoding the ND5 subunit of complex I. This mutation (13514A-->G) hits the same codon affected by a previously reported mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS)-associated mutation (13513G-->A), but the amino acid replacement is different (D393G vs D393N). The 13514A-->G mutation was found in two unrelated MELAS-like patients. However, in contrast to typical MELAS, lactic acidosis was absent or mild and the muscle biopsy was morphologically normal. Strongly positive correlation between the percentage of heteroplasmy and defective activity of complex I was found in cybrids. We found an additional 13513G-->A-positive case, affected by a progressive mitochondrial encephalomyopathy. Our results clearly demonstrate that the amino acid position D393 is crucial for the function of complex I. Search for D393 mutations should be part of the routine screening for mitochondrial disorders.

  20. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.

    Science.gov (United States)

    Törnroth-Horsefield, Susanna; Gourdon, Pontus; Horsefield, Rob; Brive, Lars; Yamamoto, Natsuko; Mori, Hirotada; Snijder, Arjan; Neutze, Richard

    2007-12-01

    Bacterial drug resistance is a serious concern for human health. Multidrug efflux pumps export a broad variety of substrates out of the cell and thereby convey resistance to the host. In Escherichia coli, the AcrB:AcrA:TolC efflux complex forms a principal transporter for which structures of the individual component proteins have been determined in isolation. Here, we present the X-ray structure of AcrB in complex with a single transmembrane protein, assigned by mass spectrometry as YajC. A specific rotation of the periplasmic porter domain of AcrB is also revealed, consistent with the hypothesized "twist-to-open" mechanism for TolC activation. Growth experiments with yajc-deleted E. coli reveal a modest increase in the organism's susceptibility to beta-lactam antibiotics, but this effect could not conclusively be attributed to the loss of interactions between YajC and AcrB.

  1. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting.

    Science.gov (United States)

    Herbert, Kristina M; Sarkar, Susanta K; Mills, Maria; Delgado De la Herran, Hilda C; Neuman, Keir C; Steitz, Joan A

    2016-02-01

    During microRNA (miRNA) biogenesis, the Microprocessor complex (MC), composed minimally of Drosha, an RNaseIII enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary-miRNA (pri-miRNA) to release the pre-miRNA stem-loop structure. Size-exclusion chromatography of the MC, isolated from mammalian cells, suggested multiple copies of one or both proteins in the complex. However, the exact stoichiometry was unknown. Initial experiments suggested that DGCR8 bound pri-miRNA substrates specifically, and given that Drosha could not be bound or cross-linked to RNA, a sequential model for binding was established in which DGCR8 bound first and recruited Drosha. Therefore, many laboratories have studied DGCR8 binding to RNA in the absence of Drosha and have shown that deletion constructs of DGCR8 can multimerize in the presence of RNA. More recently, it was demonstrated that Drosha can bind pri-miRNA substrates in the absence of DGCR8, casting doubt on the sequential model of binding. In the same study, using a single-molecule photobleaching assay, fluorescent protein-tagged deletion constructs of DGCR8 and Drosha assembled into a heterotrimeric complex on RNA, comprising two DGCR8 molecules and one Drosha molecule. To determine the stoichiometry of Drosha and DGCR8 within the MC in the absence of added RNA, we also used a single-molecule photobleaching assay and confirmed the heterotrimeric model of the human MC. We demonstrate that a heterotrimeric complex is likely preformed in the absence of RNA and exists even when full-length proteins are expressed and purified from human cells, and when hAGT-derived tags are used rather than fluorescent proteins.

  2. Physiological function of α-ketoglutarate dehydrogenase complex in Torulopsis glabrata%光滑球拟酵母中α-酮戊二酸脱氢酶系生理作用解析

    Institute of Scientific and Technical Information of China (English)

    张旦旦; 刘立明; 堵国成; 陈坚

    2009-01-01

    [Objective]We studied the physiological function of a-ketoglutarate dehydrogenase complex ( KGDH) on the metabolism of Torulopsis glabrata .[Methods]With manipulation of KGDH in Torulopsis glabrata, we screened a mutant strain T. Glabrata kgdl: : kan, in which the kgd1 gene encoding the El subunit of KGDH was deleted.[Results]Disruption of KGDH resulted in: (a) the enhancement of glyoxalate pathway as a complementarity for carbon metabolism in TCA cycle; (b) compared with that of the control, the ratio of NADH/NAD + and ATP/ADP decreased by 33.7% and 31.8% , respectively. But the specific activities of pyruvate dehydrogenase, isocitrate dehydrogenase and malate dehydrogenase increased by 58.1 % , 33.3% and 32.5%, respectively; (c) the intracellular concentration of pyruvate was reduced by 49.9%, while the intracellular concentration of succinate, malate and a-ketoglutarate was higher 172.7%, 66.1% and 41.1% than the corresponding values of the control; (d) The content of pyruvate-family amino acid was 29.3% lower while the level of glutamate-family amino acid and aspartate-family amino acid were 34.7% and 26.8% higher than that of control.[Conclusions]Those results present here demonstrated that a-ketoglutarate dehydrogenase complex plays essential role on the metabolism of yeast.%[目的]研究α-酮戊二酸脱氢酶系在光滑球拟酵母碳代谢流、能量代谢和氨基酸代谢中的生理作用.[方法]通过敲除光滑球拟酵母中编码α-酮戊二酸脱氢酶系中E1酶的基因kgd1,构建α-酮戊二酸脱氢酶活性缺失菌株T.glabrata kgd1::kan,并考察KGDH缺失引起TCA循环关键酶活性,碳代谢流量以及胞内氨基酸和能荷水平等方面的变化.[结果]光滑球拟酵母中α-酮戊二酸脱氢酶活性的缺失导致:(1)细胞启动乙醛酸途径,通过形成TCA-乙醛酸循环实现TCA循环的正常代谢;(2)胞内NADH/NAD+水平下降33.7%,ATP/ADP水平下降31.8%,而与NADH代谢相关的丙酮酸脱氢酶、异柠檬

  3. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.

    Science.gov (United States)

    Wang, Chenggang; Yao, Jin; Du, Xuezhu; Zhang, Yanping; Sun, Yijun; Rollins, Jeffrey A; Mou, Zhonglin

    2015-09-01

    Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis.

  4. The progress of pyruvate dehydrogenase E1 alpha subunit in myocardial ischemia-reperfusion injury%丙酮酸脱氢酶E1α亚单位与心肌缺血再灌注损伤的研究进展

    Institute of Scientific and Technical Information of China (English)

    叶星华; 梁贵友

    2016-01-01

    心肌缺血再灌注损伤(MIRI)是临床体外循环(CPB)心脏直视手术术后心功能障碍甚至导致死亡的主要原因之一,其发生机制至今仍未完全阐明.我们的前期研究结果显示,心肌胰岛素抵抗(IR)可能是MIRI的又一重要机制,涉及心肌能量底物葡萄糖和脂肪酸代谢紊乱.近来的研究结果显示,丙酮酸脱氢酶E1α亚单位(PDHA1)作为丙酮酸脱氢酶复合物(PDC)的重要组成部分,在维持缺血缺氧及再灌注心肌细胞糖、脂及能量代谢稳态中扮演关键的角色.通过研究PDHA1的相关分子机制,可进一步阐明体外循环心肌胰岛素抵抗的发生机制,对MIRI的防治具有重要意义.%The myocardial ischemia-reperfusion injury (MIRI) is one of the main reason to cardiac dysfunction which is even leading to the death after a open heart surgery by cardiopulmonary bypass (CPB).However,the mechanism of MIRI remains to be fully elucidated.Our previous studies have shown that myocardial insulin resistance (IR) might be another important mechanism of MIRI,involving myocardial energy substrate glucose and fatty acid metabolism disorders.Recent literatures indicated that pyruvate dehydrogenase E1 component subunit alpha (PDHA1)as the important part of pyruvate dehydrogenase complex (PDC),plays a key role in the maintenance of homeostasis of the carbohydrate,lipid and energy metabolism of ischemia and reperfusion myocardial cells.Through the study on molecular mechanisms of PDHA1,we can further elucidate the mechanism of CPB-myocardial IR and provide an important academic and practical significance forprevention and treatment of MIRI.

  5. Effect of low doses of bezafibrate and fenofibrate on liver 2-oxo-glutarate dehydrogenase complex in low-protein diet fed rats

    Directory of Open Access Journals (Sweden)

    Malgorzata Elzbieta Knapik-Czajka

    2015-08-01

    Full Text Available Multienzyme 2-oxoglutarate complex (2-OGDH together with branched chain α-ketoacid dehydrogenase (BCKDH and pyruvate dehydrogenase belong to the family of mitochondrial 2-oxoacid dehydrogenases. Hypolipidemic drugs, bezafibrate and fenofibrate, up-regulate liver BCKDH. The present study has been undertaken to determine the effect of low doses of bezafibrate and fenofibrate on liver 2-OGDH. Fibrates were administrated to rats fed low-protein diet at 5, 10 or 20 mg/kg. In rats treated with increasing doses of bezafibrate 2-OGDH activity increased by 7, 35 and 42%, while in rats administered with fenofibrate by 8, 18, and 56% (p<0.05 for bezafibrate 10 and 20, and fenofibrate 20 mg/kg. Changes in 2-OGDH activity did not correspond with changes in mRNA levels of the complex enzymes. Moreover, mRNA levels of PPARα remained unaltered. It is conceivable that stimulation of 2-OGDH activity by low doses of fibrates is the result of post-transcriptional events and may have a significant effect on liver metabolism.

  6. Mutations in Two Genes Encoding Different Subunits of a Receptor Signaling Complex Result in an Identical Disease Phenotype

    Science.gov (United States)

    Paloneva, Juha; Manninen, Tuula; Christman, Grant; Hovanes, Karine; Mandelin, Jami; Adolfsson, Rolf; Bianchin, Marino; Bird, Thomas; Miranda, Roxana; Salmaggi, Andrea; Tranebjærg, Lisbeth; Konttinen, Yrjö; Peltonen, Leena

    2002-01-01

    Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), also known as “Nasu-Hakola disease,” is a globally distributed recessively inherited disease leading to death during the 5th decade of life and is characterized by early-onset progressive dementia and bone cysts. Elsewhere, we have identified PLOSL mutations in TYROBP (DAP12), which codes for a membrane receptor component in natural-killer and myeloid cells, and also have identified genetic heterogeneity in PLOSL, with some patients carrying no mutations in TYROBP. Here we complete the molecular pathology of PLOSL by identifying TREM2 as the second PLOSL gene. TREM2 forms a receptor signaling complex with TYROBP and triggers activation of the immune responses in macrophages and dendritic cells. Patients with PLOSL have no defects in cell-mediated immunity, suggesting a remarkable capacity of the human immune system to compensate for the inactive TYROBP-mediated activation pathway. Our data imply that the TYROBP-mediated signaling pathway plays a significant role in human brain and bone tissue and provide an interesting example of how mutations in two different subunits of a multisubunit receptor complex result in an identical human disease phenotype. PMID:12080485

  7. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis.

    Science.gov (United States)

    Kumar, Anita; Dumasia, Kushaan; Deshpande, Sharvari; Gaonkar, Reshma; Balasinor, N H

    2016-08-01

    Actin remodeling is a vital process for signaling, movement and survival in all cells. In the testes, extensive actin reorganization occurs at spermatid-Sertoli cell junctions during sperm release (spermiation) and at inter Sertoli cell junctions during restructuring of the blood testis barrier (BTB). During spermiation, tubulobulbar complexes (TBCs), rich in branched actin networks, ensure recycling of spermatid-Sertoli cell junctional molecules. Similar recycling occurs during BTB restructuring around the same time as spermiation occurs. Actin related protein 2/3 complex is an essential actin nucleation and branching protein. One of its subunits, Arpc1b, was earlier found to be down-regulated in an estrogen-induced rat model of spermiation failure. Also, Arpc1b was found to be estrogen responsive through estrogen receptor beta in seminiferous tubule culture. Here, knockdown of Arpc1b by siRNA in adult rat testis led to defects in spermiation caused by failure in TBC formation. Knockdown also compromised BTB integrity and caused polarity defects of mature spermatids. Apart from these effects pertaining to Sertoli cells, Arpc1b reduction perturbed ability of germ cells to enter G2/M phase thus hindering cell division. In summary, Arpc1b, an estrogen responsive gene, is a regulator of spermiation, mature spermatid polarity, BTB integrity and cell division during adult spermatogenesis.

  8. Ion mobility-mass spectrometry of charge-reduced protein complexes reveals general trends in the collisional ejection of compact subunits.

    Science.gov (United States)

    Bornschein, Russell E; Ruotolo, Brandon T

    2015-10-21

    Multiprotein complexes have been shown to play critical roles across a wide range of cellular functions, but most probes of protein quaternary structure are limited in their ability to analyze complex mixtures and polydisperse structures using small amounts of total protein. Ion mobility-mass spectrometry offers a solution to many of these challenges, but relies upon gas-phase measurements of intact multiprotein complexes, subcomplexes, and subunits that correlate well with solution structures. The greatest bottleneck in such workflows is the generation of representative subcomplexes and subunits. Collisional activation of complexes can act to produce product ions reflective of protein complex composition, but such product ions are typically challenging to interpret in terms of their relationship to solution structure due to their typically string-like conformations following activation and subsequent dissociation. Here, we used ion-ion chemistry to perform a broad survey of the gas-phase dissociation of charge-reduced protein complex ions, revealing general trends associated with the collisional ejection of compact, rather than unfolded, protein subunits. Furthermore, we also discover peptide and co-factor dissociation channels that dominate the product ion populations generated for such charge reduced complexes. We assess both sets of observations and discuss general principles that can be extended to the analysis of protein complex ions having unknown structures.

  9. CIF-1, a Shared Subunit of the COP9/Signalosome and Eukaryotic Initiation Factor 3 Complexes, Regulates MEL-26 Levels in the Caenorhabditis elegans Embryo▿

    Science.gov (United States)

    Luke-Glaser, Sarah; Roy, Marcia; Larsen, Brett; Le Bihan, Thierry; Metalnikov, Pavel; Tyers, Mike; Peter, Matthias; Pintard, Lionel

    2007-01-01

    The COP9/signalosome (CSN) is an evolutionarily conserved macromolecular complex that regulates the cullin-RING ligase (CRL) class of E3 ubiquitin ligases, primarily by removing the ubiquitin-like protein Nedd8 from the cullin subunit. In the Caenorhabditis elegans embryo, the CSN controls the degradation of the microtubule-severing protein MEI-1 through CUL-3 deneddylation. However, the molecular mechanisms of CSN function and its subunit composition remain to be elucidated. Here, using a proteomic approach, we have characterized the CSN and CUL-3 complexes from C. elegans embryos. We show that the CSN physically interacts with the CUL-3-based CRL and regulates its activity by counteracting the autocatalytic instability of the substrate-specific adaptor MEL-26. Importantly, we identified the uncharacterized protein K08F11.3/CIF-1 (for CSN-eukaryotic initiation factor 3 [eIF3]) as a stoichiometric and functionally important subunit of the CSN complex. CIF-1 appears to be the only ortholog of Csn7 encoded by the C. elegans genome, but it also exhibits extensive sequence similarity to eIF3m family members, which are required for the initiation of protein translation. Indeed, CIF-1 binds eIF-3.F and inactivation of cif-1 impairs translation in vivo. Taken together, our results indicate that CIF-1 is a shared subunit of the CSN and eIF3 complexes and may therefore link protein translation and degradation. PMID:17403899

  10. CIF-1, a shared subunit of the COP9/signalosome and eukaryotic initiation factor 3 complexes, regulates MEL-26 levels in the Caenorhabditis elegans embryo.

    Science.gov (United States)

    Luke-Glaser, Sarah; Roy, Marcia; Larsen, Brett; Le Bihan, Thierry; Metalnikov, Pavel; Tyers, Mike; Peter, Matthias; Pintard, Lionel

    2007-06-01

    The COP9/signalosome (CSN) is an evolutionarily conserved macromolecular complex that regulates the cullin-RING ligase (CRL) class of E3 ubiquitin ligases, primarily by removing the ubiquitin-like protein Nedd8 from the cullin subunit. In the Caenorhabditis elegans embryo, the CSN controls the degradation of the microtubule-severing protein MEI-1 through CUL-3 deneddylation. However, the molecular mechanisms of CSN function and its subunit composition remain to be elucidated. Here, using a proteomic approach, we have characterized the CSN and CUL-3 complexes from C. elegans embryos. We show that the CSN physically interacts with the CUL-3-based CRL and regulates its activity by counteracting the autocatalytic instability of the substrate-specific adaptor MEL-26. Importantly, we identified the uncharacterized protein K08F11.3/CIF-1 (for CSN-eukaryotic initiation factor 3 [eIF3]) as a stoichiometric and functionally important subunit of the CSN complex. CIF-1 appears to be the only ortholog of Csn7 encoded by the C. elegans genome, but it also exhibits extensive sequence similarity to eIF3m family members, which are required for the initiation of protein translation. Indeed, CIF-1 binds eIF-3.F and inactivation of cif-1 impairs translation in vivo. Taken together, our results indicate that CIF-1 is a shared subunit of the CSN and eIF3 complexes and may therefore link protein translation and degradation.

  11. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome

    NARCIS (Netherlands)

    Albers, C.A.; Paul, D.S.; Schulze, H.; Freson, K.; Stephens, J.C.; Smethurst, P.A.; Jolley, J.D.; Cvejic, A.; Kostadima, M.; Bertone, P.; Breuning, M.H.; Debili, N.; Deloukas, P.; Favier, R.; Fiedler, J.; Hobbs, C.M.; Huang, N.; Hurles, M.E.; Kiddle, G.; Krapels, I.; Nurden, P.; Ruivenkamp, C.A.; Sambrook, J.G.; Smith, K.; Stemple, D.L.; Strauss, G.; Thys, C.; Geet, C. van; Newbury-Ecob, R.; Ouwehand, W.H.; Ghevaert, C.

    2012-01-01

    The exon-junction complex (EJC) performs essential RNA processing tasks. Here, we describe the first human disorder, thrombocytopenia with absent radii (TAR), caused by deficiency in one of the four EJC subunits. Compound inheritance of a rare null allele and one of two low-frequency SNPs in the reg

  12. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase

    DEFF Research Database (Denmark)

    Costa, Sara; Marek, Magdalena; Axelsen, Kristian Buhl

    2016-01-01

    P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one β-subunit isoform, whereas others are promiscuous...

  13. The structure of the SBP-Tag–streptavidin complex reveals a novel helical scaffold bridging binding pockets on separate subunits

    Energy Technology Data Exchange (ETDEWEB)

    Barrette-Ng, Isabelle H.; Wu, Sau-Ching; Tjia, Wai-Mui; Wong, Sui-Lam; Ng, Kenneth K. S., E-mail: ngk@ucalgary.ca [University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)

    2013-05-01

    The structure of the SBP-Tag–streptavidin complex reveals a novel mode of peptide recognition in which a single peptide binds simultaneously to biotin-binding pockets from adjacent subunits of streptavidin. The molecular details of peptide recognition suggest how the SBP-Tag can be further modified to become an even more useful tag for a wider range of biotechnological applications. The 38-residue SBP-Tag binds to streptavidin more tightly (K{sub d} ≃ 2.5–4.9 nM) than most if not all other known peptide sequences. Crystallographic analysis at 1.75 Å resolution shows that the SBP-Tag binds to streptavidin in an unprecedented manner by simultaneously interacting with biotin-binding pockets from two separate subunits. An N-terminal HVV peptide sequence (residues 12–14) and a C-terminal HPQ sequence (residues 31–33) form the bulk of the direct interactions between the SBP-Tag and the two biotin-binding pockets. Surprisingly, most of the peptide spanning these two sites (residues 17–28) adopts a regular α-helical structure that projects three leucine side chains into a groove formed at the interface between two streptavidin protomers. The crystal structure shows that residues 1–10 and 35–38 of the original SBP-Tag identified through in vitro selection and deletion analysis do not appear to contact streptavidin and thus may not be important for binding. A 25-residue peptide comprising residues 11–34 (SBP-Tag2) was synthesized and shown using surface plasmon resonance to bind streptavidin with very similar affinity and kinetics when compared with the SBP-Tag. The SBP-Tag2 was also added to the C-terminus of β-lactamase and was shown to be just as effective as the full-length SBP-Tag in affinity purification. These results validate the molecular structure of the SBP-Tag–streptavidin complex and establish a minimal bivalent streptavidin-binding tag from which further rational design and optimization can proceed.

  14. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry.

    Science.gov (United States)

    Ma, Xin; Lai, Lien B; Lai, Stella M; Tanimoto, Akiko; Foster, Mark P; Wysocki, Vicki H; Gopalan, Venkat

    2014-10-20

    We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly.

  15. Improved crystallization of Escherichia coli ATP synthase catalytic complex (F1) by introducing a phosphomimetic mutation in subunit ε.

    Science.gov (United States)

    Roy, Ankoor; Hutcheon, Marcus L; Duncan, Thomas M; Cingolani, Gino

    2012-10-01

    The bacterial ATP synthase (F(O)F(1)) of Escherichia coli has been the prominent model system for genetics, biochemical and more recently single-molecule studies on F-type ATP synthases. With 22 total polypeptide chains (total mass of ∼529 kDa), E. coli F(O)F(1) represents nature's smallest rotary motor, composed of a membrane-embedded proton transporter (F(O)) and a peripheral catalytic complex (F(1)). The ATPase activity of isolated F(1) is fully expressed by the α(3)β(3)γ 'core', whereas single δ and ε subunits are required for structural and functional coupling of E. coli F(1) to F(O). In contrast to mitochondrial F(1)-ATPases that have been determined to atomic resolution, the bacterial homologues have proven very difficult to crystallize. In this paper, we describe a biochemical strategy that led us to improve the crystallogenesis of the E. coli F(1)-ATPase catalytic core. Destabilizing the compact conformation of ε's C-terminal domain with a phosphomimetic mutation (εS65D) dramatically increased crystallization success and reproducibility, yielding crystals of E. coli F(1) that diffract to ∼3.15 Å resolution.

  16. hELP3 Subunit of the Elongator Complex Regulates the Transcription of HSP70 Gene in Human Cells

    Institute of Scientific and Technical Information of China (English)

    Qiuju HAN; Xiaozhe HOU; Dongmei SU; Lina PAN; Jizhou DUAN; Liguo CUI; Baiqu HUANG; Jun LU

    2007-01-01

    The human Elongator complex is remarkably similar to its yeast counterpart in several aspects.In a previous study, we analyzed the functions of the human elongation protein 3 (hELP3) subunit of the human Elongator by using an in vivo yeast complementation system. However, direct evidence for hELP3 functions in regulating gene expression in human cells was not obtained. In this study, we used hELP3 antisense oligonucleotide inhibitors to knock down hELP3 gene expression to investigate its function in human 293T cells. The results showed that specific reduction of hELP3 mRNA and protein caused a significant suppression of HSP70-2 gene expression, and this was accompanied by histone H3 hypoacetylation and decreased RNA polymerase Ⅱ density at the HSP70-2 gene. Moreover, the data also showed that hELP3 exerted the transcriptional regulatory function directly through its presence on the HSP70-2 gene. Data presented in this report provide further insight and direct evidence of the functions of hELP3 in HSP70-2 gene transcriptional elongation in human cells.

  17. Translation initiation factor (iso) 4E interacts with BTF3, the beta subunit of the nascent polypeptide-associated complex.

    Science.gov (United States)

    Freire, Miguel Angel

    2005-01-31

    A two-hybrid screen with the translation initiation factor, eIF(iso)4E from Arabidopsis, identified a clone encoding a lipoxygenase type 2 [Freire, M.A., et al., 2000. Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein. Plant Molecular Biology 44, 129-140], and three cDNA clones encoding the homologue of the mammalian BTF3 factor, the beta subunit of the nascent polypeptide-associated complex (NAC). Here we report on the interaction between the translation initiation factor eIF(iso)4E and AtBTF3. AtBTF3 protein is able to interact with the wheat initiation factors eIF4E and eIF(iso)4E. AtBTF3 contains a sequence related to the prototypic motif found on most of the 4E-binding proteins, and competes with the translation initiation factor eIF(iso)4G for eIF4(iso)4E binding, in a two hybrid interference assay. These findings provide a molecular link between the translation initiation mechanism and the emergence of the nascent polypeptide chains.

  18. Characterization of heterosubunit complexes formed by the R1 and R2 subunits of herpes simplex virus 1 and equine herpes virus 4 ribonucleotide reductase.

    Science.gov (United States)

    Sun, Y; Conner, J

    2000-04-01

    We report on the separate PCR cloning and subsequent expression and purification of the large (R1) and small (R2) subunits from equine herpes virus type 4 (EHV-4) ribonucleotide reductase. The EHV-4 R1 and R2 subunits reconstituted an active enzyme and their abilities to complement the R1 and R2 subunits from the closely related herpes simplex virus 1 (HSV-1) ribonucleotide reductase, with the use of subunit interaction and enzyme activity assays, were analysed. Both EHV-4 R1/HSV-1 R2 and HSV-1 R1/EHV-4 R2 were able to assemble heterosubunit complexes but, surprisingly, neither of these complexes was fully active in enzyme activity assays; the EHV-4 R1/HSV-1 R2 and HSV-1 R1/EHV-4 R2 enzymes had 50% and 5% of their respective wild-type activities. Site-directed mutagenesis was used to alter two non-conserved residues located within the highly conserved and functionally important C-termini of the EHV-4 and HSV-1 R1 proteins. Mutation of Pro-737 to Lys and Lys-1084 to Pro in EHV-4 and HSV-1 R1 respectively had no effects on subunit assembly. Mutation of Pro-737 to Lys in EHV-4 R1 decreased enzyme activity by 50%; replacement of Lys-1084 by Pro in HSV-1 R1 had no effect on enzyme activity. Both alterations failed to restore full enzyme activities to the heterosubunit enzymes. Therefore probably neither of these amino acids has a direct role in catalysis. However, mutation of the highly conserved Tyr-1111 to Phe in HSV-1 R1 inactivated enzyme activity without affecting subunit interaction.

  19. Mono-nuclear copper complexes mimicking the intermediates for the binuclear copper center of the subunit II of cytochrome oxidase: a peptide based approach.

    Science.gov (United States)

    Dutta Gupta, Dwaipayan; Usharani, Dandamudi; Mazumdar, Shyamalava

    2016-11-28

    Three stable copper complexes of peptides derived from the copper ion binding loop of the subunit II of cytochrome c oxidase have been prepared and characterized by various spectroscopic techniques. These stable copper complexes of peptides were found to exhibit cysteine, histidine and/or methionine ligation, which has predominant σ-contribution in the Cys-Cu charge transfer. The copper(ii) peptide complexes showed type-2 EPR spectra, which is uncommon in copper-cysteinate complexes. UV-visible spectra, Raman and EPR results support a tetragonal structure of the coordination geometry around the copper ion. The copper complex of the 9-amino acid peptide suggested the formation of a 'red' copper center while the copper complexes of the 12- and 11-amino acid peptides showed the formation of a 'green' copper center. The results provide insights on the first stable models of the copper complexes formed in the peptide scaffold that mimic the mono-nuclear copper bound protein intermediates proposed during the formation of the binuclear Cu2S2 core of the enzyme. These three copper complexes of peptides derived from the metal ion binding loop of the CuA center of the subunit II of cytochrome c oxidase showed novel spectroscopic properties which have not so far been reported in any stable small complex.

  20. The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability

    Institute of Scientific and Technical Information of China (English)

    Kentaro Ito; Akinori Takahashi; Masahiro Morita; Toru Suzuki; Tadashi Yamamoto

    2011-01-01

    The human CCR4-NOT deadenylase complex consists of at least nine enzymatic and non-enzymatic subunits.Accumulating evidence suggests that the non-enzymatic subunits are involved in the regulation of mRNA deadenylation,although their precise roles remain to be established.In this study,we addressed the function of the CNOT1 subunit by depleting its expression in HeLa cells.Flow cytometric analysis revealed that the sub G1 fraction was increased in CNOT1-depleted cells.Virtually,the same level of the sub G1 fraction was seen when cells were treated with a mixture of siRNAs targeted against all enzymatic subunits,suggesting that CNOT1 depletion induces apoptosis by destroying the CCR4-NOT-associated deadenylase activity.Further analysis revealed that CNOT1 depletion leads to a reduction in the amount of other CCR4-NOT subunits.Importantly,the specific activity of the CNOT6L immunoprecipitates-associated deadenylase from CNOT1-depleted cells was less than that from control cells.The formation of P-bodies,where mRNA decay is reported to take place,was largely suppressed in CNOT1-depleted cells.Therefore,CNOT1 has an important role in exhibiting enzymatic activity of the CCR4-NOT complex,and thus is critical in control of mRNA deadenylation and mRNA decay.We further showed that CNOT1 depletion enhanced CHOP mRNA levels and activated caspase-4,which is associated with endoplasmic reticulum ER stress-induced apoptosie.Taken together,CNOT1 depletion structurally and functionally deteriorates the CCR4-NOT complex and induces stabilization of mRNAs,which results in the increment of translation causing ER stress-mediated apoptosie.We conclude that CNOT1 contributes to cell viability by securing the activity of the CCR4-NOT deadenylase.

  1. Synthesis and structures of bis(dithiolene)tungsten(IV,VI) thiolate and selenolate complexes: approaches to the active sites of molybdenum and tungsten formate dehydrogenases.

    Science.gov (United States)

    Groysman, Stanislav; Holm, R H

    2007-05-14

    Formate dehydrogenases are molybdenum- or tungsten-containing enzymes that catalyze the oxidation of formate to carbon dioxide. Among the significant characteristics of the mononuclear active sites are coordination of two pyranopterindithiolene ligands and selenocysteinate to the metal in oxidation states IV-VI. The first detailed investigation of the synthesis and structures of bis(dithiolene)tungsten selenolate and analogous thiolate complexes of relevance to formate dehydrogenases has been undertaken. Some 17 complexes of the types [WIV(QR)(S2C2Me2)2]-, [WVIO(QR)(S2C2Me2)2]-, and [WVIS(QR)(S2C2Me2)2]- (Q = S, Se; R = tert-butyl, 1-adamantyl) and the desoxo species [WVI(SR)(OSiR'3)(S2C2Me2)2] (R' = Me, Ph) were prepared. Ten structures of representative members of these types were determined; WIV complexes are square-pyramidal and WVI complexes are six-coordinate, with geometries intermediate between octahedral and trigonal-prismatic. Selenolate complexes are less stable than similar thiolate species; decomposition products were identified as [WV2(mu2-Q)2(S2C2Me2)2]2- and [WIV,V2(mu2-Se)(S2C2Me2)4]-. The several [MoIV(QR)(S2C2Me2)2]- complexes prepared earlier and the tungsten compounds synthesized in this work form a family of molecules whose overall stereochemistry and metric features are those expected in the absence of protein structural constraints.

  2. The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy.

    Directory of Open Access Journals (Sweden)

    Joe H Pogson

    2014-11-01

    Full Text Available Mutations in PINK1, a mitochondrially targeted serine/threonine kinase, cause autosomal recessive Parkinson's disease (PD. Substantial evidence indicates that PINK1 acts with another PD gene, parkin, to regulate mitochondrial morphology and mitophagy. However, loss of PINK1 also causes complex I (CI deficiency, and has recently been suggested to regulate CI through phosphorylation of NDUFA10/ND42 subunit. To further explore the mechanisms by which PINK1 and Parkin influence mitochondrial integrity, we conducted a screen in Drosophila cells for genes that either phenocopy or suppress mitochondrial hyperfusion caused by pink1 RNAi. Among the genes recovered from this screen was ND42. In Drosophila pink1 mutants, transgenic overexpression of ND42 or its co-chaperone sicily was sufficient to restore CI activity and partially rescue several phenotypes including flight and climbing deficits and mitochondrial disruption in flight muscles. Here, the restoration of CI activity and partial rescue of locomotion does not appear to have a specific requirement for phosphorylation of ND42 at Ser-250. In contrast to pink1 mutants, overexpression of ND42 or sicily failed to rescue any Drosophila parkin mutant phenotypes. We also find that knockdown of the human homologue, NDUFA10, only minimally affecting CCCP-induced mitophagy, and overexpression of NDUFA10 fails to restore Parkin mitochondrial-translocation upon PINK1 loss. These results indicate that the in vivo rescue is due to restoring CI activity rather than promoting mitophagy. Our findings support the emerging view that PINK1 plays a role in regulating CI activity separate from its role with Parkin in mitophagy.

  3. Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.

    Science.gov (United States)

    He, X Y; Yang, S Y

    1997-09-09

    Glu139 of the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli was identified as the catalytic residue of enoyl-CoA hydratase [Yang, S.-Y., He, X.-Y., & Schulz, H. (1995) Biochemistry 34, 6441-6447]. To determine whether any of the other conserved protic residues is directly involved in the hydratase catalysis, the multienzyme complexes with either an alpha/Asp69 --> Asn or an alpha/Glu119 --> Gln mutation were overproduced and characterized. The catalytic properties of 3-ketoacyl-CoA thiolase and l-3-hydroxyacyl-CoA dehydrogenase of the mutant complexes were almost unaffected. The amidation of Asp69 and Glu119 caused a 7.6- and 88-fold decrease, respectively, in the kcat of enoyl-CoA hydratase without a significant change in the Km value of the hydratase as well as a 5.9- and 62-fold increase, respectively, in the Km of Delta3-cis-Delta2-trans-enoyl-CoA isomerase with a very small decrease in the kcat of the latter enzyme. The data suggest that the carboxyl group of Glu119 is particularly important to the catalytic activity of enoyl-CoA hydratase. Furthermore, the wild-type hydratase shows a bell-shaped pH dependence of the kcat/Km with pKa values of 5.9 and 9.2, whereas the Glu119 --> Gln mutant hydratase has only a single pKa of 9.5. A simple explanation for these observations is that a deprotonated Glu119 and a protonated Glu139 are required for the high kcat of the enoyl-CoA hydratase. The results of site-directed mutagenesis studies, together with the structural information about the spatial arrangement of two conserved glutamate residues of rat liver enoyl-CoA hydratase [Engel, C. K., Mathieu, M., Zeelen, J. P., Hiltunen, J. K., and Wierenga, R. K. (1996) EMBO J. 15, 5135-5145] to which Glu119 and Glu139 of the large alpha-subunit correspond, lead to the conclusion that the gamma-carboxyl group of Glu119 serves as the second general acid-base functional group in catalyzing the hydration of 2-trans-enoyl-CoA.

  4. Individual phases of contextual fear conditioning differentially modulate dorsal and ventral hippocampal GluA1-3, GluN1-containing receptor complexes and subunits.

    Science.gov (United States)

    Sase, Sunetra; Sase, Ajinkya; Sialana, Fernando J; Gröger, Marion; Bennett, Keiryn L; Stork, Oliver; Lubec, Gert; Li, Lin

    2015-12-01

    In contextual fear conditioning (CFC), the use of pharmacological and lesion approaches has helped to understand that there are differential roles for the dorsal hippocampus (DH) and the ventral hippocampus (VH) in the acquisition, consolidation and retrieval phases. Concomitant analysis of the DH and the VH in individual phases with respect to α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors and N-methyl-D-aspartate receptor subtype N1 (GluN1)-containing complexes (RCC) and subunits has not been reported so far. Herein, CFC was performed in mice that were euthanized at different time points. DH and VH samples were taken for the determination of RCC and subunit levels using BN- and SDS-PAGE, respectively, with subsequent Western blotting. Evaluation of spine densities, morphology, and immunohistochemistry of GluA1 and GluA2 was performed. In the acquisition phase levels of GluA1-RCC and subunits in VH were increased. In the consolidation phase GluA1- and GluA2-RCC levels were increased in DH and VH, while both receptor subunit levels were increased in the VH only. In the retrieval phase GluA1-RCC, subunits thereof and GluA2-RCC were increased in DH and VH, whereas GluA2 subunits were increased in the VH only. GluN1-RCC levels were increased in acquisition and consolidation phase, while subunit levels in the acquisition phase were increased only in the DH. The immunohistochemical studies in the individual phases in subareas of hippocampus supported immunochemical changes of GluA1 and GluA2 RCC's. Dendritic spine densities and the prevalence of thin spines in the acquisition phase of VH and mushroom spines in the retrieval phase of the VH and DH were increased. The findings from the current study suggest different receptor and receptor complex patterns in the individual phases in CFC and in DH and VH. The results propose that different RCCs are formed in the individual phases and that VH and DH may be involved in CFC.

  5. Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits.

    Science.gov (United States)

    Hayashi, Takeshi; Hatanaka, Mitsuko; Nagao, Koji; Nakaseko, Yukinobu; Kanoh, Junko; Kokubu, Aya; Ebe, Masahiro; Yanagida, Mitsuhiro

    2007-12-01

    Nutrients are essential for cell growth and division. Screening of Schizosaccharomyces pombe temperature-sensitive strains led to the isolation of a nutrient-insensitive mutant, tor2-287. This mutant produces a nitrogen starvation-induced arrest phenotype in rich media, fails to recover from the arrest, and is hypersensitive to rapamycin. The L2048S substitution mutation in the catalytic domain in close proximity to the adenine base of ATP is unique as it is the sole known genetic cause of rapamycin hypersensitivity. Localization of Tor2 was speckled in the vegetative cytoplasm, and both speckled and membranous in the arrested cell cytoplasm. Using mass spectroscopic analysis, we identified six subunits (Tco89, Bit61, Toc1, Tel2, Tti1 and Cka1) that, in addition to the six previously identified subunits (Tor1, Tor2, Mip1/Raptor, Ste20/Rictor, Sin1/Avo1 and Wat1/Lst8), comprise the TOR complexes (TORCs). All of the subunits so far examined are multiply phosphorylated. Tel2 bound to Tti1 interacts with various phosphatidyl inositol kinase (PIK)-related kinases including Tra1, Tra2 and Rad3, as well as Tor1 and Tor2. Schizosaccharomyces pombe TORCs should thus be functionally redundant and might be broadly regulated through different subunits that are either common or specific to the two TORCs, or even common to various PIK-related kinases. Functional redundancy of the TORCs may explain the rapamycin hypersensitivity of tor2-287.

  6. Assembly of the adenosine triphosphatase complex in Escherichia coli: assembly of F0 is dependent on the formation of specific F1 subunits.

    Science.gov (United States)

    Cox, G B; Downie, J A; Langman, L; Senior, A E; Ash, G; Fayle, D R; Gibson, F

    1981-10-01

    A strain of Escherichia coli (AN1007) carrying the polar uncD436 allele which affects the operon coding for the F1-F0 adenosine triphosphatase (ATPase) complex was isolated and characterized. The uncD436 allele affected the two genes most distal to the operon promoter, i.e., uncD and uncC. Although the genes coding for the F0 portion of the ATPase complex were not affected in strains carrying this mutant allele, the lack of reconstitution of washed membranes by normal F1 ATPase suggested that a functional F0 might not be formed. This conclusion was supported by the observation that the 18,000-molecular-weight F0 subunit, coded for by the uncF gene, was absent from the membranes. Plasmid pAN36 (uncD+C+), when inserted into a strain carrying the uncD436 allele, resulted in the incorporation of the 18,000-molecular-weight F0 subunit into the membrane. A further series of experiments with Mu-induced polarity mutants, with and without plasmid pAN36, showed that the formation of both the alpha- and beta-subunits of F1 ATPase was an essential prerequisite to the incorporation into the membrane of the 18,000-molecular-weight F0 subunit and to the formation of a functional F0. Examination of the polypeptide composition of membranes from various unc mutants allowed a sequence for the normal assembly of the F1-F0 ATPase complex to be proposed.

  7. Mouse hippocampal GABAB1 but not GABAB2 subunit-containing receptor complex levels are paralleling retrieval in the multiple-T-maze

    Directory of Open Access Journals (Sweden)

    Soheil eKeihan Falsafi

    2015-10-01

    Full Text Available GABAB receptors are heterodimeric G-protein coupled receptors known to be involved in learning and memory. Although a role for GABAB receptors in cognitive processes is evident, there is no information on hippocampal GABAB receptor complexes in a multiple T maze (MTM task, a robust paradigm for evaluation of spatial learning.Trained or untrained (yoked control C57BL/6J male mice (n=10/group were subjected to the MTM task and sacrificed 6 hours following their performance. Hippocampi were taken, membrane proteins extracted and run on blue native PAGE followed by immunoblotting with specific antibodies against GABAB1, GABAB1a and GABAB2. Immunoprecipitation with subsequent mass spectrometric identification of co-precipitates was carried out to show if GABAB1 and GABAB2 as well as other interacting proteins co-precipitate. An antibody shift assay (ASA and a proximity ligation assay (PLA were also used to see if the two GABAB subunits are present in the receptor complex.Single bands were observed on Western blots, each representing GABAB1, GABAB1a or GABAB2 at an apparent molecular weight of approximately 100 kDa. Subsequently, densitometric analysis revealed that levels of GABAB1 and GABAB1a but not GABAB2- containing receptor complexes were significantly higher in trained than untrained groups. Immunoprecipitation followed by mass spectrometric studies confirmed the presence of GABAB1, GABAB2, calcium calmodulin kinases I and II, GluA1 and GluA2 as constituents of the complex. ASA and PLA also showed the presence of the two subunits of GABAB receptor within the complex. It is shown that increased levels of GABAB1 subunit-containing complexes are paralleling performance in a land maze.

  8. Chaperonin containing T-complex polypeptide subunit eta (CCT-eta is a specific regulator of fibroblast motility and contractility.

    Directory of Open Access Journals (Sweden)

    Latha Satish

    Full Text Available Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF and platelet derived growth factor (PDGF stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (alpha-SMA expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less alpha-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular

  9. The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Duc-Cuong Bui

    Full Text Available The Ccr4-Not complex is evolutionarily conserved and important for multiple cellular functions in eukaryotic cells. In this study, the biological roles of the FgNot3 subunit of this complex were investigated in the plant pathogenic fungus Fusarium graminearum. Deletion of FgNOT3 resulted in retarded vegetative growth, retarded spore germination, swollen hyphae, and hyper-branching. The ΔFgnot3 mutants also showed impaired sexual and asexual sporulation, decreased virulence, and reduced expression of genes related to conidiogenesis. Fgnot3 deletion mutants were sensitive to thermal stress, whereas NOT3 orthologs in other model eukaryotes are known to be required for cell wall integrity. We found that FgNot3 functions as a negative regulator of the production of secondary metabolites, including trichothecenes and zearalenone. Further functional characterization of other components of the Not module of the Ccr4-Not complex demonstrated that the module is conserved. Each subunit primarily functions within the context of a complex and might have distinct roles outside of the complex in F. graminearum. This is the first study to functionally characterize the Not module in filamentous fungi and provides novel insights into signal transduction pathways in fungal development.

  10. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Zwart, Ruud; Ursu, Daniel;

    2015-01-01

    AChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293...... cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology...

  11. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.

    OpenAIRE

    1989-01-01

    The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylma...

  12. Malate dehydrogenase: a model for structure, evolution, and catalysis.

    OpenAIRE

    1994-01-01

    Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid s...

  13. Deformed epidermal autoregulatory factor-1 (DEAF1 interacts with the Ku70 subunit of the DNA-dependent protein kinase complex.

    Directory of Open Access Journals (Sweden)

    Philip J Jensik

    Full Text Available Deformed Epidermal Autoregulatory Factor 1 (DEAF1 is a transcription factor linked to suicide, cancer, autoimmune disorders and neural tube defects. To better understand the role of DEAF1 in protein interaction networks, a GST-DEAF1 fusion protein was used to isolate interacting proteins in mammalian cell lysates, and the XRCC6 (Ku70 and the XRCC5 (Ku80 subunits of DNA dependent protein kinase (DNA-PK complex were identified by mass spectrometry, and the DNA-PK catalytic subunit was identified by immunoblotting. Interaction of DEAF1 with Ku70 and Ku80 was confirmed to occur within cells by co-immunoprecipitation of epitope-tagged proteins, and was mediated through interaction with the Ku70 subunit. Using in vitro GST-pulldowns, interaction between DEAF1 and the Ku70 subunit was mapped to the DEAF1 DNA binding domain and the C-terminal Bax-binding region of Ku70. In transfected cells, DEAF1 and Ku70 colocalized to the nucleus, but Ku70 could not relocalize a mutant cytoplasmic form of DEAF1 to the nucleus. Using an in vitro kinase assay, DEAF1 was phosphorylated by DNA-PK in a DNA-independent manner. Electrophoretic mobility shift assays showed that DEAF1 or Ku70/Ku80 did not interfere with the DNA binding of each other, but DNA containing DEAF1 binding sites inhibited the DEAF1-Ku70 interaction. The data demonstrates that DEAF1 can interact with the DNA-PK complex through interactions of its DNA binding domain with the carboxy-terminal region of Ku70 that contains the Bax binding domain, and that DEAF1 is a potential substrate for DNA-PK.

  14. Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid.

    Science.gov (United States)

    Ladame, Sylvain; Castilho, Marcelo S; Silva, Carlos H T P; Denier, Colette; Hannaert, Véronique; Périé, Jacques; Oliva, Glaucius; Willson, Michèle

    2003-11-01

    We report here the first crystal structure of a stable isosteric analogue of 1,3-bisphospho-d-glyceric acid (1,3-BPGA) bound to the catalytic domain of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) in which the two phosphoryl moieties interact with Arg249. This complex possibly illustrates a step of the catalytic process by which Arg249 may induce compression of the product formed, allowing its expulsion from the active site. Structural modifications were introduced into this isosteric analogue and the respective inhibitory effects of the resulting diphosphorylated compounds on T. cruzi and Trypanosoma brucei gGAPDHs were investigated by enzymatic inhibition studies, fluorescence spectroscopy, site-directed mutagenesis, and molecular modelling. Despite the high homology between the two trypanomastid gGAPDHs (> 95%), we have identified specific interactions that could be used to design selective irreversible inhibitors against T. cruzi gGAPDH.

  15. Biosensor analysis of dynamics of interleukin 5 receptor subunit beta(c) interaction with IL5:IL5R(alpha) complexes.

    Science.gov (United States)

    Scibek, Jeffery J; Evergren, Emma; Zahn, Stefan; Canziani, Gabriela A; Van Ryk, Donald; Chaiken, Irwin M

    2002-08-15

    To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.

  16. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency.

    Science.gov (United States)

    Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A

    2017-04-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Role of the conserved arginine 274 and histidine 224 and 228 residues in the NuoCD subunit of complex I from Escherichia coli.

    Science.gov (United States)

    Belevich, Galina; Euro, Liliya; Wikström, Mårten; Verkhovskaya, Marina

    2007-01-16

    The conserved arginine 274 and histidine 224 and 228 residues in subunit NuoCD of complex I from Escherichia coli were substituted for alanine. The wild-type and mutated NuoCD subunit was expressed on a plasmid in an E. coli strain bearing a nuoCD deletion. Complex I was fully expressed in the H224A and H228A mutants, whereas the R274A mutation yielded approximately 50% expression. Ubiquinone reductase activity of complex I was studied in membranes and with purified enzyme and was 50% and 30% of the wild-type activity in the H224A and H228A mutants, respectively. The activity of R274A was less than 5% of the wild type in membranes but 20% in purified complex I. Rolliniastatin inhibited quinone reductase activity in the mutants with similar affinity as in the wild type, indicating that the quinone-binding site was not significantly altered by the mutations. Ubiquinone-dependent superoxide production by complex I was similar to the wild type in the R274A mutant but slightly higher in the H224A and H228A mutants. The EPR spectra of purified complex I from the H224A and H228A mutants did not differ from the wild type. In contrast, the signals of the N2 cluster and another fast-relaxing [4Fe-4S] cluster, tentatively assigned as N6b, were drastically decreased in the NADH-reduced R274A mutant enzyme but reappeared on further reduction with dithionite. These findings show that the redox potential of the N2 and N6b centers is shifted to more negative values by the R274A mutation. Purified complex I was reconstituted into liposomes, and electric potential was generated across the membrane upon NADH addition in all three mutant enzymes, suggesting that none of the mutations directly affect the proton-pumping machinery.

  18. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly.

    Science.gov (United States)

    Welch, M D; DePace, A H; Verma, S; Iwamatsu, A; Mitchison, T J

    1997-07-28

    The Arp2/3 protein complex has been implicated in the control of actin polymerization in cells. The human complex consists of seven subunits which include the actin related proteins Arp2 and Arp3, and five others referred to as p41-Arc, p34-Arc, p21-Arc, p20-Arc, and p16-Arc (p omplex). We have determined the predicted amino acid sequence of all seven subunits. Each has homologues in diverse eukaryotes, implying that the structure and function of the complex has been conserved through evolution. Human Arp2 and Arp3 are very similar to family members from other species. p41-Arc is a new member of the Sop2 family of WD (tryptophan and aspartate) repeat-containing proteins and may be posttranslationally modified, suggesting that it may be involved in regulating the activity and/or localization of the complex. p34-Arc, p21-Arc, p20-Arc, and p16-Arc define novel protein families. We sought to evaluate the function of the Arp2/3 complex in cells by determining its intracellular distribution. Arp3, p34-Arc, and p21-Arc were localized to the lamellipodia of stationary and locomoting fibroblasts, as well to Listeria monocytogenes assembled actin tails. They were not detected in cellular bundles of actin filaments. Taken together with the ability of the Arp2/3 complex to induce actin polymerization, these observations suggest that the complex promotes actin assembly in lamellipodia and may participate in lamellipodial protrusion.

  19. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties.

    Directory of Open Access Journals (Sweden)

    Morten Skøtt Thomsen

    Full Text Available The existence of α7β2 nicotinic acetylcholine receptors (nAChRs has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer's disease, it is critical to determine whether α7β2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with β2 subunits, indicating the presence of α7β2 nAChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293 cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology and kinetic profile. α7β2 nAChRs thus represent an alternative mechanism for the reported clinical efficacy of α7 nAChR ligands.

  20. The NDUFB6 subunit of the mitochondrial respiratory chain complex I is required for electron transfer activity: A proof of principle study on stable and controlled RNA interference in human cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loublier, Sandrine; Bayot, Aurelien; Rak, Malgorzata; El-Khoury, Riyad; Benit, Paule [Inserm U676, Hopital Robert Debre, F-75019 Paris (France); Universite Paris 7, Faculte de medecine Denis Diderot, IFR02 Paris (France); Rustin, Pierre, E-mail: pierre.rustin@inserm.fr [Inserm U676, Hopital Robert Debre, F-75019 Paris (France); Universite Paris 7, Faculte de medecine Denis Diderot, IFR02 Paris (France)

    2011-10-22

    Highlights: {yields} NDUFB6 is required for activity of mitochondrial complex I in human cell lines. {yields} Lentivirus based RNA interference results in frequent off target insertions. {yields} Flp-In recombinase mediated miRNA insertion allows gene-specific extinction. -- Abstract: Molecular bases of inherited deficiencies of mitochondrial respiratory chain complex I are still unknown in a high proportion of patients. Among 45 subunits making up this large complex, more than half has unknown function(s). Understanding the function of these subunits would contribute to our knowledge on mitochondrial physiology but might also reveal that some of these subunits are not required for the catalytic activity of the complex. A direct consequence of this finding would be the reduction of the number of candidate genes to be sequenced in patients with decreased complex I activity. In this study, we tested two different methods to stably extinct complex I subunits in cultured cells. We first found that lentivirus-mediated shRNA expression frequently resulted in the unpredicted extinction of additional gene(s) beside targeted ones. This can be ascribed to uncontrolled genetic material insertions in the genome of the host cell. This approach thus appeared inappropriate to study unknown functions of a gene. Next, we found it possible to specifically extinct a CI subunit gene by direct insertion of a miR targeting CI subunits in a Flp site (HEK293 Flp-In cells). By using this strategy we unambiguously demonstrated that the NDUFB6 subunit is required for complex I activity, and defined conditions suitable to undertake a systematic and stable extinction of the different supernumerary subunits in human cells.

  1. Population structure of the Monocelis lineata (Proseriata, Monocelididae species complex assessed by phylogenetic analysis of the mitochondrial Cytochrome c Oxidase subunit I (COI gene

    Directory of Open Access Journals (Sweden)

    Daria Sanna

    2009-01-01

    Full Text Available Monocelis lineata consists of a complex of sibling species, widespread in the Mediterranean and Atlantic Ocean. Previous genetic analysis placed in evidence at least four sibling species. Nevertheless, this research was not conclusive enough to fully resolve the complex or to infer the phylogeny/phylogeography of the group. We designed specific primers aiming at obtaining partial sequences of the mtDNA gene Cytochrome c Oxidase subunit I (COI of M. lineata, and have identified 25 different haplotypes in 32 analyzed individuals. The dendrogram generated by Neighbor-Joining analysis confirmed the differentiation between Atlantic and Mediterranean siblings, as well as the occurrence of at least two Mediterranean sibling species. Thus validated, the method here presented appears as a valuable tool in population genetics and biodiversity surveys on the Monocelis lineata complex.

  2. Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex

    Directory of Open Access Journals (Sweden)

    Peter Bross

    2016-08-01

    Full Text Available Heat shock protein 60 (HSP60 forms together with heat shock protein 10 (HSP10 double-barrel chaperonin complexes that are essential for folding to the native state of proteins in the mitochondrial matrix space. Two extremely rare monogenic disorders have been described that are caused by missense mutations in the HSPD1 gene that encodes the HSP60 subunit of the HSP60/HSP10 chaperonin complex. Investigations of the molecular mechanisms underlying these disorders have revealed that different degrees of reduced HSP60 function produce distinct neurological phenotypes. While mutations with deleterious or strong dominant negative effects are not compatible with life, HSPD1 gene variations found in the human population impair HSP60 function and depending on the mechanism and degree of HSP60 dys- and malfunction cause different phenotypes. We here summarize the knowledge on the effects of disturbances of the function of the HSP60/HSP10 chaperonin complex by disease-associated mutations.

  3. t-Darpp stimulates protein kinase A activity by forming a complex with its RI regulatory subunit.

    Science.gov (United States)

    Theile, Dirk; Geng, Shuhui; Denny, Erin C; Momand, Jamil; Kane, Susan E

    2017-09-01

    t-Darpp is the truncated form of the dopamine- and cAMP-regulated phosphoprotein of 32kDa (Darpp-32) and has been demonstrated to confer resistance to trastuzumab, a Her2-targeted anticancer agent, via sustained signaling through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt pathway and activation of protein kinase A (PKA). The mechanism of t-Darpp-mediated PKA activation is poorly understood. In the PKA holoenzyme, when the catalytic subunits are bound to regulatory subunits RI or RII, kinase activity is inhibited. We investigated PKA activity and holoenzyme composition in cell lines overexpressing t-Darpp (SK.tDp) or a T39A phosphorylation mutant (SK.tDp(T39A)), as well as an empty vector control cell line (SK.empty). We also evaluated protein-protein interactions between t-Darpp and PKA catalytic (PKAc) or regulatory subunits RI and RII in those cell lines. SK.tDp cells had elevated PKA activity and showed diminished association of RI with PKAc, whereas SK.tDp(T39A) cells did not have these properties. Moreover, wild type t-Darpp associates with RI. Concurrent expression of Darpp-32 reversed t-Darrp's effects on PKA holoenzyme state, consistent with earlier observations that Darpp-32 reverses t-Darpp's activation of PKA. Together, t-Darpp phosphorylation at T39 seems to be crucial for t-Darpp-mediated PKA activation and this activation appears to occur through an association with RI and sequestering of RI away from PKAc. The t-Darpp-RI interaction could be a druggable target to reduce PKA activity in drug-resistant cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in the subunit stoichiometry study of high-mass non-covalent complexes

    Science.gov (United States)

    Moniatte, M.; Lesieur, C.; Vecsey-Semjen, B.; Buckley, J. T.; Pattus, F.; van der Goot, F. G.; van Dorsselaer, A.

    1997-12-01

    This study explores the potential of MALDI-TOF MS for the mass measurement of large non-covalent protein complexes. The following non-covalent complexes have been investigated: aerolysin from Aeromonas hydrophila (335 kDa) and [alpha]-haemolysin from Staphylococcus aureus (233 kDa) which are both cytolytic toxins, three enzymes known to be homotetramers in solution: bovine liver catalase (235 kDa), rabbit muscle pyruvate kinase (232 kDa), yeast alcohol dehydrogenase (147 kDa) and finally a lectin, concanavalin A (102 kDa). Three different matrix preparations were systematically tested under various conditions: ferulic acid dissolved in THF, 2,6-dihydroxyacetophenone in 20 mM aqueous ammonium citrate and a two-step sample preparation with sinapinic acid. It was possible to find a suitable combination of matrix and preparation type which allowed the molecularity of all complexes tested to be deduced from the MALDI mass spectrum. Trimeric and tetrameric intermediates accumulating during the formation of the active heptameric aerolysin complex were also identified, this allowing a formation mechanism to be proposed. The observation of large specific non-covalent complexes has been found to be dependent on the choice of matrix, the type of sample preparation used, the solvent evaporation speed, the pH of the resulting matrix-sample mixture and the number of shots acquired on a given area. From this set of experiments, some useful guidelines for the observation of large complexes by MALDI could therefore be deduced. Fast evaporation of the solvent is particularly necessary in the case of pH sensitive complexes. An ESMS study on the same non-covalent complexes indicated that, rather surprisingly, reliable results could be obtained by MALDI-TOF MS on several very large complexes (above 200 kDa) for which ESMS yielded no clear spectra.

  5. Human 17β-hydroxysteroid dehydrogenase-ligand complexes: crystals of different space groups with various cations and combined seeding and co-crystallization

    Science.gov (United States)

    Zhu, D.-W.; Han, Q.; Qiu, W.; Campbell, R. L.; Xie, B.-X.; Azzi, A.; Lin, S.-X.

    1999-01-01

    Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) is responsible for the synthesis of active estrogens that stimulate the proliferation of breast cancer cells. The enzyme has been crystallized using a Mg 2+/PEG (3500)/β-octyl glucoside system [Zhu et al., J. Mol. Biol. 234 (1993) 242]. The space group of these crystals is C2. Here we report that cations can affect 17β-HSD1 crystallization significantly. In the presence of Mn 2+ instead of Mg 2+, crystals have been obtained in the same space group with similar unit cell dimensions. In the presence of Li + and Na + instead of Mg 2+, the space group has been changed to P2 12 12 1. A whole data set for a crystal of 17ß-HSD1 complex with progesterone grown in the presence of Li + has been collected to 1.95 Å resolution with a synchrotron source. The cell dimensions are a=41.91 Å, b=108.21 Å, c=117.00 Å. The structure has been preliminarily determined by molecular replacement, yielding important information on crystal packing in the presence of different cations. In order to further understand the structure-function relationship of 17β-HSD1, enzyme complexes with several ligands have been crystallized. As the steroids have very low aqueous solubility, we used a combined method of seeding and co-crystallization to obtain crystals of 17β-HSD1 complexed with various ligands. This method provides ideal conditions for growing complex crystals, with ligands such as 20α-hydroxysteroid progesterone, testosterone and 17β-methyl-estradiol-NADP +. Several complex structures have been determined with reliable electronic density of the bound ligands.

  6. Mitochondrial glutathione depletion reveals a novel role for the pyruvate dehydrogenase complex as a key H2O2 emitting source under conditions of nutrient overload

    Science.gov (United States)

    Fisher-Wellman, Kelsey H.; Gilliam, Laura A. A.; Lin, Chien-Te; Cathey, Brook L.; Lark, Daniel S.; Neufer, P. Darrell

    2014-01-01

    Once regarded as “byproducts” of aerobic metabolism, the production of superoxide/H2O2 is now understood to be a highly specialized and extensively regulated process responsible for exerting control over a vast number of thiol-containing proteins, collectively referred to as the redox-sensitive proteome. Although disruptions within this process, secondary to elevated peroxide exposure, have been linked to disease, delineation of the sources and mechanisms regulating increased peroxide burden remain poorly defined and as such difficult to target using pharmacotherapy. Here we identify the pyruvate dehydrogenase complex (PDC) as a key source of H2O2 within skeletal muscle mitochondria under conditions of depressed glutathione redox buffering integrity. Treatment of permeabilized myofibers with varying concentrations of the glutathione depleting agent 1-chloro-2,4-dinitrobenzene (CDNB) led to a dose-dependent increase in pyruvate-supported JH2O2 emission, with emission rates eventually rising to exceed those of all substrate combinations tested. This striking sensitivity to glutathione depletion was observed in permeabilized fibers prepared from multiple species and was specific to PDC. Physiological oxidation of the cellular glutathione pool following high fat feeding in rodents was found to elevate PDC JH2O2 emission, as well as increase the sensitivity of the complex to GSH depletion. These findings reveal PDC as a potential major site of H2O2 production that is extremely sensitive to mitochondrial glutathione redox status. PMID:24056031

  7. Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism.

    Science.gov (United States)

    Ceccarelli, Christopher; Grodsky, Neil B; Ariyaratne, Nandana; Colman, Roberta F; Bahnson, Brian J

    2002-11-08

    The crystal structure of porcine heart mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH) complexed with Mn2+ and isocitrate was solved to a resolution of 1.85 A. The enzyme was expressed in Escherichia coli, purified as a fusion protein with maltose binding protein, and cleaved with thrombin to yield homogeneous enzyme. The structure was determined by multiwavelength anomalous diffraction phasing using selenium substitution in the form of selenomethionine as the anomalous scatterer. The porcine NADP+-IDH enzyme is structurally compared with the previously solved structures of IDH from E. coli and Bacillus subtilis that share 16 and 17% identity, respectively, with the mammalian enzyme. The porcine enzyme has a protein fold similar to the bacterial IDH structures with each monomer folding into two domains. However, considerable differences exist between the bacterial and mammalian forms of IDH in regions connecting core secondary structure. Based on the alignment of sequence and structure among the porcine, E. coli, and B. subtilis IDH, a putative phosphorylation site has been identified for the mammalian enzyme. The active site, including the bound Mn2+-isocitrate complex, is highly ordered and, therefore, mechanistically informative. The consensus IDH mechanism predicts that the Mn2+-bound hydroxyl of isocitrate is deprotonated prior to its NADP+-dependent oxidation. The present crystal structure has an active site water that is well positioned to accept the proton and ultimately transfer the proton to solvent through an additional bound water.

  8. Subunit analysis of bovine heart complex I by reversed-phase high-performance liquid chromatography, electrospray ionization-tandem mass spectrometry, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Lemma-Gray, Patrizia; Valusová, Eva; Carroll, Christopher A; Weintraub, Susan T; Musatov, Andrej; Robinson, Neal C

    2008-11-15

    An effective method was developed for isolation and analysis of bovine heart complex I subunits. The method uses C18 reversed-phase high-performance liquid chromatography (HPLC) and a water/acetonitrile gradient containing 0.1% trifluoroacetic acid. Employing this system, 36 of the 45 complex I subunits elute in 28 distinct chromatographic peaks. The 9 subunits that do not elute are B14.7, MLRQ, and the 7 mitochondrial-encoded subunits. The method, with ultraviolet (UV) detection, is suitable for either analytical (250 microg protein) applications. Subunits eluting in each chromatographic peak were initially determined by matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) with subsequent positive identification by reversed-phase HPLC-electrospray ionization (ESI)/tandem mass spectrometry (MS/MS) analysis of tryptic digests. In the latter case, subunits were identified with a 99% probability using Mascot for database searching and Scaffold for assessment of protein identification probabilities. The reversed-phase HPLC subunit analysis method represents a major improvement over previous separation methods with respect to resolution, simplicity, and ease of application.

  9. The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction.

    Science.gov (United States)

    Tocilescu, Maja A; Fendel, Uta; Zwicker, Klaus; Dröse, Stefan; Kerscher, Stefan; Brandt, Ulrich

    2010-01-01

    Iron-sulfur cluster N2 of complex I (proton pumping NADH:quinone oxidoreductase) is the immediate electron donor to ubiquinone. At a distance of only approximately 7A in the 49-kDa subunit, a highly conserved tyrosine is found at the bottom of the previously characterized quinone binding pocket. To get insight into the function of this residue, we have exchanged it for six different amino acids in complex I from Yarrowia lipolytica. Mitochondrial membranes from all six mutants contained fully assembled complex I that exhibited very low dNADH:ubiquinone oxidoreductase activities with n-decylubiquinone. With the most conservative exchange Y144F, no alteration in the electron paramagnetic resonance spectra of complex I was detectable. Remarkably, high dNADH:ubiquinone oxidoreductase activities were observed with ubiquinones Q1 and Q2 that were coupled to proton pumping. Apparent Km values for Q1 and Q2 were markedly increased and we found pronounced resistance to the complex I inhibitors decyl-quinazoline-amine (DQA) and rotenone. We conclude that Y144 directly binds the head group of ubiquinone, most likely via a hydrogen bond between the aromatic hydroxyl and the ubiquinone carbonyl. This places the substrate in an ideal distance to its electron donor iron-sulfur cluster N2 for efficient electron transfer during the catalytic cycle of complex I.

  10. Caenorhabditis elegans ortholog of the p24/p22 subunit, DNC-3, is essential for the formation of the dynactin complex by bridging DNC-1/p150Glued and DNC-2/dynamitin

    OpenAIRE

    Terasawa, Masahiro; Toya, Mika; Motegi, Fumio; Mana, Miyeko; Nakamura, Kuniaki; Sugimoto, Asako

    2010-01-01

    Dynactin is a multisubunit protein complex required for the activity of cytoplasmic dynein. In Caenorhabditis elegans, although 10 of the 11 dynactin subunits were identified based on the sequence similarities to their orthologs, the p24/p22 subunit has not been detected in the genome. Here, we demonstrate that DNC-3 (W10G11.20) is the functional counterpart of the p24/p22 subunit in C. elegans. RNAi phenotypes and subcellular localization of DNC-3 in early C. elegans embryos were nearly iden...

  11. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis.

    Science.gov (United States)

    Berriri, Souha; Gangappa, Sreeramaiah N; Kumar, S Vinod

    2016-07-06

    Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.

  12. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Narayanasami [NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States); Dewanti, Asteriani [Department of Chemistry and Physics, Western Carolina University, Cullowhee, NC 28723 (United States); Merli, Angelo; Rossi, Gian Luigi [Department of Biochemistry and Molecular Biology, University of Parma, Parma (Italy); Mitra, Bharati [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Mathews, F. Scott, E-mail: mathews@biochem.wustl.edu [Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110 (United States); NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  13. Mutual Interplay between the Human Cytomegalovirus Terminase Subunits pUL51, pUL56, and pUL89 Promotes Terminase Complex Formation.

    Science.gov (United States)

    Neuber, Sebastian; Wagner, Karen; Goldner, Thomas; Lischka, Peter; Steinbrueck, Lars; Messerle, Martin; Borst, Eva Maria

    2017-06-15

    Human cytomegalovirus (HCMV) genome encapsidation requires several essential viral proteins, among them pUL56, pUL89, and the recently described pUL51, which constitute the viral terminase. To gain insight into terminase complex assembly, we investigated interactions between the individual subunits. For analysis in the viral context, HCMV bacterial artificial chromosomes carrying deletions in the open reading frames encoding the terminase proteins were used. These experiments were complemented by transient-transfection assays with plasmids expressing the terminase components. We found that if one terminase protein was missing, the levels of the other terminase proteins were markedly diminished, which could be overcome by proteasome inhibition or providing the missing subunit in trans These data imply that sequestration of the individual subunits within the terminase complex protects them from proteasomal turnover. The finding that efficient interactions among the terminase proteins occurred only when all three were present together is reminiscent of a folding-upon-binding principle leading to cooperative stability. Furthermore, whereas pUL56 was translocated into the nucleus on its own, correct nuclear localization of pUL51 and pUL89 again required all three terminase constituents. Altogether, these features point to a model of the HCMV terminase as a multiprotein complex in which the three players regulate each other concerning stability, subcellular localization, and assembly into the functional tripartite holoenzyme.IMPORTANCE HCMV is a major risk factor in immunocompromised individuals, and congenital CMV infection is the leading viral cause for long-term sequelae, including deafness and mental retardation. The current treatment of CMV disease is based on drugs sharing the same mechanism, namely, inhibiting viral DNA replication, and often results in adverse side effects and the appearance of resistant virus strains. Recently, the HCMV terminase has emerged as

  14. Pivotal Role for a Tail Subunit of the RNA Polymerase II Mediator Complex CgMed2 in Azole Tolerance and Adherence in Candida glabrata

    Science.gov (United States)

    Borah, Sapan; Shivarathri, Raju; Srivastava, Vivek Kumar; Ferrari, Sélène; Sanglard, Dominique

    2014-01-01

    Antifungal therapy failure can be associated with increased resistance to the employed antifungal agents. Candida glabrata, the second most common cause of invasive candidiasis, is intrinsically less susceptible to the azole class of antifungals and accounts for 15% of all Candida bloodstream infections. Here, we show that C. glabrata MED2 (CgMED2), which codes for a tail subunit of the RNA polymerase II Mediator complex, is required for resistance to azole antifungal drugs in C. glabrata. An inability to transcriptionally activate genes encoding a zinc finger transcriptional factor, CgPdr1, and multidrug efflux pump, CgCdr1, primarily contributes to the elevated susceptibility of the Cgmed2Δ mutant toward azole antifungals. We also report for the first time that the Cgmed2Δ mutant exhibits sensitivity to caspofungin, a constitutively activated protein kinase C-mediated cell wall integrity pathway, and elevated adherence to epithelial cells. The increased adherence of the Cgmed2Δ mutant was attributed to the elevated expression of the EPA1 and EPA7 genes. Further, our data demonstrate that CgMED2 is required for intracellular proliferation in human macrophages and modulates survival in a murine model of disseminated candidiasis. Lastly, we show an essential requirement for CgMed2, along with the Mediator middle subunit CgNut1 and the Mediator cyclin-dependent kinase/cyclin subunit CgSrb8, for the high-level fluconazole resistance conferred by the hyperactive allele of CgPdr1. Together, our findings underscore a pivotal role for CgMed2 in basal tolerance and acquired resistance to azole antifungals. PMID:25070095

  15. Adenosine A2 receptor activation ameliorates mitochondrial oxidative stress upon reperfusion through the posttranslational modification of NDUFV2 subunit of complex I in the heart.

    Science.gov (United States)

    Xu, Jingman; Bian, Xiyun; Liu, Yuan; Hong, Lan; Teng, Tianming; Sun, Yuemin; Xu, Zhelong

    2017-02-20

    While it is well known that adenosine receptor activation protects the heart from ischemia/reperfusion injury, the precise mitochondrial mechanism responsible for the action remains unknown. This study probed the mitochondrial events associated with the cardioprotective effect of 5'-(N-ethylcarboxamido) adenosine (NECA), an adenosine A2 receptor agonist. Isolated rat hearts were subjected to 30min ischemia followed by 10min of reperfusion, whereas H9c2 cells experienced 20min ischemia and 10min reperfusion. NECA prevented mitochondrial structural damage, decreases in respiratory control ratio (RCR), and collapse of mitochondrial membrane potential (ΔΨm). Both the adenosine A2A receptor antagonist SCH58261 and A2B receptor antagonist MRS1706 inhibited the action of NECA. NECA reduced mitochondrial proteins carbonylation, H2O2, and superoxide generation at reperfusion, but did not change superoxide dismutase (SOD) activity. In support, the protective effects of NECA and Peg-SOD on ΔΨm upon reperfusion were additive, implying that NECA's protection is attributable to the reduced superoxide generation but not to the enhancement of the superoxide-scavenging capacity. NECA increased the mitochondrial Src tyrosine kinase activity and suppressed complex I activity at reperfusion in a Src-dependent manner. NECA also reduced mitochondrial superoxide through Src tyrosine kinase. Studies with liquid chromatography-mass spectrometer (LC-MS) identified Tyr118 of the NDUFV2 subunit of complex 1 as a likely site of the tyrosine phosphorylation. Furthermore, the complex I activity of cells transfected with the Y118F mutant was increased, suggesting that this site might be a negative regulator of complex I activity. In support, NECA failed to suppress complex I activity at reperfusion in cells transfected with the Y118F mutant of NDUFV2. In conclusion, NECA prevents mitochondrial oxidative stress by decreasing mitochondrial superoxide generation through inhibition of complex I

  16. The design, synthesis and biological evaluation of novel thiamin diphosphate analog inhibitors against the pyruvate dehydrogenase multienzyme complex E1 from Escherichia coli.

    Science.gov (United States)

    Feng, Lingling; He, Junbo; He, Haifeng; Zhao, Lulu; Deng, Lingfu; Zhang, Li; Zhang, Lin; Ren, Yanliang; Wan, Jian; He, Hongwu

    2014-11-28

    Pyruvate dehydrogenase multienzyme complex E1 (PDHc E1) is a potential target enzyme when looking for inhibitors to combat microbial disease. In this study, we designed and synthesized a series of novel thiamin diphosphate (ThDP) analogs with triazole ring and oxime ether moieties as potential inhibitors of PDHc E1. Their inhibitory activities against PDHc E1 were examined both in vitro and in vivo. Most of the tested compounds exhibited moderate inhibitory activities against PDHc E1 (IC50 = 6.1-75.5 μM). The potent inhibitors 4g, 4h and 4j, had strong inhibitory activities with IC50 values of 6.7, 6.9 and 6.1 μM against PDHc E1 in vitro and with inhibition rates of 35%, 50% and 33% at 100 μg mL(-1) against Gibberella zeae in vivo, respectively. The binding mode of 4j to PDHc E1 was analyzed by a molecular docking method. Furthermore, the possible interactions of the important residues of PDHc E1 with compound 4j were examined by site-directed mutagenesis, enzymatic assays and spectral fluorescence studies. The theoretical and experimental results are in good agreement and suggest that compound 4j could be used as a lead compound for further optimization, and may have potential as a new microbicide.

  17. 3-nitropropionic acid inhibition of succinate dehydrogenase (complex II) activity in cultured Chinese hamster ovary cells: antagonism by L-carnitine.

    Science.gov (United States)

    Scallet, Andrew C; Haley, Raney L; Scallet, Dori M; Duhart, Helen M; Binienda, Zbigniew K

    2003-05-01

    3-Nitropropionic acid (3-NPA) is an inhibitor of the mitochondrial enzyme succinate dehydrogenase (SDH, a part of complex II) that links the tricarboxylic acid (TCA) cycle to the respiratory electron transport chain. 3-NPA inactivates SDH by covalently and irreversibly binding to its active site. We previously examined the effects of 3-NPA on the histochemical activity of SDH in vivo, by using the reduction of a yellow tetrazolium dye (nitro blue tetrazolium) to a blue formazan as an indicator. In studies of cultured cells, the related dye methylthiazoletetrazolium (MTT) has commonly been used as an indicator of the presence and number of viable cells; that is cells that are capable of producing energy via the TCA cycle. Here we observed that doses of 3-NPA as low as 10(-8) M inhibited formazan production in an in vitro model system using CHO cells. This effect was antagonized by l-carnitine, which greatly increased the production of formazan, indicating a considerable improvement in energy production by the cultured cells. CHO cells appear to be a convenient model for the evaluation of therapeutic compounds that may modulate cellular bioenergetics.

  18. α-(Substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonates: synthesis, herbicidal activity, inhibition on pyruvate dehydrogenase complex (PDHc), and application as postemergent herbicide against broadleaf weeds.

    Science.gov (United States)

    He, Hong-Wu; Peng, Hao; Wang, Tao; Wang, Chubei; Yuan, Jun-Lin; Chen, Ting; He, Junbo; Tan, Xiaosong

    2013-03-13

    Pyruvate dehydrogenase complex (PDHc) is the site of action of a new class of herbicides. On the basis of the previous work for O,O'-dimethyl α-(substituted-phenoxyacetoxy)alkylphosphonates (I), further synthetic modifications were made by introducing a fural and a thienyl group to structure I. A series of α-(substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonate derivatives (II) were synthesized as potential inhibitors of PDHc. The postemergent activity of the title compounds II was evaluated in greenhouse experiments. The in vitro efficacy of II against PDHc was also examined. Compounds II with fural as R(3) and 2,4-dichloro as X and Y showed significant herbicidal activity and effective inhibition against PDHc from plants. O,O'-Dimethyl α-(2,4-dichlorophenoxyacetoxy)-α-(furan-2-yl)methylphosphonate II-17 had higher inhibitory potency against PDHc from Pisum sativum than against PDHc from Oryza sativa in vitro and was most effective against broadleaf weeds at 50 and 300 ai g/ha. II-17 was safe for maize and rice even at the dose of 900-1200 ai g/ha. Field trials at different regions in China showed that II-17 (HWS) could control a broad spectrum of broad-leaved and sedge weeds at the rate of 225-375 ai g/ha for postemergent applications in maize fields. II-17 (HWS) displayed potential utility as a selective herbicide.

  19. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    Full Text Available BACKGROUND: The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif. METHODS AND FINDINGS: Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction. CONCLUSIONS: These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  20. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  1. The response of electron transport mediated by active NADPH dehydrogenase complexes to heat stress in the cyanobacterium Synechocystis 6803

    Institute of Scientific and Technical Information of China (English)

    MA WeiMin; WEI LanZhen; WANG QuanXi

    2008-01-01

    The electron-transport machinery in photosynthetic membranes is known to be very sensitive to heat. In this study, the rate of electron transport (ETR) driven by photosystem Ⅰ (PSI) and photosystem Ⅱ (PSII) during heat stress in the wild-type Synechocystis sp. strain PCC 6803 (WT) and its ndh gene inactivation mutants △ndhB (M55) and △ndhD1/ndhD2 (D1/D2) was simultaneously assessed by using the novel Dual-PAM-100 measuring system. The rate of electron transport driven by the photosystems (ETRPSs) in the WT, M55, and D1/D2 cells incubated at 30℃ and at 55℃ for 10 min was compared. Incubation at 55℃ for 10 min significantly inhibited PSII-driven ETR (ETRPSII) in the WT, M55 and D1/D2 cells, and the extent of inhibition in both the M55 and D1/D2 cells was greater than that in the WT cells. Further, PSI-driven ETR (ETRPSI) was stimulated in both the WT and D1/D2 cells, and this rate was increased to a greater extent in the D1/D2 than in the WT cells. However, ETRPSI was considerably inhibited in the M55 cells. Analysis of the effect of heat stress on ETRPSs with regard to the alterations in the 2 active NDH-1 complexes in the WT, M55, and D1/D2 cells indicated that the active NDH-1 supercomplex and mediumcomplex are essential for alleviating the heat-induced inhibition of ETRPSII and for accelerating the heat-induced stimulation of ETRPSI, respectively. Further, it is believed that these effects are most likely brought about by the electron transport mediated by each of these 2 active NDH-1 complexes.

  2. The response of electron transport mediated by active NADPH dehydrogenase complexes to heat stress in the cyanobacterium Synechocystis 6803

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electron-transport machinery in photosynthetic membranes is known to be very sensitive to heat. In this study, the rate of electron transport (ETR) driven by photosystem I (PSI) and photosystem II (PSII) during heat stress in the wild-type Synechocystis sp. strain PCC 6803 (WT) and its ndh gene inactiva-tion mutants △ndhB (M55) and △ndhD1/ndhD2 (D1/D2) was simultaneously assessed by using the novel Dual-PAM-100 measuring system. The rate of electron transport driven by the photosystems (ETRPSs) in the WT, M55, and D1/D2 cells incubated at 30℃ and at 55℃ for 10 min was compared. Incubation at 55 ℃ for 10 min significantly inhibited PSII-driven ETR (ETRPSII) in the WT, M55 and D1/D2 cells, and the ex-tent of inhibition in both the M55 and D1/D2 cells was greater than that in the WT cells. Further, PSI-driven ETR (ETRPSI) was stimulated in both the WT and D1/D2 cells, and this rate was increased to a greater extent in the D1/D2 than in the WT cells. However, ETRPSI was considerably inhibited in the M55 cells. Analysis of the effect of heat stress on ETRPSs with regard to the alterations in the 2 active NDH-1 complexes in the WT, M55, and D1/D2 cells indicated that the active NDH-1 supercomplex and medi-umcomplex are essential for alleviating the heat-induced inhibition of ETRPSII and for accelerating the heat-induced stimulation of ETRPSI, respectively. Further, it is believed that these effects are most likely brought about by the electron transport mediated by each of these 2 active NDH-1 complexes.

  3. Replacement of glycine 232 by aspartic acid in the KdpA subunit broadens the ion specificity of the K(+)-translocating KdpFABC complex.

    Science.gov (United States)

    Schrader, M; Fendler, K; Bamberg, E; Gassel, M; Epstein, W; Altendorf, K; Dröse, S

    2000-01-01

    Replacement of glycine residue 232 with aspartate in the KdpA subunit of the K(+)-translocating KdpFABC complex of Escherichia coli leads to a transport complex that has reduced affinity for K(+) and has lost the ability to discriminate Rb(+) ions (, J. Biol. Chem. 270:6678-6685). This glycine residue is the first in a highly conserved GGG motif that was aligned with the GYG sequence of the selectivity filter (P- or H5-loop) of K(+) channels (, Nature. 371:119-122). Investigations with the purified and reconstituted KdpFABC complex using the potential sensitive fluorescent dye DiSC(3)(5) and the "caged-ATP/planar bilayer method" confirm the altered ion specificity observed in uptake measurements with whole cells. In the absence of cations a transient current was observed in the planar bilayer measurements, a phenomenon that was previously observed with the wild-type enzyme and with another kdpA mutant (A:Q116R) and most likely represents the movement of a protein-fixed charge during a conformational transition. After addition of K(+) or Rb(+), a stationary current could be observed, representing the continuous pumping activity of the KdpFABC complex. In addition, DiSC(3)(5) and planar bilayer measurements indicate that the A:G232D Kdp-ATPase also transports Na(+), Li(+), and H(+) with a reduced rate. Similarities to mutations in the GYG motif of K(+) channels are discussed. PMID:10920013

  4. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    expressed proteins, such as subunits of the succinate dehydrogenase complex and other TCA cycle enzymes that are usually found in the cytosol, thus hinting at a possible association to the membrane in response to nitrogen deficiency. We propose a redox sensing mechanism that can influence the membrane...

  5. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne; Lolle, Signe; McSorley, Fern R.

    2011-01-01

    by expression in E. coli and purification of Phn-polypeptides. PhnG, PhnH, PhnI, PhnJ, and PhnK copurify as a protein complex by ion-exchange, size-exclusion, and affinity chromatography. The five polypeptides also comigrate in native-PAGE. Cross-linking of the purified protein complex reveals a close proximity...... is suggested to be PhnG4H2I2J2K. Deletion of individual phn genes reveals that a strain harboring plasmid-borne phnGHIJ produces a protein complex consisting of PhnG, PhnH, PhnI, and PhnJ, whereas a strain harboring plasmid-borne phnGIJK produces a protein complex consisting of PhnG and PhnI. We conclude...

  6. Mitochondrial glutathione depletion reveals a novel role for the pyruvate dehydrogenase complex as a key H2O2-emitting source under conditions of nutrient overload.

    Science.gov (United States)

    Fisher-Wellman, Kelsey H; Gilliam, Laura A A; Lin, Chien-Te; Cathey, Brook L; Lark, Daniel S; Neufer, P Darrell

    2013-12-01

    Once regarded as a "by-product" of aerobic metabolism, the production of superoxide/H2O2 is now understood to be a highly specialized and extensively regulated process responsible for exerting control over a vast number of thiol-containing proteins, collectively referred to as the redox-sensitive proteome. Although disruptions within this process, secondary to elevated peroxide exposure, have been linked to disease, the sources and mechanisms regulating increased peroxide burden remain poorly defined and as such are difficult to target using pharmacotherapy. Here we identify the pyruvate dehydrogenase complex (PDC) as a key source of H2O2 within skeletal muscle mitochondria under conditions of depressed glutathione redox buffering integrity. Treatment of permeabilized myofibers with varying concentrations of the glutathione-depleting agent 1-chloro-2,4-dinitrobenzene led to a dose-dependent increase in pyruvate-supported JH2O2 emission (the flux of H2O2 diffusing out of the mitochondrial matrix into the surrounding assay medium), with emission rates eventually rising to exceed those of all substrate combinations tested. This striking sensitivity to glutathione depletion was observed in permeabilized fibers prepared from multiple species and was specific to PDC. Physiological oxidation of the cellular glutathione pool after high-fat feeding in rodents was found to elevate PDC JH2O2 emission, as well as increasing the sensitivity of the complex to GSH depletion. These findings reveal PDC as a potential major site of H2O2 production that is extremely sensitive to mitochondrial glutathione redox status. Published by Elsevier Inc.

  7. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.

    Science.gov (United States)

    Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.

  8. Nickel-phendione complex covalently attached onto carbon nanotube/cross linked glucose dehydrogenase as bioanode for glucose/oxygen compartment-less biofuel cell

    Science.gov (United States)

    Korani, Aazam; Salimi, Abdollah; Hadadzadeh, Hasan

    2015-05-01

    Here, [Ni(phendion) (phen)]Cl2 complex, (phendion and phen are 1,10-phenanthroline-5,6-dione and 5-amino-1, 10-phenanthrolin) covalently attached onto carboxyl functionalized multi walls carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-COOH) using solid phase interactions and combinatorial approaches.The attached [Ni(phendion) (phen)]Cl2 complex displays a surface controlled electrode process and it acts as an effective redox mediator for electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) at reduced overpotentials. With co-immobilization of glucose dehydrogenase enzyme (GDH) by crosslinking an effective biocatalyst for glucose oxidation designed. The onset potential and current density are -0.1 V versus Ag/AgCl electrode and 0.550 mA cm-2, which indicate the applicability of the proposed system as an efficient bioanode for biofuel cell (BFC) design. A GCE/MWCNTs modified with electrodeposited gold nanoparticles (AuNPs) as a platform for immobilization of bilirubin oxidase (BOD) and the prepared GCE/MWCNTs/AuNPs/BOD biocathode exhibits an onset potential of 0.56 V versus Ag/AgCl. The performance of the fabricated bioanode and biocathode in a membraneless enzyme based glucose/O2 biofuel cell is evaluated. The open circuit voltage of the cell and maximum current density are 520 mV and 0.233 mA cm-2, respectively, while maximum power density of 40 μWcm-2 achieves at voltage of 280 mV with stable output power after 24 h continues operation.

  9. High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions.

    Science.gov (United States)

    Fapyane, Deby; Lee, Soo-Jin; Kang, Seo-Hee; Lim, Du-Hyun; Cho, Kwon-Koo; Nam, Tae-hyun; Ahn, Jae-Pyoung; Ahn, Jou-Hyeon; Kim, Seon-Won; Chang, In Seop

    2013-06-28

    FAD-dependent glucose dehydrogenase (FAD-GDH) of Burkholderia cepacia was successfully expressed in Escherichia coli and subsequently purified in order to use it as an anode catalyst for enzyme fuel cells. The purified enzyme has a low Km value (high affinity) towards glucose, which is 463.8 μM, up to 2-fold exponential range lower compared to glucose oxidase. The heterogeneous electron transfer coefficient (Ks) of FAD-GDH-menadione on a glassy carbon electrode was 10.73 s(-1), which is 3-fold higher than that of GOX-menadione, 3.68 s(-1). FAD-GDH was able to maintain its native glucose affinity during immobilization in the carbon nanotube and operation of enzyme fuel cells. FAD-GDH-menadione showed 3-fold higher power density, 799.4 ± 51.44 μW cm(-2), than the GOX-menadione system, 308.03 ± 17.93 μW cm(-2), under low glucose concentration, 5 mM, which is the concentration in normal physiological fluid.

  10. Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Craig, Sue E; Knight, David; Humphries, Martin J

    2012-01-01

    Integrin adhesion receptors mediate cell–cell and cell–extracellular matrix interactions, which control cell morphology and migration, differentiation, and tissue integrity. Integrins recruit multimolecular adhesion complexes to their cytoplasmic domains, which provide structural and mechanosensitive signaling connections between the extracellular and intracellular milieux. The different functions of specific integrin heterodimers, such as α4β1 and α5β1, have been attributed to distinct signal transduction mechanisms that are initiated by selective recruitment of adhesion complex components to integrin cytoplasmic tails. Here, we report the isolation of ligand-induced adhesion complexes associated with wild-type α4β1 integrin, an activated α4β1 variant in the absence of the α cytoplasmic domain (X4C0), and a chimeric α4β1 variant with α5 leg and cytoplasmic domains (α4Pα5L), and the cataloguing of their proteomes by MS. Using hierarchical clustering and interaction network analyses, we detail the differential recruitment of proteins and highlight enrichment patterns of proteins to distinct adhesion complexes. We identify previously unreported components of integrin adhesion complexes and observe receptor-specific enrichment of molecules with previously reported links to cell migration and cell signaling processes. Furthermore, we demonstrate colocalization of MYO18A with active integrin in migrating cells. These datasets provide a resource for future studies of integrin receptor-specific signaling events. PMID:22623428

  11. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  12. Lactate dehydrogenase test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  13. Hybridizability of gamma-irradiated lactic dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.

    1976-03-01

    The hybridizabilities of the gamma-irradiated chicken heart and pig muscle lactic dehydrogenases were estimated by hybridizing the irradiated enzymes with the unirradiated pig heart lactic dehydrogenase. The disc gel electrophoretic patterns of the inter- and intraspecific hybrids showed that the LDH activity of the pig heart isozyme band increased as a function of dose. This observation was analyzed upon the binomial redistribution pattern of the recombined subunits. The result shows that the hybridizabilities of both the chicken heart and pig muscle isozymes decreased along with the loss of catalytic activity and the release from substrate inhibition. The titration of free SH groups of the irradiated chicken isozyme suggested that the unfolding of the peptide chain destroyed the specific tertiary structure needed for the binding of subunits. (auth)

  14. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    Science.gov (United States)

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  15. 编码酶复合体Ⅰ亚单位的线粒体基因新突变导致的MELAS综合征%Novel mutations in the mitochondrial DNA encoded complexsubunit genes associated with MELAS

    Institute of Scientific and Technical Information of China (English)

    赵丹华; 王朝霞; 李务荣; 洪道俊; 郑日亮; 孙永安; 张巍; 袁云

    2011-01-01

    目的:报道4例由编码酶复合体Ⅰ中NADH脱氢酶(ND)亚单位的线粒体基因(mtDNA)突变所导致的线粒体脑肌病患者,分析其临床及骨骼肌病理改变特点.方法:4例患者的发病年龄在6 ~21岁之间,病程在7~ 20年.其中1例为MELAS、3例为MELAS/Leigh叠加综合征.对4例患者进行肌肉活检和mtDNA全长测序检查.结果:骨骼肌病理检查发现1例同时存在破碎红纤维(RRFs)及SDH深染的血管(SSVs),2例仅有SSVs,另1例未见异常.4例患者均携带mtDNA编码的ND基因突变,分别为位于ND3编码区的T10191C(p.S45P)、ND4编码区的A11470C(p.K237N)、ND5编码区的T13046C(p.M237T)点突变以及累及ND5和ND6编码区的单一大片段缺失( 13025-13033:14417-14425),后3种突变均为新发现的致病性突变.结论:ND基因突变是导致部分MELAS或MELAS/Leigh叠加综合征患者的分子病理学基础,这些患者的骨骼肌病理检查常缺乏典型的线粒体脑肌病的病理改变,如RRFs.%Objective To report the clinical and myopathological features of 4 patients with mitochondrial encepha-lomyopathy associated with mutations in mitochondrial DNA (mtDNA) encoded NADH dehydrogenase (ND) subunit genes of complex I. Methods The onset age of 4 patients ranged from 6 to 21 years,with a clinical course from 7 to 20 years. A-mong them, 1 case was consistent with MELAS and 3 cases with MELAS/Leigh overlap syndrome. Muscle biopsy and whole sequencing of mtDNA were performed on these patients. Results Skeletal muscle biopsy disclosed both ragged-red fibers ( RRFs) and strongly succinate dehydrogenase-reactive vessels (SSVs) in one case,only SSVs without RRFs in two cases, and no abnormality in one. Whole sequencing of mtDNA revealed T10191C( p. S45P) in ND3 , A11470C( p. K237N) in ND4,T13046C( p. M237T) in ND5 and a single large-scale deletion ranging from 13025-13033 to 14417-14425 encompassing ND5 and ND6 in these patients respectively. Among them,Al 1470C,T13046C and the

  16. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott; (Cornell); (Parma); (WCU); (WSU); (WU-MED)

    2009-06-12

    (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed {approx}100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 {angstrom} resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by the glycine-to-alanine mutation may account for the lowered catalytic activity of the mutant enzyme, which is consistent with the 30 mV lower flavin redox potential. Furthermore, the altered binding mode of the indolelactate substrate may account for its reduced activity compared with octanoate, as observed in the crystalline state.

  17. BRCC36, A Novel Subunit of a BRCA1 E3 Ubiquitin Ligase Complex, Candidates for BRCA3

    Science.gov (United States)

    2006-06-01

    Lymphocytes isolated from FRAP blood samples were infected with Epstein-Barr virus ( EBV ) to establish the immortal lymphoblastoid cell lines (LCLs...BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures . Genes Dev 2000;14:927–39. 27...inhibitor, puromycin (Sigma, St. Louis, MO; www.sigmaaldrich.com), was added to the EBV cells at the concentration of 200 mg/ml for 14 hr before total RNAs

  18. The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Gómez-Manzo, Saúl; Contreras-Zentella, Martha; González-Valdez, Alejandra; Sosa-Torres, Martha; Arreguín-Espinoza, Roberto; Escamilla-Marván, Edgardo

    2008-06-30

    The oxidation of ethanol to acetic acid is the most characteristic process in acetic acid bacteria. Gluconacetobacter diazotrophicus is rather unique among the acetic acid bacteria as it carries out nitrogen fixation and is a true endophyte, originally isolated from sugar cane. Aside its peculiar life style, Ga. diazotrophicus, possesses a constitutive membrane-bound oxidase system for ethanol. The Alcohol dehydrogenase complex (ADH) of Ga. diazotrophicus was purified to homogeneity from the membrane fraction. It-exhibited two subunits with molecular masses of 71.4 kDa and 43.5 kDa. A positive peroxidase reaction confirmed the presence of cytochrome c in both subunits. Pyrroloquinoline quinone (PQQ) of ADH was identified by UV-visible light and fluorescence spectroscopy. The enzyme was purified in its full reduced state; potassium ferricyanide induced its oxidation. Ethanol or acetaldehyde restored the full reduced state. The enzyme showed an isoelectric point (pI) of 6.1 and its optimal pH was 6.0. Both ethanol and acetaldehyde were oxidized at almost the same rate, thus suggesting that the ADH complex of Ga. diazotrophicus could be kinetically competent to catalyze, at least in vitro, the double oxidation of ethanol to acetic acid.

  19. Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH.

    Directory of Open Access Journals (Sweden)

    Philippe R Chabot

    2014-03-01

    Full Text Available Infection with the Epstein-Barr virus (EBV can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2. The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human subunit of the general transcription factor IIH (TFIIH and the histone acetyltransferase CBP(CREB-binding protein/p300, through interactions with its C-terminal transactivation domain (TAD. In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431-487 with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR spectroscopy, isothermal titration calorimeter (ITC and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH domain of Tfb1 (Tfb1PH and that residues 448-471 (EBNA2₄₄₈₋₄₇₁ are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462 make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex with structures of the TAD of p53 and VP16 bound

  20. Crystal Structures of RMI1 and RMI2, Two OB-Fold Regulatory Subunits of the BLM Complex

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng; Yang, Yuting; Singh, Thiyam Ramsing; Busygina, Valeria; Guo, Rong; Wan, Ke; Wang, Weidong; Sung, Patrick; Meetei, Amom Ruhikanta; Lei, Ming (Yale-MED); (NIH); (Michigan-Med); (UCIN-MED)

    2010-11-05

    Mutations in BLM, a RecQ-like helicase, are linked to the autosomal recessive cancer-prone disorder Bloom's syndrome. BLM associates with topoisomerase (Topo) III{alpha}, RMI1, and RMI2 to form the BLM complex that is essential for genome stability. The RMI1-RMI2 heterodimer stimulates the dissolution of double Holliday junction into non-crossover recombinants mediated by BLM-Topo III{alpha} and is essential for stabilizing the BLM complex. However, the molecular basis of these functions of RMI1 and RMI2 remains unclear. Here we report the crystal structures of multiple domains of RMI1-RMI2, providing direct confirmation of the existence of three oligonucleotide/oligosaccharide binding (OB)-folds in RMI1-RMI2. Our structural and biochemical analyses revealed an unexpected insertion motif in RMI1N-OB, which is important for stimulating the dHJ dissolution. We also revealed the structural basis of the interaction between RMI1C-OB and RMI2-OB and demonstrated the functional importance of the RMI1-RMI2 interaction in genome stability maintenance.

  1. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    Science.gov (United States)

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways. PMID:27695445

  2. Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold.

    Science.gov (United States)

    Mühlbacher, Wolfgang; Mayer, Andreas; Sun, Mai; Remmert, Michael; Cheung, Alan C M; Niesser, Jürgen; Soeding, Johannes; Cramer, Patrick

    2015-10-01

    CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Å resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex.

  3. Tracing the path of DNA substrates in active Tetrahymena telomerase holoenzyme complexes: mapping of DNA contact sites in the RNA subunit.

    Science.gov (United States)

    Goldin, Svetlana; Kertesz Rosenfeld, Karin; Manor, Haim

    2012-08-01

    Telomerase, the enzyme that extends single-stranded telomeric DNA, consists of an RNA subunit (TER) including a short template sequence, a catalytic protein (TERT) and accessory proteins. We used site-specific UV cross-linking to map the binding sites for DNA primers in TER within active Tetrahymena telomerase holoenzyme complexes. The mapping was performed at single-nucleotide resolution by a novel technique based on RNase H digestion of RNA-DNA hybrids made with overlapping complementary oligodeoxynucleotides. These data allowed tracing of the DNA path through the telomerase complexes from the template to the TERT binding element (TBE) region of TER. TBE is known to bind TERT and to be involved in the template 5'-boundary definition. Based on these findings, we propose that upstream sequences of each growing telomeric DNA chain are involved in regulation of its growth arrest at the 5'-end of the RNA template. The upstream DNA-TBE interaction may also function as an anchor for the subsequent realignment of the 3'-end of the DNA with the 3'-end of the template to enable initiation of synthesis of a new telomeric repeat.

  4. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Walker, Sarah; Klingseisen, Anna; Stiff, Tom; Leitch, Andrea; Kerzendorfer, Claudia; Martin, Carol-Anne; Yeyati, Patricia; Al Sanna, Nouriya; Bober, Michael; Johnson, Diana; Wise, Carol; Jackson, Andrew P; O'Driscoll, Mark; Jeggo, Penny A

    2011-02-27

    Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.

  5. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development.

    Science.gov (United States)

    Yu, Xiaoming; Jiang, Lili; Wu, Rui; Meng, Xinchao; Zhang, Ai; Li, Ning; Xia, Qiong; Qi, Xin; Pang, Jinsong; Xu, Zheng-Yi; Liu, Bao

    2016-12-05

    ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.

  6. Characterization of Multi-subunit Protein Complexes of Human MxA Using Non-denaturing Polyacrylamide Gel-electrophoresis.

    Science.gov (United States)

    Nigg, Patricia E; Pavlovic, Jovan

    2016-10-28

    The formation of oligomeric complexes is a crucial prerequisite for the proper structure and function of many proteins. The interferon-induced antiviral effector protein MxA exerts a broad antiviral activity against many viruses. MxA is a dynamin-like GTPase and has the capacity to form oligomeric structures of higher order. However, whether oligomerization of MxA is required for its antiviral activity is an issue of debate. We describe here a simple protocol to assess the oligomeric state of endogenously or ectopically expressed MxA in the cytoplasmic fraction of human cell lines by non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with Western blot analysis. A critical step of the protocol is the choice of detergents to prevent aggregation and/or precipitation of proteins particularly associated with cellular membranes such as MxA, without interfering with its enzymatic activity. Another crucial aspect of the protocol is the irreversible protection of the free thiol groups of cysteine residues by iodoacetamide to prevent artificial interactions of the protein. This protocol is suitable for a simple assessment of the oligomeric state of MxA and furthermore allows a direct correlation of the antiviral activity of MxA interface mutants with their respective oligomeric states.

  7. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease.

    Science.gov (United States)

    Zimprich, Alexander; Benet-Pagès, Anna; Struhal, Walter; Graf, Elisabeth; Eck, Sebastian H; Offman, Marc N; Haubenberger, Dietrich; Spielberger, Sabine; Schulte, Eva C; Lichtner, Peter; Rossle, Shaila C; Klopp, Norman; Wolf, Elisabeth; Seppi, Klaus; Pirker, Walter; Presslauer, Stefan; Mollenhauer, Brit; Katzenschlager, Regina; Foki, Thomas; Hotzy, Christoph; Reinthaler, Eva; Harutyunyan, Ashot; Kralovics, Robert; Peters, Annette; Zimprich, Fritz; Brücke, Thomas; Poewe, Werner; Auff, Eduard; Trenkwalder, Claudia; Rost, Burkhard; Ransmayr, Gerhard; Winkelmann, Juliane; Meitinger, Thomas; Strom, Tim M

    2011-07-15

    To identify rare causal variants in late-onset Parkinson disease (PD), we investigated an Austrian family with 16 affected individuals by exome sequencing. We found a missense mutation, c.1858G>A (p.Asp620Asn), in the VPS35 gene in all seven affected family members who are alive. By screening additional PD cases, we saw the same variant cosegregating with the disease in an autosomal-dominant mode with high but incomplete penetrance in two further families with five and ten affected members, respectively. The mean age of onset in the affected individuals was 53 years. Genotyping showed that the shared haplotype extends across 65 kilobases around VPS35. Screening the entire VPS35 coding sequence in an additional 860 cases and 1014 controls revealed six further nonsynonymous missense variants. Three were only present in cases, two were only present in controls, and one was present in cases and controls. The familial mutation p.Asp620Asn and a further variant, c.1570C>T (p.Arg524Trp), detected in a sporadic PD case were predicted to be damaging by sequence-based and molecular-dynamics analyses. VPS35 is a component of the retromer complex and mediates retrograde transport between endosomes and the trans-Golgi network, and it has recently been found to be involved in Alzheimer disease. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit.

    Science.gov (United States)

    Rohrmoser, Michaela; Hölzel, Michael; Grimm, Thomas; Malamoussi, Anastassia; Harasim, Thomas; Orban, Mathias; Pfisterer, Iris; Gruber-Eber, Anita; Kremmer, Elisabeth; Eick, Dirk

    2007-05-01

    The PeBoW complex is essential for cell proliferation and maturation of the large ribosomal subunit in mammalian cells. Here we examined the role of PeBoW-specific proteins Pes1, Bop1, and WDR12 in complex assembly and stability, nucleolar transport, and pre-ribosome association. Recombinant expression of the three subunits is sufficient for complex formation. The stability of all three subunits strongly increases upon incorporation into the complex. Only overexpression of Bop1 inhibits cell proliferation and rRNA processing, and its negative effects could be rescued by coexpression of WDR12, but not Pes1. Elevated levels of Bop1 induce Bop1/WDR12 and Bop1/Pes1 subcomplexes. Knockdown of Bop1 abolishes the copurification of Pes1 with WDR12, demonstrating Bop1 as the integral component of the complex. Overexpressed Bop1 substitutes for endogenous Bop1 in PeBoW complex assembly, leading to the instability of endogenous Bop1. Finally, indirect immunofluorescence, cell fractionation, and sucrose gradient centrifugation experiments indicate that transport of Bop1 from the cytoplasm to the nucleolus is Pes1 dependent, while Pes1 can migrate to the nucleolus and bind to preribosomal particles independently of Bop1. We conclude that the assembly and integrity of the PeBoW complex are highly sensitive to changes in Bop1 protein levels.

  9. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures

    Science.gov (United States)

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I.; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-01-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system. PMID:26924529

  10. New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Hiller, A; Henninger, T; Schäfer, G; Schmidt, C L

    2003-04-01

    The soxL gene from Sulfolobus acidocaldarius (DSM 639) encodes a Rieske iron-sulfur protein. In this study we report the identification of two open reading frames in its downstream region. The first one, named soxN, codes for a membrane protein bearing a resemblance to the b-type cytochromes of the cytochrome bc1 and b6f complexes. The protein is predicted to contain at least 10 transmembrane helices and features the two conserved histidine pairs coordinating the heme groups of these cytochromes. The second open reading frame, named odsN, encodes a soluble protein of unknown function. The genomic region displays a complex transcription pattern. Northern blot and RT-PCR analyses revealed the presence of mono- and bi-cistronic transcripts as well as a tri-cistronic transcript of soxL and cbsAB, encoding the mono-heme cytochrome b558/566. Phylogenetic analyses of the genes of the soxLN pair and of other archaeal gene pairs encoding Rieske iron-sulfur proteins and b-type cytochromes revealed an identical branching patterns for both protein families, suggesting an evolutionary link of these genes provided by the functional interaction of the proteins. On the basis of the findings of this study and the previously studied properties of the soxL and cbsA proteins, we propose the occurrence of a novel cytochrome bc1-analogous complex in the membranes of Sulfolobus, consisting of the cytochrome b homolog soxN, the Rieske protein soxL, the high potential cytochrome cbsA, as well as the non-redox-active subunits cbsB and odsN.

  11. LHON/MELAS overlap mutation in ND1 subunit of mitochondrial complex I affects ubiquinone binding as revealed by modeling in Escherichia coli NDH-1.

    Science.gov (United States)

    Pätsi, Jukka; Maliniemi, Pilvi; Pakanen, Salla; Hinttala, Reetta; Uusimaa, Johanna; Majamaa, Kari; Nyström, Thomas; Kervinen, Marko; Hassinen, Ilmo E

    2012-02-01

    Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.

  12. Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves

    NARCIS (Netherlands)

    Tsuprun, V.L.; Boekema, E.J.; Samsonidze, T.G.; Pushkin, A.V.

    1991-01-01

    The structure of ribulose-1,5-bisphosphate carboxylase (Rubisco) subunit-binding protein and its interaction with pea leaf chloroplast Rubisco were studied by electron microscopy and image analysis. Electron-microscopic evidence for the association of Rubisco subunit-binding protein, consisting of 1

  13. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology.

    Science.gov (United States)

    Toyama, Hirohide; Mathews, F Scott; Adachi, Osao; Matsushita, Kazunobu

    2004-08-01

    Quino(hemo)protein alcohol dehydrogenases (ADH) that have pyrroloquinoline quinone (PQQ) as the prosthetic group are classified into 3 groups, types I, II, and III. Type I ADH is a simple quinoprotein having PQQ as the only prosthetic group, while type II and type III ADHs are quinohemoprotein having heme c as well as PQQ in the catalytic polypeptide. Type II ADH is a soluble periplasmic enzyme and is widely distributed in Proteobacteria such as Pseudomonas, Ralstonia, Comamonas, etc. In contrast, type III ADH is a membrane-bound enzyme working on the periplasmic surface solely in acetic acid bacteria. It consists of three subunits that comprise a quinohemoprotein catalytic subunit, a triheme cytochrome c subunit, and a third subunit of unknown function. The catalytic subunits of all the quino(hemo)protein ADHs have a common structural motif, a quinoprotein-specific superbarrel domain, where PQQ is deeply embedded in the center. In addition, in the type II and type III ADHs this subunit contains a unique heme c domain. Various type II ADHs each have a unique substrate specificity, accepting a wide variety of alcohols, as is discussed on the basis of recent X-ray crystallographic analyses. Electron transfer within both type II and III ADHs is discussed in terms of the intramolecular reaction from PQQ to heme c and also from heme to heme, and in terms of the intermolecular reaction with azurin and ubiquinone, respectively. Unique physiological functions of both types of quinohemoprotein ADHs are also discussed.

  14. The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways.

    Science.gov (United States)

    Zhang, Xudong; Wang, Chenggang; Zhang, Yanping; Sun, Yijun; Mou, Zhonglin

    2012-10-01

    Systemic acquired resistance (SAR) is a long-lasting plant immunity against a broad spectrum of pathogens. Biological induction of SAR requires the signal molecule salicylic acid (SA) and involves profound transcriptional changes that are largely controlled by the transcription coactivator nonexpressor of pathogenesis-related genes1 (NPR1). However, it is unclear how SAR signals are transduced from the NPR1 signaling node to the general transcription machinery. Here, we report that the Arabidopsis thaliana Mediator subunit16 (MED16) is an essential positive regulator of SAR. Mutations in MED16 reduced NPR1 protein levels and completely compromised biological induction of SAR. These mutations also significantly suppressed SA-induced defense responses, altered the transcriptional changes induced by the avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000/avrRpt2, and rendered plants susceptible to both Pst DC3000/avrRpt2 and Pst DC3000. In addition, mutations in MED16 blocked the induction of several jasmonic acid (JA)/ethylene (ET)-responsive genes and compromised resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. The Mediator complex acts as a bridge between specific transcriptional activators and the RNA polymerase II transcription machinery; therefore, our data suggest that MED16 may be a signaling component in the gap between the NPR1 signaling node and the general transcription machinery and may relay signals from both the SA and the JA/ET pathways.

  15. The catalytic subunit of human protein kinase CK2 structurally deviates from its maize homologue in complex with the nucleotide competitive inhibitor emodin

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Klopffleisch, Karsten; Issinger, Olaf-Georg

    2008-01-01

    The Ser/Thr kinase CK2 (former name: casein kinase 2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha) attached to a dimer of noncatalytic subunits. Together with the cyclin-dependent kinases and the mitogen-activated protein kinases, CK2alpha belongs to the CMGC family...... and Applied Chemistry name: 1,3,8-trihydroxy-6-methylanthracene-9,10-dione) and compare it with a previously published complex structure of emodin and maize CK2alpha. With a resolution of 1.5 A, the human CK2alpha/emodin structure has a much better resolution than its maize counterpart (2.6 A). Even more...... in the ATP-binding loop, whereas human CK2alpha shows its largest adaptations in the hinge region connecting the two main domains of the protein kinase core. These observations emphasize the importance of local plasticity for ligand binding and demonstrate that two orthologues of an enzyme can behave quite...

  16. Chaperonin containing T-complex polypeptide subunit eta is a potential marker of joint contracture: an experimental study in the rat.

    Science.gov (United States)

    He, Ronghan; Wang, Zhe; Lu, Yunxiang; Huang, Junqi; Ren, Jianhua; Wang, Kun

    2015-11-01

    Joint contracture is a fibroproliferative disorder that restricts joint mobility, resulting in tissue degeneration and deformity. However, the etiology of joint contracture is still unknown. Chaperonin containing T-complex polypeptide subunit eta (CCT-eta) is reported to increase in fibrotic diseases. The purpose of this study was to investigate whether CCT-eta is implicated in joint contracture and to determine the role of CCT-eta in the progression of joint contracture by analyzing a rat model. We immobilized the left knee joint of rat by internal fixation for 8 weeks. The non-immobilized right leg served as a control. The range of motion (ROM) of the knee was investigated. Fibroblasts were obtained from the posterior joint capsule of the joints. The outcome was followed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, fibroblast migration assay, and collagen assay. The effect of CCT-eta on the functions of fibroblasts was observed by utilizing a short inhibitory RNA (siRNA) targeting CCT-eta. The ROM of the immobilized joints was significantly limited compared to the contralateral joints (p contracture disease.

  17. Chaperonin-Containing t-Complex Protein-1 Subunit β as a Possible Biomarker for the Phase of Glomerular Hyperfiltration of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Chung-Ze Wu

    2015-01-01

    Full Text Available In cell model, we discovered the association between chaperonin-containing t-complex polypeptide 1 subunit β (TCP-1β and early diabetic nephropathy (DN. In this study, we further explored the relationships between TCP-1β and type 2 diabetic mellitus (DM. To mimic the clinical hyperfiltration state, a type 2 DM mice model was established by feeding a high-fat diet in combination with treatment of streptozotocin and nicotinamide. Blood and urine were collected to determine creatinine clearance (Ccr, and kidney tissues were harvested for evaluation of TCP-1β expression by immunohistochemistry and Western blot. Meanwhile, clinical subjects of healthy controls and type 2 DM were recruited to strengthen the evidence with urine TCP-1β. Results showed that Ccr and the expression of TCP-1β in kidney were significantly higher one week after hyperglycemia development, suggesting that the hyperfiltration state was successfully established in the mice model. TCP-1β was expressed predominantly on renal tubules. By using the estimated glomerular filtration rate to index progression in clinical investigation, urine TCP-1β level was associated with the hyperfiltration phase in type 2 DM patients. Conclusively, we confirmed that TCP-1β is a possible biomarker for early nephropathy of type 2 DM, but further mechanistic study to elucidate its cause and pathway is needed.

  18. The NSL chromatin-modifying complex subunit KANSL2 regulates cancer stem-like properties in glioblastoma that contribute to tumorigenesis

    Science.gov (United States)

    Ferreyra-Solari, Nazarena; Belforte, Fiorella S.; Canedo, Lucía; Videla-Richardson, Guillermo A.; Espinosa, Joaquín M.; Rossi, Mario; Serna, Eva; Riudavets, Miguel A.; Martinetto, Horacio; Sevlever, Gustavo; Perez-Castro, Carolina

    2016-01-01

    KANSL2 is an integral subunit of the Non-Specific Lethal (NSL) chromatin-modifying complex which contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. PMID:27406830

  19. A new disease-related mutation for mitochondrial encephalopathy lactic acidosis and strokelike episodes (MELAS) syndrome affects the ND4 subunit of the respiratory complex I

    Energy Technology Data Exchange (ETDEWEB)

    Lertrit, P.; Noer, A.S.; Kapsa, R.; Marzuki, S. (Monash Univ., Clayton, Victoria (Australia)); Jean-Francois, M.J.B.; Thyagarajan, D.; Byrne, E. (St. Vincent' s Hospital, Fitzroy, Victoria (Australia)); Dennett, X. (Univ. of Melbourne, Parkville, Victoria (Australia)); Lethlean, K. (Prince Henry Hospital, Sydney (Australia))

    1992-09-01

    The molecular lesions in two patients exhibiting classical clinical manifestations of MELAS (mitochondrial encephalopathy, lactic acidosis, and strokelike episodes) syndrome have been investigated. A recently reported disease-related A[yields]G base substitution at nt 3243 of the mtDNA, in the DHU loop of tRNA[sup Leu], was detected by restriction-enzyme analysis of the relevant PCR-amplified segment of the mtDNA of one patient but was not observed, by either restriction-enzyme analysis or nucleotide sequencing, in the other. To define the molecular lesion in the patient who does not have the A[yields]G base substitution at nt 3243, the total mitochondrial genome of the patient has been sequenced. An A[yields]G base substitution at nt 11084, leading to a Thr-to-Ala amino acid replacement in the ND4 subunit of the respiratory complex I, is suggested to be a disease-related mutation. 49 refs., 7 figs., 1 tab.

  20. Chaperonin-containing t-complex protein-1 subunit β as a possible biomarker for the phase of glomerular hyperfiltration of diabetic nephropathy.

    Science.gov (United States)

    Wu, Chung-Ze; Chang, Li-Chien; Lin, Yuh-Feng; Hung, Yi-Jen; Pei, Dee; Chen, Jin-Shuen

    2015-01-01

    In cell model, we discovered the association between chaperonin-containing t-complex polypeptide 1 subunit β (TCP-1β) and early diabetic nephropathy (DN). In this study, we further explored the relationships between TCP-1β and type 2 diabetic mellitus (DM). To mimic the clinical hyperfiltration state, a type 2 DM mice model was established by feeding a high-fat diet in combination with treatment of streptozotocin and nicotinamide. Blood and urine were collected to determine creatinine clearance (C cr), and kidney tissues were harvested for evaluation of TCP-1β expression by immunohistochemistry and Western blot. Meanwhile, clinical subjects of healthy controls and type 2 DM were recruited to strengthen the evidence with urine TCP-1β. Results showed that C cr and the expression of TCP-1β in kidney were significantly higher one week after hyperglycemia development, suggesting that the hyperfiltration state was successfully established in the mice model. TCP-1β was expressed predominantly on renal tubules. By using the estimated glomerular filtration rate to index progression in clinical investigation, urine TCP-1β level was associated with the hyperfiltration phase in type 2 DM patients. Conclusively, we confirmed that TCP-1β is a possible biomarker for early nephropathy of type 2 DM, but further mechanistic study to elucidate its cause and pathway is needed.

  1. The –SH Protection Method for Determining Accurate Kd Values for Enzyme-Coenzyme Complexes of NAD+-Dependent Glutamate Dehydrogenase and Engineered Mutants: Evidence for Nonproductive NADPH Complexes

    Directory of Open Access Journals (Sweden)

    Joanna Griffin

    2010-01-01

    Full Text Available Inactivation rates have been measured for clostridial glutamate dehydrogenase and several engineered mutants at various DTNB concentrations. Analysis of rate constants allowed determination of Kd for each non-covalent enzyme-DTNB complex and the rate constant for reaction to form the inactive enzyme-thionitrobenzoate adduct. Both parameters are sensitive to the mutations F238S, P262S, the double mutation F238S/P262S, and D263K, all in the coenzyme binding site. Study of the effects of NAD+, NADH and NADPH at various concentrations in protecting against inactivation by 200 μM DTNB allowed determination of Kd values for binding of these coenzymes to each protein, yielding surprising results. The mutations were originally devised to lessen discrimination against the disfavoured coenzyme NADP(H, and activity measurements showed this was achieved. However, the Kd determinations indicated that, although Kd values for NAD+ and NADH were increased considerably, Kd for NADPH was increased even more than for NADH, so that discrimination against binding of NADPH was not decreased. This apparent contradiction can only be explained if NADPH has a nonproductive binding mode that is not weakened by the mutations, and a catalytically productive mode that, though strengthened, is masked by the nonproductive binding. Awareness of the latter is important in planning further mutagenesis.

  2. The stoichiometry and biophysical properties of the Kv4 potassium channel complex with K+ channel-interacting protein (KChIP) subunits are variable, depending on the relative expression level.

    Science.gov (United States)

    Kitazawa, Masahiro; Kubo, Yoshihiro; Nakajo, Koichi

    2014-06-20

    Kv4 is a voltage-gated K(+) channel, which underlies somatodendritic subthreshold A-type current (ISA) and cardiac transient outward K(+) (Ito) current. Various ion channel properties of Kv4 are known to be modulated by its auxiliary subunits, such as K(+) channel-interacting protein (KChIP) or dipeptidyl peptidase-like protein. KChIP is a cytoplasmic protein and increases the current amplitude, decelerates the inactivation, and accelerates the recovery from inactivation of Kv4. Crystal structure analysis demonstrated that Kv4 and KChIP form an octameric complex with four Kv4 subunits and four KChIP subunits. However, it remains unknown whether the Kv4·KChIP complex can have a different stoichiometry other than 4:4. In this study, we expressed Kv4.2 and KChIP4 with various ratios in Xenopus oocytes and observed that the biophysical properties of Kv4.2 gradually changed with the increase in co-expressed KChIP4. The tandem repeat constructs of Kv4.2 and KChIP4 revealed that the 4:4 (Kv4.2/KChIP4) channel shows faster recovery than the 4:2 channel, suggesting that the biophysical properties of Kv4.2 change, depending on the number of bound KChIP4s. Subunit counting by single-molecule imaging revealed that the bound number of KChIP4 in each Kv4.2·KChIP4 complex was dependent on the expression level of KChIP4. Taken together, we conclude that the stoichiometry of Kv4·KChIP complex is variable, and the biophysical properties of Kv4 change depending on the number of bound KChIP subunits.

  3. The Stoichiometry and Biophysical Properties of the Kv4 Potassium Channel Complex with K+ Channel-interacting Protein (KChIP) Subunits Are Variable, Depending on the Relative Expression Level*

    Science.gov (United States)

    Kitazawa, Masahiro; Kubo, Yoshihiro; Nakajo, Koichi

    2014-01-01

    Kv4 is a voltage-gated K+ channel, which underlies somatodendritic subthreshold A-type current (ISA) and cardiac transient outward K+ (Ito) current. Various ion channel properties of Kv4 are known to be modulated by its auxiliary subunits, such as K+ channel-interacting protein (KChIP) or dipeptidyl peptidase-like protein. KChIP is a cytoplasmic protein and increases the current amplitude, decelerates the inactivation, and accelerates the recovery from inactivation of Kv4. Crystal structure analysis demonstrated that Kv4 and KChIP form an octameric complex with four Kv4 subunits and four KChIP subunits. However, it remains unknown whether the Kv4·KChIP complex can have a different stoichiometry other than 4:4. In this study, we expressed Kv4.2 and KChIP4 with various ratios in Xenopus oocytes and observed that the biophysical properties of Kv4.2 gradually changed with the increase in co-expressed KChIP4. The tandem repeat constructs of Kv4.2 and KChIP4 revealed that the 4:4 (Kv4.2/KChIP4) channel shows faster recovery than the 4:2 channel, suggesting that the biophysical properties of Kv4.2 change, depending on the number of bound KChIP4s. Subunit counting by single-molecule imaging revealed that the bound number of KChIP4 in each Kv4.2·KChIP4 complex was dependent on the expression level of KChIP4. Taken together, we conclude that the stoichiometry of Kv4·KChIP complex is variable, and the biophysical properties of Kv4 change depending on the number of bound KChIP subunits. PMID:24811166

  4. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    Energy Technology Data Exchange (ETDEWEB)

    Albertella, M.R.; Jones, H.; Thomson, W. [Oxford Univ. (United Kingdom)] [and others

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  5. 湖南省泡状带绦虫线粒体nad1基因的序列测定及分析%Sequence Measurement and Analysis of Mitochondrial NADH Dehydrogenase Subunit 1 of Taenia Hydatigena Collected from Hunan Province

    Institute of Scientific and Technical Information of China (English)

    伍慧兰

    2011-01-01

    To analyze the mitochondrial NADH dehydrogenase subunit 1 (nadI) gene of Taenia hydatigena collected from Hunan province, one should follow the three steps. Firstly, the partial nadl (pnadl) is amplified from each Taen/a hyclatigena sample. Then pnadl sequences are aligned by using the ClustalX 1.81. Lastly, sequence homology analyfis is conducted by using the Megalign program of the software DNAStar version 5.0. The result shows that the length of pnadl is 391bp. This result has provided a foundation for further studies of molecular identification and molecular genetics of Taenia hydatigena.%以从我国湖南长沙和湘西犬小肠中采集的2条泡状带绦虫作为研究对象,用引物JB11及JB12扩增泡状带绦虫的pnad1片段,应用ClustalX1.81程序对序列进行比对,同时利用DNAscar5.0中的Megalign程序进行同源性分析。结果显示来自湖南长沙和湘西的2条泡状带绦虫的pnad1序列均为391bp。研究结果为泡状带绦虫进一步的分类、鉴定和遗传变异研究奠定了基础。

  6. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  7. Mutations associated with succinate dehydrogenase D-related malignant paragangliomas.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Pacak, K.; Bertherat, J.; Lenders, J.W.M.; Duet, M.; Eisenhofer, G.; Stratakis, C.A.; Niccoli-Sire, P.; Tran, B.H.; Burnichon, N.; Gimenez-Roqueplo, A.P.

    2008-01-01

    OBJECTIVE: Hereditary paraganglioma (PGL) syndromes result from germline mutations in genes encoding subunits B, C and D of the mitochondrial enzyme succinate dehydrogenase (SDHB, SDHC and SDHD). SDHB-related PGLs are known in particular for their high malignant potential. Recently, however, maligna

  8. Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain.

    Science.gov (United States)

    Kumar, S M; Pampa, K J; Manjula, M; Abdoh, M M M; Kunishima, Naoki; Lokanath, N K

    2014-06-20

    NADP(+) dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP(+) was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH's. And, small domain and clasp domain showing significant differences when compared to other IDH's of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH's. Also, helices/beta sheets are absent in the small domain, when compared to other IDH's of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit-subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  9. Role of the low-molecular-weight subunits PetL, PetG, and PetN in assembly, stability, and dimerization of the cytochrome b6f complex in tobacco.

    Science.gov (United States)

    Schwenkert, Serena; Legen, Julia; Takami, Tsuneaki; Shikanai, Toshiharu; Herrmann, Reinhold G; Meurer, Jörg

    2007-08-01

    The cytochrome b(6)f (Cyt b(6)f) complex in flowering plants contains nine conserved subunits, of which three, PetG, PetL, and PetN, are bitopic plastid-encoded low-molecular-weight proteins of largely unknown function. Homoplastomic knockout lines of the three genes have been generated in tobacco (Nicotiana tabacum 'Petit Havana') to analyze and compare their roles in assembly and stability of the complex. Deletion of petG or petN caused a bleached phenotype and loss of photosynthetic electron transport and photoautotrophy. Levels of all subunits that constitute the Cyt b(6)f complex were faintly detectable, indicating that both proteins are essential for the stability of the membrane complex. In contrast, DeltapetL plants accumulate about 50% of other Cyt b(6)f subunits, appear green, and grow photoautotrophically. However, DeltapetL plants show increased light sensitivity as compared to wild type. Assembly studies revealed that PetL is primarily required for proper conformation of the Rieske protein, leading to stability and formation of dimeric Cyt b(6)f complexes. Unlike wild type, phosphorylation levels of the outer antenna of photosystem II (PSII) are significantly decreased under state II conditions, although the plastoquinone pool is largely reduced in DeltapetL, as revealed by measurements of PSI and PSII redox states. This confirms the sensory role of the Cyt b(6)f complex in activation of the corresponding kinase. The reduced light-harvesting complex II phosphorylation did not affect state transition and association of light-harvesting complex II to PSI under state II conditions. Ferredoxin-dependent plastoquinone reduction, which functions in cyclic electron transport around PSI in vivo, was not impaired in DeltapetL.

  10. Role of the Low-Molecular-Weight Subunits PetL, PetG, and PetN in Assembly, Stability, and Dimerization of the Cytochrome b6f Complex in Tobacco1[C

    Science.gov (United States)

    Schwenkert, Serena; Legen, Julia; Takami, Tsuneaki; Shikanai, Toshiharu; Herrmann, Reinhold G.; Meurer, Jörg

    2007-01-01

    The cytochrome b6f (Cyt b6f) complex in flowering plants contains nine conserved subunits, of which three, PetG, PetL, and PetN, are bitopic plastid-encoded low-molecular-weight proteins of largely unknown function. Homoplastomic knockout lines of the three genes have been generated in tobacco (Nicotiana tabacum ‘Petit Havana’) to analyze and compare their roles in assembly and stability of the complex. Deletion of petG or petN caused a bleached phenotype and loss of photosynthetic electron transport and photoautotrophy. Levels of all subunits that constitute the Cyt b6f complex were faintly detectable, indicating that both proteins are essential for the stability of the membrane complex. In contrast, ΔpetL plants accumulate about 50% of other Cyt b6f subunits, appear green, and grow photoautotrophically. However, ΔpetL plants show increased light sensitivity as compared to wild type. Assembly studies revealed that PetL is primarily required for proper conformation of the Rieske protein, leading to stability and formation of dimeric Cyt b6f complexes. Unlike wild type, phosphorylation levels of the outer antenna of photosystem II (PSII) are significantly decreased under state II conditions, although the plastoquinone pool is largely reduced in ΔpetL, as revealed by measurements of PSI and PSII redox states. This confirms the sensory role of the Cyt b6f complex in activation of the corresponding kinase. The reduced light-harvesting complex II phosphorylation did not affect state transition and association of light-harvesting complex II to PSI under state II conditions. Ferredoxin-dependent plastoquinone reduction, which functions in cyclic electron transport around PSI in vivo, was not impaired in ΔpetL. PMID:17556510

  11. Subunit orientation in the Escherichia coli enterobactin biosynthetic EntA-EntE complex revealed by a two-hybrid approach.

    Science.gov (United States)

    Pakarian, Paknoosh; Pawelek, Peter D

    2016-08-01

    The siderophore enterobactin is synthesized by the enzymes EntA-F and EntH in the Escherichia coli cytoplasm. We previously reported in vitro evidence of an interaction between tetrameric EntA and monomeric EntE. Here we used bacterial adenylate cyclase two-hybrid (BACTH) assays to demonstrate that the E. coli EntA-EntE interaction occurs intracellularly. Furthermore, to obtain information on subunit orientation in the EntA-EntE complex, we fused BACTH reporter fragments T18 and T25 to EntA and EntE in both N-terminal and C-terminal orientations. To validate functionality of our fusion proteins, we performed Chrome Azurol S (CAS) assays using E. coli entE(-) and entA(-) knockout strains transformed with our BACTH constructs. We found that transformants expressing N-terminal and C-terminal T18/T25 fusions to EntE exhibited CAS signals, indicating that these constructs could rescue the entE(-) phenotype. While expression of EntA with N-terminal T18/T25 fusions exhibited CAS signals, C-terminal fusions did not, presumably due to disruption of the EntA tetramer in vivo. Bacterial growth assays supported our CAS findings. Co-transformation of functional T18/T25 fusions into cya(-)E. coli BTH101 cells resulted in positive BACTH signals only when T18/T25 fragments were fused to the N-termini of both EntA and EntE. Co-expression of N-terminally fused EntA with C-terminally fused EntE resulted in no detectable BACTH signal. Analysis of protein expression by Western blotting confirmed that the loss of BACTH signal was not due to impaired expression of fusion proteins. Based on our results, we propose that the N-termini of EntA and EntE are proximal in the intracellular complex, while the EntA N-terminus and EntE C-terminus are distal. A protein-protein docking simulation using SwarmDock was in agreement with our experimental observations.

  12. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae.

    OpenAIRE

    Miller, S. M; Magasanik, B

    1991-01-01

    We analyzed the upstream region of the GDH2 gene, which encodes the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae, for elements important for the regulation of the gene by the nitrogen source. The levels of this enzyme are high in cells grown with glutamate as the sole source of nitrogen and low in cells grown with glutamine or ammonium. We found that this regulation occurs at the level of transcription and that a total of six sites are required to cause a CYC1-lacZ fusion to...

  13. Chromatin-modifying complex component Nurf55/p55 associates with histones H3 and H4 and polycomb repressive complex 2 subunit Su(z)12 through partially overlapping binding sites.

    Science.gov (United States)

    Nowak, Agnieszka J; Alfieri, Claudio; Stirnimann, Christian U; Rybin, Vladimir; Baudin, Florence; Ly-Hartig, Nga; Lindner, Doris; Müller, Christoph W

    2011-07-01

    Drosophila Nurf55 is a component of different chromatin-modifying complexes, including the PRC2 (Polycomb repressive complex 2). Based on the 1.75-Å crystal structure of Nurf55 bound to histone H4 helix 1, we analyzed interactions of Nurf55 (Nurf55 or p55 in fly and RbAp48/46 in human) with the N-terminal tail of histone H3, the first helix of histone H4, and an N-terminal fragment of the PRC2 subunit Su(z)12 using isothermal calorimetry and pulldown experiments. Site-directed mutagenesis identified the binding site of histone H3 at the top of the Nurf55 WD40 propeller. Unmodified or K9me3- or K27me3-containing H3 peptides were bound with similar affinities, whereas the affinity for K4me3-containing H3 peptides was reduced. Helix 1 of histone H4 and Su(z)12 bound to the edge of the β-propeller using overlapping binding sites. Our results show similarities in the recognition of histone H4 and Su(z)12 and identify Nurf55 as a versatile interactor that simultaneously contacts multiple partners.

  14. Purification of arogenate dehydrogenase from Phenylobacterium immobile.

    Science.gov (United States)

    Mayer, E; Waldner-Sander, S; Keller, B; Keller, E; Lingens, F

    1985-01-07

    Phenylobacterium immobile, a bacterium which is able to degrade the herbicide chloridazon, utilizes for L-tyrosine synthesis arogenate as an obligatory intermediate which is converted in the final biosynthetic step by a dehydrogenase to tyrosine. This enzyme, the arogenate dehydrogenase, has been purified for the first time in a 5-step procedure to homogeneity as confirmed by electrophoresis. The Mr of the enzyme that consists of two identical subunits amounts to 69000 as established by gel electrophoresis after cross-linking the enzyme with dimethylsuberimidate. The Km values were 0.09 mM for arogenate and 0.02 mM for NAD+. The enzyme has a high specificity with respect to its substrate arogenate.

  15. Caenorhabditis elegans ortholog of the p24/p22 subunit, DNC-3, is essential for the formation of the dynactin complex by bridging DNC-1/p150(Glued) and DNC-2/dynamitin.

    Science.gov (United States)

    Terasawa, Masahiro; Toya, Mika; Motegi, Fumio; Mana, Miyeko; Nakamura, Kuniaki; Sugimoto, Asako

    2010-11-01

    Dynactin is a multisubunit protein complex required for the activity of cytoplasmic dynein. In Caenorhabditis elegans, although 10 of the 11 dynactin subunits were identified based on the sequence similarities to their orthologs, the p24/p22 subunit has not been detected in the genome. Here, we demonstrate that DNC-3 (W10G11.20) is the functional counterpart of the p24/p22 subunit in C. elegans. RNAi phenotypes and subcellular localization of DNC-3 in early C. elegans embryos were nearly identical to those of the known dynactin components. All other dynactin subunits were co-immunoprecipitated with DNC-3, indicating that DNC-3 is a core component of dynactin. Furthermore, the overall secondary structure of DNC-3 resembles to those of the mammalian and yeast p24/p22. We found that DNC-3 is required for the localization of the DNC-1/p150(Glued) and DNC-2/dynamitin, the two components of the projection arm of dynactin, to the nuclear envelope of meiotic nuclei in the adult gonad. Moreover, DNC-3 physically interacted with DNC-1 and DNC-2 and significantly enhanced the binding ability between DNC-1 and DNC-2 in vitro. These results suggest that DNC-3 is essential for the formation of the projection arm subcomplex of dynactin.

  16. The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes.

    Science.gov (United States)

    Rasheedi, Sheeba; Shun, Ming-Chieh; Serrao, Erik; Sowd, Gregory A; Qian, Juan; Hao, Caili; Dasgupta, Twishasri; Engelman, Alan N; Skowronski, Jacek

    2016-05-27

    HIV-1 favors integration into active genes and gene-enriched regions of host cell chromosomes, thus maximizing the probability of provirus expression immediately after integration. This requires cleavage and polyadenylation specificity factor 6 (CPSF6), a cellular protein involved in pre-mRNA 3' end processing that binds HIV-1 capsid and connects HIV-1 preintegration complexes to intranuclear trafficking pathways that link integration to transcriptionally active chromatin. CPSF6 together with CPSF5 and CPSF7 are known subunits of the cleavage factor I (CFIm) 3' end processing complex; however, CPSF6 could participate in additional protein complexes. The molecular mechanisms underpinning the role of CPSF6 in HIV-1 infection remain to be defined. Here, we show that a majority of cellular CPSF6 is incorporated into the CFIm complex. HIV-1 capsid recruits CFIm in a CPSF6-dependent manner, which suggests that the CFIm complex mediates the known effects of CPSF6 in HIV-1 infection. To dissect the roles of CPSF6 and other CFIm complex subunits in HIV-1 infection, we analyzed virologic and integration site targeting properties of a CPSF6 variant with mutations that prevent its incorporation into CFIm We show, somewhat surprisingly, that CPSF6 incorporation into CFIm is not required for its ability to direct preferential HIV-1 integration into genes. The CPSF5 and CPSF7 subunits appear to have only a minor, if any, role in this process even though they appear to facilitate CPSF6 binding to capsid. Thus, CPSF6 alone controls the key molecular interactions that specify HIV-1 preintegration complex trafficking to active chromatin.

  17. lemmingA encodes the Apc11 subunit of the APC/C in Drosophila melanogaster that forms a ternary complex with the E2-C type ubiquitin conjugating enzyme, Vihar and Morula/Apc2

    Directory of Open Access Journals (Sweden)

    Nagy Olga

    2012-03-01

    Full Text Available Abstract Background Ubiquitin-dependent protein degradation is a critical step in key cell cycle events, such as metaphase-anaphase transition and mitotic exit. The anaphase promoting complex/cyclosome (APC/C plays a pivotal role in these transitions by recognizing and marking regulatory proteins for proteasomal degradation. Its overall structure and function has been elucidated mostly in yeasts and mammalian cell lines. The APC/C is, however, a multisubunit assembly with at least 13 subunits and their function and interaction within the complex is still relatively uncharacterized, particularly in metazoan systems. Here, lemming (lmg mutants were used to study the APC/C subunit, Apc11, and its interaction partners in Drosophila melanogaster. Results The lmg gene was initially identified through a pharate adult lethal P element insertion mutation expressing developmental abnormalities and widespread apoptosis in larval imaginal discs and pupal abdominal histoblasts. Larval neuroblasts were observed to arrest mitosis in a metaphase-like state with highly condensed, scattered chromosomes and frequent polyploidy. These neuroblasts contain high levels of both cyclin A and cyclin B. The lmg gene was cloned by virtue of the lmg03424 P element insertion which is located in the 5' untranslated region. The lemming locus is transcribed to give a 2.0 kb mRNA that contains two ORFs, lmgA and lmgB. The lmgA ORF codes for a putative protein with more than 80% sequence homology to the APC11 subunit of the human APC/C. The 85 amino acid protein also contains a RING-finger motif characteristic of known APC11 subunits. The lmgA ORF alone was sufficient to rescue the lethal and mitotic phenotypes of the lmg138 null allele and to complement the temperature sensitive lethal phenotype of the APC11-myc9 budding yeast mutant. The LmgA protein interacts with Mr/Apc2, and they together form a binding site for Vihar, the E2-C type ubiquitin conjugating enzyme. Despite

  18. Crystal structure studies of NADP{sup +} dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Pampa, K.J. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Manjula, M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Abdoh, M.M.M. [Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Lokanath, N.K., E-mail: lokanath@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India)

    2014-06-20

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{sup +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  19. Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits α, ε, θ and β reveals a highly flexible arrangement of the proofreading domain

    Science.gov (United States)

    Ozawa, Kiyoshi; Horan, Nicholas P.; Robinson, Andrew; Yagi, Hiromasa; Hill, Flynn R.; Jergic, Slobodan; Xu, Zhi-Qiang; Loscha, Karin V.; Li, Nan; Tehei, Moeava; Oakley, Aaron J.; Otting, Gottfried; Huber, Thomas; Dixon, Nicholas E.

    2013-01-01

    A complex of the three (αεθ) core subunits and the β2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with β2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:β2 complexes. Nuclear magnetic resonance experiments with reconstituted αεθ:β2 demonstrate retention of high mobility of a segment of 22 residues in the linker that connects the exonuclease domain of ε with its α-binding segment. In spite of this, small-angle X-ray scattering data show that the isolated complex with strengthened CBMs has a compact, but still flexible, structure. Photo-crosslinking with p-benzoyl-L-phenylalanine incorporated at different sites in the α-PHP domain confirm the conformational variability of the tether. Structural models of the αεθ:β2 replicase complex with primer-template DNA combine all available structural data. PMID:23580545

  20. Structural basis of cooperativity in human UDP-glucose dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Venkatachalam Rajakannan

    Full Text Available BACKGROUND: UDP-glucose dehydrogenase (UGDH is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics. METHODOLOGY: Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle. CONCLUSION: In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.

  1. Cross-linking of rabbit skeletal muscle troponin subunits: labeling of cysteine-98 of troponin C with 4-maleimidobenzophenone and analysis of products formed in the binary complex with troponin T and the ternary complex with troponins I and T.

    Science.gov (United States)

    Leszyk, J; Collins, J H; Leavis, P C; Tao, T

    1988-09-06

    The sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) was used to study the interaction of rabbit skeletal muscle troponin subunits TnC, TnT, and TnI. TnC was labeled at Cys-98 by the maleimide moiety of BPMal and then mixed with either TnT alone or TnI plus TnT, in the presence of Ca2+. Upon photolysis, TnI and/or TnT formed covalent cross-links with TnC. The cross-linked TnC-TnT heterodimer obtained from the binary complex was digested into progressively smaller cross-linked peptides that were purified by HPLC and then characterized by amino acid analysis and sequencing. An initial cross-linked CNBr fraction contained the expected peptide CB9 (residues 84-135) of TnC, plus CNBr peptides spanning residues 152-230 of TnT. Results from a peptic digest of the CNBr cross-linked fraction permitted the identification of residues 159-197 as the most highly cross-linked region in TnT. A final subtilisin digest yielded a heterogeneous cross-linked fraction, which suggested that an especially high degree of cross-links was formed in the vicinity of residues 175-178 (Met-Lys-Lys-Lys) of TnT. Although this region of TnT had previously been implicated in binding, we show here for the first time that it is close to Cys-98 of TnC. In an analogous study on the binary complex of TnC and TnI [Leszyk, J., Collins, J. H., Leavis, P. C., & Tao, T. (1987) Biochemistry 26, 7042-7047], we previously showed that Cys-98 of TnC was cross-linked mainly to CN4, the "inhibitory region", of TnI.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The gene sml0013 of Synechocystis species strain PCC 6803 encodes for a novel subunit of the NAD(P)H oxidoreductase or complex I that is ubiquitously distributed among Cyanobacteria.

    Science.gov (United States)

    Schwarz, Doreen; Schubert, Hendrik; Georg, Jens; Hess, Wolfgang R; Hagemann, Martin

    2013-11-01

    The NAD(P)H oxidoreductase or complex I (NDH1) complex participates in many processes such as respiration, cyclic electron flow, and inorganic carbon concentration in the cyanobacterial cell. Despite immense progress in our understanding of the structure-function relation of the cyanobacterial NDH1 complex, the subunits catalyzing NAD(P)H docking and oxidation are still missing. The gene sml0013 of Synechocystis 6803 encodes for a small protein of unknown function for which homologs exist in all completely known cyanobacterial genomes. The protein exhibits weak similarities to the NDH-dependent flow6 (NDF6) protein, which was reported from Arabidopsis (Arabidopsis thaliana) chloroplasts as a NDH subunit. An sml0013 inactivation mutant of Synechocystis 6803 was generated and characterized. It showed only weak differences regarding growth and pigmentation in various culture conditions; most remarkably, it exhibited a glucose-sensitive phenotype in the light. The genome-wide expression pattern of the Δsml0013::Km mutant was almost identical to the wild type when grown under high CO2 conditions as well as after shifts to low CO2 conditions. However, measurements of the photosystem I redox kinetic in cells of the Δsml0013::Km mutant revealed differences, such as a decreased capability of cyclic electron flow as well as electron flow into respiration in comparison with the wild type. These results suggest that the Sml0013 protein (named NdhP) represents a novel subunit of the cyanobacterial NDH1 complex, mediating its coupling either to the respiratory or the photosynthetic electron flow.

  3. AFM imaging reveals the assembly of a P2X receptor complex containing P2X2, P2X4 and P2X6 subunits

    OpenAIRE

    2012-01-01

    Seven P2X purinergic receptor subunits have been identified: P2X1-P2X7. All except P2X6 assemble as homotrimers, and six heteromeric receptors (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6 and P2X4/6) have been described. In addition, P2X4 homomers associate with P2X2 or P2X7 homomers as dimers of trimers. The various P2X receptors show individual functional properties, suggesting distinct physiological roles. The overlapping expression of P2X2, P2X4 and P2X6 subunits has been shown in different ce...

  4. Characterization of lysosomal membrane proteins of Dictyostelium discoideum. A complex population of acidic integral membrane glycoproteins, Rab GTP-binding proteins and vacuolar ATPase subunits.

    Science.gov (United States)

    Temesvari, L; Rodriguez-Paris, J; Bush, J; Steck, T L; Cardelli, J

    1994-10-14

    Highly purified lysosomes, prepared by magnetic fractionation of homogenates from Dictyostelium discoideum cells fed colloidal iron, were lysed under hypoosmotic conditions, and the membrane-associated proteins were subjected to gel electrophoresis. Thirteen major membrane polypeptides, ranging in molecular weight from 25,000 to 100,000 were identified. The isoelectric points of these proteins ranged from below 3.8 to greater than 7.0. Most of these proteins were stripped from membranes exposed to a chaotropic agent, 3,5-diodo-2-hydroxybenzoic acid lithium salt, and were therefore classified as peripheral membrane proteins. Twenty five glycoprotein species were detected by lectin blot analysis; 19 were classified as integral membrane proteins, and were, in general, larger than 45 kDa and negatively charged due in part to the presence of mannose 6-sulfate. Western blot analysis also demonstrated that a Rab 4-like GTPase, a Rab 7-like GTPase, and at least three subunits of the vacuolar ATPase were associated with the lysosomal membrane; the ATPase subunits appeared to be major proteins in lysosomal membranes. Finally, based on N-terminal sequence analysis of a major 41-kDa lysosome-associated membrane protein, we cloned a cDNA that encodes a protein (DVA41) highly homologous to a yeast and a bovine vacuolar ATPase subunit of approximately 41 kDa. The D. discoideum DVA41 gene was apparently a single copy gene, expressed at constant levels during growth and development.

  5. c-Jun N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons.

    Science.gov (United States)

    Zhou, Qiongqiong; Lam, Philip Y; Han, Derick; Cadenas, Enrique

    2008-01-01

    This study examines the role of c-jun N-terminal kinase (JNK) in mitochondrial signaling and bioenergetics in primary cortical neurons and isolated rat brain mitochondria. Exposure of neurons to either anisomycin (an activator of JNK/p38 mitogen-activated protein kinases) or H2O2 resulted in activation (phosphorylation) of JNK (mostly p46(JNK1)) and its translocation to mitochondria. Experiments with mitochondria isolated from either rat brain or primary cortical neurons and incubated with proteinase K revealed that phosphorylated JNK was associated with the outer mitochondrial membrane; this association resulted in the phosphorylation of the E(1alpha) subunit of pyruvate dehydrogenase, a key enzyme that catalyzes the oxidative decarboxylation of pyruvate and that links two major metabolic pathways: glycolysis and the tricarboxylic acid cycle. JNK-mediated phosphorylation of pyruvate dehydrogenase was not observed in experiments carried out with mitoplasts, thus suggesting the requirement of intact, functional mitochondria for this effect. JNK-mediated phosphorylation of pyruvate dehydrogenase was associated with a decline in its activity and, consequently, a shift to anaerobic pyruvate metabolism: the latter was confirmed by increased accumulation of lactic acid and decreased overall energy production (ATP levels). Pyruvate dehydrogenase appears to be a specific phosphorylation target for JNK, for other kinases, such as protein kinase A and protein kinase C did not elicit pyruvate dehydrogenase phosphorylation and did not decrease the activity of the complex. These results suggest that JNK mediates a signaling pathway that regulates metabolic functions in mitochondria as part of a network that coordinates cytosolic and mitochondrial processes relevant for cell function.

  6. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Lefort, Natalie; Glancy, Brian; Bowen, Benjamin

    2010-01-01

    the higher ROS production. Tandem mass spectrometry identified protein abundance differences per mitochondrial mass in insulin resistance, including lower abundance of complex I subunits and enzymes involved in the oxidation of branched-chain amino acids (BCAA) and fatty acids (e.g., carnitine...... palmitoyltransferase 1B). CONCLUSIONS: We provide data suggesting normal oxidative capacity of mitochondria in insulin-resistant skeletal muscle in parallel with high rates of ROS production. Furthermore, we show specific abundance differences in proteins involved in fat and BCAA oxidation that might contribute...... to the accumulation of lipid and BCAA frequently associated with the pathogenesis of insulin resistance....

  7. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Directory of Open Access Journals (Sweden)

    Jessica Schmiesing

    Full Text Available Glutaric aciduria type 1 (GA1 is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH, which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.

  8. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase.

    Science.gov (United States)

    Shikanai, Toshiharu

    2016-07-01

    Eleven genes encoding chloroplast NADH dehydrogenase-like (NDH) complex have been discovered in plastid genomes on the basis of their homology with genes encoding respiratory complex I. Despite this structural similarity, chloroplast NDH and its evolutionary origin NDH-1 in cyanobacteria accept electrons from ferredoxin (Fd), indicating that chloroplast NDH is an Fd-dependent plastoquinone (PQ) reductase rather than an NAD(P)H dehydrogenase. In Arabidopsis thaliana, chloroplast NDH interacts with photosystem I (PSI); this interaction is needed to stabilize NDH, especially under high light. On the basis of these distinct characters of chloroplast and cyanobacterial NDH, it can be distinguished as a photosynthetic NDH from respiratory complex I. In fact, chloroplast NDH forms part of the machinery of photosynthesis by mediating the minor pathway of PSI cyclic electron transport. Along with the antimycin A-sensitive main pathway of PSI cyclic electron transport, chloroplast NDH compensates the ATP/NADPH production ratio in the light reactions of photosynthesis. In this review, I revisit the original concept of chloroplast NDH on the basis of its similarity to respiratory complex I and thus introduce current progress in the field to researchers focusing on respiratory complex I. I summarize recent progress on the basis of structure and function. Finally, I introduce the results of our examination of the process of assembly of chloroplast NDH. Although the process requires many plant-specific non-subunit factors, the core processes of assembly are conserved between chloroplast NDH and respiratory complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Mitochondrial complex I plays an essential role in human respirasome assembly.

    Science.gov (United States)

    Moreno-Lastres, David; Fontanesi, Flavia; García-Consuegra, Inés; Martín, Miguel A; Arenas, Joaquín; Barrientos, Antoni; Ugalde, Cristina

    2012-03-01

    The biogenesis and function of the mitochondrial respiratory chain (RC) involve the organization of RC enzyme complexes in supercomplexes or respirasomes through an unknown biosynthetic process. This leads to structural interdependences between RC complexes, which are highly relevant from biological and biomedical perspectives, because RC defects often lead to severe neuromuscular disorders. We show that in human cells, respirasome biogenesis involves a complex I assembly intermediate acting as a scaffold for the combined incorporation of complexes III and IV subunits, rather than originating from the association of preassembled individual holoenzymes. The process ends with the incorporation of complex I NADH dehydrogenase catalytic module, which leads to the respirasome activation. While complexes III and IV assemble either as free holoenzymes or by incorporation of free subunits into supercomplexes, the respirasomes constitute the structural units where complex I is assembled and activated, thus explaining the significance of the respirasomes for RC function.

  10. 几种蓝藻光合NAD(P)H脱氢酶复合体研究的新进展%New progress in the study of several cyanobacterial NAD(P)H dehydrogenase complexes

    Institute of Scientific and Technical Information of China (English)

    吕中贤; 马为民

    2011-01-01

    Cyanobacterial NAD(P)H dehydrogenase (NDH-1) is an important photosynthetic membrane protein complex, and is essential to CO2 uptake, cyclic electron transport around photosystem I and cellular respiration. This mini-review mainly describes and analyzes the new progress in the study of several cyanobacterial NDH-1 complexes, including their identification, structure, and physiological function. This will further help in looking ahead for the future research direction of cyanobacterial NDH-1 complexes.%蓝藻NAD(P)H脱氢酶(NDH-1)是一种重要的光合膜蛋白复合体,参与CO2吸收、围绕光系统Ⅰ的循环电子传递和细胞呼吸.就几种蓝藻NDH-1复合体的鉴定、结构、生理功能等研究的新进展进行了综述与分析,并对今后NDH-1复合体的研究作了展望.

  11. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  12. Cloning and Expression of Pyruvate Dehydrogenase E 1-α Subunit Gene (pdha) in Mycoplasma ovipneumoniae and Its Immunologic Activity Evaluation%绵羊肺炎支原体(Mycoplasma ovipneumoniae)丙酮酸脱氢酶E1-α亚单位基因(pdha)的克隆、表达及其免疫学活性测定

    Institute of Scientific and Technical Information of China (English)

    许健; 储岳峰; 高鹏程; 赵萍; 贺英; 剡根强; 逯忠新

    2012-01-01

    丙酮酸脱氢酶α-亚单位(PDHA)在病原体丙酮酸脱氢酶的催化过程中发挥着重要作用.为表达绵羊肺炎支原体(Mycoplasma ovipneumoniae)PDHA蛋白并测定其免疫学活性,应用PCR方法扩增出绵羊肺炎支原体pdha基因并对其序列进行分析,将pdha基因中色氨酸密码子TGA优化为TGG后进行全基因合成,插入到pET32-a(+)载体上,构建了pET3 2-a(+ )-pdha重组质粒,将重组质粒转化到大肠杆菌(Escherichia coli)BL21中诱导表达PDHA蛋白,并通过免疫印迹及小鼠(Mus musculus)免疫试验对其免疫学活性进行测定.结果pdha基因全长1 125 bp,编码375 aa,(G+C)%为34.76%,第304~306位、379~381位、586~588位、592~594位、625~627位、811~813位、889~891位及964~966位TGA在支原体中编码色氨酸而不是作为终止密码子;基因序列比对及进化树分析显示,绵羊肺炎支原体pdha基因与10种支原体的pdha基因序列同源性为32.6%~85.3%,氨基酸序列同源性为39.3%~90.6%,基因序列和氨基酸序列均与猪肺炎支原体(M.hyopneumoniae)有同源性,分别为85.3%和90.6%;绵羊肺炎支原体pdha基因在33℃、IPTG 0.25 mmol/L诱导6h的表达条件下,表达量最高;重组的PDHA蛋白可与绵羊肺炎支原体高免血清具有免疫印迹条带,在免疫小鼠后血清抗体效价与对照组相比,均显著升高(P<0.05).本实验首次成功克隆表达了绵羊肺炎支原体pdha基因,并证明其重组PDHA蛋白具有较好的免疫学活性.为绵羊支原体肺炎基因工程疫苗及诊断研究提供候选靶标.%Pyruvate dehydrogenase El-a subunit (PDHA) plays an important role in the catalytic activity of pyruvate dehydrogenase of pathogens. In order to characterize the immunologic activity of the PDHA of Mycoplasma ovipneumoniae, we amplified and sequenced the pdha gene of M. Ovipneumoniae. After optimized with TGG instead of TGA for coding the amino acid of tryptophane, the pdha gene

  13. Studies on lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a firm basis was laid to start site directed

  14. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Radhika; Viola, Ronald E. (Toledo)

    2010-10-28

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  15. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    Science.gov (United States)

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  16. Multiple soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva Maria Regina de

    1998-01-01

    Full Text Available A recent locus duplication hypothesis for sMDH-B* was proposed to explain the complex electrophoretic pattern of six bands detected for the soluble form of malate dehydrogenase (MDH, EC 1.1.1.37 in 84% of the Geophagus brasiliensis (Cichlidae, Perciformes analyzed (AB1B2 individuals. Klebe's serial dilutions were carried out in skeletal muscle extracts. B1 and B2 subunits had the same visual end-points, reflecting a nondivergent pattern for these B-duplicated genes. Since there is no evidence of polyploidy in the Cichlidae family, MDH-B* loci must have evolved from regional gene duplication. Tissue specificities, thermostability and kinetic tests resulted in similar responses from both B-isoforms, in both sMDH phenotypes, suggesting that these more recently duplicated loci underwent the same regulatory gene action. Similar results obtained with the two sMDH phenotypes did not show any indication of a six-banded specimen adaptive advantage in subtropical regions.

  17. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(PH-dependent dehydrogenases (synthases, which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti plasmid. In addition to the reverse oxidative reaction(s, the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation. We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A, and exhibited dehydrogenase (but not oxidase activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.

  18. NAC (Nascent Polypeptide-associated Complex) and Its Alpha Subunit NACA%NAC(初期多肽相关复合体)及其α亚基NACA

    Institute of Scientific and Technical Information of China (English)

    刘娇玲; 吕晓莉; 陈克平

    2015-01-01

    初期多肽相关复合体(nascent polypeptide-associated complex,NAC)是新生肽链从核糖体上延伸出来第一个接触的异二聚体蛋白复合体,从古生菌、酵母到哺乳动物都高度保守.NAC是一个具有多种功能的蛋白,包括保护新生肽链、调控新生肽转位进入内质网和线粒体、肌肉损伤修复等.其α亚基NACA/αNAC(nascent polypeptide-associated complex alpha subunit)主要在转录调控中起作用.此外,NACA还能调控FADD(Fas-associated with death domain protein)所介导的信号转导.在一些病毒性疾病,如乙肝、丙肝和非洲猪瘟中,NACA能与病毒的某些蛋白相互作用,致使机体功能紊乱.在老年痴呆症和唐氏综合征患者脑细胞中,与正常水平相比,NACA表达下调.%NAC (nascent polypeptide-associated complex) is the first cytosolic heterodimeric protein complex to contact nascent polypeptide chains emerging from ribosomes and is evolutionarily conserved in the genomes from archaea,yeast to mammals.NAC is found to be a multifunctional protein which can shield nascent chains,regulate nascent chains translocating into endoplasmic reticulum and mitochondria,repair muscle damage and so on.However,its α subunit NACA/αNAC (nascent polypeptide-associated complex alpha subunit) is identified mainly functioning in transcriptional regulation.It may play a role in FADD-mediated signal transduction process.Moreover,in many viral diseases,such as the Viral Hepatitis Type B,C and the African swine fever,it is found to be able to interact with the relevant viral protein to cause physiological disorders.Even in the brain tissues of patients with Alzheimer's disease and Down syndrome,NACA is found downregulated.

  19. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fenglei [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    , evaporation rate can be controlled or adjusted in this method during the crystallization process to favor either nucleation or growing processes for optimizing crystallization process. The protein crystals gotten by this method were experimentally proven to possess high x-ray diffraction qualities. Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH and determined its structure by x-ray crystallography. The structure of LDH/NADH displays a significantly different structural feature, compared with LDH/NADH/inhibitor ternary complex structure, that subunits in LDH/NADH complex show open conformation or two conformations on the active site while the subunits in LDH/NADH/inhibitor are all in close conformation. Multiple LDH/NADH crystals were obtained and used for x-ray diffraction experiments. Difference in subunit conformation was observed among the structures independently solved from multiple individual LDH/NADH crystals. Structural differences observed among crystals suggest the existence of multiple conformers in solution.

  20. [Isoformes of Malate Dehydrogenase from Rhodovulum Steppense A-20s Grown Chemotrophically under Aerobic Condtions].

    Science.gov (United States)

    Eprintsev, A T; Falaleeva, M I; Lyashchenko, M S; Gataullinaa, M O; Kompantseva, E I

    2016-01-01

    Three malate dehydrogenase isoforms (65-, 60-, and 71-fold purifications) with specific activities of 4.23, 3.88, and 4.56 U/mg protein were obtained in an electrophoretically homogenous state from Rhodovulum steppense bacteria strain A-20s chemotropically grown under aerobic conditions. The physicochemical and kinetic properties of malate dehydrogenase isoforms were determined. The molecular weight and the Michaelis constants were determined; the effect of hydrogen ions on the forward and reverse MDH reaction was studied. The results of the study demonstrated that the enzyme consists of subunits; the molecular weight of subunits was determined by SDS-PAGE.

  1. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.

    Science.gov (United States)

    González-Segura, Lilian; Rudiño-Piñera, Enrique; Muñoz-Clares, Rosario A; Horjales, Eduardo

    2009-01-16

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit

  2. Crystallization and preliminary X-ray crystallographic analysis of yeast NAD{sup +}-specific isocitrate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gang [Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); Taylor, Alexander B. [Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); X-ray Crystallography Core Laboratory, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); McAlister-Henn, Lee [Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); Hart, P. John, E-mail: pjhart@biochem.uthscsa.edu [Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); X-ray Crystallography Core Laboratory, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States)

    2005-05-01

    Yeast NAD{sup +}-isocitrate dehydrogenase has been purified and crystallized using sodium citrate, a competitive inhibitor of the enzyme, as a precipitant. Preliminary X-ray analyses indicate the molecular boundaries of the molecule and large continuous solvent channels in the crystal. NAD{sup +}-specific isocitrate dehydrogenase (IDH; EC 1.1.1.41) is a complex allosterically regulated enzyme in the tricarboxylic acid cycle. Yeast IDH is believed to be an octamer containing four catalytic IDH2 and four regulatory IDH1 subunits. Crystals of yeast IDH have been obtained and optimized using sodium citrate, a competitive inhibitor of the enzyme, as the precipitating agent. The crystals belong to space group R3, with unit-cell parameters a = 302.0, c = 112.1 Å. Diffraction data were collected to 2.9 Å from a native crystal and to 4.0 Å using multiwavelength anomalous diffraction (MAD) methods from an osmium derivative. Initial electron-density maps reveal large solvent channels and the molecular boundaries of the allosteric IDH multimer.

  3. Review of succinate dehydrogenase-deficient renal cell carcinoma with focus on clinical and pathobiological aspects

    Directory of Open Access Journals (Sweden)

    Naoto Kuroda

    2016-05-01

    Full Text Available Succinate dehydrogenase (SDH-deficient renal cell carcinoma (RCC was first identified in 2004 and has been integrated into the 2016 WHO classification of RCC. Succinate dehydrogenase (SDH is an enzyme complex composed of four protein subunits (SDHA, SDHB, SDHC and SDHD. The tumor which presents this enzyme mutation accounts for 0.05 to 0.2% of all renal carcinomas. Multiple tumors may occur in approximately 30% of affected patients. SDHB-deficient RCC is the most frequent, and the tumor histologically consists of cuboidal cells with eosinophilic cytoplasm, vacuolization, flocculent intracytoplasmic inclusion and indistinct cell borders. Ultrastructurally, the tumor contains abundant mitochondria. Immunohistochemically, tumor cells are positive for SDHA, but negative for SDHB in SDHB-, SDHC- and SDHD-deficient RCCs. However, SDHA-deficient RCC shows negativity for both SDHA and SDHB. In molecular genetic analyses, a germline mutation in the SDHB , SDHC or SDHD gene (in keeping with most patients having germline mutations in an SDH gene has been identified in patients with or without a family history of renal tumors, paraganglioma/pheochromocytoma or gastrointestinal stromal tumor. While most tumors are low grade, some tumors may behave in an aggressive fashion, particularly if they are high nuclear grade, and have coagulative necrosis or sarcomatoid differentiation.

  4. Purification and characterization of benzyl alcohol- and benzaldehyde- dehydrogenase from Pseudomonas putida CSV86.

    Science.gov (United States)

    Shrivastava, Rahul; Basu, Aditya; Phale, Prashant S

    2011-08-01

    Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD(+) dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD(+), while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K (m) value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K (m) and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.

  5. Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase {epsilon} is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8.

    Science.gov (United States)

    Murakami, Takeshi; Takano, Ryuji; Takeo, Satoshi; Taniguchi, Rina; Ogawa, Kaori; Ohashi, Eiji; Tsurimoto, Toshiki

    2010-11-05

    One of the proliferating cell nuclear antigen loader complexes, Ctf18-replication factor C (RFC), is involved in sister chromatid cohesion. To examine its relationship with factors involved in DNA replication, we performed a proteomics analysis of Ctf18-interacting proteins. We found that Ctf18 interacts with a replicative DNA polymerase, DNA polymerase ε (pol ε). Co-immunoprecipitation with recombinant Ctf18-RFC and pol ε demonstrated that their binding is direct and mediated by two distinct interactions, one weak and one stable. Three subunits that are specifically required for cohesion in yeast, Ctf18, Dcc1, and Ctf8, formed a trimeric complex (18-1-8) and together enabled stable binding with pol ε. The C-terminal 23-amino acid stretch of Ctf18 was necessary for the trimeric association of 18-1-8 and was required for the stable interaction. The weak interaction was observed with alternative loader complexes including Ctf18-RFC(5), which lacks Dcc1 and Ctf8, suggesting that the common loader structures, including the RFC small subunits (RFC2-5), are responsible for the weak interaction. The two interaction modes, mediated through distinguishable structures of Ctf18-RFC, both occurred through the N-terminal half of pol ε, which includes the catalytic domain. The addition of Ctf18-RFC or Ctf18-RFC(5) to the DNA synthesis reaction caused partial inhibition and stimulation, respectively. Thus, Ctf18-RFC has multiple interactions with pol ε that promote polymorphic modulation of DNA synthesis. We propose that their interaction alters the DNA synthesis mode to enable the replication fork to cooperate with the establishment of cohesion.

  6. Regulation of the nuclear gene that encodes the alpha-subunit of the mitochondrial F0F1-ATP synthase complex. Activation by upstream stimulatory factor 2.

    Science.gov (United States)

    Breen, G A; Jordan, E M

    1997-04-18

    We have previously identified several positive cis-acting regulatory regions in the promoters of the bovine and human nuclear-encoded mitochondrial F0F1-ATP synthase alpha-subunit genes (ATPA). One of these cis-acting regions contains the sequence 5'-CACGTG-3' (an E-box), to which a number of transcription factors containing a basic helix-loop-helix motif can bind. This E-box element is required for maximum activity of the ATPA promoter in HeLa cells. The present study identifies the human transcription factor, upstream stimulatory factor 2 (USF2), as a nuclear factor that binds to the ATPA E-box and demonstrates that USF2 plays a critical role in the activation of the ATPA gene in vivo. Evidence includes the following. Antiserum directed against USF2 recognized factors present in HeLa nuclear extracts that interact with the ATPA promoter in mobility shift assays. Wild-type USF2 proteins synthesized from expression vectors trans-activated the ATPA promoter through the E-box, whereas truncated USF2 proteins devoid of the amino-terminal activation domains did not. Importantly, expression of a dominant-negative mutant of USF2 lacking the basic DNA binding domain but able to dimerize with endogenous USF proteins significantly reduced the level of activation of the ATPA promoter caused by ectopically coexpressed USF2, demonstrating the importance of endogenous USF2 in activation of the ATPA gene.

  7. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  8. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes

    Science.gov (United States)

    Caballero, Susana; Duchêne, Sebastian; Garavito, Manuel F.; Slikas, Beth; Baker, C. Scott

    2015-01-01

    A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the ‘river dolphins’, early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three ‘river dolphins’ (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of

  9. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes.

    Directory of Open Access Journals (Sweden)

    Susana Caballero

    Full Text Available A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the 'river dolphins', early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae. Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0, leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three 'river dolphins' (Families Pontoporidae, Lipotidae and Inidae, once in the riverine Sotalia fluviatilis (but not in its marine sister taxa, once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of

  10. Inactivation of Bakers' yeast glucose-6-phosphate dehydrogenase by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungwoo; Joshi, J.G. (Univ. of Tennessee, Knoxville (USA))

    1989-04-18

    Preincubation of yeast glucose-6-phosphate dehydrogenase (G6PD) with Al(III) produced an inactive enzyme containing 1 mol of Al(III)/mol of enzyme subunit. None of the enzyme-bound Al(III) was dissociated by dialysis against 10 mM Tris-HCl, pH 7.0, containing 0.2 mM EDTA at 4{degree}C for 24 h. Citrate, NADP{sup +}, EDTA, or NaF protected the enzyme against the Al(III) inactivation. The Al(III)-inactivated enzyme, however, was completely reactivated only by citrate and NaF. The dissociation constant for the enzyme-aluminum complex was calculated to be 4 {times} 10{sup {minus}6} M with NaF, a known reversible chelator for aluminum. Modification of histidine and lysine residues of the enzyme with diethyl pyrocarbonate and acetylsalicylic acid, respectively, inactivated the enzyme. However, the modified enzyme still bound 1 mol of Al(III)/mol of enzyme subunit. Circular dichroism studies showed that the binding of Al(III) to the enzyme induced a decrease in {alpha}-helix and {beta}-sheet and an increase in random coil. Therefore, it is suggested that inactivation of G6PD by Al(III) is due to the conformational change induced by Al(III) binding.

  11. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    Science.gov (United States)

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  12. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice.

    Science.gov (United States)

    Yamori, Wataru; Sakata, Naoki; Suzuki, Yuji; Shikanai, Toshiharu; Makino, Amane

    2011-12-01

    The role of NAD(P)H dehydrogenase (NDH)-dependent cyclic electron flow around photosystem I in photosynthetic regulation and plant growth at several temperatures was examined in rice (Oryza sativa) that is defective in CHLORORESPIRATORY REDUCTION 6 (CRR6), which is required for accumulation of sub-complex A of the chloroplast NDH complex (crr6). NdhK was not detected by Western blot analysis in crr6 mutants, resulting in lack of a transient post-illumination increase in chlorophyll fluorescence, and confirming that crr6 mutants lack NDH activity. When plants were grown at 28 or 35°C, all examined photosynthetic parameters, including the CO(2) assimilation rate and the electron transport rate around photosystems I and II, at each growth temperature at light intensities above growth light (i.e. 800 μmol photons m(-2) sec(-1)), were similar between crr6 mutants and control plants. However, when plants were grown at 20°C, all the examined photosynthetic parameters were significantly lower in crr6 mutants than control plants, and this effect on photosynthesis caused a corresponding reduction in plant biomass. The F(v)/F(m) ratio was only slightly lower in crr6 mutants than in control plants after short-term strong light treatment at 20°C. However, after long-term acclimation to the low temperature, impairment of cyclic electron flow suppressed non-photochemical quenching and promoted reduction of the plastoquinone pool in crr6 mutants. Taken together, our experiments show that NDH-dependent cyclic electron flow plays a significant physiological role in rice during photosynthesis and plant growth at low temperature.

  13. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I.

    Science.gov (United States)

    Joët, T; Cournac, L; Horvath, E M; Medgyesy, P; Peltier, G

    2001-04-01

    Tobacco (Nicotiana tabacum var Petit Havana) ndhB-inactivated mutants (ndhB-) obtained by plastid transformation (E.M. Horvath, S.O. Peter, T. Joët, D. Rumeau, L. Cournac, G.V. Horvath, T.A. Kavanagh, C. Schäfer, G. Peltier, P. MedgyesyHorvath [2000] Plant Physiol 123: 1337-1350) were used to study the role of the NADH-dehydrogenase complex (NDH) during photosynthesis and particularly the involvement of this complex in cyclic electron flow around photosystem I (PSI). Photosynthetic activity was determined on leaf discs by measuring CO2 exchange and chlorophyll fluorescence quenchings during a dark-to-light transition. In the absence of treatment, both non-photochemical and photochemical fluorescence quenchings were similar in ndhB- and wild type (WT). When leaf discs were treated with 5 microM antimycin A, an inhibitor of cyclic electron flow around PSI, both quenchings were strongly affected. At steady state, maximum photosynthetic electron transport activity was inhibited by 20% in WT and by 50% in ndhB-. Under non-photorespiratory conditions (2% O2, 2,500 microL x L(-1) CO2), antimycin A had no effect on photosynthetic activity of WT, whereas a 30% inhibition was observed both on quantum yield of photosynthesis assayed by chlorophyll fluorescence and on CO2 assimilation in ndhB-. The effect of antimycin A on ndhB- could not be mimicked by myxothiazol, an inhibitor of the mitochondrial cytochrome bc1 complex, therefore showing that it is not related to an inhibition of the mitochondrial electron transport chain but rather to an inhibition of cyclic electron flow around PSI. We conclude to the existence of two different pathways of cyclic electron flow operating around PSI in higher plant chloroplasts. One of these pathways, sensitive to antimycin A, probably involves ferredoxin plastoquinone reductase, whereas the other involves the NDH complex. The absence of visible phenotype in ndhB- plants under normal conditions is explained by the complement of these two

  14. Disease-Associated Mutations in the HSPD1 Gene Encoding the Large Subunit of the Mitochondrial HSP60/HSP10 Chaperonin Complex

    DEFF Research Database (Denmark)

    Bross, Peter; Fernandez-Guerra, Paula

    2016-01-01

    Heat shock protein 60 (HSP60) forms together with heat shock protein 10 (HSP10) double-barrel chaperonin complexes that are essential for folding to the native state of proteins in the mitochondrial matrix space. Two extremely rare monogenic disorders have been described that are caused by missen...

  15. Coupling of metal-based light-harvesting antennas and electron-donor subunits: Trinuclear Ruthenium(II) complexes containing tetrathiafulvalene-substituted polypyridine ligands

    DEFF Research Database (Denmark)

    Campagna, Sebastiano; Serroni, Scolastica; Puntoriero, Fausto

    2002-01-01

    Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF1, trans-bpy-TTF1, and cis-bpy-TTF2 have been prepared and characterized. X-ray analysis of trans-bpy-TTF1, is also reported. Such ligands have been used to prepare two new trinuclear Ru-II complexes, namely, [{(bpy)(2)R...

  16. Structure and function of complex I in animals and plants - a comparative view.

    Science.gov (United States)

    Senkler, Jennifer; Senkler, Michael; Braun, Hans-Peter

    2017-03-06

    The mitochondrial NADH dehydrogenase complex (complex I) has a molecular mass of about 1000 kDa and includes 40-50 subunits in animals, fungi and plants. It is composed of a membrane arm and a peripheral arm and has a conserved L-like shape in all species investigated. However, in plants and possibly some protists it has a second peripheral domain which is attached to the membrane arm on its matrix exposed side at a central position. The extra domain includes proteins resembling prokaryotic gamma-type carbonic anhydrases. We here present a detailed comparison of complex I from mammals and flowering plants. Forty homologous subunits are present in complex I of both groups of species. In addition, five subunits are present in mammalian complex I, which are absent in plants, and eight to nine subunits are present in plant complex I which do not occur in mammals. Based on the atomic structure of mammalian complex I and biochemical insights into complex I architecture from plants we mapped the species-specific subunits. Interestingly, four of the five animal-specific and five of the eight to nine plant-specific subunits are localized at the inner surface of the membrane arm of complex I in close proximity. We propose that the inner surface of the membrane arm represents a workbench for attaching proteins to complex I not directly related to respiratory electron transport, like nucleoside kinases, acyl-carrier proteins or carbonic anhydrases. We speculate that further enzyme activities might be bound to this micro-location in other groups of organisms.

  17. Separation and Purification of Betaine Aldehyde Dehydrogenase from Wild Suaeda liaotungensis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High active betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) is found in wild Suaeda liaotungensis. The enzyme is purified 206-fold with recovery of 1.5%. It have a specific activity of 2363 nmol/min*mg protein and the molecular mass of each subunit is 64.5 kDa as determined by SDS-PAGE.

  18. A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits.

    Science.gov (United States)

    Wong, Kelly A; Lodish, Harvey F

    2006-11-24

    The 5'-AMP-activated protein kinase (AMPK) is a master sensor for cellular metabolic energy state. It is activated by a high AMP/ATP ratio and leads to metabolic changes that conserve energy and utilize alternative cellular fuel sources. The kinase is composed of a heterotrimeric protein complex containing a catalytic alpha-subunit, an AMP-binding gamma-subunit, and a scaffolding beta-subunit thought to bind directly both the alpha- and gamma-subunits. Here, we use coimmunoprecipitation of proteins in transiently transfected cells to show that the alpha2-subunit binds directly not only to the beta-subunit, confirming previous work, but also to the gamma1-subunit. Deletion analysis of the alpha2-subunit reveals that the C-terminal 386-552 residues are sufficient to bind to the beta-subunit. The gamma1-subunit binds directly to the alpha2-subunit at two interaction sites, one within the catalytic domain consisting of alpha2 amino acids 1-312 and a second within residues 386-552. Binding of the alpha2 and the gamma1-subunits was not affected by 400 mum AMP or ATP. Furthermore, we show that the beta-subunit C terminus is essential for binding to the alpha2-subunit but, in contrast to previous work, the beta-subunit does not bind directly to the gamma1-subunit. Taken together, this study presents a new model for AMPK heterotrimer structure where through its C terminus the beta-subunit binds to the alpha-subunit that, in turn, binds to the gamma-subunit. There is no direct interaction between the beta- and gamma-subunits.

  19. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions lactate dehydrogenase deficiency lactate dehydrogenase deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Lactate dehydrogenase deficiency is a condition that affects how the ...

  20. 15 Hypoxyprostaglandin dehydrogenase. A review

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1976-01-01

    A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references.......A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references....

  1. Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is regulated by a combined effect of nitrogen and cytokinin.

    Science.gov (United States)

    Marchi, Laura; Degola, Francesca; Polverini, Eugenia; Tercé-Laforgue, Thérèse; Dubois, Frédéric; Hirel, Bertrand; Restivo, Francesco Maria

    2013-12-01

    In higher plants, NAD(H)-glutamate dehydrogenase (GDH; EC 1.4.1.2) is an abundant enzyme that exists in different isoenzymic forms. In Arabidopsis thaliana, three genes (Gdh1, Gdh2 and Gdh3) encode three different GDH subunits (β, α and γ) that randomly associate to form a complex array of homo- and heterohexamers. The modification of the GDH isoenzyme pattern and its regulation was studied during the development of A. thaliana in the gdh1, gdh2 single mutants and the gdh1-2 double mutant, with particular emphasis on GDH3. Investigations showed that the GDH3 isoenzyme could not be detected in closely related Arabidopsis species. The induction and regulation of GDH3 activity in the leaves and roots was investigated following nitrogen deprivation in the presence or absence of sucrose or kinetin. These experiments indicate that GDH3 is likely to play an important role during senescence and nutrient remobilization.

  2. Three-dimensional structure of the ligand-binding core of GluR2 in complex with the agonist (S)-ATPA: implications for receptor subunit selectivity.

    Science.gov (United States)

    Lunn, Marie-Louise; Hogner, Anders; Stensbøl, Tine B; Gouaux, Eric; Egebjerg, Jan; Kastrup, Jette S

    2003-02-27

    Two X-ray structures of the GluR2 ligand-binding core in complex with (S)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid ((S)-ATPA) have been determined with and without Zn(2+) ions. (S)-ATPA induces a domain closure of ca. 21 degrees compared to the apo form. The tert-butyl moiety of (S)-ATPA is buried in a partially hydrophobic pocket and forces the ligand into the glutamate-like binding mode. The structures provide new insight into the molecular basis of agonist selectivity between AMPA and kainate receptors.

  3. Pyruvate dehydrogenase complex from Azotobacter vinelandii

    NARCIS (Netherlands)

    Bresters, T.W.

    1975-01-01

    The isolation and some alternatives for purification of PDC from Azotobacter vinelandii are described (CHAPTER 3). Ultimate extent and recovery seem to be limited by the lability of the enzyme: sensitivity to shearing forces. Moreover, sedimentation-velocity runs and light-scattering experiments sho

  4. SDH Subunit Mutation Status in Saliva : Genetic Testing in Patients with Pheochromocytoma

    NARCIS (Netherlands)

    Osinga, T E; Xekouki, P; Nambuba, J; Faucz, F R; de la Luz Sierra, M; Links, T P; Kema, I P; Adams, K; Stratakis, C A; van der Horst-Schrivers, A N A; Pacak, K

    Germline mutations occur in up to 30-40% of pheochromocytoma/paraganglioma, with mutations in the succinate dehydrogenase (SDH) subunits B (SDHB) and D (SDHD) being the most common. Blood samples are favored for obtaining high quality DNA, however, leukocytes can also be obtained by collecting

  5. Sodium channel β subunits: emerging targets in channelopathies.

    Science.gov (United States)

    O'Malley, Heather A; Isom, Lori L

    2015-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Although β subunits were originally termed auxiliary, we now know that they are multifunctional signaling molecules that play roles in both excitable and nonexcitable cell types and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. Although VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target.

  6. Reconsideration of systematic relationships within the order Euplotida (Protista, Ciliophora) using new sequences of the gene coding for small-subunit rRNA and testing the use of combined data sets to construct phylogenies of the Diophrys-complex.

    Science.gov (United States)

    Yi, Zhenzhen; Song, Weibo; Clamp, John C; Chen, Zigui; Gao, Shan; Zhang, Qianqian

    2009-03-01

    Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the "typical" euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae-Certesiidae-Aspidiscidae-Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information.

  7. Microprocessor complex subunit DiGeorge syndrome critical region gene 8 (Dgcr8) is required for schwann cell myelination and myelin maintenance.

    Science.gov (United States)

    Lin, Hsin-Pin; Oksuz, Idil; Hurley, Edward; Wrabetz, Lawrence; Awatramani, Rajeshwar

    2015-10-02

    We investigated the role of a key component of the Microprocessor complex, DGCR8, in the regulation of myelin formation and maintenance. We found that conditionally ablating Dgcr8 in Schwann cells (SCs) during development results in an arrest of SC differentiation. Dgcr8 conditional knock-out (cKO) SCs fail to form 1:1 relationships with axons or, having achieved this, fail to form myelin sheaths. The expression of genes normally found in immature SCs, such as sex-determining region Y-box 2 (Sox2), is increased in Dgcr8 cKO SCs, whereas the expression of myelin-related genes, including the master regulatory transcription factor early growth response 2 (Egr2), is decreased. Additionally, expression of a novel gene expression program involving sonic hedgehog (Shh), activated de novo in injured nerves, is elevated in Dgcr8 cKOs but not in Egr2 null mice, a model of SC differentiation arrest, suggesting that the injury-related gene expression program in Dgcr8 cKOs cannot be attributed to differentiation arrest. Inducible ablation of Dgcr8 in adult SCs results in gene expression changes similar to those found in cKOs, including an increase in the expression of Sox2 and Shh. Analyses of these nerves mainly reveal normal myelin thickness and axon size distribution but some dedifferentiated SCs and increased macrophage infiltration. Together our data suggest that Dgcr8 is responsible for modulation of gene expression programs underlying myelin formation and maintenance as well as suppression of an injury-related gene expression program.

  8. Hexanuclear, heterometallic, Ni₃Ln₃ complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue.

    Science.gov (United States)

    Goura, Joydeb; Guillaume, Rogez; Rivière, Eric; Chandrasekhar, Vadapalli

    2014-08-04

    The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1).

  9. Lactate dehydrogenase-elevating virus

    Science.gov (United States)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  10. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    Science.gov (United States)

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in total, with 21-28 replacements between any pair of the alpha/beta/gamma chains. These values, compared with those from species differences between the corresponding human and horse enzymes, suggest that isozyme developments in the class I enzyme resulted from separate gene duplications after the divergence of the human and equine evolutionary lines. All subunits exhibit some unique properties, with slightly closer similarity between the human gamma and horse enzyme subunits and somewhat greater deviations towards the human alpha subunit. Differences are large also in segments close to the active site zinc ligands and other functionally important positions. Species differences are distributed roughly equally between the two types of domain in the subunit, whereas isozyme differences are considerably more common in the catalytic than in the coenzyme-binding domain. These facts illustrate a functional divergence among the isozymes but otherwise similar changes during evolution. Polymorphic forms of beta and gamma subunits are characterized by single replacements at one and two positions, respectively, explaining known deviating properties. Class II and class III subunits are considerably more divergent. Their homology with class I isozymes exhibits only 60-65% positional identity. Hence, they reflect further steps towards the development of new enzymes, with variations well above the horse/human species levels, in contrast to the class I forms. Again, functionally important residues are affected, and patterns resembling those previously established for the divergently related

  11. Na+/K+-ATPase β1-subunit is recruited in Na-K-2Cl co-transporter isoform 2 multiprotein complexes in rat kidneys: possible role in blood pressure regulation.

    Science.gov (United States)

    Carmosino, Monica; Torretta, Silvia; Procino, Giuseppe; Timperio, Annamaria; Zolla, Lello; Svelto, Maria

    2014-09-01

    The progression from prehypertensive to hypertensive state in spontaneous hypertensive rats (SHRs) is accompanied by a significant increase in membrane expression of Na-K-2Cl co-transporter isoform 2 (NKCC2), suggesting that the altered NKCC2 trafficking and activity are directly related with the development of hypertension in this strain. The aim of this work is to gain insights on the molecular mechanism that underlies this phenomenon. We performed a comparative analysis of NKCC2 multiprotein complexes (MPCs) in the kidney of SHRs versus Wistar Kyoto rats by Blue Native difference gel electrophoresis combined with mass spectrometry. We found that the recruitment of the β-subunit isoform 1 of the Na(+)-K(+)-ATPase (β1NK) in NKCC2 MPCs was significantly increased in the kidneys of SHR compared with Wistar Kyoto rat control strain. Co-immunoprecipitation experiments showed that β1NK actually interacts with NKCC2 in the native tissue. The analysis of the physiological role of β1NK-NKCC2 interaction in human embryonic kidney cells showed that β1NK increased the steady-state membrane expression and activity of NKCC2 enhancing NKCC2 trafficking toward the plasma membrane. We identify a new NKCC2-interacting partner involved in the modulation of NKCC2 intracellular trafficking and possibly involved in the regulation of blood pressure.

  12. Molecular and Catalytic Properties of the Aldehyde Dehydrogenase of Gluconacetobacter diazotrophicus, a Quinoheme Protein Containing Pyrroloquinoline Quinone, Cytochrome b, and Cytochrome c▿

    Science.gov (United States)

    Gómez-Manzo, S.; Chavez-Pacheco, J. L.; Contreras-Zentella, M.; Sosa-Torres, M. E.; Arreguín-Espinosa, R.; Pérez de la Mora, M.; Membrillo-Hernández, J.; Escamilla, J. E.

    2010-01-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone. PMID:20802042

  13. Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c.

    Science.gov (United States)

    Gómez-Manzo, S; Chavez-Pacheco, J L; Contreras-Zentella, M; Sosa-Torres, M E; Arreguín-Espinosa, R; Pérez de la Mora, M; Membrillo-Hernández, J; Escamilla, J E

    2010-11-01

    Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone.

  14. Transcriptional regulation of the nuclear gene encoding the alpha-subunit of the mammalian mitochondrial F1F0 ATP synthase complex: role for the orphan nuclear receptor, COUP-TFII/ARP-1.

    Science.gov (United States)

    Jordan, Elzora M; Worley, Teri; Breen, Gail A M

    2003-03-11

    Our laboratory has been studying the transcriptional regulation of the nuclear gene (ATPA) that encodes the alpha-subunit of the mammalian mitochondrial F1F0 ATP synthase complex. We have previously determined that the regulatory factor, upstream stimulatory factor 2 (USF2), can stimulate transcription of the ATPA gene through the cis-acting regulatory element 1 in the upstream promoter of this gene. In this study, we used the yeast one-hybrid screening method to identify another factor, COUP-TFII/ARP-1, which also binds to the ATPA cis-acting regulatory element 1. Binding of the orphan nuclear receptor, COUP-TFII/ARP-1, to the ATPA regulatory element 1 was confirmed using electrophoretic mobility shift experiments, and COUP-TFII/ARP-1-containing complexes were detected in HeLa cell nuclear extracts. A mutational analysis indicated that the binding site for COUP-TFII/ARP-1 in the ATPA regulatory element 1 is an imperfect direct repeat of a nuclear receptor response element (A/GGGTCA) with a spacer of three nucleotides. Functional assays in HeLa cells showed that COUP-TFII/ARP-1 represses the ATPA promoter activity in a dose- and sequence-dependent manner. Furthermore, cotransfection assays demonstrated that COUP-TFII/ARP-1 inhibits the USF2-mediated activation of the wild-type ATPA gene promoter but not a mutant promoter that is defective in COUP-TFII/ARP-1-binding. Overexpression of USF2 reversed the COUP-TFII/ARP-1-mediated repression of the ATPA promoter. Mobility shift assays revealed that COUP-TFII/ARP-1 and USF2 compete for binding to the ATPA regulatory element 1. Thus, the ATPA gene is regulated by a multifunctional binding site through which the transcription factors, COUP-TFII/ARP-1 and USF2, bind and exert their antagonistic effects.

  15. Work environments of different types of nursing subunits.

    Science.gov (United States)

    Leatt, P; Schneck, R

    1982-11-01

    Based upon organizational theory, the purpose of this research was to identify and describe similarities and differences in the work environments of nine different types of nursing subunits (intensive care, medical, surgical, psychiatric, auxiliary, rehabilitation, rural, paediatric and obstetrical) in hospitals. Six measures of nursing subunit environment were developed: these included measures of nursing subunit autonomy, and the complexity and pervasiveness of other medical and hospital groups interacting with the nursing subunit. Data were collected by questionnaire from headnurses in 157 nursing subunits located in 24 hospitals in Alberta, Canada. The results indicated that the types of nursing subunits were similar in their degree of autonomy from both physicians and administration in the larger context in which they were located but were significantly different in terms of number and heterogeneity of groups outside nurses with which they interacted and the extent to which such groups pervaded the subunits. For example, intensive care units appeared as the type of nursing subunit with the greatest need for interaction with physicians, paramedics, hotel services and so on, whereas, psychiatric subunits appeared to be the least dependent on groups outside nursing in the hospital. These findings have implications for the management practices and educational programme for nursing.

  16. Severe encephalopathy associated to pyruvate dehydrogenase mutations and unbalanced coenzyme Q10 content.

    Science.gov (United States)

    Asencio, Claudio; Rodríguez-Hernandez, María A; Briones, Paz; Montoya, Julio; Cortés, Ana; Emperador, Sonia; Gavilán, Angela; Ruiz-Pesini, Eduardo; Yubero, Dèlia; Montero, Raquel; Pineda, Mercedes; O'Callaghan, María M; Alcázar-Fabra, María; Salviati, Leonardo; Artuch, Rafael; Navas, Plácido

    2016-03-01

    Coenzyme Q10 (CoQ10) deficiency is associated to a variety of clinical phenotypes including neuromuscular and nephrotic disorders. We report two unrelated boys presenting encephalopathy, ataxia, and lactic acidosis, who died with necrotic lesions in different areas of brain. Levels of CoQ10 and complex II+III activity were increased in both skeletal muscle and fibroblasts, but it was a consequence of higher mitochondria mass measured as citrate synthase. In fibroblasts, oxygen consumption was also increased, whereas steady state ATP levels were decreased. Antioxidant enzymes such as NQO1 and MnSOD and mitochondrial marker VDAC were overexpressed. Mitochondria recycling markers Fis1 and mitofusin, and mtDNA regulatory Tfam were reduced. Exome sequencing showed mutations in PDHA1 in the first patient and in PDHB in the second. These genes encode subunits of pyruvate dehydrogenase complex (PDH) that could explain the compensatory increase of CoQ10 and a defect of mitochondrial homeostasis. These two cases describe, for the first time, a mitochondrial disease caused by PDH defects associated with unbalanced of both CoQ10 content and mitochondria homeostasis, which severely affects the brain. Both CoQ10 and mitochondria homeostasis appears as new markers for PDH associated mitochondrial disorders.

  17. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  18. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays.

    Directory of Open Access Journals (Sweden)

    Lee S Parsons

    Full Text Available BACKGROUND: Vacuolar (H(+-ATPase (V-ATPase; V(1V(o-ATPase is a large multisubunit enzyme complex found in the endomembrane system of all eukaryotic cells where its proton pumping action serves to acidify subcellular organelles. In the plasma membrane of certain specialized tissues, V-ATPase functions to pump protons from the cytoplasm into the extracellular space. The activity of the V-ATPase is regulated by a reversible dissociation mechanism that involves breaking and re-forming of protein-protein interactions in the V(1-ATPase - V(o-proton channel interface. The mechanism responsible for regulated V-ATPase dissociation is poorly understood, largely due to a lack of detailed knowledge of the molecular interactions that are responsible for the structural and functional link between the soluble ATPase and membrane bound proton channel domains. METHODOLOGY/PRINCIPAL FINDINGS: To gain insight into where some of the stator subunits of the V-ATPase associate with each other, we have developed peptide arrays from the primary sequences of V-ATPase subunits. By probing the peptide arrays with individually expressed V-ATPase subunits, we have identified several key interactions involving stator subunits E, G, C, H and the N-terminal domain of the membrane bound a subunit. CONCLUSIONS: The subunit-peptide interactions identified from the peptide arrays complement low resolution structural models of the eukaryotic vacuolar ATPase obtained from transmission electron microscopy. The subunit-subunit interaction data are discussed in context of our current model of reversible enzyme dissociation.

  19. Heteromeric assembly of P2X subunits

    Directory of Open Access Journals (Sweden)

    Anika eSaul

    2013-12-01

    Full Text Available Transcripts and/or proteins of P2X receptor (P2XR subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs

  20. Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is less thermostable than GDH1 and GDH2 isoenzymes.

    Science.gov (United States)

    Marchi, Laura; Polverini, Eugenia; Degola, Francesca; Baruffini, Enrico; Restivo, Francesco Maria

    2014-10-01

    NAD(H)-glutamate dehydrogenase (GDH; EC 1.4.1.2) is an abundant and ubiquitous enzyme that may exist in different isoenzymic forms. Variation in the composition of the GDH isoenzyme pattern is observed during plant development and specific cell, tissue and organ localization of the different isoforms have been reported. However, the mechanisms involved in the regulation of the isoenzymatic pattern are still obscure. Regulation may be exerted at several levels, i.e. at the level of transcription and translation of the relevant genes, but also when the enzyme is assembled to originate the catalytically active form of the protein. In Arabidopsis thaliana, three genes (GDH1, GDH2 and GDH3) encode three different GDH subunits (β, α and γ) that randomly associate to form a complex array of homo- and hetero-hexamers. In order to asses if the different Arabidopsis GDH isoforms may display different structural properties we have investigated their thermal stability. In particular the stability of GDH1 and GDH3 isoenzymes was studied using site-directed mutagenesis in a heterologous yeast expression system. It was established that the carboxyl terminus of the GDH subunit is involved in the stabilization of the oligomeric structure of the enzyme.

  1. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield.

    Science.gov (United States)

    Nölke, Greta; Houdelet, Marcel; Kreuzaler, Fritz; Peterhänsel, Christoph; Schillberg, Stefan

    2014-08-01

    We have increased the productivity and yield of potato (Solanum tuberosum) by developing a novel method to enhance photosynthetic carbon fixation based on expression of a polyprotein (DEFp) comprising all three subunits (D, E and F) of Escherichia coli glycolate dehydrogenase (GlcDH). The engineered polyprotein retained the functionality of the native GlcDH complex when expressed in E. coli and was able to complement mutants deficient for the D, E and F subunits. Transgenic plants accumulated DEFp in the plastids, and the recombinant protein was active in planta, reducing photorespiration and improving CO2 uptake with a significant impact on carbon metabolism. Transgenic lines with the highest DEFp levels and GlcDH activity produced significantly higher levels of glucose (5.8-fold), fructose (3.8-fold), sucrose (1.6-fold) and transitory starch (threefold), resulting in a substantial increase in shoot and leaf biomass. The higher carbohydrate levels produced in potato leaves were utilized by the sink capacity of the tubers, increasing the tuber yield by 2.3-fold. This novel approach therefore has the potential to increase the biomass and yield of diverse crops.

  2. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections

    NARCIS (Netherlands)

    Misas-villamil, Johana C.; Burgh, Van Der Aranka M.; Grosse-holz, Friederike; Bach-pages, Marcel; Kovács, Judit; Kaschani, Farnusch; Schilasky, Sören; Emon, Asif E.K.; Ruben, Mark; Kaiser, Markus; Overkleeft, Hermen S.; Hoorn, van der Renier A.L.

    2017-01-01

    The proteasome is a nuclear-cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions, but tools to monitor and control these subunits selectively are not yet available in plant

  3. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen.

    Science.gov (United States)

    Gao, Xin-Qi; Liu, Chang Zhen; Li, Dan Dan; Zhao, Ting Ting; Li, Fei; Jia, Xiao Na; Zhao, Xin-Ying; Zhang, Xian Sheng

    2016-07-01

    Pollen-stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen-stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2 in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen-stigma interactions during pollination.

  4. Systems biology analysis merging phenotype, metabolomic and genomic data identifies Non-SMC Condensin I Complex, Subunit G (NCAPG and cellular maintenance processes as major contributors to genetic variability in bovine feed efficiency.

    Directory of Open Access Journals (Sweden)

    Philipp Widmann

    Full Text Available Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53 and Transforming Growth Factor beta 1 (TGFB1 genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG I442M (rs109570900 and the Growth /differentiation factor 8 (GDF8 Q204X (rs110344317 loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily

  5. Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors.

    Science.gov (United States)

    Baysal, Bora E

    2013-05-01

    Germ line heterozygous mutations in the structural subunit genes of mitochondrial complex II (succinate dehydrogenase; SDH) and the regulatory gene SDHAF2 predispose to paraganglioma tumors which show constitutive activation of hypoxia inducible pathways. Mutations in SDHD and SDHAF2 cause highly penetrant multifocal tumor development after a paternal transmission, whereas maternal transmission rarely, if ever, leads to tumor development. This transmission pattern is consistent with genomic imprinting. Recent molecular evidence supports a model for tissue-specific imprinted regulation of the SDHD gene by a long range epigenetic mechanism. In addition, there is evidence of SDHB mRNA editing in peripheral blood mononuclear cells and long-term balancing selection operating on the SDHA gene. Regulation of SDH subunit expression by diverse epigenetic mechanisms implicates a crucial dosage-dependent role for SDH in oxygen homeostasis. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.

  6. Dynamic regulation of β1 subunit trafficking controls vascular contractility.

    Science.gov (United States)

    Leo, M Dennis; Bannister, John P; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E; Gabrick, Kyle S; Boop, Frederick A; Jaggar, Jonathan H

    2014-02-11

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.

  7. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  8. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a

  9. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a s

  10. The subunit composition and function of mammalian cytochrome c oxidase.

    Science.gov (United States)

    Kadenbach, Bernhard; Hüttemann, Maik

    2015-09-01

    Cytochrome c oxidase (COX) from mammals and birds is composed of 13 subunits. The three catalytic subunits I-III are encoded by mitochondrial DNA, the ten nuclear-coded subunits (IV, Va, Vb, VIa, VIb, VIc, VIIa, VIIb, VIIc, VIII) by nuclear DNA. The nuclear-coded subunits are essentially involved in the regulation of oxygen consumption and proton translocation by COX, since their removal or modification changes the activity and their mutation causes mitochondrial diseases. Respiration, the basis for ATP synthesis in mitochondria, is differently regulated in organs and species by expression of tissue-, developmental-, and species-specific isoforms for COX subunits IV, VIa, VIb, VIIa, VIIb, and VIII, but the holoenzyme in mammals is always composed of 13 subunits. Various proteins and enzymes were shown, e.g., by co-immunoprecipitation, to bind to specific COX subunits and modify its activity, but these interactions are reversible, in contrast to the tightly bound 13 subunits. In addition, the formation of supercomplexes with other oxidative phosphorylation complexes has been shown to be largely variable. The regulatory complexity of COX is increased by protein phosphorylation. Up to now 18 phosphorylation sites have been identified under in vivo conditions in mammals. However, only for a few phosphorylation sites and four nuclear-coded subunits could a specific function be identified. Research on the signaling pathways leading to specific COX phosphorylations remains a great challenge for understanding the regulation of respiration and ATP synthesis in mammalian organisms. This article reviews the function of the individual COX subunits and their isoforms, as well as proteins and small molecules interacting and regulating the enzyme.

  11. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    Science.gov (United States)

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  12. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774.

    Science.gov (United States)

    da Silva, Sofia Marques; Pacheco, Isabel; Pereira, Inês A Cardoso

    2012-06-01

    Desulfovibrio spp. are sulfate-reducing organisms characterized by having multiple periplasmic hydrogenases and formate dehydrogenases (FDHs). In contrast to enzymes in most bacteria, these enzymes do not reduce directly the quinone pool, but transfer electrons to soluble cytochromes c. Several studies have investigated electron transfer with hydrogenases, but comparatively less is known about FDHs. In this work we conducted experiments to assess potential electron transfer pathways resulting from formate oxidation in Desulfovibrio desulfuricans ATCC 27774. This organism can grow on sulfate and on nitrate, and contains a single soluble periplasmic FDH that includes a cytochrome c (3) like subunit (FdhABC(3)). It has also a unique cytochrome c composition, including two cytochromes c not yet isolated from other species, the split-Soret and nine-heme cytochromes, besides a tetraheme type I cytochrome c (3) (TpIc (3)). The FDH activity and cytochrome composition of cells grown with lactate or formate and nitrate or sulfate were determined, and the electron transfer between FDH and these cytochromes was investigated. We studied also the reduction of the Dsr complex and of the monoheme cytochrome c-553, previously proposed to be the physiological partner of FDH. FdhABC(3) was able to reduce the c-553, TpIc (3), and split-Soret cytochromes with a high rate. For comparison, the same experiments were performed with the [NiFe] hydrogenase from the same organism. This study shows that FdhABC(3) can directly reduce the periplasmic cytochrome c network, feeding electrons into several alternative metabolic pathways, which explains the advantage of not having an associated membrane subunit.

  13. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2.

    Science.gov (United States)

    Zocher, Kathleen; Fritz-Wolf, Karin; Kehr, Sebastian; Fischer, Marina; Rahlfs, Stefan; Becker, Katja

    2012-05-01

    Glutamate dehydrogenases (GDHs) play key roles in cellular redox, amino acid, and energy metabolism, thus representing potential targets for pharmacological interventions. Here we studied the functional network provided by the three known glutamate dehydrogenases of the malaria parasite Plasmodium falciparum. The recombinant production of the previously described PfGDH1 as hexahistidyl-tagged proteins was optimized. Additionally, PfGDH2 was cloned, recombinantly produced, and characterized. Like PfGDH1, PfGDH2 is an NADP(H)-dependent enzyme with a specific activity comparable to PfGDH1 but with slightly higher K(m) values for its substrates. The three-dimensional structure of hexameric PfGDH2 was solved to 3.1 Å resolution. The overall structure shows high similarity with PfGDH1 but with significant differences occurring at the subunit interface. As in mammalian GDH1, in PfGDH2 the subunit-subunit interactions are mainly assisted by hydrogen bonds and hydrophobic interactions, whereas in PfGDH1 these contacts are mediated by networks of salt bridges and hydrogen bonds. In accordance with this, the known bovine GDH inhibitors hexachlorophene, GW5074, and bithionol were more effective on PfGDH2 than on PfGDH1. Subcellular localization was determined for all three plasmodial GDHs by fusion with the green fluorescent protein. Based on our data, PfGDH1 and PfGDH3 are cytosolic proteins whereas PfGDH2 clearly localizes to the apicoplast, a plastid-like organelle specific for apicomplexan parasites. This study provides new insights into the structure and function of GDH isoenzymes of P. falciparum, which represent potential targets for the development of novel antimalarial drugs.

  14. Expression in Escherichia coli of active human alcohol dehydrogenase lacking N-terminal acetylation.

    Science.gov (United States)

    Höög, J O; Weis, M; Zeppezauer, M; Jörnvall, H; von Bahr-Lindström, H

    1987-12-01

    Human alcohol dehydrogenase (ADH, beta beta isozyme of class I) was expressed in Escherichia coli, purified to homogeneity, and characterized regarding N-terminal processing. The expression system was obtained by ligation of a cDNA fragment corresponding to the beta-subunit of human liver alcohol dehydrogenase into the vector pKK 223-3 containing the tac promoter. The enzyme, detected by Western-blot analysis and ethanol oxidizing activity, constituted up to 3% of the total amount of protein. Recombinant ADH was separated from E. coli ADH by ion-exchange chromatography and the isolated enzyme was essentially pure as judged by SDS-polyacrylamide gel electrophoresis and sequence analysis. The N-terminal sequence was identical to that of the authentic beta-subunit except that the N-terminus was non-acetylated, indicating a correct removal of the initiator methionine, but lack of further processing.

  15. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji

    2002-08-27

    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  16. Genetic analysis of the cytoplasmic dynein subunit families.

    Directory of Open Access Journals (Sweden)

    K Kevin Pfister

    2006-01-01

    Full Text Available Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  17. Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Keisuke eYoshida

    2014-09-01

    Full Text Available Regulation of mitochondrial metabolism is essential for ensuring cellular growth and maintenance in plants. Based on redox-proteomics analysis, several proteins involved in diverse mitochondrial reactions have been identified as potential redox-regulated proteins. NAD+-dependent isocitrate dehydrogenase (IDH, a key enzyme in the tricarboxylic acid cycle, is one such candidate. In this study, we investigated the redox regulation mechanisms of IDH by biochemical procedures. In contrast to mammalian and yeast counterparts reported to date, recombinant IDH in Arabidopsis mitochondria did not show adenylate-dependent changes in enzymatic activity. Instead, IDH was inactivated by oxidation treatment and partially reactivated by subsequent reduction. Functional IDH forms a heterodimer comprising regulatory (IDH-r and catalytic (IDH-c subunits. IDH-r was determined to be the target of oxidative modifications forming an oligomer via intermolecular disulfide bonds. Mass spectrometric analysis combined with tryptic digestion of IDH-r indicated that Cys128 and Cys216 are involved in intermolecular disulfide bond formation. Furthermore, we showed that mitochondria-localized o-type thioredoxin (Trx-o promotes the reduction of oxidized IDH-r. These results suggest that IDH-r is susceptible to oxidative stress, and Trx-o serves to convert oxidized IDH-r to the reduced form that is necessary for active IDH complex.

  18. Thermal stabilization of formaldehyde dehydrogenase by encapsulation in liposomes with nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Yoshimoto, Makoto; Yamashita, Takayuki; Kinoshita, Satoshi

    2011-07-10

    The thermal stability of formaldehyde dehydrogenase (FaDH) from Pseudomonas sp. was examined and controlled by encapsulation in liposomes with β-reduced nicotinamide adenine dinucleotide (NADH). The activity of 4.8 μg/mL free FaDH at pH 8.5 in catalyzing the oxidation of 50mM formaldehyde was highly dependent on temperature so that the activity at 60 °C was 27 times larger than that at 25 °C. Thermal stability of the FaDH activity was examined with and without liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Rapid deactivation of free FaDH was observed at 60 °C because of its dissociation into two subunits. The rate of dissociative deactivation of POPC liposome-encapsulated FaDH was smaller than that of the free enzyme. The liposomal FaDH was however progressively deactivated for the incubation period of 60 min eventually leading to complete loss of its activity. The free FaDH and NADH molecules were revealed to form the thermostable binary complex. The thermal stability of POPC liposome-encapsulated FaDH and NADH system was significantly higher than the liposomal enzyme without cofactor. The above results clearly show that NADH is a key molecule that controls the activity and stability of FaDH in liposomes at high temperatures.

  19. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  20. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    Directory of Open Access Journals (Sweden)

    Ji Yun Jeong

    2012-10-01

    Full Text Available The pyruvate dehydrogenase complex (PDC activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes.

  1. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    Science.gov (United States)

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P)(+)-dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD(+) Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD(+)/NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme.

  2. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  3. Conservation of helical bundle structure between the exocyst subunits.

    Directory of Open Access Journals (Sweden)

    Nicole J Croteau

    Full Text Available BACKGROUND: The exocyst is a large hetero-octomeric protein complex required for regulating the targeting and fusion of secretory vesicles to the plasma membrane in eukaryotic cells. Although the sequence identity between the eight different exocyst subunits is less than 10%, structures of domains of four of the subunits revealed a similar helical bundle topology. Characterization of several of these subunits has been hindered by lack of soluble protein for biochemical and structural studies. METHODOLOGY/PRINCIPAL FINDINGS: Using advanced hidden Markov models combined with secondary structure predictions, we detect significant sequence similarity between each of the exocyst subunits, indicating that they all contain helical bundle structures. We corroborate these remote homology predictions by identifying and purifying a predicted domain of yeast Sec10p, a previously insoluble exocyst subunit. This domain is soluble and folded with approximately 60% alpha-helicity, in agreement with our predictions, and capable of interacting with several known Sec10p binding partners. CONCLUSIONS/SIGNIFICANCE: Although all eight of the exocyst subunits had been suggested to be composed of similar helical bundles, this has now been validated by our hidden Markov model structure predictions. In addition, these predictions identified protein domains within the exocyst subunits, resulting in creation and characterization of a soluble, folded domain of Sec10p.

  4. Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil.

    Science.gov (United States)

    Pennacchio, Angela; Sannino, Vincenzo; Sorrentino, Giosuè; Rossi, Mosè; Raia, Carlo A; Esposito, Luciana

    2013-05-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh2 gene was heterologously overexpressed in Escherichia coli, and the resulting protein (SaADH2) was purified to homogeneity and both biochemically and structurally characterized. The crystal structure of the SaADH2 NADH-bound form reveals that the enzyme is a tetramer consisting of identical 27,024-Da subunits, each composed of 255 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 80 °C and a 30-min half-inactivation temperature of ∼88 °C. It also shows good tolerance to common organic solvents and a strict requirement for NAD(H) as the coenzyme. SaADH2 displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-ketoesters, but is poorly active on aliphatic, cyclic and aromatic alcohols, showing no activity on aldehydes. Interestingly, the enzyme catalyses the asymmetric reduction of benzil to (R)-benzoin with both excellent conversion (98 %) and optical purity (98 %) by way of an efficient in situ NADH-recycling system involving a second thermophilic ADH. The crystal structure of the binary complex SaADH2-NADH, determined at 1.75 Å resolution, reveals details of the active site providing hints on the structural basis of the enzyme enantioselectivity.

  5. VER-246608, a novel pan-isoform ATP competitive inhibitor of pyruvate dehydrogenase kinase, disrupts Warburg metabolism and induces context-dependent cytostasis in cancer cells.

    Science.gov (United States)

    Moore, Jonathan D; Staniszewska, Anna; Shaw, Terence; D'Alessandro, Jalanie; Davis, Ben; Surgenor, Alan; Baker, Lisa; Matassova, Natalia; Murray, James; Macias, Alba; Brough, Paul; Wood, Mike; Mahon, Patrick C

    2014-12-30

    Pyruvate dehydrogenase kinase (PDK) is a pivotal enzyme in cellular energy metabolism that has previously been implicated in cancer through both RNAi based studies and clinical correlations with poor prognosis in several cancer types. Here, we report the discovery of a novel and selective ATP competitive pan-isoform inhibitor of PDK, VER-246608. Consistent with a PDK mediated MOA, VER-246608 increased pyruvate dehydrogenase complex (PDC) activity, oxygen consumption and attenuated glycolytic activity. However, these effects were only observed under D-glucose-depleted conditions and required almost complete ablation of PDC E1α subunit phosphorylation. VER-246608 was weakly anti-proliferative to cancer cells in standard culture media; however, depletion of either serum or combined D-glucose/L-glutamine resulted in enhanced cellular potency. Furthermore, this condition-selective cytostatic effect correlated with reduced intracellular pyruvate levels and an attenuated compensatory response involving deamination of L-alanine. In addition, VER-246608 was found to potentiate the activity of doxorubicin. In contrast, the lipoamide site inhibitor, Nov3r, demonstrated sub-maximal inhibition of PDK activity and no evidence of cellular activity. These studies suggest that PDK inhibition may be effective under the nutrient-depleted conditions found in the tumour microenvironment and that combination treatments should be explored to reveal the full potential of this therapeutic strategy.

  6. Glucose-stimulated insulin secretion does not require activation of pyruvate dehydrogenase: impact of adenovirus-mediated overexpression of PDH kinase and PDH phosphate phosphatase in pancreatic islets.

    Science.gov (United States)

    Nicholls, Linda I; Ainscow, Edward K; Rutter, Guy A

    2002-03-01

    Glucose-stimulated increases in mitochondrial metabolism are generally thought to be important for the activation of insulin secretion. Pyruvate dehydrogenase (PDH) is a key regulatory enzyme, believed to govern the rate of pyruvate entry into the citrate cycle. We show here that elevated glucose concentrations (16 or 30 vs 3 mM) cause an increase in PDH activity in both isolated rat islets, and in a clonal beta-cell line (MIN6). However, increases in PDH activity elicited with either dichloroacetate, or by adenoviral expression of the catalytic subunit of pyruvate dehydrogenase phosphatase, were without effect on glucose-induced increases in mitochondrial pyridine nucleotide levels, or cytosolic ATP concentration, in MIN6 cells, and insulin secretion from isolated rat islets. Similarly, the above parameters were unaffected by blockade of the glucose-induced increase in PDH activity by adenovirus-mediated over-expression of PDH kinase (PDK). Thus, activation of the PDH complex plays an unexpectedly minor role in stimulating glucose metabolism and in triggering insulin release.

  7. Artificial and natural thermostabilization of subunit enzymes. Do they have similar mechanism?

    Science.gov (United States)

    Trubetskoy, V S; Torchilin, V P

    1985-01-01

    Rabbit skeletal muscle glyceraldehyde-3-phosphate dehydrogenase was stabilized by intramolecular intersubunit crosslinking with diimidoesters. Half-inactivation temperature for optimal cross-linker-treated enzyme preparation increased by 11 degrees C. Stabilization effect correlated with the content of crosslinked fractions in enzyme preparation, as proved by SDS gel-electrophoresis. It is proposed that artificial crosslinks stabilize the enzyme in a similar fashion to salt bridges in the thermophilic bacteria enzymes, i.e. preventing dissociation into inactive subunits.

  8. Isolation and characterization of an inducible NAD-dependent butyraldehyde dehydrogenase from clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, W.; Duerre, P. [Universitaet Ulm (Germany)

    1996-12-31

    A NAD-dependent butyraldehyde dehydrogenase (BAD) has been purified from C. acetobutylicum DSM 792 and DSM 173 1. This key enzyme of butanol production, catalyzing the conversion of butyryl-CoA to butyraldehyde, was induced shortly before the onset of butanol production and proved to be oxygen-sensitive. A one step purification procedure on reactive green 19 allowed to purify the enzyme to homogeneity. The purified protein was found to be extremely unstable and could only partially be stabilized by addition of mercaptoethanol and storage below -20{degrees}C. The enzyme subunit had a molecular mass of 39.5 kDa. In the reverse reaction (butyryl-CoA-forming) the apparent pH optimum was 9.75 and Vmax was significantly higher with butyraldehyde and propionaldehyde than with acetaldehyde. BAD could also use NADP+, but NAD+ was the preferred coenzyme for the reverse reaction. The N-terminal amino acid sequence of the C. acetobutylicurn DSM 792 protein showed high homology to glyceraldehyde-3-phosphate dehydrogenases (GAP), especially to the protein of C. pasteurianum. Genomic libraries of C. acetobutylicum DSM 792 were screened by hybridization using PCR-generated heterologous probes encoding the gap gene of C. pasteurianum. Sequence analysis of the positive clones revealed high homology, but no identity to the N-terminal amino acid sequence of the butyraldehyde dehydrogenase. Thus, BAD from C. acetobutylicum is distinctly different from other reported aldehyde dehydrogenases with butyraldehyde dehydrogenase activity.

  9. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease

    Science.gov (United States)

    Rastogi, Radhika; Geng, Xiaokun; Li, Fengwu; Ding, Yuchuan

    2017-01-01

    Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation. PMID:28119569

  10. Functional and structural characterization of a synthetic peptide representing the N-terminal domain of prokaryotic pyruvate dehydrogenase

    NARCIS (Netherlands)

    Hengeveld, A.F.; Mierlo, van C.P.M.; Hooven, van den H.W.; Visser, A.J.W.G.; Kok, de A.

    2002-01-01

    A synthetic peptide (Nterm-E1p) is used to characterize the structure and function of the N-terminal region (amino acid residues 4-45) of the pyruvate dehydrogenase component (E1p) from the pyruvate dehydrogenase multienzyme complex (PDHC) from Azotobacter vinelandii. Activity and binding studies es

  11. Subunit organization in cytoplasmic dynein subcomplexes

    Science.gov (United States)

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  12. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    DEFF Research Database (Denmark)

    Møller, I.M.

    2002-01-01

    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...... and internal rotenone-insensitive NADH dehydrogenase activity are also light dependent. These findings suggest that NDA has a role in photorespiration and might be identical to the previously unidentified internal rotenone-insensitive NADH dehydrogenase....

  13. Allotopic Expression of a Gene Encoding FLAG Tagged-subunit 8 of Yeast Mitochondrial ATP Synthase

    Directory of Open Access Journals (Sweden)

    I MADE ARTIKA

    2006-03-01

    Full Text Available Subunit 8 of yeast mitochondrial ATP synthase is a polypeptide of 48 amino acids encoded by the mitochondrial ATP8 gene. A nuclear version of subunit 8 gene has been designed to encode FLAG tagged-subunit 8 fused with a mitochondrial signal peptide. The gene has been cloned into a yeast expression vector and then expressed in a yeast strain lacking endogenous subunit 8. Results showed that the gene was successfully expressed and the synthesized FLAG tagged-subunit 8 protein was imported into mitochondria. Following import, the FLAG tagged-subunit 8 protein assembled into functional mitochondrial ATP synthase complex. Furthermore, the subunit 8 protein could be detected using anti-FLAG tag monoclonal antibody.

  14. Voltage-gated calcium channel subunits from platyhelminths: Potential role in praziquantel action✩

    Science.gov (United States)

    Jeziorski, Michael C.; Greenberg, Robert M.

    2013-01-01

    Voltage-gated calcium (Ca2+) channels provide the pathway for Ca2+ influxes that underlie Ca2+-dependent responses in muscles, nerves and other excitable cells. They are also targets of a wide variety of drugs and toxins. Ca2+ channels are multisubunit protein complexes consisting of a pore-forming α1 subunit and other modulatory subunits, including the β subunit. Here, we review the structure and function of schistosome Ca2+ channel subunits, with particular emphasis on variant Ca2+ channel β subunits (Cavβvar) found in these parasites. In particular, we examine the role these β subunits may play in the action of praziquantel, the current drug of choice against schistosomiasis. We also present evidence that Cavβvar homologs are found in other praziquantel-sensitive platyhelminths such as the pork tapeworm, Taenia solium, and that these variant β subunits may thus represent a platyhelminth-specific gene family. PMID:16545816

  15. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer. © 2015 The Protein Society.

  16. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  17. Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase.

    Science.gov (United States)

    Howard, Thomas P; Lloyd, Julie C; Raines, Christine A

    2011-07-01

    In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein-protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the 'non-regulatory' A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed.

  18. Direct Enzymatic Assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in Colonies of Hansenula polymorpha

    OpenAIRE

    Eggeling, L; Sahm, H

    1980-01-01

    A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.

  19. A Review on Molecular Physiology of Malate and Lactate Dehydrogenases in Fishes

    Institute of Scientific and Technical Information of China (English)

    G.TRIPATHI

    1993-01-01

    The malate(EC1.1.1.37)and lactate(EC1.1.1.27)dehydrogenases are the metaboliic enzymes directly or indirectly involved in energy production,gluconeogenesis and lipogenesis.Malate dehydrogenase(MDH)exists in two isoenzymic forms,cytoplasmic(cMDH)and mitochondrial(mMDH),composed of A and /or B subunits(dimeric molecule:MW 40,000-120,000).Lactate dehydrogenase(LDH)has tetrameric(W 35,000-110,000)structure made up of either A and/or B,or C(,C,E,F)subunits,They catalyze an ordered bisubstrate(substrate and coenzyme) reaction in cytosol(cMDH and LDH)and mitochondrion(mMDH)for specific purposes.The cMDH,mMDHand LDH generally exhibit the maxium velocity(Vmax)of 50-500,0.5-15,and 80-400 units/g wet wt.respectively at an optimum pH(6.5-8.0)and temperature(20-30℃).The several folds higher activity of cMDH as compared to mMDH is to carry out three different(energy production,gluconeogenesis,lipogenesis)metabolic functions rather catalysin only Krebs cycle as mMDH does.Kinetic constant(Km)of cMDH,mMDH and LDH for substrate and coenzyme varies within the rage of 0.06-0.30,0.04-0.20,and 0.04-0.50 mmol·L-1 respectively reflecting their affinities for the substrates.Activiities of these enzymes are inhibited by substrates and coenzymes both.A number of environmental and physiological signals considerably influence the enzyme activities.The extreme pH of the medium decreases the activities of cMDH,mMDH and LDH.Seasonal changes in environmental factors(temperature,photoperiod,rainfall,food availability etc.)alter enzyme activities and may affect the expression of subunits.Thermal acclimation exerts tissue and species-spectific changes in Km,activity and subunit expression of cMDH,mMDH and LDH.Activities of these enzymes substantially deline duuring starvation periods.Enzyme scaling shows a decrease in cMDH and an increase in mMDH and LDH activities as a function of increasing body-size.Metabolic hormones may either decrease or increase the activities of enzymes or they do not

  20. Subunit structure of the acetylcholine receptor from Electrophorus electricus.

    Science.gov (United States)

    Conti-Tronconi, B M; Hunkapiller, M W; Lindstrom, J M; Raftery, M A

    1982-11-01

    The amino-terminal amino acid sequences of the four major peptides (Mr 41,000, 50,000, 55,000, and 62,000) present in purified preparations of Electrophorus electricus nicotinic acetylcholine receptor (AcChoR) have been determined for 24 cycles by automated sequence analysis procedures yielding four unique polypeptide sequences. The sequences showed a high degree of similarity, having identical residues in a number of positions ranging between 37% and 50% for specific pairs of subunits. Comparison of the sequences obtained with those of the subunits of similar molecular weight from Torpedo californica AcChoR revealed an even higher degree of homology (from 46% to 71%) for these two highly diverged species. Simultaneous sequence analysis of the amino termini present in native, purified Electrophorus AcChoR showed that these four related sequences were the only ones present and that they occur in a ratio of 2:1:1:1, with the smallest subunit ("alpha 1") being present in two copies. Genealogical analysis suggests that the subunits of both Torpedo and Electrophorus AcChoRs derive from a common ancestral gene, the divergence having occurred early in the evolution of the receptor. This shared ancestry and the very early divergence of the four subunits, as well as the highly conserved structure of the AcChoR complex along animal evolution, suggest that each of the subunits evolved to perform discrete crucial roles in the physiological function of the AcChoR.

  1. The structure and allosteric regulation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2011-09-01

    Glutamate dehydrogenase (GDH) has been extensively studied for more than 50 years. Of particular interest is the fact that, while considered by most to be a 'housekeeping' enzyme, the animal form of GDH is heavily regulated by a wide array of allosteric effectors and exhibits extensive inter-subunit communication. While the chemical mechanism for GDH has remained unchanged through epochs of evolution, it was not clear how or why animals needed to evolve such a finely tuned form of this enzyme. As reviewed here, recent studies have begun to elucidate these issues. Allosteric regulation first appears in the Ciliates and may have arisen to accommodate evolutionary changes in organelle function. The occurrence of allosteric regulation appears to be coincident with the formation of an 'antenna' like feature rising off the tops of the subunits that may be necessary to facilitate regulation. In animals, this regulation further evolved as GDH became integrated into a number of other regulatory pathways. In particular, mutations in GDH that abrogate GTP inhibition result in dangerously high serum levels of insulin and ammonium. Therefore, allosteric regulation of GDH plays an important role in insulin homeostasis. Finally, several compounds have been identified that block GDH-mediated insulin secretion that may be to not only find use in treating these insulin disorders but to kill tumors that require glutamine metabolism for cellular energy.

  2. Complex

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Schiff bases and their complex compounds have been studied for their .... establishing coordination of the N–(2 – hydroxybenzyl) - L - α - valine Schiff base ..... (1967); “Spectrophotometric Identification of Organic Compounds”, Willey, New.

  3. The 73 kDa subunit of the CPSF complex binds to the HIV-1 LTR promoter and functions as a negative regulatory factor that is inhibited by the HIV-1 Tat protein.

    Science.gov (United States)

    de la Vega, Laureano; Sánchez-Duffhues, Gonzalo; Fresno, Manuel; Schmitz, M Lienhard; Muñoz, Eduardo; Calzado, Marco A

    2007-09-14

    Gene expression in eukaryotes requires the post-transcriptional cleavage of mRNA precursors into mature mRNAs. The cleavage and polyadenylation specificity factor (CPSF) is critical for this process and its 73 kDa subunit (CPSF-73) mediates cleavage coupled to polyadenylation and histone pre-mRNA processing. Using CPSF-73 over-expression and siRNA-mediated knockdown experiments, this study identifies CPSF-73 as an important regulatory protein that represses the basal transcriptional activity of the HIV-1 LTR promoter. Similar results were found with over-expression of the CPSF-73 homologue RC-68, but not with CPSF 100 kDa subunit (CPSF-100) and RC-74. Chromatin immunoprecipitation assays revealed the physical interaction of CPSF-73 with the HIV-1 LTR promoter. Further experiments revealed indirect CPSF-73 binding to the region between -275 to -110 within the 5' upstream region. Functional assays revealed the importance for the 5' upstream region (-454 to -110) of the LTR for CPSF-73-mediated transcription repression. We also show that HIV-1 Tat protein interacts with CPSF-73 and counteracts its repressive activity on the HIV-1 LTR promoter. Our results clearly show a novel function for CPSF-73 and add another candidate protein for explaining the molecular mechanisms underlying HIV-1 latency.

  4. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.

  5. Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits.

    Science.gov (United States)

    Piazza, Ilaria; Rutkowska, Anna; Ori, Alessandro; Walczak, Marta; Metz, Jutta; Pelechano, Vicent; Beck, Martin; Haering, Christian H

    2014-06-01

    Condensin complexes have central roles in the three-dimensional organization of chromosomes during cell divisions, but how they interact with chromatin to promote chromosome segregation is largely unknown. Previous work has suggested that condensin, in addition to encircling chromatin fibers topologically within the ring-shaped structure formed by its SMC and kleisin subunits, contacts DNA directly. Here we describe the discovery of a binding domain for double-stranded DNA formed by the two HEAT-repeat subunits of the Saccharomyces cerevisiae condensin complex. From detailed mapping data of the interfaces between the HEAT-repeat and kleisin subunits, we generated condensin complexes that lack one of the HEAT-repeat subunits and consequently fail to associate with chromosomes in yeast and human cells. The finding that DNA binding by condensin's HEAT-repeat subunits stimulates the SMC ATPase activity suggests a multistep mechanism for the loading of condensin onto chromosomes.

  6. Differential Distribution of Exosome Subunits at the Nuclear Lamina and in Cytoplasmic FociD⃞V⃞

    OpenAIRE

    Amy C Graham; Kiss, Daniel L.; Andrulis, Erik D.

    2006-01-01

    The exosome complex plays important roles in RNA processing and turnover. Despite significant mechanistic insight into exosome function, we still lack a basic understanding of the subcellular locales where exosome complex biogenesis and function occurs. Here, we employ a panel of Drosophila S2 stable cell lines expressing epitope-tagged exosome subunits to examine the subcellular distribution of exosome complex components. We show that tagged Drosophila exosome subunits incorporate into compl...

  7. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  8. Spectroscopic, computational and electrochemical studies on the formation of the copper complex of 1-amino-4-hydroxy-9,10-anthraquinone and effect of it on superoxide formation by NADH dehydrogenase.

    Science.gov (United States)

    Roy, Sanjay; Mondal, Palash; Sengupta, Partha Sarathi; Dhak, Debasis; Santra, Ramesh Chandra; Das, Saurabh; Guin, Partha Sarathi

    2015-03-28

    A 1 : 2 copper(II) complex of 1-amino-4-hydroxy-9,10-anthraquinone (QH) having the molecular formula CuQ2 was prepared and characterized by elemental analysis, NMR, FTIR, UV-vis and mass spectroscopy. The powder diffraction of the solid complex, magnetic susceptibility and ESR spectra were also recorded. The presence of the planar anthraquinone moiety in the complex makes it extremely difficult to obtain a single crystal suitable for X-ray diffraction studies. To overcome this problem, density functional theory (DFT) was used to evaluate an optimized structure of CuQ2. In the optimized structure, it was found that there is a tilt of the two planar aromatic anthraquinone rings of the complex with respect to each other in the two planes containing the O-Cu(II)-O plane. The present study is an important addition to the understanding of the structural aspects of metal-anthracyclines because there are only a few reports on the actual structures of metal-anthracyclines. The theoretical vibrational spectrum of the complex was assigned with the help of vibrational energy distribution analysis (VEDA) using potential energy distribution (PED) and compared with experimental results. Being important in producing the biochemical action of this class of molecules, the electrochemical behavior of the complex was studied in aqueous and non-aqueous solvents to find certain electrochemical parameters. In aqueous media, reduction involves a kinetic effect during electron transfer at an electrode surface, which was characterized very carefully using cyclic voltammetry. Electrochemical studies showed a significant modification in the electrochemical properties of 1-amino-4-hydroxy-9,10-anthraquinone (QH) when bound to Cu(II) in the complex compared to those observed for free QH. This suggests that the copper complex might be a good choice as a biologically active molecule, which was reflected in the lack of stimulated superoxide generation by the complex.

  9. Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Muro-Pastor, M I; Florencio, F J

    1992-01-15

    NADP-dependent isocitrate dehydrogenase activity has been screened in several cyanobacteria grown on different nitrogen sources; in all the strains tested isocitrate dehydrogenase activity levels were similar in cells grown either on ammonium or nitrate. The enzyme from the unicellular cyanobacterium Synechocystis sp. PCC 6803 has been purified to electrophoretic homogeneity by a procedure that includes Reactive-Red-120-agarose affinity chromatography and phenyl-Sepharose chromatography as main steps. The enzyme was purified about 600-fold, with a yield of 38% and a specific activity of 15.7 U/mg protein. The native enzyme (108 kDa) is composed of two identical subunits with an apparent molecular mass of 57 kDa. Synechocystis isocitrate dehydrogenase was absolutely specific for NADP as electron acceptor. Apparent Km values were 125, 59 and 12 microM for Mg2+, D,L-isocitrate and NADP, respectively, using Mg2+ as divalent cation and 4, 5.7 and 6 microM for Mn2+, D,L-isocitrate and NADP, respectively, using Mn2+ as a cofactor. The enzyme was inhibited non-competitively by ADP (Ki, 6.4 mM) and 2-oxoglutarate, (Ki, 6 mM) with respect to isocitrate and in a competitive manner by NADPH (Ki, 0.6 mM). The circular-dichroism spectrum showed a protein with a secondary structure consisting of about 30% alpha-helix and 36% beta-pleated sheet. The enzyme is an acidic protein with an isoelectric point of 4.4 and analysis of the NH2-terminal sequence revealed 45% identity with the same region of Escherichia coli isocitrate dehydrogenase. The aforementioned data indicate that NADP isocitrate dehydrogenase from Synechocystis resembles isocitrate dehydrogenase from prokaryotes and shows similar molecular and structural properties to the well-known E. coli enzyme.

  10. Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Pacak, K.; Huynh, T.T.; Abu-Asab, M.; Tsokos, M.; Merino, M.J.; Baysal, B.E.; Adams, K.T.; Eisenhofer, G.

    2008-01-01

    CONTEXT: Patients with adrenal and extra-adrenal abdominal paraganglioma (PGL) almost invariably have increased plasma and urine concentrations of metanephrines, the O-methylated metabolites of catecholamines. We report four cases of biochemically silent abdominal PGL, in which metanephrines were no

  11. Evidence for an unusual transmembrane configuration of AGG3, a Class C Gγ Subunit, of Arabidopsis

    OpenAIRE

    Wolfenstetter, Susanne; Chakravorty, David; Kula, Ryan; Urano, Daisuke; Trusov, Yuri; Sheahan, Michael B.; McCurdy, David W.; Assmann, Sarah M.; Alan M Jones; Jose R. Botella

    2014-01-01

    Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex is comprised of one Gα, one Gβ and one Gγ subunit. However, in addition to the canonical Gγ subunits (Class A), plants also possess two unusual, plant-specific classes of Gγ subunits (Classes B and C) not yet found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (Class B) which is important for mem...

  12. Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of lower termites and the wood roach.

    Directory of Open Access Journals (Sweden)

    Eric G Matson

    Full Text Available Anaerobic carbon monoxide dehydrogenase (CODH is a key enzyme in the Wood-Ljungdahl (acetyl-CoA pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities.

  13. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte

    Directory of Open Access Journals (Sweden)

    Shane C. Quinonez

    2014-01-01

    Full Text Available Dihydrolipoamide dehydrogenase deficiency, also known as maple syrup urine disease (MSUD type III, is caused by the deficiency of the E3 subunit of branched chain alpha-ketoacid dehydrogenase (BCKDH, α-ketoglutarate dehydrogenase (αKGDH, and pyruvate dehydrogenase (PDH. DLD deficiency variably presents with either a severe neonatal encephalopathic phenotype or a primarily hepatic phenotype. As a variant form of MSUD, it is considered a core condition recommended for newborn screening. The detection of variant MSUD forms has proven difficult in the past with no asymptomatic DLD deficiency patients identified by current newborn screening strategies. Citrulline has recently been identified as an elevated dried blood spot (DBS metabolite in symptomatic patients affected with DLD deficiency. Here we report the retrospective DBS analysis and second-tier allo-isoleucine testing of 2 DLD deficiency patients. We show that an elevated citrulline and an elevated allo-isoleucine on second-tier testing can be used to successfully detect DLD deficiency. We additionally recommend that DLD deficiency be included in the “citrullinemia/elevated citrulline” ACMG Act Sheet and Algorithm.

  14. Succinate Dehydrogenase B (SDHB): A New Prognostic Biomarker in Clear Cell Renal Cell Carcinoma

    Science.gov (United States)

    Cornejo, Kristine M.; Lu, Min; Yang, Ping; Wu, Shulin; Cai, Chao; Zhong, Wei-de; Olumi, Aria; Young, Robert H.; Wu, Chin-Lee

    2015-01-01

    Succinate dehydrogenase B (SDHB) is a mitochondrial enzyme complex subunit. Loss of SDHB protein expression has been found to correlate with SDHx gene mutations. Little is known about its expression in subtypes of renal cell carcinoma (RCC), and whether it’s a prognostic indicator. Four-hundred-fifty renal epithelial neoplasms were analyzed for SDHB, comprising of clear cell RCC (CCRCC) (n=240), papillary RCC (PRCC) (n=84), chromophobe RCC (ChRCC) (n=49), renal oncocytoma (RO) (n=47), clear cell papillary RCC (CCPRCC) (n=19) and von Hippel Lindau (VHL)- associated CCPRCC-like tumors (n=11). SDHB expression was graded based upon staining intensity using a 4-tiered system (0–3+), in which 3+ was strongest and complete absence was 0. Neoplasms were further categorized based upon staining extent into SDHB-weak (1–2+) and strong (3+). SDHB was strongly preserved in 131/240 (55%) CCRCCs, 84/84 (100%) PRCCs, 49/49 (100%) ChRCCs, 1/19 (5%) CCPRCC, 5/11 (45%) VHL-associated CCPRCC-like tumors and 47/47 (100%) ROs. The remaining 109 CCRCCs (45%), 18 CCPRCCs and 6 VHL-associated CCPRCC-like tumors had weak but preserved SDHB. SDHB expression in CCRCCs with high International Society of Urological Pathology (ISUP) nucleolar grade (G3-G4) correlated significantly with survival (log rank P=0.0004). SDHB is variably expressed in RCCs with clear cell morphology and strongly preserved in most other neoplasms. Therefore, weak staining, particularly in clear neoplasms, should not be misinterpreted as negative. Finally, SDHB expression in CCRCCs with high nucleolar grade (G3-G4) is significantly associated with survival, indicating it may be both a diagnostic and prognostic marker in RCC. PMID:25827535

  15. Expression, Purification, Crystallization And Preliminary X-Ray Studies of Histamine Dehydrogenase From Nocardioides Simplex

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.M.; Hirakawa, H.; Mure, M.; Scott, E.E.; Limburg, J.

    2009-05-21

    Histamine dehydrogenase (HADH) from Nocardioides simplex catalyzes the oxidative deamination of histamine to produce imidazole acetaldehyde and an ammonium ion. HADH is functionally related to trimethylamine dehydrogenase (TMADH), but HADH has strict substrate specificity towards histamine. HADH is a homodimer, with each 76 kDa subunit containing two redox cofactors: a [4Fe-4S] cluster and an unusual covalently bound flavin mononucleotide, 6-S-cysteinyl-FMN. In order to understand the substrate specificity of HADH, it was sought to determine its structure by X-ray crystallography. This enzyme has been expressed recombinantly in Escherichia coli and successfully crystallized in two forms. Diffraction data were collected to 2.7 {angstrom} resolution at the SSRL synchrotron with 99.7% completeness. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 101.14, b = 107.03, c = 153.35 {angstrom}.

  16. Crystallization and preliminary X-ray characterization of d-3-hydroxybutyrate dehydrogenase from Pseudomonas fragi

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yoshitaka; Ito, Kiyoshi; Ichihara, Emi; Ogawa, Kyohei; Egawa, Takashi; Xu, Yue; Yoshimoto, Tadashi, E-mail: yosimoto@net.nagasaki-u.ac.jp [Biotechnology Department, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan)

    2005-01-01

    d-3-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) from P. flagi has been crystallized by the hanging-drop method. A recombinant form of d-3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) from Pseudomonas fragi has been crystallized by the hanging-drop method using PEG 3000 as a precipitating agent. The crystals belong to the orthorhombic group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 64.3, b = 99.0, c = 110.2 Å. The crystals are most likely to contain two tetrameric subunits in the asymmetric unit, with a V{sub M} value of 3.29 Å{sup 3} Da{sup −1}. Diffraction data were collected to a 2.0 Å resolution using synchrotron radiation at the BL6A station of the Photon Factory.

  17. Phosphorylation of ATPase subunits of the 26S proteasome.

    Science.gov (United States)

    Mason, G G; Murray, R Z; Pappin, D; Rivett, A J

    1998-07-01

    The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.

  18. Lactic dehydrogenase and cancer: an overview.

    Science.gov (United States)

    Gallo, Monica; Sapio, Luigi; Spina, Annamaria; Naviglio, Daniele; Calogero, Armando; Naviglio, Silvio

    2015-01-01

    Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management.

  19. Liver alcohol dehydrogenase immobilized on polyvinylidene difluoride.

    Science.gov (United States)

    Roig, M G; Bello, J F; Moreno de Vega, M A; Cachaza, J M; Kennedy, J F

    1990-01-01

    A physical method for immobilization of liver alcohol dehydrogenase (ADH) by hydrophobic adsorption onto a supporting membrane of polyvinylidene difluoride (PVDF) was performed. Simultaneously, a physicochemical characterization of the immobilized enzyme regarding its kinetic behaviour was performed. The activity/pH profile observed points to an effect of pH on activity that is completely different from the case of ADH in solution. The disturbance in the typical bell-shaped profile owing to the fact that the enzyme was immobilized is explained on the basis of a potent limitation to the diffusion of the protons in the support. The findings of the present work also reveal the existence of an effect that limits free external diffusion of the substrate towards and/or the product from the support; this effect seems to be the determinant of the overall rate of the enzymatic reaction and is thus of great importance in the effective kinetic behaviour (v([S])) of immobilized ADH, whose kinetic behaviour is complex (non-Michaelian), as may be seen from the lack of linearity observed in the corresponding double reciprocal and Eadie-Hofstee plots. By non-linear regression numerical analysis of the v([S]) data and application of the F-test for model discrimination, the minimum rate equation necessary to describe the intrinsic kinetic behaviour of PVDF-immobilized ADH proved to be one of the polynomial quotient type of degree 2:2 (in substrate concentration).

  20. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Takahashi, Kento; Nakanishi, Fumika; Tomita, Takeo; Akiyama, Nagisa; Lassak, Kerstin; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2016-11-01

    Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg(2+), thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.

  1. Crystal Structure of the Cytoplasmic N-Terminal Domain of Subunit I, a Homolog of Subunit a, of V-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Sankaranarayanan; Vyas, Nand K.; Baker, Matthew L.; Quiocho, Florante A. (Baylor)

    2012-02-27

    Subunit 'a' is associated with the membrane-bound (VO) complex of eukaryotic vacuolar H{sup +}-ATPase acidification machinery. It has also been shown recently to be involved in diverse membrane fusion/secretory functions independent of acidification. Here, we report the crystal structure of the N-terminal cytosolic domain from the Meiothermus ruber subunit 'I' homolog of subunit a. The structure is composed of a curved long central {alpha}-helix bundle capped on both ends by two lobes with similar {alpha}/{beta} architecture. Based on the structure, a reasonable model of its eukaryotic subunit a counterpart was obtained. The crystal structure and model fit well into reconstructions from electron microscopy of prokaryotic and eukaryotic vacuolar H{sup +}-ATPases, respectively, clarifying their orientations and interactions and revealing features that could enable subunit a to play a role in membrane fusion/secretion.

  2. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  3. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of