WorldWideScience

Sample records for dehpa

  1. Kinetics studies of solvent extraction of rare earths into DEHPA

    International Nuclear Information System (INIS)

    Lim, T.M.; Tran, T.

    1996-01-01

    The kinetics of rare earth solvent extraction into di(2-ethylhexyl) phosphoric acid have been studied using radiotracers ( 141 Ce, 152 Eu, 153 Gd, 160 Tb and 88 Y) in a modified Lewis cell. The experimental procedure involved continuous monitoring of both aqueous and organic phases using an automated γ- counting system. Using this method, highly reproducible results were obtained without chemical analysis or disturbance of the system. The initial rate extraction was first order with respect to individual rare earth concentration. At low acidities ([H+] < 0.01 M), the extraction rates of rare earths were equal and independent of pH. However, at high acidities, the extraction rate was strongly dependent on pH and varied between the rare earths. Similarly, differences in the extraction rate of individual rare earths were apparent at low DEHPA concentration. (authors)

  2. Stripping of uranium from Dehpa/kerosene solvents by different aqueous media

    International Nuclear Information System (INIS)

    Khorfan, S.; Stas, J.; Kassem, M.

    1998-01-01

    Stripping uranium from Dehpa/kerosene solvent is a crucial step in the recovery of uranium. Stripping was studied using different stripping media mainly ammonium carbonate, phosphoric acid, sulfuric acid, hydrochloric acid and nitric acid. Stripping was measured at different operating conditions such as aqueous concentrations, temperatures, and Dehpa/kerosene concentrations. The results obtained showed that stripping by acid media increases with the acid concentration and follows the order: HF > H 3 PO 4 > H 2 SO 4 > HCl > HNO 3 . To achieve higher stripping by phosphoric acid it was found necessary to increase the temperature to 50 deg C, the acid concentration to 5 mol/l and to reduce the uranium to U 4+ . Stripping by basic media was found to increase with increasing concentration of the stripping media and to follow the order: Na 2 CO 3 > (NH 4 ) 2 CO 3 > NH 4 HCO 3 . Stripping by ammonium carbonate was found to increase with temperature and carbonate concentration. The stripping was optimized at 0.5 mol/l carbonate concentration and at a temperature of 50 deg C. Stripping was decreased by increasing concentration of Dehpa in kerosene and was depressed more by adding the synergant Topo to the Dehpa solvent especially at 1/4 mol/mol ratio. (author)

  3. Stripping of uranium from Dehpa/Kerosene solvents by different aqueous media

    International Nuclear Information System (INIS)

    Khorfan, S.; Stas, J.; Kassem, M.

    2000-01-01

    Stripping uranium from Dehpa/kerosene solvent is a crucial step in the recovery of uranium. Stripping was studied using different stripping media mainly ammonium carbonate, phosphoric acid, sulfuric acid, hydrochloric acid and nitric acid. Stripping was measured at different operating conditions such as aqueous concentrations, temperatures, and Dehpa/kerosene concentrations. The results obtained showed that stripping by acid media increases with the acid concentration and follows the order: HF > H sub 3 Po sub 4 > H sub 2 S O sub 4 > HCl > HNO sub 3. To achieve higher stripping by phosphoric acid it was found necessary to increase the temperature to 50 deg C, the acid concentration to 5 mol/l and to reduce the uranium to U sup 4 sup +. Stripping by basic media was found to increase with increasing concentration of the stripping media and to follow the order: Na sub 2 CO sub 3 > (NH sub 4) sub 2 CO sub 3 > NH sub 4 HCO sub 3. Stripping by ammonium carbonate was found to increase with temperature and carbonate concentration. The stripping was optimized at 0.5 mol/l carbonate concentration and at a temperature of 50 deg C. Stripping was decreased by increasing concentration of Dehpa in kerosene and was depressed more by adding the synergant TOPO to the Dehpa solvent especially at 1/4 mol/mol ratio. (author)

  4. stripping of uranium from DEHPA/TOPO solvent by ammonium carbonate solutions

    International Nuclear Information System (INIS)

    Khorfan, S.; Shino, O.; Wahood, A.; Dahdouh, A.

    2002-01-01

    Uranium is recovered from phosphoric acid by the DEHPA/TOPO process. In this process uranium is stripped from the loaded DEHPA/TOPO solvent in the second cycle by an ammonium carbonate solution. This paper studied stripping of uranium from 0.3 Mol DEHPA/0.075 Mol TOPO in kerosene by different ammonium carbonate solutions. The ammonium carbonate solutions tested were either made locally from ammonia and carbon dioxide gases or commercial and laboratory grades available on the market. A comparison was made between these carbonate solutions in terms of purity, stripping efficiency and phase separation. Both stripping and phase separation were carried out under different conditions of phase ratio and concentrations. The results obtained showed that ammonium carbonate prepared from direct synthesis of ammonia and carbon dioxide gases had a high purity and gave the same stripping yield as the laboratory grade. The phase separation was also slightly improved using a pure synthesized ammonium carbonate solution. the phase separation was found to be best at concentration of 0.5 Mol/L ammonium carbonate solution and at a phase A/O of 1/1 and a temperature of 50 degree centigrade. It was possible to obtain >99% yield by operating 2 stripping stages counter currently under these conditions. (authors)

  5. Extracción de cromo con disolventes orgánicos. I parte. Extracción con DEHPA

    OpenAIRE

    de Juan, D.; Meseguer, V.; Lozano, L. J.

    1998-01-01

    Chromium and its compounds give toxic and/or hazardous characteristics to all those industrial wastes, solids or liquids, that contain them. Organic solvent extraction is a technique that allows the recovery of chromium contained in these residues. In this work the extraction of Cr(III) from aqueous solutions with solutions of a cationic reactive (DEHPA) in kerosene is studied. In the same way the stripping process was studied. It has been found that Cr(III) and DEHPA react in a 1/1 molar rat...

  6. Facilitated transport of Cr(III) through activated composite membrane containing di-(2-ethylhexyl)phosphoric acid (DEHPA) as carrier agent

    International Nuclear Information System (INIS)

    Arslan, Gulsin; Tor, Ali; Cengeloglu, Yunus; Ersoz, Mustafa

    2009-01-01

    The facilitated transport of chromium(III) through activated composite membrane (ACM) containing di-(2-ethylhexyl) phosphoric acid (DEHPA) was investigated. DEHPA was immobilised by interfacial polymerisation on polysulfone layer which was deposited on non-woven fabric by using spin coater. Then, ACM was characterised by using scanning electron microscopy (SEM), contact angle measurements and atomic force microscopy (AFM). Initially, batch experiments of liquid-liquid distribution of Cr(III) and the extractant (DEHPA) were carried out to determine the appropriate pH of the feed phase and the results showed that maximum extraction of Cr(III) was achieved at a pH of 4. It was also found that Cr(III) and DEHPA reacted in 1/1 molar ratio. The effects of Cr(III) (in feed phase), HCl (in stripping phase) and DEHPA (in ACM) concentrations were investigated. DEHPA concentration varies from 0.1 to 1.0 M and it was determined that the transport of Cr(III) increased with the carrier concentration up to 0.8 M. It was also observed that the transport of Cr(III) through the ACM tended to increase with Cr(III) and HCl concentrations. The stability of ACM was also confirmed with replicate experiments.

  7. Facilitated transport of Cr(III) through activated composite membrane containing di-(2-ethylhexyl)phosphoric acid (DEHPA) as carrier agent

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Gulsin [Department of Chemistry, Selcuk University, 42031, Campus, Konya (Turkey); Tor, Ali, E-mail: ator@selcuk.edu.tr [Department of Environmental Engineering, Selcuk University, 42031 Campus, Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Department of Chemistry, Selcuk University, 42031, Campus, Konya (Turkey)

    2009-06-15

    The facilitated transport of chromium(III) through activated composite membrane (ACM) containing di-(2-ethylhexyl) phosphoric acid (DEHPA) was investigated. DEHPA was immobilised by interfacial polymerisation on polysulfone layer which was deposited on non-woven fabric by using spin coater. Then, ACM was characterised by using scanning electron microscopy (SEM), contact angle measurements and atomic force microscopy (AFM). Initially, batch experiments of liquid-liquid distribution of Cr(III) and the extractant (DEHPA) were carried out to determine the appropriate pH of the feed phase and the results showed that maximum extraction of Cr(III) was achieved at a pH of 4. It was also found that Cr(III) and DEHPA reacted in 1/1 molar ratio. The effects of Cr(III) (in feed phase), HCl (in stripping phase) and DEHPA (in ACM) concentrations were investigated. DEHPA concentration varies from 0.1 to 1.0 M and it was determined that the transport of Cr(III) increased with the carrier concentration up to 0.8 M. It was also observed that the transport of Cr(III) through the ACM tended to increase with Cr(III) and HCl concentrations. The stability of ACM was also confirmed with replicate experiments.

  8. Studies Regarding As(V Adsorption from Underground Water by Fe-XAD8-DEHPA Impregnated Resin. Equilibrium Sorption and Fixed-Bed Column Tests

    Directory of Open Access Journals (Sweden)

    Mihaela Ciopec

    2014-10-01

    Full Text Available The characteristics of arsenic adsorption onto Fe-XAD8-DEHPA resin were studied on the laboratory scale using aqueous solutions and natural underground waters. Amberlite XAD8 resin was impregnated with di(2-ethylhexyl phosphoric acid (DEHPA via the dry method of impregnation. Fe(III ions were loaded onto the impregnated resin by exploiting the high affinity of arsenic towards iron. The studies were conducted by both in contact and continuous modes. Kinetics data revealed that the removal of arsenic by Fe-XAD8-DEHPA resin is a pseudo-second-order reaction. The equilibrium data were modelled with Freundlich Langmuir and Dubinin Radushkevich (D-R isotherms and it was found that the Freundlich model give the poorest correlation coefficient. The maximum adsorption capacity obtained from the Langmuir isotherm is 22.6 µg As(V/g of Fe-XAD8-DEHPA resin. The mean free energy of adsorption was found in this study to be 7.2 kJ/mol and the ΔG° value negative (−9.2 kJ/mol. This indicates that the sorption process is exothermal, spontaneous and physical in nature. The studied Fe-XAD8-DEHPA resin showed excellent arsenic removal performance by sorption, both from synthetic solution and the natural water sample, and could be regenerated simply by using aqueous NaOH or HCl solutions.

  9. Extracción de cromo con disolventes orgánicos. I parte. Extracción con DEHPA

    Directory of Open Access Journals (Sweden)

    de Juan, D.

    1998-06-01

    Full Text Available Chromium and its compounds give toxic and/or hazardous characteristics to all those industrial wastes, solids or liquids, that contain them. Organic solvent extraction is a technique that allows the recovery of chromium contained in these residues. In this work the extraction of Cr(III from aqueous solutions with solutions of a cationic reactive (DEHPA in kerosene is studied. In the same way the stripping process was studied. It has been found that Cr(III and DEHPA react in a 1/1 molar ratio, being the extraction kinetics very fast. Final aqueous phase final pH influence extraction yield, so that it is necessary to work with pH values between 3 and 4. It must be added a modifier (isodecanol to the organic phase to avoid the formation of a third phase in the stripping process. The concentration of isodecanol has to be higher than 15 %, so the organic phase used was a solution of 12.5 % v/v DEHPA in kerosene and 20 % v/v isodecanol. The stripping process is slow and must be carried out in an oxidant alkalyne medium, thus an aqueous solution of NaOH and H2O2 was used. An increase in the concentration of NaOH and H2O2 leads to an increase in the stripping yield initially, and becomes stable when concentrations of NaOH and H2O2 used are higher than 0.45 N and 4 % v/v respectively.

    El cromo y sus compuestos confieren un carácter tóxico y/o peligroso a los residuos industriales, sólidos o líquidos, que los contienen. Una técnica que permite recuperar el cromo existente en estas sustancias es la extracción con disolventes orgánicos. En el presente trabajo se estudia la extracción del Cr(III presente en disoluciones acuosas con disoluciones de un reactivo de carácter catiónico (DEHPA en queroseno. Igualmente se estudia el proceso de reextracción. Se ha encontrado que el Cr(III y el DEHPA reaccionan mol a mol, siendo la cinética de extracción muy rápida. El pH final de

  10. In-situ high temperature XRD of calcium phosphate biomaterial using DEHPA as the starting material

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslim

    2009-01-01

    A process to produce calcium phosphate biomaterial was done using an organic based phosphoric acid (DEHPA) as its starting material. The gel obtained from this reaction was used to study calcium phosphate transformation using in-situ XRD with temperature ranges from room temperature to 1300 degree C. The results obtained from this analysis show the following phase transformation: Gel β-Ca 2 P 2 O 7 β-TCP + HA α-TCP + HA, β-Ca 2 P 2 O 7 forms at 400 degree C and as we heat the sample at 1000 degree C peaks belonging to β- TCP and HA appears showing the transformation of the β-Ca 2 P 2 O 7 phase. When the sample is heated up further to 1200 degree C, β-TCP is transform into α-TCP. In the cold in-situ study, XRD analysis was performed on the sample from room temperature to -140 degree C. At room the XRD diffractogram shows the sample as an amorphous material and as the temperature was further lowered sharp peaks begins to form indicating that the material had becomes crystalline. The peaks were identified to be that calcium hydrogen phosphate (Ca(H 2 PO 4 ) 2 ) and this indicates that there is no hydroxyl group removal during the cooling process. The relative crystallinity values obtained for the different cooling temperatures show a slow exponential increase on the initial cooling of 0 to -100 degree C and at further cooling temperatures resulted fast and linear process. Also unlike the in-situ XRD analysis performs at high temperature no phase transformation occurred at this low temperature. (Author)

  11. Separation studies of La(III) and Ce(III)/Nd(III)/Pr(III)/Sm(III) from chloride solution using DEHPA/PC88A in petrofin

    International Nuclear Information System (INIS)

    Acharya, Sagarika; Mishra, Sujata; Bhatta, B.C.

    2017-01-01

    The separation of La(III) and four other lanthanides. Ce, Nd, Pr and Sm from chloride solution has been studied using the two acidic organophosphorous extractants, DEHPA and PC88A in petrofin at pH 4.3. The metal content analysis was done using an ICP-OES spectrophotometer. The separation factors (β) was calculated and for La-Sm pair highest value of 9.7 was obtained. (author)

  12. Separation and recovery of high grade Dy2O3 by solvent extraction process with DEHPA in kerosene

    International Nuclear Information System (INIS)

    Mishra, S.L.; Thakur, N.V.; Koppiker, K.S.

    1993-01-01

    During the solvent extraction (SX) fractionation of rare earths chloride obtained from monazite, a heavy RE (HRE) fraction assaying 60% Y 2 O 3 is produced. This is purified further to 93% Y 2 O 3 by another SX cycle. During this step most of Dy and Tb get separated to yield a concentrate assaying >50% Dy 2 O 3 . An attempt has been made to process this Dy rich concentrate to obtain a high grade Dy 2 O 3 by a SX route using DEHPA in kerosene. The distribution data (D vs H i + ) of Dy have been generated experimentally at various metal concentrations and similar data for other metals present (Gd, Tb, Y, Er and Ho) have been derived using a mathematical expression developed in our laboratory. Based on this information mathematical models for extraction behaviour of these HRE have been derived and used in a computer program developed for multicomponent system. This program has been utilised to optimise the process parameters to obtain 95-97% pure Dy 2 O 3 at about 90% recovery. The parameters have been experimentally confirmed and Dy 2 O 3 95.5% pure w.r.t. Tb was obtained at about 90% recovery, thus confirming the validity of the program. This paper presents data obtained during these investigations. (author). 6 refs., 5 tabs

  13. Contribution to the study of the physico-chemical mechanisms of metallic cation extraction by alkylphosphoric acids. Extraction of zirconium (IV) by di-2-ethylhexyl phosphoric acid (DEHPA)

    International Nuclear Information System (INIS)

    Carbonnier, J.-L.

    1979-02-01

    Extraction of zirconium, especially at high concentration (0.1M), by dodecane diluted DEHPA (HA) from hydrochloric or nitric aqueous phases of 0.1 to 10 M acidity was studied. The composition, structure and polymerisation of the complexes extracted were determined by chemical analysis, viscosimetry, infrared spectrometry and light scattering. A Zr(OH) 2 A 2 .2HNO 3 , type structure is proposed for these complexes instead of the generally accepted form: Zr(OH) 2 (NO 3 ) 2 .2HA. Similarly in hydrochloric solution: Zr(OH) 2 A 2 .2HCl. Polymerisation in the organic phase results from the juxtaposition of two factors; firstly zirconium saturation (formation of bridges by DEHPA between zirconium atoms) and secondly the nature the equeous phase. In slightly acid hydrochloric solution (pH = 1.3) the aqueous plymers of zirconium are extracted in the organic phase as polynuclear complexes; in nitric solution no polynuclear complexes are observed but the nitric acid molecules extracted set up hydrogen bonds which explain the increased viscosity and gelification of the organic phases [fr

  14. Trivalent actinide-lanthanide extraction by DEHPA. Structure of organic complexes

    International Nuclear Information System (INIS)

    Pattee, D.; Musikas, C.; Faure, A.; Chachaty, C.

    1985-09-01

    The di-2-ethylhexyldithiophosphoric acid HDEHDTP is a bidentate ligand with sulphur donor atoms which has a good affinity for soft acids. H 2 O H NMR and light diffraction let us demonstrate that HDEHDTP is a monomer and NaDEHDTP a reverse micelle. When La 3+ replaces Na + , the reverse micelle is preserved. In the same way when TBP expells H 2 O the polymerised state is preserved. Evidence of that is provided by low angle X-ray diffraction; the micelles are shell-shaped and the ions are strongly tied to the ligand. The mechanism of extraction has been determined with traces of metal for HDEHDTP and the synergistic system HDEHDTP, TBP. The substitution of H 2 O by TBP in the complex induces a shortening of the S-metal bound so that the 5f ions better ability to form covalent bounds is settled [fr

  15. Synthesis and characterization of new biopolymeric microcapsules containing DEHPA-TOPO extractants for separation of uranium from phosphoric acid solutions.

    Science.gov (United States)

    Outokesh, Mohammad; Tayyebi, Ahmad; Khanchi, Alireza; Grayeli, Fatemeh; Bagheri, Ghodrat

    2011-01-01

    A novel microcapsule adsorbent for separation of uranium from phosphoric acid solutions was developed by immobilizing the di(2-ethylhexyl) phosphoric acid-trioctyl phosphine oxide extractants in the polymeric matrix of calcium alginate. Physical characterization of the microcapsules was accomplished by scanning electron microscopy and thermogravimetric techniques. Equilibrium experiments revealed that both ion exchange and solvent extraction mechanisms were involved in the adsorption of [Formula: see text] ions, but the latter prevailed in a wider range of acid concentration. According to the results of kinetics study, at low acidity level, the rate controlling step was slow chemical reaction of [Formula: see text] ions with the microdroplets of extractant, whereas it changed to intraparticle diffusion at higher acid concentration. The study also attempted identification of the diffusion paths of the ions within the microcapsules, and the mechanism of change of mass transfer rate during the uptake process. The prepared microcapsules preserved their entire capacity after three cycles of adsorption, and their breakthrough behaviour was well fitted by a new formula derived from shrinking core model.

  16. Development of a volumetric Analysis method to determine uranium in the loaded phosphoric acid and the loaded organic phase (DEHPA/TOPO)

    International Nuclear Information System (INIS)

    Shlewit, H.; Koudsi, Y.

    2003-01-01

    Rapid and reliable volumetric analysis method has been developed to determine uranium, on line, at uranium extraction unit from wet-process phosphoric acid, in aqueous and organic phases. This process enable up 300 mg of uranium to be determined in the presence of nitric acid, in a sample volume of up to at least 10 ml. The volume of the sample, the amounts of reagents added, the temperature of the reagents and the standing time of various stages were investigated to ensure that the conditions selected for the final procedure were reasonably non-critical

  17. Transport of uranium by supported liquid membrane containing bis(2-ethylhexyl) hydrogenphosphate and 1-octanol

    International Nuclear Information System (INIS)

    Akiba, Kenichi; Kanno, Takuji; Takahashi, Toshihiko.

    1984-01-01

    Carrier-mediated transport of uranium(VI) has been studied by means of liquid membranes impregnated in a microporous polymer. Liquid membranes containing bis(2-ethylhexyl) hydrogenphosphate (DEHPA) alone yielded inadequate stripping of uranium. The addition of 1-octanol to DEHPA solutions resulted in a decrease in extractability, and made it possible to control the distribution ratio of uranium. Uranium in the feed solution was sufficiently transported across the liquid membrane containing this DEHPA-1-octanol mixture into the product solution. The apparent rate constant (ksub(obs)) of transport increased slightly with an increase in carrier concentrations. Variations in acid concentrations of the feed solution (pH 2.5--3.2) and the product solution (0.1--1.0 M H 2 SO 4 ) had little effect on the transport rate. A large excess of uranium, more than the carrier content in the liquid membrane, was finally concentrated in the stripping acid. (author)

  18. Separation and purification of gadolinium and others rare earths, and yttrium

    International Nuclear Information System (INIS)

    Awwal, M.A.; Filgueiras, S.A.C.

    1988-01-01

    The experimental works in laboratories for developing a solvent extraction process with the purpose of gadolinium separation and purification, and secondarily samarium, europium, lanthanum and yttrium are described. Using as solvent di-2-ethylhexylphosphoric acid (DEHPA) a preliminary flow chart for separation for these elements are developed. (author)

  19. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.

    Science.gov (United States)

    Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

    2012-06-26

    We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by

  20. Studies on electronic spectrum and electron spin resonance of vanadium (IV) complexes with organophosphorus compounds and high molecular weight amines

    International Nuclear Information System (INIS)

    Sato, Taichi; Nakamura, Takato

    1981-01-01

    In the extraction of vanadium (IV) from aqueous solutions containing hydrochloric acid and/or a mixture of hydrochloric acid and lithium chloride by bis(2-ethylhexyl) hydrogenphosphate (DEHPA; HX), trioctylmethylammonium chloride (Aliquat-336), trioctylamine (TOA), trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), the complexes formed in the organic phases have been examined by spectrophotometry and electron spin resonance spectroscopy. It is found that in the extraction by DEHPA, the vanadium in the organic phase exists as the monomeric species, VO(X 2 H) 2 , or the polymeric one, (VOX 2 )sub(n), and that in the extractions by Aliquat-336, TOA, TOPO, and TBP, tetravalent vanadium complexes are stable in the organic phases extracted from a mixed solution of hydrochloric acid and lithium chloride, while complexes containing pentavalent vanadium and VOV 4+ ions are formed in the organic phases extracted from hydrochloric acid solutions. (author)

  1. Uranium extraction from colofanite via organic solvents

    International Nuclear Information System (INIS)

    Ribeiro, Valeria Aparecida Leitao

    2007-01-01

    This work describes the use of pure or combined extractants dissolved in organic solvents for quantitative uranium recovery from colofanite, a fluoroapatite ore, from Itataia, Santa Quiteria, Ceara, Brazil. This ore contains the highest brazilian uranium reserve. The metal is associated to phosphate species. The ore is digested with sulfuric acid (wet process), producing phosphoric acid, which is used for manufacturing of fertilizers and animal food. >From the acid leaching, some systems for uranium recovery were tested. Among them, PC88A (2-ethyl-hexyl phosphonic acid, mono-2-ethyl-hexyl ester) 40% vol. and DEHPA (di(2-ethyl-hexyl)phosphoric acid) 40% vol. in kerosene presented the highest values for the distribution coefficient (D) for uranium. When synergistic systems were employed, the best results were obtained for DEHPA 40%vol. + PC88A 40%vol. and DEHPA 40% vol. + TOPO (trioctylphosphine oxide) 5% vol. in kerosene. 15% wt/v sodium carbonate was the best medium for uranium stripping and separation from iron, the main interfering element. Uranium was precipitated as sodium diuranate by adding sodium hydroxide (5,0 mol L -1 ). Thorium in the raffinate was extracted by TOPO (0,1% vol.) in cyclohexane. The radioactivity level of the final aqueous waste is similar to natural background, according to CNEN-NE 6.05 Norm. After neutralization, the solid can be co-processed, according to the Directory 264 from the National Brazilian Environmental Council (CONAMA), whereas the treated effluent can be discarded according to the Directory 357 from CONAMA. (author)

  2. Synergistic solvent extraction of Eu(III) and Tb(III) with mixtures of various organophosphorus extractants

    International Nuclear Information System (INIS)

    Reddy, B.V.; Reddy, L.K.; Reddy, A.S.

    1994-01-01

    Synergistic solvent extraction of Eu(III) and Tb(III) from thiocyanate solutions with mixtures of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (EHPNA) and di-2-ethylhexylphosphoric acid (DEHPA) or tributyl phosphate (TBP) or trioctylphosphine oxide (TOPO) or triphenylphosphine oxide (TPhPO) in benzene has been studied. The mechanism of extraction can be explained by a simple chemically based model. The equilibrium constants of the mixed-ligand species of the various neutral donors have been determined by non-linear regression analysis. (author) 13 refs.; 9 figs.; 2 tabs

  3. Membrane assisted liquid-liquid extraction of cerium

    International Nuclear Information System (INIS)

    Soldenhoff, K.M.

    2000-02-01

    Membrane assisted liquid-liquid extraction of cerium was investigated, with emphasis placed on the study of the reaction chemistry and the kinetics of non-dispersive solvent extraction and stripping with microporous membranes. A bulk liquid membrane process was developed for the purification of cerium(IV) from sulfate solutions containing other rare earth elements. The cerium process was studied in both a flat sheet contained liquid membrane configuration and with hollow fibre contactors. Di-2-ethylhexyl phosphoric acid (DEHPA) was identified as a suitable extractant for cerium(IV) from sulfuric acid solution, with due consideration of factors such as extraction ability, resistance to degradation, solvent selectivity and potential for sulfate transfer into a strip solution. A detailed study of the extraction of cerium(IV) with DEHPA defined the extraction reaction chemistry. The Ce/DEHPA/sulfate system was also investigated with a flat sheet bulk liquid membrane configuration, using both sulfuric and hydrochloric acid as receiver solutions. These tests identified that hydrophobic membranes provide better mass transfer for extraction and hydrophilic membranes are better for stripping. The presence of an impurity, mono 2-ethylhexyl phosphoric acid (MEHPA), was found to have a dramatic accelerating effect on the rate of the chemical extraction reaction. This was attributed to its higher interfacial activity and population compared to DEHPA, and the fact that MEHPA was also found to be an active carrier for cerium(IV). The mass transfer rate of membrane assisted extraction and stripping of cerium, using hydrophobic and hydrophilic microporous membranes, respectively, was investigated using a modified Lewis-type cell. It was quantitatively demonstrated that the extraction process was mainly controlled by membrane diffusion and the stripping process was controlled by the chemical reaction rate, with membrane diffusion becoming important at low distribution coefficients

  4. Extração líquido-líquido de urânio(VI do colofanito de itataia (Santa Quitéria, Ceará por extratantes orgânicos em presença de ácido fosfórico Liquid-liquid extraction of uranium(VI from colofanite of itataia (Santa Quitéria, Ceará by organic extractants in the presence of phosphoric acid

    Directory of Open Access Journals (Sweden)

    Valeria Aparecida Leitão Ribeiro

    2008-01-01

    Full Text Available This work describes the liquid-liquid extraction of uranium after digestion of colofanite (a fluoroapatite from Itataia with sulfuric acid. The experiments were run at room temperature in one stage. Among the solutions tested the highest distribution coefficient (D > 60 was found for 40%vol. DEHPA (di(2-ethyl-hexylphosphoric acid + 20% vol. TOPO (trioctylphosphine oxide in kerosene. Thorium in the raffinate was quantitatively extracted by TOPO (0.1% vol. in cyclohexane. Uranium stripping and separation from iron was possible using 1.5 mol L-1 ammonium or sodium carbonate (room temperature, one stage. However, pH control is essential for a good separation.

  5. Development of long-lived radionuclide partitioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Eil Hee; Kwon, Sun Gil; Kim, Heung Ho; Yang, Han Beom; Kim, Kwang Wook; Chung, Dong Yong; Lim, Jae Kwan; Kim, Young Hwan; Hwang, Doo Seong; Lee, Kue Il; Park, Won Seok; Gu, Je Hue

    1997-09-01

    This study has been performed with focus on the modification of the process, advancement of separation efficiency, adaptability check for another separation technology and optimization of separation conditions. The works are summarized as follows : (1) Kinetics of denitration with formic acid by mathematical modeling, (2) Evaluation of a mutual separation process for MA and RE using DEHPA, (3) Preparation of Zr-DEHPA, and its extraction and selective stripping behaviors to separate MA form RE, (4) Adsorption and elution behaviors of RE by anion-exchange chromatography. (5) Selection of reducing agent for selective separation of Pd, and its separation condition, (6) Development of a liquid-liquid extraction device composed of a highly packed fiber bundle, and its extraction behavior by experimental and theoretical analysis. In addition, characteristics of in-situ stripping and separation of metal ions by electrolysis system of glassy carbon fiber, (7) Behavior of reductive precipitation of Eu by photochemical reaction. The results will be use as basic materials for the design and installationof the engineering test process which is scheduled to conduct in phase II. (author). 13 refs., 31 tabs., 92 figs.

  6. Di-4-octylphenylphosphoric acid as extractant : extraction of vanadium (IV) and beryllium

    International Nuclear Information System (INIS)

    Gajankush, R.B.

    1976-01-01

    The extraction of vanadium and beryllium has been studied using di-4-octylphenyl phosphoric acid (DOPPA) as metal extractant. The factors which affect the extraction have been studied in detail. An attempt has been made to clarify the mechanism of extraction and compare the results with those reported for di-2-ethylhexyl phosphoric acid (DEHPA). In the case of vanadium it was found that vanadium (IV) is more suitable for extraction. Synergistic extractionwas observed in the presence of neutral organophosphorous compounds like tri-n-butyl phosphate (TBP), dibutyl butyl phosphate (DBBP) and tri-n-octyl phosphine oxide (TOPO). The possibility of separating vanadium and uranium when they are present together in leach solutions has also been studied. The extraction of beryllium was found to be a slow process. The factors controlling the rate as well as the extent of extraction have been investigated. However, the results showed that in both respects DOPPA is better than DEHPA which was earlier studied by other authors. The separation of aluminium from beryllium has also been studied. (author)

  7. NMR study of the synthesis of Di 2-ethylhexylphosphoric acid with P4O10

    International Nuclear Information System (INIS)

    Elias, A.; Azouz, A.; Rodehueser, L.

    1991-12-01

    Various aspects of Di 2-ethylhexylphosphoric acid (DEHPA) synthesis were investigated using 1 H, 13 C and 31 P NMR techniques. The first step of the present work consists of the identification and the determination of DEHPA, its derivatives and other intermediates in the reaction mixture without previous separation or purification. The second step is devoted to the study of the effects of the main factors, i.e. the reaction temperature, ROH/P 2 O 5 mole ratio, the reaction time and the presence of some additives upon the reaction. The spectra and the distribution of the reaction products were also discussed. As an important conclusion which can be withdrawn from the present investigations one can suggest that the -26 ppm triplet is due to the presence of triphosphorus compounds. Such compounds should result from the direct interaction between 2-ethylhexanol and the polymeric phosphorus anhydride during the first 40 minutes after the beginning of the reaction. Pyrophosphates i.e. diphosphorus intermediates and the monoester which exhibit a relatively higher stability were also yielded

  8. Removal of Radioactive Nuclides by Multi-Functional Microcapsules Enclosing Inorganic Ion-Exchangers and Organic Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, H.; Akiba, K.; Onodera, Y.

    2002-02-26

    The microcapsules enclosing two kinds of functional materials, inorganic ion-exchangers and organic extractants, were prepared by taking advantage of the high immobilization ability of alginate gel polymer. The fine powders of inorganic ion-exchanger and oil drops of extractant were kneaded with sodium alginate (NaALG) solution and the kneaded sol readily gelled in a salt solution of CaCl2, BaCl2 or HCl to form spherical gel particles. The uptake properties of various nuclides, 137Cs, 85Sr, 60Co, 88Y, 152Eu and 241Am, for thirty-four specimens of microcapsules in the presence of 10-1-10-4 M HNO3 were evaluated by the batch method. The distribution coefficient (Kd) of Cs+ above 103 cm3/g was obtained for the microcapsules enclosing CuFC or AMP. The Kd of Sr2+ around 102 cm3/g was obtained for the microcapsules containing clinoptilolite, antimonic acid, zeolite A, zeolite X or titanic acid. The microcapsules enclosing DEHPA exhibited relatively large Kd values of trivalent metal ions above 103 cm3/g; for example, the Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ for a favorable microcapsule (CuFC/clinoptilolite/DEHPA/CaALG) were 1.1x104, 7.5x10, 1.1x10, 1.0x104, 1.4x104, 3.4x103 cm3/g, respectively. The uptake rates of Cs+, Y3+, Eu3+ and Am3+ for this microcapsule were rather fast; the uptake percentage above 90% was obtained after 19 h-shaking and the uptake equilibrium was attained within 1 d. The AMP/CaALG exhibited high uptake ability for Cs+ even after irradiation of 188 kGy, and DEHPA/CaALG microcapsule had similar Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ ions before and after irradiation. The microcapsules with various shapes such as spherical, columnar, fibrous and filmy forms were easily prepared by changing the way of dipping kneaded sol into gelling salt solution. The microcapsules enclosing inorganic ion-exchangers and extractants have a potential possibility for the simultaneous removal of various radioactive nuclides from waste solutions.

  9. Development of radiochemical property analysis and handling technology of long-lived radionuclide

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Woo, M. S.; Hwang, D. S.; Kim, Y. K.; Choi, Y. D.; Jung, K. C.; Kim, B. H.; Jung, J. Y.

    1997-08-01

    The goals of this research are completion of detail design of wet type lead cell for radioactive test of partitioning process, and possession of technologies to operate and handle safely process equipments in hot cells. The main contents in this research are as follows: 1) For analysis of radiolysis property of extractants in high level radioactive atmosphere, three extractants (DEHPA, DIDPA, TBP) were irradiated, and degradation phenomena was investigated. 2) For development of radioactive analysis technologies of sample solution, property tests of ion chromatography (NovaPac C-18) and activity measuring tests of Cs-137 with collimator, and design/application tests of collimator were performed. 3) Wet type lead cells (α-γ cell, 2 sets) and auxiliary facilities were designed, and tong manipulator and special tools were designed and fabricated, performed test operation. 4) For getting of MA fuel basic data, a review on process technologies for MA fuel production was performed. (author). 55 refs., 10 tabs., 46 figs

  10. Separation of Cr(III) from Cr(VI) by Triton X-100 Cerium (Iv) Phosphate as a Surface Active Ion Exchanger

    International Nuclear Information System (INIS)

    El-Azony, K.M.; Ismail Aydia, M.; El-Mohty, A.A.

    2010-01-01

    A new and simple high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection has been developed for the determination of both Cr (III) and Cr (VI) ions. Chromium species were determined by HPLC using a stationary phase consisting of a reversed phase column (Nucleosil phenyl column; 250 mm x 4.6 mm,5 μm), and a mobile phase consisting of a mixture of methanol: water(70 : 30 v/v), in which the complexing agent di-(2-ethylhexyl) phosphoric acid (DEHPA) was dissolved. The UV detection was carried out at wavelength 650 nm. Separation of Cr (III) from Cr (VI) on Triton X-100 cerium(IV) phosphate(TX-100 CeP) as a surface active ion exchanger was investigated. TX-100 CeP has been synthesized, characterized using IR, X-Ray, TGA/DTA and elemental analysis. The ion exchange capacity and chemical stability in different HCl concentration have been studied

  11. Development of long-lived radionuclides partitioning technology - Experimental/theoretical study of phase equilibria for multicomponent multiphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Soo; Lee, Se Il; Sim, Yeon Sik; Park, Sung Bin; Yang, Sung Oh; Park, Ji Yong [Korea University, Seoul (Korea, Republic of)

    1995-08-01

    In various partitioning processes, rare earth elements and actinide elements are separated from other elements in the first stage. They are then separated into rare earth groups and actinde groups. The first stage is accomplished by solvent extraction using DEHPA, by precipitation using oxalic= acid, or by cation exchange. The second stage is carried out by selective back-extraction or by selective elution using DTPA. In these processes the equilibria is governed by the concentrations of nitric acid, of solvents, and of precipitants among others. In this study various distribution coefficients in partitioning processes were experimentally determined. And thermodynamic models were proposed to calculate distribution coefficients with experimentally determined equilibrium constants. 32 refs., 11 tabs., 23 figs. (author)

  12. Phosphor investigation in the production of Syrian phosphoric acid using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.; Al-Hameish, M.

    2009-06-01

    Nuclear magnetic resonance spectroscopy (NMR) was applied in this work to the industrial process of extraction of uranium from phosphoric acid and to the process of the purification of the phosphoric acid for food proposes. The structural changes of used extraction materials and the organic content of the final product was studied. 13 C , 1 H and 32 P-spectra of all material during the process were recorded. The spectra of the three used extraction materials Bis(2-ethylhexyl Phosphoric Acid)) DEHPA, TriOctyl Phosphine Oxide (TOPO) (C 8 H 1 7) 3 P=O and TriButyl Phosphate (TBP) (C 4 H 9 O) 3 P=O show a partial degradation during the process. The final product ( Phosphoric acid for Food proposes) doesn't contain any organic solvents or extraction material. (author)

  13. The extraction of uranium from wet process phosphoric acid using a liquid surfactant membrane system

    International Nuclear Information System (INIS)

    Dickens, N.; Davies, G.A.

    1984-01-01

    A liquid membrane extraction process is examined for the extraction of uranium from wet process phosphoric acid. Uranium is present in the acid in concentrations up to 100 ppm which in principle makes it ideal for treatment with a membrane process. The membrane system studied is based on extraction using DEHPA-TOPO reagents which are contained within the organic phase of a water in oil emulsion. Formulations of the emulsion membrane system have been studied, the limitations of acid temperature, P 2 O 5 concentration and solid dispersed impurities in the acid have been studied in laboratory batch experiments and in a continuous pilot plant unit capable of treating 5l of concentrated acid per minute. Data from the pilot plant work has been used to develop a flowsheet for a commercial unit based on this process. (author)

  14. Uranium recovery in a pilot plant as by product of the phosphate fertilizers

    International Nuclear Information System (INIS)

    Dantas, C.C.; Santos, F.S.M. dos; Paula, H.C.B.; Santana, A.O. de

    1984-01-01

    A process was developed and a piloto plant was installed to recovery uranium from chloridric leach liquor of phosphate rocks. The extractor system is a mixture of di(2-ethylhexyl) phosphoric acid (DEHPA) and tributyl-phosphate (TBP) in a kerosene diluent. The phosphate rocks are leached for dicalcium phosphate (CaHPO 4 ) production, by the reactions: Ca 3 (PO 4 ) 2 + 4 HCl → Ca(H 2 PO 4 ) 2 + CaCl 2 and Ca(H 2 PO 4 ) 2 + Ca(OH) 2 → CaHPO 4 + 2 H 2 O. The uranium recovery process comprises the following steps:extraction, scrubbing, reextraction, iron removal and uranium precipitation. The uranium is precipited as ADU with 80% of U 3 O 8 .(Author) [pt

  15. Development of a process to reduce the uranium concentration of liquid radioactive waste

    International Nuclear Information System (INIS)

    Fuentealba Toro, Edgardo David

    2015-01-01

    The purpose of radioactive waste management is to prevent the discharge of waste into the biosphere, a function carried out in Chile by the Chilean Nuclear Energy Commission (CCHEN), which stores around 500 [L] of these organic and inorganic waste in cans coming from research of Universities and CCHEN' laboratories. Within the inorganic liquid waste are concentrations of Uranyl salts with sulfates, chlorides and phosphates. The purpose of this work is to develop at laboratory level a process to concentrate and precipitate uranium salts (Sulfate and Uranyl Chloride) present in radioactive liquid effluents, because in the case of these very long period wastes in liquid state, the most widely used processes are aimed at concentrating or extracting radioactive compounds through separation processes, for their conditioning and final storage under conditions whose radiological risk is minimized. The selected process is liquid-liquid extraction, being evaluated solvents such as benzene and kerosene with the following extractants: tri-n-octylphosphine oxide (TOPO), di-2-ethylhexyl phosphoric acid (DEHPA) and Cyanex© 923. To determine the extraction conditions, which allow to reduce the concentration of uranium to values lower than 10 ppm, the extractant concentration was modified from 0.05 to 0.41 [M] with solvent volume / residue (VO/VA) ratios of 0.2 to 0.5, at an initial concentration of 8,446 [gU/L] and subsequent precipitation of uranium extracted by a reaction with ammonium carbonate. From these experimental tests the maximum extraction conditions were determined. To the generated effluents, a second stage of extraction was necessary in order to reduce its concentration below 10 [mg / L]. The experimental tests allowed to reduce the concentration under 2.5 [mgU/L], equivalent to 99.97% extraction efficiency. The tests with Cyanex© 923 in replacement of the TOPO, allowed to obtain similar results and even better in some cases, due to the fact that final

  16. Evaluation of a contact device type ejector system for liquid-liquid extraction

    International Nuclear Information System (INIS)

    Schwamback, Niomedes

    2002-04-01

    The objective of the present work was to evaluate an ejector system, operated simultaneously with two immiscible liquid phases and a gas phase, as a contact device for liquid-liquid extraction processes. The ejector, made of perspex, has a variable geometry, although this feature was not explored in the thesis. Motivated by recent uses of liquid-liquid extraction processes for the removal of traces of heavy metal from waste waters, it was decided to carry out tests with synthetic effluents. This strategy, typical of experimental work under evaluation of technical feasibility, greatly simplifies experiments, since the nature of the chemical species involved and their feed concentrations are known exactly and do not fluctuate. The extractant used was DEHPA (diethyl hexyl phosphoric acid). The metal chosen for tests was iron with oxidation number +3, because of its high extraction coefficient towards DEHPA and also for its chemical behavior similar to americium and other heavy metals. In addition to that, iron forms soluble coloured complexes adequate to spectrophotometric determination analysis, a simple, quick and very reliable analytical technique. The effects of electrolytes of interest, namely NaCl, FeSO 4 and Al(NO 3 ) 3 , upon the extraction process were investigated. The effects resulting from the introduction of a gas phase, actually air (bubbles), in the ejector upon the extraction efficiency were studied. By coupling advanced digital photographic technique and image analysis with microcomputer, the bubble mean size was measured. It was then correlated with equipment's geometrical (characteristic diameters) and operational variables (phases' flow rates and gas hold-ups). To enable scale-up procedures, data were preferably correlated by means of dimensionless groups. For the systems and conditions investigated in this thesis and under the same operational conditions, the introduction of air bubbles by means of an ejector has greatly improved the process

  17. Estimation of rare earth elements in uranium matrix after solvent extraction of uranium as uranium-antipyrine-anion complex using chloroform as solvent

    International Nuclear Information System (INIS)

    Bose, Roopa; Murthy, D.S.R.; Malhotra, R.K.

    1999-01-01

    The neutron economy in a nuclear reactor dictates the occurrence of neutron absorbers at very low levels. Hence the determination of lanthanides especially Sm, Eu, Gd and Dy is one of the most difficult and complicated analytical tasks particularly in high uranium matrix. Solvent extraction is a potent and versatile technique for the separation of lanthanides. The systems generally used for lanthanide extraction are TBP-nitrate, TBP-chloride, TBP-thiocyanate TOPO, DEHPA-nitrate etc. However, these methods of extraction of lanthanides fail to give a clear cut separation for their determination from uranium matrix. Hence analytical procedures have been standardised for extraction of uranium matrix into the organic phase leaving lanthanides unextracted in the aqueous phase. In this direction Cyanex-923 a mixture of 4 trialkyl phosphine oxides, TBP- TOPO and trioctylamine in xylene have been used for extraction of uranium and consequent determination of lanthanides by ICP-AES in the aqueous phase. In this paper the authors have investigated uranium -antipyrine -anion, a different combination other than the well known phosphine oxides and tertiary amines for extraction of uranium

  18. Nickel and vanadium extraction from the Syrian petroleum coke

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Syrian petroleum coke samples were characterized and submitted for salt-roasting treatment in electric furnace to evaluate the convenience of this procedure for the extraction of the vanadium, nickel and sulfur from coke. Both solution and solid residue remaining after salt roasting were separated by filtration and were analyzed for vanadium, nickel and sulfur. The solution was analyzed by UV-Visible spectroscopy for vanadium and nickel and gravimetrically for sulfur. The solid residue and the untreated samples of petroleum coke were analyzed by XRF spectrometry. Results showed that more than 90% of sulfur and 60% of vanadium could be extracted by salt roasting treatment. An alternative procedure has been suggested, in which, more than 80% of sulfur and small percentage of vanadium can be leached by 0.75 M of Na 2 CO 3 solution at 70-80 Co. Vanadium was selectively extracted by DEHPA/TBP from the loaded leached solution. The extraction procedure flowsheet was also suggested. (authors)

  19. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  20. Investigation of the synergic effect of some neutral organophosphoric compounds on the extraction of uranium from phosphoric acid solutions by D1-(2-Ethyl Hexyl) phosphoric acid

    International Nuclear Information System (INIS)

    Stas, J.; Khorfan, S.; Koudsi, Y.

    1998-05-01

    The extraction of uranium (VI) from pure phosphoric acid media by D2EHPA/Kerosene has been studied. The mechanism of the extraction was found as follows: The logarithm of the equilibrium constant of the extraction (LogKex) was found (3.06), (3.32), (3.24), (3.3) for the following phosphoric acid concentrations respectively (1), (2), (3), (4) Mol/1, and the enthalpy change DELTA H was found (-100.68 kj/mol). (-76 kj/mol) for (1), (2) mol/1 phosphoric acid concentrations. The synergic effect of TOPO, TBP, and TBPI with DEHPA have been studied during the extraction of uranium from pure phosphoric acid and Syrian commercial phosphoric acid. The synergic effect increases as follows: TBP< TBPI<< TOPO (In pure phosphoric acid), TBPI approx TBP<< TOPO (In Syrian commercial phosphoric acid). The difficulty of extracting uranium (VI) from Syrian commercial phosphoric acid in comparison with pure phosphoric acid is due to the presence of several impurities capable of complexing uranium, and a small amounts of solid and organic matters, all these are factors which reduce the distribution coefficient of uranium. (Author)

  1. Separation of Cr(III) from Cr(VI) by Triton X-100 cerium(IV) phosphate as a surface active ion exchanger

    International Nuclear Information System (INIS)

    El-Azony, K.M.; Ismail Aydia, M.; El-Mohty, A.A.

    2011-01-01

    Triton X-100 cerium(IV) phosphate (TX-100CeP) was synthesized and characterized by using IR, X-ray, TGA/DT and the elemental analysis. The chemical stability of TX-100CeP versus the different concentrations of HCl acid was studied before and after its exposure to the radiation dose (30 K Gray). The effect of HCl concentration on separation of Cr(III) from Cr(VI) by using TX-100CeP as surface active ion exchanger was also studied. A novel method was achieved for the quantifying of Cr(III) and Cr(VI) ions by using the high-performance liquid chromatography (HPLC) at wavelength 650 nm, a stationary phase consists of reversed phase column (Nucleosil phenyl column; 250 x 4.6 mm, 5 μm), and a mobile phase consists of 0.001 M di-(2-ethylhexyl) phosphoric acid (DEHPA) in methanol:water (70:30 v/v). The retention times were 7.0 and 8.5 min, for the Cr(III) and Cr(VI), respectively. The exchange capacity of Cr(III) was quantified (2.1 meq/g) onto the TX-100CeP. (author)

  2. Design of mixer settler extraction cycles II for recovery uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Abdul Jami; Hafni Lissa Nuri

    2013-01-01

    Mixer settler is technically designed for extraction and separation process of uranium from phosphoric acid solution. Design calculation results shows that: the mixer settler consists of two parts: part of extraction process in the mixer tank and part of separation process in settler tank. The mixer tank type of box with 4 baffles, the size of mixer tank, 0.8 m width, 0.8 m length, 1 m high of liquid, 1.05 m high of mixer tank, stirrer type of disk 6 blade, and power of mixing 4 hp and the settler tank type of rectangular with size of settler tank, 0.8 m width 5 m length, 1 m high of liquid, 1.05 m high of settler tank. For uranium recovery efficiency up to 91%, extraction process is done in 3 stage counter current flow using a solvent Organic (O) DEHPA-TOPO in Kerosene at a phase of ratio A/O of 2:1. The aqueous enter through stage 3 and the organic solvent enter through stage 1. The process of settling occurred with the value of settling velocity is 0.000694 m/s, dispersion factor Ψ = 0.3638 and the light fraction as the dispersed phase and value of Reynolds number (NRE) = 3,438. Because of the Reynolds number is lower than 5,000, it indicates that the quality of the separation is very good. (author)

  3. Technology of uranium recovery from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi [Saga Univ. (Japan). Faculty of Science and Engineering; Nakashio, Fumiyuki

    1982-12-01

    Rock phosphate contains from 0.005 to 0.02 wt.% of uranium. Though the content is a mere 5 to 10 % of that in uranium ore, the total recovery of uranium is significant since it is used for fertilizer manufacture in a large quantity. Wet-process phosphoric acid is produced by the reaction of rock phosphate with sulfuric acid. The recovery of uranium from this phosphoric acid is mostly by solvent extraction at present. According to U/sup 4 +/ or UO/sub 2//sup 2 +/ as the form of its existence, the technique of solvent extraction differs. The following matters are described: processing of rock phosphate; recovery techniques including the extraction by OPPA-octyl pyrophosphoric acid for U/sup 4 +/, and by mixed DEHPA-Di-(2)-ethylhexyl phosphoric acid and TOPO-tryoctyl phosphine oxide for UO/sub 2//sup 2 +/, and by OPAP-octylphenyl acid phosphate for U/sup 4 +/; the recent progress of the technology as seen in patents.

  4. Uses of extraction and ion exchange chromatography in the thorium and rare earths separation from industrial residue generated in thorium purification unity at IPEN. Application of rare earths as catalysts for generation of hydrogen

    International Nuclear Information System (INIS)

    Zini, Josiane

    2010-01-01

    In the 70's a pilot plant for studies of different concentrates processing obtained from the chemical processing of monazite was operated at IPEN / CNEN-SP, with a view to obtaining thorium of nuclear purity. This unity was operated on an industrial scale since 1985, generating around 25 metric tons of residue and was closed in 2002. This waste containing thorium and rare earths was named Retoter (Rejeito de Torio e Terras Raras, in portuguese) and stored in the IPEN Safeguards shed. This paper studies the treatment of the waste, aimed at environmental, radiological and technology. Were studied two cases for the chromatographic separation of thorium from rare earths. One of them was the chromatographic extraction, where the extracting agent tributyl phosphate was supported on polymeric resins Amberlite XAD16. The other method is studied for comparison purposes, since the material used in chromatographic extraction is unprecedented with regard to the separation of thorium, was the ion-exchange chromatography using DOWEX 1-X8 strong cationic resin. Was studied also the chromatographic process of extraction with the extracting agent DEHPA supported on Amberlite XAD16 for the fractionation in groups of rare earths elements. Thorium was separated with high purity for strategic purposes and rare earths recovered free from thorium, were tested as a catalyst for ethanol reforming to hydrogen obtaining which is used in fuel cells for power generation. (author)

  5. Direct uranium extraction from dihydrate and hemi-dihydrate wet process phosphoric acids by liquid emulsion membrane

    International Nuclear Information System (INIS)

    El-Hazek, N.T.; El Sayed, M.S.

    2003-01-01

    A new liquid emulsion membrane (LEM) process for uranium extraction from either dihydrate 28-30% P 2 O 5 (DH) or hemi-dihydrate 42-45% P 2 O 5 (HDH) wet process phosphoric acid is proposed. In this process, the organic component of the LEM is composed of a synergistic mixture of 0.1M di-2-ethyl hexyl phosphoric acid (DEHPA) and 0.025M trioctyl phosphine oxide (TOPO) with 4% Span 80. The internal or the strip acid phase is composed of 0.5M citric acid. The prepared LEM was proved to be stable in 42-45% P 2 O 5 acid concentration range and can, therefore, be applied to the phosphoric acid produced by the hemi-dihydrate process. After breakdown of the loaded emulsion, the uranyl citrate in the internal strip phase is separated by adding methanol followed by its calcination to the orange oxide. Most of the reagents used are recycled. The proposed process is characterized by simplicity, practically closed operation cycle in addition to lower capital and operating costs. (author)

  6. In vitro evaluation of di(2-ethylhexyl)terephthalate-plasticized polyvinyl chloride blood bags for red blood cell storage in AS-1 and PAGGSM additive solutions.

    Science.gov (United States)

    Graminske, Sharon; Puca, Kathleen; Schmidt, Anna; Brooks, Scott; Boerner, Amanda; Heldke, Sybil; de Arruda Indig, Monika; Brucks, Mark; Kossor, David

    2018-05-01

    Di(2-ethylhexyl)phthalate (DEHP) makes polyvinyl chloride flexible for use in blood bags and stabilizes the red blood cell (RBC) membrane preventing excessive hemolysis. DEHP migrates into the blood product and rodent studies have suggested that DEHP exposure may be associated with adverse health effects albeit at high dosages. Although structurally and functionally similar to DEHP, di(2-ethylhexyl)terephthalate (DEHT; or Eastman 168 SG [Eastman Chemical Company]) is metabolically distinct with a comprehensive and benign toxicology profile. This study evaluated RBC stability in DEHT-plasticized bags with AS-1 and PAGGSM compared to conventional DEHP-plasticized bags with AS-1. Thirty-six whole blood units were collected into CPD solution, leukoreduced, centrifuged, and divided into RBCs and plasma. To limit donor-related variability, three ABO-identical RBCs were mixed together and then divided equally and stored among the three different plasticizer and additive solution combinations. RBCs from 12 trios were analyzed for a standard panel of in vitro variables on Day 0 and after storage. No individual bag on Day 42 exceeded the US 1.0% hemolysis criteria. While hemolysis during storage was higher in the DEHT bags, the PAGGSM RBCs were close to the control RBCs (0.38% vs. 0.32%, respectively). ATP retention was higher than 70% and potassium levels were similar regardless of plasticizer. Additional RBC variables exhibited some significant differences but were not viewed as clinically important. DEHT/PAGGSM provides similar hemolysis protection to that of DEHP/AS-1. Although hemolysis values with DEHT and AS-1 are higher than that of DEHP, DEHT is a potential DEHP alternative. © 2018 AABB.

  7. Development of Radiochemical Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Kim, K. W.; Yang, H. B. (and others)

    2007-06-15

    This project of the second phase was aimed at the development of basic unit technologies for advanced partitioning, and the application tests of pre-developed partitioning technologies for separation of actinides by using a simulated multi-component radioactive waste containing Am, Np, Tc, U and so on. The goals for recovery yield of TRU, and for purity of Tc are high than 99% and about 99%, respectively. The work scopes and contents were as follows. 1). For the development of basic unit technologies for advanced partitioning. 1. Development of technologies for co-removal of TRU and for mutual separation of U and TRU with a reduction-complexation reaction. 2. Development of extraction system for high-acidity co-separation of An(+3) and Ln(+3) and its radiolytic evaluation. 3. Synthesis of extractants for the selective separation of An(+3) and its relevant extraction system development. 4. Development of a hybrid system for the recovery of noble metals and its continuous separation tests. 5. Development of electrolytic system for the decompositions of N-NO3 and N-NH3 compounds to nitrogen gas. 2). For the application test of pre-developed partitioning technologies for the separation of actinide elements in a simulated multi-component solution equivalent to HLW level. 1. Co-separation of Tc, Np and U by a (TBP-TOA)/NDD system. 2. Mutual-separation of Am, Cm and RE elements by a (Zr-DEHPA)/NDD system. All results will be used as the fundamental data for the development of advanced partitioning process in the future.