WorldWideScience

Sample records for degrees fahrenheit heat

  1. Fahrenheit 451.

    Directory of Open Access Journals (Sweden)

    Derviş Durmaz

    2013-11-01

    Full Text Available Published in 1951, the famous science-fiction novel depicts an oppressive future society where books are burnt by firemen, people watch brain-washing shows on TV and those in possession of books are annihilated. The book’s title refers to the fact that paper ignites at 451 degrees Fahrenheit. The novel was also made into a film in 1966 by the French film- maker François Truffaut.

  2. Fahrenheit 451.

    OpenAIRE

    Derviş Durmaz

    2013-01-01

    Published in 1951, the famous science-fiction novel depicts an oppressive future society where books are burnt by firemen, people watch brain-washing shows on TV and those in possession of books are annihilated. The book’s title refers to the fact that paper ignites at 451 degrees Fahrenheit. The novel was also made into a film in 1966 by the French film- maker François Truffaut.

  3. Companion Study Guide to Short Course on Geothermal Corrosion and Mitigation in Low Temperature Geothermal Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, II, P F

    1985-04-24

    The economic utilization of geothermal resources with temperatures less than 220 degrees Fahrenheit for purposes other than electric power generation (direct utilization) requires creation of systems with long plant life and minimum operation and maintenance costs. Development of such systems requires careful corrosion engineering if the most cost effective material selections and design choices are to be made. This study guide presents guidelines for materials selection for low-temperature geothermal systems (120 - 200 degrees Fahrenheit), as well as guidance in materials design of heat pump systems for very-lowtemperature geothermal resources (less than 120 degrees Fahrenheit). This guideline is divided into five sections and an Appendix.

  4. Coral Reef Watch, Degree Heating Weeks, 50 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Coral Reef Watch distributes Degree Heating Week products using a combination of the POES AVHRR Global Area Coverage data, and data from a climatological...

  5. Change in Annual Heating and Cooling Degree Days by State

    Data.gov (United States)

    U.S. Environmental Protection Agency — This service show changes in heating and cooling degree days by state in the US. Both layers in this service were created by comparing the first 60 years of...

  6. Changes in the timing, length and heating degree days of the heating season in central heating zone of China

    Science.gov (United States)

    Shen, Xiangjin; Liu, Binhui

    2016-01-01

    Climate change affects the demand for energy consumption, especially for heating and cooling buildings. Using daily mean temperature (Tmean) data, this study analyzed the spatiotemporal changes of the starting date for heating (HS), ending date for heating (HE), length (HL) and heating degree day (HDD) of the heating season in central heating zone of China. Over China’s central heating zone, regional average HS has become later by 0.97 day per decade and HE has become earlier by 1.49 days per decade during 1960–2011, resulting in a decline of HL (−2.47 days/decade). Regional averaged HDD decreased significantly by 63.22 °C/decade, which implies a decreasing energy demand for heating over the central heating zone of China. Spatially, there are generally larger energy-saving rate in the south, due to low average HDD during the heating season. Over China’s central heating zone, Tmean had a greater effect on HL in warm localities and a greater effect on HDD in cold localities. We project that the sensitivity of HL (HDD) to temperature change will increase (decrease) in a warmer climate. These opposite sensitivities should be considered when we want to predict the effects of climate change on heating energy consumption in China in the future. PMID:27651063

  7. A Unit on "Fahrenheit 451" That Uses Cooperative Learning (Resources and Reviews).

    Science.gov (United States)

    Ebbers, Frances A.

    1991-01-01

    Provides a curriculum unit using the novel "Fahrenheit 451" to provide student-centered activities based on solid pedagogical methodology. Emphasizes value-centered analysis of the novel, comparison of alternative arguments, and integration of cooperative learning activities. (PRA)

  8. The creation of cooling degree (CDD) and heating degree day (HDD) climatic maps for South Africa

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2015-12-01

    Full Text Available that could better support adaptive building design decisions in creating comfortable thermal environments. Over the last 100 years, many different heat strain indices have been proposed to indicate comparative thermal comfort levels. After reviewing...

  9. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.; Wilson, W.H.

    1970-01-01

    The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.

  10. Temperature rise and Heat build up inside a parked Car

    Science.gov (United States)

    Coady, Rose; Maheswaranathan, Ponn

    2001-11-01

    We have studied the heat build up inside a parked car under the hot summer Sun. Inside and outside temperatures were monitored every ten seconds from 9 AM to about 4 PM for a 2000 Toyota Camry parked in a Winthrop University parking lot without any shades or trees. Two PASCO temperature sensors, one inside the car and the other outside the car, are used along with PASCO-750 interface to collect the data. Data were collected under the following conditions while keeping track of the outside weather: fully closed windows, slightly open windows, half way open windows, fully open windows, and with window shades inside and outside. Inside temperatures reached as high as 150 degrees Fahrenheit on a sunny day with outside high temperature of about 100 degrees Fahrenheit. These results will be presented along with results from car cover and window tint manufacturers and suggestions to keep your car cool next time you park it under the Sun.

  11. Heating- and growing-degree days at Chalk River Nuclear Laboratories, 1976-1980

    International Nuclear Information System (INIS)

    Jay, P.C.; Wildsmith, D.P.

    1981-05-01

    An update of the report, Heating- and Growing-Degree-Days at Chalk River Nuclear Laboratories (AECL-5547) is presented along with various other meteorological variables which were not included in the previous publication. Also included, and shown in graph form, are the monthly degree-day frequencies. (author)

  12. Effect of heat treatment at 600 degree C for 10 hours on human BMP

    International Nuclear Information System (INIS)

    Izawa, H.; Hachiya, Y.; Muramatsu, K.; Narita, Y.; Kawai, T.

    1999-01-01

    Viral infection are an extremely serious in allogeneic bone transplantations. While it is essential to kill viruses such as HIV in allogeneic bone graft, the osteoinductive activity must be preserved. Heat treatment of allogeneic bone graft at 60 degree C for 10 hours is effective in killing viruses such as HIV, but it is unclear to what extent the activity of human bone morphogenetic protein (hBMP) is preserved. In this experiment crude hBMP was extracted from both heated and non-heated human bones which were decalcified by the Urist method. Gelatin capsules containing 5mg of crude hBMP were transplanted into the thigh muscles of 5 week old mice. Human bone samples heated in a water bath at 60 degree C for 10 hours and non-heated samples were each transplanted into 5 mice. At 20 days after transplantation, the heterotopic bone formation was compared by evaluation of X-ray and histologicic analysis. X-rays showed heterotopic bone formation in both heated and non-heated samples. Further, histologic analysis showed that peripheral osteoid tissue had developed into laminar bone formation and interlaminar bone marrow was observed. Heterotopic bone formation was induced by crude hBMP from heated bones in a similar way to crude hBMP from non-heated bones observed in X-ray. There was no significant difference in histologic analysis. The crude hBMP, extracted from bones which were heat-treated at 60 degree C for 10 hours induced heterotopic bone formation similar to that in non-heated bone observed by X-ray and histologic analysis at 20 days after transplantation. This demostrates that the heat-treated bone preserved osteoinduction

  13. Global Warming Impacts on Heating and Cooling Degree-Days in the United States

    Science.gov (United States)

    Petri, Y.; Caldeira, K.

    2014-12-01

    Anthropogenic climate change is expected to significantly alter residential air conditioning and space heating requirements, which account for 41% of U.S. household energy expenditures. The degree-day method can be used for reliable estimation of weather related building energy consumption and costs, as well as outdoor climatic thermal comfort. Here, we use U.S. Climate Normals developed by NOAA based on weather station observations along with Climate Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble simulations. We add the projected change in heating and cooling degree-days based on the climate models to the estimates based on the NOAA U.S. Climate Normals to project future heating and cooling degree-days. We find locations with the lowest and highest combined index of cooling (CDDs) and heating degree-days (HDDs) for the historical period (1981 - 2010) and future period (2080 - 2099) under the Representation Concentration Pathway 8.5 (RCP8.5) climate change scenario. Our results indicate that in both time frames and among the lower 48 states, coastal areas in the West and South California will have the smallest degree-day sum (CDD + HDD), and hence from a climatic perspective become the best candidates for residential real estate. The Rocky Mountains region in Wyoming, in addition to northern Minnesota and North Dakota, will have the greatest CDD + HDD. While global warming is projected to reduce the median heating and cooling demand (- 5%) at the end of the century, CDD + HDD will decrease in the North, with an opposite effect in the South. This work could be helpful in deciding where to live in the United States based on present and future thermal comfort, and could also provide a basis for estimates of changes in heating and cooling energy demand.

  14. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Katsumi, Naoya, E-mail: n-katsu@ishikawa-pu.ac.jp; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12 h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, {sup 13}C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. - Highlights: • Darkness of humic acids increased with increasing heating time and temperature. • Aromatic carbon content increased during darkening. • Carbon and nitrogen stable isotope

  15. ""Fahrenheit 451" and the debate on the limits to freedom of expression

    Directory of Open Access Journals (Sweden)

    Maria Chiara Locchi

    2016-08-01

    Full Text Available Considered a classic of dystopian literature of the twentieth century, Fahrenheit 451 still reveals a narrative full of questions for jurists, enabling several reading paths. If, by tradition, the burning of books by the Firemen refers to the censorship of authoritarian or totalitarian states, Ray Bradbury’s work is also capable of eliciting legal reflection on the crucial issue of the limits to freedom of expression in the democratic and pluralistic states, highlighting central and highly relevant problems such as freedom of education in public schools and the criminalization of hate speech to protect minorities in western constitutional systems. The question that Fahrenheit 451 seems to direct to law ultimately revolves around the relation between freedom and authority and the determination of the conditions of coexistence in the face of diversity in contemporary plural societies..

  16. Local pool boiling heat transfer on a 3 Degree inclined tube surface

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    Mechanisms of pool boiling heat transfer have been studied for a long time. Recently, it has been widely investigated in nuclear power plants for the purpose of acquiring inherent safety functions in case of no power supply. To design more efficient heat exchangers, effects of several parameters on heat transfer must be studied in detail. One of the major issues is variation in local heat transfer coefficients on a tube. Lance and Myers reported that the type of boiling liquid can change the trend of local heat transfer coefficients along the tube periphery. Lance and Myers said that as the liquid is methanol the maximum local heat transfer coefficient was observed at the tube bottom while the maximum was at the tube sides as the boiling liquid was n hexane. Corn well and Einarsson reported that the maximum local heat transfer coefficient was observed at the tube bottom, as the boiling liquid was R113. Corn well and Houston explained the reason of the difference in local heat transfer coefficients along the tube circumference with introducing effects of sliding bubbles on heat transfer. According to Gu pta et al., the maximum and the minimum local heat transfer coefficients were observed at the bottom and top regions of the tube circumference, respectively, using a tube bundle and water. Kang also reported the similar results using a single horizontal tube and water. However, the maximum heat transfer coefficient was observed at the angle of 45 deg. Sateesh et al. investigated variations in local heat transfer coefficients along a tube periphery as the inclination angle was changed. Summarizing the published results, some parts are still remaining to be investigated in detail. Although pool boiling analysis on a nearly horizontal tube is necessary for the design of the advanced power reactor plus, no previous results are published yet. Therefore, the present study is aimed to study variations in local pool boiling heat transfer coefficients for a 3 degree inclined

  17. Thermal cracking in Lac du Bonnet granite during slow heating to 205 degrees celsius

    International Nuclear Information System (INIS)

    Chernis, P.J.; Robertson, P.B.

    1993-09-01

    Acoustic emissions (AE) were recorded as drill core samples of Lac du Bonnet granite were slowly heated to between 66 and 205 degrees celsius to evaluate the effects of temperature on the properties of rock samples. Longitudinal and shear velocities of the samples were measured, and Young's moduli, shear moduli and Poisson's ratios were calculated. No significant AE activity was detected until temperatures reached approximately 73-80 degrees celsius. Above this 'threshold' temperature, calculated rock properties decreased, and at 205 degrees celsius calculated Young's modulus, shear modulus, and Poisson's ratio were reduced by 30, 26, and 29% respectively

  18. Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach

    International Nuclear Information System (INIS)

    De Rosa, Mattia; Bianco, Vincenzo; Scarpa, Federico; Tagliafico, Luca A.

    2014-01-01

    Highlights: • A dynamic model to estimate the energy performance of buildings is presented. • The model is validated against leading software packages, TRNSYS and Energy Plus. • Modified degree days are introduced to account for solar irradiation effects. - Abstract: Degree days represent a versatile climatic indicator which is commonly used in building energy performance analysis. In this context, the present paper proposes a simple dynamic model to simulate heating/cooling energy consumption in buildings. The model consists of several transient energy balance equations for external walls and internal air according to a lumped-capacitance approach and it has been implemented utilizing the Matlab/Simulink® platform. Results are validated by comparison to the outcomes of leading software packages, TRNSYS and Energy Plus. By using the above mentioned model, energy consumption for heating/cooling is analyzed in different locations, showing that for low degree days the inertia effect assumes a paramount importance, affecting the common linear behavior of the building consumption against the standard degree days, especially for cooling energy demand. Cooling energy demand at low cooling degree days (CDDs) is deeply analyzed, highlighting that in this situation other factors, such as solar irradiation, have an important role. To take into account these effects, a correction to CDD is proposed, demonstrating that by considering all the contributions the linear relationship between energy consumption and degree days is maintained

  19. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  20. Changes In The Heating Degree-days In Norway Due Toglobal Warming

    Science.gov (United States)

    Skaugen, T. E.; Tveito, O. E.; Hanssen-Bauer, I.

    A continuous spatial representation of temperature improves the possibility topro- duce maps of temperature-dependent variables. A temperature scenario for the period 2021-2050 is obtained for Norway from the Max-Planck-Institute? AOGCM, GSDIO ECHAM4/OPEC 3. This is done by an ?empirical downscaling method? which in- volves the use of empirical links between large-scale fields and local variables to de- duce estimates of the local variables. The analysis is obtained at forty-six sites in Norway. Spatial representation of the anomalies of temperature in the scenario period compared to the normal period (1961-1990) is obtained with the use of spatial interpo- lation in a GIS. The temperature scenario indicates that we will have a warmer climate in Norway in the future, especially during the winter season. The heating degree-days (HDD) is defined as the accumulated Celsius degrees be- tween the daily mean temperature and a threshold temperature. For Scandinavian countries, this threshold temperature is 17 Celsius degrees. The HDD is found to be a good estimate of accumulated cold. It is therefore a useful index for heating energy consumption within the heating season, and thus to power production planning. As a consequence of the increasing temperatures, the length of the heating season and the HDD within this season will decrease in Norway in the future. The calculations of the heating season and the HDD is estimated at grid level with the use of a GIS. The spatial representation of the heating season and the HDD can then easily be plotted. Local information of the variables being analysed can be withdrawn from the spatial grid in a GIS. The variable is prepared for further spatial analysis. It may also be used as an input to decision making systems.

  1. Influence of the degree of thermal contact in fin and tube heat exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2016-01-01

    Present work aims to investigate the significance of thermal contact area between fins and tubes in a heat exchanger. The heat exchanger type selected for the study is a liquid-gas fin and tube heat exchanger. Four different cases namely I, II, III, and IV, based on a variable degree of thermal...... contact between fins and tubes are investigated. Case-I with 100% thermal contact area between the fin and tube is set as a reference to cases-II, III, and IV with a thermal contact area of approximately 70%, 50%, and 35%, respectively. Three-dimensional (3D) steady-state numerical models based on finite...... and to compare the performance of heat exchanger design in different cases. Comparative analysis indicates a significant influence of the degree of the thermal contact area between fin and tube on the overall performance. Case-I is found to have higher overall heat transfer coefficient of 47.332 W/(m2 K), higher...

  2. Historical trends and current state of heating and cooling degree days in Italy

    International Nuclear Information System (INIS)

    De Rosa, Mattia; Bianco, Vincenzo; Scarpa, Federico; Tagliafico, Luca A.

    2015-01-01

    Highlights: • A comparison among methods for calculating heating degree-days (HDD) is provided. • ASHRAE method is used for analyze the historical trends of HDD and CDD in Italy. • The HDD historical profile for Rome is decomposed in its characterizing components. - Abstract: Degree days (DD) represent a versatile climatic indicator which is commonly used in the analysis of building energy performance, as e.g. (i) to perform energetic assessment of existent and new buildings, (ii) to analyze the territory energy consumption, (iii) to develop scenario analyses in terms of energy consumption forecasting, and so on. Different methods can be used for determining the DD values, depending on the available climatic data of each location. In the present paper, the simplified methods based on reduced climatic data set have been compared assuming the mean daily degree-hours method (MDDH) as reference. Hourly temperature profiles recorded by the meteorological station located at the University of Genoa have been used for these analyses. In the second part of the present work, the ASHRAE method has been selected to calculate heating (HDD) and cooling (CDD) degree days for several Italian cities. In particular, daily meteorological data of several Italian cities (covering the whole climatic conditions which occur in Italy) have been used to calculate heating and cooling degree days in the period 1978–2013, in order to analyze their trends in the last years. Finally, the historical profiles of Rome and Milan have been treated as time-series and analyzed in the frequency domain, performing a decomposition of the original data set into different characterizing components. This simplified approach permits to deeply analyze the historical profile of DD and represents a simple starting point method for future analyses with forecasting perspectives

  3. Spatial distributions of heating, cooling, and industrial degree-days in Turkey

    Science.gov (United States)

    Yildiz, I.; Sosaoglu, B.

    2007-11-01

    The degree-day method is commonly used to estimate energy consumption for heating and cooling in residential, commercial and industrial buildings, as well as in greenhouses, livestock facilities, storage facilities and warehouses. This article presents monthly and yearly averages and spatial distributions of heating, cooling, and industrial degree-days at the base temperatures of 18 °C and 20 °C, 18 °C and 24 °C, and 7 °C and 13 °C, respectively; as well as the corresponding number of days in Turkey. The findings presented here will facilitate the estimation of heating and cooling energy consumption for any residential, commercial and industrial buildings in Turkey, for any period of time (monthly, seasonal, etc.). From this analysis it will also be possible to compare and design alternative building systems in terms of energy efficiencies. If one prefers to use set point temperatures to indicate the resumption of the heating season would also be possible using the provided information in this article. In addition, utility companies and manufacturing/marketing companies of HVAC systems would be able to easily determine the demand, marketing strategies and policies based on the findings in this study.

  4. The Omnipresence of Television and the Ascendancy of Surveillance/Sousveillance in Ray Bradbury's Fahrenheit 451

    OpenAIRE

    Abootalebi, Hassan

    2017-01-01

    This paper is an attempt to analyze Ray Bradbury’s Fahrenheit 451(1953) under the light of Jean Baudrillard’s notions on the media and the influences it exerts on people’s daily lives, and with an eye to Michel Foucault’s surveillance as well. The title-mentioned work, it is suggested, portrays a representative sample of a culture where different fields including books, education, and history fall under the influence of the media. Bradbury presents a society in which its inhabitants are bomba...

  5. Impacts of global warming on residential heating and cooling degree-days in the United States.

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-08-04

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981-2010) and future (2080-2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making.

  6. Impacts of global warming on residential heating and cooling degree-days in the United States

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-01-01

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981–2010) and future (2080–2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making. PMID:26238673

  7. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    Science.gov (United States)

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  8. Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific

    Science.gov (United States)

    Kayanne, Hajime

    2017-03-01

    Mass bleaching is the most significant threat to coral reefs. The United States National Oceanic and Atmospheric Administration monitors world sea surface temperature (SST) and releases warnings for bleaching based on degree heating weeks (DHW), which is the accumulation of temperature anomalies exceeding the monthly maximum mean SST for a given region. DHW values >4.0 °C-weeks are thought to induce bleaching, and those >8.0 °C-weeks are thought to result in widespread bleaching and some mortality. This study validates the effectiveness of DHW as a mass bleaching index by on-site historical observation at eight sites in the northwestern Pacific Ocean. The mass bleaching events occurred during different years at different sites. The recorded years of the bleaching events matched well with DHW values >8 °C-weeks, and the logistically projected probability of bleaching against DHW showed a positive relationship. DHW provides a reasonable threshold for bleaching.

  9. Heat buffers improve capacity and exploitation degree of geothermal energy sources

    NARCIS (Netherlands)

    Ooster, A.van t; Wit, J. de; Janssen, E.G.O.N.; Ruigrok, J.

    2008-01-01

    This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy

  10. Quema de libros y antitotalitarismo. Manuel Rivas Los libros arden mal y Ray Bradbury Fahrenheit 451

    Directory of Open Access Journals (Sweden)

    Mechthild Albert

    2015-07-01

    Full Text Available El presente artículo se propone comparar dos novelas cuyo común denominador es el compromiso antitotalitario con motivo de la quema de libros considerada como el culmen de la barbarie anticultural, a saber Los libros arden mal (2006 de Manuel Rivas y Fahrenheit 451 (1953 de Ray Bradbury. Partiendo de las reflexiones de Fernando Rodríguez de la Flor en torno al biblioclasmo (2004, el paralelo se centra en los siguientes aspectos: la descripción zoo- y antropomorfizada de los libros en llamas; el biblioclasmo como expresión del totalitarismo, denotando asimismo una relación ambivalente y dialéctica entre cultura y barbarie; los movimientos subversivos dedicados a mantener el culto al libro y la tradición filosófico-literaria; la intertextualidad y el papel destacado de la Biblia en cuanto Libro de los libros. En conclusión se podrá constatar que, a pesar de numerosos puntos en común, en particular su compromiso antitotalitario, ambos autores se distinguen en concreto por su orientación política y el enfoque de su crítica cultural

  11. Montag e a memória perdida:notas sobre Fahrenheit 451 de François Truffaut

    OpenAIRE

    Silva, Terezinha Elisabeth da

    2003-01-01

    The paper analyzes aspects related to books and memory, in François Truffault’s Fahrenheit 451. It discusses issues related to the prohibition and destruction of books by totalitarian regimes. It emphasizes Montag’s trajectory through the movie and his transformation into a book protector and point out characteristics of the society portrayed in the film, specially its fondness for the image and for the oral information.

  12. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  13. Shivering heat production and core cooling during head-in and head-out immersion in 17 degrees C water.

    Science.gov (United States)

    Pretorius, Thea; Cahill, Farrell; Kocay, Sheila; Giesbrecht, Gordon G

    2008-05-01

    Many cold-water scenarios cause the head to be partially or fully immersed (e.g., ship wreck survival, scuba diving, cold-water adventure swim racing, cold-water drowning, etc.). However, the specific effects of head cold exposure are minimally understood. This study isolated the effect of whole-head submersion in cold water on surface heat loss and body core cooling when the protective shivering mechanism was intact. Eight healthy men were studied in 17 degrees C water under four conditions: the body was either insulated or exposed, with the head either out of the water or completely submersed under the water within each insulated/exposed subcondition. Submersion of the head (7% of the body surface area) in the body-exposed condition increased total heat loss by 11% (P < 0.05). After 45 min, head-submersion increased core cooling by 343% in the body-insulated subcondition (head-out: 0.13 +/- 0.2 degree C, head-in: 0.47 +/- 0.3 degree C; P < 0.05) and by 56% in the body-exposed subcondition (head-out: 0.40 +/- 0.3 degree C and head-in: 0.73 +/- 0.6 degree C; P < 0.05). In both body-exposed and body-insulated subconditions, head submersion increased the rate of core cooling disproportionally more than the relative increase in total heat loss. This exaggerated core-cooling effect is consistent with a head cooling induced reduction of the thermal core, which could be stimulated by cooling of thermosensitive and/or trigeminal receptors in the scalp, neck, and face. These cooling effects of head submersion are not prevented by shivering heat production.

  14. Claiming mastery of the word : The power of discourse in Ray Bradbury's Fahrenheit 451 and George Orwell's 1984

    OpenAIRE

    Wien, Henriette

    2012-01-01

    In this thesis, the main objective is to look at the power of discourse in relation to two dystopian texts, George Orwell’s Nineteen Eighty-Four (1948) and Ray Bradbury’s Fahrenheit 451 (1953). Additionally, the thesis proposes how these two texts, as well as literary texts in general, are suitable for the teaching of English as a foreign language (TEFL) in upper secondary school, especially in terms of a pupil’s personal development. Since a majority of dystopian literary texts are concerned...

  15. La traducción de la ciencia ficción: estudio de Fahrenheit 451 de Ray Bradbury

    OpenAIRE

    Szymyslik, Robert

    2015-01-01

    El siguiente trabajo está fundamentado en la investigación traductológica de la versión original, escrita en la lengua inglesa, de la novela Fahrenheit 451 (compuesta por Ray Bradbury) y de los textos meta españoles disponibles de esta obra, confeccionados por Alfredo Crespo (presentado por Plaza & Janés y por Debolsillo) y por Francisco Abelenda (publicado por Ediciones Minotauro), para lo que examinamos el contenido léxico-semántico ficticio compuesto por el autor para con...

  16. Heat-to-heat variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400-600{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Irradiation creep data on ferritic/martensitic steels are difficult and expensive to obtain, and are not available for fusion-relevant neutron spectra and displacement rates. Therefore, an extensive creep data rescue and analysis effort is in progress to characterize irradiation creep of ferritic/martensitic alloys in other reactors and to develop a methodology for applying it to fusion applications. In the current study, four tube sets constructed from three nominally similar heats of HT9 subjected to one of two heat treatments were constructed as helium-pressurized creep tubes and irradiated in FFTF-MOTA at four temperatures between 400 and 600{degrees}C. Each of the four heats exhibited a different stress-free swelling behavior at 400{degrees}C, with the creep rate following the swelling according to the familiar B{sub o} + DS creep law. No stress-free swelling was observed at the other three irradiation temperatures. Using a stress exponent of n = 1.0 as the defining criterion, {open_quotes}classic{close_quotes} irradiation creep was found at all temperatures, but, only over limited stress ranges that decreased with increasing temperature. The creep coefficient B{sub o} is a little lower ({approx}50%) than that observed for austenitic steel, but the swelling-creep coupling coefficient D is comparable to that of austenitic steels. Primary transient creep behavior was also observed at all temperatures except 400{degrees}C, and thermal creep behavior was found to dominate the deformation at high stress levels at 550 and 600{degrees}C.

  17. Effect of degree of lipomobilization on results of glucose test in dairy cows in heat stress

    Directory of Open Access Journals (Sweden)

    Cincović M.R.

    2012-01-01

    Full Text Available Cows exposed to heat stress exhibit a decreased ability to mobilize lipids due to increased sensitivity to insulin, which is expressed in a decreased concentration of NEFA. However, certain cows can preserve the level of lipid mobilization after adapting to heat stress. We assumed that cows that have a preserved ability to mobilize lipids are less sensitive to insulin and that they have a lower tolerance for glucose. The aim of this work was to compare the results of an intravenous glucose tolerance test in cows that exhibited, in prolonged heat stress, a decreased (NEFA0.30 mmol/l ability for lipid mobilization. Glucose concentration and NEFA concentration were measured following intravenous application of glucose. The mean glycaemic index value did not differ statistically significantly between the two groups of cows at 10, 15 and 20 minutes after glucose application (p>0.05, but there was a tendency at 10 and 15 minutes for the glycaemia to be higher in cows with preserved lipomobilization (p<0.1. At 30, 60 and 90 minutes after glucose application, glycaemia was statistically significantly higher (p<0.01; p<0.05 and p<0.05 in the group of cows with preserved lipomobilization. The glycaemic index values (mmol/l shown in the same order (30, 60 and 90 minutes were as follows 9.91±0.21: 9.23±0.41; 5.41±0.5: 4.67±0.33 and 4.31±0.39: 3.47±0.37. The mean value for NEFA concentration in samples originating from the two experimental groups of cows did not differ statistically significantly following glucose application. The NEFA concentration showed a tendency to be higher in cows with preserved lipid mobilization in comparison with cows with decreased lipomobilization at 20 and 30 minutes after glucose application (p<0.1. Following the intravenous glucose tolerance test, NEFA and glucose concentrations were in a significant negative correlation, and that correlation was more expressed in cows with decreased lipomobilization. Cows with preserved

  18. Fragmented Encounters, Social Slippages: Lin Huiyin's "In Ninety-Nine Degree Heat"

    Directory of Open Access Journals (Sweden)

    Carles Prado-Fonts

    2010-01-01

    Full Text Available The article reads Lin Huiyin’s short story “In Ninety-Nine Degree Heat” (1934 in relation to the context of 1930s China, as an innovative literary work which combines elements from both the Chinese and the Western traditions, and as a text which informs readers not only of the problematic of class and gender issues in 1930s Chinese society but also of the context of the liuxuesheng who returns to China –like Lin Huiyin herself. Focusing on questions like otherness, representation, and encounters, the essay analyzes how the episodic narrative structure of Lin’s short story echoes social and representational discourses in post-May Fourth China, at the same time that it explores issues such as social inequality, otherness and alienation, which were crucial to the liuxuesheng, and which reflect Lin’s own experience as a returned and alienated liuxuesheng at the time.

  19. Heat treatment of the common furniture beetle Anobium punctatum (Coleoptera: Anobiidae), at temperature between 45 degrees and 54 degrees C. under dry and humid conditions

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard; Jensen, Karl-Martin Vagn

    1998-01-01

    The combinations of exposure times and temperatures (45 degrees to 54 degrees C.) without addition of moisture necessary to obtain 100 per cent mortality were determined on all stages of commn furniture beetle, Anobium punctatum. Lethal combinations vary from minutes at 46 degrees to 5 minutes...

  20. Um Estudo do Discurso Psicanalítico no Filme Fahrenheit 451: a destruição do conhecimento

    Directory of Open Access Journals (Sweden)

    Paula Puhl

    2008-12-01

    Full Text Available O presente artigo busca fazer uma análise, a partir do filme Fahrenheit 451, por intermédio da personagem do bombeiro Montag, utilizando as idéias de Gaston Bachelard expostas em suas obras, em especial, em a Psicanálise do Fogo, a fim de verificar o significado do Fogo na obra cinematográfica. O pensamento de Bachelard se caracteriza pela busca da subjetividade na interpretação das imagens, ligando a poesia à ciência, servindo como suporte teórico para a interpretação da comunicação cinematográfica.

  1. The Omnipresence of Television and the Ascendancy of Surveillance/Sousveillance in Ray Bradbury’s Fahrenheit 451

    Directory of Open Access Journals (Sweden)

    Hassan Abootalebi

    2017-01-01

    Full Text Available This paper is an attempt to analyze Ray Bradbury’s Fahrenheit 451(1953 under the light of Jean Baudrillard’s notions on the media and the influences it exerts on people’s daily lives, and with an eye to Michel Foucault’s surveillance as well. The title-mentioned work, it is suggested, portrays a representative sample of a culture where different fields including books, education, and history fall under the influence of the media. Bradbury presents a society in which its inhabitants are bombarded with excessive data transmitted through television most of which is detrimental and not reliable. It is concluded that the presented culture in the novel is a microcosm of contemporary societies where authorities keep their subjects under control, engendering an atmosphere of anxiety, trepidation and apprehension for subversive forces and therefore preclude any disturbance on the part of them

  2. Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-04-01

    Full Text Available This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC waste heat recovery system with internal heat exchanger (IHE was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE, engine thermal efficiency increasing ratio (ETEIR, and output energy density of working fluid (OEDWF. In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

  3. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  4. Pre-heated dual-cured resin cements: analysis of the degree of conversion and ultimate tensile strength

    Directory of Open Access Journals (Sweden)

    Flávio Álvares França

    2011-04-01

    Full Text Available This study evaluated the degree of conversion (DC and ultimate tensile strength (UTS of dual-cured resin cements heated to 50º C prior to and during polymerization. Disc- and hourglass-shaped specimens of Rely X ARC (RX and Variolink II (VII were obtained using addition silicon molds. The products were manipulated at 25º C or 50º C and were subjected to 3 curing conditions: light-activation through a glass slide or through a pre-cured 2-mm thick resin composite disc, or they were allowed to self-cure (SC. All specimens were dark-stored dry for 15 days. For DC analysis, the resin cements were placed into the mold located on the center of a horizontal diamond on the attenuated total reflectance element in the optical bench of a Fourier Transformed Infrared spectrometer. Infrared spectra (n = 6 were collected between 1680 and 1500 cm-1, and DC was calculated by standard methods using changes in ratios of aliphatic-to-aromatic C=C absorption peaks from uncured and cured states. For UTS test, specimens (n = 10 were tested in tension in a universal testing machine (crosshead speed of 1 mm/min until failure. DC and UTS data were submitted to 2-way ANOVA, followed by Tukey's test (α= 5%. Both products showed higher DC at 50º C than at 25º C in all curing conditions. No significant difference in UTS was noted between most light-activated groups at 25º C and those at 50º C. VII SC groups showed higher UTS at 50º C than at 25º C (p < 0.05. Increased temperature led to higher DC, but its effects on resin cement UTS depended on the curing condition.

  5. Analysis of influence of change of office hours on degree of heating of isolation of puttee of anchor of electric motor of piston compressor

    Directory of Open Access Journals (Sweden)

    A.V. Mazur

    2012-12-01

    Full Text Available The article is devoted the question of research of factors which influence on changing of the mode of operations of electric motor of compressor, which in same queue influence on the degree of heating of isolation of winding of anchor ED.

  6. Irradiation creep and void swelling of two LMR heat of HT9 at ∼400 degrees C and 165 dpa

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Garner, F.A.

    1996-01-01

    Two nominally identical heats of HT9 ferritic-martensitic steel were produced, fabricated into pressurized tubes, and then irradiated in FFTF, using identical procedures. After reaching 165 dpa at ∼400C, small differences in strains associated with both phase-related change in lattice parameter and void swelling were observed in comparing the two heats. The creep strains, while different, exhibited the same functional relationship to the swelling behavior. The derived creep coefficients, the one associated with creep in the absence of swelling and the one directly responsive to swelling, were essentially identical for the two heats. Even more significantly, the creep coefficients for this bcc ferritic-martensitic steel appear to be very similar and possibly identical to those routinely derived from creep experiments on fcc austenitic steels

  7. Benzene Evolution Rates from Saltstone Prepared with 2X ITP Flowsheet Concentrations of Phenylborates and Heated to 85 Degrees C

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2000-01-01

    The Saltstone Facility provides the final treatment and disposal of low level liquid wastes streams. At the Saltstone Facility, the waste is mixed with cement, flyash, and slag to form a grout, which is pumped into large concrete vaults where it cures. The facility started radioactive operations in June 1990. High Level Waste Engineering requested Savannah River Technology Center to determine the effect of TPB and its decomposition products (i.e., 3PB, 2PB, and 1PB) on the saltstone process. Previous testing performed by SRTC determined saltstone benzene evolution rates a function of ITP filtrate composition. Testing by the Thermal Fluids Laboratory has shown at design operation, the temperature in the Z-area vaults could reach 85 degrees Celsius. Saltstone asked SRTC to perform additional testing to determine whether curing at 85 degrees Celsius could change saltstone benzene evolution rates. This document describes the test performed to determine the effect of curing temperature on the benzene evolution rates

  8. Influence of molecular weight and degree of substitution of various carboxymethyl celluloses on unheated and heated emulsion-type sausage models.

    Science.gov (United States)

    Gibis, Monika; Schuh, Valerie; Allard, Karin; Weiss, Jochen

    2017-03-01

    Four carboxymethyl celluloses (CMCs) differing in molecular weight (M W ) and degree of substitution (°DS) were initially characterized in NaCl solution (0.1 M) and on properties of emulsion-type sausage models. The impact of the different CMCs (0-2 wt%) on the rheological behavior and firmness of an emulsion-type sausage models containing 1.8wt% NaCl was studied. Rheology (unheated/heated) and firmness (heated) showed an increasing effect with increasing CMC concentrations. Addition of>1wt% CMC led to a decrease in storage modulus of the unheated/heated batter and to a decrease in firmness of heated independent of the CMC-type used. CLSM revealed that high amounts of CMCs prevented formation of a coherent protein matrix. Water-binding capacity indicated that CMC contributed to the water-retention capability of sausage batters. Small differences between the CMCs were observed using various °DS and similar M W. Results indicate that the addition of low CMC concentrations (≤0.5wt%) may help to reduce fat content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilled—making the fuel-production process more efficient. The microorganisms don’t require light, so they can be grown anywhere—inside a dark reactor or even in an underground facility.

  10. Pensamento centrado da maioria nômica em Fahrenheit 451: conceitos de Piaget e Moscovici na obra de Ray Bradbury

    Directory of Open Access Journals (Sweden)

    Mariana Costa Nascimento

    2015-06-01

    Full Text Available A impressão de livros proporcionou o avanço e quebra de fronteiras, em decorrência de sua circulação mundial advindas da expansão do comércio entre Europa e Ásia. Além disso, repercutiu em mudanças cognitivas, sociais e afetivas para os povos de todo o mundo. O impresso, desde a sua origem passou a ser o novo condutor de ideias. Devido a propagação de crenças e valores, os livros passaram a ser proibidos e queimados em vários países ditatoriais, visto que os impressos poderiam corromper a base social e moral da sociedade. Esse contexto pode ser observado na obra Fahrenheit 451 de Ruy Bradbury. O enredo narra a história de uma cidade em que os livros eram proibidos e como consequência queimados pelos bombeiros que executavam exclusivamente esse ofício. Partindo dessa obra procurou-se convergir os escritos de Bradbury com os conceitos de Jean Piaget e Sergi Moscovici. Os resultados indicam que a articulação entre os autores foi possível, pois a obra Fahrenheit 451 aborda aspectos psicossociais, pertinentes ao desenvolvimento individual e a relação dos grupos sociais formados pelos personagens da literatura. Além disso, a obra problematiza o papel do professor em sala de aula, visto que ao selecionar determinado autor e consequentemente excluir outros, o docente está “queimando” os demais escritores.

  11. Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study.

    Science.gov (United States)

    Brearley, Amanda L; Sherburn, Margaret; Galea, Mary P; Clarke, Sandy J

    2015-10-01

    What is the body temperature response of healthy pregnant women exercising at moderate intensity in an aqua-aerobics class where the water temperature is in the range of 28 to 33 degrees Celsius, as typically found in community swimming pools? An observational study. One hundred and nine women in the second and third trimester of pregnancy who were enrolled in a standardised aqua-aerobics class. Tympanic temperature was measured at rest pre-immersion (T1), after 35minutes of moderate-intensity aqua-aerobic exercise (T2), after a further 10minutes of light exercise while still in the water (T3) and finally on departure from the facility (T4). The range of water temperatures in seven indoor community pools was 28.8 to 33.4 degrees Celsius. Body temperature increased by a mean of 0.16 degrees Celsius (SD 0.35, ptemperature response was not related to the water temperature (T2 r = -0.01, p = 0.9; T3 r = -0.02, p=0.9; T4 r=0.03, p=0.8). Analysis of variance demonstrated no difference in body temperature response between participants when grouped in the cooler, medium and warmer water temperatures (T2 F=0.94, p=0.40; T3 F=0.93, p=0.40; T4 F=0.70, p=0.50). Healthy pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic exercise conducted in pools heated up to 33 degrees Celsius. The study provides evidence to inform guidelines for safe water temperatures for aqua-aerobic exercise during pregnancy. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  12. Numerical modeling of historical change of volcanic heat sources: Numerical modeling of heat and mass transport up to 1000 degree C; Kazansei netsugen no keiji henka no shumyureshon kaiseki: 1000 degree C madeno netsu{center{underscore}dot}ryutai shumyureshon kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Hanano, Mineyuki [JMC Geothermal Engineering Corp., Iwate (Japan)

    1998-12-01

    Temperature structure and its historical change around volcanos has been of interest for volcanology, geothermal development, etc. Magmatic intrusives have temperatures ranging from 700 to 850 degree C. Thus, there exists super-critical fluid around them. Numerical modeling of temperature changes around young volcanos and their heat sources thus requires treatment of the super-critical fluid. We describe one method for effective treatment of the super-critical fluid in the numerical modeling of porous media for the purpose of solving large-scale high-temperature problems of such phenomena. (author)

  13. They’re heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products

    Science.gov (United States)

    Caputi, Theodore L.; Leas, Eric; Dredze, Mark; Cohen, Joanna E.; Ayers, John W.

    2017-01-01

    Heat-not-burn tobacco products, battery powered devices that heat leaf tobacco to approximately 500 degrees Fahrenheit to produce an inhalable aerosol, are being introduced in markets around the world. Japan, where manufacturers have marketed several heat-not-burn brands since 2014, has been the focal national test market, with the intention of developing global marketing strategies. We used Google search query data to estimate, for the first time, the scale and growth potential of heat-not-burn tobacco products. Average monthly searches for heat-not-burn products rose 1,426% (95%CI: 746,3574) between their first (2015) and second (2016) complete years on the market and an additional 100% (95%CI: 60, 173) between the products second (2016) and third years on the market (Jan-Sep 2017). There are now between 5.9 and 7.5 million heat-not-burn related Google searches in Japan each month based on September 2017 estimates. Moreover, forecasts relying on the historical trends suggest heat-not-burn searches will increase an additional 32% (95%CI: -4 to 79) during 2018, compared to current estimates for 2017 (Jan-Sep), with continued growth thereafter expected. Contrasting heat-not-burn’s rise in Japan to electronic cigarettes’ rise in the United States we find searches for heat-not-burn eclipsed electronic cigarette searches during April 2016. Moreover, the change in average monthly queries for heat-not-burn in Japan between 2015 and 2017 was 399 (95% CI: 184, 1490) times larger than the change in average monthly queries for electronic cigarettes in the Unites States over the same time period, increasing by 2,956% (95% CI: 1729, 7304) compared to only 7% (95% CI: 3,13). Our findings are a clarion call for tobacco control leaders to ready themselves as heat-not-burn tobacco products will likely garner substantial interest as they are introduced into new markets. Public health practitioners should expand heat-not-burn tobacco product surveillance, adjust existing tobacco

  14. They're heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products.

    Directory of Open Access Journals (Sweden)

    Theodore L Caputi

    Full Text Available Heat-not-burn tobacco products, battery powered devices that heat leaf tobacco to approximately 500 degrees Fahrenheit to produce an inhalable aerosol, are being introduced in markets around the world. Japan, where manufacturers have marketed several heat-not-burn brands since 2014, has been the focal national test market, with the intention of developing global marketing strategies. We used Google search query data to estimate, for the first time, the scale and growth potential of heat-not-burn tobacco products. Average monthly searches for heat-not-burn products rose 1,426% (95%CI: 746,3574 between their first (2015 and second (2016 complete years on the market and an additional 100% (95%CI: 60, 173 between the products second (2016 and third years on the market (Jan-Sep 2017. There are now between 5.9 and 7.5 million heat-not-burn related Google searches in Japan each month based on September 2017 estimates. Moreover, forecasts relying on the historical trends suggest heat-not-burn searches will increase an additional 32% (95%CI: -4 to 79 during 2018, compared to current estimates for 2017 (Jan-Sep, with continued growth thereafter expected. Contrasting heat-not-burn's rise in Japan to electronic cigarettes' rise in the United States we find searches for heat-not-burn eclipsed electronic cigarette searches during April 2016. Moreover, the change in average monthly queries for heat-not-burn in Japan between 2015 and 2017 was 399 (95% CI: 184, 1490 times larger than the change in average monthly queries for electronic cigarettes in the Unites States over the same time period, increasing by 2,956% (95% CI: 1729, 7304 compared to only 7% (95% CI: 3,13. Our findings are a clarion call for tobacco control leaders to ready themselves as heat-not-burn tobacco products will likely garner substantial interest as they are introduced into new markets. Public health practitioners should expand heat-not-burn tobacco product surveillance, adjust existing

  15. They're heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products.

    Science.gov (United States)

    Caputi, Theodore L; Leas, Eric; Dredze, Mark; Cohen, Joanna E; Ayers, John W

    2017-01-01

    Heat-not-burn tobacco products, battery powered devices that heat leaf tobacco to approximately 500 degrees Fahrenheit to produce an inhalable aerosol, are being introduced in markets around the world. Japan, where manufacturers have marketed several heat-not-burn brands since 2014, has been the focal national test market, with the intention of developing global marketing strategies. We used Google search query data to estimate, for the first time, the scale and growth potential of heat-not-burn tobacco products. Average monthly searches for heat-not-burn products rose 1,426% (95%CI: 746,3574) between their first (2015) and second (2016) complete years on the market and an additional 100% (95%CI: 60, 173) between the products second (2016) and third years on the market (Jan-Sep 2017). There are now between 5.9 and 7.5 million heat-not-burn related Google searches in Japan each month based on September 2017 estimates. Moreover, forecasts relying on the historical trends suggest heat-not-burn searches will increase an additional 32% (95%CI: -4 to 79) during 2018, compared to current estimates for 2017 (Jan-Sep), with continued growth thereafter expected. Contrasting heat-not-burn's rise in Japan to electronic cigarettes' rise in the United States we find searches for heat-not-burn eclipsed electronic cigarette searches during April 2016. Moreover, the change in average monthly queries for heat-not-burn in Japan between 2015 and 2017 was 399 (95% CI: 184, 1490) times larger than the change in average monthly queries for electronic cigarettes in the Unites States over the same time period, increasing by 2,956% (95% CI: 1729, 7304) compared to only 7% (95% CI: 3,13). Our findings are a clarion call for tobacco control leaders to ready themselves as heat-not-burn tobacco products will likely garner substantial interest as they are introduced into new markets. Public health practitioners should expand heat-not-burn tobacco product surveillance, adjust existing tobacco

  16. HRD Degrees.

    Science.gov (United States)

    Geber, Beverly

    1987-01-01

    The author describes the growing movement toward accreditation for human resources development professionals. She covers the issue of diversity, undergraduate versus graduate degrees, and future trends. (CH)

  17. Heat resistance of Salmonella in various egg products.

    Science.gov (United States)

    Garibaldi, J A; Straka, R P; Ijichi, K

    1969-04-01

    The heat-resistance characteristics of Salmonella typhimurium Tm-1, a reference strain in the stationary phase of growth, were determined at several temperatures in the major types of products produced by the egg industry. The time required to kill 90% of the population (D value) at a given temperature in specific egg products was as follows: at 60 C (140 F), D = 0.27 min for whole egg; D = 0.60 min for whole egg plus 10% sucrose; D = 1.0 min for fortified whole egg; D = 0.20 min for egg white (pH 7.3), stabilized with aluminum; D = 0.40 min for egg yolk; D = 4.0 min for egg yolk plus 10% sucrose; D = 5.1 min for egg yolk plus 10% NaCl; D = 1.0 min for scrambled egg mix; at 55 C (131 F), D = 0.55 min for egg white (pH 9.2); D = 1.2 min for egg white (pH 9.2) plus 10% sucrose. The average Z value (number of degrees, either centigrade or fahrenheit, for a thermal destruction time curve to traverse one logarithmic cycle) was 4.6 C (8.3 F) with a range from 4.2 to 5.3 C. Supplementation with 10% sucrose appeared to have a severalfold greater effect on the heat stabilization of egg white proteins than on S. typhimurium Tm-1. This information should be of value in the formulation of heat treatments to insure that all egg products be free of viable salmonellae.

  18. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  19. Natural heat storage in a brine-filled solar pond in the Tully Valley of central New York

    Science.gov (United States)

    Hayhurst, Brett; Kappel, William M.

    2014-01-01

    The Tully Valley, located in southern Onondaga County, New York, has a long history of unusual natural hydrogeologic phenomena including mudboils (Kappel, 2009), landslides (Tamulonis and others, 2009; Pair and others, 2000), landsurface subsidence (Hackett and others, 2009; Kappel, 2009), and a brine-filled sinkhole or “Solar pond” (fig. 1), which is documented in this report. A solar pond is a pool of salty water (brine) which stores the sun’s energy in the form of heat. The saltwater naturally forms distinct layers with increasing density between transitional zones (haloclines) of rapidly changing specific conductance with depth. In a typical solar pond, the top layer has a low salt content and is often times referred to as the upper convective zone (Lu and others, 2002). The bottom layer is a concentrated brine that is either convective or temperature stratified dependent on the surrounding environment. Solar insolation is absorbed and stored in the lower, denser brine while the overlying halocline acts as an insulating layer and prevents heat from moving upwards from the lower zone (Lu and others, 2002). In the case of the Tully Valley solar pond, water within the pond can be over 90 degrees Fahrenheit (°F) in late summer and early fall. The purpose of this report is to summarize observations at the Tully Valley brine-filled sinkhole and provide supplemental climate data which might affect the pond salinity gradients insolation (solar energy).

  20. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    Science.gov (United States)

    2013-06-01

    Fahrenheit ft2 square foot FY fiscal year GHG greenhouse gas HGL HydroGeoLogic, Inc. HVAC heating, ventilation and air-conditioning LPG Liquefied...Petroleum Gas O&M operations and maintenance PV photovaltaic TMY Typical Meteorological Year USACE U.S. Army Corps of Engineers USDA U.S...the greenhouse gas emission reductions; and 6. Document the performance of the solar roof as it compares to a reflective “Cool Roof.” Among the

  1. Local heat transfer around a wall-mounted cube. Case of the attack angle of 45 deg.; Rippotai tokki mawari no kyokusho netsu dentatsu. Katamukikaku 45 degrees no baai

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H.; Igarashi, T.; Tsutsui, T. [National Defense Academy, Kanagawa (Japan)

    1999-11-25

    An experimental study was performed to investigate the local heat transfer around a cube mounted on the wall. The cube lied in the turbulent boundary layer. The flow angle of attack to the cube was 15 degree. The Reynolds number ranged from 4.2 x 10{sup 3} to 3.3 x 10{sup 4}. The surface temperature distributions around time cube were measured with thermocouples tinder the condition of a constant heat flux. The local h eat transfer is very high near the front corner on the top face of the cube. This high heat transfer region extends from the front corner to downstream along both edges. This is caused by the formation of lamb horn vortex. The local heat transfer is also high in time region of horseshoe vortex formed a round the cube. On the wall behind the cube, there is a pair of minimum heat transfer region. The average Nusselt number on each face of the cube is given as a function of Reynolds number. The overall Nusselt number of time cube is expressed by Nu{sub m}=0.43Re{sup 0.58}. (author)

  2. PALAVRA E MEMÓRIA NOS HOMENS-LIVROS DE FAHRENHEIT 451: A LITERATURA DE FICÇÃO CIENTÍFICA E A CONTEMPLAÇÃO DAS RUÍNAS DO FUTURO

    Directory of Open Access Journals (Sweden)

    Marília Flores Seixas de Oliveira

    2009-01-01

    Full Text Available This paper discusses the possible heuristic effects of reading dystopian literary texts and its reflective critical dimension due to modern sociability and its views of the future. It analyses the importance of reading and literature in the development of a critical awareness that will promote changes and ethic behaviors as opposed to alienation and submission to modernity, observed in the metaphor of the “book-men” in the novel Fahrenheit 451 by Ray Bradbury. It addresses theoretical aspects of the speculative literature of science fiction by anchoring on postulations of esthetic reception and proposing, as an analytical road for these texts, the valorization of the diegetic content, the perlocutory dimension, the emphasis on meaning and on text as symbolic form, and the interdisciplinary perception which is activated through the reading process and the construction of the “memories of the future”.

  3. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  4. An Analysis of U.S. Army Health Hazard Assessments During the Acquisition of Military Materiel

    Science.gov (United States)

    2010-06-03

    HAZARD FREQUENCY RELATIVE FREQUENCY 1 ACOUSTICAL ENERGY - STEADY STATE NOISE 451 0.1561 2 ACOUSTICAL ENERGY - IMPULSE NOISE 319 0.1104 3...effects due to lack of oxygen ranging from decreased coordination to death - Temperature ranging from 68 – 76 degrees Fahrenheit (F) - Humidity...for personal hygiene, heating the water to 95-105 degrees Fahrenheit (F) will promote personal hygiene and aid in the prevention of the spread of

  5. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  6. Experimental investigation of a manifold heat-pipe heat exchanger

    International Nuclear Information System (INIS)

    Konev, S.V.; Wang Tszin' Lyan'; D'yakov, I.I.

    1995-01-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered

  7. The Degree Cycle

    DEFF Research Database (Denmark)

    Wood, Johanna

    2016-01-01

    , empirical data relevant to the development of the degree adverb function is presented and possible relevant constructions identified. It is argued that the degree adverb function of that possibly occurs later than the historical dictionaries indicate. The degree adverb function of this is challenging...

  8. Optimized raw material usage and utilization degree in a polygeneration plant for heat, electricity, biofuel and market fuel; Optimal raavaruinsats och utnyttjandegrad i energikombinat foer vaerme, el, biodrivmedel och avsalubraensle

    Energy Technology Data Exchange (ETDEWEB)

    Jennie Rodin; Olle Wennberg; Mikael Berntsson; Rolf Njurell; Ola Thorson

    2012-01-15

    Energy and economic efficiency for six different types of energy combines which include heat, electricity, pellets and fuel production have been studied. The basic case is a conventional power plant, which subsequently is expanded with various additional facilities (dryer, pellets and/or fuel). Maximum exploitation of the product against inserted biofuel was obtained in case 6, pulp mills that use waste heat for district heating supply and drying of bark. Case 6 had also the lowest payoff period; two years. Of the CHP [combined heat and power] based energy combines 'the big combine' with four different products generally showed best marginal efficiency and economy. The results indicate that drying may be an economical way to extend the operating season and increase the production of electricity in a CHP based energy combine.

  9. Three story residence with solar heat--Manchester, New Hampshire

    Science.gov (United States)

    1981-01-01

    When heat lost through ducts is counted for accurate performance assessment, solar energy supplied 56 percent of building's space heating load. Average outdoor temperature was 53 degrees F; average indoor temperature was 69 degrees F. System operating modes included heating from solar collectors, storing heat, heating from storage, auxiliary heating with oil fired furnace, summer venting, and hot water preheating.

  10. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool ...

  11. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with these ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the ...

  12. Characteristic of 120 degree C thermoluminescence peak of iceland spar

    International Nuclear Information System (INIS)

    Lu Xinwei; Han Jia

    2006-01-01

    The basic characteristic of 120 degree C thermoluminescence peak of iceland spar was studied. The experimental result indicates the longevity of 120 degree C thermoluminescence peak of iceland spar is about 2 h under 30 degree C. The thermoluminescence peak moves to the high temperature when the heating speed increasing. The intensity of 120 degree C thermoluminescence peak of iceland spar is directly proportional to radiation dose under 15 Gy. (authors)

  13. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  14. Physics to a degree

    CERN Document Server

    Thomas, EG

    2014-01-01

    Physics to a Degree provides an extensive collection of problems suitable for self-study or tutorial and group work at the level of an undergraduate physics course. This novel set of exercises draws together the core elements of an undergraduate physics degree and provides students with the problem solving skills needed for general physics' examinations and for real-life situations encountered by the professional physicist. Topics include force, momentum, gravitation, Bernoulli's Theorem, magnetic fields, blackbody radiation, relativistic travel, mechanics near the speed of light, radioactive

  15. Epilogue: degrees of transparency

    NARCIS (Netherlands)

    Hengeveld, K.

    2011-01-01

    In this epilogue the results of the analyses of four different languages in the preceding papers are compared. It is shown that the degrees of transparency of these languages can be represented on an implicational scale, and that the features themselves can be ranked on a transparency scale as well.

  16. Registered Nurse (Associate Degree).

    Science.gov (United States)

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of registered nurse (with an associate degree), lists technical competencies and competency builders for 19 units pertinent to the health technologies cluster in general and 5 units specific to the occupation of registered nurse. The following…

  17. Degree distribution in discrete case

    International Nuclear Information System (INIS)

    Wang, Li-Na; Chen, Bin; Yan, Zai-Zai

    2011-01-01

    Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.

  18. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  19. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  20. When Graduate Degrees Prostitute the Educational Process: Degrees Gone Wild

    Science.gov (United States)

    Lumadue, Richard T.

    2006-01-01

    Graduate degrees prostitute the educational process when they are sold to consumers by unaccredited degree/diploma mills as being equivalent to legitimate, bona-fide degrees awarded by accredited graduate schools. This article carefully analyzes the serious problems of bogus degrees and their association with the religious higher education…

  1. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  2. Degrees of democraticity

    Directory of Open Access Journals (Sweden)

    Lars Bergström

    2011-05-01

    Full Text Available People have tended to load their different conceptions of democracy with their own political ideals; in this paper it is argued that normative and definitional questions should rather be separated, so that political philosophers and political scientists may adopt the same concept of democracy, even if they disagree normatively or politically. Moreover, it is argued that we should replace an absolute notion of democracy by a relativized notion, which allows for different degrees of democraticity. This facilitates the separation of normative and conceptual issues and it is convenient in contexts in which “democratic deficits” are discussed – as e.g. when democracy is to be implemented on a supranational level. Moreover, it has the consequence that democratic deficits are not necessarily bad. DOWNLOAD THIS PAPER FROM SSRN: http://ssrn.com/abstract=1837342

  3. Subnucleon freedom degrees

    International Nuclear Information System (INIS)

    Frois, B.

    1985-03-01

    The nucleon is nothing but the fundamental state of a complex object, the Baryon. It has a great number of excited states which are significative of its quark structure. The aim of nuclear physics today is to understand the interaction dynamics in nuclei of particles whose existence is known by high energy physics. This lecture aims at defining the frontier of current comprehension in this field by some examples. First quarks and gluons are presented. Proofs of existence of pinpoint particles inside the nucleus are given. Then a direct proof of the concept validity of the nucleon orbit in the nucleus is given. Mesonic freedom degrees are also studied. Some experience examples in which meson exchange exist clearly are shown. At last, the role of subnucleonic effects in the nuclear reactions is shown [fr

  4. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  5. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  6. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  7. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  8. Degree-degree correlations in random graphs with heavy-tailed degrees

    NARCIS (Netherlands)

    Hofstad, van der R.W.; Litvak, N.

    2014-01-01

    Mixing patterns in large self-organizing networks, such as the Internet, the World Wide Web, social, and biological networks are often characterized by degree-degree dependencies between neighboring nodes. In assortative networks, the degree-degree dependencies are positive (nodes with similar

  9. Degree-Degree Dependencies in Random Graphs with Heavy-Tailed Degrees

    NARCIS (Netherlands)

    van der Hofstad, Remco; Litvak, Nelly

    2014-01-01

    Mixing patterns in large self-organizing networks, such as the Internet, the World Wide Web, social, and biological networks are often characterized by degree-degree dependencies between neighboring nodes. In assortative networks, the degree-degree dependencies are positive (nodes with similar

  10. Microstructure of wood charcoal prepared by flash heating

    NARCIS (Netherlands)

    Kurosaki, F; Ishimaru, K; Hata, T; Bronsveld, P; Kobayashi, E; Imamura, Y

    2003-01-01

    Carbonized wood prepared by flash heating at 800 degreesC for I h shows a different microstructure and surface chemical structure than char formed after slow heating at 4 degreesC/min to 800 degreesC for I h. Flash heating produces pores that are surrounded by aggregates of carbon structures 25 to

  11. The creation of cooling degree (CDD) and heating degree day (HDD) climatic maps for South Africa

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2015-12-01

    Full Text Available The current six climatic regions map used in the SANS 204 (2011) South African National Building Standards does not optimally support quantified design decisions within the built environment. It also does not give an indication of the amount...

  12. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  13. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  14. Floor heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, U

    1984-02-01

    The question of whether PPC- and VPE-floor heating pipes can endure damage when incompletely imbedded in the floor finish is investigated in an experimental setup. An expansion of the pipe, caused by a temperature increase from 20/sup 0/C to 50/sup 0/C was measured and considered too small to deduce the degree of danger from the damage.

  15. 10 CFR 420.2 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... necessary to raise the temperature of one pound of water one degree Fahrenheit at 39.2 degrees Fahrenheit... or instrumentality of a local government exclusive of institutions of higher learning and hospitals...

  16. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  17. Kinetic Super-Resolution Long-Wave Infrared (KSR LWIR) Thermography Diagnostic for Building Envelopes: Camp Lejeune, NC

    Science.gov (United States)

    2015-08-18

    weather station logs, which are precise only to a single degree Fahrenheit . This introduces some error in the heat flow model, which is sensitive to...Investigator, COR Navi Singh Essess (857) 445-4135 Navi@essess.com Team Leader Thomas Burton USMC, Camp Lejeune, Facilities Engineers 910- 451

  18. Heat exchanges in coarsening systems

    Energy Technology Data Exchange (ETDEWEB)

    Corberi, Federico [Dipartimento di Fisica ' E R Caianiello' , Università di Salerno, via Ponte don Melillo, 84084 Fisciano (Italy); Gonnella, Giuseppe; Piscitelli, Antonio [Dipartimento di Fisica, Università di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy)

    2011-10-15

    This paper is a contribution to the understanding of the thermal properties of ageing systems where statistically independent degrees of freedom with greatly separated time scales are expected to coexist. Focusing on the prototypical case of quenched ferromagnets, where fast and slow modes can be respectively associated with fluctuations in the bulk of the coarsening domains and in their interfaces, we perform a set of numerical experiments specifically designed to compute the heat exchanges between different degrees of freedom. Our studies promote a scenario with fast modes acting as an equilibrium reservoir to which interfaces may release heat through a mechanism that allows fast and slow degrees to maintain their statistical properties independently.

  19. Heat Capacity Analysis Report

    International Nuclear Information System (INIS)

    Findikakis, A.

    2004-01-01

    The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore

  20. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James [Consortium of Advanced Residential Buildings, Norwalk, CT (United States); Aldrich, Robb [Consortium of Advanced Residential Buildings, Norwalk, CT (United States)

    2015-08-19

    Traditionally, air-source heat pumps (ASHPs) have been used more often in warmer climates; however, some new ASHPs are gaining ground in colder areas. These systems operate at subzero (Fahrenheit) temperatures and many do not include backup electric resistance elements. There are still uncertainties, however, about capacity and efficiency in cold weather. Also, questions such as “how cold is too cold?” do not have clear answers. These uncertainties could lead to skepticism among homeowners; poor energy savings estimates; suboptimal system selection by heating, ventilating, and air-conditioning contractors; and inconsistent energy modeling. In an effort to better understand and characterize the heating performance of these units in cold climates, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven, ductless ASHPs across the Northeast. Operating data were collected for three Mitsubishi FE18 units, three Mitsubishi FE12 units, and one Fujitsu 15RLS2 unit. The intent of this research was to assess heat output, electricity consumption, and coefficients of performance (COPs) at various temperatures and load conditions. This assessment was accomplished with long- and short-term tests that measured power consumption; supply, return, and outdoor air temperatures; and airflow through the indoor fan coil.

  1. The Kilo-Degree Survey

    NARCIS (Netherlands)

    de Jong, J. T. A.; Kuijken, K.; Applegate, D.; Begeman, K.; Belikov, A.; Blake, C.; Bout, J.; Boxhoorn, D.; Buddelmeijer, H.; Buddendiek, A.; Cacciato, M.; Capaccioli, M.; Choi, A.; Cordes, O.; Covone, G.; Dall'Ora, M.; Edge, A.; Erben, T.; Franse, J.; Getman, F.; Grado, A.; Harnois-Deraps, J.; Helmich, E.; Herbonnet, R.; Heymans, C.; Hildebrandt, H.; Hoekstra, H.; Huang, Z.; Irisarri, N.; Joachimi, B.; Köhlinger, F.; Kitching, T.; La Barbera, F.; Lacerda, P.; McFarland, J.; Miller, L.; Nakajima, R.; Napolitano, N. R.; Paolillo, M.; Peacock, J.; Pila-Diez, B.; Puddu, E.; Radovich, M.; Rifatto, A.; Schneider, P.; Schrabback, T.; Sifon, C.; Sikkema, G.; Simon, P.; Sutherland, W.; Tudorica, A.; Valentijn, E.; van der Burg, R.; van Uitert, E.; van Waerbeke, L.; Velander, M.; Kleijn, G. V.; Viola, M.; Vriend, W.-J.

    2013-01-01

    The Kilo-Degree Survey (KiDS), a 1500-square-degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST), is described. KiDS will image two fields in u-,g-,r- and i-bands and, together with the VIKING survey, produce nine-band (u- to

  2. Research Degrees as Professional Education?

    Science.gov (United States)

    Barnacle, Robyn; Dall'Alba, Gloria

    2011-01-01

    There is an increasing trend within higher education and, more specifically, in higher degrees by research, to treat a professional skills set as a desirable graduate outcome. The increasing value that is being placed on a professional skills set in large part reflects growing interest around the world in the role of research degrees in labour…

  3. Set our Master's degrees free

    Science.gov (United States)

    Padman, Rachael

    2010-04-01

    Making UK undergraduate physics degrees longer must have seemed like a good idea at the time. Back in the early 1990s the standard three-year Bachelor's physics degree (four years in Scotland) was under pressure at both ends. The A-level curriculum - one of the requirements for entry onto a degree course - was being increasingly modularized, and dumbed down. Physics students were arriving at university less well prepared than in the past and there was an increasing awareness that graduates of five-year continental degree courses were better equipped for a professional scientific career than those in the UK. At the same time, local education authorities in the UK were required to provide full funding for a first degree, whether for three or four years.

  4. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  5. HadISST (1-degree)/HadISST (1-degree)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly version of HadISST sea surface temperature component (1-degree). See Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell,...

  6. Degree-degree correlations in directed networks with heavy-tailed degrees

    NARCIS (Netherlands)

    van der Hoorn, W.L.F.; Litvak, Nelli

    2013-01-01

    In network theory, Pearson's correlation coefficients are most commonly used to measure the degree assortativity of a network. We investigate the behavior of these coefficients in the setting of directed networks with heavy-tailed degree sequences. We prove that for graphs where the in- and

  7. Degree-degree dependencies in directed networks with heavy-tailed degrees

    NARCIS (Netherlands)

    van der Hoorn, W.L.F.; Litvak, Nelly

    2015-01-01

    In network theory, Pearson’s correlation coefficients are most commonly used to measure the degree assortativity of a network. We investigate the behavior of these coefficients in the setting of directed networks with heavy-tailed degree sequences. We prove that for graphs where the in- and

  8. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  9. Fracture toughness testing of V-4Cr-4Ti at 25{degrees}C and -196{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.X.; Kurtz, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Measurements of the fracture toughness of the production-scale heat (832665) of V-4Cr-4Ti have been performed at 25{degrees}C and {minus}196{degrees}C using compact tension (CT) specimens. Test specimens were vacuum annealed at either 1000{degrees}C for 1 hour (HT1) or 1050{degrees}C for two hours (HT2). Specimens given the HT1 treatment were annealed after final machining, whereas the HT2 specimens received the 1050{degrees}C anneal at Teledyne Wah Chang prior to final machining. Following machining HT2 specimens were then vacuum annealed at 180{degrees}C for two hours to remove hydrogen. Specimens treated using HT1 had a partially recrystallized microstructure and those treated using HT2 had a fully recrystallized microstructure. The fracture toughness at 25{degrees}C was determined by J-integral tests and at {minus}196{degrees}C by ASTM E 399 type tests. Toughness values obtained at {minus}196{degrees}C were converted to J-integral values for comparison to the 25{degrees}C data. The 25{degrees}C fracture toughness was very high with none of the specimens giving valid results per ASTM criteria. Specimens fractured by microvoid coalescence. The fracture toughness at {minus}196{degrees}C was much lower than that at 25{degrees}C and the fracture surface showed predominantly cleavage features. The present results show a transition from ductile to brittle behavior with decreasing test temperature which is not observed from one-third scale Charpy impact tests. The fracture toughness at {minus}196{degrees}C was still quite high, however, at about 75 kJ/m{sup 2}. Delaminations in planes normal to the thickness direction were seen at both test temperatures. Fracture surfaces inside the delaminations exhibited nearly 100% cleavage facets. The cause of the brittle delaminations was not determined, but will be a subject for further investigation.

  10. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  11. The system Cu-Rh-S at 900 degrees, 700 degrees, 540 degrees and 500 degrees C

    DEFF Research Database (Denmark)

    Karup-Møller, Sven; Makovicky, E.

    2007-01-01

    Phase relations in the dry condensed system Cu-Rh-S were determined at 900, 700, 540 and 500 degrees C. At 900 degrees C, the system contains digenite, four rhodium sulfides (Rh17S15, Rh3S4, Rh2S3 and RhS similar to 3), three ternary sulfides (CuRh2S4, CuxRhS3+x and a fibrous sulfide in the range...

  12. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  13. Heat generated by knee prostheses.

    Science.gov (United States)

    Pritchett, James W

    2006-01-01

    Temperature sensors were placed in 50 knees in 25 patients who had one or both joints replaced. Temperature recordings were made before walking, after walking, and after cycling. The heat generated in healthy, arthritic, and replaced knees was measured. The knee replacements were done using eight different prostheses. A rotating hinge knee prosthesis generated a temperature increase of 7 degrees C in 20 minutes and 9 degrees C in 40 minutes. An unconstrained ceramic femoral prosthesis articulating with a polyethylene tibial prosthesis generated a temperature increase of 4 degrees C compared with a healthy resting knee. The other designs using a cobalt-chrome alloy and high-density polyethylene had temperature increases of 5 degrees-7 degrees C with exercise. Frictional heat generated in a prosthetic knee is not immediately dissipated and may result in wear, creep, and other degenerative processes in the high-density polyethylene. Extended periods of elevated temperature in joints may inhibit cell growth and perhaps contribute to adverse performance via bone resorption or component loosening. Prosthetic knees generate more heat with activity than healthy or arthritic knees. More-constrained knee prostheses generate more heat than less-constrained prostheses. A knee with a ceramic femoral component generates less heat than a knee with the same design using a cobalt-chromium alloy.

  14. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  15. Device for measuring a burnup degree

    International Nuclear Information System (INIS)

    Ito, Toshiaki; Goto, Seiichiro

    1979-01-01

    Purpose: To measure the burnup degree at high efficiency and accuracy. Constitution: The outer metal wall of fuel assemblies is heated under gamma radiation with long half life gamma rays in inverse proportion to the burnup degree and issues infrared radiation in proportion to the intensity of the gamma rays. An image pick-up tube is opposed to one surface of the fuel assemblies to detect the radiated infrared rays. Since the output signal from the pick-up tube is subjected to the absorptive damping by the distance between the pick-up tube and the fuel assembly, as well as water filled in the gap therebetween, it is corrected through a main amplifier comprising a signal correction circuit composed of a characteristic section inverse to the absorption property and a characteristic section inverse to the square of the distance. The corrected output signal is displayed on a display unit such as CRT or recorded in a film or a magnetic tape. (Furukawa, Y.)

  16. Cooling hyperthermic firefighters by immersing forearms and hands in 10 degrees C and 20 degrees C water.

    Science.gov (United States)

    Giesbrecht, Gordon G; Jamieson, Christopher; Cahill, Farrell

    2007-06-01

    Firefighters experience significant heat stress while working with heavy gear in a hot, humid environment. This study compared the cooling effectiveness of immersing the forearms and hands in 10 and 20 degrees C water. Six men (33 +/- 10 yr; 180 +/- 4 cm; 78 +/- 9 kg; 19 +/- 5% body fat) wore firefighter 'turn-out gear' (heavy clothing and breathing apparatus weighing 27 kg) in a protocol including three 20-min exercise bouts (step test, 78 W, 40 degrees C air, 40% RH) each followed by a 20-min rest/cooling (21 degrees C air); i.e., 60 min of exercise, 60 min of cooling. Turn-out gear was removed during rest/cooling periods and subjects either rested (Control), immersed their hands in 10 or 20 degrees C water (H-10, H-20), or immersed their hands and forearms in 10 or 20 degrees C water (HF-10, HF-20). In 20 degrees C water, hand immersion did not reduce core temperature compared with Control; however, including forearm immersion decreased core temperature below Control values after both the second and final exercise periods (p hand immersion produced a lower core temperature (0.8 degrees C above baseline) than all other conditions (1.1 to 1.4 degrees C above baseline) after the final exercise period (p Hand and forearm immersion in cool water is simple, reduces heat strain, and may increase work performance in a hot, humid environment. With 20 degrees C water, forearms should be immersed with the hands to be effective. At lower water temperatures, forearm and/or hand immersion will be effective, although forearm immersion will decrease core temperature further.

  17. Diurnal variability of heat fluxes and heat content at a few locations off central east coast of India during April 1989

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, B.P.; Rao, V.S.; Rao, T.V.N.

    Diurnal variability of surface wind speed, net heat exchange, sea surface temperature, vertical thermal structure and heat content at three locations, viz., station A (17 degrees 59'N, 83 degrees 53.9'E), station B (17 degrees 00'N, 82 degrees 32...

  18. Life after a Humanities Degree

    Science.gov (United States)

    Masola, Athambile

    2016-01-01

    This article explores the experiences of a humanities graduate after leaving the academy. The author considers her own education in light of the historical changes in South Africa's education system. The article is a personal account of the questions and challenges encountered in choosing a humanities degree in a context where a tertiary education…

  19. Special Degree Programs for Adults

    Science.gov (United States)

    Continuing Education for Adults, 1970

    1970-01-01

    Briefly describes Bachelor of Liberal Studies programs at six colleges and universities, the Master of Liberal Studies program at Boston University, and the Master of Engineering degree at the University of California at Los Angeles, as well as programs being conducted on a graduate level by Arthur D. Little, Inc. for government and industrial…

  20. Astronautics Degrees for Space Industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R.; Erwin, D.; Kunc, J.

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science degree program in Astronautics combines basic science and engineering classes with specialized astronautics classes. The Master of Science degree program in Astronautics offers classes in various areas of space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers. The new world of distance learning presents new challenges and opens new opportunities. We show how the transformation of distance learning and particularly the introduction of webcasting transform organization of the program and class delivery. We will describe in detail the academic focus of the program, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  1. Degree sequence in message transfer

    Science.gov (United States)

    Yamuna, M.

    2017-11-01

    Message encryption is always an issue in current communication scenario. Methods are being devised using various domains. Graphs satisfy numerous unique properties which can be used for message transfer. In this paper, I propose a message encryption method based on degree sequence of graphs.

  2. Aerospace Technology (Aerospace Engineering Degree)

    OpenAIRE

    Tiseira Izaguirre, Andrés Omar; Blanco Rodríguez, David; Carreres Talens, Marcos; FAJARDO PEÑA, PABLO

    2013-01-01

    Apuntes de la asignatura Tecnología Aeroespacial Tiseira Izaguirre, AO.; Blanco Rodríguez, D.; Carreres Talens, M.; Fajardo Peña, P. (2013). Aerospace Technology (Aerospace Engineering Degree). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/35263

  3. Alterations in reproductive hormones during heat stress in dairy cattle

    African Journals Online (AJOL)

    Alterations in reproductive hormones during heat stress in dairy cattle. ... Heat stress reduces the degree of dominance of the selected follicle and this can be seen as reduced steroidogenic capacity of its theca and ... from 32 Countries:.

  4. The contact heat transfer between the heating plate and granular materials in rotary heat exchanger under overloaded condition

    Directory of Open Access Journals (Sweden)

    Luanfang Duan

    2018-03-01

    Full Text Available In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 – 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder’s model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%. Keywords: Rotary heat exchanger, Contact heat transfer, Granular material, Heating plate, Overloaded

  5. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  6. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  7. Degree-based graph construction

    International Nuclear Information System (INIS)

    Kim, Hyunju; Toroczkai, Zoltan; Erdos, Peter L; Miklos, Istvan; Szekely, Laszlo A

    2009-01-01

    Degree-based graph construction is a ubiquitous problem in network modelling (Newman et al 2006 The Structure and Dynamics of Networks (Princeton Studies in Complexity) (Princeton, NJ: Princeton University Press), Boccaletti et al 2006 Phys. Rep. 424 175), ranging from social sciences to chemical compounds and biochemical reaction networks in the cell. This problem includes existence, enumeration, exhaustive construction and sampling questions with aspects that are still open today. Here we give necessary and sufficient conditions for a sequence of nonnegative integers to be realized as a simple graph's degree sequence, such that a given (but otherwise arbitrary) set of connections from an arbitrarily given node is avoided. We then use this result to present a swap-free algorithm that builds all simple graphs realizing a given degree sequence. In a wider context, we show that our result provides a greedy construction method to build all the f-factor subgraphs (Tutte 1952 Can. J. Math. 4 314) embedded within K n setmn S k , where K n is the complete graph and S k is a star graph centred on one of the nodes. (fast track communication)

  8. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  9. Heat stroke in Hajj ceremonies

    Directory of Open Access Journals (Sweden)

    Sadr Sh

    1995-04-01

    Full Text Available Three hundred and seventy seven patients with different degrees of heat stroke were treated by the haji medical team of the Islamic Republic of Iran in 1371 (1992. Studies were carried out on sex of the patients, time and intensity of occurance and the vital signs after a medical examination. The most important method of treatment employed for intense heat stroke was iced bath. This procedure leads to 64.5% of patients being treated in te specific heat stroke unit and 35% were sent to a general hospital ward for furthur treatment. Morbidity and mortality were seen in less than 0.5% of the patients.

  10. Clinical observation on thermophysics in radiofrequency heating

    International Nuclear Information System (INIS)

    Qi Chao; Li Dingjiu; Guo Baozhong; Shi Yonggang; Yang Daoke

    2002-01-01

    Objective: To study the physical characters of NRL-001 heating machine. Methods: 151 patients with deep-seated tumors were heated by NRL-001 heating machine in the recent one year. NRL-001 heating machine with two pairs of perpendicular electrodes intercross the two magnetic fields at the center. thermocouples were placed in rectum, ear, esophageal lumen, tumor mass and peritoneal cavity for temperature measurement. The accuracy of the measurement system was evaluated by comparing the rectal mercury thermometer reading with the machine measured value right after the completion of heating. Results: The deviation between the values read by rectal mercury thermometer and the machine was 0.1-0.7 degree C. Intra-tumoral measurement in a patient with lung carcinoma revealed that the temperature within the tumor was 2.0 degree C higher than that in the esophagus. When the peritoneal cavity was heated after perfusion with hot normal saline, the temperature in peritoneal cavity was 0.5 degree C higher than that in the rectum which became even with heating time. Temperature homogeneity was obtained after 50 minutes and abdominal massage was able to shorten this interval. Conclusions: The temperature measurement system of NRL-001 heating machine, having acceptable discrepancies from the mercury thermometer, is reliable. The temperature in the ear, esophagus and rectum can be trusted when treating esophageal or peritoneo-pelvic lesions. Temperature in the esophagus is 2.0 degree C lower than that in lung tumor. Temperature measured in the heated region is about 2.0 degree C higher than that over the whole body. Intra-tumoral temperature measurement is highly recommended if possible. Peritoneo-pelvic heating after peritoneal perfusion is feasible, with the temperature homogeneity obtained as heating time is prolonged, thereby heating time over 120 min is recommended. Temperature measurement is, in fact, necessary for every session of hyperthermia

  11. Self-heating, gamma heating and heat loss effects on resistance temperature detector (RTD) accuracy

    International Nuclear Information System (INIS)

    Qian, T.; Hinds, H.W.; Tonner, P.

    1997-01-01

    Resistance temperature detectors (RTDs) are extensively used in CANDU nuclear power stations for measuring various process and equipment temperatures. Accuracy of measurement is an important performance parameter of RTDs and has great impact on the thermal power efficiency and safety of the plant. There are a number of factors that contribute to some extent to RTD measurement error. Self-heating, gamma heating and the heat-loss throughout conduction of the thermowell are three of these factors. The degree to which these three affect accuracy of RTDs used for the measurement of reactor inlet header temperature (RIHT) has been analyzed and is presented in this paper. (author)

  12. Constructive Dimension and Turing Degrees

    OpenAIRE

    Bienvenu, Laurent; Doty, David; Stephan, Frank

    2007-01-01

    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of...

  13. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  14. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  15. District heating

    International Nuclear Information System (INIS)

    Hansen, L.

    1993-01-01

    The environmental risks and uncertainties of a high-energy future are disturbing and give rise to several reservations concerning the use of fossil fuels. A number of technologies will help to reduce atmospheric pollution. In Denmark special importance is attached to the following: Energy conservation. Efficient energy conversion. Renewable energy sources. District heating, combined production of heat and power. Many agree that district heating (DH), produced by the traditional heat-only plant, and combined heat and power (CHP) have enormous potential when considering thermal efficiency and lowered environmental impacts: The basic technology of each is proven, it would be relatively simple to satisfy a substantial part of the energy demand, and their high efficiencies mean reduced pollution including greenhouse gas emissions. This is especially important in high population density areas - the obviously preferred sites for such energy generation. Compared with individual heating DH can provide a community with an operationally efficient and most often also an economically competitive heat supply. This is particularly true under the circumstances where the DH system is supplied from CHP plants. Their use results in very substantial improvements in overall efficiency. Further environmental improvements arise from the reduced air pollution obtainable in reasonably large CHP plants equipped with flue gas cleaning to remove particles, sulphur dioxide, and nitrogen acids. As a consequence of these considerations, DH plays an important role in fulfilling the space and water heating demand in many countries. This is especially the case in Denmark where this technology is utilised to a very great extent. Indeed, DH is one of the reasons why Denmark has relatively good air quality in the cities. (au)

  16. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  17. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  18. Unwanted heat

    International Nuclear Information System (INIS)

    Benka, M.

    2006-01-01

    The number of small heating plants using biomass is growing. According to TREND's information, Hrinovska energeticka, is the only one that controls the whole supplier chain in cooperation with its parent company in Bratislava. Starting with the collection and processing of wood chips by burning, heat production and heat distribution to the end user. This gives the company better control over costs and consequently its own prices. Last year, the engineering company, Hrinovske storjarne, decided to focus only on its core business and sold its heating plant, Hrinovske tepelne hospodarstvo, to Intech Slovakia and changed the company name to Hrinovska energeticka. Local companies and inhabitants were concerned that the new owner would increase prices. But the company publicly declared and kept promises that the heat price for households would remain at 500 Slovak crowns/gigajoule (13.33 EUR/gigajoule ), one of the lowest prices in Slovakia. This year the prices increased slightly to 570 Slovak crowns (15.2 EUR). 'We needed - even at the cost of lower profit - to satisfy our customers so that we would not lose them. We used this time for transition to biomass. This will allow us to freeze our prices in the coming years,' explained the statutory representative of the company, Ivan Dudak. (authors)

  19. Magnetic field control of 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign domain wall resistance

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Roya, E-mail: royamajidi@gmail.com [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811 Tehran (Iran, Islamic Republic of)

    2012-10-01

    In the present work, we have compared the resistance of the 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Neel-type domain walls between two domains whose magnetization differs by angle of 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign are considered. The results indicate that the resistance of the 360 Degree-Sign DW is more considerable than that of the 90 Degree-Sign and 180 Degree-Sign DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.

  20. Opposite Degree Algorithm and Its Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Guang Yue

    2015-12-01

    Full Text Available The opposite (Opposite Degree, referred to as OD algorithm is an intelligent algorithm proposed by Yue Xiaoguang et al. Opposite degree algorithm is mainly based on the concept of opposite degree, combined with the idea of design of neural network and genetic algorithm and clustering analysis algorithm. The OD algorithm is divided into two sub algorithms, namely: opposite degree - numerical computation (OD-NC algorithm and opposite degree - Classification computation (OD-CC algorithm.

  1. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  2. Acoustic Levitator With Furnace And Laser Heating

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  3. Monopole heat

    International Nuclear Information System (INIS)

    Turner, M.S.

    1983-01-01

    Upper bounds on the flux of monopoles incident on the Earth with velocity -5 c(10 16 GeV m -1 ) and on the flux of monopoles incident on Jupiter with velocity -3 c(10 16 GeV m -1 ), are derived. Monopoles moving this slowly lose sufficient energy to be stopped, and then catalyse nucleon decay, releasing heat. The limits are obtained by requiring the rate of energy release from nucleon decay to be less than the measured amount of heat flowing out from the surface of the planet. (U.K.)

  4. Heat exchanger

    International Nuclear Information System (INIS)

    Drury, C.R.

    1988-01-01

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  5. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  6. Heat disposal in water environment

    International Nuclear Information System (INIS)

    Harleman, D.R.F.

    1975-01-01

    The need for continuing development of techniques for predicting temperature distributions due to waste heat discharges into lakes, rivers, estuaries, and the oceans is presented. Diffusion of buoyant jets is examined, including heated surface jets and multiple jets issuing from a submerged multiport diffuser. In the near-field analysis of surface jets the important problems are related to the lateral spreading caused by buoyancy. Comparison of theoretical predictions with laboratory and field observations is given. The mechanics of multiport diffusers for heated discharges in shallow receiving waters are explained in contrast to sewage diffusers. The important problem is the degree to which stratification can be maintained in order to minimize local reintrainment and reduction of dilution capacity. Criteria for stable and unstable flow regimes are provided. A mathematical model for temperature distribution, with or without waste heat addition, in unsteady flows under time-varying meteorological conditions is given. (auth)

  7. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  8. Tensile properties of vanadium alloys irradiated at <430{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Recent attention to vanadium alloys has focused on significant susceptibility to loss of work-hardening capability in irradiation experiments at <430{degrees}C. An evaluation of this phenomenon was conducted on V-Ti, V-Cr-Ti, and V-Ti-Si alloys irradiated in several conventional and helium-charging irradiation experiments in the FFTF-MOTA, HFIR, and EBR-II. Work hardening capability and uniform tensile elongation appear to vary strongly from alloy and heat to heat. A strong heat-to-heat variation has been observed in V-4Cr-4Ti alloys tested, i.e., a 500-kg heat (No. 832665), a 100-kg heat (VX-8), and a 30-kg heat (BL-47). The significant differences in susceptibility to loss of work-hardening capability from one heat to another are estimated to correspond to a difference of {approx}100{degrees}C or more in minimum allowable operating temperature (e.g., 450 versus 350{degrees}C).

  9. Heat exchanger

    Science.gov (United States)

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  10. Heat exchangers

    International Nuclear Information System (INIS)

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  11. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Harada, F; Yanagida, T; Fujie, K; Futawatari, H

    1975-04-30

    The purpose of this construction is the improvement of heat transfer in finned tube heat exchangers, and therefore the improvement of its efficiency or its output per unit volume. This is achieved by preventing the formation of flow boundary layers in gaseous fluid. This effect always occurs on flow of smooth adjacent laminae, and especially if these have pipes carrying liquid passing through them; it worsens the heat transfer of such a boundary layer considerably compared to that in the turbulent range. The fins, which have several rows of heat exchange tubes passing through them, are fixed at a small spacing on theses tubes. The fins have slots cut in them by pressing or punching, where the pressed-out material remains as a web, which runs parallel to the level of the fin and at a small distance from it. These webs and slots are arranged radially around every tube hole, e.g. 6 in number. For a suitable small tube spacing, two adjacent tubes opposite each other have one common slot. Many variants of such slot arrangements are illustrated.

  12. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  13. Subcooled Pool Boiling from Two Tubes of 6 Degree Included Angle in Vertical Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2015-05-15

    One of the major issues in the design of a heat exchanger is the heat transfer in a tube bundle. The passive condensation heat exchanger (PCHX) adopted in APR+ has U-type tube. The PCHX is submerged in the passive condensation cooling tank (PCCT). The heat exchanging tubes are in vertical alignment and inclined at 3 degrees to prevent water hammer as shown in Fig. 1. For the cases, the upper tube is affected by the lower tube. Therefore, the results for a single tube are not applicable to the design of the PCHX. However, the passive heat exchangers are submerged in the subcooled water under atmospheric pressure. The water temperature in the PCCT rises according to the PAFS actuation and reaches the saturation temperature after more than 2.5 hours. Since this period is very important to maintain reactor integrity, the exact evaluation of heat transfer on the tube bundle is indispensable. Although an experimental study on both subcooled and saturated pool boiling of water was performed to obtain local heat transfer coefficients on a 3 degree inclined tube at atmospheric pressure by Kang, no previous results were treating the bundle effect in the subcooled liquid. The heat transfer on the upper tube is enhanced compared with the single tube. The enhancement of the heat transfer on the upper tube is estimated by the bundle effect ( h{sub r} ). It is defined as the ratio of the heat transfer coefficient ( h{sub b} ) for an upper tube in a bundle with lower tubes activated to that for the same tube activated alone in the bundle. The upper tube within a tube bundle can significantly increase nucleated boiling heat transfer compared to the lower tubes at moderate heat fluxes. Summarizing the published results, it is still necessary to identify effects of liquid subcooling on inclined tubes for application to the PCHX design. Therefore, the present study is aimed to study the variations of pool boiling heat transfer on a tube bundle having a 6 degree included angle in

  14. Tissue physiology and the response to heat

    DEFF Research Database (Denmark)

    Horsman, Michael Robert

    2006-01-01

    physiological effects should occur in normal tissues, such combination therapies must be carefully applied. Heating tumours to higher temperatures typically causes a transient increase in perfusion during heating, followed by vascular collapse which if sufficient will increase tumour necrosis. The speed...... and degree of vascular collapse is dependent on heating time, temperature and tumour model used. Such vascular collapse generally occurs at temperatures that cause a substantial blood flow increase in certain normal tissues, thus preferential anti-tumour effects can be achieved. The tumour vascular supply...... can also be exploited to improve the response to heat. Decreasing blood flow, using transient physiological modifiers or longer acting vascular disrupting agents prior to the initiation of heating, can both increase the accumulation of physical heat in the tumour, as well as increase heat sensitivity...

  15. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  16. Studies on heat storage, 9

    International Nuclear Information System (INIS)

    Taoda, Hiroshi; Hayakawa, Kiyoshi; Kawase, Kaoru; Kosaka, Mineo

    1985-01-01

    To estimate the extent of thermal oxidative aging of the crosslinked and surface coated polyethylene pellets used as a latent heat thermal storage material, their deterioration was investigated by applying the heating-cooling cycle which simulated the daily insolation over 6 months (8-hour holding at 150 deg C as the highest temperature in a day followed by 5-hour holding at 30 deg C as the lowest one). The degradation, e.g., the lowering of heat of crystallization and in crystallization temperature, is thought to be caused by both the decrease in molecular weight of polyethylene due to thermal oxidative decomposition and the crosslinking between produced radicals. With the increase in the degree of crosslinking and branching in a molecular chain which has low bond dissociation energy, thermal deterioration of polyethylene proceeds more rapidly. Polyethylene pellets can endure long periods of practical heat cycling as a thermal storage material when they are treated with radical scavengers under proper control of their crosslinking degrees. The repeating heat storage experiments by using the developed polyethylene thermal storage material were performed and very promising results were obtained. (author)

  17. Reflux and Belching After 270 Degree Versus 360 Degree Laparoscopic Posterior Fundoplication

    NARCIS (Netherlands)

    Broeders, Joris A.; Bredenoord, Albert J.; Hazebroek, Eric J.; Broeders, Ivo A.; Gooszen, Hein G.; Smout, André J.

    2012-01-01

    Objective: To investigate differences in effects of 270 degrees (270 degrees LPF) and 360 degrees laparoscopic posterior fundoplication (360 degrees LPF) on reflux characteristics and belching. Background: Three hundred sixty degrees LPF greatly reduces the ability of the stomach to vent ingested

  18. 45 CFR 2400.41 - Degree programs.

    Science.gov (United States)

    2010-10-01

    ... degree in history or political science (including government or politics), the degree of Master of Arts in Teaching in history or political science (including government or politics), or a related master's degree in education that permits a concentration in American history, American government, social studies...

  19. How Adult Online Graduates Portray Their Degree

    Science.gov (United States)

    Hagan, Eric J.

    2013-01-01

    This qualitative case study investigated how adult graduates of online Bachelor's degree programs describe the online aspect of their degree. Online education is promoted as a method for adult students to access the benefits of a college degree. Therefore, it is important for prospective online students, higher education institutions and…

  20. Lens positioner with five degrees of freedom

    International Nuclear Information System (INIS)

    Kobierecki, M.W.; Rienecker, F. Jr.

    1978-01-01

    A device for positioning lenses precisely with five degrees of freedom (three translations and two angular rotations). The unique features of the device are its compact design, large clear aperture, and high degree of positioning accuracy combined with five degrees of freedom in axis motion. Thus, the device provides precision and flexibility in positioning of optical components

  1. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  2. Evaluation of Criticality of Self-Heating of Polymer Composites by Estimating the Heat Dissipation Rate

    Science.gov (United States)

    Katunin, A.

    2018-03-01

    The critical self-heating temperature at which the structural degradation of polymer composites under cyclic loading begins is evaluated by analyzing the heat dissipation rate. The method proposed is an effective tool for evaluating the degradation degree of such structures.

  3. Practical and efficient magnetic heat pump

    Science.gov (United States)

    Brown, G. V.

    1978-01-01

    Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.

  4. Effect of degree of subcooling on vapor explosion

    International Nuclear Information System (INIS)

    Xu Zhihong; Yang Yanhua; Li Tianshu

    2010-01-01

    In order to investigate the mechanism of the vapor explosion, an observable experiment equipment for low-temperature molten materials to be dropped into water was designed. In the experiment, molten material jet was injected into water to experimentally obtain the visualized information. This experiment results show that the degree of subcooling restrains the explosion. In order to validate the result by other aspects, the breakup experiment was conducted. Results show that the degree of water subcooling is important to melt breakup. High temperature of water is easy to increase the vapor generation during molten material falling, which decrease the drag and accelerated the molten material falling. At the same time, more vapor appear around the molten metal decrease the heat transfer amount between water and molten materials. The two experimental results coincide. (authors)

  5. Acquired Thermotolerance and Heat Shock Proteins in Thermophiles from the Three Phylogenetic Domains

    DEFF Research Database (Denmark)

    Trent, Jonathan D.; Gabrielsen, Mette; Jensen, Bo

    1994-01-01

    Thermophilic organisms from each of the three phylogenetic domains (Bacteria, Archaea, and Eucarya) acquired thermotolerance after heat shock. Bacillus caldolyticus grown at 60 degrees C and heat shocked at 69 degrees C for 10 min showed thermotolerance at 74 degrees C, Sulfolobus shibatae grown...

  6. Nutritional evaluation of heat treated sunflower meal on the performance of broiler chicks

    International Nuclear Information System (INIS)

    Ali, S.; Kausar, T.; Shah, W.H.

    2004-01-01

    Pre-pressed and solvent extracted sunflower meal (SFM) was heated to 90 degree, 100 degree, 110 degree and 120 degree C. Lysine content of SFM decreased from 2.25 to 1.60%. The untreated and heat treated SFM was incorporated in broiler's ration. Maximum weight gain (1525g) and feed efficiency (2.24) were shown by the ration containing SFM heated to 90 degree, which was better than the control ration (weight gain 1454g, feed efficiency 2038). Processing of SFM at higher temperature (100 - 120 degree C) adversely affected weight gain (1388 - 1315g) and feed efficiency (2.46-251). (author)

  7. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  8. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  9. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  10. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  11. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  12. [Heat stroke and burns resulting from use of sauna

    DEFF Research Database (Denmark)

    Runitz, K.; Jensen, T.H.

    2009-01-01

    We describe a case of severe heat stroke resulting from exposure to extreme heat in a sauna for an unknown period of time. The patient sustained 20% 2nd degree burns. On arrival at the emergency department, the patient's temperature was 40.5 degrees C. At the critical care unit, the patient devel...... developed severe multi-organ failure and critical polyneuropathy. Severe heat stroke is a rare diagnosis in Denmark. The treatment is symptomatic and the prognosis is grave, especially in combination with severe burns Udgivelsesdato: 2009/1/26......We describe a case of severe heat stroke resulting from exposure to extreme heat in a sauna for an unknown period of time. The patient sustained 20% 2nd degree burns. On arrival at the emergency department, the patient's temperature was 40.5 degrees C. At the critical care unit, the patient...

  13. Diploma to degree 1976 to 1993

    International Nuclear Information System (INIS)

    Price, Richard

    2009-01-01

    The debate on degree education for radiographers began in earnest in the mid-1970s. Initially the debate hinged around whether a degree education was necessary for radiographers. One argument was that it was felt that a degree would separate academic and clinical training but eventually when degrees were introduced practical skills were assessed formally for the first time; something that had not been achieved with the Diploma of the College of Radiographers (DCR). The DCR itself became a barrier to degree education as the College of Radiographers (CoR) insisted that it was the only qualification recognised for state registration and as such would have to remain embedded as a distinct qualification within a degree. A major breakthrough came when the Council for National Academic Awards (CNAA) recognised the DCR at the same level as an ordinary degree. Around the same time the CoR published its Degree Rationale which announced a change in policy by not insisting that the DCR was sacrosanct. Developments followed rapidly and the first honours degree in radiography was validated in 1989 despite opposition from scientific officers at the Department of Health. Degrees were approved for state registration and radiography became a graduate profession by 1993 following years of debate and after overcoming opposition from both within and external to the profession.

  14. Análise de algumas variáveis fisiológicas para avaliação do grau de adaptação de ovinos submetidos ao estresse por calor Analysis of some physiological variables for the evaluation of the degree of adaptation in sheep submitted to heat stress

    Directory of Open Access Journals (Sweden)

    Josiane Maria Cardoso Starling

    2002-09-01

    Full Text Available Investigaram-se a temperatura retal, a freqüência respiratória e a taxa de evaporação total de ovinos Corriedale sob três temperaturas ambientes, visando uma melhor compreensão dos mecanismos de termorregulação desses animais. Inicialmente, 21 animais adultos foram alojados em câmara climática à temperatura de 45ºC, e pressão parcial de vapor (PV variável, registrando-se a freqüência respiratória (FR e a temperatura retal (TR. Baseando-se na FR e TR, foram selecionados 10 animais, cinco com os valores mais baixos, assumindo-os como mais adaptados ao calor (grupo 1 e cinco com valores mais altos, assumindo-os como menos adaptados (grupo 2. Os animais selecionados foram mantidos em câmara climática, onde mediram-se novamente TR, FR e taxa de evaporacão total (TET, sob 20, 30 e 40ºC de temperatura do ar e PV variável. Não houve diferença estatística entre os grupos classificados, para todas as variáveis medidas. Concluiu-se que a utilização das variáveis fisiológicas TR e FR como parâmetros únicos para a seleção destes animais não é suficiente para avaliar o grau de adaptação a temperaturas elevadas.It was investigated the rectal temperature, respiratory frequency and total evaporative heat loss rate in Corriedale sheep under three air temperatures, aiming a better comprehension of thermoregulation mechanisms of these animals. Initially, 21 adult animals were housed in climatic chamber under 45ºC and variable air humidity (PV, recording the respiratory frequency (FR and rectal temperature (TR. Basing on the FR and TR, it was selected 10 animals, five of the lowest values, assuming as being the best heat adapted (group 1 and five of the highest values, assuming as the worst heat adapted (group 2. The selected animals were maintained in climatic chamber, where it was measured again TR, FR and total evaporation rate (TET, under 20, 30 and 40ºC of air temperature and variable PV. There was no statistical

  15. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  16. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. [comps.

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  17. Radiofrequency plasma heating: proceedings

    International Nuclear Information System (INIS)

    Swenson, D.G.

    1985-01-01

    The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately

  18. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    International Nuclear Information System (INIS)

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  19. Improvements in or relating to heat exchangers

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1978-01-01

    According to the present invention there is provided a method of producing superheated steam by use of the heat in liquid sodium, in which liquid sodium is caused to flow through a space having boundaries of which no part is common with the boundaries of a space in which vapour is produced, a fluid that is inert to sodium is heated by heat exchange at the boundaries of the space through which the liquid sodium flows and serves as the heating medium for the production of vapour, and the vapour is subsequently heated to the final degree of superheat by heat exchange with liquid sodium in a space that has a common boundary with a space through which liquid sodium is passed. (U.K.)

  20. Effect of Crystallisation Degree on Hardness of Basaltic Glass-Ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    The dependence of hardness of basaltic glass-ceramics on their crystallisation degree has been explored by means of differential scanning calorimetry, optical microscopy, X-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses have been obtained...... by varying the temperature of heat treatment. The change of the relative degree of crystallisation with the heat treatment temperature can be described by an empirical model established in this work. The predominant crystalline phase in the glass has been identified as the pyroxene augite. The hardness...... principle calculations. It is found that the hardness of the glass phase decreases slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreases....

  1. Labeling schemes for bounded degree graphs

    DEFF Research Database (Denmark)

    Adjiashvili, David; Rotbart, Noy Galil

    2014-01-01

    We investigate adjacency labeling schemes for graphs of bounded degree Δ = O(1). In particular, we present an optimal (up to an additive constant) log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar...... graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...

  2. Heat conduction analysis of multi-layered FGMs considering the finite heat wave speed

    International Nuclear Information System (INIS)

    Rahideh, H.; Malekzadeh, P.; Golbahar Haghighi, M.R.

    2012-01-01

    Highlights: ► Using a layerwise-incremental differential quadrature for heat transfer of FGMs. ► Superior accuracy with fewer degrees of freedom of the method with respect to FEM. ► Considering multi-layered functionally graded materials. ► Hyperbolic heat transfer analysis of thermal system with heat generation. ► Showing the effect of heat wave speed on thermal characteristic of the system. - Abstract: In this work, the heat conduction with finite wave heat speed of multi-layered domain made of functionally graded materials (FGMs) subjected to heat generation is simulated. For this purpose, the domain is divided into a set of mathematical layers, the number of which can be equal or greater than those of the physical layers. Then, in each mathematical layer, the non-Fourier heat transfer equations are employed. Since, the governing equations have variable coefficients due to FGM properties, as an efficient and accurate method the differential quadrature method (DQM) is adopted to discretize both spatial and temporal domains in each layer. This results in superior accuracy with fewer degrees of freedom than conventional finite element method (FEM). To verify this advantages through some comparison studies, a finite element solution are also obtained. After demonstrating the convergence and accuracy of the method, the effects of heat wave speed for two different set of boundary conditions on the temperature distribution and heat flux of the domain are studied.

  3. Heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations

    International Nuclear Information System (INIS)

    Fahmy, A.S.A.; Mariy, A.H.; Mahmoud, S.I.; Ibrahim, N.A.

    1987-01-01

    An experimental investigation is carried out study the behaviour of heat transfer in pool boiling from a vertical and inclined heated tube at atmospheric pressure. An imperial correlation joining the different parameters affecting the heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations is developed. Two test sections (zircaloy-4 and stainless steel) of 16 n n outer diameter and 120 nm length are investigated. Four levels of heat flux are used for heating the two lest sections (e.g. 381, 518, 721 and 929 k.watt/n 2). The maximum surface temperature achieved is 146.5 degree c for both materials, and the maximum bulk temperature is 95 degree C. It is found that the average heat transfer coefficient is inversely proportional with heated length l, where it reaches a constant value in the horizontal position. The heat transfer coefficient curves at various inclinations with respect to the heated tube length pass around one point which is defined as limit length

  4. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  5. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  6. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  7. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  8. A nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Fenton, N.

    1989-07-01

    Global energy requirements are expected to double over the next 40 years. In the northern hemisphere, many countries consume in excess of 25 percent of their primary energy supply for building heating. Satisfying this need, within the constraints now being acknowledged for sustainable global development, provides an important opportunity for district heating. Fuel-use flexibility, energy and resource conservation, and reduced atmospheric pollution from acid gases and greenhouse gases, are important features offered by district heating systems. Among the major fuel options, only hydro-electricity and nuclear heat completely avoid emissions of combustion gases. To fill the need for an economical nuclear heat source, Atomic Energy of Canada Limited has designed a 10 MW plant that is suitable as a heat source within a network or as the main supply to large individual users. Producing hot water at temperatures below 100 degrees C, it incorporates a small pool-type reactor based on AECL's successful SLOWPOKE Research Reactor. A 2 MW prototype for the commercial unit is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba. With capital costs of $7 million (Canadian), unit energy costs are projected to be $0.02/kWh for a 10 MW unit operating in a heating grid over a 30-year period. By keeping the reactor power low and the water temperature below 100 degrees C, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe nuclear heating systems to be economically viable

  9. Effects of Ohmic Heating on Microbial Counts and Denaturatiuon of Proteins in Milk

    OpenAIRE

    SUN, Huixian; KAWAMURA, Shuso; HIMOTO, Jun-ichi; ITOH, Kazuhiko; WADA, Tatsuhiko; KIMURA, Toshinori

    2008-01-01

    The aim of this study was to compare the inactivation effects of ohmic heating (internal heating by electric current) and conventional heating (external heating by hot water) on viable aerobes and Streptococcus thermophilus 2646 in milk under identical temperature history conditions. The effects of the two treatments on quality of milk were also compared by assessing degrees of protein denaturation in raw and sterilized milk (raw milk being sterilized by ohmic heating or conventional heating)...

  10. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Science.gov (United States)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  11. Heating tar sands formations to visbreaking temperatures

    Science.gov (United States)

    Karanikas, John Michael [Houston, TX; Colmenares, Tulio Rafael [Houston, TX; Zhang, Etuan [Houston, TX; Marino, Marian [Houston, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Beer, Gary Lee [Houston, TX; Dombrowski, Robert James [Houston, TX; Jaiswal, Namit [Houston, TX

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  12. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  13. Degrees of polarization for a quantum field

    International Nuclear Information System (INIS)

    Sanchez-Soto, L L; Soederholm, J; Yustas, E C; Klimov, A B; Bjoerk, G

    2006-01-01

    Unpolarized light is invariant with respect to any SU(2) polarization transformation. Since this fully characterizes the set of density matrices representing unpolarized states, we introduce the degree of polarization of a quantum state as its distance to the set of unpolarized states. We discuss different candidates of distance, and show that they induce fundamentally different degrees of polarization

  14. Dirac's minimum degree condition restricted to claws

    NARCIS (Netherlands)

    Broersma, Haitze J.; Ryjacek, Z.; Schiermeyer, I.

    1997-01-01

    Let G be a graph on n 3 vertices. Dirac's minimum degree condition is the condition that all vertices of G have degree at least . This is a well-known sufficient condition for the existence of a Hamilton cycle in G. We give related sufficiency conditions for the existence of a Hamilton cycle or a

  15. Current Trends in Associate Degree Nursing Programs.

    Science.gov (United States)

    Blackstone, Elaine Grant

    This study was designed to ascertain current trends in associate degree nursing programs and to discover innovative ideas and techniques which could be applied to the existing program at Miami-Dade Community College (Florida). Data was compiled from interviews with representatives of ten associate degree nursing programs in six states. Information…

  16. Competency-Based Business Degree. Issue Brief

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    In January 2015, thirteen Washington community colleges launched an online, competency-based business transfer degree--the first in the state's community and technical college system. This issue brief provides answers to commonly asked questions about the new competency-based degree.

  17. Meson degrees of freedom in nuclei

    International Nuclear Information System (INIS)

    Delorme, J.

    1982-01-01

    A review is presented of the successes and shortcomings of the theory of meson degrees of freedom in nuclei with special emphasis on recent progress and on the necessity to bridge the gap with the degrees of freedom of QCD theory. (orig.)

  18. Virtual displays for 360-degree video

    Science.gov (United States)

    Gilbert, Stephen; Boonsuk, Wutthigrai; Kelly, Jonathan W.

    2012-03-01

    In this paper we describe a novel approach for comparing users' spatial cognition when using different depictions of 360- degree video on a traditional 2D display. By using virtual cameras within a game engine and texture mapping of these camera feeds to an arbitrary shape, we were able to offer users a 360-degree interface composed of four 90-degree views, two 180-degree views, or one 360-degree view of the same interactive environment. An example experiment is described using these interfaces. This technique for creating alternative displays of wide-angle video facilitates the exploration of how compressed or fish-eye distortions affect spatial perception of the environment and can benefit the creation of interfaces for surveillance and remote system teleoperation.

  19. Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality

    International Nuclear Information System (INIS)

    Rey, Gregoire; Fouillet, Anne; Bessemoulin, Pierre; Frayssinet, Philippe; Dufour, Anne; Jougla, Eric; Hemon, Denis

    2009-01-01

    Heat waves may become a serious threat to the health and safety of people who currently live in temperate climates. It was therefore of interest to investigate whether more deprived populations are more vulnerable to heat waves. In order to address the question on a fine geographical scale, the spatial heterogeneity of the excess mortality in France associated with the European heat wave of August 2003 was analysed. A deprivation index and a heat exposure index were used jointly to describe the heterogeneity on the Canton scale (3,706 spatial units). During the heat wave period, the heat exposure index explained 68% of the extra-Poisson spatial variability of the heat wave mortality ratios. The heat exposure index was greater in the most urbanized areas. For the three upper quintiles of heat exposure in the densely populated Paris area, excess mortality rates were twofold higher in the most deprived Cantons (about 20 excess deaths/100,000 people/day) than in the least deprived Cantons (about 10 excess deaths/100,000 people/day). No such interaction was observed for the rest of France, which was less exposed to heat and less heterogeneous in terms of deprivation. Although a marked increase in mortality was associated with heat wave exposure for all degrees of deprivation, deprivation appears to be a vulnerability factor with respect to heat-wave-associated mortality.

  20. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  1. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  2. Heat transfer: Pittsburgh 1987

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  3. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  4. The heat and moisture budgets of the atmosphere over central equatorial Indian Ocean during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Gopalakrishna, V.V.; RameshBabu, V.; Sastry, J.S.

    The heat and moisture budgets of the atmosphere (surface to 100 mb) over the central equatorial Indian Ocean (2 degrees N to 2 degrees S; 76 degrees E to 80 degrees E) have been investigated utilising the surface and upper air data collected...

  5. Assessment of the impact of soil heating on soil cations using the degree-hours method Evaluación del impacto del calentamiento del suelo en los cationes del suelo utilizando el método de los grados-hora Avaliação do impacto do aquecimento térmico nos catiões do solo recorrendo ao método dos graus-hora

    Directory of Open Access Journals (Sweden)

    Nieves Barros

    2012-11-01

    Full Text Available Important factors in the evaluation of fire severity are the duration of the soil exposition to a certain temperature as well as the factors that determine the thermal transmissivity on the soil (moisture, texture, organic matter content, etc.. The aim of this work was to apply the degree-hours method (DH to characterize the thermal impact of forest fires in soils. Thermal treatments in the laboratory were conducted using soil samples in order to study the effects in the soil exchange complex. The results showed the effect of the supplied degree-hour (DH on the cation exchange capacity (CEC, which was expressed by a continuous exponential decrease in the CEC. This function may better explain the process of the decreasing of CEC than only the maximum temperature values. The sum of cations extracted in relation to the thermal treatment gradually increased with temperature or DH, and tended to stabilize at high values. The concentration of the different cations extracted increased gradually with the intensity of heating, and when related to the DH appeared to fit an equation of the type y=a+bxc with a high degree of confidence. Analyses of the results show that the measurement of the heat supplied to the soil is a useful parameter with which to interpret pedologic changes, especially when those changes happen continuously over time.Para la evaluación de la severidad de un incendio, tanto la duración de la exposición del suelo a una determinada temperatura como los factores que determinan la capacidad de transmisión térmica en el suelo (humedad, textura, contenido en materia orgánica, etc. son parámetros importantes a tener en cuenta. El presente estudio tiene como objetivo la aplicación de la metodología de los grados-hora (DH en la caracterización de los impactos térmicos de los incendios forestales en el suelo. Los tratamientos térmicos se realizaron en el laboratorio usando muestras de suelo recogidas en el campo sin alterar su

  6. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  7. Slowpoke - a new Canadian heat source

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Lynch, G.F.; Ohta, M.M.

    1987-07-01

    Atomic Energy of Canada Limited now has a new product, the SLOWPOKE Energy System, that provides low temperature heat suitable for building and process heating. The SLOWPOKE Energy System is sized to deliver up to 10 megawatts of hot water at up to 90 degrees C, appropriate for large buildings and industrial processes. It is designed for operation without the full-time attendance of dedicated staff and, because of its inherent safety, for siting close to users. At less than 2 cents/kWh, the heat is competitive with oil, gas and electricity in most regions of Canada and the world

  8. Intermittent heating of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kohonen, K

    1983-02-01

    Conditions for intermittent heating of buildings are considered both theoretically and experimentally. Thermal behaviour of buildings adn rooms in intermittent heating is simulated by a program based on the convective heat balance equation and by simplified RC-models. The preheat times and the heating energy savings compared with continuous heating are presented for typical lightweight, mediumweight and heavyweight classroom and office modules. Formulaes for estimating the oversizing of the radiator network, the maximum heat output of heat exchangers in district heating and the efficiency of heating boilers in intermittent heating are presented. The preheat times and heating energy savings with different heating control systems are determined also experimentally in eight existing buildings. In addition some principles for the planning and application of intermittent heating systems are suggested.

  9. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  10. Career Paths for Physics Degree Recipients

    Science.gov (United States)

    Mulvey, Patrick

    Physics degree holders have a diverse set of career opportunities open to them. So what are these opportunities? Where are they employed? How much do they earn? What skills will they need? Physics degrees make up a small proportion of the degrees conferred in the US but they play an important role in meeting workforce needs at many levels. This talk will give an overview of the employment outcomes of physics bachelors, masters and PhDs. It will discuss the diverse set fields they work in and the skills they use.

  11. Nuclear engineering enrollments and degrees, 1981

    International Nuclear Information System (INIS)

    Little, J.R.; Shirley, D.L.

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 73 US institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented here are historical data for the last decade, which provide information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students

  12. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  13. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  14. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  15. Energy Conservation Alternatives Study (ECAS): Conceptual Design and Implementation Assessment of a Utility Steam Plant with Conventional Furnace and Wet Lime Stack Gas Scrubbers

    Science.gov (United States)

    Brown, Dale H.

    1976-01-01

    A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.

  16. Heat-Related Illnesses

    Science.gov (United States)

    ... Share this! EmergencyCareForYou » Emergency 101 » Heat-Related Illnesses Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  17. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Share this! EmergencyCareForYou » Emergency 101 » Heat-Related Illnesses Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  18. The study of the heat-engineering characteristics of a solar heat collector based on aluminum heat pipes

    International Nuclear Information System (INIS)

    Khairnasov, S.M.; Zaripov, V.K.; Passamakin, B.M. et al.

    2013-01-01

    This paper presents the results of studies into the heat-engineering characteristics of a flat heat solar collector based on aluminum heat pipes that is designed to be used in building facades. The principle of work and the structure of the solar collector are considered; the results of its comparison with a traditional flat solar collector are presented. The studies were performed at a heat carrier temperature range of +10 - +30 degree C and at a solar heat flow density of 400 - 1000 W/m 2 . The obtained experimental heat-engineering characteristics of the collector based on heat pipes show that they are at a level of traditional flow solar collectors; for example, its efficiency is 0.65 - 0.73. Meanwhile, the hydraulic resistance of the structure with heat pipes is by a factor of 2 - 2.4 smaller and ensures a high level of scalability, reliability, and maintainability, which is important when using it as an element of facade constructions of solar heat systems. (author)

  19. Subnuclear degrees of freedom in the nucleus

    International Nuclear Information System (INIS)

    Krewald, S.

    1985-03-01

    The aim of the present thesis is to study the possible influence of subnuclear degrees of freedom as the Δ 33 -resonance and relativistic effects on the structure of nuclear excited states. (orig./HSI) [de

  20. String description of quarks degrees of freedom

    International Nuclear Information System (INIS)

    Hadasz, L.

    1994-01-01

    This work presents a simple way of incorporating quark degrees of freedom (spin, charge and colour) into the classical string model. We introduce the model and derive from it the classical equations of motion. (author)

  1. String description of quarks degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, L. [Jagiellonian Univ., Inst. of Physics, Cracow (Poland)

    1994-10-01

    This work presents a simple way of incorporating quark degrees of freedom (spin, charge and colour) into the classical string model. We introduce the model and derive from it the classical equations of motion. (author). 7 refs.

  2. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  3. Heat Related Illnesses

    National Research Council Canada - National Science Library

    Carter, R; Cheuvront, S. N; Sawka, M. N

    2006-01-01

    .... The risk of serious heat illness can be markedly reduced by implementing a variety of countermeasures, including becoming acclimated to the heat, managing heat stress exposure, and maintaining hydration...

  4. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    2012-01-01

    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  5. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  6. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  7. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  8. Measurement of heat transfer effectiveness during collision of a Leidenfrost droplet with a heated wall - 15447

    International Nuclear Information System (INIS)

    Park, J.S.; Kim, H.; Bae, S.W.; Kim, K.D.

    2015-01-01

    Droplet-wall collision heat transfer during dispersed flow film boiling plays a role in predicting cooling rate and peak cladding temperature of overheated fuels during reflood following a LOCA accident in nuclear power plants. This study aims at experimentally studying effects of collision velocity and angle, as dynamic characteristics of the colliding droplet, on heat transfer. The experiments were performed by varying collision velocity from 0.2 to 1.5 m/s and collision angle between the droplet path and the wall in the range from 30 to 90 degrees under atmosphere condition. A single droplet was impinged on an infrared-opaque Pt film deposited on an infrared-transparent sapphire plate, which combination permits to measure temperature distribution of the collision surface using a high-speed infrared camera from below. The instantaneous local surface heat flux was obtained by solving transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition of the collision surface. Total heat transfer amount of a single droplet collision was calculated by integrating the local heat flux distribution on the effective heat transfer area during the collision time. The obtained results confirmed the finding from the previous studies that with increasing collision velocity, the heat transfer effectiveness increases due to the increase of the heat transfer area and the local heat flux value. Interestingly, it was found that as collision angle of a droplet with a constant collision velocity decreases from 90 to 50 degrees and thus the vertical velocity component of the collision decreases, the total heat transfer amount per a collision increases. It was observed that the droplet colliding with an angle less than 90 degrees slides on the surface during the collision and the resulting collision area is larger than that in the normal collision. On the other hand, further decrease of collision angle below 40 degrees

  9. Calorimetric determination of the heat of precipitation of pseudoephedrine racemic compound--its agreement with the heat of solution.

    Science.gov (United States)

    Pudipeddi, M; Sokoloski, T D; Duddu, S P; Carstensen, J T

    1995-10-01

    The heat of precipitation of dl-pseudoephedrine was determined by direct calorimetry using a Tronac isoperibolic calorimeter. The precipitation of dl-pseudoephedrine was induced by mixing aqueous solutions of the two enantiomers, namely, d- and l-pseudoephedrine, directly in the calorimeter. The molar heat of precipitation of dl-pseudoephedrine was -2.7 and -3.0 kcal/mol at 25 and 30 degrees C, respectively. The aqueous solubility of dl-pseudoephedrine was determined over a temperature range of 20-40 degrees C. The van't Hoff solubility plot was nonlinear. The apparent heat of solution at saturation was obtained from the solubility data using a nonlinear regression model. A good agreement between the magnitude of the apparent heat of solution at saturation and the heat of precipitation was noticed at both 25 and 30 degrees C.

  10. Heat transfer measurements of the 1983 kilauea lava flow.

    Science.gov (United States)

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  11. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  12. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    David, Andrei; Mathiesen, Brian Vad; Averfalk, Helge

    2017-01-01

    The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document that suc......The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document...

  13. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  14. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  15. Direct contact heat transfer characteristics between melting alloy and water

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1995-01-01

    As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)

  16. Heat pipes for ground heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L

    1988-01-01

    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  17. Tensile properties of vanadium alloys irradiated at 390{degrees}C in EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Tsai, H.C.; Nowicki, L.J. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    Vanadium alloys were irradiated in Li-bonded stainless steel capsules to {approx}390{degrees}C in the EBR-II X-530 experiment. This report presents results of postirradiation tests of tensile properties of two large-scale (100 and 500 kg) heats of V-4Cr-Ti and laboratory (15-30 kg) heats of boron-doped V-4Cr-4Ti, V-8Cr-6Ti, V-5Ti, and V-3Ti-1Si alloys. Tensile specimens, divided into two groups, were irradiated in two different capsules under nominally similar conditions. The 500-kg heat (No. 832665) and the 100-kg heat (VX-8) of V-4Cr-4Ti irradiated in one of the subcapsules exhibited complete loss of work-hardening capability, which was manifested by very low uniform plastic strain. In contrast, the 100-kg heat of V-4Cr-4Ti irradiated in another subcapsule exhibited good tensile properties (uniform plastic strain 2.8-4.0%). A laboratory heat of V-3Ti-1Si irradiated in the latter subcapsule also exhibited good tensile properties. These results indicate that work-hardening capability at low irradiation temperatures varies significantly from heat to heat and is influenced by nominally small differences in irradiation conditions.

  18. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential...... for district heating in the EU between now and 2050 is identified, based on extensive and detailed mapping of the EU heat demand and various supply options. Subsequently, a new ‘district heating plus heat savings’ scenario is technically and economically assessed from an energy systems perspective. The results...... indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating these goals can be achieved at a lower cost, with heating and cooling costs...

  19. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Connolly, David; Lund, Henrik

    2015-01-01

    The cost of heat savings in buildings increase as more heat savings are achieved due to the state of the building stock and hence, alternatives other than savings typically become more economically feasible at a certain level of heat reductions. It is important to identify when the cost of heat...... savings become more expensive than the cost of sustainable heat supply, so society does not overinvest in heat saving measures. This study first investigates the heat saving potentials for different countries in Europe, along with their associated costs, followed by a comparison with alternative ways...... of supplying sustainable heating. Different heat production options are included in terms of individual and community heating systems. Furthermore, the levelised cost of supplying sustainable heat is estimated for both a single technology and from an energy system perspective. The results are analysed...

  20. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Lund, Henrik

    2015-01-01

    This document is a summary of the key technical inputs for the modelling of the heat strategy for Europe outlined in the latest Heat Roadmap Europe studies [1, 2]. These studies quantify the impact of alternative heating strategies for Europe in 2030 and 2050. The study is based on geographical...... information systems (GIS) and energy system analyses. In this report, the inputs for other modelling tools such as PRIMES are presented, in order to enable other researches to generate similar heating scenarios for Europe. Although Heat Roadmap Europe presents a complete heat strategy for Europe, which...... includes energy efficiency, individual heating units (such as boilers and heat pumps), and heat networks, the recommendations here are primarily relating to the potential and modelling of district heating. Although other solutions will play a significant role in decarbonising the heating and cooling sector...

  1. Why do different people choose different university degrees? Motivation and the choice of degree

    Directory of Open Access Journals (Sweden)

    Anya eSkatova

    2014-11-01

    Full Text Available Different people choose which undergraduate degree to study at the university for different reasons. To date, there have been limited attempts to identify individual differences in motivation that drive the undergraduate degree choice. We identified that people choose university degrees for four reasons: career concerns (Career, intrinsic interest (Interest in the subject, an opportunity to help others (Helping and because they are looking for an easy option into higher education (Loafing. We investigated whether these motivation apply to the choice of undergraduate degree in two samples: (1 undergraduate (N = 989 and (2 prospective (N = 896 students. We developed the Motivations Influencing Course Choice (MICC questionnaire to measure these motivations. Scales of Helping, Career, Loafing and Interest showed good psychometric properties, showed validity with respect to general life goals and personality traits, and predicted actual and prospective degree choices. We demonstrated that medical degrees were chosen due to a mixture of Helping and Career, while engineering degrees were associated with Career and low interest in the degree. The choice of art and humanities degrees was driven by Interest and low concern about future career, accompanied with high Loafing. We also demonstrated gender differences: females were high in Helping (both samples and Interest (only in undergraduate sample motivation, while males scored higher in Career (only in undergraduate sample and Loafing (both samples. The findings can feed into both theoretical accounts of proximal motivation as well as help to improve degree programmes at universities and provide better career advice.

  2. Why do different people choose different university degrees? Motivation and the choice of degree.

    Science.gov (United States)

    Skatova, Anya; Ferguson, Eamonn

    2014-01-01

    Different people choose undergraduate degrees to study at university for different reasons. To date, there have been limited attempts to identify individual differences in motivation that drive undergraduate degree choice. We identified that people choose university degrees for four reasons: career concerns (Career), intrinsic interest in the subject (Interest), an opportunity to help others (Helping) and because they are looking for an easy option to get into higher education (Loafing). We investigated whether these motivations apply to the choice of undergraduate degree in two samples: (1) undergraduate (N = 989) and (2) prospective (N = 896) students. We developed the Motivations Influencing Course Choice (MICC) questionnaire to measure these motivations. Scales of Helping, Career, Loafing, and Interest showed good psychometric properties, showed validity with respect to general life goals and personality traits, and predicted actual and prospective degree choices. We demonstrated that medical degrees were chosen due to a mixture of Helping and Career, while engineering degrees were associated with Career and low Interest in the degree. The choice of arts and humanities degrees was driven by Interest and low concern about future career, accompanied with high Loafing. We also demonstrated gender differences: females were high in Helping (both samples) and Interest (only in the undergraduate sample) motivation, while males scored higher in Career (only in the undergraduate sample) and Loafing (both samples). The findings can feed into both theoretical accounts of proximal motivation as well as provide help to improve degree programmes at universities and support better career advice.

  3. Discours en circulation et (dé)montage filmique dans Fahrenheit 9/11 [Circulating discourse and film editing in Fahrenheit 9/11

    OpenAIRE

    Andrea Landvogt; Kathrin Sartingen

    2010-01-01

    Le film documentaire est une pratique sociale discursive médiatique qui se fonde essentiellement sur des pratiques citationnelles allant de l'allusion vague à la citation exacte. L'étude se concentre surun effet qui résulte de la rhéthorique filmique caractéristique de Michael Moore: la mise en circulation de discours –verbaux, visuels et acoustiques– décontextualisés grâce aux techniques du montage. Dans la mesure où il s'agit, dans la plupart des cas, d'un montagediscordant, Moore parvient ...

  4. Discours en circulation et (démontage filmique dans Fahrenheit 9/11 [Circulating discourse and film editing in Fahrenheit 9/11

    Directory of Open Access Journals (Sweden)

    Andrea Landvogt

    2010-12-01

    Full Text Available Le film documentaire est une pratique sociale discursive médiatique qui se fonde essentiellement sur des pratiques citationnelles allant de l'allusion vague à la citation exacte. L'étude se concentre surun effet qui résulte de la rhéthorique filmique caractéristique de Michael Moore: la mise en circulation de discours –verbaux, visuels et acoustiques– décontextualisés grâce aux techniques du montage. Dans la mesure où il s'agit, dans la plupart des cas, d'un montagediscordant, Moore parvient à transgresser les normes du genre «documentaire» pour arriver à la docu-satire.Documentaries can be seen as a social practice of filmic discourse. They are essentially based on citation techniques ranging from vague allusions to exact reproductions. The present study emphasizes a characteristic effect of Michael Moore's film rhethoric which consists in the use of montage techniques in order make –verbal, visual and acoustic– discourses circulate. However, Moore's excessiveuse of discordant montage is eventually overcoming the standards of documentary film as genre. It leads to something new we would like to call docu-satire.

  5. Sensitization of rat 9L gliosarcoma cells to low dose rate irradiation by long duration 41 degrees C hyperthermia.

    Science.gov (United States)

    Armour, E P; Wang, Z H; Corry, P M; Martinez, A

    1991-06-15

    Modification of survival by long duration, 41 degrees C hyperthermia in combination with low dose rate radiation (0.5 Gy/h) was determined in rat 9L gliosarcoma cells. Cells were exposed to radiation in a manner that simulated continuous irradiation at a dose rate relevant to clinical brachytherapy. High dose rate X-irradiation was fractionated in 1.0-Gy fractions at 2-h intervals (FLDRI). Previous studies had demonstrated that 9L cells exposed to FLDRI with these parameters have survival characteristics that are equivalent to continuous low dose rate irradiation. Cells exposed to 41 degrees C throughout FLDRI were sensitized significantly (thermal enhancement ratio of 2.07) compared with cells irradiated at 37 degrees C. Incubation for 24 h at 41 degrees C before and/or after FLDRI at either 37 degrees C or 41 degrees C did not increase the slope of the radiation survival curves but did reduce the shoulder. Similarly, heating at 43 degrees C for 30 or 60 min before and/or after irradiation at 0.5 Gy/h also did not enhance cell sensitivity. Survival of cells after irradiation at high dose rate (60 Gy/h) was independent of the temperature during irradiation. Preheat at 41 degrees C for 24 h did not sensitize cells to high dose rate irradiation by increasing the slope of the survival curve, although a loss of shoulder was observed. Sensitization of cells heated at 43 degrees C for 30 or 60 min before high dose rate irradiation was expressed as classical slope modification. Our results demonstrate that 41 degrees C heating during FLDRI greatly sensitizes cells to radiation-induced killing for exposure durations up to 36 h. Heating 9L cells at 41 degrees C or 43 degrees C adjacent to FLDRI at 0.5 Gy/h resulted in no additional enhancement of terminal sensitivity, although shoulder modification was observed. The sensitization by simultaneous heating described above occurred even though thermotolerance developed during extended incubation at 41 degrees C. These in vitro

  6. Developing 360 degree feedback system for KINS

    International Nuclear Information System (INIS)

    Han, In Soo; Cheon, B. M.; Kim, T. H.; Ryu, J. H.

    2003-12-01

    This project aims to investigate the feasibility of a 360 degree feedback systems for KINS and to design guiding rules and structures in implementing that systems. Literature survey, environmental analysis and questionnaire survey were made to ensure that 360 degree feedback is the right tool to improve performance in KINS. That review leads to conclusion that more readiness and careful feasibility review are needed before implementation of 360 degree feedback in KINS. Further the project suggests some guiding rules that can be helpful for successful implementation of that system in KINS. Those include : start with development, experiment with one department, tie it to a clear organization's goal, train everyone involve, make sure to try that system in an atmosphere of trust

  7. Developing 360 degree feedback system for KINS

    Energy Technology Data Exchange (ETDEWEB)

    Han, In Soo; Cheon, B. M.; Kim, T. H.; Ryu, J. H. [Chungman National Univ., Daejeon (Korea, Republic of)

    2003-12-15

    This project aims to investigate the feasibility of a 360 degree feedback systems for KINS and to design guiding rules and structures in implementing that systems. Literature survey, environmental analysis and questionnaire survey were made to ensure that 360 degree feedback is the right tool to improve performance in KINS. That review leads to conclusion that more readiness and careful feasibility review are needed before implementation of 360 degree feedback in KINS. Further the project suggests some guiding rules that can be helpful for successful implementation of that system in KINS. Those include : start with development, experiment with one department, tie it to a clear organization's goal, train everyone involve, make sure to try that system in an atmosphere of trust.

  8. Estimation of bulk transfer coefficient for latent heat flux (Ce)

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988. The computations have been made over two regions (A: 0-8 degrees N: 60-68 degrees E: B: 0...

  9. High-Degree Neurons Feed Cortical Computations.

    Directory of Open Access Journals (Sweden)

    Nicholas M Timme

    2016-05-01

    Full Text Available Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree or sends out (out-degree. To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to

  10. Adolescent obesity and future college degree attainment.

    Science.gov (United States)

    Fowler-Brown, Angela G; Ngo, Long H; Phillips, Russell S; Wee, Christina C

    2010-06-01

    The current impact of adolescent obesity on educational attainment is not clear. The objectives of our study were to determine whether adolescent obesity is associated with college degree attainment and how this association may have changed over time. We used data from a contemporary national cohort of over 4,000 persons who were adolescents (aged 14-18) in 1997 to assess the relationship between adolescent obesity and education. To assess for changes in this relationship over time, we also analyzed an older, similarly structured cohort of over 3,000 persons who were adolescents (aged 16-18) in 1981. Our primary outcome was college degree completion. We found that in the older cohort (adolescents in 1979), there were no differences in college degree attainment by adolescent weight status before and after adjustment. However, unadjusted analysis of the contemporary cohort (adolescents in 1997) demonstrated that those who were normal weight as adolescents had a higher prevalence of college degree attainment at follow-up compared to obese adolescents (24% vs. 10%). After adjustment for socio-demographic variables (age, sex, race, height, parental income-to-poverty ratio, parental education, aptitude test scores), obese adolescents were less likely to have attained a college degree compared to normal weight peers (adjusted risk ratio 0.61 95% confidence interval 0.38-0.83). Expectations for a future college degree did not vary by weight status and did not explain this observation. In conclusion, adolescent obesity is associated with lower likelihood of college completion. This relationship was not observed in an older cohort of adolescents.

  11. Heat exchanger tube inspection using ultrasonic arrays

    International Nuclear Information System (INIS)

    Meyer, P.A.; Carodiskey, T.J.

    1986-01-01

    Tubing used in industrial heat exchangers is often subject to failure caused by corrosion and cracking. Technical conferences are used as a forum in the steam generator industry to ensure that the failure mechanisms are well understood and that the quality of the heat exchanger is maintained. The quality of a heat exchanger can be thought of as its ability to operate to design specifications over its intended life. This is the motivation to inspect and evaluate these devices periodically. Inspection, however, normally requires shutdown of the heat exchanger which is costly but is much more acceptable than an unscheduled shutdown due to failure of a tube. Therefore, the degree of inspection is established by balancing the cost of inspection with the risk of a tube failure. Any method of reducing the cost of inspection will permit a higher degree of inspection and, therefore, improve heat exchanger quality. This paper reviews the design and performance of an improved method of ultrasonic inspection of heat exchanger tubing with emphasis on applications in the nuclear industry

  12. Einstein equations and Fermion degrees of freedom

    International Nuclear Information System (INIS)

    Luetz, E.F.; Vasconcellos, C.A.Z.

    2001-01-01

    When Dirac derived the special relativistic quantum equation which brings his name, it became evident that the spin is a consequence of the space-time geometry. However, taking gravity into account (as for, instance, in the study of neutron stars), most authors do not take into account the relation between hyperbolic geometry and spin and derive an Einstein equation which implicitly takes into account only boson degrees of freedom. In this work we introduce a consistent quantum general relativistic formalism which allows us to study the effects of the existence of fermion degrees of freedom. (author)

  13. Einstein equations and Fermion degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Luetz, E.F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica

    2001-07-01

    When Dirac derived the special relativistic quantum equation which brings his name, it became evident that the spin is a consequence of the space-time geometry. However, taking gravity into account (as for, instance, in the study of neutron stars), most authors do not take into account the relation between hyperbolic geometry and spin and derive an Einstein equation which implicitly takes into account only boson degrees of freedom. In this work we introduce a consistent quantum general relativistic formalism which allows us to study the effects of the existence of fermion degrees of freedom. (author)

  14. High degree modes and instrumental effects

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode

  15. Independence, Odd Girth, and Average Degree

    DEFF Research Database (Denmark)

    Löwenstein, Christian; Pedersen, Anders Sune; Rautenbach, Dieter

    2011-01-01

      We prove several tight lower bounds in terms of the order and the average degree for the independence number of graphs that are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum...... degree at most three due to Heckman and Thomas [Discrete Math 233 (2001), 233–237] to arbitrary triangle-free graphs. For connected triangle-free graphs of order n and size m, our result implies the existence of an independent set of order at least (4n−m−1) / 7.  ...

  16. Degree of Acetylization Chitosan Gonggong Snail Shells

    Science.gov (United States)

    Horiza, H.; Iskandar, I.; Aldo, N.

    2018-04-01

    Chitosan is a polysaccharide obtained from the deacetylation of chitin, which is generally derived from crustacean animal waste and animal skins other sea. One marine animals that have compounds that can be processed chitin chitosan is derived from the snail Gonggong marine waters of Riau Islands province. The purpose of this study was to determine the degree of chitosan from the shells of snails asetilisasi Gonggong. This research is an experimental research laboratory. The results of this study indicate that the degree of chitosan shell snail deasetilisasi Gonggong is 70.27%.

  17. Georgia Power Company's college degree program

    International Nuclear Information System (INIS)

    Coggin, C.L.

    1988-01-01

    The purpose of this paper is to describe Georgia Power Company's on-site college degree program for nuclear power plant personnel. In February 1986, the US Nuclear Regulatory Commission issued a policy statement concerning engineering expertise on shift (Generic Letter 86-04), which appeared in Volume 50, Number 208 of the October 28, 1985 Federal Register. One of the options available to nuclear power plant personnel to meet the requirement was the combined senior reactor operator/shift technical adviser position. One of the methods for meeting the option included a bachelor's degree in engineering technology for an accredited institution, including course work in the physical, mathematical, or engineering sciences

  18. Rotary magnetic heat pump

    Science.gov (United States)

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  19. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  20. Second-degree discrete Painleve equations conceal first-degree ones

    International Nuclear Information System (INIS)

    Ramani, A; Grammaticos, B; Joshi, N

    2010-01-01

    We examine various second-degree difference equations which have been proposed over the years and according to their authors' claims should be integrable. This study is motivated by the fact that we consider that second-degree discrete systems cannot be integrable due to the proliferation of the images (and pre-images) of the initial point. We show that in the present cases no contradiction exists. In all cases examined, we show that there exists an underlying integrable first-degree mapping which allows us to obtain an appropriate solution of the second-degree one.

  1. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  2. District heating in Switzerland

    International Nuclear Information System (INIS)

    Herzog, F.

    1991-01-01

    District heating has been used in Switzerland for more than 50 years. Its share of the heat market is less than 3% today. An analysis of the use of district heating in various European countries shows that a high share of district heating in the heat market is always dependent on ideal conditions for its use. Market prospects and possible future developments in the use of district heating in Switzerland are described in this paper. The main Swiss producers and distributors of district heating are members of the Association of District Heating Producers and Distributors. This association supports the installation of district heating facilities where ecological, energetical and economic aspects indicate that district heating would be a good solution. (author) 2 tabs., 6 refs

  3. Interpretability degrees of finitely axiomatized sequential theories

    NARCIS (Netherlands)

    Visser, Albert

    In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory-like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB-have suprema. This partially answers a question posed

  4. Interpretability Degrees of Finitely Axiomatized Sequential Theories

    NARCIS (Netherlands)

    Visser, Albert

    2012-01-01

    In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory —like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB— have suprema. This partially answers a question

  5. Purchases of Degrees from Diploma Mills.

    Science.gov (United States)

    Cramer, Robert J.

    In response to a request from the Permanent Subcommittee on Investigations of the Senate Committee on Governmental Affairs, the General Accounting Office (GAO) investigated issues concerning the proliferation of "diploma mills," which sell bogus academic degrees based on "life experience" or substandard or negligible work.…

  6. Quark degrees of freedom in nuclei

    International Nuclear Information System (INIS)

    Lovas, I.

    1986-03-01

    Experimental facts which can not be interpreted in terms of nucleonic degrees of freedom are reviewed. Attempts to explain these observations by the help of the notions of quark physics are indicated. Some predicted exotic states are enumerated. The most promising models of the nucleon-nucleon interactions in terms of quarks are briefly discussed. (author)

  7. PER PhDs & Bachelor's Degrees

    Science.gov (United States)

    White, Susan C.

    2017-01-01

    Recently, the editor remarked to me that physics departments that offered a PhD with a specialization in Physics Education Research (PER) seemed to graduate more bachelor's degree recipients than those physics PhD departments that did not have the specialization. I was not convinced. That led to quite a bit of discussion between us. He compiled a…

  8. Euclidean distance degrees of real algebraic groups

    NARCIS (Netherlands)

    Baaijens, J.A.; Draisma, J.

    2015-01-01

    We study the problem of finding, in a real algebraic matrix group, the matrix closest to a given data matrix. We do so from the algebro-geometric perspective of Euclidean distance degrees. We recover several classical results; and among the new results that we prove is a formula for the Euclidean

  9. Euclidean distance degrees of real algebraic groups

    NARCIS (Netherlands)

    Baaijens, J.A.; Draisma, J.

    2014-01-01

    We study the problem of finding, in a real algebraic matrix group, the matrix closest to a given data matrix. We do so from the algebro-geometric perspective of Euclidean distance degrees. We recover several classical results; and among the new results that we prove is a formula for the Euclidean

  10. Degree Compass: The Preferred Choice Approach

    Science.gov (United States)

    Whitten, Leah S.; Sanders, Anthony R.; Stewart, J. Gary

    2013-01-01

    While engaged in academic reading, a college provost converged on an idea to use a preferential approach to students' selection of college courses, similar to the recommendation ideas based on Netflix and Amazon. The result of this idea came to be known as Degree Compass and was implemented on the campus of Austin Peay State University in 2011.…

  11. Astronautics degrees for the space industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  12. Degree Audit Systems: Are They Worth It?

    Science.gov (United States)

    Johns, Virginia

    2006-01-01

    A lot of various degree audit systems are available on the market and most often they have similar features such as the functionality they each provide, the technical platforms upon which they operate, their requirements for interfacing with the local SIS, the ease of use, and the level of effort required to implement and operate. However, the…

  13. Toward the Ideal Professional Master's Degree Program.

    Science.gov (United States)

    Russell, Maria P.

    1999-01-01

    Outlines work accomplished at the 1998 National Communication Association Summer Conference, presenting a model for a professional master's-degree program in public relations that integrates outcomes, assessment, curriculum, and pedagogy. Outlines program outcomes, curriculum, essential curriculum-content areas, pedagogical approaches, and…

  14. Joint Supervision of Research Degrees: Second Thoughts.

    Science.gov (United States)

    Bourner, Tom; Hughes, Mark

    1991-01-01

    A discussion of Britain's regulation that master's and doctoral degree candidates must have two or three program supervisors identifies four potential problems: fragmentation of supervisory responsibilities; conflicting advice; unproductive games; and absence of overall perspective on the thesis. Experience with an improved, team approach is…

  15. Master Degree Modules in Nanotechnologies for Electronics

    Directory of Open Access Journals (Sweden)

    Slavka Tzanova

    2012-05-01

    Full Text Available The paper presents an European project focusing on closer cooperation in the university sector and transparency of qualifications and recognition methods. It is aimed at common MSc degree level courses development for the new skills for new jobs in the multidisciplinary nanoelectronics and a new job organisation.

  16. Managing "Academic Value": The 360-Degree Perspective

    Science.gov (United States)

    Wilson, Margaret R.; Corr, Philip J.

    2018-01-01

    The "raison d'etre" of all universities is to create and deliver "academic value", which we define as the sum total of the contributions from the 360-degree "angles" of the academic community, including all categories of staff, as well as external stakeholders (e.g. regulatory, commercial, professional and community…

  17. Strategies for Pursuing a Master's Degree.

    Science.gov (United States)

    Thomas, Cynthia M; McIntosh, Constance E; Mensik, Jennifer S

    2016-01-01

    Health care has become very complex and is in a constant state of change. As a result of the evolving change and increasing complexity, a more educated nursing workforce is needed (Dracup K. Master's nursing programs. American Association of Colleges of Nursing. 2015; Institute of Medicine. The Future of Nursing: Leading Change, Advancing Health. 2010). It is now becoming necessary for registered nurses to earn an advanced degree to work at the highest level of their practice authority (Dracup K. Master's nursing programs. American Association of Colleges of Nursing. 2015; Institute of Medicine. The Future of Nursing: Leading Change, Advancing Health. 2010.). Preparing to reenter college may be an overwhelming prospect for some registered nurses seeking an advanced degree. However, there are some simple strategies that may help sort out the many degree options, financial obligations, decisions about brick and mortar versus online learning, commitment to degree completion, and changing career paths. This article will provide the registered nurse valuable information that will assist in the exciting process of returning to college.

  18. Contribution to reconstruction of third degree rectovestibular ...

    African Journals Online (AJOL)

    2015-02-05

    Feb 5, 2015 ... Abstract. The study was conducted on ten mares suffering from third degree rectovestibular laceration. Four uterine washes were performed in all cases by using diluted betadine (mixing 5ml of betadine antiseptic solution in 1 liter of sterile saline) to control vaginal and uterine infections before surgery.

  19. A six degrees of freedom mems manipulator

    NARCIS (Netherlands)

    de Jong, B.R.

    2006-01-01

    This thesis reports about a six degrees of freedom (DOF) precision manipulator in MEMS, concerning concept generation for the manipulator followed by design and fabrication (of parts) of the proposed manipulation concept in MEMS. Researching the abilities of 6 DOF precision manipulation in MEMS is

  20. Perceived Benefits of an Undergraduate Degree

    Science.gov (United States)

    Norton, Cole; Martini, Tanya

    2017-01-01

    Canadian university students tend to endorse employment-related reasons for attending university ahead of other reasons such as personal satisfaction or intellectual growth. In the present study, first- and fourth-year students from a mid-sized Canadian university reported on the benefits they expected to receive from their degree and rated their…

  1. The Top 100: Graduate Degrees Conferred

    Science.gov (United States)

    Borden, Victor M. H.

    2011-01-01

    Recently, some critics and policymakers have started to question the value of a college education given the increasing costs of attending and the commensurate high debt levels of college graduates. Past and present studies also demonstrate that the average value masks important variation by degree level and field of study. This paper focuses on…

  2. The Value of a College Degree

    Science.gov (United States)

    Rose, Stephen

    2013-01-01

    Although parents, high school students, and most civic leaders in this country and around the world see a college degree as important, this perspective has been attacked over the last five years. Once the Great Recession began in December 2007, there were far fewer good jobs available for new college graduates. The soaring price of college had…

  3. Analysis of Heat Transfer

    International Nuclear Information System (INIS)

    2003-08-01

    This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.

  4. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Canobbio, E.

    1981-01-01

    This paper reports on the 2nd Joint Grenoble-Varenna International Symposium on Heating in Toroidal Plasmas, held at Como, Italy, from the 3-12 September 1980. Important problems in relation to the different existing processes of heating. The plasma were identified and discussed. Among others, the main processes discussed were: a) neutral beam heating, b) ion-(electron)-cyclotron resonance heating, c) hybrid resonance and low frequency heating

  5. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  6. Heat exchange apparatus

    International Nuclear Information System (INIS)

    Thurston, G.C.; McDaniels, J.D.; Gertsch, P.R.

    1979-01-01

    The present invention relates to heat exchangers used for transferring heat from the gas cooled core of a nuclear reactor to a secondary medium during standby and emergency conditions. The construction of the heat exchanger described is such that there is a minimum of welds exposed to the reactor coolant, the parasitic heat loss during normal operation of the reactor is minimized and the welds and heat transfer tubes are easily inspectable. (UK)

  7. Elevated-temperature tensile properties of three heats of commercially heat-treated Alloy 718

    International Nuclear Information System (INIS)

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    Three heats of commercially heat-treated alloy 718 were tensile tested over the temperature range from room temperature to 816 degree C and at nominal strain rates from 6.7 x 10 -6 to 6.7 x 10 -3 /s. We examined data for yield strength, ultimate tensile strength, uniform elongation, total elongation, and reduction in area and also inspected tensile stress-strain behavior. Yield and ultimate tensile strengths for commercially heat-treated alloy 718 decrease very gradually with temperature from room temperature up to about 600 degree C for a strain rate of 6.7 x 10 -5 /s or to about 700 degree C for a strain rate of 6.7 x 10 -4 /s. Above these temperatures the strength drops off fairly rapidly. Reduction in area and total elongation data show minimum around 700 degree C, with each ductility measure falling to 10% or less at the minimum. This minimum is more pranced and occurs at lower temperatures as strain rate decreases. Up to about 600 degree C the ductility is typically around 30%. As the temperature reaches 816 degree C the ductility again increases to perhaps 60%. The uniform elongation (plastic strain at peak load) decreases only slightly with temperature to about 500 degree C then drops off rapidly and monotonically with temperature, reaching values less than 1% at 816 degree C. At the highest test temperatures the load maximum may result, not from necking of the specimen, but from overaging of the precipitation-hardened microstructure. Stress-strain curves showed serrated deformations in the temperature range from 316 to 649 degree C, although they occur only for the faster strain rates at the supper end of this temperature range. The serrations can be quite large, involving load drops of perhaps 40 to 80 MPa. The serrations typically begin within the first 2% of deformation and continue until fracture, although exceptions were noted. 16 refs., 14 figs., 3 tabs

  8. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  9. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    Science.gov (United States)

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-07

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.

  10. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  11. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-01-01

    Efficient techniques for rapid tritium removal will be necessary for ITER to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 ms is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  12. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  13. Information filtering via biased heat conduction

    Science.gov (United States)

    Liu, Jian-Guo; Zhou, Tao; Guo, Qiang

    2011-09-01

    The process of heat conduction has recently found application in personalized recommendation [Zhou , Proc. Natl. Acad. Sci. USA PNASA60027-842410.1073/pnas.1000488107107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.

  14. The Swiss heating reactor (SHR) for district heating of small communities

    International Nuclear Information System (INIS)

    Burgsmueller, P.; Jacobi, A.Jr.; Jaeger, J.F.; Klaentschi, M.J.; Seifritz, W.; Vuillemier, F.; Wegmann, F.

    1987-01-01

    With fossil fuel running out in a foreseeable future, it is essential to develop substitution strategies. Some 40-50 % of the heat demand in industrial countries is below 120 degrees C, for space heating and warm water production, causing a corresponding fraction of air pollution by SO 2 and to a lesser extent NO x if fossil fuels are used. Yet, contemporary LWR technology makes it feasible to supply a district heating network without basically new reactor development. Units in the power range 10-50 MW are most suitable for Switzerland, both in respect of network size and of the democratic decision making structure. A small BWR for heating purpose is being developed by parts of the Swiss Industry and the Swiss Federal Institute for Reactor Research (EIR). The economic target of 100-120 SFr/MWh heat at the consumer's seems achievable. (author)

  15. Experimental study of heat transfer in a heat exchanger with rectangular channels

    International Nuclear Information System (INIS)

    Hammami, Mahmoud; Ben Said, Akrem; Ben Maad, Rejeb; Rebay, Mourad

    2009-01-01

    This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m 2 , the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in q uinconce r ectangular mini-channel heat exchanger, with a hydraulic diameter D h = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int

  16. Pathways to a Four-Year Degree: Determinants of Degree Completion among Socioeconomically Disadvantaged Students.

    Science.gov (United States)

    Cabrera, Alberto F.; Burkum, Kurt R.; La Nasa, Steven M.

    The High School Sophomore Cohort of 1980 followed nine different pathways to a 4-year college degree. These paths were formed by a combination of different levels of academic preparation secured in high school and the first type of postsecondary institution attended. The pathway most likely to lead to a 4-year degree is one defined by acquiring…

  17. On the relationship between degree of hand-preference and degree of language lateralization

    NARCIS (Netherlands)

    Somers, Metten; Ophoff, Roel A; Boks, Marco P; Fleer, Willemien; de Visser, Kees C L; Kahn, René S; Sommer, Iris E; Aukes, M.F.

    2015-01-01

    Language lateralization and hand-preference show inter-individual variation in the degree of lateralization to the left- or right, but their relation is not fully understood. Disentangling this relation could aid elucidating the mechanisms underlying these traits. The relation between degree of

  18. Astronomy Enrollments and Degrees: Results from the 2012 Survey of Astronomy Enrollments and Degrees. Focus On

    Science.gov (United States)

    Mulvey, Patrick; Nicholson, Starr

    2014-01-01

    Interest in astronomy degrees in the U.S. remains strong, with astronomy enrollments at or near all-time highs for the 2012-13 academic year. The total number of students taking an introductory astronomy course at a degree-granting physics or astronomy department is approaching 200,000. Enrollments in introductory astronomy courses have been…

  19. Lessons Learned: Creating an Online Business Degree from a Successful On-Campus Business Degree

    Science.gov (United States)

    Cordeiro, William P.; Muraoka, Dennis

    2015-01-01

    The horse has left the barn. Distance education is here to stay and the number of degree programs offered online is growing rapidly. California State University Channel Islands (CI) admitted its first students in 2002, and the undergraduate and graduate degrees in business were among its first program offerings. From its inception, the…

  20. Modulation of oral heat and cold pain by irritant chemicals.

    Science.gov (United States)

    Albin, Kelly C; Carstens, Mirela Iodi; Carstens, E

    2008-01-01

    Common food irritants elicit oral heat or cool sensations via actions at thermosensitive transient receptor potential (TRP) channels. We used a half-tongue, 2-alternative forced-choice procedure coupled with bilateral pain intensity ratings to investigate irritant effects on heat and cold pain. The method was validated in a bilateral thermal difference detection task. Capsaicin, mustard oil, and cinnamaldehyde enhanced lingual heat pain elicited by a 49 degrees C stimulus. Mustard oil and cinnamaldehyde weakly enhanced lingual cold pain (9.5 degrees C), whereas capsaicin had no effect. Menthol significantly enhanced cold pain and weakly reduced heat pain. To address if capsaicin's effect was due to summation of perceptually similar thermal and chemical sensations, one-half of the tongue was desensitized by application of capsaicin. Upon reapplication, capsaicin elicited little or no irritant sensation yet still significantly enhanced heat pain on the capsaicin-treated side, ruling out summation. In a third experiment, capsaicin significantly enhanced pain ratings to graded heat stimuli (47 degrees C to 50 degrees C) resulting in an upward shift of the stimulus-response function. Menthol may induce cold hyperalgesia via enhanced thermal gating of TRPM8 in peripheral fibers. Capsaicin, mustard oil, and cinnamaldehyde may induce heat hyperalgesia via enhanced thermal gating of TRPV1 that is coexpressed with TRPA1 in peripheral nociceptors.

  1. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  2. Optimization of triangular microchannel heat sinks using constructible theory

    International Nuclear Information System (INIS)

    Mardani, Moloud; Salimpour, Mohammad Reza

    2016-01-01

    The present paper examines the optimization of triangular microchannel heat sinks. The impact of volume fraction of solid material and pressure drop on the maximum temperature of the microchannel heat sinks are investigated and their optimum operating conditions are compared. From the results, it is seen that increasing the side angle of the triangular microchannel, improves its performance. Furthermore, there is an appropriate agreement between the analytical and numerical results. Finally, the effect of degrees of freedom on the performance of microchannels is investigated. To accomplish this end, the triangular microchannels with the side angle of 60 degree have been chosen as it has the best performance compared to other microchannels. It is observed that the minimized maximum temperatures of optimized microchannel heat sinks with three degrees of freedom are 10% lower than the ones with two degrees of freedom

  3. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  4. Heat recovery in industry

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, F; Paul, J [Essen Univ. (Gesamthochschule) (Germany, F.R.)

    1977-05-01

    The waste heat of industrial furnaces and other heat-consuming installations can be utilized by recuperative processes in the furnace and by energy cascades. Economy and the need for an external supply of energy are closely connected. Straight cascades can hardly be realized and if the required temperature gradient is too great such heat should be utilized repeatedly if possible by recycling through heat pumps. The possibilities depend on the relevant temperature since the technology available for this differs in its state of development. The low-temperature waste heat from the final stage can be used for space-heating and water heating by heat exchangers and heat pumps and thus be put to a useful purpose.

  5. Nuclear diffuseness as a degree of freedom

    Science.gov (United States)

    Myers, W. D.; ŚwiaŢecki, W. J.

    1998-12-01

    The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and proton diffusenesses as degrees of freedom (to be varied along with the shape degrees of freedom). One result, which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy nucleus by 10% (about 4 MeV), is that superheavy nuclei near Z=126, N=184 may have a fair chance of becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with certain advantages over the conventional Süssmann width b.

  6. Jamming in complex networks with degree correlation

    International Nuclear Information System (INIS)

    Pastore y Piontti, Ana L.; Braunstein, Lidia A.; Macri, Pablo A.

    2010-01-01

    We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model.

  7. Effective hadron degrees of freedom in nuclei

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1988-01-01

    This paper discusses several topics. The first one is the importance of a consistent treatment of extended nucleons and the subsequent requirement of accounting for quark antisymmetrization. It will probably be possible to account for these effects through quark exchange currents in much of the same way as meson exchange currents at lower values of Q 2 . In order to obtain more definite answers on intrinsic properties of nucleons and other hadronic degrees of freedom in nuclei it is important to establish to which extent hadronic degrees of freedom behaving like quasi-free nuclear constituents can be used to describe the nuclear response in inclusive and semi-inclusive electron scattering at intermediate energies

  8. Nuclear diffuseness as a degree of freedom

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1998-01-01

    The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and proton diffusenesses as degrees of freedom (to be varied along with the shape degrees of freedom). One result, which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy nucleus by 10% (about 4 MeV), is that superheavy nuclei near Z=126, N=184 may have a fair chance of becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with certain advantages over the conventional Suessmann width b. copyright 1998 The American Physical Society

  9. Isobar degrees of freedom in nuclei

    International Nuclear Information System (INIS)

    Muether, H.

    1979-01-01

    A report is given on some recent investigations of the influence of isobar degrees of freedom on the ground state properties of finite nuclei like e.g. 16 O. The nucleon-nucleon (NN) interaction is constructed in the freamework of an extended one-boson-exchange (OBE) model using non-covariant, time-dependent perturbation theory. The explicit consideration of fourth-order iterative diagrams involving NΔ and ΔΔ intermediate states gives an effective NN interaction in the nuclear many-body system which is less attractive than those which are obtained treating these terms phenomenologically. Therefore the binding energy calculated in the Brueckner-Hartree-Fock approximation is smaller if these effects of isobar degrees of freedom are taken into account. This repulsive effect of isobar configurations is partly counterbalanced by the attraction obtained for three-nucleon terms with intermediate NNΔ states. (Auth.)

  10. The physical gravitational degrees of freedom

    International Nuclear Information System (INIS)

    Anderson, E; Barbour, J; Foster, B Z; Kelleher, B; Murchadha, N O

    2005-01-01

    When constructing general relativity (GR), Einstein required 4D general covariance. In contrast, we derive GR (in the compact, without boundary case) as a theory of evolving three-dimensional conformal Riemannian geometries obtained by imposing two general principles: (1) time is derived from change; (2) motion and size are relative. We write down an explicit action based on them. We obtain not only GR in the CMC gauge, in its Hamiltonian 3 + 1 reformulation, but also all the equations used in York's conformal technique for solving the initial-value problem. This shows that the independent gravitational degrees of freedom obtained by York do not arise from a gauge fixing but from hitherto unrecognized fundamental symmetry principles. They can therefore be identified as the long-sought Hamiltonian physical gravitational degrees of freedom

  11. New nuclear heat sources for district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  12. Law Schools Customize Degrees to Students' Taste

    Science.gov (United States)

    Schmidt, Peter

    2009-01-01

    Going to law school to get a law degree has become a little like going to an ice-cream parlor for a scoop of vanilla. Plenty of people still do it, but many schools' brochures--like the elaborate flavor-and-topping menus on ice-cream parlor walls--now tempt them with something different, something more. Law students can have their "juris doctor"…

  13. Nuclear engineering enrollments and degrees, 1994: Appendixes

    International Nuclear Information System (INIS)

    1995-05-01

    This survey is designed to include those programs sponsored by the Department of Energy. The survey is designed to include those programs offering a major in nuclear engineering or course work equivalent to a major in other engineering disciplines that prepare the graduates to perform as nuclear engineers. This survey provides data on nuclear engineering enrollments and degrees for use in labor market analyses, information on education programs for students, and information on new graduates to employers, government agencies, academia and professional societies

  14. Minimum degree and density of binary sequences

    DEFF Research Database (Denmark)

    Brandt, Stephan; Müttel, J.; Rautenbach, D.

    2010-01-01

    For d,k∈N with k ≤ 2d, let g(d,k) denote the infimum density of binary sequences (x)∈{0,1} which satisfy the minimum degree condition σ(x+) ≥ k for all i∈Z with xi=1. We reduce the problem of computing g(d,k) to a combinatorial problem related to the generalized k-girth of a graph G which...

  15. Adolescent Obesity and Future College Degree Attainment

    OpenAIRE

    Fowler-Brown, Angela G.; Ngo, Long H.; Phillips, Russell S.; Wee, Christina C.

    2009-01-01

    The current impact of adolescent obesity on educational attainment is not clear. The objectives of our study were to determine whether adolescent obesity is associated with college degree attainment and how this association may have changed over time. We used data from a contemporary national cohort of over 4,000 persons who were adolescents (aged 14–18) in 1997 to assess the relationship between adolescent obesity and education. To assess for changes in this relationship over time, we also a...

  16. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  17. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  18. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  19. Depth and degree of melting of komatiites

    Science.gov (United States)

    Herzberg, Claude

    1992-04-01

    High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).

  20. Surface wettability and subcooling on nucleate pool boiling heat transfer

    Science.gov (United States)

    Suroto, Bambang Joko; Kohno, Masamichi; Takata, Yasuyuki

    2018-02-01

    The effect of varying surface wettabilities and subcooling on nucleate pool boiling heat transfer at intermediate heat flux has been examined and investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0, 5 and 10 K, respectively. The three types of heat transfer block were used that are bare surface/hydrophilic (polished copper), superhydrophilic/TiO2-coated on copper and hydrophobic/PTFE surface. The experimental results will be examined by the existing model. The results show that the heat transfer performance of surfaces with PTFE coating is better at low heat flux. While for an intermediate heat flux, superhydrophilic surface (TiO2) is superior compared to hydrophilic and hydrophobic surfaces. It is observed that the heat transfer performance is decreasing when the sub cooling degree is increased.

  1. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  2. The prospects for nuclear heating in Hungary

    International Nuclear Information System (INIS)

    Papp, I.; Lynch, G.F.

    1989-09-01

    In assessing alternative nuclear heat sources, a joint study was undertaken between Canada and Hungary to determine the feasibility of using the SLOWPOKE Energy System that has recently been developed. The SLOWPOKE Energy System is a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions. It uses a combination of inherent safety features, including natural convection circulation and negative reactivity coefficients, and engineered features to ensure an extremely safe system. A SLOWPOKE demonstration heating reactor has been constructed in Canada. The unit started operation in July 1987 and is currently undergoing an extensive test program. Since the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 deg. C, the complex high-pressure, and high-temperature systems essential for electricity production are eliminated. As a result, the nuclear heat source can be located close to the load and will require a minimum of operator attention. In this way, a SLOWPOKE Energy System can be considered much like the oil- or natural gas fired furnace it is designed to replace. The extensive use of hot water district heating systems in Hungary offers the opportunity to exploit such simple nuclear systems as base load heat sources without an extensive retrofit of the existing systems. In addition, the studies have concluded that there are many economically attractive sites for 10 MW SLOWPOKE Energy Systems within the existing networks. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as additional factors that facilitate the transfer of the technology to Hungary. Simple nuclear heat sources, such as the SLOWPOKE Energy System, when applied to the Hungarian district heating systems, offer the prospects of a significant reduction in the dependence on imported fossil fuels in the

  3. Social media responses to heat waves

    Science.gov (United States)

    Jung, Jihoon; Uejio, Christopher K.

    2017-07-01

    Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.

  4. Fuzzy multivariable control of domestic heat pumps

    International Nuclear Information System (INIS)

    Underwood, C.P.

    2015-01-01

    Poor control has been identified as one of the reasons why recent field trials of domestic heat pumps in the UK have produced disappointing results. Most of the technology in use today uses a thermostatically-controlled fixed speed compressor with a mechanical expansion device. This article investigates improved control of these heat pumps through the design and evaluation of a new multivariable fuzzy logic control system utilising a variable speed compressor drive with capacity control linked through to evaporator superheat control. A new dynamic thermal model of a domestic heat pump validated using experimental data forms the basis of the work. The proposed control system is evaluated using median and extreme daily heating demand profiles for a typical UK house compared with a basic thermostatically-controlled alternative. Results show good tracking of the heating temperature and superheat control variables, reduced cycling and an improvement in performance averaging 20%. - Highlights: • A new dynamic model of a domestic heat pump is developed and validated. • A new multivariable fuzzy logic heat pump control system is developed/reported. • The fuzzy controller regulates both plant capacity and evaporator superheat degree. • Thermal buffer storage is also considered as well as compressor cycling. • The new controller shows good variable tracking and a reduction in energy of 20%.

  5. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  6. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  7. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  8. Joint Degree Program: the Perspective of Employers

    Directory of Open Access Journals (Sweden)

    Tatjana Bilevičienė

    2013-08-01

    Full Text Available Purpose — the purpose of this article is to extend discussion towards the need and importance of joint degree programs in modern universities, introducing the perspective of the employers toward this question. Design/methodology/approach — the research was conducted to analyze the demand of joint degree programs from the perspective of employers, identify weak and strong aspects, opinion and demand for graduates of such programs. To achieve this purpose, a combination of theoretical and empirical methods was chosen: document analysis (previous studies, statistics was conducted and an online qualitative survey was organized. Findings — The analysis of articles, studies and statistics points out the challenges and threats faced by universities nowadays, forcing higher education institutions to find new ways to raise the quality of studies and raise the interest of employers to choose graduates from MRU, as well as the satisfaction of employers with their choice of employees. Theoretical analysis pointed out these challenges and requirements for the modern employee, summarised the challenges in preparation of IT field specialists. The conducted research results showed that the diploma of joint degree programs would not be treated as an advantage of possible employee from the perspective of employers in case some important aspects will not be taken into consideration by program creators. On the other hand, undeniably there are strong sides, such as knowledge in the fields of foreign language, international experience, innovativeness and creativeness of employees that would be treated as an advantage in the process of selection for positions of any technical support related positions. Research limitations/implications — employers, whose business activities are closely related to information technology, have been invited as experts. In addition, these experts have a good understanding of the specifics of joint degree programs. The received

  9. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process

    International Nuclear Information System (INIS)

    Zhang, Chenghu; Li, Yaping

    2017-01-01

    Concept of reversible heat exchange process as the theoretical model of the cycle combined heat exchanger could be useful to determine thermodynamics characteristics and the limitation values in the isolated heat exchange system. In this study, the classification of the reversible heat exchange processes is presented, and with the numerical method, medium temperature variation tendency and the useful work production and usage in the whole process are investigated by the construction and solution of the mathematical descriptions. Various values of medium inlet temperatures and heat capacity ratio are considered to analyze the effects of process parameters on the outlet temperature lift/drop. The maximum process work transferred from the Carnot cycle region to the reverse cycle region is also researched. Moreover, influence of the separating point between different sub-processes on temperature variation profile and the process work production are analyzed. In addition, the heat-exchange-enhancement-factor is defined to study the enhancement effect of the application of the idealized process in the isolated heat exchange system, and the variation degree of this factor with process parameters change is obtained. The research results of this paper can be a theoretical guidance to construct the cycle combined heat exchange process in the practical system. - Highlights: • A theoretical model of Cycle combined heat exchange process is proposed. • The classification of reversible heat exchange process are presented. • Effects of Inlet temperatures and heat capacity ratio on process are analyzed. • Process work transmission through the whole process is studied. • Heat-exchange-enhancement-factor can be a criteria to express the application effect of the idealized process.

  10. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    Science.gov (United States)

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  11. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  12. The secure heating reactor

    International Nuclear Information System (INIS)

    Pind, C.

    1987-01-01

    The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives for heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories

  13. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  14. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Be Prepared Safe Citizen Day Organize Important Medical Information ER Checklists Preparing for Emergencies Be ready to ... anyone can be affected. Here you will find information about heat cramps and heat stroke and exhaustion. ...

  15. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  16. Inactivation of 12 viruses by heating steps applied during manufacture of a hepatitis B vaccine

    NARCIS (Netherlands)

    Lelie, P. N.; Reesink, H. W.; Lucas, C. J.

    1987-01-01

    The efficacy of two heating cycles (90 sec at 103 degrees C and 10 hr at 65 degrees C) used during manufacture of a plasma-derived hepatitis-B vaccine was validated for the inactivation of 12 virus families. A period of 15 min warming up to 65 degrees C had already completely inactivated

  17. Regenerative heat sources for heating networks

    International Nuclear Information System (INIS)

    Huenges, Ernst; Sperber, Evelyn; Eggers, Jan-Bleicke; Noll, Florian; Kallert, Anna Maria; Reuss, Manfred

    2015-01-01

    The ambitious goal, the German Federal Government has set itself, to reduce the emissions of greenhouse gases by 80% to 95% by the year 2050. As there are currently more than half of German energy consumption for the production of heat is required, big contributions to climate protection can be expected from this area if more renewable heat sources are used. Renewable heat sources such as bioenergy, solar thermal and geothermal energy in particular can be provided as compared to fossil fuels with significantly lower specific CO 2 emissions. Objectives in the heating market and scenarios for the transformation of the heat sector have been elaborated in the BMU Lead Study 2011. The main pillar of this scenario is the reduction of final energy consumption for heat by the energy-efficient renovation of existing buildings and further increasing demands on the energetic quality of new buildings. To cover the remaining energy demand, a focus is on the expansion of heating networks based on renewable energies. [de

  18. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  19. Heat roadmap China

    DEFF Research Database (Denmark)

    Xiong, Weiming; Wang, Yu; Mathiesen, Brian Vad

    2015-01-01

    District heating is regarded as a key element of energy saving actions in the Chinese national energy strategy, while space heating in China is currently still dominated by coal boilers. However, there is no existing quantitative study to analyse the future heat strategy for China. Therefore...

  20. Heat Recovery System

    Science.gov (United States)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  1. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  2. Solar heating pipe

    Energy Technology Data Exchange (ETDEWEB)

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  3. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  4. Designing heat exchangers for process heat reactors

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  5. Developing Your 360-Degree Leadership Potential.

    Science.gov (United States)

    Verma, Nupur; Mohammed, Tan-Lucien; Bhargava, Puneet

    2017-09-01

    Radiologists serve in leadership roles throughout their career, making leadership education an integral part of their development. A maxim of leadership style is summarized by 360-Degree Leadership, which highlights the ability of a leader to lead from any position within the organization while relying on core characteristics to build confidence from within their team. The qualities of leadership discussed can be learned and applied by radiologists at any level. These traits can form a foundation for the leader when faced with unfavorable events, which themselves allow the leader an opportunity to build trust. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. Infinite-degree-corrected stochastic block model

    DEFF Research Database (Denmark)

    Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2014-01-01

    In stochastic block models, which are among the most prominent statistical models for cluster analysis of complex networks, clusters are defined as groups of nodes with statistically similar link probabilities within and between groups. A recent extension by Karrer and Newman [Karrer and Newman...... corrected stochastic block model as a nonparametric Bayesian model, incorporating a parameter to control the amount of degree correction that can then be inferred from data. Additionally, our formulation yields principled ways of inferring the number of groups as well as predicting missing links...

  7. Importance of small-degree nodes in assortative networks with degree-weight correlations

    Science.gov (United States)

    Ma, Sijuan; Feng, Ling; Monterola, Christopher Pineda; Lai, Choy Heng

    2017-10-01

    It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.

  8. SAXS observation of structural evolution of heated olefin

    International Nuclear Information System (INIS)

    Sun Minhua; Mou Hongchen; Wang Yuxi; Li Demin; Wang Aiping; Ma Congxiao; Cheng Weidong; Wang Dan; Liu Jia

    2007-01-01

    Structural evolution of olefin during its heating process was observed with SAXS method at Beijing Synchrotron Radiation Facility. The mean square fluctuation of electron density increased from 468.5 nm -2 at 22 degree C to 2416 nm -2 at 100 degree C, while the electronic gyration radius decreased from 11.61 nm at 22 degree C to 11.16 nm at 100 degree C. Therefore, the olefin softens as a result of the increased thermal motion of the molecules, rather than the shrinking size of fundamental structural units of olefin. (authors)

  9. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.

    2013-01-01

    Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m 2 ). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10 −5 –5.8 × 10 −5 m 3 /s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane

  10. Data Quality and Reliability Analysis of U.S. Marine Corps Ground Vehicle Maintenance Records

    Science.gov (United States)

    2015-06-01

    operate in climates 6 ranging from -50 degrees Fahrenheit to 125 degrees Fahrenheit . The MTVR is able to travel at 65mph on improved roads and has...its treatment in the paragraphs below. The MIMMS data comprise 451 distinct UICs. In order to reduce the number of categorical variables within the

  11. Temperature distribution of the energy consumed as heat in Canada

    International Nuclear Information System (INIS)

    Puttagunta, V.R.

    1974-10-01

    The amount of energy consumed as heat (excluding thermal generation of electricity) in Canada is estimated from statistical data available on the total consumption of energy for the years 1958 to 2000. Based on some actual plant data and other statistical information this energy consumption is sub-divided into four temperature categories: high (>260 degrees C), intermediate (140-260 degrees C), low (100-140 degrees C), and space heating (<100 degrees C). The results of this analysis show that approximately half of all the energy consumed in Canada has an end use as heat. Less than 10 percent of the energy consumed as heat is in the high temperature category, 12 to 14 percent is in the intermediate temperature range, 21 to 27 percent is in the low temperature range, and 50 to 58 percent is used for space heating. Over 90 percent of the energy consumed as heat in Canada is within the temperature capability of the CANDU-PHW reactor. (author)

  12. Sampling networks with prescribed degree correlations

    Science.gov (United States)

    Del Genio, Charo; Bassler, Kevin; Erdos, Péter; Miklos, István; Toroczkai, Zoltán

    2014-03-01

    A feature of a network known to affect its structural and dynamical properties is the presence of correlations amongst the node degrees. Degree correlations are a measure of how much the connectivity of a node influences the connectivity of its neighbours, and they are fundamental in the study of processes such as the spreading of information or epidemics, the cascading failures of damaged systems and the evolution of social relations. We introduce a method, based on novel mathematical results, that allows the exact sampling of networks where the number of connections between nodes of any given connectivity is specified. Our algorithm provides a weight associated to each sample, thereby allowing network observables to be measured according to any desired distribution, and it is guaranteed to always terminate successfully in polynomial time. Thus, our new approach provides a preferred tool for scientists to model complex systems of current relevance, and enables researchers to precisely study correlated networks with broad societal importance. CIDG acknowledges support by the European Commission's FP7 through grant No. 288021. KEB acknowledges support from the NSF through grant DMR?1206839. KEB, PE, IM and ZT acknowledge support from AFSOR and DARPA through grant FA?9550-12-1-0405.

  13. High degree-of-freedom dynamic manipulation

    Science.gov (United States)

    Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.

    2012-06-01

    The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.

  14. The True Gravitational Degrees Of Freedom

    International Nuclear Information System (INIS)

    Murchadha, N. o

    2011-01-01

    More than 50 years ago it was realized that General Relativity could be expressed in Hamiltonian form. Unfortunately, just like electromagnetism and Yang-Mills theory, the Einstein equations split into evolution equations and constraints which complicates matters. The 4 constraints are expressions of the gauge freedom of the theory, general covariance. One can cleanly pose initial data for the gravitational field, but this data has to satisfy the constraints. To find the independent degrees of freedom, one needs to factor the initial data by the constraints. There are many ways of doing this. I can do so in such a way as to implement the model suggested by Poincare for a well-posed dynamical system: Pick a configuration space and give the free initial data as a point of the configuration space and a tangent vector at the same point. Now, the evolution equations should give a unique curve in the same configuration space. This gives a natural definition of what I call the true gravitational degrees of freedom. (author)

  15. Neighbor Rupture Degree of Some Middle Graphs

    Directory of Open Access Journals (Sweden)

    Gökşen BACAK-TURAN

    2017-12-01

    Full Text Available Networks have an important place in our daily lives. Internet networks, electricity networks, water networks, transportation networks, social networks and biological networks are some of the networks we run into every aspects of our lives. A network consists of centers connected by links. A network is represented when centers and connections modelled by vertices and edges, respectively. In consequence of the failure of some centers or connection lines, measurement of the resistance of the network until the communication interrupted is called vulnerability of the network. In this study, neighbor rupture degree which is a parameter that explores the vulnerability values of the resulting graphs due to the failure of some centers of a communication network and its neighboring centers becoming nonfunctional were applied to some middle graphs and neighbor rupture degree of the $M(C_{n},$ $M(P_{n},$ $M(K_{1,n},$ $M(W_{n},$ $M(P_{n}\\times K_{2}$ and $M(C_{n}\\times K_{2}$ have been found.

  16. Gauge invariance and degree of freedom count

    International Nuclear Information System (INIS)

    Henneaux, M.; Universite Libre de Bruxelles; Teitelboim, C.; Texas Univ., Austin; Zanelli, J.; Chile Univ., Santiago. Dept. de Fisica)

    1990-01-01

    The precise relation between the gauge transformations in lagrangian and hamiltonian form is derived for any gauge theory. It is found that in order to define a lagrangian gauge symmetry, the coefficients of the first class constraints in the hamiltonian generator of gauge transformations must obey a set of differential equations. Those equations involve, in general, the Lagrange multipliers. Their solution contains as many arbitrary functions of time as there are primary first class constraints. If n is the number of generations of constraints (primary, secondary, tertiary...), the arbitrary functions appear in the general solution together with their successive time derivatives up to order n-1. The analysis yields as by-products: (i) a systematic way to derive all the gauge symmetries of a given lagrangian; (ii) a precise criterion for counting the physical degrees of freedom of a gauge theory directly from the form of gauge transformations in lagrangian form. This last part is illustrated by means of examples. The BRST analog of the counting of physical degrees of freedom is also discussed. (orig.)

  17. Epidemic spreading on preferred degree adaptive networks.

    Science.gov (United States)

    Jolad, Shivakumar; Liu, Wenjia; Schmittmann, B; Zia, R K P

    2012-01-01

    We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ. Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting κ depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either 'blind' or 'selective'--depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λ(c)/μ = / and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With 'blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The 'selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.

  18. Swedish district heating - owners, prices and profitability

    International Nuclear Information System (INIS)

    Andersson, Sofie; Werner, S.

    2001-01-01

    Owners, prices and profitability are examined in this report for 152 Swedish district heating companies during 1999. Only public information available has been used: Prices from a national annual consumer study, energy supplied, lengths of district heating pipes installed, and average prices for energy supplied. These companies are responsible for 96 % of all district heat supplied in Sweden. District heating systems owned by municipalities were responsible for 65 % of all district heat supply, while the share of power companies was 34 %. Other private owners accounted for 1 %. Only 12 % of the board members are women and more than 40 % of the companies have no woman in the board. The prices gathered by the annual consumer study are good estimates of the price level of district heating in Sweden. The average revenues are only 4,1 % lower than the effective average of prices gathered. Price of district heating decrease with size and market share. Use of combined heat and power plants decrease prices slightly. Lower prices with size can mainly be explained by lower energy supply costs. Calculated rates of return in relation to calculated replacement values increase slightly by size and are almost independent of age and market share. The purport of these conclusions is that the district heating companies share the cost reduction from size with their customers, while the whole benefit from high market shares is repaid to the customers. Calculated rates of return vary among the owner groups examined. Lower rates are accepted by municipalities, while power companies have higher rates at the average costs used. Total replacement costs for the 152 companies has been estimated to 89 billion Swedish crowns or 10 billion Euro. Only correlation analyses using one dimension have been used in this study. A higher degree of quality can be obtained by using multi-dimensional analyses

  19. Condensation heat transfer in plate heat exchangers

    International Nuclear Information System (INIS)

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  20. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  1. Introduction to heat transfer

    International Nuclear Information System (INIS)

    Weisman, J.

    1983-01-01

    Heat may be defined as that form of energy which spontaneously flows between two bodies, or two regions of a body, by virtue of a temperature difference. The second law of thermodynamics tells us that we cannot have heat flow from a low temperature to high temperature without doing work. Heat flows spontaneously from a high temperature to a low temperature region. Thermodynamics, which is concerned with equilibrium states, cannot tell us anything about the rate of heat flow in the presence of a finite temperature difference. It is to the discipline of heat transfer to which we must turn for this answer

  2. A comparative analysis of heat waves and associated mortality in St. Louis, Missouri--1980 and 1995.

    Science.gov (United States)

    Smoyer, K E

    1998-08-01

    This research investigates heat-related mortality during the 1980 and 1995 heat waves in St. Louis, Missouri. St. Louis has a long history of extreme summer weather, and heat-related mortality is a public health concern. Heat waves are defined as days with apparent temperatures exceeding 40.6 degrees C (105 degrees F). The study uses a multivariate analysis to investigate the relationship between mortality and heat wave intensity, duration, and timing within the summer season. The heat wave of 1980 was more severe and had higher associated mortality than that of 1995. To learn if changing population characteristics, in addition to weather conditions, contributed to this difference, changes in population vulnerability between 1980 and 1995 are evaluated under simulated heat wave conditions. The findings show that St. Louis remains at risk of heat wave mortality. In addition, there is evidence that vulnerability has increased despite increased air-conditioning penetration and public health interventions.

  3. On the question of heat engine cycles optimization

    Directory of Open Access Journals (Sweden)

    Костянтин Ігорович Ткаченко

    2015-10-01

    Full Text Available It is known that the efficiency of heat engines nowadays isn’t more than 50-60% for prototypes and maximum possible efficiency of a heat engine is considered Carnot cycle efficiency Thus, at least 40% of the disposable amount of heat is lost in the surrounding medium, unless the waste gases heat is utilized somehow. General idea of heat engines cycles is the transfer of energy from the heater (both external and internal to a working fluid, obtaining mechanical work from expanding of the working fluid, and returning the working fluid to the initial state by compression and excess heat discharge into a cooler. In this paper the combination of a heat engine operating according to the standard Edwards cycle and consisting of isochor, adiabat and isotherm, and the heat pump, using the reverse Carnot cycle is investigated. The heat pump partially picks out the heat of the working fluid at its isothermal compression, and returns it to the equivalent working fluid or regenerator cap, at the beginning of isochoric heating. The efficiency coefficient of the heat pump, and thus the work to putting it into action is calculated by proper equations at the constant temperature of the low-potential heat source (working fluid and variable temperature of the heated equivalent of the working fluid or the regenerator cap. Taking as an example selected quantitative parameters of the Edwards cycle it has been proved that the use of the heat pump increases the effective efficiency of combined cycle as compared to the basic one. In addition, it has been shown that the dependence of the efficiency on the degree of heat return is not monotonic and has a maximum

  4. Induction of heat-shock proteins and phagocytic function of chicken macrophage following in vitro heat exposure

    International Nuclear Information System (INIS)

    Miller, L.; Qureshi, M.A.

    1992-01-01

    The protein profiles and phagocytic ability of Sephadex-elicited chicken peritoneal macrophages were examined following heat-shock exposure. Macrophage cultures were exposed to various temperatures, time exposures and recovery periods. Densitometric analysis of SDS-PAGE autoradiographs revealed that heat-induced macrophages synthesized three major (23, 70 and 90 kD) heat-shock proteins (HSPs). The optimal temperature and time for induction of these HSPs was 45-46 degrees C for 1 h, with a variable recovery period for each HSP. Macrophages exposed to 45 degrees C for 30 and 60 min were significantly depressed in phagocytosis of uncoated sheep erythrocytes (SE) under 45 degrees C incubation conditions. However, phagocytosis of antibody-coated SE was not affected when compared to 41 degrees C control cultures. Macrophages allowed to recover at 41 degrees C following heat-shock exhibited no alterations in their phagocytic ability for either antibody-coated or uncoated SE. This study suggests that heat shock induces three major HSPs in chicken peritoneal macrophages in addition to maintaining their Fc-mediated phagocytic function while significantly depressing their nonspecific phagocytosis

  5. Heat Roadmap Europe 2

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible. In these strate......Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible....... In these strategies, the role of district heating has never been fully explored system, nor have the benefits of district heating been quantified at the EU level. This study combines the mapping of local heat demands and local heat supplies across the EU27. Using this local knowledge, new district heating potentials...... are identified and then, the EU27 energy system is modelled to investigate the impact of district heating. The results indicate that a combination of heat savings, district heating in urban areas, and individual heat pumps in rural areas will enable the EU27 to reach its greenhouse gas emission targets by 2050...

  6. Nuclear process heat

    International Nuclear Information System (INIS)

    Barnert, H.; Hohn, H.; Schad, M.; Schwarz, D.; Singh, J.

    1993-01-01

    In a system for the application of high temperature heat from the HTR one must distinguish between the current generation and the use of process heat. In this respect it is important that the current can be generated by dual purpose power plants. The process heat is used as sensible heat, vaporisation heat and as chemical energy at the chemical conversion for the conversion of raw materials, the refinement of fossil primary energy carriers and finally circuit processes for the fission of water. These processes supply the market for heat, fuels, motor fuels and basic materials. Fifteen examples of HTR heat processes from various projects and programmes are presented in form of energy balances, however in a rather short way. (orig./DG) [de

  7. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  8. FTR europia gamma heating

    International Nuclear Information System (INIS)

    Ward, J.T. Jr.

    1975-01-01

    Calculated and experimental gamma heating rates of europia in the Engineering Mockup Critical Assembly (EMC) were correlated. A calculated to experimental (C/E) ratio of 1.086 was established in validating the theoretical approach and computational technique applied in the calculations. Gamma heat deposition rates in the FTR with Eu 2 O 3 control absorbers were determined from three-dimensional calculations. Maximum gamma heating was found to occur near the tip of a half-inserted row 5 control rod assembly--12.8 watts/gm of europia. Gamma heating profiles were established for a single half-inserted europia absorber assembly. Local heat peaking was found not to alter significantly heating rates computed in the FTR core model, where larger mesh interval sizes precluded examination of spatially-limited heating gradients. These computations provide the basis for thermal-hydraulic analyses to ascertain temperature profiles in the FTR under europia control

  9. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  10. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David

    2017-01-01

    This paper compares the electricity, heating, and cooling sectors at national level for various European countries. Annual energy demands are compared for all 28 EU countries, while peak hourly demands are compared for four countries that vary significantly. The results indicate that the heat...... demand is currently the largest of the three demand types considered in terms of both annual and peak demands: it is the largest annual demand in 25 of the 28 EU countries, and it represents the largest peak demand in all four countries analysed. Electricity, heating, and cooling demands are all likely...... that the demand for electricity could double compared to today, depending on how these changes occur. Considering the scale of additional electricity required to electrify future heating and cooling demands, heat pumps should be prioritised over electric heating and other alternatives, such as district heating...

  11. Low-melting point heat transfer fluid

    Science.gov (United States)

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  12. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube at high Re

    International Nuclear Information System (INIS)

    Li Zhihui; Jiang Peixue

    2008-01-01

    Convection heat transfer during the upward flow of CO 2 at supercritical pressures in a vertical circular tube (d in = 2 mm) at high Reynolds numbers was investigated experimentally, and the effects of heat fluxes, mass fluxes, inlet temperatures, pressures, buoyancy and thermal acceleration on the convection heat transfer was analyzed. The results show that the tube wall temperature occurs abnormally distribution for high heat-fluxes with upward flow. The degree of deteriorated heat transfer increases with increasing heat flux. Increasing of the mass flux delays the occurrence of the deterioration of heat transfer and weakens the deterioration of heat transfer down-stream section. The inlet temperature strongly influences the heat transfer. The deterioration degree of heat transfer decreases with increasing pressure. (authors)

  13. District heating versus local heating - Social supportability

    International Nuclear Information System (INIS)

    Matei, Magdalena; Enescu, Diana; Varjoghie, Elena; Radu, Florin; Matei, Lucian

    2004-01-01

    District heating, DH, is an energy source which can provide a cost-effective, environmentally friendly source of heat and power for cities, but only in the case of well running systems, with reasonable technological losses. The benefits of DH system are well known: environmental friendly, energy security, economic and social advantages. DH already covers 60% of heating and hot water needs in transition economies. Today, 70 % of Russian, Latvian and Belarus homes use DH, and heating accounts for one-third of total Russian energy consumption. Yet a large number of DH systems in the region face serious financial, marketing or technical problems because of the policy framework. How can DH issues be best addressed in national and local policy? What can governments do to create the right conditions for the sustainable development of DH while improving service quality? What policies can help capture the economic, environmental and energy security benefits of co-generation and DH? To address these questions, the International Energy Agency (IEA) hosted in 2002 and 2004 conference focusing on the crucial importance of well-designed DH policies, for exchanging information on policy approaches. The conclusions of the conference have shown that 'DH systems can do much to save energy and boost energy security, but stronger policy measures are needed to encourage wise management and investment. With a stronger policy framework, DH systems in formerly socialist countries could save the equivalent of 80 billion cubic meters of natural gas a year through supply side efficiency improvements. This is greater than total annual natural gas consumption in Italy'. More efficient systems will also decrease costs, reducing household bills and making DH competitive on long-term. This paper presents the issues: -Theoretical benefits of the district heating and cooling systems; - Municipal heating in Romania; - Technical and economic problems of DH systems and social supportability; - How

  14. Performances of four magnetic heat-pump cycles

    International Nuclear Information System (INIS)

    Chen, F.C.; Murphy, R.W.; Mel, V.C.; Chen, G.L.

    1990-01-01

    Magnetic heat pumps have been successfully used for refrigeration applications at near absolute-zero-degree temperatures. In these applications, a temperature lift of a few degrees in a cryogenic environment is sufficient and can be easily achieved by a simple magnetic heat-pump cycle. To extend magnetic heat pumping to other temperature ranges and other types of applications in which the temperature lift is more than just a few degrees requires more involved cycle processes. This paper investigates the characteristics of a few better-known thermomagnetic heat-pump cycles (Carnot, Ericsson, Stirling, and regenerative) in extended ranges of temperature lift. The regenerative cycle is the most efficient one. For gadolinium operating between 0 and 7 T (Tesla) in a heat pump cycle with a heat-rejection temperature of 320 K, our analysis predicted a 42% loss in coefficient of performance at 260 K cooling temperature, and a 15% loss in capacity at 232 K cooling temperature for the constant-field cycle as compared with the ideal regenerative cycle. Such substantial penalties indicate that the potential irreversibilities from this one source (the additional heat transfer that would be needed for the constant-field vs. the ideal regenerative cycle) may adversely affect the viability of certain proposed MHP concepts if the relevant loss mechanisms are not adequately addressed

  15. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  16. 24 CFR 3280.506 - Heat loss/heat gain.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  17. Technological Application of Maltodextrins According to the Degree of Polymerization

    Directory of Open Access Journals (Sweden)

    Zenaida Saavedra-Leos

    2015-11-01

    Full Text Available Maltodextrin (MX is an ingredient in high demand in the food industry, mainly for its useful physical properties which depend on the dextrose equivalent (DE. The DE has however been shown to be an inaccurate parameter for predicting the performance of the MXs in technological applications, hence commercial MXs were characterized by mass spectrometry (MS to determine their molecular weight distribution (MWD and degree of polymerization (DP. Samples were subjected to different water activities (aw. Water adsorption was similar at low aw, but radically increased with the DP at higher aw. The decomposition temperature (Td showed some variations attributed to the thermal hydrolysis induced by the large amount of adsorbed water and the supplied heat. The glass transition temperature (Tg linearly decreased with both, aw and DP. The microstructural analysis by X-ray diffraction showed that MXs did not crystallize with the adsorption of water, preserving their amorphous structure. The optical micrographs showed radical changes in the overall appearance of the MXs, indicating a transition from a glassy to a rubbery state. Based on these characterizations, different technological applications for the MXs were suggested.

  18. Determination of the Deacetylation Degree of Chitooligosaccharides

    Directory of Open Access Journals (Sweden)

    Yao Jiang

    2017-10-01

    Full Text Available The methods for determination of chitosan content recommended in the Chinese Pharmacopoeia and the European Pharmacopoeia are not applicable for evaluation of the extent of deacetylation (deacetylation degree, DD in chitooligosaccharides (COS. This study explores two different methods for assessment of DD in COS having relatively high and low molecular weights: an acid-base titration with bromocresol green indicator and a first order derivative UV spectrophotometric method for assessment of DD in COS. The accuracy of both methods as a function of molecular weight was also investigated and compared to results obtained using 1H NMR spectroscopy. Our study demonstrates two simple, fast, widely adaptable, highly precise, accurate, and inexpensive methods for the effective determination of DD in COS, which have the potential for widespread commercial applications in developing country.

  19. Determination of the Deacetylation Degree of Chitooligosaccharides

    Science.gov (United States)

    Fu, Chuhan; Wu, Sihui; Liu, Guihua; Guo, Jiao; Su, Zhengquan

    2017-01-01

    The methods for determination of chitosan content recommended in the Chinese Pharmacopoeia and the European Pharmacopoeia are not applicable for evaluation of the extent of deacetylation (deacetylation degree, DD) in chitooligosaccharides (COS). This study explores two different methods for assessment of DD in COS having relatively high and low molecular weights: an acid-base titration with bromocresol green indicator and a first order derivative UV spectrophotometric method for assessment of DD in COS. The accuracy of both methods as a function of molecular weight was also investigated and compared to results obtained using 1H NMR spectroscopy. Our study demonstrates two simple, fast, widely adaptable, highly precise, accurate, and inexpensive methods for the effective determination of DD in COS, which have the potential for widespread commercial applications in developing country. PMID:29068401

  20. Degree of mapping for general relativistic kinks

    International Nuclear Information System (INIS)

    Harriot, Tina A.; Williams, J.G.

    2005-01-01

    The Finkelstein-Misner metrical kinks of general relativity are homo topically nontrivial light cone configurations that can occur on space-time hypersurfaces. The number of kinks corresponds to the winding number of a timelike vector field that that is determined from the metric. This paper uses the usual Euclidean integral formula for degree of mapping as a starting point and so produces a covariant formula that can be applied to counting general relativistic kinks in any dimension. The kink number is calculated for some simple-to-visualize examples in 2 + 1 dimensions. These include hypersurfaces of differing topologies and so have relevance to mechanisms of topology change in semi-classical theories of quantum gravity

  1. Happiness, Psychology, and Degrees of Realism.

    Science.gov (United States)

    Lavazza, Andrea

    2016-01-01

    The recent emphasis on a realist ontology that cannot be overshadowed by subjectivist or relativist perspectives seems to have a number of consequences for psychology as well. My attempt here is to analyse the relationship between happiness as a state of the individual and the states of the external world and the brain events related to (or, in some hypotheses, causally responsible for) its occurrence. It can be maintained that different degrees of realism are suitable to describe the states of happiness and this fact might have relevant psychological implications, namely for the so-called positive psychology. This is especially true now that there are methods available to induce subjective states of happiness unrelated to the external conditions usually taken to be linked to such states.

  2. Performance of the ATLAS Zero Degree Calorimeter

    CERN Document Server

    Leite, M; The ATLAS collaboration

    2013-01-01

    The ATLAS Zero Degree Calorimeter (ZDC) at the Large Hadron Collider (LHC) is a set of two sampling calorimeters modules symmetrically located at 140m from the ATLAS interaction point. The ZDC covers a pseudorapidity range of |eta| > 8.3 and it is both longitudinally and transversely segmented, thus providing energy and position information of the incident particles. The ZDC is installed between the two LHC beam pipes, in a configuration such that only the neutral particles produced at the interaction region can reach this calorimeter. The ZDC uses Tungsten plates as absorber material and rods made of quartz interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produces Cherenkov light which is then detected by photomultipliers and sent to the front end electronics for processing, in a total of 120 individual electronic channels. The Tungsten plates and quartz rods are arranged in a way to segment the calorimeters in 4 longitudinal sections. The first section (...

  3. Bounded-Degree Approximations of Stochastic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar

    2017-06-01

    We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identify the r-best approximations among these classes, enabling robust decision making.

  4. Decreased survival of prostate cancer cells in vitro by combined treatment of heat and an antioxidant inhibitor diethyldithiocarbamate (DDC).

    Science.gov (United States)

    Moriyama-Gonda, Nobuko; Igawa, Mikio; Shiina, Hiroaki; Urakami, Shinji; Terashima, Masaharu

    2003-11-01

    The aim of this study was to examine a modulation of thermotolerance by treatment with combination of heat and the antioxidant inhibitor diethyldithiocarbamate (DDC) of the PC-3 prostate cancer cells. To determine thermotolerance, cells were heated once or twice. Two 1 h exposures at 43 degrees C, with a recovery period in between, revealed better survival/recovery of cells after the second exposure than after the first (fig. 1A + 1B). Additional experiments were performed, heating cells twice (fig. 1B + 1C). First, cells were heated at 43 degrees C for 1 h and, after various recovery times (intervals) at 37 degree C, subsequently reheated at 44 degrees C for 1 h. To ensure effective cell killing, efficiency of the combined treatments of 1 mM DDC and heating at 43 or 44 degrees C for 1 h was estimated by measuring cell survival, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity and heat shock protein 70 (hsp 70) expression. To obtain a more effective method for subsequent heat exposure, cells were heated twice after a 24 h interval in the presence or absence of 1 mM DDC. ROS generation and SOD activity immediately increased correlating with duration of heating, but their levels gently decreased with time after discontinuation of heating. On the other hand, hsp 70 levels slowly increased, also correlating with duration of heating but continued to increase with time after discontinuation of heating for a certain period. DDC administration coupled with heating at 43 or 44 degrees C significantly decreased cell survival compared to heating alone (p DDC as compared to heat alone at 43 and 44 degrees C (p DDC could have potential benefits in the treatment of prostate cancer.

  5. The 360 Degree Fulldome Production "Clockwork Ocean"

    Science.gov (United States)

    Baschek, B.; Heinsohn, R.; Opitz, D.; Fischer, T.; Baschek, T.

    2016-02-01

    The investigation of submesoscale eddies and fronts is one of the leading oceanographic topics at the Ocean Sciences Meeting 2016. In order to observe these small and short-lived phenomena, planes equipped with high-resolution cameras and fast vessels were deployed during the Submesoscale Experiments (SubEx) leading to some of the first high-resolution observations of these eddies. In a future experiment, a zeppelin will be used the first time in marine sciences. The relevance of submesoscale processes for the oceans and the work of the eddy hunters is described in the fascinating 9-minute long 360 degree fulldome production Clockwork Ocean. The fully animated movie is introduced in this presentation taking the observer from the bioluminescence in the deep ocean to a view of our blue planet from space. The immersive media is used to combine fascination for a yet unknown environment with scientific education of a broad audience. Detailed background information is available at the parallax website www.clockwork-ocean.com. The Film is also available for Virtual Reality glasses and smartphones to reach a broader distribution. A unique Mobile Dome with an area of 70 m² and seats for 40 people is used for science education at events, festivals, for politicians and school classes. The spectators are also invited to participate in the experiments by presenting 360 degree footage of the measurements. The premiere of Clockwork Ocean was in July 2015 in Hamburg, Germany and will be worldwide available in English and German as of fall 2015. Clockwork Ocean is a film of the Helmholtz-Zentrum Geesthacht produced by Daniel Opitz and Ralph Heinsohn.

  6. Non-Uniform Heat Transfer in Thermal Regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch

    , a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled....... Additionally, the experiments gave real comparative results, whereas the model to a certain degree more served to provide insight to the heat transfer processes taking place inside the regenera- tors, something that would be - if not impossible - then highly impractical to do experimentally. It has been found......This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...

  7. Thermodynamic Heat Water by The Condenser of Refrigerator

    International Nuclear Information System (INIS)

    Ben Slama, Romdhane

    2009-01-01

    The present innovation relates to the coupling of a refrigerator to a cumulus to heat water and this, thanks to the heat yielded to the level of the condenser of the refrigerating system even. The heating of water is carried out thus without energy over consumption. The quantity of heat transferred by the water-cooled condenser is sufficient to raise the temperature of this latter with 60 degree at the end of five hours. This can satisfy completely or partially the requirements out of hot water of a family which can distribute its requirements out of hot water all along the day and the week. The quantity of heat recovered by water to heat rises with four multiples the power consumption by the compressor. The system thus makes it possible to save energy and to safeguard the environment

  8. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  9. Variation in meroplankton along 78 degrees E Meridian

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, T.; Peter, K.J.

    Variations along the meridian 78 degrees E between 8 degrees N and 25 degrees S, based on 43 zooplankton samples were studied. Fish larvae exhibited fluctuations in abundance (26 to 57 specimens/IOSN haul) in the three zones studied (8 degrees N-5...

  10. Outcomes of torsional microcoaxial phacoemulsification performed by 12-degree and 22-degree bent tips.

    Science.gov (United States)

    Helvacioglu, Firat; Yeter, Celal; Tunc, Zeki; Sencan, Sadik

    2013-08-01

    To compare the safety and efficacy of Ozil Intelligent Phaco torsional microcoaxial phacoemulsification surgeries performed with 12-degree and 22-degree bent tips using the Infiniti Vision System. Maltepe University School of Medicine Department of Ophthalmology, Istanbul, Turkey. Comparative case series. Eyes were assigned to 2.2 mm microcoaxial phacoemulsification using the torsional mode with a 22-degree bent tip (Group 1) or a 12-degree bent tip (Group 2). The primary outcome measures were ultrasound time (UST), cumulative dissipated energy (CDE), longitudinal and torsional ultrasound (US) amplitudes, mean surgical time, mean volume of balanced salt solution used, and surgical complications. Both groups included 45 eyes. The mean UST, CDE, longitudinal US amplitude, and torsional US amplitude were 65 seconds ± 27.23 (SD), 11.53 ± 6.99, 0.22 ± 0.26, and 42.86 ± 15.64, respectively, in Group 1 and 84 ± 45.04 seconds, 16.68 ± 10.66, 0.48 ± 0.68, and 46.27 ± 14.74, respectively, in Group 2. The mean UST, CDE, and longitudinal amplitudes were significantly lower in Group 1 (P=.003, P=.008, and P=.022, respectively). The mean volume of balanced salt solution was 73.33 ± 28.58 cc in Group 1 and 82.08 ± 26.21 cc in Group 2 (P=.134). Torsional phacoemulsification performed with 22-degree bent tips provided more effective lens removal than 12-degree bent tips, with a lower UST and CDE. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Shivering and rewarming after cardiac surgery: comparison of ventilator circuits with humidifier and heated wires to heat and moisture exchangers.

    Science.gov (United States)

    McEvoy, M T; Carey, T J

    1995-07-01

    Detrimental physiologic effects of shivering in the cardiac surgery patient have been well documented. Rewarming techniques have been compared, with noted differences in the incidence of shivering. Ventilator circuits have not been examined independently from other rewarming variables. To compare heated wire humidification circuits with heat and moisture exchanger circuits on the incidence of shivering and speed and pattern of rewarming in mechanically ventilated patients. A prospective, descriptive, correlational study was done on 140 adult cardiac surgery patients in a university teaching medical center. All subjects underwent cardiac surgical procedures with hypothermic cardiopulmonary bypass. Subjects were randomized to humidified, heated wire circuits (n = 70) or heat and moisture exchanger circuits (n = 70). Heated water blankets were used on all patients. Mean intensive care unit admission temperature was 35.28 degrees C. No statistical differences were found in preoperative, demographic, or operative course data between treatment and control groups. Shivering was more common in the heat and moisture exchanger group than in the heated wire group. In our analysis, the only variable associated with shivering was the type of ventilator circuit. Patients using heated wire systems rewarmed more rapidly and had significantly higher temperatures than did patients using heat and moisture exchangers. These data suggest that use of heated wire humidified ventilator circuits with heated water blankets in adult cardiac surgery patients significantly reduces the incidence of shivering and results in a more rapid return to normothermia.

  12. Floor heating maximizes residents` comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkanen, P.; Wikstroem, T.

    1996-11-01

    Storing heat in floors by using economical night-time electricity does not increase the specific consumption of heating. According to studies done by IVO, the optimum housing comfort is achieved if the room is heated mainly by means of floor heating that is evened out by window or ceiling heating, or by a combination of all three forms of heating. (orig.)

  13. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  14. Heat pump using dual heat sources of air and water. Performance with heat sources arranged in parallel; Mizu kuki ryonetsugen heat pump no kenkyu. Netsugen heiretsu unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N; Sato, S [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y; Hamada, K [Kubota Corp., Osaka (Japan)

    1996-10-27

    A heat pump system using water and air as heat sources was built and evaluated for its performance. In this system, evaporators may be operated singly or as connected in parallel or series, and, for each case, the quantity of heat acquired may be measured and system performance may be quantitatively evaluated. The findings follow. When the two heat sources are equal in temperature in the single-evaporator operation, the evaporation temperature is about 7{degree}C higher on the water side than on the air side, and the performance coefficient is about 0.7 higher. When the air heat source temperature is 25{degree}C in the parallel operation, like quantities of heat are obtained from both heat sources, and collection of heat from the water increases with a decrease in the air heat source temperature but, with an increase, collection from the air increases. When the air heat source temperature decreases, the evaporation temperature decreases in the single-evaporator working on the air and in the parallel operation but it levels off in the single-evaporator working on the water alone. When the water heat source temperature decreases, evaporation temperature drop is sharper in the single-evaporator working on the water than in the parallel operation, which suggests the transfer from the parallel operation to the single-evaporator working on the air. In the single-evaporator operation on the water heat source, the evaporation temperature linearly decreases with an increase in superheating. 1 ref., 10 figs.

  15. Corrosion of heat exchanger materials under heat transfer conditions

    International Nuclear Information System (INIS)

    Tapping, R.L.; Lavoie, P.A.; Disney, D.J.

    1987-01-01

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28 1 . Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested

  16. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  17. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  18. Heat pipe development

    Science.gov (United States)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  19. En retorisk analys av Fahrenheit 9/11 ur ett dokumentärhistoriskt perspektiv

    OpenAIRE

    Häll, Karin

    2006-01-01

    The history of rhetorics in documentary film is a long one. The French brothers Louise and Auguste Lumiére were among the first persons who produced a documentary and their work has had a big impression in the history of documentary during the 1900 century. John Grierson has been called “the father” of documentary film. He produced films in the English speaking part of the world and he is the founder of the concept “documentary film”. Propaganda filming has a big part in the history of docume...

  20. The urban heat island and its impact on heat waves and human health in Shanghai.

    Science.gov (United States)

    Tan, Jianguo; Zheng, Youfei; Tang, Xu; Guo, Changyi; Li, Liping; Song, Guixiang; Zhen, Xinrong; Yuan, Dong; Kalkstein, Adam J; Li, Furong

    2010-01-01

    With global warming forecast to continue into the foreseeable future, heat waves are very likely to increase in both frequency and intensity. In urban regions, these future heat waves will be exacerbated by the urban heat island effect, and will have the potential to negatively influence the health and welfare of urban residents. In order to investigate the health effects of the urban heat island (UHI) in Shanghai, China, 30 years of meteorological records (1975-2004) were examined for 11 first- and second-order weather stations in and around Shanghai. Additionally, automatic weather observation data recorded in recent years as well as daily all-cause summer mortality counts in 11 urban, suburban, and exurban regions (1998-2004) in Shanghai have been used. The results show that different sites (city center or surroundings) have experienced different degrees of warming as a result of increasing urbanization. In turn, this has resulted in a more extensive urban heat island effect, causing additional hot days and heat waves in urban regions compared to rural locales. An examination of summer mortality rates in and around Shanghai yields heightened heat-related mortality in urban regions, and we conclude that the UHI is directly responsible, acting to worsen the adverse health effects from exposure to extreme thermal conditions.

  1. Studies on boiling heat transfer on a hemispherical downward heating surface supposing IVR-AM

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Matsumoto, Hiroyuki; Matsumoto, Tadayoshi; Kataoka, Isao

    2006-01-01

    The scale-down experiments supposing the IVR-AM were made on the pool boiling heat transfer from hemispherical downward facing heating surface. The boiling phenomena were realized by flooding the heated hemispherical vessel into the sub-cooled water or saturated water under the atmospheric pressure. The hemispherical vessel supposing the scale-down pressure vessel was made of SUS304 stainless steel. Molten lead, which was preheated up to about 500 degrees Celsius, was put into the vessel and used as the heat source. The vessel was cooled down by flooding into the water to realize the quenching process. The direct observation by using the digital video camera was performed and made clear the special characteristics of boiling phenomena such as the film boiling, the transition boiling and the nucleate boiling taking place in order during the cooling process. The measurement for the wall superheat and heat flux by using thermocouples was also carried out to make clear the boiling heat transfer characteristics during the cooling process. Fifteen thermocouples are inserted in the wall of the hemispherical bowl to measure the temperature distributions and heat flux in the hemispherical bowl. (author)

  2. District heating in Italy

    International Nuclear Information System (INIS)

    Sacchi, E.

    1998-01-01

    The legislative act establishing the electric monopoly virtually shut out the district heating associated with electricity cogeneration, while other laws, issued to counteract the effects of oil shocks, allowed municipal utilities to do so. Thus, district heating has experienced some development, though well below its possibilities. The article analyses the reasons for this lagging, reports district heating data and projects its forecasts against the Kyoto Protocol objectives [it

  3. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  4. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  5. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-01

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows

  6. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2003-01-01

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows

  7. Heat transfer II essentials

    CERN Document Server

    REA, The Editors of

    1988-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.

  8. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  9. Advances in heat transfer

    CERN Document Server

    Hartnett, James P; Cho, Young I; Greene, George A

    2001-01-01

    Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

  10. Experimental study of heat transfer performance in a flattened AGHP

    International Nuclear Information System (INIS)

    Tao Hanzhong; Zhang Hong; Zhuang Jun; Jerry Bowman, W.

    2008-01-01

    Round mini-axial grooved heat pipes (AGHP) with a diameter of 6 mm and a length of 210 mm were pressed into flattened heat pipes with a thickness of 3.5 mm, 3 mm, 2.5 mm and 2 mm, respectively. The article measured the heat transfer limit, thermal resistance and evaporation heat transfer coefficient of the said AGHPs and analyzed and studied the result. The result indicates: the heat transfer limit decreased with the increase of flattening degree. The heat transfer limit of the 2 mm thick flattened AGHP was only 1/4 of that of the φ 6 mm round AGHP. The thermal resistance of the 3.5-2.5 mm thick AGHPs basically maintained stable at around 0.08 deg. C/W, while the thermal resistance of the 2 mm thick flattened AGHP increased obviously. The variation of the heat transfer coefficient in evaporator section with the change of flattening degree follows a similar rule to the variation of thermal resistance. This article serves as a reference to understanding the heat transfer performance of mini AGHP and to electronic cooling design of AGHP

  11. Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST

    International Nuclear Information System (INIS)

    Kang, Myeong Gie; Chun, Moon Hyun

    1996-01-01

    In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q v ersus ΔT has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q ≤ 50kW/m 2 ) and high heat fluxes (q > 50kW/m 2 ) depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q , one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness (ε) and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient (h b ) is obtained as a function of heat flux (q ) only. 9 figs., 4 tabs., 15 refs. (Author)

  12. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  13. Increasingly Global: Combining an International Business Degree with a Post-Degree Designation

    Science.gov (United States)

    Smith, Rachel; Terry, Andy; Vibhakar, Ashvin

    2006-01-01

    In the increasingly complex and competitive global marketplace, many students seek to gain multiple skills and credentials that can aid them in their career goals. One such career strategy weds a general overarching comprehensive degree with a specific and targeted skill set. This paper provides a viable curriculum path for students who seek…

  14. Astronomy Enrollments and Degrees: Results from the 2007 Survey of Enrollments and Degrees. Focus On

    Science.gov (United States)

    Nicholson, Starr; Mulvey, Patrick

    2009-01-01

    The Statistical Research Center of the American Institute of Physics conducts an annual census from October through February of all 75 departments that offer degrees in astronomy in the United States. For the class of 2007, the authors received responses from 73 (97%) of these departments. Estimates were derived and included in the totals for…

  15. Making Sense of the Combined Degree Experience: The Example of Criminology Double Degrees

    Science.gov (United States)

    Wimshurst, Kerry; Manning, Matthew

    2017-01-01

    Little research has been undertaken on student experiences of combined degrees. The few studies report that a considerable number of students experienced difficulty with the contrasting epistemic/disciplinary demands of the component programmes. A mixed-methods approach was employed to explore the experiences of graduates from four double degrees…

  16. Degree of Success? A Review of Delivering BSc Honours Degrees in an FE College

    Science.gov (United States)

    Griffiths, Colin; Lloyd, Mary Golding

    2009-01-01

    Widening participation initiatives led by the government encourage non-traditional students to enrol in higher education courses usually offered through a franchising arrangement between a Higher Education Institution (HEI) and a local Further Education Institution (FEI). The focus has been on the development of foundation degrees with most…

  17. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  18. Isotope heating block

    International Nuclear Information System (INIS)

    Wenk, E.

    1976-01-01

    A suggestion is made not to lead the separated nuclear 'waste' from spent nuclear fuel elements directly to end storage, but to make use of the heat produced from the remaining radiation, e.g. for seawater desalination. According to the invention, the activated fission products are to be processed, e.g. by calcination or vitrification, so that one can handle them. They should then be arranged in layers alternately with plate-shaped heat conducting pipes to form a homogeneous block; the heat absorbed by the thermal plates should be further passed on to evaporators or heat exchangers. (UWI) [de

  19. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  20. 2-component heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1987-03-01

    The knowledge accumulated only recently of the damage to buildings and the hazards of formaldehyde, radon and hydrocarbons has been inducing louder calls for ventilation, which, on their part, account for the fact that increasing importance is being attached to the controlled ventilation of buildings. Two-component heating systems provide for fresh air and thermal comfort in one. While the first component uses fresh air blown directly and controllably into the rooms, the second component is similar to the Roman hypocaustic heating systems, meaning that heated outer air is circulating under the floor, thus providing for hot surfaces and thermal comfort. Details concerning the two-component heating system are presented along with systems diagrams, diagrams of the heating system and tables identifying the respective costs. Descriptions are given of the two systems components, the fast heat-up, the two-component made, the change of air, heat recovery and control systems. Comparative evaluations determine the differences between two-component heating systems and other heating systems. Conclusive remarks are dedicated to energy conservation and comparative evaluations of costs. (HWJ).

  1. Automatic heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, A.J.

    1989-11-15

    A heating control system for buildings comprises at least one heater incorporating heat storage means, a first sensor for detecting temperature within the building, means for setting a demand temperature, a second sensor for detecting outside temperature, a timer, and means for determining the switch on time of the heat storage means on the basis of the demand temperature and the internal and external temperatures. The system may additionally base the switch on time of the storage heater(s) on the heating and cooling rates of the building (as determined from the sensed temperatures); or on the anticipated daytime temperature (determined from the sensed night time temperature). (author).

  2. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  3. European master degree in nuclear engineering

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2003-01-01

    In order to preserve and to improve the quality of nuclear engineering education and training in Europe, as well to ensure the safe and economic operation of nuclear power plants, the European Nuclear Engineering Network Program (ENEN) started in 2002. It is a program aiming to establish and maintain a set of criteria for specific curricula of nuclear engineering education, in particular, for an European Master Degree in Nuclear Engineering (EMNE). The ENEN program is financed by the FP5 and has the wide support of IAEA, OECD and EU Commission departments dealing with the nuclear engineering knowledge management. The promising results up to now determined the creation of the Asian Nuclear Engineering Network (ANEN) in July 2003 and of the World Nuclear University (WNU) starting in September 2003. The paper presents the future structure of EMNE which will allow the harmonization of the curricula of the universities of Europe until the Bologna Convention will be fully accepted and operational in all European countries. The ENEN program has taken into consideration the curricula of 22 universities and research centres from 15 different European countries and proposed a feasible scheme which allows the undergraduates with a weak to strong nuclear background to continue their graduate education in the nuclear engineering field towards EMNE. As one of the contractors of this program, University 'Politehnica' of Bucharest brings its contribution and actively takes part in all activities establishing the EMNE. (author)

  4. Constraining the roughness degree of slip heterogeneity

    KAUST Repository

    Causse, Mathieu

    2010-05-07

    This article investigates different approaches for assessing the degree of roughness of the slip distribution of future earthquakes. First, we analyze a database of slip images extracted from a suite of 152 finite-source rupture models from 80 events (Mw = 4.1–8.9). This results in an empirical model defining the distribution of the slip spectrum corner wave numbers (kc) as a function of moment magnitude. To reduce the “epistemic” uncertainty, we select a single slip model per event and screen out poorly resolved models. The number of remaining models (30) is thus rather small. In addition, the robustness of the empirical model rests on a reliable estimation of kc by kinematic inversion methods. We address this issue by performing tests on synthetic data with a frequency domain inversion method. These tests reveal that due to smoothing constraints used to stabilize the inversion process, kc tends to be underestimated. We then develop an alternative approach: (1) we establish a proportionality relationship between kc and the peak ground acceleration (PGA), using a k−2 kinematic source model, and (2) we analyze the PGA distribution, which is believed to be better constrained than slip images. These two methods reveal that kc follows a lognormal distribution, with similar standard deviations for both methods.

  5. Double degree master program: Optical Design

    Science.gov (United States)

    Bakholdin, Alexey; Kujawinska, Malgorzata; Livshits, Irina; Styk, Adam; Voznesenskaya, Anna; Ezhova, Kseniia; Ermolayeva, Elena; Ivanova, Tatiana; Romanova, Galina; Tolstoba, Nadezhda

    2015-10-01

    Modern tendencies of higher education require development of master programs providing achievement of learning outcomes corresponding to quickly variable job market needs. ITMO University represented by Applied and Computer Optics Department and Optical Design and Testing Laboratory jointly with Warsaw University of Technology represented by the Institute of Micromechanics and Photonics at The Faculty of Mechatronics have developed a novel international master double-degree program "Optical Design" accumulating the expertise of both universities including experienced teaching staff, educational technologies, and experimental resources. The program presents studies targeting research and professional activities in high-tech fields connected with optical and optoelectronics devices, optical engineering, numerical methods and computer technologies. This master program deals with the design of optical systems of various types, assemblies and layouts using computer modeling means; investigation of light distribution phenomena; image modeling and formation; development of optical methods for image analysis and optical metrology including optical testing, materials characterization, NDT and industrial control and monitoring. The goal of this program is training a graduate capable to solve a wide range of research and engineering tasks in optical design and metrology leading to modern manufacturing and innovation. Variability of the program structure provides its flexibility and adoption according to current job market demands and personal learning paths for each student. In addition considerable proportion of internship and research expands practical skills. Some special features of the "Optical Design" program which implements the best practices of both Universities, the challenges and lessons learnt during its realization are presented in the paper.

  6. Neural mechanisms mediating degrees of strategic uncertainty.

    Science.gov (United States)

    Nagel, Rosemarie; Brovelli, Andrea; Heinemann, Frank; Coricelli, Giorgio

    2018-01-01

    In social interactions, strategic uncertainty arises when the outcome of one's choice depends on the choices of others. An important question is whether strategic uncertainty can be resolved by assessing subjective probabilities to the counterparts' behavior, as if playing against nature, and thus transforming the strategic interaction into a risky (individual) situation. By means of functional magnetic resonance imaging with human participants we tested the hypothesis that choices under strategic uncertainty are supported by the neural circuits mediating choices under individual risk and deliberation in social settings (i.e. strategic thinking). Participants were confronted with risky lotteries and two types of coordination games requiring different degrees of strategic thinking of the kind 'I think that you think that I think etc.' We found that the brain network mediating risk during lotteries (anterior insula, dorsomedial prefrontal cortex and parietal cortex) is also engaged in the processing of strategic uncertainty in games. In social settings, activity in this network is modulated by the level of strategic thinking that is reflected in the activity of the dorsomedial and dorsolateral prefrontal cortex. These results suggest that strategic uncertainty is resolved by the interplay between the neural circuits mediating risk and higher order beliefs (i.e. beliefs about others' beliefs). © The Author(s) (2017). Published by Oxford University Press.

  7. Burnup degree measuring device for spent fuel

    International Nuclear Information System (INIS)

    Doi, Hideo; Imaizumi, Hideki; Endo, Yasumi; Itahara, Kuniyuki.

    1994-01-01

    The present invention provides a small-sized and convenient device for measuring a burnup degree of spent fuels, which can be installed without remodelling an existent fuel storage pool. Namely, a gamma-ray detecting portion incorporates a Cd-Te detector for measuring intensity ratio of gamma-rays. A neutron detecting portion incorporates a fission counter tube. The Cd-Te detector comprises a neutron shielding member for reducing radiation damages and a background controlling plate for reducing low energy gamma-rays entering from a collimator. Since the Cd-Td detector for use in a gamma-ray spectroscopy can be used at a normal temperature and can measure even a relatively strong radiation field, it can measure the intensity of gamma-rays from Cs-137 and Cs-134 in spent fuels accurately at a resolving power of less than 10 keV. Further, in a case where a cooling period is less than one year, gamma-rays from Rh-106 and Nb-95 can also be measured. (I.S.)

  8. Interactions between goethite particles subjected to heat treatment

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch; Hansen, Mikkel Fougt; Koch, C.B.

    2008-01-01

    We have studied the effect of heating on the magnetic properties of particles of nanocrystalline goethite by use of Mossbauer spectroscopy. Heating at 150 degrees C for 24 h leads to a change in the quadrupole shift in the low-temperature spectra, indicating a rotation of the sublattice...... magnetization directions. Fitting of quantiles, derived from the asymmetrically broadened spectra between 80 and 300 K, to the superferromagnetism model indicates that this change is due to a stronger magnetic coupling between the particles....

  9. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  10. Improving the degree-day model for forecasting Locusta migratoria manilensis (Meyen (Orthoptera: Acridoidea.

    Directory of Open Access Journals (Sweden)

    Xiongbing Tu

    Full Text Available The degree-day (DD model is an important tool for forecasting pest phenology and voltinism. Unfortunately, the DD model is inaccurate, as is the case for the Oriental migratory locust. To improve the existing DD model for this pest, we first studied locust development in seven growth chambers, each of which simulated the complete growing-season climate of a specific region in China (Baiquan, Chengde, Tumotezuoqi, Wenan, Rongan, Qiongzhong, or Qiongshan. In these seven treatments, locusts completed 0.95, 1, 1.1, 2.2, 2.95, 3.95, and 4.95 generations, respectively. Hence, in the Baiquan (700, Rongan (2400, Qiongzhong (3200, and Qiongshan (2400 treatments, the final generation were unable to lay eggs. In a second experiment, we reared locusts for a full generation in growth chambers, at different constant temperatures. This experiment provided two important findings. First, temperatures between 32 and 42°C did not influence locust development rate. Hence, the additional heat provided by temperatures above 32°C did not add to the total heat units acquired by the insects, according to the traditional DD model. Instead, temperatures above 32°C represent overflow heat, and can not be included when calculating total heat acquired during development. We also noted that females raised at constant 21°C failed to oviposit. Hence, temperatures lower than 21°C should be deducted when calculating total heat acquired during adult development. Using our experimental findings, we next micmiked 24-h temperature curve and constructed a new DD model based on a 24-h temperature integral calculation. We then compared our new model with the traditional DD model, results showed the DD deviation was 166 heat units in Langfang during 2011. At last we recalculated the heat by our new DD model, which better predicted the results from our first growth chamber experiment.

  11. Agent-based modelling of heating system adoption in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.

    2010-07-01

    Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)

  12. An Evaluation of Quantitative Methods of Determining the Degree of Melting Experienced by a Chondrule

    Science.gov (United States)

    Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.

    2004-01-01

    Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.

  13. Degree and connectivity of the Internet's scale-free topology

    International Nuclear Information System (INIS)

    Zhang Lian-Ming; Wu Xiang-Sheng; Deng Xiao-Heng; Yu Jian-Ping

    2011-01-01

    This paper theoretically and empirically studies the degree and connectivity of the Internet's scale-free topology at an autonomous system (AS) level. The basic features of scale-free networks influence the normalization constant of degree distribution p(k). It develops a new mathematic model for describing the power-law relationships of Internet topology. From this model we theoretically obtain formulas to calculate the average degree, the ratios of the k min -degree (minimum degree) nodes and the k max -degree (maximum degree) nodes, and the fraction of the degrees (or links) in the hands of the richer (top best-connected) nodes. It finds that the average degree is larger for a smaller power-law exponent λ and a larger minimum or maximum degree. The ratio of the k min -degree nodes is larger for larger λ and smaller k min or k max . The ratio of the k max -degree ones is larger for smaller λ and k max or larger k min . The richer nodes hold most of the total degrees of Internet AS-level topology. In addition, it is revealed that the increased rate of the average degree or the ratio of the k min -degree nodes has power-law decay with the increase of k min . The ratio of the k max -degree nodes has a power-law decay with the increase of k max , and the fraction of the degrees in the hands of the richer 27% nodes is about 73% (the ‘73/27 rule’). Finally, empirically calculations are made, based on the empirical data extracted from the Border Gateway Protocol, of the average degree, ratio and fraction using this method and other methods, and find that this method is rigorous and effective for Internet AS-level topology. (interdisciplinary physics and related areas of science and technology)

  14. Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure.

    Science.gov (United States)

    Nielsen, H B; Mladenovska, Z; Westermann, P; Ahring, B K

    2004-05-05

    A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species. Copyright 2004 Wiley Periodicals, Inc.

  15. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  16. Nuclear forces and quark degrees of freedom

    International Nuclear Information System (INIS)

    Lacombe, M.; Loiseau, B.; Vinh Mau, R.; Demetriou, P.; Pantis, C.

    1999-01-01

    Attempts to derive the NN forces from the quark and gluon degrees of freedom have been made so far in the framework of the nonrelativistic quark-cluster model (QCM). The justification of such a model is based on the remarkable success in describing the static properties of single hadrons. In the earlier calculations, the NN s-wave phase shifts obtained with the QCM show that the model produces repulsive NN forces at short distances, which constitutes a success for the model, but fails to provide the intermediate range attraction indispensable for binding nucleons in nuclei. This drawback is amended within the context of these models, at the expense of introducing by hand intermediate-range attraction through meson-exchange potentials between quarks or/and between nucleons (quark clusters). This procedure improves the results for the phase shifts and it is often concluded that the QCM provides a good description of the short-range (SR) part of the NN potential. In our opinion, the above procedure does not provide a rigorous test of the validity of the quark-cluster model. In order to get a clear-cut conclusion one should consider the QCM in association with an accurate and well founded model for the long-medium-range (LR+MR) forces. For these reason we study a NN interaction model which satisfies this requirement. In this model, the LR+MR parts are given by the Paris NN potential and the SR part by the QCM. The quality of the model is then tested by confronting directly its predictions with data on observables rather then, as it is usually done, with phase shifts. We compute all the observables for pp and np scattering at energies below the pion production threshold for different QCM versions corresponding to different qq interactions. The results are then compared with the existing world set data. Preliminary results show that the agreement with experiment is not good. (authors)

  17. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  18. Study on Heat Transfer Characteristics of One Side Heated Vertical Channel Applied as Vessel Cooling System

    International Nuclear Information System (INIS)

    Kuriyama, Shinji; Takeda, Tetsuaki; Funatani, Shumpei

    2014-01-01

    The inherent properties of the Very-High-Temperature Reactor facilitate the design of the VHTR with high degree of passive safe performances, compared to other type of reactors. However; it is still not clear if the VHTR can maintain a passive safe function during the severe accident, or what would be a design criterion to guarantee the VHTR with the high degree of passive safe performances during the accidents. In the Very High Temperature Reactor (VHTR) which is a next generation nuclear reactor system, ceramics and graphite are used as a fuel coating material and a core structural material, respectively. Even if the depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change slowly. This is because the thermal capacity of the core is so large. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel (RPV). This study is to develop the passive cooling system for the VHTR using the vertical channel inserting porous materials. The objective of this study is to investigate heat transfer characteristics of natural convection of a one-side heated vertical channel inserting the porous materials with high porosity. In order to obtain the heat transfer and fluid flow characteristics of a vertical channel inserting porous material, we have also carried out a numerical analysis using the commercial CFD code. From the analytical results obtained in the natural convection cooling, an amount of removed heat enhanced inserting the copper wire. It was found that an amount of removed heat inserting the copper wire (porosity = 0.9972) was about 10% higher than that without the copper wire. This paper describes a thermal performance of the one-side heated vertical channel inserting copper wire with high porosity. (author)

  19. Plasma auxiliary heating and current drive

    International Nuclear Information System (INIS)

    1999-01-01

    Heating and current drive systems must fulfil several roles in ITER operating scenarios: heating through the H-mode transition and to ignition; plasma burn control; current drive and current profile control in steady state scenarios; and control of MHD instabilities. They must also perform ancillary functions, such as assisting plasma start-up and wall conditioning. It is recognized that no one system can satisfy all of these requirements with the degree of flexibility that ITER will require. Four heating and current drive systems are therefore under consideration for ITER: electron cyclotron waves at a principal frequency of 170 GHz; fast waves operating in the range 40-70 MHz (ion cyclotron waves); lower hybrid waves at 5 GHz; and neutral beam injection using negative ion beam technology for operation at 1 MeV energy. It is likely that several of these systems will be employed in parallel. The systems have been chosen on the basis of the maturity of physics understanding and operating experience in current experiments and on the feasibility of applying the relevant technology to ITER. Here, the fundamental physics describing the interaction of these heating systems with the plasma is reviewed, the relevant experimental results in the exploitation of the heating and current drive capabilities of each system are discussed, key aspects of their application to ITER are outlined, and the major technological developments required in each area are summarized. (author)

  20. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  1. Plasma treatment of heat-resistant materials

    International Nuclear Information System (INIS)

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  2. Radioisotopic heat source

    Science.gov (United States)

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  3. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  4. Heat sterilization of wood

    Science.gov (United States)

    Xiping Wang

    2010-01-01

    Two important questions should be considered in heat sterilizing solid wood materials: First, what temperature–time regime is required to kill a particular pest? Second, how much time is required to heat the center of any wood configuration to the kill temperature? The entomology research on the first question has facilitated the development of international standards...

  5. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  6. Industrial excess heat for district heating in Denmark

    International Nuclear Information System (INIS)

    Bühler, Fabian; Petrović, Stefan; Karlsson, Kenneth; Elmegaard, Brian

    2017-01-01

    Highlights: •Method for utilisation potential of industrial excess heat for district heating. •Industrial excess heat from thermal processes is quantified at single production units. •Linking of industrial excess heat sources and district heating demands done in GIS. •Excess heat recovery using direct heat transfer and heat pumps. •5.1% of the Danish district heating demand could be supplied by industrial excess heat. -- Abstract: Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

  7. Theoretical study of heat pump system using CO2/dimethylether as refrigerant

    Directory of Open Access Journals (Sweden)

    Fan Xiao-Wei

    2013-01-01

    Full Text Available Nowadays, HCFC22 is widely used in heat pump systems in China, which should be phased out in the future. Thus, eco-friendly mixture CO2/dimethylether is proposed to replace HCFC22. Compared with pure CO2 and pure dimethylether, the mixture can reduce the heat rejection pressure, and suppress the flammability and explosivity of pure dimethylether. According to the Chinese National Standards on heat pump water heater and space heating system, performances of the subcritical heat pump system are discussed and compared with those of the HCFC22 system. It can be concluded that CO2 /dimethylether mixture works efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of dimethylether is increased, the heat rejection pressure is reduced. Under the nominal working condition, there is an optimal mixture mass fraction of 28/72 of CO2/dimethylether for water heater application under conventional condensation pressure, 3/97 for space heating application. For water heater application, both the heating coefficient of performance and volumetric heating capacity increase by 17.90% and 2.74%, respectively, compared with those of HCFC22 systems. For space heating application, the heating coefficient of performance increases by 8.44% while volumetric heating capacity decreases by 34.76%, compared with those of HCFC22 systems. As the superheat degree increases, both the heating coefficient of performance and volumetric heating capacity tend to decrease.

  8. Gas fired heat pumps

    International Nuclear Information System (INIS)

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  9. Graphene heat dissipating structure

    Science.gov (United States)

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.

    2017-08-01

    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  10. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  11. Heat flux microsensor measurements

    Science.gov (United States)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  12. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  13. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  14. A degree of success? Messages from the new social work degree in England for nurse education.

    Science.gov (United States)

    Moriarty, Jo; Manthorpe, Jill; Stevens, Martin; Hussein, Shereen; Macintyre, Gillian; Orme, Joan; Green Lister, Pam; Sharpe, Endellion; Crisp, Beth

    2010-07-01

    In September 2008 the Nursing and Midwifery Council (NMC) approved plans to change pre-registration nursing education in England to an all-graduate qualification in 2015. In 2001 the Department of Health announced a similar decision for social work qualifying education and the first graduate-only qualifying programmes began in 2003-2004. This article presents findings from a national in-depth evaluation of the social work degree in England and describes ways in which efforts have been made to improve the quality of social workers, raise the status of the profession and link practice and theory as part of the transformation to a degree level qualification. Messages for nurse educators are drawn in the light of the professions' commonalities. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Process for making 90 degree K. superconductors by impregnating cellulosic article with precursor solution

    International Nuclear Information System (INIS)

    Bolt, J.D.; Subramanian, M.A.

    1991-01-01

    This patent describes an improved process for preparing a shaped article of a superconducting composition having the formula MBa 2 Cu 3 O x wherein; M is selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu; x is from about 6.5 to about 7.0; the composition having a superconducting transition temperature of about 90 K. It comprises: forming in acetic acid a mixture of M(C 2 H 3 O 2 ) 3 , barium acetate and copper acetate in an atomic ratio of M:Ba:Cu of about 1:2:3; heating the resulting mixture to boiling, and adding sufficient formic acid to dissolve any undissolved starting material while continuing to boil the solution; contacting an article of cellulose material with the solution thereby impregnating the article with the solution, the article having the shape desired; removing excess solution from the resulting impregnated article of cellulose material and drying the impregnated article; heating the impregnated article of cellulose material to a temperature from about 850 degree C to about 925 degree C in an oxygen-containing atmosphere for a time sufficient to form MBa 2 Cu 3 O y , where y is from about 6.0 to about 6.5, the heating effecting carbonization of the cellulose material and oxidization of carbon without ignition; and maintaining the resulting article in an oxygen-containing atmosphere while cooling for a time sufficient to obtained the desired product

  16. Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California

    Directory of Open Access Journals (Sweden)

    Haider Taha

    2017-08-01

    Full Text Available To further evaluate the factors influencing public heat and air-quality health, a characterization of how urban areas affect the thermal environment, particularly in terms of the air temperature, is necessary. To assist public health agencies in ranking urban areas in terms of heat stress and developing mitigation plans or allocating various resources, this study characterized urban heat in California and quantified an urban heat island index (UHII at the census-tract level (~1 km2. Multi-scale atmospheric modeling was carried out and a practical UHII definition was developed. The UHII was diagnosed with different metrics and its spatial patterns were characterized for small, large, urban-climate archipelago, inland, and coastal areas. It was found that within each region, wide ranges of urban heat and UHII exist. At the lower end of the scale (in smaller urban areas, the UHII reaches up to 20 degree-hours per day (DH/day; °C.hr/day, whereas at the higher end (in larger areas, it reaches up to 125 DH/day or greater. The average largest temperature difference (urban heat island within each region ranges from 0.5–1.0 °C in smaller areas to up to 5 °C or more at the higher end, such as in urban-climate archipelagos. Furthermore, urban heat is exacerbated during warmer weather and that, in turn, can worsen the health impacts of heat events presently and in the future, for which it is expected that both the frequency and duration of heat waves will increase.

  17. Energetic and Exergy Efficiency of a Heat Storage Unit for Building Heating

    International Nuclear Information System (INIS)

    Hazami, Mejdi; Kooli, Sami; Lazaar, Meriem; Farhat, Abdelhamid; Belghith, Ali

    2009-01-01

    This paper deals with a numerical and experimental investigation of a daily solar storage system conceived and built in Laboratoire de Maitrise des Technologies de l Energie (LMTE, Borj Cedria). This system consists mainly of the storage unit connected to a solar collector unit. The storage unit consists of a wooden case with dimension of 5 m 3 (5 m x 1m x 1m) filed with fin sand. Inside the wooden case was buried a network of a polypropylene capillary heat exchanger with an aperture area equal to 5 m 2 . The heat collection unit consisted of 5 m 2 of south-facing solar collector mounted at a 37 degree tilt angle. In order to evaluate the system efficiency during the charging period (during the day) and discharging period (during the night) an energy and exergy analyses were applied. Outdoor experiments were also carried out under varied environmental conditions for several consecutive days. Results showed that during the charging period, the average daily rates of thermal energy and exergy stored in the heat storage unit were 400 and 2.6 W, respectively. It was found that the net energy and exergy efficiencies in the charging period were 32 pour cent and 22 pour cent, respectively. During the discharging period, the average daily rates of the thermal energy and exergy recovered from the heat storage unit were 2 kW and 2.5 kW, respectively. The recovered heat from the heat storage unit was used for the air-heating of a tested room (4 m x 3 m x 3 m). The results showed that 30 pour cent of the total heating requirement of the tested room was obtained from the heat storage system during the whole night in cold seasons

  18. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, PA

    2003-01-01

    In Denmark, the integration of wind power is affected by a large amount of cogeneration of heat and power. With ancillary services supplied by large-scale condensation and combined heat and power (CHP) plants, a certain degree of large-scale generation is required regardless of momentary wind input......, if a certain production is required regardless of whether over-all electricity generation is sufficient. This article analyses this and although heat savings do have a negative impact on the amount of wind power the system may integrate a given moment in certain cases, associated fuel savings are notable...

  19. Compressed air production with waste heat utilization in industry

    Science.gov (United States)

    Nolting, E.

    1984-06-01

    The centralized power-heat coupling (PHC) technique using block heating power stations, is presented. Compressed air production in PHC technique with internal combustion engine drive achieves a high degree of primary energy utilization. Cost savings of 50% are reached compared to conventional production. The simultaneous utilization of compressed air and heat is especially interesting. A speed regulated drive via an internal combustion motor gives a further saving of 10% to 20% compared to intermittent operation. The high fuel utilization efficiency ( 80%) leads to a pay off after two years for operation times of 3000 hr.

  20. Degrees of Truthfulness in Accepted Scientific Claims.

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan Mabrouk

    2008-12-01

    Full Text Available Normal 0 false false false EN-MY X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Abstract: Sciences adopt different methodologies in deriving claims and establishing theories. As a result, two accepted claims or theories belonging to two different sciences may not necessarily carry the same degree of truthfulness. Examining the different methodologies of deriving claims in the sciences of ʿaqīdah (Islamic Creed, fiqh (Islamic Jurisprudence and physics, the study shows that ʿaqīdah provides a holistic understanding of the universe. Physics falls short of interpreting physical phenomena unless these phenomena are looked at through the ʿaqīdah holistic view. Left to itself, error may creep into laws of physics due to the methodology of conducting the physical experiments, misinterpreting the experimental results, or accepting invalid assumptions. As for fiqh, it is found that apart from apparent errors, fiqh views cannot be falsified. It is, therefore, useful to consider ʿaqīdah as a master science which would permit all other sciences to live in harmony.

  1. Effect of heat treatment changes on swelling treatment of coal; Sekitan no bojun shori sayo ni oyobosu netsushori henka no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Satsuka, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-10-28

    Discussions were given on effects of heat treatment at relatively low temperatures as a pretreatment for coal liquefaction on coal swelling and hydrogenolysis reaction. Taiheiyo coal was heated to 200{degree}C for one hour as a pretreatment. The attempted heating methods consisted of four steps of rapid heating (6.7{degree}C/min)quenching (20{degree}C/min), rapid heating/natural cooling (0.7{degree}C/min), heating (1.0{degree}C/min)/quenching, and heating/natural cooling. The swelling treatment was composed of adding methanol benzene into heat treated coal, and leaving it at room temperature for 24 hours. The hydrogenolysis was carried out by using a tetralin solvent and at an initial hydrogen pressure of 20 kg/cm{sup 2} and a temperature of 350{degree}C and for a time of one hour. Hydrogenolysis conversion in the heat treated coal was found lower than that of the original coal because of generation of liquefaction inactive components due to thermal polymerization. When the heat treated coal is swollen by using the solvent, gas yield from the hydrogenolysis reaction decreased due to gas suppression effect, and the conversion was lower than that of the original coal. Heat treatment suggests densification of the coal structure. Swollen coal shows no conspicuous difference in the heat treatment methods against the hydrogenolysis due to the swelling effect. 3 refs., 5 figs., 1 tab.

  2. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit

    International Nuclear Information System (INIS)

    Sabehat, A.; Weiss, D.; Lurie, S.

    1996-01-01

    Heating tomato fruit (Lycopersicon esculentum) for 48 h at 38 degrees C prevented chilling injury from developing after 21 d at 2 degrees C, whereas unheated fruit developed high levels of injury. Although the overall protein pattern as seen by Coomassie blue staining was similar from heated and unheated fruit, some high- and many low-molecular-mass proteins were observed in the heated fruit that were absent or present in reduced amounts in unheated fruit. When fruit were injected with [35S]methionine at harvest and then heated, they accumulated high levels of specific radiolabeled proteins that could still be detected after 21 d at 2 degrees C. If the fruit were held at 20 degrees C after heating, the label in the proteins declined rapidly and these fruit were also sensitive to chilling injury. Hsp70 antibody reacted more strongly with proteins from heated and chilled fruit than with proteins from chilled fruit. Hsp18.1 antibody reacted strongly with proteins from heated fruit but not with those from unheated fruit. A 23-kD protein, highly labeled in heated fruit but not in unheated fruit, had its amino terminus sequenced. To our knowledge, this is the first report showing a relationship between the persistence of heat-shock proteins and chilling tolerance in a plant tissue

  3. Linking long-range weather forecasts and heat consumption as a determining factor when buying fuel chips for town heating plants

    International Nuclear Information System (INIS)

    Rolev, A.-M.

    1991-12-01

    The aim of this study is to test whether long-range weather forecasts from the meteorological services can be used as a determining factor when buying fuel chips. In the study the fuel consumption of heating plants and the factors determining the monthly consumption are mentioned. Degree-day statistics in Denmark for the last 30 years are explained as well as the difficulties in conjunction with the prediction of long-range weather conditions. This study compares degree days in 1989-1990 month by month with the actual and theoretic chip consumption in three different heating plants the same year. The theoretic chip consumption is calculated on the basis of degree days in a ''standard year'' and the annual chip consumption of the heating plant, among other things. Furthermore, on the basis of degree-day statistics the report makes it possible to estimate the monthly chip consumption of a heating plant in a ''standard year'', in an extremely cold year (maximum degree days), and in an extremely warm year (minimum degree days). However, not everything can be predicted, and it is not yet possible to predict reliable weather forecasts for more than 5 days ahead. The study concludes that long-range weather forecasts cannot be used as a determining factor when buying fuel chips for heating plants. When buying fuel chips one must still use statistics and degree days, supplimented by figures based on experience from actual chip consumption in the individual heating plant. These figures take into consideration the different types of heating plants, as well as heat supply, chip-supplier, storing facilities, other fuels, etc. (au)

  4. Induction Heating on Dynamic Tensile Tests in CEA Saclay

    International Nuclear Information System (INIS)

    Averty, X.; Yvon, P.; Duguay, C.; Pizzanelli, J. P.; Basini, V.

    2001-01-01

    The LCMI (Laboratory for characterization of irradiated materials), located in CEA from Saclay, is in charge of the mechanical tests on irradiated materials. The dynamic tensile testing machine, in a hot cell equipped with two remote handling, has been first improved in 1995, to fulfill the French safety programs on Reactivity Initiated Accident (RIA). One objective of this machine is to obtain mechanical property data on current Zircaloy cladding types needed to quality the cladding's response under RIA or LOCA transient loading and thermal conditions. For the RIA, this means testing at strain rates up to 5 s' and heating rates up to 200 degree centigree-s''-1, while for Loss of Coolant Accidents (LOCA) testing at strain rates of 10''-3 s''-1 and heating rates of 20 degree centigree s''-1 would be appropriate. The tensile samples are machined with a spark erosion machine, directly from pieces of cladding previously de fueled. Two kinds of samples can be machined in the cladding. Axial samples in order to test axial mechanical characteristics Ring samples in order to test transverse mechanical characteristics, more representative of RIA conditions. On one hand, the axial tensile tests were performed using the Joule effect, and heating rates up to about 500 degree centigree .s''-1 were obtained. This enabled us to perform the axial tests in a satisfactory manner. On the other hand, the tensile ring were first performed in a vertical furnace with a heating rate about 0.2 degree centigree.s''-1 and a thermal stability about 1 degree centigree. For temperatures above 480 degree centigree, the mechanical characteristics showed a sharp drop which could be attributed to irradiation defect annealing. Therefore we have recently developed an induction heating system to reach heating rates high enough (200 degree centigree.s''-1) to prevent any significant annealing before performing the ring tensile tests. To apply a uniaxial tangential tension, two matching half

  5. An alternative method to specify the degree of resonator stability

    Indian Academy of Sciences (India)

    *School of Physics, University of Hyderabad, Hyderabad 500 134, India. E-mail: ... Degree of optical stability; S parameter; misalignment tolerance. ... maximum value of the degree of stability corresponding to S = 100%, automatically.

  6. Health Physics Enrollments and Degrees Survey, 2006 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2007-01-01

    This annual survey collects 2006 data on the number of health physics degrees awarded as well as the number of students enrolled in health physics academic programs. Thirty universities offer health physics degrees; all responded to the survey

  7. Annealing properties of potato starches with different degrees of phosphorylation

    DEFF Research Database (Denmark)

    Muhrbeck, Per; Svensson, E

    1996-01-01

    Changes in the gelatinization temperature interval and gelatinization enthalpy with annealing time at 50 degrees C were followed for a number of potato starch samples, with different degrees of phosphorylation, using differential scanning calorimetry. The gelatinization temperature increased...

  8. Most probable degree distribution at fixed structural entropy

    Indian Academy of Sciences (India)

    Here we derive the most probable degree distribution emerging ... the structural entropy of power-law networks is an increasing function of the expo- .... tition function Z of the network as the sum over all degree distributions, with given energy.

  9. Industrial excess heat for district heating in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Karlsson, Kenneth Bernard

    2017-01-01

    analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate...... the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity...... analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal...

  10. Secular trends in monthly heating and cooling demands in Croatia

    Science.gov (United States)

    Cvitan, Lidija; Sokol Jurković, Renata

    2016-08-01

    This paper analyzes long-term heating and cooling trends for five locations in Croatia from 1901 to 2008 to assist in the revision of Croatia's heating and cooling energy policy. Trends in monthly heating degree-days (HDD) and cooling degree-days (CDD) were determined for three related temperature threshold values each and analyzed to provide insight into the influence of desired thermal comfort on the extent of changes in energy consumption. Monthly trends in the corresponding number of heating days (HD) and cooling days (CD) were also analyzed. A basic investigation of HDD, HD, CDD, and CD trends proved to be essential to the development of a complete description of important climate-related conditions that impact energy demands associated with heating and cooling. In a few cases, the dependence of the trends on the implemented temperature thresholds was rather pronounced and was reflected in great spatial and temporal variations in monthly trends. The statistical significance of the detected monthly trends illustrated a diverse range of possible impacts of climate changes on heating and cooling energy consumption both across and within three main climate regions in Croatia (continental, mountainous, and maritime). It is confirmed that the applied monthly scale for analyses is suitable for assessing heating and cooling practices.

  11. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; hide

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  12. General purpose heat source task group. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    The results of thermal analyses and impact tests on a modified design of a 238 Pu-fueled general purpose heat source (GPHS) for spacecraft power supplies are presented. This work was performed to establish the safety of a heat source with pyrolytic graphite insulator shells located either inside or outside the graphite impact shell. This safety is dependent on the degree of aerodynamic heating of the heat source during reentry and on the ability of the heat source capsule to withstand impact after reentry. Analysis of wind tunnel and impact test data result in a recommended GPHS design which should meet all temperature and safety requirements. Further wind tunnel tests, drop tests, and impact tests are recommended to verify the safety of this design

  13. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  14. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  15. Chapter 11. Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.; Culver, Gene

    1998-01-01

    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  16. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  17. Heat recovery apparatus

    International Nuclear Information System (INIS)

    McFarland, I.

    1987-01-01

    Heat transfer is a living science and technical advances are constantly being made. However, in many cases, progress is limited by the equipment that is available on the market, rather than by knowledge of the heat transfer process. A case in point is the design of economizers: in such equipment a small quantity of water (with a relatively good heat transfer coefficient) is heated by a large quantity of low-pressure gas (with an inherently low heat transfer coefficient). As a first step in design finned tubing is used to lessen the discrepancy in coefficients. From this point, it becomes apparent that the equipment consists of a small number of tubes (to maintain good velocity on the water side) of considerable length (to provide sufficient area). In the process industries the base pressure, though low, may be in the region of 0.5 bar, and there is no convenient flue in which to place the heat recovery coil. It is therefore contained in a flat-sided enclosure, which is ill-fitted to pressure containment and is therefore reinforced with a plethora of structural sections. Such inelegant construction is quite common in North America; in Europe, cylindrical containments of vast size have been supplied for the same purposes. The real shortcoming is a successful marriage of different disciplines to produce reliable and efficient heat transfer equipment suitably contained

  18. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Elliott, D.E.; Healey, E.M.; Roberts, A.G.

    1974-01-01

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  19. Cost reduction in the cold: heat generated by terrestrial locomotion partly substitutes for thermoregulation costs in Knot Calidris canutus

    NARCIS (Netherlands)

    Bruinzeel, L.W.; Piersma, T.

    1998-01-01

    To test whether heat generated during locomotion substitutes for the thermoregulation cost, oxygen consumption of four post-absorptive temperate-wintering Knot Calidris canutus was measured at air temperatures of 25 degrees C (thermoneutral) and 10 degrees C (c. 10 degrees below the lower critical

  20. Heating great residential units with combustion-motor heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, W

    1982-10-01

    Economic usage of combustion-motor heat pumps requires: reliable technology and delivery of the heat pump; design and operation. The heat pump must be integrated perfectly into the heating system. This contributions is based on a three-year operational experience with over 150 heat pumps used mainly in residential and administrative buildings (plus commercial buildings, swimming pools, sport centres etc.). These are heat pumps operating on the compression principle with natural gas, liquid gas, or fuel oil.

  1. The degree of irreversibility in deterministic finite automata

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Holzer, Markus; Kutrib, Martin

    2016-01-01

    the language, and show that the degree induces a strict infinite hierarchy of languages. We examine how the degree of irreversibility behaves under the usual language operations union, intersection, complement, concatenation, and Kleene star, showing tight bounds (some asymptotically) on the degree....

  2. Nuclear Engineering Enrollments and Degrees Survey, 2005 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2006-01-01

    This annual report details the number of nuclear engineering bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2005. it also looks at nuclear engineering degrees by curriculum and the number of students enrolled in nuclear engineering degree programs at 30 U.S. universities in 2005

  3. Structure and origin of the 85 degrees E ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Subrahmanyam, V.; Chaubey, A.K.; Ramprasad, T.; Sarma, K.V.L.N.S.; Krishna, K.S.; Desa, M.; Murty, G.P.S.; Subrahmanyam, C

    The submerged 85 degrees E Ridge in the Bay of Bengal trends approximately N-S between 19 degrees N and 6 degrees N latitudes. Off the southeast coast of Sri Lanka it takes an arcuate shape and seems to terminate with the northweard extension...

  4. Degree-regular triangulations of torus and Klein bottle

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 3 ... A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. ... In [5], Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices.

  5. Scholarship in nursing: Degree-prepared nurses versus diploma ...

    African Journals Online (AJOL)

    All but one (n = 18) nursing educators who obtained a degree as first qualification are educators in the private sector that include both universities as well as nursing colleges of private hospital groups. Data further revealed that most nurse educators and those in managerial positions were degree prepared. More degree ...

  6. Actuator with Multi Degrees of Freedom(Actuator)

    OpenAIRE

    矢野, 智昭; Tomoaki, YANO; 産業技術総合研究所

    2006-01-01

    The advantages, problems and the recent developments of the actuator with multi degrees of freedom are presented. At first, the advantages of the actuator with multi degrees of freedom are described. Next, the problems needed to solve for practical use are presented. The recent applications of the actuator with multi degrees of freedom are also reviewed.

  7. The Striking Progress of African Americans in Degree Attainments.

    Science.gov (United States)

    Journal of Blacks in Higher Education, 2002

    2002-01-01

    While the number of blacks earning bachelor's and master's degrees has risen significantly since 1985, and the number of black doctoral degrees rose 110 percent, the percentage of all degrees awarded to blacks at all levels is far lower than the black percentage of the U.S. population. Black women earn 65.7 percent of all doctorates awarded to…

  8. College Teaching as a Profession: The Doctor of Arts Degree.

    Science.gov (United States)

    Dressel, Paul L.

    The history of the Doctor of Arts (D.A.) degree and issues related to its development are briefly traced, and D.A. programs presently available and the success of degree recipients are addressed. Attention is also directed to other types of degree programs that are available, including their advantages and disadvantages, factors involved in…

  9. Health Physics Enrollments and Degrees Survey, 2005 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2006-01-01

    This annual report details the number of health physics bachelor's, master's, and postdoctoral degrees awarded at a sampling of academic programs from 1998-2005. It also looks at health physics degrees by curriculum and the number of students enrolled in health physics degree programs at 30 U.S. universities in 2005

  10. Health Physics Enrollments and Degrees Survey, 2004 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2005-01-01

    This annual report details the number of health physics bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2004. It also looks at health physics degrees by curriculum and the number of students enrolled in health physics degree programs at 28 U.S. universities in 2004

  11. SLOWPOKE: heating reactors in the urban environment

    International Nuclear Information System (INIS)

    Hilborn, J.W.; Lynch, G.F.

    1988-06-01

    Since global energy requirements are expected to double over the next 40 years, nuclear heating could become as important as nuclear electricity generation. To fill that need, AECL has designed a 10 MW nuclear heating plant for large buildings. Producing hot water at temperatures below 100 degrees Celsius, it incorporates a small pool-type reactor based on the successful SLOWPOKE Research Reactor. A 2 MW prototype is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba, and the design of a 10 MW commercial unit is well advanced. With capital costs in the range $5 million to $7 million, unit energy costs could be as low as $0.02 per kWh, for a unit operating at 50% load factor over a 25-year period. By keeping the reactor power low and the water temperature below 100 degrees Celsius, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe, nuclear heating systems to be economically viable

  12. Elementary heat transfer analysis

    CERN Document Server

    Whitaker, Stephen; Hartnett, James P

    1976-01-01

    Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra

  13. Microwave heating denitration device

    International Nuclear Information System (INIS)

    Sato, Hajime; Morisue, Tetsuo.

    1984-01-01

    Purpose: To suppress energy consumption due to a reflection of microwaves. Constitution: Microwaves are irradiated to the nitrate solution containing nuclear fuel materials, to cause denitrating reaction under heating and obtain oxides of the nuclear fuel materials. A microwave heating and evaporation can for reserving the nitrate solution is disposed slantwise relative to the horizontal plane and a microwave heating device is connected to the evaporation can, and inert gases for agitation are supplied to the solution within the can. Since the evaporation can is slanted, wasteful energy consumption due to the reflection of the microwaves can be suppressed. (Moriyama, K.)

  14. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  15. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  16. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  17. District heating from Forsmark

    International Nuclear Information System (INIS)

    1980-11-01

    The district heating system of Greater Stockholm must be based on other energy sources than oil. Two alternatives are assessed, namely heat from Forsmark or a coal fueled plant in the region of Stockholm. Forsmark 3 can produce both electricity and heat from the year 1988 on. The capacity can be increased by coal fueled blocks. For low electricity use, 115 TWh in the year 1990, the Forsmark alternative will be profitable. The alternative will be profitable. The alternative with a fossile fuelled plant will be profitable when planning for high consumption of electricity, 125 TWh. The Forsmark alternative means high investments and the introduction of new techniques. (G.B.)

  18. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  19. [Clothing and heat disorder].

    Science.gov (United States)

    Satsumoto, Yayoi

    2012-06-01

    The influence of the clothing material properties(like water absorbency and rapid dryness, water vapor absorption, water vapor permeability and air permeability) and the design factor of the clothing(like opening condition and fitting of clothing), which contributed to prevent heat disorder, was outlined. WBGT(wet-bulb globe temperature) is used to show a guideline for environmental limitation of activities to prevent heat disorder. As the safety function is more important than thermal comfort for some sportswear and protective clothing with high cover area, clothing itself increases the risk of heat disorder. WBGT is corrected by CAF (clothing adjustment factor) in wearing such kind of protective clothing.

  20. Decentralized central heating

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.; Hudjera, A.

    1994-08-04

    The decentralized central heating is essentially based on new technical solutions for an independent heating unit, which allows up to 20% collectible energy savings and up to 15% savings in built-in-material. These savings are already made possible by the fact that the elements described under point A are thus eliminated from the classical heating. The thus superfluous made elements are replaced by new technical solutions described under point B - technical problem - and point E - patent claim. The technical solutions described in detail under point B and point E form together a technical unit and are essential parts of the invention protected by the patent. (author)